
An introduction to MDE:
From toy to real-world projects
in different application domains

Cristina Vicente-Chicote
Quercus Software Engineering Group (QSEG)

Universidad de Extremadura
cristinav@unex.es

I-MDE-A Workshop - IMDEA Software (Madrid) - 16 May 2023

mailto:cristinav@unex.es

What comes to your mind when
you hear the word MODEL?

2An introduction to MDE: from toy to real-world projects

What comes to your mind when
you hear the word MODEL?

3https://wordart.com/ An introduction to MDE: from toy to real-world projects

What is a model?
 A model is a simplified representation of a certain reality [Bezivin, 2005]

 We can build different models of the same reality with different purposes.

4An introduction to MDE: from toy to real-world projects

What is a model?
 A model is a simplified representation of a certain reality [Bezivin, 2005]
 We can also define alternative/complementary models according to different

viewpoints, i.e., paying attention to certain features/parts. Each of these models
will provide us with a partial/specific view

5

Views associated to the human body systems (T. Gander)
Source: https://goo.gl/images/bAc3Pa

An introduction to MDE: from toy to real-world projects

https://goo.gl/images/bAc3Pa

What is a model?

6

 B. Selic identifies five key features for a model to be considered useful and effective [Selic, 2003]:

‒ Abstraction → Represent a simplified/reduced version of the original system

‒ Understandability → Easy to understand by the intended users

‒ Accuracy → Offer a faithful representation of the original system

‒ Predictiveness → Useful for reasoning about the original system

‒ Inexpensiveness → It should be easier/cheaper/faster to develop than the original system

An introduction to MDE: from toy to real-world projects

Models in Engineering
Models/diagrams/planes have been
traditionally used in engineering for
different purposes:

 To understand existing systems

 To specify, share and discuss with others
the design of a new systems

 As a guide for system implementation

 As a prototype of a system to be built
allowing us to detect errors,
demonstrate or infer properties, etc.
before implementing the actual system

7An introduction to MDE: from toy to real-world projects

Models in Software Engineering
UML is probably the most widely known and spread in use software modeling language. In fact, it is
claimed to be the de facto standard for software system modeling.

Limitations:

 UML models have been used (nearly exclusively) as documentation

 There is an important gap between models and actual system implementations due to…

‒ The semantic gap between modeling and programming languages

‒ The lack of tools supporting traceability and automated change propagation
(model ↔ implementation)

 In most cases, models gathering different views of the system are not appropriately harmonized

 There is a lack of languages and tools enabling model management

‒ Several model editors are available, but there is a lack of model compilers, code generators,
model validators/simulators/optimizers, etc.

8An introduction to MDE: from toy to real-world projects

Model-Driven Software Engineering
Model-Driven Software Engineering (MDSE) is much more than just UML…

9

Models@Runtime

MDA

ADM

DSM

Software
Factories

Direct Engineering

Reverse Engineering

Adaptive Systems

MDD

MDRE

MDSE

MDSE: Model-Driven Engineering

 MDD: Model-Driven Development
(Direct Engineering)

‒ MDA: Model-Driven Architecture (1)

‒ DSM: Domain-Specific Modeling

‒ Software Factories

 MDRE: Model-Driven Reverse Engineering
(Reverse Engineering)

‒ ADM: Architecture-Driven Modernization (2)

 Adaptive Systems

‒ Models@Runtime

(1) http://www.omg.org/mda/

(2) http://adm.omg.org/

An introduction to MDE: from toy to real-world projects

http://www.omg.org/mda/
http://adm.omg.org/

Model-Driven Software Engineering
 All MDSE approaches aim at…

‒ Helping software developers to address the complexity of current software platforms and
their increasing number of abstraction layers

‒ Significantly reducing coding errors (compared to manual software implementation)
‒ Increasing productivity in software development processes

10

Application code in a high-level programming language (C++, Java, etc.)

Application development framework (mobile, web, etc.)

Platform (OS, Hardware, etc.)

Automating code generation

Enabling the definition of
new modelling languages

An introduction to MDE: from toy to real-world projects

Model-Driven Software Engineering

11

 All the MDSE approaches share the following core features:

‒ Each model represents (totally or in part) one aspect/view of a software system;

‒ Each model is defined in terms of a modeling language, either a general-purpose language (e.g.,
UML) or a Domain-Specific Language (DSL);

‒ A meta-model is used to formally define (the abstract syntax of) each modeling language;

‒ Automation is typically achieved through the translation of models into code through model
transformations.

