Certified Machine Code from Provably

Secure C-like Code
Towards A Verified Cryptographic Software Toolchain

Francois Dupressoir

IMDEA Software Institute, Madrid, Spain

Based on joint work with J.C.B. Almeida, M. Barbosa and G. Barthe

Mind the Gap(s)

» Cryptographers prove abstract schemes secure.
» Concrete schemes are standardized.
» Implementations are run.

Goal

We aim to bridge these gaps, and bring formal cryptographic
guarantees to the level of executable code:

» Perform cryptographic proofs on concrete schemes.
» Certify compilation from schemes to executable code.
» (Along the way, we capture some side-channel leakage.)

Reductionist proof

Scheme

Reductionist proof

Scheme

Reductionist proof

Reductionist proof

Scheme

Reductionist proof

=

o] —— [

Reductionist proof

Reductionist proof

Scheme

Ideally attacks have similar execution times

Public-key encryption

Algorithms (IC, &y, Dsk)
» & probabilistic
» D deterministic and partial

If (sk, pk) is a valid key pair,

Dsk (Epk(m)) =m

hello

Public
key

Key generation

Secre
key

Encryption . Decryption

hello

Public-key encryption

Indistinguishability against chosen-ciphertext attacks

Game IND(A) » A; has access to all oracles, and
] chooses two valid plaintexts of the
(sk, pk) < K(); same length.

(Mo, my) + Az(pk);

» A, has access to all the oracles (but

b & {O, 1}? the decryption oracle fails on c¢*) and
c* <« Epk(mMp); returns a bit b’ representing his guess
b’ + Ap(c*); on the value of b.

return (b’ = b)

One-way trapdoor permutations

Algorithms (K, fpi, fol)
> fox and o' deterministic

If (sk, pk) is a valid key pair,

foc (fpk (M) =m

hello

Key generation

Public Secre
key key

Encryption . Decryption

hello

One-way trapdoor permutations

set Partial-Domain One-Way

Game sPDOW(Z) > Tis given no oracles but can
(sk, pk) « K(); compute fy, from public data.

s <s;’ {0]_}ko- » 7 returns a list or set of guesses
t s 10 71 ky X as to the value of s and wins if s

:_{ S is a member.

X* < for(s||t);

S « Z(pk,x*);

return (s € S)

PrSpDO\N(I) [S € S] small

Optimal Asymmetric Encryption Padding

Decryption Doagp(sk)(C)
Encryption Eoaeppk)(M) : (s,t) « fol(c);
r & {0,1}; r < t®H(s);
s + G(r) @ (m||0k); if ([s @ G(r)]x, =0%)
t« H(s)@r; then {m « [s ® G(r)];}
return fo (s || t) else {m «+ L1;}

return m

@ exclusive or | concatenation [-] projection 0 zero bitstring

Theorem (Fujisaki et al., 2004)

For every IND-CCA adversary A against (KC, Eoaep, DoaEp),
there exists a set-PDOW adversary 7 against (K, f,f~1) s.t.

|Prinp-ccaay b’ = b] — %‘ <
20p

20p4+do+9
Prspoow(z)[s € S| + =2 — 3¢

OAEP: Optimal Asymmetric Encryption Padding

Shoup Bellare, Hofheinz, Kiltz

Bellare and Rogaway Pointcheval
1994 2001 2004 2009 2010
Fujisaki, Okamoto, Pointcheval, Stern BGLZ

1994 Purported proof of chosen-ciphertext security

2001 1994 proof gives weaker security; desired security holds
» for a modified scheme » under stronger assumptions
2004 Filled gaps in 2001 proof

2009 Security definition needs to be clarified

2010 Fills gaps in 2004 proof

A Low-Level Model...

Decryption Dpgcs(sk)(C) :
b0,s,t + fl(c);
rM < MGF (s, hL);

Decryption Doagpsk)(C) r«—tarM;
(s,t) « fgl(c); dbM < MGF (r,dbL);
r < taoH(s) DB « t & dbM;
if ([s ® G(r)]x, =0%) |, m < parse(DB);
then {m « [s @ G(r)]%;} if (m <> 1 &&
else {m «+ L;} b0 =0 &&
return m | = oM

then {m <~ m;}
else {m+«+ L;}
return m

A Lower-Level Model...

