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ABSTRACT
Denotational semantics is given for a Java-like language with
pointers, subclassing and dynamic dispatch, class oriented
visibility control, recursive types and methods, and privilege-
based access control. Representation independence (rela-
tional parametricity) is proved, using a semantic notion of
confinement similar to ones for which static disciplines have
been recently proposed.

1. INTRODUCTION
For scalable systems, scalable system-building tools, and

scalable development methods, abstraction is essential. Ab-
straction means that for reasoning about an individual com-
ponent it is sufficient to consider other components in terms
of their behavioral interface rather than the internals that
implement the interface. Abstraction is needed for the au-
tomated reasoning embodied in static analysis tools, e.g.,
bytecode verifiers, and it is needed for formal and informal
reasoning about functional correctness during development
and validation. Modular reasoning has always been a cen-
tral issue in software engineering and in static analysis, but
with the ascendancy of mobile code it has become absolutely
essential.

Abstraction is only sound to the extent that implementa-
tion internals are encapsulated. For example, the privilege-
based access control system of Java [11] is intended to en-
sure certain security properties, but its proper functioning
depends on language-based encapsulation, e.g., type safety.
Visibility controls, such as private fields and opaque types,
ensure certain information hiding properties. The classical
way to give a precise analysis of such properties is in terms
of representation independence [33, 24]: client programs of a
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component are insensitive to differences in data representa-
tion, provided the representation is private and the behavior
of the component through its visible interface is the same.

The main proof technique for representation independence
is so fundamental that it has appeared in many places, with
a variety of names, e.g., simulation, logical relations, ab-
straction mappings, relational parametricity (e.g., [31, 35,
20, 8]). Our main result, an abstraction theorem, says that
simulation can be used for a rich fragment of Java. The
result is given using a denotational semantics in the man-
ner of Scott-Strachey [39]. We apply the result to one of
the Meyer-Sieber equivalences [21] that was a longstanding
challenge for the semantics of Algol-like languages [30]. We
discuss relational proofs of the equivalence of “security pass-
ing style” [42] with the lazy “stack inspection” implementa-
tion of Java’s privilege-based access control mechanism [11],
and then extend our language to include access control. We
give an abstraction theorem for this extended language.

The need for confinement.Language-based encapsulation
often runs afoul of aliasing. For variables and parameters,
aliasing can be prevented through syntactic restrictions that
are tolerable in practice. Aliasing via pointers is an unavoid-
able problem in object oriented programming where shared
mutable objects are pervasive. Here is the problem: Suppose
class A has a private field f that points to a mutable object
intended to be an encapsulated part of the representation
of A. If a client program can also reference the object, the
client can behave in representation-dependent ways. More-
over, if it updates the object’s state, an invariant of A may
be violated.

In simply typed languages, typed pointers help somewhat:
pointer variables x, y are not aliased if they have different
types. This help is undercut by subclass polymorphism: in
Java, a variable x of type Object can alias y of any type.

The need for confinement is ubiquitous and pressing in
practice [17] (for the academic reader, evidence can be found
in the number of recent OOPSLA and ECOOP papers on the
topic). To achieve encapsulation for heap-allocated objects,
there have been many proposals for confinement. For exam-
ple, fields can be designated as unshared or read-only. Quite
a few confinement disciplines have been proposed (e.g., see
[40, 7, 27, 4] and citations therein). Most have significant
shortcomings; they are too restrictive for practical use, or
not efficiently checkable. Few have been formally justified.
Existing justifications use disparate techniques such that it
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is quite hard to assess and compare confinement disciplines
[7, 25, 18]. One of our contributions is to show how standard
semantic techniques can be used for such assessments.

The challenges.A widely held view seems to be that clas-
sical techniques based on denotational semantics and logical
relations are inadequate in the face of the complex language
features of interest. The combination of local state with
higher order procedures makes it difficult to prove represen-
tation independence even for Algol, where procedures can
be passed as arguments but not assigned to state variables
[29]; objects exhibit similar features. If procedures can be
stored in state variables or in heap objects, the resulting
domain equations become quite challenging to solve. For
applications in security and automated static checking, it
is important to devise robust, comprehensible models that
support not only the idealized languages of research studies
but also the full languages used in practice.

Difficulties with denotational semantics led to consider-
able advances using small-step operational semantics [12].
One of the most relevant works is that of Grossman et al.
[13] where representation independence is approached using
the notion of principal from the literature on security. To
prove that clients are independent from the representation
of an abstraction provided by a host program, a wrapper
construct is used to tag code fragments with their owner
principal (e.g., client or host), and to provide an opaque type
for the client’s view of the abstraction. This is a promising
approach, although their results seem rather limited: it is
shown that if no host code is involved, the client cannot dis-
tinguish between different values of the abstract type. This
sort of result is used in analysis of information flow, and
can be proved using logical relations [1]: a client is shown
to preserve the complete (everywhere-true) relation on con-
fidential data. But logical relations are more powerful: the
client can actually use host code, and its behavior can de-
pend on values of the abstract type. A strong representation
independence result says that, although the behavior can
depend on the abstract values, it cannot depend on their
internal representations [22, 23, 24]. Among the many uses
of strong representation independence are program transfor-
mations and justification of logics for reasoning about data
abstraction and modification of encapsulated state.

Although Grossman et al. offer their work as a simpler al-
ternative to domain theoretic semantics, the technical treat-
ment is somewhat intricate by the time the language is
extended to include references, recursive and polymorphic
types. Except for parametric polymorphism, we treat all
these features, as well as subclassing and privilege-based ac-
cess control.

Results.Using an idealized Java-like language, our abstrac-
tion theorem says that if two implementations are given for
a class A, and methods of these implementations preserve a
given relation on A-objects together with their confined rep-
resentation objects, then there are induced relations for all
environments and heaps, and those relations are preserved
by all client programs. An abstraction theorem can be used
to prove equivalence or refinement of class implementations,
general program equivalences, and correctness of static anal-
yses. e.g., secure information flow. The proof technique has
three steps. (1) Give a relation describing the way in which
two class declarations implement “the same abstraction”,

and show that it is preserved by all methods of the class.
(2) Show that the induced (family of) relations are preserved
by all client programs (the abstraction theorem). (3) Show
that, for programs in which the abstraction is encapsulated
(e.g., in private fields or local variables), the relation is the
identity (the identity extension lemma).1

As we have formulated the abstraction theorem, it can be
applied directly to prove command and class equivalences,
and we give some examples. For applications in static anal-
ysis, the problem is usually to show that a syntax directed
system of types and effects approximates some property like
secure information flow. Such results are also proved using
relations, and it was our own work on security analysis [3]
that gave us the courage to tackle parametricity for Java.
We have not attempted to formulate an abstraction theorem
general enough to apply directly in such analyses; they use
analysis-specific typing systems rather than the language’s
own types and syntax. But the essence of our result is that
the language is relationally parametric, given suitable con-
finement conditions. It is clear, for example, that our static
analysis for Java access control will extend to the language
treated in the sequel.

Why the results are achievable.Our core language is
quite rich. We include recursive classes and methods, and
inheritance and casts as in Featherweight Java (FJ) [15] but
with private visibility for fields. We also include mutable
state, pointers, and type tests (instanceof).

Our work grew out of a study of Java’s stack-based access
control mechanism. We used an idealized language similar
to related work in the area [38, 42] and were surprised to
find that a straightforward denotational semantics could be
used to prove strong results using simulation. But the mech-
anism itself just protects calls to certain methods. To prove,
for some program using the mechanism, that some intrinsic
security property holds, one needs to show that information
does not leak. So we wanted to prove a general parametric-
ity result that could be applied to information flow, and we
wanted to include references.

The problem is that, to get an adequate induction hypoth-
esis, parametricity needs to be imposed on the latent effects
of procedure abstractions.2 These conditions are most easily
expressed in terms of a denotational model, but if procedures
can be stored in the heap on which they act, difficult domain
equations must be solved and the resulting complexity then
pervades the theory. Domain equations must also be solved
to interpret most languages with recursive types. Although
Java syntax seems less elegant than, say, lambda calculus,
it has several features that ease the difficulties. Owing to
name-based type equivalence and subtyping, and the bind-
ing of methods to objects via their class, we can use simple
domains. The absence of pointer arithmetic means we need
only a mild assumption about the memory allocator. The
fact that type names are semantically relevant lets us use
them to formulate in semantic terms a confinement condi-
tion similar to those in the literature [40, 25, 7] (but to keep
things simple, we do not distinguish read-only access). Our
results are proved on the basis of this semantic condition. A
modular static analysis, which does not require code anno-

1In the case of refinement, identity is replaced by inequality
[28]. In this paper we do not emphasize refinement.
2As a property to be proved or, ideally, as an intrinsic fea-
ture of the semantic model [34, 29].
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tations, can be derived from the semantic definition [2].

Overview of the paper.Section 2 introduces the language
with an example showing the necessity of confinement. Then
typing and semantic definitions are given; we defer the ac-
cess control facility to Section 6. Section 3 formulates the
basic situation to which the abstraction theorem applies, in-
cluding confinement, and defines the induced relations. Sec-
tion 4 gives the theorem and 5 applies it a Meyer-Sieber
equivalence. Section 6 adds access control to the core lan-
guage and extends the abstraction theorem accordingly. The
results are discussed in Section 7.

2. CORE LANGUAGE
The concrete syntax is based on that of Java, with some

restrictions for ease of formalization; for example, “return”
statements appear only at the end of a method, and effects
like object construction (new) occur in commands rather
than expressions. There are a couple of minor deviations
from Java, e.g., the keyword var marks local variable dec-
larations. We retain the format T x for declaration of a
variable x of type T, while writing x:T in typing rules.

