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Mind the Gap(s)

◮ Cryptographers prove abstract schemes secure.
◮ Concrete schemes are standardized.
◮ Implementations are run.

Goal
We aim to bridge these gaps, and bring formal cryptographic
guarantees to the level of executable code:

◮ Perform cryptographic proofs on concrete schemes.
◮ Certify compilation from schemes to executable code.
◮ (Along the way, we capture some side-channel leakage.)
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Ideally attacks have similar execution times



Public-key encryption

Algorithms (K, Epk ,Dsk )

◮ E probabilistic
◮ D deterministic and partial

If (sk ,pk) is a valid key pair,

Dsk (Epk (m)) = m
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Public-key encryption
Indistinguishability against chosen-ciphertext attacks

Game IND(A)
(sk ,pk) ← K();
(m0,m1)← A1(pk);
b $← {0,1};
c⋆ ← Epk (mb);
b′ ← A2(c⋆);
return (b′ = b)

◮ A1 has access to all oracles, and
chooses two valid plaintexts of the
same length.

◮ A2 has access to all the oracles (but
the decryption oracle fails on c⋆) and
returns a bit b′ representing his guess
on the value of b.



One-way trapdoor permutations

Algorithms (K, fpk , f
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One-way trapdoor permutations
set Partial-Domain One-Way

Game sPDOW(I)
(sk ,pk) ← K();
s $← {0,1}k0 ;

t $← {0,1}k1 ;
x⋆ ← fpk (s||t);
S ← I(pk , x⋆);
return (s ∈ S)

◮ I is given no oracles but can
compute fpk from public data.

◮ I returns a list or set of guesses
as to the value of s and wins if s
is a member.

PrsPDOW(I)[s ∈ S] small



Optimal Asymmetric Encryption Padding

Encryption EOAEP(pk)(m) :

r $← {0,1}k0 ;

s ← G(r) ⊕ (m‖0k1);
t ← H(s)⊕ r ;
return fpk (s‖ t)

Decryption DOAEP(sk)(c) :
(s, t)← f−1

sk (c);
r ← t ⊕ H(s);
if ([s ⊕G(r)]k1

=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

⊕ exclusive or ‖concatenation [·] projection 0 zero bitstring

Theorem (Fujisaki et al., 2004)

For every IND-CCA adversary A against (K, EOAEP,DOAEP),
there exists a set-PDOW adversary I against (K, f, f−1) s.t.

∣

∣PrIND-CCA(A)[b′ = b]− 1
2

∣

∣ ≤

PrsPDOW(I)[s ∈ S] + 2qDqG+qD+qG

2k0
− 2qD

2k1



OAEP: Optimal Asymmetric Encryption Padding

1994

Bellare and Rogaway

2001

Shoup

Fujisaki, Okamoto, Pointcheval, Stern

2004

Pointcheval

2009

Bellare, Hofheinz, Kiltz

2010

BGLZ

1994 Purported proof of chosen-ciphertext security

2001 1994 proof gives weaker security; desired security holds
◮ for a modified scheme ◮ under stronger assumptions

2004 Filled gaps in 2001 proof

2009 Security definition needs to be clarified

2010 Fills gaps in 2004 proof



A Low-Level Model...

Decryption DOAEP(sk)(c) :
(s, t)← f−1

sk (c);
r ← t ⊕ H(s);
if ([s ⊕G(r)]k1

=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

Decryption DPKCS(sk)(c) :
b0, s, t ← f−1

sk (c);
rM ← MGF (s,hL);
r ← t ⊕ rM;
dbM ← MGF (r ,dbL);
DB ← t ⊕ dbM;
l ,m ← parse(DB);
if (m <> ⊥ &&

b0 = 0 &&

l = 0hL)
then {m ← m; }
else {m ← ⊥; }

return m



A Lower-Level Model...