An introduction to MDE: from toy to real-world projects

Basic concepts

12

Model semantics

 Seman�cs (from the Greek term σημαντικo ́ς (semantikos) = “meaning”): Branch of linguistics
concerned with meaning

 What does this model mean? What reality does it describe?

‒ Transitions among states after intervals of time (in secs)

‒ Migratory flows among countries (in millions of people)

‒ Payments among people (in Euros)

‒ …

X

Y

Z

4

6

19

An introduction to MDE: from toy to real-world projects

Basic concepts

13

Model semantics → Interpretation

 The meaning of a model depends on its interpretation. For instance:

‒ Ellipses may represent states/countries/people

‒ Arrows may represent transitions/migratory flows/payments

One possible interpretation (meaning) of the previous model:

If X, Y and Z represent people and the arrows represent payments:

‒ X pays 4 € to Y and 1 € to Z

‒ Y pays 6 € to Z

‒ Z pays 9 € to X

X

Y

Z

4

6

19

An introduction to MDE: from toy to real-world projects

14

Model semantics → Transformation

 The meaning of a model also relates with model equivalence/derivation

 For instance, given the previous interpretation, all the models included next are equivalent and can
be derived from the others:

X

Y

Z

4

6

8

X

Y

Z 2

9 5

X

Y

Z 2

4

X

Y

Z

2

2

Note that all these models
share the following invariant:

‒ X receives 4 €
‒ Y pays 2 €
‒ Z pays 2 €

Basic concepts

X

Y

Z

4

6

19

An introduction to MDE: from toy to real-world projects

15

Model semantics → Transformation

 “A theory is a way to deduce new statements about a system from the statements already included in
a model of such system” [Seidewitz, 2003]

 A theory is a set of deductive transformation rules that allow us to derive models from other models

 Example: “The debt theory”
‒ Rule #1 (addition): two arrows A1 (with value v1) and A2 (with value v2), with the same source and target can be replaced by

a single arrow with the same source and target as the original ones and with value v1 + v2, and vice versa.

‒ Rule #2 (difference): two arrows A1 (with value v1) and A2 (with value v2), with opposite source and target can be replaced
by a single arrow:

‒ Alternative 1: with the same source and target as A1 and value v1 – v2

‒ Alternative 2: with the same source and target as A2 and value v2 – v1.

‒ Rule #3 (cycle): The value of the arrows being part of a cycle can be all increased (or decreased) with a constant value.

‒ Rule #4 (null arrow): Arrows with value = 0 can be removed / added between any source and target.

Basic concepts

An introduction to MDE: from toy to real-world projects

16

Model semantics → Transformation
Basic concepts

X

Y

Z

4

6

8

X

Y

Z

2

6

19

2

X

Y

Z

4

6

19
Rule #1 Rule #2

Rule #3 (value -4)

X

Y

Z

0

2

4
Rule #4

X

Y

Z 2

4

An introduction to MDE: from toy to real-world projects

17

Model semantics
Basic concepts

 Thus, in order to understand the meaning (semantics) of a model we must take into account:

‒ How its concepts relate with the those being modelled (interpretation)

‒ How it relates to other models (described using the same or a different representation) that can
be obtained from it (transformation)

 Interpretation relates to the so-called denotational semantics, while

 Transformation relates to the so-called operational semantics

An introduction to MDE: from toy to real-world projects

18

Model syntax
Basic concepts

 Syntax: arrangement of words and phrases to create well-
formed sentences in a language (Oxford)

 Abstract syntax: Set of valid terms (dictionary) + set of rules that
explain how to combine them to create correct sentences
(grammar).
‒ In the context of MDE, the abstract syntax of a modeling language is usually

defined using a meta-model. Alternative representations may be found, e.g.,
based on BNF/EBNF

 Concrete syntax (a.k.a., notation): Set of (graphical or textual)
symbols used to represent the modeling concepts defined in the
abstract syntax.
‒ Each modeling language has a unique abstract syntax, but there might be

more than one concrete syntax built on it

Abstract syntax (meta-model)

Terms from
the abstract

syntax

Concrete
graphical
syntax 1

Concrete
graphical
syntax 2

Person

Payment

name

amount

name

amount €

An introduction to MDE: from toy to real-world projects

https://en.oxforddictionaries.com/definition/syntax
http://www.garshol.priv.no/download/text/bnf.html