2.1 Examples
A program consists of a collection of class declarations like

the following one.

class Boolean extends Object {

bool f;

unit set(bool x){ this.f := x; return unit }

bool get(){ skip; return this.f } }

Instances of class Boolean have a private field f with the
primitive type bool. There is no constructor; fields of new
objects are given their Java defaults (null, false). Fields are
considered to be private to their class and methods public:
fields are only visible to methods declared in this class, but
methods are visible to all classes. Fields are accessed in
expressions of the form this.f, using “this” to refer to
the current object; a bare identifier x is either a parameter
or a local variable. Every method has a return type; unit
corresponds to Java’s “void” and is used for methods like
set that are called only for their effect on object state. In
subsequent examples we omit returns for the unit value,
and sometimes omit “this”. Object types are implicitly
pointers, so assignments create aliases. The built-in equality
test == compares references.

A convenient simplification is to preclude side effects in
expressions. We make no such restriction on the syntax, but
the semantics discards effects of expressions, so our results
are only interesting for programs that do not exploit expres-
sion effects. For example, the get method above is useful in
expressions, but not set.

Here is a class that uses a Boolean for its private state.

class A0 extends Object {

Boolean g;

unit init(){ this.g:= new Boolean(); g.set(true)}

unit setg(bool x){ g.set(x) }

bool getg(){ return g.get() } }

An alternative implementation of A0 uses an isomorphic rep-
resentation to achieve the same behavior.

class A0 extends Object {

Boolean g’;

unit init(){

this.g’:= new Boolean(); g’.set(false) }

unit setg(bool x){ g’.set(not(x)) }

bool getg(){ return not(g’.get()) } }

Let us consider, informally, how representation indepen-
dence is formulated and used for the example. First, we
give a relation between states of objects o and o’ for the
two implementations.3 We say o and o’ are related just
if either o.g = null = o’.g’ or o.g 6= null 6= o’.g’ and
o.g.f = ¬(o’.g’.f). If o,o’ are newly constructed, o.g =
null = o’.g’ holds. Invocations of setg and getg clearly
maintain the relation.

According to the abstraction theorem, the relation is main-
tained by all client programs. And this implies that a client
using o in a local variable or field cannot be distinguished
from one using o’. However, such a conclusion is unwar-
ranted unless o,o’ are suitably confined. For example, sup-
pose we add to A0 a method

Object bad(){ return g }

(For the second, primed version of A0, let it return g’.) A
client class C can exploit method bad using a (Boolean) cast:

var A0 z := null in

z := new A0();

var Boolean w := (Boolean) z.bad() in

if (w.get()) then skip else diverge;

Although the field g of A0 is not visible to methods in class
C, method bad leaks a reference to the representation object.
The command diverges if the primed implementation of A0 is
chosen, but does not diverge with the first implementation.

2.2 Syntax
To formalize the language, we adapt some notations from

FJ [15]. To avoid burdening reader with straightforward
technicalities we deliberately confuse surface syntax with
abstract syntax, and we do not distinguish between classes
and class types. We also confuse syntactic categories with
names of their typical elements. Barred identifiers like T in-
dicate finite lists, e.g., T f stands for a list f of field names
with corresponding types T . The bar has no semantic im-
port; T has nothing to do with T .

The grammar is based on given sets of class names (with
typical element C), field names (f), method names (m), and
variable/parameter names x (including this).

T ::= bool | unit | C
CL ::= class C extends C { T f ; M }
M ::= T m(T x){S; return e}
S ::= x := e | x.f := e | x := new C() | x.m(e) |

if e S1 else S2 | var T x := e in S | S; S

e ::= x | e.f | e.m(e) |
e==e | (C) e | null | e instanceof C

3In practice, one would show that this relation is established
by the constructors. Our omission of constructors means
that examples may need initialization methods and extra
fields to track whether initialization has been done. In the
case at hand, nullity of g suffices.
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Table 1: Typing rules for expressions and commands

Γ; C ` x : Γx

Γ; C ` e1 : T
Γ; C ` e2 : T

Γ; C ` e1==e2 : bool

Γ; C ` null : B

Tf ∈ dfieldsC
Γ; C ` e : C
Γ; C ` e.f : T

mtype(m,D) = (x : T )→ T
Γ; C ` e : D
Γ; C ` e : U U ≤ T

Γ; C ` e.m(e) : T

Γ; C ` e : D B ≤ D
Γ; C ` (B) e : B

Γ; C ` e : D B ≤ D
Γ; C ` e instanceof B : bool

x 6= this
Γ; C ` e : T T ≤ Γx

Γ; C ` x := e : com

Γx = C Tf ∈ dfieldsC
Γ; C ` e : U U ≤ T

Γ; C ` x.f := e : com

x 6= this B ≤ Γx
Γ; C ` x := new B( ) : com

mtype(m,Γx) = (x : T )→ T
Γ; C ` e : U U ≤ T

Γ; C ` x.m(e) : com

Γ; C ` e : bool
Γ; C ` S1 : com Γ; C ` S2 : com

Γ; C ` if e S1 else S2 : com

Γ; C ` S1 : com
Γ; C ` S2 : com

Γ; C ` S1; S2 : com

Γ; C ` e : U U ≤ T
(Γ, x : T ); C ` S : com

Γ; C ` var T x := e in S : com

Well formed class declarations are specified by rules below
and in Table 1. A judgement of the form Γ; C ` e : T
says that e has type T in the context of a method of class
C, with parameters and local variables declared by Γ. A
judgement Γ; C ` S : com says that S is a command in
the same context. A complete program is given as a class
table CT that associates each declared class name with its
declaration. The typing rules make use of several auxiliary
notions that are defined in terms of CT ; dependence on
CT is elided in the notation. Because typing of each class
is done in the context of the full table, methods can be
mutually recursive, and so can field types. The rules for
field access and update enforce privacy. Slight desugaring is
needed to express the examples, e.g., g.set(x) is short for
var Boolean y := this.g in y.set(x).

Subsumption is built in to the rules using the subtyp-
ing relation ≤ on T specified as follows. For base types,
bool ≤ bool and unit ≤ unit. For classes C and D, we
have C ≤ D iff either C = D or the class declaration for C
is class C extends B { . . . } for some B ≤ D.

To define some auxiliary notation, let M be in M , with

CT (C) = class C extends D { T f ; M }
M = T m(T x){S; return e}

Then we define mtype(m,C) = (x : T ) → T . For the de-
clared fields, we define dfieldsC = T f and type(f, C) = T .
To include inherited fields, we define fieldsC = dfieldsC ∪
fieldsD, and assume f is disjoint from the names in fieldsD.
The undeclared class Object has no methods or fields. Note
that mtype(m,C) is undefined if m is not declared or inher-
ited in C. Here is the typing rule for method declarations:

(x : T , this : C); C ` S : com
(x : T , this : C); C ` e : U U ≤ T
mtype(m,D) is undefined or equals (x : T )→ T

C extends D ` T m(T x){S; return e}

A class declaration is well formed if all of its methods are:

C extends D `M for each M ∈M
` class C extends D { T f ; M }

2.3 Semantics
The state of a method in execution is comprised of a heap

h, which maps locations to object states, and an environ-

ment η, which assigns locations and primitive values to local
variables and parameters. Every environment of interest in-
cludes this which points to the target object.

We assume that a countable set Loc is given, along with
a distinguished entity nil not in Loc. A heap h is a finite
partial function from Loc to object states. To streamline no-
tation, we treat object states as mappings from field names
to values. We also need to track the object’s class, which is
not mutable. As a harmless coding trick, we assume given
a function loctype : Loc → ClassNames such that for ev-
ery class C there are an infinite number of locations ` with
loctype ` = C. We write locs C for {` | loctype ` = C} and
locs(C↓) for {` | loctype ` ≤ C}.

One of the shortcomings of classical Scott-Strachey se-
mantics is its sensitivity to choice of locations. If two en-
capsulated data representations take different amounts of
memory, it is quite possible that a real memory allocator
will return different addresses even in states where the two
representations are related. One way to deal with this is-
sue is to consider all possible allocators, and then quotient
the resulting model. We choose a simpler solution; we just
assume that a parametric allocator is given.

Definition 1. An allocator is a function fresh such that
loctype(fresh(C, h)) = C and fresh(C, h) 6∈ domh, for all
C, h. An allocator is parametric provided that for all classes
C and heaps h1, h2

domh1 ∩ locsC = domh2 ∩ locsC
⇒ fresh(C, h1) = fresh(C, h2)

For example, if Loc = N the function fresh(C, h) = min{` |
loctype ` = C ∧ ` 6∈ domh} is a parametric allocator. Capa-
bility-based systems provide locations as abstract values in
order to achieve parametricity for secure information flow.

Table 2 gives the semantic domains. There are several
auxiliary domains, such as Heap and C state, elements of
which are not directly denotable. We describe these seman-
tic categories θ in a grammar, for use later in the definition
of the induced relations. We write 9 for finite partial func-
tions. It is easy to show if T ≤ U then [[T ]] ⊆ [[U ]].

Table 3 gives the semantics of expressions, dependent on
an arbitrary method environment µ in [[MEnv ]]. Table 4
gives the semantics of commands.

It is straightforward to show that, as in Java, no program
constructs create dangling pointers. One might expect us
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Table 2: Semantic domains.

θ ::= T | Γ | C state | Heap | (C, (x : T )→ T ) | MEnv | θ⊥ | θ × θ

[[bool]] = {true, false} [[unit]] = {•} [[C]] = {nil} ∪ {` | ` ∈ Loc ∧ loctype ` ≤ C}

η ∈ [[Γ]] ⇔ dom η = dom Γ ∧ ∀x ∈ dom η . η x ∈ [[Γx]]

s ∈ [[C state]] ⇔ doms = fieldsC ∧ ∀f ∈ fieldsC . sf ∈ [[type(f, C)]]

h ∈ [[Heap]] ⇔ dom h ⊆ Loc ∧ ∀` ∈ dom h . h` ∈ [[(loctype `) state]]

[[C, (x : T )→ T ]] = [[x : T , this : C]]→ [[Heap]]→ ([[T ]]× [[Heap]])⊥

[[MEnv ]] = (C : ClassNames) 9 (m : MethodNames) 9 [[C,mtype(m,C)]]

[[θ1 × θ2]] = [[θ1]]× [[θ2]] [[θ⊥]] = [[θ]]⊥ (we assume ⊥ is not in [[θ]])

Meanings of expressions: [[Γ; C ` e : T ]] ∈ [[MEnv ]]→ [[Γ]]→ [[Heap]]→ [[T ]]⊥

Meanings of commands: [[Γ; C ` S : com]] ∈ [[MEnv ]]→ [[Γ]]→ [[Heap]]→ ([[Γ]]× [[Heap]])⊥

to confine attention to heaps that are closed, in the sense
that every location in the range is in the domain. But this
would add unenlightening complications to some definitions.
So the semantics is defined even for heaps with dangling
pointers. Like cast failures, dereferences of dangling point-
ers and nil are considered an error. Rather than modelling
exceptions, we identify all errors, and divergence, with the
improper value ⊥.

