
Certified Machine Code from Provably
Secure C-like Code

Towards A Verified Cryptographic Software Toolchain

François Dupressoir

IMDEA Software Institute, Madrid, Spain

Based on joint work with J.C.B. Almeida, M. Barbosa and G. Barthe

Mind the Gap(s)

◮ Cryptographers prove abstract schemes secure.
◮ Concrete schemes are standardized.
◮ Implementations are run.

Goal
We aim to bridge these gaps, and bring formal cryptographic
guarantees to the level of executable code:

◮ Perform cryptographic proofs on concrete schemes.
◮ Certify compilation from schemes to executable code.
◮ (Along the way, we capture some side-channel leakage.)

Reductionist proof

Scheme

Reductionist proof

Scheme

Primitive

Reductionist proof

Scheme

Primitive

Generic

construction

Reductionist proof

Scheme

Primitive

Generic

construction

Attack

Reductionist proof

Scheme

Primitive

Generic

construction

Attack

Attack

Reductionist proof

Scheme

Primitive

Generic

construction

Attack

Attack

Black-box

reduction

Reductionist proof

Scheme

Primitive

Generic

construction

Attack

Attack

Black-box

reduction

Ideally attacks have similar execution times

Public-key encryption

Algorithms (K, Epk ,Dsk)

◮ E probabilistic
◮ D deterministic and partial

If (sk ,pk) is a valid key pair,

Dsk (Epk (m)) = m

Encryption Decryption

Key generation

hello

Public
key

rwxtf

Secret
key

hello

Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c⋆);
return (b′ = b)

◮ A1 has access to all oracles, and
chooses two valid plaintexts of the
same length.

◮ A2 has access to all the oracles (but
the decryption oracle fails on c⋆) and
returns a bit b′ representing his guess
on the value of b.

One-way trapdoor permutations

Algorithms (K, fpk , f
−1
sk)

◮ fpk and f−1
sk deterministic

If (sk ,pk) is a valid key pair,

f−1
sk (fpk (m)) = m

Encryption Decryption

Key generation

hello

Public
key

rwxtf

Secret
key

hello

One-way trapdoor permutations
set Partial-Domain One-Way

Game sPDOW(I)
(sk ,pk) ← K();
s $← {0,1}k0 ;

t $← {0,1}k1 ;
x⋆ ← fpk (s||t);
S ← I(pk , x⋆);
return (s ∈ S)

◮ I is given no oracles but can
compute fpk from public data.

◮ I returns a list or set of guesses
as to the value of s and wins if s
is a member.

PrsPDOW(I)[s ∈ S] small

Optimal Asymmetric Encryption Padding

Encryption EOAEP(pk)(m) :

r $← {0,1}k0 ;

s ← G(r) ⊕ (m‖0k1);
t ← H(s)⊕ r ;
return fpk (s‖ t)

Decryption DOAEP(sk)(c) :
(s, t)← f−1

sk (c);
r ← t ⊕ H(s);
if ([s ⊕G(r)]k1

=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

⊕ exclusive or ‖concatenation [·] projection 0 zero bitstring

Theorem (Fujisaki et al., 2004)

For every IND-CCA adversary A against (K, EOAEP,DOAEP),
there exists a set-PDOW adversary I against (K, f, f−1) s.t.

∣

∣PrIND-CCA(A)[b′ = b]− 1
2

∣

∣ ≤

PrsPDOW(I)[s ∈ S] + 2qDqG+qD+qG

2k0
− 2qD

2k1

OAEP: Optimal Asymmetric Encryption Padding

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

2010

BGLZ

1994 Purported proof of chosen-ciphertext security

2001 1994 proof gives weaker security; desired security holds
◮ for a modified scheme ◮ under stronger assumptions

2004 Filled gaps in 2001 proof

2009 Security definition needs to be clarified

2010 Fills gaps in 2004 proof

A Low-Level Model...

Decryption DOAEP(sk)(c) :
(s, t)← f−1

sk (c);
r ← t ⊕ H(s);
if ([s ⊕G(r)]k1

=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

Decryption DPKCS(sk)(c) :
b0, s, t ← f−1

sk (c);
rM ← MGF (s,hL);
r ← t ⊕ rM;
dbM ← MGF (r ,dbL);
DB ← t ⊕ dbM;
l ,m ← parse(DB);
if (m <> ⊥ &&

b0 = 0 &&

l = 0hL)
then {m ← m; }
else {m ← ⊥; }

return m

A Lower-Level Model...

