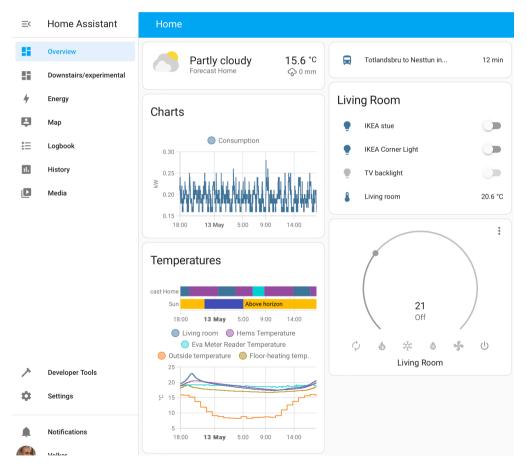


Modeling for Smart Home Interoperability

Volker Stolz
Software Engineering research group


About Myself

 Prof. in Software Engineering @ HVL (adjunct position at Univ. of Oslo)

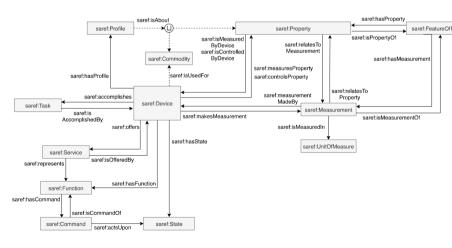
- MC member of COST Action CA20111 **EuroProofNet**
- Formal Methods
 - Temporal logics, runtime verification
 - Coloured Petri Nets
 TeSSLa
 - Modeling & Model Transformations (UML, declarative QVT)
- Programming Languages
 - concurrency, types, semantics, refactoring, coverage analysis

- The Home Assistant open source smart home solution
- Smart homes nice to haves
- Home Assistant state of the art
- Current solutions + "tooling"

"Smart Software Systems" IoT lab

- Budget for equipment: ca. 1500 EUR
- Raspberries
- Mostly Zigbee (2.4GHz based mesh protocol)
- sensors & actuators

- no real lab-space :-/
- physical scenarios difficult to play through

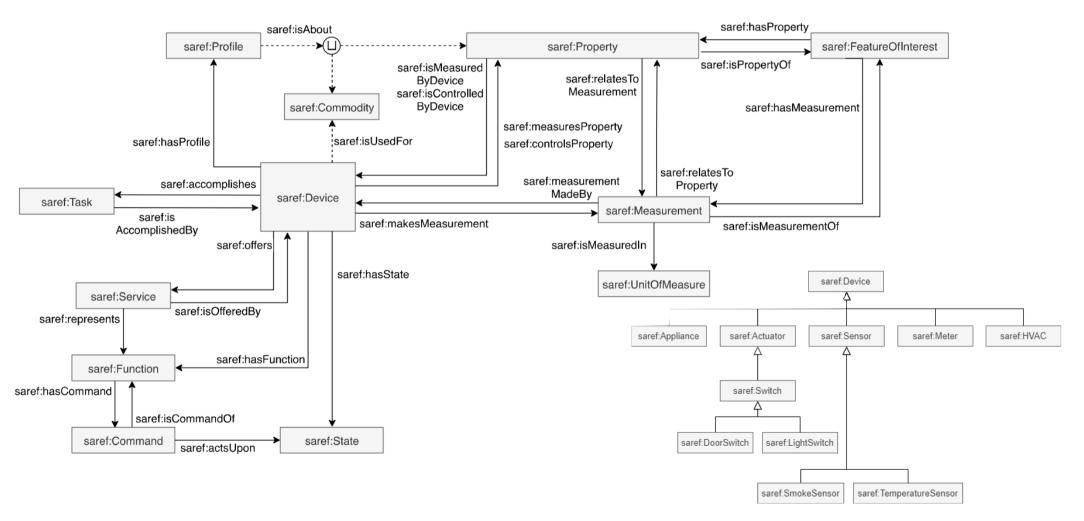


Research Questions

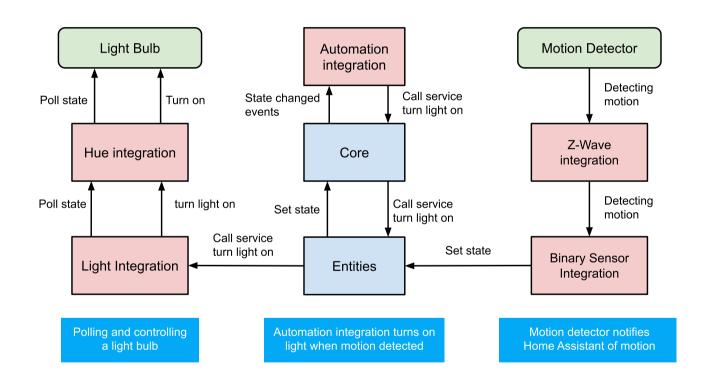
- Can smart homes be liberated from vendor-lock in?
- Improve standards & best practices?
- New features & services that we eventually want to achieve:
 - interoperability/migration
 - consistency checking
 - discoverability (here: blueprints/automations)