The semantic definitions use a metalanguage construct,
let d = E1 in E2, with the following meaning: If the value
of E1 is ⊥ then that is the value of the entire let expression;
otherwise, its value is the value of E2 with d bound to the
value of E1. Function update is written, e.g., [η | x 7→d].

The semantic definitions are given with respect to an ar-
bitrary method environment, but we are really interested in
the method environment given as a fixpoint, properly inter-
preting mutually recursive methods. Toward this end, it is
convenient to define the semantics of method declarations.
If, in class C, we have M = T m(T x){S; return e}, then
for any µ, define [[M ]]µ ∈ [[(C, (x : T → T ))]] by

[[M ]]µηh

= let (η0, h0) = [[(x : T , this : C); C ` S : com]]µηh in

let d = [[(x : T , this : C); C ` e : T ]]µη0h0 in (d, h0)

We only take fixpoints for method environments; these are
ordered pointwise, in terms of method meanings. The latter
are function spaces [[C, (x : T )→ T ]] into lifted sets. Thus,
to get pointed complete partial orders for method environ-
ments, it suffices to use equality as the order on [[Heap]],
[[bool]], [[C]], and [[C state]]. We define an ascending chain
µ ∈ N→ [[MEnv ]] as follows.

µ0 Cm = λη. λh. ⊥
µj+1 Cm = [[M ]]µj if m declared as M in C
µj+1 Cm = µj+1 Bm if m inherited from B in C

The semantics of the class table is the least upper bound,
µ̂, of this chain.

3. SIMULATION AND CONFINEMENT
The aim of this section is to formulate the (indexed family

of) relations defined inductively, based on a given relation

connecting two representations for an instance of a class A.
After introducing convenient notation for heaps, from BI
pointer logic [16], we formalize the basic situation in which
a relation is given. Then we formalize confinement and the
induced relation.

We say heaps h1 and h2 are disjoint if domh1∩domh2 =
∅. Let h1 ∗ h2 be the union of h1 and h2 if they are dis-
joint, and undefined otherwise. To say that no objects in h1

contain references to objects in h2, we define4

h1 6; h2 ⇔ ∀` ∈ domh1 . rng(h1 `) ∩ domh2 = ∅

It is crucial for our formulation of confinement that we work
with partitions h1 ∗h2 where h1 and h2 have dangling point-
ers (as in the pioneering work of Reynolds [36]).

In our formalization, representation objects for A all have
a common supertype Rep. We shall partition the heap as
h = hA ∗ hRep ∗ hOut where hA contains just the object of
class A being abstracted, hRep contains zero or more objects
of class Rep that comprise the representation of A, and hOut
contains all other objects.

Beware that we use multi-letter identifiers like hA that
beg to be (wrongly) parsed as an application hA of h to A.

Our use of class names depends on the assumption that
Rep 6≤ A and Rep 6≥ A, and the same for Rep′. It also
precludes use of, say, a library class both in representions
and in outside objects. But these convenient coding tricks
are easily circumvented (e.g., as in [25]).

Definition 2. A basic simulation is given by:

• well formed class tables CT,CT ′ that are identical save
for their values on A, where

CT (A) = class A extends B { T g; M }
CT ′(A) = class A extends B { T ′ g′; M ′ }

We write `,`′ for the typing relations determined by
CT,CT ′ respectively, and [[−]], [[−]]′ for the semantics.

• two distinguished classes Rep,Rep′

4One might think it better to define the positive notion that
all pointers from h1 are into h2, but this is less convenient
because we allow dangling pointers.
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Table 3: Semantics of expressions.

[[Γ; C ` x : T ]]µηh = ηx

[[Γ; C ` null : B]]µηh = nil

[[Γ; C ` e1==e2 : bool]]µηh

= let d1 = [[Γ; C ` e1 : T ]]µηh in

let d2 = [[Γ; C ` e2 : T ]]µηh in (d1 = d2)

[[Γ; C ` e.f : T ]]µηh

= let ` = [[Γ; C ` e : C]]µηh in

if ` 6∈ dom h then ⊥ else h`f

[[Γ; C ` e.m(e) : T ]]µηh

= let ` = [[Γ; C ` e : D]]µηh in

if ` 6∈ dom h then ⊥ else

let (x : T )→ T = mtype(m,D) in

let d = µ(loctype `)m in

let d = [[Γ; C ` e : U ]]µηh in

let (d0, h0) = d[x 7→ d, this 7→ `]h in d0

[[Γ; C ` (B) e : B]]µηh

= let ` = [[Γ; C ` e : D]]µηh in

if ` ∈ dom h ∧ loctype ` ≤ B then ` else ⊥
[[Γ; C ` e instanceof B : bool]]µηh

= let ` = [[Γ; C ` e : D]]µηh in

` ∈ dom h ∧ loctype ` ≤ B

• relation R such that R ⊆ [[Heap]]× [[Heap]]′

• for any h, h′, if R h h′ then there are partitions h =
hA ∗ hRep and h′ = hA′ ∗ hRep′ and location ` with
loctype ` ≤ A, such that

– domhA = {`} = domhA′,

– dom(hRep) ⊆ locs(Rep↓) (and for hRep′, Rep′),

– R (type(f, loctype `)) (h`f) (h′`f) for all fields
f ∈ fields(loctype `) with f 6∈ g (see below).

• default states are related: for any ` ∈ locs(A↓), R
relates [` 7→ [fields(loctype `) 7→ defaults]] to [` 7→
[fields′(loctype `) 7→ defaults ′]]

Relation R is used to connect the private fields of a pair of
objects for the two implementations of A, along with the
representation objects referenced by those fields. The con-
dition involving R is a healthiness assumption imposed on
inherited fields and subclass fields. It is formulated using
the induced relations R of Definition 5. This forward refer-
ence introduces no circularity in our definitions. In fact the
condition simply requires h`f = h′`f , because RT is the
identity for every data type T , but we feel that explicit use
of R is conceptually more clear.

The induced relations R handle objects other than Rep
objects. We say C is a non-rep class iff C 6≤ Rep and C 6≤
Rep′. We extend this to categories θ so that C state and
(C, (x : T )→ T ) are non-rep iff C is.

Examples.For the example of A0 in Section 2.1, we take
Rep,Rep′ to be Boolean,Boolean’ where Boolean’ is a fresh

Table 4: Semantics of commands

[[Γ; C ` x := e : com]]µηh

= let d = [[Γ; C ` e : T ]]µηh in ([η | x 7→d], h)

[[Γ; C ` x.f := e : com]]µηh

= let ` = ηx in if ` 6∈ dom h then ⊥ else

let d = [[Γ;C ` e : U ]]µηh in (η, [h | ` 7→ [h` | f 7→d]])

[[Γ; C ` x := new B( ) : com]]µηh

= let ` = fresh(B, h) in

([η | x 7→`], [h | ` 7→ [fieldsB 7→ defaults]])

[[Γ; C ` x.m(e) : com]]µηh

= let ` = ηx in if ` 6∈ dom h then ⊥ else

let (x : T )→ T = mtype(m,Γx) in

let d = µ(loctype `)m in

let d = [[Γ; C ` e : U ]]µηh in

let (d0, h0) = d[x 7→ d, this 7→ `]h in (η, h0)

[[Γ; C ` if e S1 else S2 : com]]µηh

= let b = [[Γ; C ` e : bool]]µηh in

if b then [[Γ; C ` S1 : com]]µηh

else [[Γ; C ` S2 : com]]µηh

[[Γ; C ` S1; S2 : com]]µηh

= let (η0, h0) = [[Γ; C ` S1 : com]]µηh in

[[Γ; C ` S2 : com]]µη0h0

[[Γ; C ` var T x := e in S : com]]µηh

= let d = [[Γ; C ` e : U ]]µηh in

let (η0, h0) = [[(Γ, x : T ); C ` S]]µ[η | x 7→d]h in

(η0�x, h0)

copy of Boolean. We define R to relate h, h′ just if 5 h =
[`1 7→ [g 7→ nil]] and h′ = [`1 7→ [g′ 7→ nil]], or

h = [`1 7→ [g 7→ `2], `2 7→ [f 7→ d]]
h′ = [`1 7→ [g′ 7→ `3], `3 7→ [f 7→ ¬d]]

for some boolean d and locations `1, `2, `3.
As another example, consider a class A2 that is to contain

a non-negative integer. In one version, this is stored as a
primitive int in a field named f . In the other version, field
f ′ points to a singly linked, nil-terminated list of objects of
class Node. We take Rep arbitrary and Rep′ = Node, and
R relates h, h′ just if h is a singleton heap [` 7→ [f 7→ j]] for
some j ≥ 0, and h′ = [` 7→ [f ′ 7→ `1]] ∗ h′1 where h′1 contains
a singly linked list of length j starting with some `1.

Confinement.Confinement is imposed on the heap, which
can contain multiple instances of the related class A, each
with zero or more associated representation objects. We
require that in every state the heap can be partitioned as
shown in Figure 1, with references restricted as in the pic-
ture. In practice, it is important to distinguish read-only
references, e.g., if the Rep objects are used as nodes in a
data structure representing a container or set, these nodes

5If A0 has subclasses, the relation on their fields is deter-
mined by the healthiness assumption for basic simulations.
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should be able to point to the “outside” objects in hOut ,
but only for reading [25]. But this would complicate our
presentation; our aim is to show a set-up in which one can
formalize confinement disciplines, compare them, and prove
that syntactic restrictions do ensure the desired semantic
confinement.