19

Model syntax
Basic concepts

Terms from
the abstract

syntax

Concrete
graphical
syntax 1

Concrete
graphical
syntax 2

Person

Payment

name

amount

name

amount €

Anna

John

Alice

4

6

19

9 €

Anna

Alice

John

1 €

4 €

6 €

Abstract syntax (Meta-Model)

An introduction to MDE: from toy to real-world projects

20

Model syntax
Basic concepts

Meta-Model

Model
Defined in terms (as an instance) of

the meta-model

:Person

name = ‘Alice’

:Person

name = ‘John’

:Person

name = ‘Anna’

:Payment

amount = 9

:Payment

amount = 1

source

source target

target

:Payment

amount = 4

:Payment

amount = 6

target

source

source

target

An introduction to MDE: from toy to real-world projects

Basic concepts

21

Meta-modelling

 Meta-classes: StateMachine, State
(abstract), Transition, InitialState,
NormalState, FinalState

 Attributes: StateMachine.name,
State.name, Transition.name

 Compositions: StateMachines
contain states and transitions

 References: Each Transition has a
source (State) and a target (State)

 Generalization: InitialState,
NormalState and FinalState are
States

An introduction to MDE: from toy to real-world projects

Basic concepts

22

Additional language constraints

 Most times, UML-like class diagrams are not expressive enough to define all the
relevant aspects of a modelling language.

 Frequently, it is necessary to define additional constraints (a.k.a. invariants) to
be hold by the systems being modeled (well-formedness rules).

 These constraints are usually specified using OCL (Object Constraint Language)

 Back to the State Machine example, how can we avoid reflexive transitions
(i.e., from a state to itself)?

context Transition
inv: ReflectiveTransitionsNotAllowed

self.source <> self.target

An introduction to MDE: from toy to real-world projects

23

Syntax + Semantics
Basic concepts

 Modeling language
‒ Semantics

‒ Interpretation (semantic correspondence)
Defines the meaning of the language elements in terms of real-world concepts

‒ Transformation (deductive theory)
Relates equivalent models via deductive/transformation rules

‒ Syntax
‒ Abstract: logical structure of correct models (terms + grammatical rules)
‒ Concrete: textual or graphical notation

 The concrete syntax depends on the abstract syntax
 Syntax and semantics are closely related. The syntax determines which expressions are correct, while the

semantics provides non-ambiguous meaning to those expressions. The semantics of a language is not
embedded in its syntax (i.e., in its meta-model) [Harel, 2004]

An introduction to MDE: from toy to real-world projects

24

Domain Specific Languages (DSL)
Basic concepts

 A Domain-Specific Language (DSL) is a modeling language, either textual or graphical, used to
describe a particular semantic domain, e.g., a particular application domain

 All modeling languages are somehow domain-specific, although they may cover wider or narrower
domains. For instance, UML is claimed to be a general-purpose (rather than a domain-specific)
modeling language. However, it is somehow restricted, not to a particular application domain, but
to object-oriented software development approaches.

 The abstract syntax of a DSL gathers the concepts relevant for modeling the target domain. These
concepts must have a clear correspondence with those in the semantic domain (i.e., concepts with
a clear meaning for the domain experts using the DSL). Thus, it is essential to select appropriate and
unambiguous terms (and their corresponding graphical/textual representation) when defining the
syntax of a DSL.

An introduction to MDE: from toy to real-world projects

“Toy” MDE projects

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

26An introduction to MDE: from toy to real-world projects

 Project goal: provide a graphical editor allowing therapists working with autistic
children to easily define task workflows to be executed in an educational robot.

 Bachelor student: Gloria Díaz-González

 Supervisors: Cristina Vicente-Chicote, José Ramón Lozano-Pinilla.

 Material available at: https://github.com/GloriaDG22/GeneracionCodigoCozm

https://github.com/GloriaDG22/GeneracionCodigoCozm

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

27An introduction to MDE: from toy to real-world projects

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

28An introduction to MDE: from toy to real-world projects

MoveWheels
time

turn

speed

MoveArms
source
target

n_times

MoveHead
source
target

n_times

TakePhoto

Speak

text

ShowFeeling

feeling

ChangeColor

color

Catalogue – Simple Tasks

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

29An introduction to MDE: from toy to real-world projects

Speak

Hi

Workflow: SayHello

Speak

Cristina

Speak

How are you?

