
State Based Encapsulation for Modular Reasoning
about Behavior-Preserving Refactorings

Anindya Banerjee1 and David A. Naumann2

1 IMDEA Software Institute, Madrid, Spain
2 Stevens Institute of Technology, Hoboken NJ 07030 USA

Abstract. A properly encapsulated data representation can be revised for refac-
toring or other purposes without affecting the correctness of client programs and
extensions of a class. But encapsulation is difficult to achieve in object-oriented
programs owing to heap based structures and reentrant callbacks. This chapter
shows that it is achieved by a discipline using assertions and auxiliary fields to
manage invariants and transferrable ownership. The main result is representation
independence: a rule for modular proof of equivalence of class implementations.

1 Introduction

You are responsible for a library consisting of many Java classes. While fixing a bug
or refactoring some classes, you revise the implementation of a certain class in a way
that is intended not to change its observable behavior, e.g., an internal data structure is
changed for reasons of performance. You are in no position to check, or even be aware
of, the many applications that use the class via its instances or via instances of its sub-
classes if any. In principle, the class could have a full functional specification. It would
then suffice to prove that the new version meets the specification. In practice, full spec-
ifications are rare. Nor is there a well established logic and method for modular reason-
ing about the code of a class in terms of the specifications of the classes it uses, without
regard to their implementations or the users of the class in question —though progress
has been made, as reported in the companion chapters [29,55,60,38]. One problem is
that encapsulation, crucial for modular reasoning about invariants, is difficult to achieve
in programs that involve shared mutable objects and reentrant callbacks which violate
simple layering of abstractions. Yet complicated heap structure and calling patterns are
used, in well designed object-oriented programs, precisely for orderly composition of
abstractions in terms of other abstractions.

There is an alternative to verification with respect to a specification. One can attempt
to prove that the revised version is behaviorally equivalent to the original. Of course
their behavior is not identical, but at the level of abstraction of source code (e.g., modulo
specific memory addresses), it may be possible to show equivalence of behavior. If any
specifications are available they can be taken into account using assert statements.

There is a standard technique for proving equivalence [36,46,27]: Define a coupling
relation to connect the states of the two versions and prove that it has the simulation
property, i.e., it holds initially and is preserved by parallel execution of the two ver-
sions of each method. In most cases, one would want to define a local coupling relation



2

for a single pair of instances of the class, as methods act primarily on a target object
(self) and the island [6], i.e., a group of objects that comprise its internal representation.
An induced coupling for complete states is then obtained by a general construction. A
language with good encapsulation should enjoy a representation independence prop-
erty that says a simulation for the revised class induces a simulation for any program
built using the class. Suitable couplings are the identity except inside the abstraction
boundary and an identity extension lemma says simulation implies behavioral equiv-
alence of two programs that differ only by revision of a class. This means that from
a client’s point of view the behaviors of the two programs are the same. Again, such
reasoning can be invalidated by heap sharing, which violates encapsulation of data, and
by callbacks, which violate hierarchical control structure.

There is a close connection between the equivalence problem and verification: ver-
ification of object oriented code involves object invariants that constrain the internal
state of an instance. Encapsulation involves defining the invariant in a way that protects
it from outside interference so it holds globally provided it is preserved by the methods
of the class of interest. Simulations are like invariants over two copies of the state space,
and again modular reasoning requires that the coupling for a class be independent from
outside interference. The main contribution of this chapter is a representation inde-
pendence theorem using a state-based discipline for heap encapsulation and control of
callbacks.

Extant theories of data abstraction assume, in one way or another, a hierarchy of
abstractions such that control does not reenter an encapsulation boundary while already
executing inside it. It is commonplace in object oriented programs for a method m
acting on some object o to invoke a method on some other object which in turn leads
to invocation of some method on o —possibly m itself— while the initial invocation
of m is in progress. This makes it difficult to reason about when an object’s invariant
holds [38,47]; we give an example later.