Rep

C

C

Rep

Rep

A

A

Figure 1: Confinement example. Dotted references
disallowed.

Definition 3. An admissible partition of heap h is a set
of pairwise disjoint heaps hOut , hA1, hRep1, . . . , hAk, hRepk
with h = hOut ∗ hA1 ∗ hRep1 ∗ . . . ∗ hAk ∗ hRepk and for all i

• domhAi ⊆ locs(A↓) and size(domhAi) = 1
• domhRepi ⊆ locs(Rep↓)
• domhOut ∩ (locs(A↓) ∪ locs(Rep↓) = ∅

Note that a heap may have several admissible partitions,
e.g., if there are inaccessible Rep objects. The reader can
check that the definitions and results do not depend on
choice of partition in these cases.

The condition hOut 6; hRepi is clearly needed to pre-
clude representation-dependent behavior as in the example
in Section 2.1 using the bad method. We also need to impose
the condition hRepi 6; hOut to prevent Rep objects from de-
pending on outside objects that could be changed by clients;
such changes need not preserve the basic simulation relation.
Similar conditions are ensured by module-based notions of
confinement in the literature (e.g., [40]). But our notion
of simulation is instance-based, so we also require that A
objects are isolated from each other and each other’s rep-
resentations. This is similar to the ownership model [7, 25]
and notions of unique references such as [4].

Definition 4. We say heap h is confined, and write conf h,
iff h has an admissible partition such that for all i, j

• hOut 6; hRepi
• hRepi 6; hOut
• i 6= j ⇒ hAi ∗ hRepi 6; hAj ∗ hRepj

Confinement of an environment η depends on the heap and
on the class in which the environment is used. For non-rep C
different from A, define conf C η h iff rng η ∩ locs(Rep↓) =
∅. For A, define conf A η h iff there is a partition with
rng η ∩ (locs(Rep↓) ∪ locs(A↓)) ⊆ dom(hRepj ∗ hAj) for
some j with dom(hAj) = {η this}.

Method environment µ is confined, written conf µ, iff for
all non-rep C, and all m,h, η, if conf h and conf C η h then

µCmηh 6= ⊥⇒
let (d, h0) = µCmηh in conf h0 ∧ d 6∈ locs(Rep↓)

For commands, we say, for non-rep C, that Γ; C ` S : com
is confined iff for any confined h, µ and η confined in C, h:

[[Γ; C ` S : com]]µηh 6= ⊥⇒
let (η0, h0) = [[Γ; C ` S : com]]µηh in
conf h0 ∧ conf C η0 h0

For expressions, for non-rep C 6= A we say Γ; C ` e : T is
confined iff for any confined h and µ, and η confined in C, h:

[[Γ; C ` e : T ]]µηh 6∈ locs(Rep↓)

For A, we say Γ; A ` e : T is confined iff for any confined h
and µ, and η confined in A, h:

[[Γ; A ` e : T ]]µηh 6= ⊥⇒
let d = [[Γ; A ` e : T ]]µηh in
d ∈ (locs(A↓) ∪ locs(Rep↓)) ⇒ d ∈ dom(hAj ∗ hRepj)

for some j with dom(hAj) = {η this}.
Finally, CT is confined iff (i) for every non-rep C 6= A and

every M in CT (C) of form T m(T x){S; return e}, it is the
case that S, e, and all constituents thereof are confined;
(ii) for every T m(T x){S; return e} declared in A, both S
and e are confined; and
(iii) for every C,m with mtype(m,C) = (x : T ) → T we

have (a) C ≤ A ⇒ T >6≤ Rep ∧ T >6≤ A ∧ T >6≤ Rep
(b) C 6≤ A ∧ C 6≤ Rep ⇒ T >6≤ Rep

The relation >6≤ is defined by T1 >6≤ T2 ⇔ T1 6≤ T2∧T1 6≥ T2.
Note that T1 >6≤ T2 ⇒ [[T1]] ∩ [[T2]] = ∅. We write T >6≤ T1 to
express that T >6≤ T1 for all T in T .

Confinement for CT involves syntactic conditions which
ensure confinement of method calls, e.g., a client object can-
not pass to one A↓-object a reference to another A↓-object.
This is difficult to express in terms of the semantics. At first
glance the syntactic conditions may appear rather strong,
but we have not found non-trivial examples that violate the
conditions without also violating heap confinement. Else-
where [2] we give mild syntactic conditions that suffice for
confinement of a class table, e.g., methods of non-rep class
C 6≤ A cannot construct new Rep objects. In practice, Rep
would be local to a module not containing C.

As an example, let A be class A0 in Section 2.1, and let
Rep be Boolean. Consider an initial heap with no objects
of these types; it is confined. If x is a variable of type A0,
the command x := new A0() in a method of some client
class C 6≤ A is confined, as the new object has x.g initially
null. A subsequent call x.init() is also confined, as the
newly constructed Boolean object is not leaked. All of the
methods in both versions of A0 are confined. However, if
the bad method is added, the example command using it is
not confined, due to the expression z.bad(). And the bad

method violates (iii)(a) in the definition of confined class
table.

In an earlier version of this paper, we erroneously used the
confinement condition for A-environments for subclasses of
A, misled by considerations about inheritance. The follow-
ing result is the key to reasoning about confinement of calls
to inherited methods.

Lemma 3.1. For nonrep C,B, if C ≤ B and conf C η h
then conf B η h, for all environments η for parameters of
methods of B.

For the main Lemma 4.2, we need constituents of non-A
methods to be confined, hence the separate cases (i) and (ii)
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in the definition of confined class table. For the following
result we only need that method bodies are confined.

Lemma 3.2. Suppose CT is confined. Then the environ-
ment µ̂ obtained as a fixpoint is confined, as is each µi in
the approximation chain.

Induced relation.Finally, we can define the induced rela-
tion R. For non-rep categories θ we have R θ ⊆ [[θ]]× [[θ]]′.

Definition 5. For heaps h, h′, we define R Heap h h′ iff
conf h and conf h′ and there exist admissible partitions of
h, h′, of the same size, such that for the given R

R (hAi ∗ hRepi) (hA′i ∗ hRep′i)

for all i, and dom(hOut) = dom(hOut ′), and
∀` ∈ dom(hOut) .R ((loctype `) state) (h`) (h′`).
For other categories, we define R θ as follows.

R bool d d′ ⇔ d = d′

R unit d d′ ⇔ d = d′

R C ` `′ ⇔ ` = `′

R Γ η η′ ⇔ ∀x ∈ dom Γ .R (Γx)(ηx)(η′x)

R (C state) s s′ ⇔
∀f ∈ fieldsC .R (type(f, C)) (s f) (s′ f), for C 6≤ A

R (C, (x : T )→ T ) d d′ ⇔ ∀d, d′, h, h′, ` .
(R T d d′ ∧R Heap h h′ ∧ conf C η h ∧ conf C η′ h′)

⇒R (T ×Heap)⊥ (dηh) (d′η′h′)

where η = [x 7→ d, this 7→ `], η′ = [x 7→ d
′
, this 7→ `]

R MEnv µ µ′ ⇔ for all non-rep C

∀m .R (C,mtype(m,C)) (µC m) (µ′ Cm)

R (θ⊥) α α′ ⇔
(α = ⊥ = α′) ∨ (α 6= ⊥ 6= α′ ∧R θ α α′)

Note that we do not need to define R (C state) s s′ for
C ≤ A; the relation on states is only used in defining the
relation on heaps, and there only for non-rep C 6≤ A.

Fact 3.3. For all h, h′ and ` 6∈ (locs(Rep↓)∪locs(Rep′↓)),
if R Heap h h′ then ` ∈ dom h ⇔ ` ∈ dom h′.

Fact 3.4. For any data type T , R T is the identity rela-
tion. As a corollary, if U ≤ T and R U d d′ then R T d d′.

4. THE ABSTRACTION THEOREM

Theorem 4.1. Suppose we are given a basic simulation,
with CT,CT ′ confined. Suppose further that for every con-
fined µ, µ′, and for every method declaration M in CT (A)
(respectively M ′ in CT ′(A)), we have

(∗) R MEnv µ µ′⇒R (A,mtype(m,A)) ([[M ]]µ) ([[M ′]]′µ′)

Then R (C,mtype(m,C)) (µ̂ C m) (µ̂′ Cm) for every m and
non-rep C, that is, R MEnv µ̂ µ̂′, where µ̂, µ̂′ are the fix-
points for CT,CT ′.

Proof. First, we show by induction that for every i we
have R MEnv µi µ

′
i. For the base case, for every C,m

we have R (C,mtype(m,C)) (µ0 Cm) (µ′0 Cm) because ⊥
relates to ⊥. For the induction step, supposeR MEnv µi µ

′
i.

We consider cases on whether C = A. For C 6= A, we apply
Lemma 4.2, below, to µi, µ

′
i. For C = A and m declared

in A, we have R (A,mtype(m,A)) (µi+1 Am) (µ′i+1 Am)
by hypothesis (∗) and definition of µi+1. For m inherited
in A from B ≥ A, we use Lemma 3.1 and the definition of
R to show that R (A,mtype(m,A)) (µi+1 Am) (µ′i+1 Am)
follows from R (B,mtype(m,A)) (µi+1 Bm) (µ′i+1 Bm).

Now, µ̂, µ̂′ are the least upper bounds of the chains we
just showed are related. It remains to show that

∀i . R (C,mtype(m,C)) (µi Cm) (µ′i Cm)

implies R (C,mtype(m,C)) (tiµi Cm) (tiµi′ Cm). This is
routine.

To serve as an induction hypothesis, the statement of the
lemma is a little complicated. In essence, it says that each
constituent expression e and command S of each method
outside class A preserves the relation.