Decryption DOAEP(sk)(c) :
(s, t)← f−1

sk (c);
r ← t ⊕H(s);
if ([s ⊕G(r)]k1

=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

Decryption DPKCS-C(sk)(res, c) :
if (c ∈ MsgSpace(sk))
{ (b0, s, t)← f−1

sk (c);
h ← MGF (s,hL); i ← 0;
while (i < hLen + 1)
{ s[i]← t[i]⊕ h[i]; i ← i + 1; }
g ← MGF (r ,dbL); i ← 0;
while (i < dbLen)
{ p[i]← s[i]⊕ g[i]; i ← i + 1; }
l ← payload_length(p);
if (b0 = 08 ∧ [p]hLen

l = 0..01∧
[p]hLen = LHash)

then
{rc ← Success;
memcpy(res,0,p,dbLen− l , l); }

else {rc ← DecryptionError ; } }
else {rc ← CiphertextTooLong; }

return rc;

A Brief and Incomplete History of Side-Channels

1994 1996

Kocher

2001

Manger

2010

Strenzke

◮ plaintext is variable-sized: careless parsing leads to
padding oracle (Manger, 2001);

◮ RSA is permutation only on strict subset of
[

0..2k
]

:
careless error handling leads to timing attacks;

◮ PKCS#1 prescribes some error messaging, rarely
considered in existing proofs.

...with Leakage

◮ We consider Program Counter Security.
◮ The adversary is given the list of program points traversed

while executing the oracle.
◮ Leakage due to the computation of the permutation is kept

abstract but given;
◮ Axioms formalize our leakage assumptions on their

implementation.
◮ Security assumption (sPDOW) is slightly adapted to deal

with abstract leakage.

Proving Security

◮ First step: abstract away low-level implementation details
Imperative arrays into functional bitstrings,
Separate computation and leakage
Loops into abstract operators, easier to reason about.
~3000 lines of proof - This is not nice.

◮ Then: a variant of Fujisaki et al.’s proof
6 main games, some intermediate games
compute cannot handle variable-length bitstrings
~3000 lines of proof - This is normal.

Compilation

◮ Going from “EasyCrypt C-mode” to C is a syntactic
transformation.

“C-mode” arrays are base-offset representation and match
subset of C arrays (no aliasing or overlap possible, pointer
arithmetic only within an array).
Some care needed so leakage traces correspond (int as
bool, short-circuiting logical connectors).

◮ Going from C to ASM is more complicated.
◮ We use CompCert.

CompCert

◮ CompCert is a certified optimizing C compiler (in Coq).
◮ It comes with a proof of semantic preservation expressed

in terms of (potentially infinite) traces of events.
Only terminating programs.
Only “safe” programs (no undefined behaviours).

◮ A trace of events is possible in compiled program iff it is
possible in the source program.

system calls (“external calls”),
I/O from and to the environment, and
user-defined events (parameterized by base-typed values).

CompCert and Easycrypt C-mode

◮ Probabilistic operations pushed into the environment:
ideal random sampling of bitstrings,
hash function (random oracle),

◮ Trusted arbitrary precision integer libraries modelled as
external calls:

some extensions needed to let external calls read and write
memory,
CompCert and proof extended with “trusted-lib”
mechanism,

◮ User-defined events sufficient to model program counter
traces, but may need extensions for other leakage models

Compiling PC-secure Programs using CompCert

◮ NaCl functions for sampling and hash functions.
◮ A simplified variant of LIP for arbitrary precision integers,

augmented with PC countermeasures (formally verified),
no functional verification.

◮ Compilation may introduce side-channel (PC) leakage.
A simple static analysis on ASM programs,
A Coq proof that this is sufficient to guarantee PC-security.

The Check

◮ There is at least one branching event between any two
conditional jumps.

◮ Guarantees that CompCert traces are in 1-1 relation with
PC traces, and that a simulator exists.

◮ Other leakage models might not enjoy this simplicity.

Performance

�������� �����	
��
��� ���� ������������

�

���

���

���

���

�

���

�������

��� �
�

�������

◮ A bit slower than usual CompCert benchmarks,
◮ Most of the slowdown comes from the trusted library.

Conclusions

Mind the Gap
Still a model.

◮ Adversary and execution models are still somewhat
idealized:

Adversary is not in the same virtual address space,
Initial model is not sufficient to capture cache behaviours, ...

◮ Consider more active side-channels (fault injection ...)