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

30An introduction to MDE: from toy to real-world projects

MoveWheels
time

turn

speed

MoveArms
source
target

n_times

MoveHead
source
target

n_times

TakePhoto

Speak

text

ShowFeeling

feeling

ChangeColor

color

Catalogue – Simple & Complex Tasks

SayHello

name

Speak

Hi

Workflow: SayHello

Speak

Cristina

Speak

How are you?

definition

boundTo

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

31An introduction to MDE: from toy to real-world projects

Workflow: AskColor

What’s your favorite color?

ChangeColor
Blue- Red

- Blue

- Green

ChangeColor
Red

ChangeColor
Green

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

32An introduction to MDE: from toy to real-world projects

MoveWheels
time

turn

speed

MoveArms
source
target

n_times

MoveHead
source
target

n_times

TakePhoto

Speak

text

ShowFeeling

feeling

ChangeColor

color

Catalogue – Simple & ComplexTasks

SayHello

name

AskColor

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

33An introduction to MDE: from toy to real-world projects

Workflow: ShowHappiness

Loop: COUNTER_BASED (3)

MoveArms
source: 1

target: 5

n_times: 1

ShowFeeling

Feeling: Happy

MoveArms
source: 5

target: 1

n_times: 1

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

34An introduction to MDE: from toy to real-world projects

MoveWheels
time

turn

speed

MoveArms
source
target

n_times

MoveHead
source
target

n_times

TakePhoto

Speak

text

ShowFeeling

feeling

ChangeColor

color

Catalogue – Simple & ComplexTasks

SayHello

name

AskColor

ShowHappiness

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

35An introduction to MDE: from toy to real-world projects

Workflow: IntroAndConfiguration

AskColorSayHello
Fernando

ShowHapiness

Robot code generation GUI code generation

What’s your favourite color?

Red Blue Green

PiLHaR: A tool aimed to ease the definition, composition
and execution of edutational robot workflows

36An introduction to MDE: from toy to real-world projects

 Results
‒ The therapists we worked with really appreciated the tool as it allowed them to

incorporate Cozmo as part of their therapies. They found the possibility of
reusing/configuring their workflows in different therapy routines with different
children particularly useful.

‒ Furthermore, they discovered that some of their children also loved programming the
robot using PiLHaR.

‒ The project is been supported by a regional business acceleration program and it has
been recently awarded with the “UEX excellence and social engagement” price.

CML: modelling, validation and generation of
container-based applications

37An introduction to MDE: from toy to real-world projects

 Project goal: Provide software developers with a set of tools aimed at easing the specification,
validation and visualization of Docker/Docker-Compose-based architectures.

‒ Reduce the learning curve for novel developers.

‒ Provide more experienced ones with new features, currently not supported by existing tools:
automatic validation of the specifications, dual and synchronized graphic-textual
representation, etc.

 Bachelor student: Lorenzo G. Ceballos-Bru

 Supervisors: Cristina Vicente-Chicote, José Ramón Lozano-Pinilla.

 Material available at: https://github.com/elpiter15/CML

https://github.com/elpiter15/CML

CML: modelling, validation and generation of
container-based applications

38An introduction to MDE: from toy to real-world projects

CML: modelling, validation and generation of
container-based applications

39An introduction to MDE: from toy to real-world projects

grammar org.xtext.example.dockercompose.DockerCompose with org.eclipse.xtext.common.Terminals
import "http://www.eclipse.org/modeling/example/dockercompose/DockerCompose"
import "http://www.eclipse.org/emf/2002/Ecore" as ecore

DockerCompose returns DockerCompose:
((’version:’ version=Version)?

& (’services:’ (services+=Service)+)
& (’volumes:’ (volumes+=Volume)+)?
& (’configs:’ (configs+=Config)+)?
& (’secrets:’ (secrets+=Secret)+)?
& (’networks:’ (networks+=Network)+)?

);

Service returns Service:
{Service}

name=ID ’:’
(

(’build:’ build=PATH)?
& (’image:’ image=Image)?
& (’cpu_count:’ cpu_count=EInt)?
& (’command:’ command=Command)?
& (’container_name:’ container_name=EString)?
& (’restart:’ restart=RestartPolicy)?
…

CML: modelling, validation and generation of
container-based applications

40An introduction to MDE: from toy to real-world projects

CML: modelling, validation and generation of
container-based applications

41An introduction to MDE: from toy to real-world projects

Real-world MDE projects

RoQME: Dealing with non-functional properties through global
Robot Quality-of- Service Metrics (H2020 RobMoSys Project)
 Project goal: provide software developers with (1) a modeling framework for specifying QoS metrics

defined on non-functional properties (e.g., safety, performance, resource consumption, user
engagement, etc.); and (2) a runtime infrastructure allowing them to estimate these metrics according
with the perceived situation.