Lemma 4.2. Suppose a basic simulation is given, such
that CT and CT ′ are confined. Then, for all non-rep classes
C 6= A, all constituent expressions Γ; C ` e : T and com-
mands Γ; C ` S : com in methods declared in C, and all
confined µ, µ′, the following holds. For all confined heaps h
(resp. h′) and environments η confined for C, h (resp. η′ for
C, h′), if R MEnv µ µ′, R Heap h h′, and R Γ η η′ then

R (T⊥) ([[Γ; C ` e : T ]]µηh) ([[Γ; C `′ e : T ]]′µ′η′h′)

R (Γ×Heap)⊥ ([[Γ; C ` S]]µηh) ([[Γ; C `′ S]]′µ′η′h′)

Proof. For lack of space, we consider only the case of
method call as a command, using identifiers as in the seman-
tic definition in Table 4 (and their primed counterparts).
By R Γ η η′, we have R (Γ x) ` `′, hence ` = `′ by
Fact 3.4. By conf C η h and C 6= A we have ` 6∈ locs(Rep↓)
and ` 6∈ locs(Rep′↓). Hence, by Fact 3.3, if ` 6∈ dom h
then ` 6∈ dom h′, in which case both semantics are ⊥ and
R (Γ × Heap)⊥ ⊥ ⊥. It remains to consider the case
` ∈ dom h ∩ dom h′.

By induction on e, either [[Γ; C ` e : U ]]µηh = ⊥ and
[[Γ; C ` e : U ]]′µ′η′h′ = ⊥, and thus we get the result be-
cause R (Γ × Heap)⊥ ⊥ ⊥, or neither is ⊥. In the latter

case, let η0 = [x 7→ d, this 7→ `] (resp. η′0) where d, d
′

are as
in the semantic definition. Since R MEnv µ µ′, we have
R ((loctype `), (x : T )→ T ) (µ(loctype `)m) (µ′(loctype `)m)
by definitionR(MEnv). SinceR Heap h h′ and assuming we
can show conf (loctype `) η0 h (resp. conf (loctype `) η′0 h

′)
and R T d d′, we have
R (T ×Heap)⊥ (µ(loctype `)η0h) (µ(loctype `)η′0h

′), by def-
inition R((loctype `), (x : T ) → T ) and loctype ` 6≤ Rep.
Now, either µ(loctype `)η0h = ⊥ = µ(loctype `)η′0h

′, in
which case we have related results, or R Heap h0 h

′
0, whence

R (Γ × Heap)⊥ (η, h0) (η′, h′0), where h0, h
′
0 are the heaps

returned by µ(loctype `)η0h, µ(loctype `)η′0h
′.

It remains to show R T d d′ and conf (loctype `) η0 h
(resp. conf (loctype `) η′0 h

′), for which we go by cases on
loctype `. Recall that ` 6∈ locs(Rep↓), so (loctype `) 6≤ Rep.

(i) loctype ` 6= A, i.e., either loctype ` < A or loctype ` 6≤
A. In either case, since CT is confined, by condition (iii)(a)
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or (iii)(b) in the definition of confined CT , we know T >6≤
Rep. By induction on e, we get R U d d′ (as we are con-
sidering the non-⊥ case). Thus, by U ≤ T and the corol-
lary to Fact 3.4, R T d d′. Because T >6≤ Rep, we have,
d 6∈ locs(Rep↓).

Now conf (loctype `) η0 h ⇔ rng η0 ∩ locs(Rep↓) = ∅.
And rng η0 ∩ locs(Rep↓) = {d, `} ∩ locs(Rep↓) = ∅, since
d 6∈ locs(Rep↓) and ` 6∈ locs(Rep↓).

(ii) loctype ` = A: Hence ` ∈ locs(A↓). Since CT is
confined, by condition (iii)(a) in the definition of confined
CT , we know T >6≤ A and T >6≤ Rep. As in case (i), induction
on e yields R T d d′. Because T >6≤ A and T >6≤ Rep, we have,
d 6∈ locs(A↓) and d 6∈ locs(Rep↓).

Now conf (loctype `) η0 h ⇔ rng η0 ∩ (locs(Rep↓) ∪
locs(A↓)) ⊆ dom(hAj∗hRepj) for some j where dom(hAj) =
{η0 this} = {`}. And rng η0 ∩ (locs(Rep↓) ∪ locs(A↓)) =
{d, `}∩ (locs(Rep↓)∪ locs(A↓)) = {`} ⊆ dom(hAj ∗hRepj),
for some j and dom(hAj) = {η0 this} = {`}.

Identity extension.The abstraction theorem is usually used
in conjunction with an identity extension lemma. A typical
formulation says that R T is the identity on any type T for
which it is the identity on all base types b that occur in T .
The reason is that no value of type b can occur in a value
of type T if b does not occur in T . This fails with extensi-
ble records and structural subtyping, and with procedures
that may have global variables [28]. It can be made to work
using name-based (declaration) subclassing [6], but it turns
out that for our purposes it is enough to deal with the heap.

In our language, R T is the identity for every data type
T (Fact 3.4), but that is only because the interesting data
is in the heap —which is not typed at all.6 In general,
[[A state]] 6= [[A state]]′ and R(A state) is not the identity.
Related heaps can contain A↓ objects with different states
that may point to completely different Rep↓ objects. But
consider executing a method on an object o from whose
fields no A objects are reachable, i.e., A objects are not part
of the representation of o. The resulting heap may contain
A objects that were assigned to local variables, but if the
method is confined then those objects are unreachable in
the final state. Enter garbage collection. For a set or list d
of values, define the heap collect(d, h) to be the restriction
of h to cells reachable from elements of d. Say h is A-free
just if domh ∩ locs(A↓) = ∅.

Lemma 4.3. Suppose R (Γ×Heap) (η, h) (η′, h′). If both
collect((rng η), h) and collect((rng η′), h′) are A-free then
collect((rng η), h) = collect((rng η′), h′).

Proof. Related heaps are confined, by definitionR Heap.
In confined heaps, Rep↓ objects are only reachable from A↓
objects. Now the argument is a straightforward induction
using the definition of R.

An A-free heap in [[Heap]] is also an element of [[Heap]]′,
and [[Γ]] = [[Γ]]′ for any Γ. For any R, a confined A-free h
has no Rep↓-objects, and R Heap h h.

To compare commands interpreted with respect to CT
and CT ′, we say commands Γ; C ` S : com and Γ; C `′

6Nor would we want to impose a typing system on the heap,
as it would likely preclude unbounded data structures [13].

S′ : com are equivalent iff the following holds, where d is
the semantics of S in CT and d′ the semantics of S′ in
CT ′: For every confined A-free heap h and every η ∈ [[Γ]]
with conf C η h, either d η h = ⊥ = d′ η h or neither
is ⊥ and moreover η0 = η′0 and collect((rng η0), h0) =
collect((rng η0), h′0), where (η0, h0) = d η h and (η′0, h

′
0) =

d′ η h.

Example.Consider a client class C with a method contain-
ing the following command, typed in some A0-free environ-
ment Γ with Γ b = bool.

var A0 z := null in

z := new A0(); z.setg(true); b := z.getg()

Let d (resp. d′) be the meaning of this command, using the
first version (resp. primed version) of A0 in Section 2.1. Let
R be the relation described in Section 2.1 and formalized
following Definition 2. It is straightforward to show that
the induced relation holds between methods of the two ver-
sions of A0. To show that d is equivalent to d′, consider any
confined, A0-free heap h and environment η confined in C, h.
We have R Heap h h and R Γ η η, and by the abstraction
theorem d and d′ are related, so we get related outcomes
d η h and d′ η h. If the outcome is not ⊥ then these related
environments are equal (they do not contain any A0 loca-
tions) and the related heaps, once collected, are equal by
the identity extension Lemma 4.3.

Section 2.1 gives an example command that exploits the
representation object leaked by the bad method. For that
command the abstraction theorem does not apply because
that method is not confined. The two interpretations of the
command are not equivalent; it acts as skip using the first
version of A0 and diverges using the primed version.

5. APPLICATION
The following example is based on one of the Meyer-Sieber

equivalences [21], which we first recall in Algol syntax.
The following two commands are equivalent, because they

both diverge, for any P that takes a command as argument.

var x := 0; P(x:=x+2); if x is even then diverge

var x := 0; P(x:=x+2); diverge

Informally, the argument is that in the first example x is
invariably even. This is because P is declared somewhere
not in the scope of x so the variable can only be affected by
(possibly repeated) executions of the command x:=x+2 and
this maintains the invariant.

Now we consider an adaptation, due to Peter O’Hearn,
of the example to Java. The Java version uses a private
field in place of local variable x. Instead of passing the
command x:=x+2 as argument, the object passes a reference
to itself; this gives access to a public method inc. Using the
implementation of A1 below, which corresponds to the first
Algol example, the command

(∗) var C y := new C() in
var A1 x := new A1() in x.callP(y)
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diverges because after calling y.P, method callP diverges.

class A1 extends Object {

int g; /* initially 0 */

unit callP(C y){

y.P(this);

if (isEven(g)) then diverge else skip }

unit inc(){ g := g + 2 } }

Here is an implementation for which (∗) corresponds to the
second Algol example.

class A1 extends Object {

int g’; /* initially 0 */

unit callP(C y){ y.P(this); diverge }

unit inc(){ g’ := g’ + 2 } }

Both interpretations of (∗) are equivalent, provided that any
overriding declarations for inc preserve its invariant (behav-
ioral subclassing [19, 10]), and similarly for callP.

Proposition 5.1. The command (∗) has the same mean-
ing with either of the implementations for A1, provided that
the corresponding class tables are confined, callP is not
overridden, and any declaration overriding inc maintains
evenness.

To prove equivalence we choose Rep,Rep′ to be arbitrary
classes (unusable by clients but not needed by A1), as they
are not relevant here. Let the basic simulation R relate h
to h′ just if they have the same singleton domain ` with
loctype ` ≤ A1 and h ` g = h′ ` g′ = 2×m for some m ≥ 0.

The proposition can be proved without using the identity
extension Lemma 4.3, but that is only because the example
uses divergence to make it obvious that the two commands
are equivalent. Identity extension is needed for other vari-
ations. For example, we can make (∗) behave as skip by
replacing the first implementation of callP with

y.P(this); if(isEven(g))then skip else diverge

and the second implementation with y.P(this); skip. Be-
cause x is local in (∗), there are no reachable A1-objects in
the final states, so the outcomes from the two versions of (∗)
are equal.