There is an analogous problem for reasoning with simulations. The first work on
representation independence for programs with shared objects [6] provides an abstrac-
tion theorem that deals with sharing and is sound for programs with reentrant callbacks
—but it is not easy to apply in cases where reentrant callbacks are possible. The theo-
rem allows the programmer to assume that all methods preserve the coupling relation
when proving simulation, i.e., when reasoning about parallel execution of two versions
of a method of the class of interest. This assumption is like verifying a procedure imple-
mentation under the assumption that called procedures are correct. But the assumption
that called methods preserve the coupling is of no use if the call is made in an uncoupled
intermediate state. For the examples in [6], we resort to ad hoc reasoning for examples
involving callbacks.

In the “Boogie methodology” [11,43], reentrancy is managed using an explicit aux-
iliary (or ghost) field inv to designate states in which an object invariant is to hold. The
ghost field is extra instrumentation added to a program for reasoning purposes but does
not influence data flow or control flow in the original program in any manner; thus the
behavior of the annotated program is the same as that of the original program. Encap-
sulation is achieved using a notion of ownership represented by an auxiliary mutable
field own. This is more flexible than type-based static analyses because the ownership



3

invariant need only hold in certain flagged states. Heap encapsulation is achieved not
by disallowing boundary-crossing pointers but by limiting, in a state-dependent way,
their use. Reasoning hinges on a global program invariant that holds in all states, using
inv fields to track which object invariants are temporarily not in force because control
is within their encapsulation boundary. When inv holds, the object is said to be packed;
a field may only be updated when the object is unpacked.

In this chapter we adapt the inv/own discipline to proving class equivalence by sim-
ulation. The inv fields make it possible for an induced coupling relation to hold at some
pairs of intermediate states during parallel execution of two alternative implementa-
tions. This means that the relation-preservation hypothesis of the abstraction theorem
can be used at intermediate states even when the local coupling is not in force. So per-
method modular reasoning is fully achieved. In large part the discipline is unchanged,
as one would hope in keeping with the idea that a coupling is just an invariant over
two parallel states. But we have to adapt some features in ways that make sense in
terms of informal considerations of information hiding. The discipline imposes no con-
trol on field reads, only writes, but for representation independence we need to control
reads as well. The discipline also allows ownership transfer quite freely, though as we
will discuss later, it is not trivial to design code that correctly performs transfers. For
representation independence, the transfer of previously-encapsulated data to clients (an
unusual form of controlled “rep exposure” [28]) is allowed but must occur only in the
code of the encapsulating class; even then, it poses a difficult technical challenge. The
significance of our adaptations is discussed in Section 8.

A key insight is that, although transferring ownership and packing/unpacking in-
volve only ghost fields that cannot affect program execution, it is useful to consider
them to be observable. It is difficult to reason about two versions of a class, in a mod-
ular way, if they differ in the way objects cross the encapsulation boundary or in the
points at which methods assume the invariant is in force. The requisite similarity can
be expressed using assert statements, so we can develop a theory based on this insight
without the need to require that the class under revision has any specifications.

The main contributions of this chapter are (a) formulation of a notion of instance-
based coupling analogous to invariants in the inv/own discipline; (b) proof of a repre-
sentation independence theorem for a language with inheritance and dynamic dispatch,
recursive methods and callbacks, mutable objects, type casts, and recursive types; and
(c) results on identity extension and use of the theorem to prove program equivalence.
Together these constitute a rule by which the reasoner considers just the methods of
the revised class and concludes that the two versions yield equivalent behavior for any
program context.

The theorem allows ownership transfers that cross encapsulation boundaries: from
client to abstraction [28], between instances of the abstraction, and even from abstrac-
tion to client [54,43,4]. The theorem supports the most important form of modularity:
reasoning about one method implementation (or rather, one corresponding pair) at a
time —on the assumption that all methods preserve the coupling (even the one in ques-
tion, modulo termination). The theorem also supports local reasoning in the sense that
a single instance (or pair of instances) is considered, together with the island comprised
of its currently encapsulated representation objects.



4

The inv/own discipline can be used in any verification system that supports ghost
variables and assertions in first order logic. Our formalism treats predicates in asser-
tions semantically, avoiding ties to any particular logic or specification formalism. The
original discipline is a core feature of the Spec# program verifier1 for sequential C#
programs [12] and our adaptations would not be difficult to implement. The original
discipline has been adapted to concurrency and implemented as the core discipline for
the VCC program verifier for multithreaded C programs [24].