Decryption DOAEP(sk)(c) :
(s, t)← f−1

sk (c);
r ← t ⊕H(s);
if ([s ⊕G(r)]k1

=0k1)

then {m ← [s ⊕G(r)]k ; }
else {m ← ⊥; }

return m

Decryption DPKCS-C(sk)(res, c) :
if (c ∈ MsgSpace(sk))
{ (b0, s, t)← f−1

sk (c);
h ← MGF (s,hL); i ← 0;
while (i < hLen + 1)
{ s[i]← t[i]⊕ h[i]; i ← i + 1; }
g ← MGF (r ,dbL); i ← 0;
while (i < dbLen)
{ p[i]← s[i]⊕ g[i]; i ← i + 1; }
l ← payload_length(p);
if (b0 = 08 ∧ [p]hLen

l = 0..01∧
[p]hLen = LHash)

then
{rc ← Success;
memcpy(res,0,p,dbLen− l , l); }

else {rc ← DecryptionError ; } }
else {rc ← CiphertextTooLong; }

return rc;



A Brief and Incomplete History of Side-Channels

1994 1996

Kocher

2001

Manger

2010

Strenzke

◮ plaintext is variable-sized: careless parsing leads to
padding oracle (Manger, 2001);

◮ RSA is permutation only on strict subset of
[

0..2k
]

:
careless error handling leads to timing attacks;

◮ PKCS#1 prescribes some error messaging, rarely
considered in existing proofs.



...with Leakage

◮ We consider Program Counter Security.
◮ The adversary is given the list of program points traversed

while executing the oracle.
◮ Leakage due to the computation of the permutation is kept

abstract but given;
◮ Axioms formalize our leakage assumptions on their

implementation.
◮ Security assumption (sPDOW) is slightly adapted to deal

with abstract leakage.



Proving Security

◮ First step: abstract away low-level implementation details
Imperative arrays into functional bitstrings,
Separate computation and leakage
Loops into abstract operators, easier to reason about.
~3000 lines of proof - This is not nice.

◮ Then: a variant of Fujisaki et al.’s proof
6 main games, some intermediate games
compute cannot handle variable-length bitstrings
~3000 lines of proof - This is normal.



Compilation

◮ Going from “EasyCrypt C-mode” to C is a syntactic
transformation.

“C-mode” arrays are base-offset representation and match
subset of C arrays (no aliasing or overlap possible, pointer
arithmetic only within an array).
Some care needed so leakage traces correspond (int as
bool, short-circuiting logical connectors).

◮ Going from C to ASM is more complicated.
◮ We use CompCert.



CompCert

◮ CompCert is a certified optimizing C compiler (in Coq).
◮ It comes with a proof of semantic preservation expressed

in terms of (potentially infinite) traces of events.
Only terminating programs.
Only “safe” programs (no undefined behaviours).

◮ A trace of events is possible in compiled program iff it is
possible in the source program.

system calls (“external calls”),
I/O from and to the environment, and
user-defined events (parameterized by base-typed values).



CompCert and Easycrypt C-mode

◮ Probabilistic operations pushed into the environment:
ideal random sampling of bitstrings,
hash function (random oracle),

◮ Trusted arbitrary precision integer libraries modelled as
external calls:

some extensions needed to let external calls read and write
memory,
CompCert and proof extended with “trusted-lib”
mechanism,

◮ User-defined events sufficient to model program counter
traces, but may need extensions for other leakage models



Compiling PC-secure Programs using CompCert

◮ NaCl functions for sampling and hash functions.
◮ A simplified variant of LIP for arbitrary precision integers,

augmented with PC countermeasures (formally verified),
no functional verification.

◮ Compilation may introduce side-channel (PC) leakage.
A simple static analysis on ASM programs,
A Coq proof that this is sufficient to guarantee PC-security.



The Check

◮ There is at least one branching event between any two
conditional jumps.

◮ Guarantees that CompCert traces are in 1-1 relation with
PC traces, and that a simulator exists.

◮ Other leakage models might not enjoy this simplicity.



Performance
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◮ A bit slower than usual CompCert benchmarks,
◮ Most of the slowdown comes from the trusted library.



Conclusions

Mind the Gap
Still a model.

◮ Adversary and execution models are still somewhat
idealized:

Adversary is not in the same virtual address space,
Initial model is not sufficient to capture cache behaviours, ...

◮ Consider more active side-channels (fault injection ...)