The preceding examples do not involve representation ob-
jects or confinement. What they confirm is that in our lan-
guage local variables and private fields provide first-class
stateful procedures in a form that does not have the prob-
lematic interactions found in Algol. The same is true of
some other conventional languages (e.g., C has no nested
procedure declarations, and Oberon does not allow local pro-
cedures to be passed as arguments), making it possible to
prove the Meyer-Sieber equivalences in simple models [28]
for those languages.

It is straightforward to extend the examples to include
representation objects. For example, the integer field g can
be replaced by an Integer object similar to the Boolean

object used in the example of Section 2.1. Then confinement
is needed just as in that example.

6. PRIVILEGE-BASED ACCESS CONTROL
In the Java access control mechanism [11], each class has

an associated principal, the signer of the class (e.g., the user,
or an authenticated remote site from which the code was

obtained). An access control matrix associates with each
principal n a set A(n) of privileges, or resources, for which
it is authorized. For example, a user program might have
the privilege p to change their password but not the priv-
ilege w for directly writing the password file. The stack
frame for a method activation is marked with the signer of
the class file declaring the method, and also contains a set
of enabled privileges. (Enabled privileges need not be au-
thorized for the signer.) Let us write 〈n, P 〉 for such frame,
where n ∈ Principals and P ∈ P(Privs). Privileges must
be explicitly enabled by an operation called doPrivileged,
which adds the privilege to the current frame. Before ex-
ecuting an operation, like hardware write, that is to be
protected, a check (checkPermission) is performed. This
“stack inspection” decides chk(p, S), which is defined as fol-
lows, where we write 〈n, P 〉 :: S for 〈n, P 〉 on top of stack
S. For the empty stack, chk(p, nil) ⇔ false. For nonempty
stacks, chk(p, (〈n, P 〉 :: S))⇔ p ∈ A(n)∧(p ∈ P ∨chk(p, S)).

Here are two example classes in our syntax.

class Sys signer sys extends Object {
unit writepass(String x){

check w; write(x,"passfile") }
unit passwd(String x){

check p; dopriv w in this.writepass(x) } }

class User signer user extends Object {
Sys s ... /* initialization elided */

unit use(){ dopriv p in s.passwd("mypass") }
unit try(){ dopriv w in s.writepass("mypass") }}

Assume that A(user) = {p} and A(sys) = {p, w}. Invoking
method use makes a frame 〈user,∅〉, and then use enables
p; from the resulting frame 〈user, {p}〉, a call is made to
passwd which pushes 〈sys,∅〉. Then check p succeeds and
privilege w gets enabled. Finally, writepass checks w suc-
cessfully, and calls the hardware write.

Invocation of user method try results in a security excep-
tion: Although w gets added to the frame for try, the check
by writepass fails because w is not authorized for user.

As described, the stack inspection semantics is lazy in that
tests p ∈ A(n) are only performed when p is actually needed
to perform a guarded operation. But a stack S determines a
set privs S of enabled, authorized privileges: p ∈ privs S ⇔
chk(p, S). This gives rise to an equivalent eager [11, 42]
semantics: Instead of evaluating an expression in the context
of a stack S, it maintains the context 〈n, privs S〉, where n
is the principal in the top frame of S.

Actual implementations depend on facilities built in to the
runtime environment, but they are largely written as library
classes. In earlier work [3], we showed equivalence of the
lazy and eager strategies, using simulations and built-in se-
mantics for the security mechanism in an idealized language
(like those of [38, 42], which also show the equivalence). It is
an interesting exercise to write down, in our core language,
lazy and eager implementations, and show their equivalence
using the abstraction theorem. This involves rewriting the
source code to add a security context parameter for meth-
ods, and to invoke suitable methods on that context. What
is more important is to give an accurate model including the
built-in features. This is what we do below, extending the
language of Section 2 and using eager semantics. Then we
show that the abstraction theorem holds.

By itself, the access control mechanism merely controls
which methods can be called. To ensure an intrinsic security
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property such as “user programs do not write the password
file”, visibility control can ensure that, e.g., the write oper-
ation is only called by writepass (by making write or even
writepass private). Confinement can be used to protect
access to data such as real disk addresses. We show para-
metricity for the language including access control, which
lays a basis for proofs of intrinsic security properties, but
such proofs are left for future work.

The extended language.The core language in Section 2 is
extended as follows:

CL ::= class C signer n extends C { T f ; M }
S ::= . . . | check p | dopriv p in S
e ::= . . . | testpriv p

The new typing rules are simple: For any Γ, C, the type of
testpriv p is bool, and the type of check p is com. The
type of dopriv p in S is com just if the type of S is com.
The only addition to semantic categories θ is Sec where
[[Sec]] = (Principals × P(Privs)) ordered by equality. The
changes in the semantic domains occur in the domains of
methods, expressions and commands:

[[C, (x : T )→ T ]] =

[[x : T , this : C]]→ [[Heap]]→ [[Sec]]→ ([[T ]]× [[Heap]])⊥

[[Γ; C ` e : T ]] ∈ [[MEnv ]]→ [[Γ]]→ [[Heap]]→ [[Sec]]→ [[T ]]⊥

[[Γ; C ` S : com]] ∈
[[MEnv ]]→ [[Γ]]→ [[Heap]]→ [[Sec]]→([[Γ]]×[[Heap]]×[[Sec]])⊥

We give below the interesting changes in the semantics of
expressions and commands; the rest of the semantics follow
mutatis mutandis taking [[Sec]] into account. Let σ range
over [[Sec]].

[[Γ; C ` e.m(e) : T ]]µηhσ
= let ` = [[Γ; C ` e : D]]µηhσ in

if ` 6∈ dom h then ⊥ else
let d = µ(loctype `)m in
let n = signer(loctype `) in
let 〈 , P 〉 = σ in
let σ0 = 〈n, P ∩ A(n)〉 in

let d = [[Γ; C ` e : U ]]µηhσ in

let (h0, d0) = d[x 7→ d, this 7→ `]hσ0 in d0

[[Γ; C ` testpriv p : bool]]µηhσ
= let 〈 , P 〉 = σ in (p ∈ P )
[[Γ; C ` check p : com]]µηhσ
= let 〈 , P 〉 = σ in

if p ∈ P then (η, h, σ) else ⊥
[[Γ; C ` dopriv p in S : com]]µηhσ

= let 〈n, P 〉 = σ in
if (p ∈ A(n)) then [[Γ; C ` S : com]]µηh〈n, P ∪ {p}〉
else [[Γ; C ` S : com]]µηhσ

The statement of Theorem 4.1 can be interpreted in the
new semantics, taking into account the revised semantic do-
mains. And it can be proved the same way, using the fol-
lowing lemma to take [[Sec]] into account.

Lemma 6.1. Suppose a basic simulation is given, such
that CT and CT ′ are confined. Then, for all non-rep classes
C 6= A, all constituent expressions Γ; C ` e : T and com-
mands Γ; C ` S : com in methods declared in C, and all

confined µ, µ′, the following holds. For all confined heaps h
(resp. h′) and environments η confined for C, h (resp. η′ for
C, h′), and all σ ∈ [[Sec]], if R MEnv µ µ′, R Heap h h′,
and R Γ η η′ then

R (T⊥) ( [[Γ; C ` e : T ]]µηhσ)([[Γ; C `′ e : T ]]′µ′η′h′σ)

R (Γ×Heap×Sec)⊥ ( [[Γ;C ` S]]µηhσ)([[Γ;C `′ S]]′µ′η′h′σ)

7. DISCUSSION
We have used instance-based confinement to show repre-

sentation independence for a Java-like language including
references and access control based on principals and priv-
ileges. Although we focused on Java, similar features are
found in a number of other languages. As remarked in [13],
there do not seem to be comparable results in the literature.
Cavalcanti and Naumann [6] prove representation indepen-
dence for language very similar to our core language except
that they use copy semantics for assignment and do not
model shared references, a central feature of conventional
languages. We exploit their insights on how simple seman-
tic domains are adequate. Their work addresses refinement
calculus, and uses predicate transformer semantics in order
to model specifications as constituents of method bodies.

Confinement figures heavily in the verification logics of
Müller and Poetzsch-Heffter [26] and in some work by the
group of Nelson and Leino [18, 9]. Whereas other formal-
izations of semantics for Java-like languages are oriented to
verification of individual programs [14] or proofs of metathe-
orems such as type safety [41], these works are expressly
concerned with modular checking and verification. They
address encapsulation with specifications based on Leino’s
notion of dependency which relates abstraction to represen-
tation. Aspects of parametricity have doubtless been con-
fronted in soundness proofs by these researchers (especially
in [18, 25]). But they are ambitiously tackling many issues at
once, including specifications and more sophisticated forms
of confinement; we have found it difficult to glean results
and proof techniques that can be used in other settings.
Certainly there are no explicit results like the abstraction
theorem.

Our semantics does not depend on confinement or speci-
fications, and is presented using widely known semantic no-
tions. We believe that our formulation of confinement and
abstraction is transparent enough to invite independent con-
firmation and to be adapted for other uses. In ongoing work
we are assessing various notions of confinement and their
use for checking of security and other properties. The capa-
bility semantics of [5] might complement our work, in that
it offers a means for formalizing and thus comparing various
fine-grained notions of confinement.

Our result uses confinement expressed in terms of types
declared in the program; one direction for future work is to
explore confinement based on principals.
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APPENDIX

A. PROOF OF LEMMA 3.1
Lemma. For nonrep C,B, if C ≤ B and conf C η h

then conf B η h, for all environments η for parameters of
methods of B.

Proof. In the cases C ≤ B ≤ A and C 6≤ A, the result
holds because conf C η h ⇔ conf B η h by definition of
conf .