Decryption Doagep(sk)(C) :
(s,t) « fal(c);
r < taeH(s),
f ([s © G(r)lk,=0)
then {m « [s @ G(r)]¥; }
else {m+«+ L;}
return m

Decryption Dpgcs.csk)(r€s, C) :
if (c € MsgSpace(sk))
{ (00,s,t) « fl(c);
h < MGF(s,hL); i « 0;
while (i < hLen + 1)
{s[i] < tlij@h[i];i+i+1; }
g + MGF(r,dbL); i « 0;
while (i < dbLen)
{ plil < sli]@g[i]; i< i+1;}
| < payload_length(p);
if (b0 = 08 A [p]'-e" = 0..01A
[p]hLen = I—HaSh)
then
{rc + Success;
memcpy (res,0,p,dbLen — 1, 1); }
else {rc < DecryptionError; } }
else {rc « CiphertextTooLong; }
return rc;

A Brief and Incomplete History of Side-Channels

Kocher Manger Strenzke

1994 1996 2001 2010
» plaintext is variable-sized: careless parsing leads to
padding oracle (Manger, 2001);

» RSA is permutation only on strict subset of [0..2]:
careless error handling leads to timing attacks;

» PKCS#1 prescribes some error messaging, rarely
considered in existing proofs.

...with Leakage

» We consider Program Counter Security.

» The adversary is given the list of program points traversed
while executing the oracle.

» Leakage due to the computation of the permutation is kept
abstract but given;

» Axioms formalize our leakage assumptions on their
implementation.

» Security assumption (sPDOW) is slightly adapted to deal
with abstract leakage.

Proving Security

» First step: abstract away low-level implementation details
@ Imperative arrays into functional bitstrings,
@ Separate computation and leakage
@ Loops into abstract operators, easier to reason about.
@ ~3000 lines of proof - This is not nice.

» Then: a variant of Fujisaki et al.'s proof

@ 6 main games, some intermediate games
@ compute cannot handle variable-length bitstrings
@ ~3000 lines of proof - This is normal.

Compilation

» Going from “EasyCrypt C-mode” to C is a syntactic
transformation.

@ “C-mode” arrays are base-offset representation and match
subset of C arrays (no aliasing or overlap possible, pointer
arithmetic only within an array).

@ Some care needed so leakage traces correspond (int as
bool, short-circuiting logical connectors).

» Going from C to ASM is more complicated.
» We use CompCert.

CompCert

» CompCertis a certified optimizing C compiler (in Coq).
» It comes with a proof of semantic preservation expressed
in terms of (potentially infinite) traces of events.
@ Only terminating programs.
@ Only “safe” programs (no undefined behaviours).
» A trace of events is possible in compiled program iff it is
possible in the source program.
@ system calls (“external calls”),
@ |/O from and to the environment, and
@ user-defined events (parameterized by base-typed values).

CompCert and Easycrypt C-mode

» Probabilistic operations pushed into the environment:
@ ideal random sampling of bitstrings,
@ hash function (random oracle),
» Trusted arbitrary precision integer libraries modelled as
external calls:

@ some extensions needed to let external calls read and write
memory,

@ CompCert and proof extended with “trusted-lib”
mechanism,

» User-defined events sufficient to model program counter
traces, but may need extensions for other leakage models

Compiling PC-secure Programs using CompcCert

» NacCl functions for sampling and hash functions.

» A simplified variant of LIP for arbitrary precision integers,
@ augmented with PC countermeasures (formally verified),
@ no functional verification.

» Compilation may introduce side-channel (PC) leakage.

@ A simple static analysis on ASM programs,
@ A Coq proof that this is sufficient to guarantee PC-security.

The Check

» There is at least one branching event between any two
conditional jumps.

» Guarantees that CompCert traces are in 1-1 relation with
PC traces, and that a simulator exists.

» Other leakage models might not enjoy this simplicity.

Performance

1.2

1
0.8
W gcc -O0
0.6 = CompCert
gcc -O1
0.4
0.2
0

NaCl box NaCl secretbox PKCS PKCS (nolib)
» A bit slower than usual CompCert benchmarks,

» Most of the slowdown comes from the trusted library.

Conclusions

Mind the Gap
Still a model.
» Adversary and execution models are still somewhat
idealized:

@ Adversary is not in the same virtual address space,
@ Initial model is not sufficient to capture cache behaviours, ...

» Consider more active side-channels (fault injection ...)