Smart Homes

- Overview of structure
- Index of externally available tooling against YOUR smart home...
- ...without having to implement it FOR your platform.
- ETSI standard: SAREF ("Smart Applications REFerence Ontology")

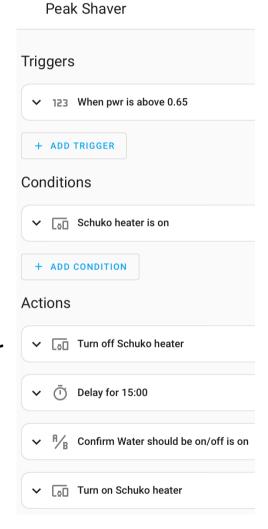


Alternative: Brick Schema (https://brickschema.org/)

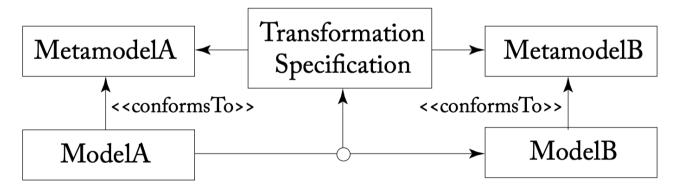

- Configuration Flexibility
 - Home Assistant: web-based (to check: REST)

SAREF Overview

Home Assistant


- Devices
- Entities
- UI/Frontend/API
- Automations

Integration Architecture example (developers.home-assistant.io)


Home Assistant - Implementation

- Python (object-oriented, annotations)
 - JSON via REST-API
 - SQL (SQLite by default) for data
 - Frontend in Typescript
 - Plugin mechanism (1000+ within the Home Assistant core repo alone!)
- "Blueprints": trigger/condition/action templates for automations with place-holders for devices

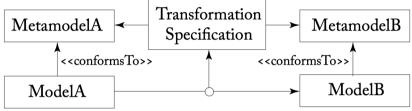
Model Extraction: Current Approach (1)

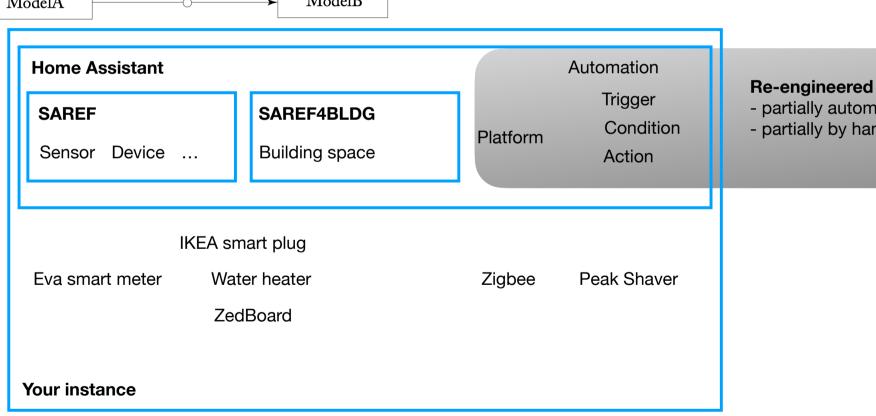
- Goals:
 - static metamodel(s)/schema for Home Assistant
 - model = instance configuration
- Modelling framework: UML, RDF, ...
- Textbook solution:

Textbook solution for M2M transformation [Model Driven Software Engineering in Practice, 2nd ed., 2017]

Model Extraction: Current Approach (2)

- Goals: static metamodel(s)/schema, model = instance configuration
- Static configuration: should be from code (it's static, after all...)
- Instance: extract via REST
 - Reasons:
 - i) provide web-service via tokens for central data collection
 - ii) no need for potential users to install anything apart from generating a token (and revoking it again afterwards)
- "Blueprints": scraped from forums/git
- Knowledge represented in RDF/OWL, queries via SPARQL

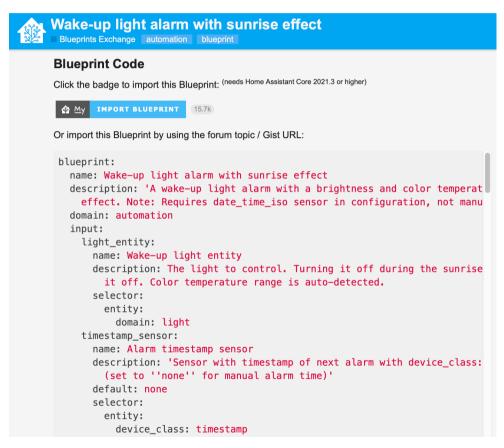

The Problem: Python...