This chapter is a revised version of the paper originally appearing in European Con-
ference on Object-Oriented Programming [7]. Subsequent to the work reported in that
paper, there have been further studies of representation independence using state-based
notions of encapsulation. As discussed under related work (Section 7), these works in-
clude both foundational analyses and treatment of advanced language features (type
polymorphism and higher order heaps —but so far not inheritance and nominal subtyp-
ing as in Java-like languages). Our work remains relevant not only for its conceptual
perspective but also because it applies to a programming discipline for which there is
tool support and which has been applied to substantial practical examples.

Outline. Sect. 2 sketches the inv/own discipline. It also sketches an example of the
use of simulation to prove equivalence of two versions of a class involving reentrant
callbacks, highlighting the problems and the connection between our solution and the
inv/own discipline. Sect. 3 formalizes the language for which our result is given and
Sect. 4 formalizes the discipline in our semantics. Sect. 5 gives the main definitions—
proper annotation, coupling, simulation—and the abstraction theorem. Sect. 6 connects
simulation with program equivalence. Sect. 7 discusses related work. Sect. 8 discusses
future work and assesses our adaptation of the discipline.

2 Background and overview

2.1 The inv/own discipline

To illustrate the challenge of reentrant callbacks as well as the state based ownership
discipline, we consider a class Queue that maintains a queue of tasks. Each task has an
associated limit on the number of times it can be run. Method Queue.runAll runs each
task that has not exceeded its limit. For simplicity we refrain from using interfaces;
class Task in Fig. 1 serves as the interface for tasks. Class Qnode in the same figure is
used by Queue which maintains a singly linked list of nodes that reference tasks. Field
count tracks the number of times the task has been run.

In our illustrative language, all methods are dynamically dispatched and have public
visibility; values of class type are references to mutable objects. For brevity we omit
initialization and constructors throughout the examples. For reference to fields of self,
we write f to abbreviate self. f , including the special fields inv, com, and own.

Fig. 2 gives class Queue; the annotations, in gray, will be discussed later. One in-
tended invariant of Queue is that no task has been run more times than its limit. This

1 Available at http://specsharp.codeplex.com/

http://specsharp.codeplex.com/


5

class Task { void run(){ } }
class Qnode {

Task tsk; Qnode nxt; int count, limit;
invariant tsk 6= null ∧ 0≤count≤limit;
... // constructor elided (in subsequent figures these ellipses are elided too)
void run() { tsk.run(); count := count+1; }
void setTsk(Task t, int lim) {

unpack self from Qnode;

tsk := t; limit := lim; count := 0; pack self as Qnode; } }
... // other methods getNxt, getCount, getLimit, omitted

Fig. 1. Classes Task and Qnode. The unpack/pack statements are discussed later.

is expressed, in a decentralized way, by the invariant declared in Qnode. Some nota-
tion: we write I Qnode(o) for the predicate o.tsk 6=null and o.count≤o.limit. That is, the
declared invariant is considered to be a predicate parameterized on self.

Another intended invariant of Queue is that runs is the sum of the count fields of the
nodes reached from tsks. This is the declared I Queue of Fig. 2. (The reader may think
of other useful invariants, e.g., that the list is null-terminated.) Note that at intermediate
points in the body of Queue.runAll, I Queue does not hold because runs is only updated
after the loop. In particular, I Queue does not hold at the point where p.run() is invoked.

For an example reentrant callback, consider tasks of the following type.

class RTask extends Task { Queue q; . . .
void run(){ q.runAll(); } }

Consider a state in which o points to an instance of Queue and the first node in the list,
o.tsks of type RTask, has count=0 and limit=1. Moreover, suppose field q of the first
node’s task has value o. That is, o.tsks.q = o. Invocation of o.runAll diverges: before
count is incremented to reflect the first invocation, the task makes a reentrant call on
o.runAll —in a state where I Queue does not hold. In fact runAll again invokes run on
the first task and the program fails due to nonterminating recursion.