 Project consortium: UEX, UMA, Biometric Box

 General overview:

‒ https://robmosys.eu/roqme/

‒ https://robmosys.eu/wiki-sn-03/baseline:environment_tools:roqme-plugins

 Demo in an intralogistics scenario: https://robmosys.eu/wiki/community:roqme-intralog-scenario:start

 Project resources available at: https://github.com/roqme/robmosys-roqme-itp

43An introduction to MDE: from toy to real-world projects

https://github.com/roqme/robmosys-roqme-itp
https://github.com/roqme/robmosys-roqme-itp
https://github.com/roqme/robmosys-roqme-itp
https://github.com/roqme/robmosys-roqme-itp

RoQME: Dealing with non-functional properties through global
Robot Quality-of- Service Metrics (H2020 RobMoSys Project)

44An introduction to MDE: from toy to real-world projects

RoQME: Dealing with non-functional properties through global
Robot Quality-of- Service Metrics (H2020 RobMoSys Project)

45An introduction to MDE: from toy to real-world projects

MIRoN: QoS Metrics-In-the-loop for better Robot Navigation
(H2020 RobMoSys Project)
 Project goal: provide a modeling framework allowing designers to endow robots with the ability of

self-adapting their behaviour according to the situation perceived at runtime. MIRoN allows designers
to model:
‒ Behaviour Trees (BT), describing both nominal and alternative robot behaviours;

‒ Variation points (linked to tasks/parameters in the BT models), which determine the decision space of the
adaptation process;

‒ Contexts , expressed in terms of RoQME QoS metrics; and

‒ Adaptation policies, explicating how to configure the variation points (i.e., the robot behaviour) depending on
the perceived situation (based on RoQME QoS metrics) in order to optimize relevant non-functional
properties, such as safety or performance.

 Project consortium: UEX, UMA, Blue Ocean Robotics

 General overview: https://robmosys.eu/miron/
 Project resources available at: https://github.com/MiRON-project/Miron-Framework

46An introduction to MDE: from toy to real-world projects

https://github.com/roqme/robmosys-roqme-itp
https://github.com/MiRON-project/Miron-Framework

MIRoN: QoS Metrics-In-the-loop for better Robot Navigation
(H2020 RobMoSys Project)

47An introduction to MDE: from toy to real-world projects

MIRoN: QoS Metrics-In-the-loop for better Robot Navigation
(H2020 RobMoSys Project)

48An introduction to MDE: from toy to real-world projects

cristinav@unex.es

https://sites.google.com/view/cristina-vicente-chicote

https://www.researchgate.net/profile/Cristina-Vicente-Chicote

https://www.linkedin.com/in/cvicente/

@cvicentechicote

Thank you!

	An introduction to MDE:�From toy to real-world projects in different application domains
	What comes to your mind when �you hear the word MODEL?
	What comes to your mind when �you hear the word MODEL?
	What is a model?
	What is a model?
	What is a model?
	Models in Engineering
	Models in Software Engineering
	Model-Driven Software Engineering
	Model-Driven Software Engineering
	Model-Driven Software Engineering
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	Basic concepts
	“Toy” MDE projects
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	PiLHaR: A tool aimed to ease the definition, composition and execution of edutational robot workflows
	CML: modelling, validation and generation of �container-based applications
	CML: modelling, validation and generation of �container-based applications
	CML: modelling, validation and generation of �container-based applications
	CML: modelling, validation and generation of �container-based applications
	CML: modelling, validation and generation of �container-based applications
	Real-world MDE projects
	RoQME: Dealing with non-functional properties through global Robot Quality-of- Service Metrics (H2020 RobMoSys Project)
	RoQME: Dealing with non-functional properties through global Robot Quality-of- Service Metrics (H2020 RobMoSys Project)
	RoQME: Dealing with non-functional properties through global Robot Quality-of- Service Metrics (H2020 RobMoSys Project)
	MIRoN: QoS Metrics-In-the-loop for better Robot Navigation (H2020 RobMoSys Project)
	MIRoN: QoS Metrics-In-the-loop for better Robot Navigation (H2020 RobMoSys Project)
	MIRoN: QoS Metrics-In-the-loop for better Robot Navigation (H2020 RobMoSys Project)
	Número de diapositiva 49