- Model-extraction from Python?
 not: "of Python", but of structures modeled in Python...
- 1st challenge: where/which schemas? (Currently: manually identified.)

The Problem: Python...

- Model-extraction from Python?
 not: "of Python", but of structures modeled in Python...
- 2nd challenge: good luck looking into this λ...

Model Extraction



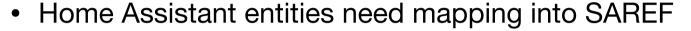
- partially automated
- partially by hand

Application: Discovery

- Scrape Blueprints (forums, Github, Discord)
- Which blueprints does my config support/which devices should I still get?
- Apply NLP to blueprint description
- Interchange? GAFA / IFTTT

Applications: Consistency Checking

- Is this device controlled by...
 - ...multiple automations?
 - ...multiple devices?
- Is device X in location A controlled by device Y in location B? (needs domain-knowledge: may or may not be meaningful)
- Supplement knowledge (device X consumes 2 KW/h when on) (currently needs to be configured within platform)
- future work: check which action automation actually does ("algebra" for switching on/off devices, adjusting values, ...)


Querying the Model: SPARQL

- Semantic web technology standard, semantic query language for databases
- Example: "which device is controlled by which automation?"

SELECT ?automation ?trigger_device WHERE {		t_device		
?automation rdf:type ha:Automa	automation	trigger_device	target	target_device
?automation ha:consistsOf ?acti	Coming home	IKEA_of_Sweden_TRADFRI_motion_sensor	elements_0869_turn_off	Elements 0869
?automation ha:hasTrigger ?trigg { ?trigger ha:device ?trigger_dev		IKEA_of_Sweden_TRADFRI_motion_sensor IKEA of Sweden TRADFRI motion sensor Motion	elements_0869_turn_on elements 0869 turn off	Elements 0869 Elements 0869
		IKEA of Sweden TRADFRI motion sensor Motion	elements_0869_turn_on	Elements 0869
	Coming home Coming home	Powercube Powercube	elements_0869_turn_off elements 0869 turn on	Elements 0869 Elements 0869
	_	ViM	elements_0869_turn_off	Elements 0869
	Coming home Light outside ON	ViM Motion_Sensor	elements_0869_turn_on ikea_of_sweden_tradfri_bulb_e27_ws_opal_1000lm	Elements 0869 1 _. IKEA bulb outside
	Light outside ON	Motion Sensor Motion	ikea_of_sweden_tradfri_bulb_e27_ws_opal_1000lm	ղ IKEA bulb outside
	Light outside OFF	Motion_Sensor	ikea_of_sweden_tradfri_bulb_e27_ws_opal_1000lm	ղ IKEA bulb outside
	Light outside OFF	Motion Sensor Motion	ikea_of_sweden_tradfri_bulb_e27_ws_opal_1000lm	ղ IKEA bulb outside
	Swing lamp toggle	IKEA_of_Sweden_TRADFRI_on_off_switch	ikea_of_sweden_tradfri_bulb_e27_ww_806lm_99e6	S IKEA stue
	Dim DOWN	IKEA_of_Sweden_TRADFRI_on_off_switch	ikea_of_sweden_tradfri_bulb_e27_ww_806lm_99e6	5 IKEA stue
	Peak Shaver	pwr	ikea_of_sweden_tradfri_control_outlet_77bf72fe_or	n_ Schuko heater
	Peak Shaver	pwr	ikea_of_sweden_tradfri_control_outlet_77bf72fe_or	₋ Schuko heater

Demo

Technical Challenges

Only looked at Home Assistant so far. What about OpenHAB, Google Nest, Amazon Alexa, Apple Home? Cross-platform / no-code IFTTT

- No machine-readable meta-model for Home Assistant:
 - ad-hoc plugins
 - some object-orientation
 - schemata partially inspectable at runtime; not: statically!
- No model transformations yet (ad-hoc Python from JSON) RML.io: Java

Current Results

- Static core Home Assistant meta-model (semi-manual, incomplete) https://github.com/VolkerStolz/HASS-to-OWL-exporter
- Export of devices + entities + automations
 - Privacy filter!
- Import of blueprints
- Future:
 - Data collection on web-server (crowd-sourcing configurations)
 - Automated scraping of blueprints URL/corpus

Analysis of natural language blueprint description

Integrating with TeSSLa, STL

ption
Thank You!

Starting point for other Bachelor/MSc projects applying formal methods to IoT