As another example, suppose RTask.run is instead void run(){q.getRuns();} .
This seems harmless, in that the implementation of getRuns neither depends on I Queue

nor invokes any methods. Indeed this code is useful, returning a lower bound on the
actual sum of runs. It typifies methods like state readers in the observer pattern, that are
intended to be invoked as reentrant callbacks.

The examples illustrate that it is sometimes but not always desirable to allow a
reentrant callback when an object’s invariant is violated temporarily by an “outer” in-
vocation. The ubiquity of method calls makes it impractical to require an object’s in-
variant to be reestablished before making any call —e.g., the point between n.setTsk
and n.setNxt of method add in Fig. 2— although this is sound and has been proposed
in the literature on object oriented verification [35,45]. A better solution is to prevent
just the undesirable reentrant calls.

One could make the invariant an explicit precondition, e.g., for runAll but not getRuns.
This puts responsibility on the caller, e.g., RTask.run cannot establish the precondition



6

class Queue {
Qnode tsks;
int runs := 0;
invariant runs = (Σ p ∈ tsks.nxt∗ | p.count);

int getRuns() { result := runs; }
void runAll() {

assert inv = Queue && ! com ;

unpack self from Queue ;

Qnode p := tsks; int i := 0;
while p 6= null do {

if p.getCount() < p.getLimit() then p.run(); i := i+1; fi;
p := p.getNxt(); }

runs := runs + i;

pack self as Queue; }
void add(Task t, int lim){

assert inv = Queue && ! com;

unpack self from Queue;

Qnode n := new Qnode; setown n to (self,Queue);

n.setNxt(tsks); n.setTsk(t,lim); tsks := n;

pack self as Queue; } }

Fig. 2. Class Queue, with selected annotations. The assertions here serve as precondi-
tions, as we refrain from formalizing method contracts.

and is thus prevented from invoking runAll. But an object invariant like I Queue involves
encapsulated state not suitable to be visible in a public specification.

The solution of the inv/own discipline [11,43] is to introduce a public ghost field,
inv, that serves as a flag to explicitly indicate whether the invariant is in force2 when
o.inv holds we say object o is packed. Special statements pack and unpack set and
unset inv.

A given object is an instance not only of its class but of all its superclasses, each of
which may have invariants. The methodology takes this into account as follows. Instead
of inv being a boolean, as in the simplified explanation above, it ranges over class names
C such that C is a superclass of the object’s allocated type. That is, it is an invariant
(enforced by typing rules) that o.inv ≥ type o, where type o is the dynamic type of o.
Roughly, unpacking in a method of class C sets inv to superC. The discipline requires
certain assertions preceding pack and unpack statements, as well as field updates, to
ensure that the following is a program invariant (i.e., it holds in all reachable states, in
the sense of small-step semantics).

o.inv≤C⇒ I C(o) (1)

2 Without exposing the actual invariant. This resembles abstract predicates [55]. Our condi-
tion (1) is akin to the association between an abstract predicate and its definition in their work.



7

for all C and all allocated objects o. That is, if o is packed at least to class C then the
invariant I C for C holds. Perhaps the most important stipulated assertion is that I C(o)
is required as precondition for packing o to level C.

Fig. 2 shows how the discipline is used for class Queue. Assertions impose precon-
ditions on runAll and add which require that the target object is packed to Queue. In
runAll, the unpack statement sets inv to the superclass of Queue, putting the task in
a position where it cannot establish the precondition for a reentrant call to runAll, al-
though it can still call getRuns which imposes no precondition on inv. After the update
to runs, I Queue holds again as required by the precondition (not shown) of pack. The
ghost field com is discussed below.

In order to maintain (1) as a program invariant, it is necessary to control updates
to fields on which invariants depend. The idea is that, to update field f of some object
p, all objects o whose invariant depends on p. f must be unpacked. Put differently,
I (o) should depend only on state encapsulated for o. The discipline uses a form of
ownership for this purpose: I (o) may depend only on objects transitively owned by o.
For example, an instance of Queue owns the Qnodes reached from field tsks.

