
Multimodel Management and
Repair
I-MDE-A Seminar
Adrian Rutle

1

Ángela Barriga Rodríguez, Alejandro Rodríguez Tena
Patrick Stünkel, Tima Kräuter, Fernando Macías
Madrid – May 16, 2023
Western Norway University of Applied Sciences

Adrian Rutle
https://dblp.uni-trier.de/pid/00/5718.html

Bakcground
Prof. at HVL (Western Norway University of Applied Sciences)

2

Worked on Model-driven software engineering since 2007

Interests: diagrammatic modeling, model transformation, multilevel modeling, multimodeling, behaviour
modeling, softcat and DPF, model repair \subset model management, robotics, “ML/AI”.

Model driven engineering in a nutshell

3

● The 3 A’s: Abstraction, Analysis,
Automation

● Features: Mapping, Reduction and
Pragmatic

● Ingredients: Models, Metamodels
and Model transformations

● Slogans: «everything is a model»,
«to model or to code, it is not a
question»

4

What is a model?

5

What mathematicians call “specification”

6

Levels of
abstraction

7

Multilevel modeling with “MultEcore”

Model Management

● Version control
● Global management (Multi-models)
● Persistence
● Interchange
● Comparison
● Co-evolution
● Quality
● Collaborative modeling
● Repair/restoration
● Composition

8

Global
management

● Structure
● Behaviour
● Both

9

1. Define correspondence
2. «Put them together»/global model
3. Define consistency rules/constraints
4. Check the rules/constraints

If not consistent, try to repair
If global repair, propagate update to local

5. After each local/global update, go to 4

Multi-modelling

Multi-paradigm modelling

Multi-view-point modelling

Composition

Coordination

Collaboration
Synchronization

Co-simulation

Bidirectional TransformationWeaving
Embedding Multi-typing/decorationExtension Merging

Data-exchange Model/scheme exchange

INT
ERO

PER
ABI

LITY
SecurityPrivacy

Performance
Robustness

...

Interoperability

Different systems operate «together»

Fields

Multi-modelling: multiple models representing various
systems (parts exist first)

Multi-viewpoint modelling: viewing a system from
different perspectives (hole exist first)

Multi-paradigm modelling: languages of the parts belong
to different paradigms (often continous systems,
CPSs, real-time systems, robotics)

Methods

Composition: mostly languages and models (create whole)
Coordination: mostly wrt. behavior
Collaboration: often data and message/event exchange
Synchronization: independent systems with notification
Co-simulation: often for CPSs

15

To merge or not to merge?

Comprehensive system with linguistic extension!

Techniques

16

Example: commonality leading to comprehensive system

17
Recall Volker’s IoT challenge

18

19

General Scheme: Consistency management

Feature model
Organising concepts in the steps

20Ph.D. Patrick Stünkel

21

22

23

24

Correspondence and commonality

25

26

Define consistency

27

28

29

In case of behavior

30Ph.D. Tim Kräuter

Recall Violet’s
CroFlow cases

31

Traffic light example
32

SRM and global rules/constraints
33

Premises: The «states» and «state changing elements» in the participating languages

34

Property specification
35

Define interactions
36

Generate global behavior
37

+
=

Formalization/Foundations

38

Structure: Categorty theory
Behavior: Coalgebra

Ææææ!
39

When things go wrong: repair

40

41

General approach:
Multi-models or not, this should work!

Ph.D.: Angela B. Rodriguez

PARMOREL:
Personalized and automatic
repair of models using
reinforcement learning

42

43

45

Each issue ➜multiple solutions.
Solutions are domain and user-dependant.

46

47

Each issue ➜multiple solutions.
Solutions are domain and user-dependant.

Different types of issues and models.

48

49

50

51

52

53

54

55

How can we apply
RL algorithms in
model repair?

56

Agent: The RL algorithm.

Environment: The model to repair.

57

State space: The state space is defined by
the set of issues present in the model.

Action space: The set of editing actions able
to repair a model.

58

59

issue3

Initial state: {issue1, issue2, issue3}

Final state: {}

issue1

issue2

60

issue3

Action space: deleteReference | Class | Attribute,
setName(name), addReference | Class | Attribute

issue1

issue2

Reward: Rewards can be adapted to align
with user preferences to personalize the
repair result.

61

62

63

issue3

64

issue1

issue2

Maintainability
Q-table

64

issue3

65

issue1

issue2

Maintainability

issue3

66

issue1

issue2

Maintainability

issue3

67

issue1

issue2
-500
-500

Maintainability

68

-500
0

issue3

issue1

issue2

Maintainability

69

issue3

issue1

issue2
-500

0
-500
-500

Maintainability

69

70

issue3

issue1

issue2
-500

0
0

-500

Maintainability

70

71

issue3

issue1

issue2
-500

0
0

-500
-500
-500

Maintainability

71

72

issue3

issue1

issue2
-500
0
0

-500
13.2
-500

Maintainability

72

73

issue3

issue1

issue2
-500
0
0

-500
13.2
-500

Sequence #1:

{[issue1, addClass],[issue2,
deleteAttribute(superClass)],

[issue3, setName]}
Repaired model #1

Maintainability

73

74

-500
0
0

-500
13.2
-500

issue3

issue1

issue2

Maintainability

74

75

issue3

issue1

issue2
-500
7.8
8.4

-500
26.4
-500

Maintainability

75

76

18.9
7.8
8.4

-500
26.4
-500

issue3

issue1

issue2

Maintainability

76

77

18.9
7.8
12.5
-500
39.6
-500

issue3

issue1

issue2

Sequence #2:

{[issue1, deleteReference], [issue2,
deleteAttribute(superClass)],
[issue3, setName]}

Repaired model #2

Maintainability

77

78

-500
0
0

-500
13.2
-500

issue3

issue1

issue2 18.9
7.8
12.5
-500
39.6
-500

Maintainability

78

79

-500
0
0

-500
13.2
-500

issue3

issue1

issue2 37.8
7.8
12.5
23.4
39.6
45.7

Sequence #3:

{[issue1, deleteReference], [issue2,
deleteAttribute(children)], [issue3,
deleteAttribute]}

Repaired model #3

Maintainability

79

80

Best model w.r.t. maintainability

81

82

-500
-500
-500
-500
-500
-500

issue3

issue1

issue2

Model distance

82

83

issue3

issue1

issue2 -500
0
0

-500
13.2
-500

53.8
10.2
36.5
15.6
68.6
18.6

Model distance

83

84

84

Model distance Maintanibility

Too personalized…
learning and
automation?

85

Is the Q-table reusable?

It depends...

86

87

88

Maintainability AND Model distance

89

-500
0
0

-500
13.2
-500

67.8
26.5
43.5
47.4
72.4
34.7

-500
0
0

-500
13.2
-500

53.8
10.2
36.5
15.6
68.6
18.6

-500
0
0

-500
13.2
-500

37.8
7.8
12.5
23.4
39.6
45.7

In isolation vs together

90

67.8
26.5
43.5
47.4
72.4
34.7

36.2 31.6

Maintainability AND Model distance

Qvalue decomposition

91

Maintainability AND Model distance

67.8
26.5
43.5
47.4
72.4
34.7

36.2 31.6
13.5 13
11.1 32.4
35.2 12.2
30.3 42.1
22.3 12.4

Transfer learning

92

67.8
26.5
43.5
47.4
72.4
34.7

36.2 31.6
13.5 13
11.1 32.4
35.2 12.2
30.3 42.1
22.3 12.4

36.2 31.6
13.5 13
11.1 32.4
35.2 12.2
30.3 42.1
22.3 12.4

x 0.2

93

6.3
2.6
6.4
2.4
8.4
2.4

36.2 31.6
13.5 13
11.1 32.4
35.2 12.2
30.3 42.1
22.3 12.4

x 0.2

67.8
26.5
43.5
47.4
72.4
34.7

36.2 31.6
13.5 13
11.1 32.4
35.2 12.2
30.3 42.1
22.3 12.4

Transfer learning

94

issue3

issue1

issue2

47.8
66.5
43.5
47.4
68.4
34.7

Reusability and Model
distance

6.3
2.6
6.4
2.4
8.4
2.4

94

Initialized with model distance

What if
preferences are
not enough?

95

96

Maintainability

97

Maintainability - user feedback

98

Maintainability - user feedback

Extra rewards to selected
sequence.

Multimodeling case

99

Parmorel fills the gaps, but does it make sense?

100

The extensible framework

101

The challenge

102

103

PARMOREL

Preferences
Module

Learning
Module

Modeling
Module

input

repaired model

output

model

Refactoring

104

PARMOREL

Preferences
Module

Learning
Module

Modeling
Module

Issues
submodule

Actions
submodule

input

repaired model

output

model

Refactoring

105

PARMOREL Framework

Preferences
Module

Learning
Module

Modeling
Module

Issues
submodule

Actions
submodule

input

repaired model

output

model

Refactoring

issues, actions

106

PARMOREL

Learning
Module

Modeling
Module

Issues
submodule

Actions
submodule

input

repaired model

output

model

Refactoring

issues, actions
Experience
submodule

Algorithm
submodule

Preferences
Module

107

PARMOREL

Learning
Module

Modeling
Module

Issues
submodule

Actions
submodule

input

repaired model

output

model

Refactoring

Experience
submodule

Algorithm
submodule

selected actions

issues, actions

Preferences
Module

108

PARMOREL

Learning
Module

Modeling
Module

Issues
submodule

Actions
submodule

input

repaired model

output

model

Refactoring

Experience
submodule

Algorithm
submodule

selected actions

issues, actions

Preferences
Module

temp. repaired model

109

PARMOREL

Learning
Module

Modeling
Module

Issues
submodule

Actions
submodule

input

repaired model

output

model

Refactoring

Experience
submodule

Algorithm
submodule

selected actions

issues, actions

Preferences
Module

temp. repaired model rewards

Extensions

110

111

Ecore

UML

112

113

114

Summary?

115

Thank you for
your attention!

116