In the case of C ≤ A < B, we have to take care because
conf A η h allows rng η to include Rep locations whereas
conf B η h ⇔ rng η ∩ locs(Rep↓) = ∅. This is why the
lemma includes a hypothesis that η is for the parameters
of some method of B. The method is inherited in A, so
item (iii)(a) in the definition of confinement for CT disallows
parameters of type ≤ Rep or ≥ Rep. Thus rng η can have
no Rep locations.

B. PROOF OF LEMMA 3.2
Lemma. Suppose CT is confined. Then the method envi-

ronment µ̂ obtained as a fixpoint is confined, as is each µi
in the approximation chain.

Proof. Confinement of µ̂ follows from confinement of
each µi in the approximation chain. Thus, by definition of
confinement for method environments, it suffices to show
that for all i ≥ 0, all non-rep C, and all m,h, η

conf h ∧ conf C η h ∧ µiCmηh 6= ⊥
⇒ let (d, h0) = µiCmηh in conf h0 ∧ d 6∈ locs(Rep↓)

This we prove by induction on i.
Case i = 0. By definition of µ0 we have µCmηh = ⊥

which falsifies the antecedent of the implication.
Case i > 0. The definition of µi Cm is by cases on

whether m is inherited or declared in C.
Supposem is declared in C asM = Tm(x : T ){S; return e},

so that µi Cm = [[M ]]µi−1. By induction, µi−1 is con-
fined. Suppose conf h, conf C η h, and µCmηh 6= ⊥.
Let (η0, h0) = [[S]]µi−1. Because µi−1 is confined, by the
induction hypothesis, and S is confined, by the hypothesis
that CT is confined, we have conf h0 and conf C η0 h0.
Let d = [[e]]µi−1η0h0. If C 6= A we have d 6∈ locs(Rep↓) by
confinement of e. If C = A we have d 6∈ locs(Rep↓) owing to
the syntactic constraint (iii)(a) on return types for methods
of A in the definition of confinement for CT .

Suppose m is inherited in C from class B > C, so that
µiCm = µiBm. Suppose conf h, conf C η h, and µCmηh 6=
⊥. By Lemma 3.1 we have conf B η h, so the result follows
by confinement of µiBm. (Strictly speaking we are using a
secondary induction on inheritance chains.)

C. ADDITIONAL CASES FOR LEMMA 4.2
Lemma. Suppose a basic simulation is given, such that

CT and CT ′ are confined. Then, for all non-rep classes C 6=
A, all constituent expressions Γ; C ` e : T and commands
Γ; C ` S : com in methods declared in C, and all confined
µ, µ′, the following holds. For all confined heaps h (resp. h′)
and environments η confined for C, h (resp. η′ for C, h′), if
R MEnv µ µ′, R Heap h h′, and R Γ η η′ then

R (T⊥) ([[Γ; C ` e : T ]]µηh) ([[Γ; C `′ e : T ]]′µ′η′h′)

R (Γ×Heap)⊥ ([[Γ; C ` S]]µηh) ([[Γ; C `′ S]]′µ′η′h′)

Proof. For expressions, the proof goes by induction on

Γ; C ` e : T , written “induction on e” in the sequel. For
commands, the proof goes by induction on Γ; C ` S : com,
using the result for expressions. We adopt the convention
that primed variables will refer to semantic objects in the
primed semantics, [[.]]′. For clarity, we recall both the un-
primed and primed semantics for the case of field update
only.

Field access: For the unprimed semantics, [[.]], the se-
mantics of e.f is

[[Γ; C ` e.f : T ]]µηh

= let ` = [[Γ; C ` e : C]]µηh in

if ` 6∈ dom h then ⊥ else h`f

For the primed semantics, [[.]]′, the semantics of e.f is

[[Γ; C `′ e.f : T ]]′µ′η′h′

= let `′ = [[Γ; C `′ e : C]]′µ′η′h′ in

if `′ 6∈ dom h′ then ⊥ else h′`′f

By induction on e and definition of R C⊥, either
[[Γ; C ` e : C]]µηh = ⊥ and [[Γ; C `′ e : C]]′µ′η′h′ = ⊥ or
neither denotation of e is ⊥. If both are ⊥ then we have the
result, R T⊥ ⊥ ⊥, by definition of R. If neither is ⊥ then we
have R C⊥ ` `

′, hence ` = `′ by Fact 3.4. Now, e is confined,
by C 6= A and (i) in the definition of confinement for CT . By
confinement of e we have ` 6∈ locs(Rep↓)∪locs(Rep′↓). Thus
by Fact 3.3 we have ` ∈ dom h ⇔ ` ∈ dom h′. If ` 6∈ dom h
then both semantics of e.f are ⊥ and then R (T⊥) ⊥ ⊥.

For ` ∈ dom h, we consider cases on whether C < A.
Consider admissible partitions (hOut ∗ hA1 ∗ hRep1 . . . ) = h
and (hOut ′∗hA′1∗hRep′1 . . . ) = h′ that correspond as defined
for R Heap. In the case C < A, we have ` ∈ locs(A↓) and
hence ` in some dom(hAi). From R Heap h h′ we have

R (hAi ∗ hRepi) (hA′i ∗ hRep′i)

and thus ` ∈ dom(hA′i) by basic simulation. Since C 6= A,
we know by visibility that f is not in the private fields g of A.
Thus, as type(f, loctype `)) = T , we have R T (h`f) (h′`f)
by basic simulation.

Finally, in the case C 6≤ A (recall that C is non-rep and
C 6= A in the Lemma), we have ` ∈ dom(hOut) and hence
` ∈ dom(hOut ′) by definition R Heap. Hence

R ((loctype `) state) (h`) (h′`)

and thusR T (h`f) (h′`f) by definition ofR ((loctype`) state).

Variable x: We have [[Γ; C ` x : T ]]µηh = ηx. By hy-
pothesis R Γ η η′ we have R (Γx) (η x) (η′ x) and thus, as
Γx = T by typing, R T⊥ (η x) (η′ x).

Null: We have [[Γ; C ` null : B]]µηh = nil, andR B⊥ nil nil
by definition.

Equality test e1==e2: Letting d1, d2 be as in the se-
mantic definition, we have R T⊥ d1 d

′
1 by induction on e1

and R T⊥ d2 d′2 by induction on e2. If either d1 or d2

is ⊥ then that is the denotation of e1==e2 and we have
R bool⊥ ⊥ ⊥. Otherwise, from R T⊥ d1 d

′
1 and R T⊥ d2 d

′
2

we have d1 = d′1 and d2 = d′2 by Fact 3.4. Hence d1 = d2 iff
d′1 = d′2 and thus, since R bool is the identity by Fact 3.4,
we have R bool⊥ (d1 = d2) (d′1 = d′2).

(Note that the semantic definition is given using a harm-
less confusion between the data type [[bool]] and booleans
in the meta-theory. The same is true for semantics of type
casts and tests.)
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Method call as an expression: First we recall the
semantics:

[[Γ; C ` e.m(e) : T ]]µηh

= let ` = [[Γ; C ` e : D]]µηh in

if ` 6∈ dom h then ⊥ else

let (x : T )→ T = mtype(m,D) in

let d = µ(loctype `)m in

let d = [[Γ; C ` e : U ]]µηh in

let (d0, h0) = d[x 7→ d, this 7→ `]h in d0

By induction on e, either
[[Γ; C ` e : D]]µηh = ⊥ = [[Γ; C `′ e : D]]µ′η′h′ in which
case both semantics of e.m(e) yield ⊥, or neither denotes
⊥. In the latter case, we have by induction on e that
R D ` `′, so ` = `′ by Fact 3.4. And, by C 6= A and confine-
ment condition (i) for CT and CT ′, e is confined and hence
` 6∈ locs(Rep↓) ∪ locs(Rep′↓). Now, if ` 6∈ dom h then, by
Fact 3.3, ` 6∈ dom h′ and both semantics are ⊥. Otherwise,
` ∈ dom h and ` ∈ dom h′. Let

η0 = [x 7→ d, this 7→ `] η′0 = [x 7→ d′, this 7→ `]

From R MEnv µ µ′ we have

R ((loctype `), (x : T )→ T ) (µ(loctype `)m) (µ′(loctype `)m)

By induction on e, we get R U d d′ and thus R T d d′ by
the corollary of Fact 3.4. Moreover, we have R Heap h h′

by hypothesis. We claim that conf (loctype `) η0 h and
conf (loctype `) η′0 h

′. Then, by the displayed relation we
get

R (T ×Heap)⊥ (µ(loctype `)mη0h) (µ′(loctype `)mη′0h
′)

So, either µ(loctype `)mη0h = ⊥ = µ′(loctype `)mη′0h
′ or

neither is⊥. In the latter case, let (d0, h0) = µ(loctype `)mη0h;
we haveR (T×Heap)⊥ (d0, h0) (d′0, h

′
0) and henceR T⊥ d0 d

′
0.

It remains to prove the claim. The argument is very sim-
ilar to the one in the case of method call as command, in
the main body of the paper.

Cast expression:

[[Γ; C ` (B) e : B]]µηh

= let ` = [[Γ; C ` e : D]]µηh in

if ` ∈ dom h ∧ loctype ` ≤ B then ` else ⊥

Induction on e yields that R D⊥ ` `′ or else both denota-
tions of e are ⊥. In the latter case, we have the result, as
R B⊥ ⊥ ⊥. Otherwise, from confinement condition (i) on
class tables, e is confined. Thus, as C 6= A, ` 6∈ locs(Rep↓),
which implies by Fact 3.3 that ` ∈ domh ⇔ `′ ∈ domh′.
Moreover, `′ = ` by Fact 3.4. Hence either both seman-
tics yield `, whence R B⊥ ` `, or both yield ⊥ and again
R B⊥ ⊥ ⊥.

Type test:

[[Γ; C ` e instanceof B : bool]]µηh

= let ` = [[Γ; C ` e : D]]µηh in

` ∈ dom h ∧ loctype ` ≤ B

The argument is similar to that for type cast. In the non-⊥
case, we have ` ∈ dom h ∧ loctype ` ≤ B iff `′ ∈ dom h′ ∧
loctype `′ ≤ B and then the result follows because R bool

is the identity.