Ownership is embodied in an auxiliary field own, so that if p.own = (o,C) then o
directly owns p and an admissible invariant I D(o) may depend on p for types D with
type o ≤ D ≤ C. Typically, o has a field, declared or inherited in C, that points to or
reaches p, by way of which there is a dependency.

The objects transitively owned by o are called its island. For modular reasoning,
it is not feasible to require as an explicit precondition for each field update that all
transitive owners are unpacked. A third ghost field, com, is used to enforce a protocol
whereby packing/unpacking is dynamically nested or bracketed. They need not be lex-
ically nested, but typically that would be the case, for which purpose Spec# and VCC
provide an ’expose block’.

In addition to (1), two additional conditions are imposed as program invariants,
i.e., to hold in all reachable states of all objects. The first may be read “an object is
committed to its owner if its owner is packed”. The second says that a committed object
is fully packed. These make it possible for an assignment to p. f to be subject only to
the precondition p.inv > C where C is the class that declares f —because owing to
the additional invariants the condition p.inv >C implies that all dependents of p. f are
unpacked.

The invariants are formalized in Def. 4 in Sect. 4. The stipulated preconditions ap-
pear in Table 1, which also describes the semantics of the pack and unpack statements
in detail.3 The diligent reader may enjoy completing the annotation of Fig. 2 according
to the rules of Table 1. Consult [11,43] for more leisurely introductions to the discipline.

2.2 Representation independence

At this point the reader may expect an alternate implementation of class Queue, per-
haps using an array or doubly linked list of nodes. But recall that an invariant for a

3 Preconditions like e 6= null and “e not error” are needed for the rest of the precondition to be
meaningful. Different verification systems make different choices in handling errors in asser-
tions. Our formulation follows [51] and differs superficially from [11,43].



8

assert x.inv >C; /* where C is the class that declares f ; i.e., f ∈ dom(dfieldsC) */
x. f := y

assert e.inv = superC ∧ I C(e) ∧ (∀p | p.own = (e,C)⇒ ¬p.com ∧ p.inv = type p);
pack e as C /* sets e.inv :=C and sets p.com := true for all p with p.own = (e,C) */

assert e.inv =C ∧ ¬e.com;
unpack e from C /* sets e.inv := superC and p.com := f alse for all p with p.own = (e,C) */

assert x.inv = Object ∧ (e2 = null∨ e2.inv >C);
setown x to (e2,C) /* sets x.own := (e2,C) */

Table 1. Stipulated preconditions of field update and of the special commands. For
brevity we leave implicit certain non-nullity conjuncts needed so the field references
make sense: x 6= null and e 6= null above, but not for e2.

class C may depend on objects owned either at C or at some superclass of C. We aim
to generalize from invariants to coupling relations, and in treating them precisely we
distinguish between objects owned at C and objects owned at some superclass. For the
sake of an example, we consider a somewhat contrived subclass of Queue, with two
alternate implementations.

The basic setup. Consider the subclass AQueue of Queue declared in Fig. 3. It main-
tains an array, actsks, of tasks which is used in an overriding declaration of runAll
intended as an optimization for the situation where many tasks are inactive (i.e., have
reached their limit).

Method add exhibits a typical pattern: unpack to establish the condition in which
a super call can be made (since the superclass unpacks from its own level); after that
call, reestablish the current class invariant. In some sense, this pattern is necessary in
order to match the expectations of a caller —that the object is packed to its type— with
assumptions of a method implementation in some class —that the object is packed to
that class. It is implemented in Spec# by re-verifying inherited code, and explained in
the original paper [11] by translating inheritance into ’stub’ methods consisting either
of a super call or the unpack/super/pack pattern. We return to this topic in Sect. 6.

The implementation of Fig. 3 does not set actsks[i] to null immediately when the
task’s count reaches its limit; rather, that situation is detected on the subsequent invoca-
tion of runAll. An alternative implementation is given in Fig. 4; it uses a different data
structure and handles the limit being reached as soon as it happens. Both implementa-
tions maintain an array of Qnode, but in the alternative implementation, its array artsk
is accompanied by a boolean array brtsk. Instead of setting entry i null when the node’s
task has reached its limit, brtsk[i] is set false.