Assignment:

[[Γ; C ` x := e : com]]µηh

= let d = [[Γ; C ` e : T ]]µηh in ([η | x 7→d], h)

Induction on e yields thatR T⊥ d d
′ unless both denotations

of e are ⊥. From R Γ η η′ we get R Γ [η | x 7→d] [η′ | x 7→d′]
and then, using the hypothesis for h, h′,
R (Γ×Heap)⊥ ([η | x 7→d], h) ([η′ | x 7→d′], h′).

Field Update:

[[Γ; C ` x.f := e : com]]µηh

= let ` = ηx in if ` 6∈ dom h then ⊥ else

let d = [[Γ;C ` e : U ]]µηh in (η, [h | ` 7→ [h` | f 7→d]])

We consider the non-⊥ case. By assumption R Γ η η′, we
have R (Γx) ` `′, hence ` = `′ by Fact 3.4. By hypothesis
conf C η h we have ` 6∈ locs(Rep↓), and by confinement
of η′ we have ` 6∈ locs(Rep′↓). Hence by Fact 3.3 we get,
` ∈ dom h ⇔ ` ∈ dom h′, so either both semantics are ⊥
due to memory fault or neither is. We consider the case
` ∈ dom h∧` ∈ dom h′. By induction on e we have R U d d′

and hence R T d d′ by the corollary of Fact 3.3 (where
T f ∈ dfieldsC as in the typing rule).

To conclude the arguement it suffices to show
R Heap [h | ` 7→ [h` | f 7→ d]] [h′ | ` 7→ [h′` | f 7→ d′]]
because R Γ η η′ holds by assumption. Consider admis-
sible partitions (hOut ∗ hA1 ∗ hRep1 . . . ) = h and (hOut ′ ∗
hA′1 ∗ hRep′1 . . . ) = h′ that correspond as in the definition of
R Heap h h′.

Case C < A: From typing we have Γx = C and hence
there is some i with {`} = dom(hAi) and by R Heap h h′

R (hAi ∗ hRepi) (hA′i ∗ hRep′i)

and so {`} = dom(hA′i). By typing and C 6= A, field f is
not in the private fields g of A. So R Heap [h | ` 7→ [h` |
f 7→d]] [h′ | ` 7→ [h′` | f 7→d′]] follows from R Heap h h′ and
R T d d′.

Case C 6≤ A: We have ` ∈ dom hOut and thus ` ∈
dom hOut ′ by hypothesis R Heap h h′. Moreover,
R ((loctype `) state) (h`) (h′`) and so by R T d d′ we
get R ((loctype `) state) [h` | f 7→ d] [h′` | f 7→ d′]. So
R Heap [h | ` 7→ [h` | f 7→d]] [h′ | ` 7→ [h′` | f 7→d′]].

Assigning new:

[[Γ; C ` x := new B( ) : com]]µηh

= let ` = fresh(B, h) in

([η | x 7→`], [h | ` 7→ [fieldsB 7→ defaults]])

Let h0 = [h | ` 7→ [fieldsB 7→ defaults]], and η0 = [η | x 7→
`]. Because x := new B( ) is a constituent command in a
method of non-rep class C 6= A, it is confined (by condition
(i) for confinement of the class table). Thus we have conf h0

and conf C η0 h0. By definition, conf C η0 h0 means
rng η0 ∩ locs(Rep↓) = ∅, so ` 6∈ locs(Rep↓), and similarly
`′ 6∈ locs(Rep′↓). Then by Fact 3.3, we have domh∩locsB =
domh′ ∩ locsB, so by parametricity of fresh we have ` =
fresh(B, h) = fresh(B, h′) = `′. So, by Fact 3.4 andR Γ η η′

we have R Γ η0 η
′
0. It remains to show R Heap h0 h

′
0, which

we do by cases on B.
Case B 6≤ A: Writing fields′ for the fields given by CT ′,

we have fieldsB = fields′B and thus R B state [fieldsB 7→
defaults] [fields′B 7→ defaults]. So, as B is non-rep and
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6= A, we can add ` to hOut and hOut ′ to get partitions that
witness R Heap h0 h

′
0.

Case B = A: Let hA0 = [` 7→ [fieldsA 7→ defaults]] and
hA′0 = [` 7→ [fields′A 7→ defaults ′]]. By basic simulation, we
have R h1 h

′
1. Thus to witness R Heap h0 h

′
0 it suffices to

let hRep0 = ∅ and add hA0∗hRep0 (respectively hA0∗hRep0)
to the given partition of h (respectively, h′).

Case B < A: This is a combination of the preceding two
cases.

Conditional:

[[Γ; C ` if e S1 else S2 : com]]µηh

= let b = [[Γ; C ` e : bool]]µηh in

if b then [[Γ; C ` S1 : com]]µηh

else [[Γ; C ` S2 : com]]µηh

By induction on e we have R bool⊥ b b′. If b = ⊥ then
b′ = ⊥ and both semantics yield ⊥. Otherwise, b = b′, and
if b = true then the result follows directly by induction on
S1. And if b = false then the result follows by induction on
S2.

Sequence:

[[Γ; C ` S1; S2 : com]]µηh

= let (η0, h0) = [[Γ; C ` S1 : com]]µηh in

[[Γ; C ` S2 : com]]µη0h0

Either both semantics of S1 yield ⊥ or neither does. In the
latter case, by induction on S1 we have
R (Γ × Heap)⊥ (η0, h0) (η′0, h

′
0). Moreover, as S1 is a con-

stituent of a method in CT and CT ′, by confinement of S1

we have conf h0, conf h′0, conf C η0 h0, and conf C η′0 h
′
0.

So we can use induction on S2 to obtain the result.

Local variable:

[[Γ; C ` var T x := e in S : com]]µηh

= let d = [[Γ; C ` e : U ]]µηh in

let (η0, h0) = [[(Γ, x : T ); C ` S]]µ[η | x 7→d]h in

(η0�x, h0)

By induction on e, R U⊥ d d′. If d = ⊥, then d′ = ⊥ and
both semantics yield ⊥. Otherwise, we have R T d d′ by the
corollary to Fact 3.4. Thus, fromR Γ η η′ we obtainR Γ, x :
T [η | x 7→d] [η′ | x 7→d′]. In order to use induction on S, we
need to show conf C [η | x 7→d] h and conf C [η′ | x 7→d′] h′.
From condition (i) in the definition of confinement for CT ,
e is confined and hence d 6∈ locs(Rep↓). Because C is a non-
rep class different from A, conf C [η | x 7→d] h is equivalent
to rng [η | x 7→ d] ∩ locs(Rep↓) = ∅. This holds because
rng η ∩ locs(Rep↓) = ∅ and d 6∈ locs(Rep↓). Similarly, we
get conf C [η′ | x 7→ d′] h′. Now, by induction on S we get
that both semantics are ⊥ or else
R (Γ, x : T × Heap)⊥ (η0, h0) (η′0, h

′
0). In the latter case,

R (Γ×Heap)⊥ (η0 � x, h0) (η′0 � x, h
′
0) as required.

D. PROOF OF PROPOSITION 5.1
We also consider a third version that omits g entirely, as

its effect is unobservable:

class A1 extends Object {

unit callP(C y){ y.P(this); diverge }

unit inc(){ skip } }

Proof. We consider the first two implementations of A1.
Choose Rep,Rep′ to be arbitrary classes (unusable by clients

but not needed by A1), as they are not relevant here. Let
the basic simulation R relate h to h′ just if they have the
same singleton domain ` with loctype(`) ≤ A1 and h ` g =
h′ ` g′ = 2 × m for some m ≥ 0. To deal with the third
implementation of A1, the relation is just h ` g = 2 × m,
independent from h′, and the rest of the argument is the
same. Let the method declarations for A1.callP be M,M ′,
respectively, and the corresponding bodies be S,S’ where

S= y.P(this);if(isEven(g))then diverge else skip

S’= y.P(this); diverge

To apply Theorem 4.1, we must show for confined µ, µ′ that
R MEnv µ µ′ ⇒ R (A1, (y : C)→ unit) ([[M ]]µ) ([[M ′]]′µ′)
(and the same for the bodies of inc, which is easy). This
boils down to proving that for confined and related µ, µ′,
h, h′, and η, η′, we have R Heap h0 h

′
0 where h0 (resp. h′0)

is the heap returned by [[S]]µηh (resp. [[S′]]′µ′η′h′). Now we
use the semantics of S and S′; because µ, µ′ are related, the
meanings of P are related, so they yield related outcomes.
(For example, in a state where y has exactly type C, we
use that µC P η0 h is related to µ′ C P η′0 h

′ where η0, η
′
0

are the input environments to the call y.P (this).) In short,
the relation holds after the call y.P , hence the g fields are
even and both S and S′ diverge —so (∗) diverges for both
semantics.

E. NOTES ON THE OBJECT ORIENTED
MEYER-SIEBER EXAMPLE

Preceding Proposition 5.1, mentioned the need for behav-
ioral subclassing. But there is another subtlety in the exam-
ple which shows how our language differs from some ideal-
ized object oriented languages. For languages with instance-
based visibility, encapsulation of private state can be formal-
ized using existential types, and established parametricity
results can be extended with some effort [32]. But Java vis-
ibility is class based. A method can access private fields of
objects other than its target (i.e., this), if they are of the
same class. In the example, class C must be different from
A1, because the latter has no method named P. So in this
example the encapsulation provided by privacy is enough to
justify the argument for equivalence. One could modify the
example to include a suitable method P in class A1. Then
equivalence of the implementations would depend on that
method also preserving the relation. Such a situation can
still be analyzed in a modular way, because the implemen-
tation of A1.P must appear in A1. Consider, however, Java’s
protected fields, which are visible to method declarations
in subclasses. If g is visible in a subclass, the equivalence be-
comes problematic, especially if it is to be dealt with in terms
of an open system, i.e., we do not have a fixed collection of
all the subclasses of A1. The issues raised by protected fields
are beyond the scope of this paper. In practice, the issues
are handled, if at all, by disciplined coding practices along
with specifications and other annotations intended to ensure
behavioral subclassing [37].
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