We claim that the two versions are equivalent, in the context of arbitrary client
programs and subclasses. We would like to argue as follows. Let f ilt1(o.actsks) be the
sequence of non-null elements of o.actsks with count< limit. Let f ilt2(ts,bs) take an



9

class AQueue extends Queue {
private Qnode[ ] actsks;
private int alen;
void add(Task t, int lim) {

assert inv = AQueue && ! com;

unpack self from AQueue;

super.add(t,lim); actsks[alen] := tsks; alen := alen+1;

pack self as AQueue; }
void runAll() {

assert inv = AQueue && ! com;

unpack self from AQueue;

int i := alen - 1;
while i ≥ 0 do {

Qnode qn := actsks[i];
if qn 6= null then if qn.getCount() < qn.getLimit()

then qn.run();

unpack self from Queue; runs++; pack self as Queue;

else actsks[i] := null; fi; fi;
i := i - 1; }

pack self as AQueue; } }

Fig. 3. First version of Class AQueue. An invariant: actsks[0..alen-1] contains any n in
tsks with n.count< n.limit, in reverse order. (There may also be nulls and some n with
n.count = n.limit). The elided constructor allocates actsks and we ignore the issue of
the array becoming full.

array ts of tasks and a same-length array bs of booleans and return the subsequence
of those tasks n in ts where bs is true and n.count < n.limit. Consider the following
relation that connects a state for an instance o of the original implementation (Fig. 3)
with an instance o′ for the alternative: f ilt1(o.actsks) = f ilt2(o′.artsk,o′.brtsk). The
idea is that methods of the new version behave the same as the old version, modulo
this change of representation. That is, for each method of AQueue, parallel execution
of the two versions from a related pair of states results in a related pair of outcomes.
(For this to hold we need to conjoin to the relation the invariants associated with the
two versions, e.g., the second version requires artsk.length=brtsk.length.) In brief: the
coupling relation is preserved.

Coupling relations. In general, a local coupling is a binary relation on islands. It relates
the state of an island for one implementation of the class of interest with an island for
the alternative.

Fig. 5 depicts local coupling involving two instances of AQueue. The left side of
the figure is an instance of some subclass of AQueue, sliced into the fields of Queue,
AQueue, and subclasses; dashed lines show the objects encapsulated at the two levels
relevant to reasoning about AQueue —namely the Qnodes reached from tsks and the
array actsks. On the right is an instance for the alternate implementation of AQueue. It



10

class AQueue extends Queue {
private Qnode[ ] artsk;
private boolean[ ] brtsk;
private int len;
void add(Task t, int lim) {

assert inv = AQueue && ! com;

unpack self from AQueue;

super.add(t,lim); artsk[len] := tsks; brtsk[len] := true; len := len+1;

pack self as AQueue; }
void runAll() {

assert inv = AQueue && ! com;

unpack self from AQueue;

int i := len - 1;
while i ≥ 0 do {

if brtsk[i] then
Qnode n := artsk[i];
int diff := n.limit - n.count;
if diff 6= 0 then n.run();

unpack self from Queue; runs++; pack self as Queue; fi;

if diff = 1 then brtks[i] := false; fi; fi;
i := i - 1; }

pack self as AQueue; } }

Fig. 4. Alternative implementation of AQueue.

is the connection between these two islands that is of interest to the programmer. The
‘a’. . . ‘d’ of the figure indicate that both versions reference the same sequence of tasks,
although those tasks are not part of the islands.

A local coupling lifts to an induced coupling relation on the complete program
state: Two heaps are related by the induced coupling provided that (a) they can be par-
titioned into islands and (b) the islands can be put into correspondence so that each
corresponding pair is related by the local coupling. Moreover, the remaining objects
(not in an island) are related by equality. More precisely, equality modulo a bijection on
locations, to take into account differences in allocation between the two versions. For
example, ‘a’. . . ‘d’ on each side of the figure might well be different references, because
the two runs might allocate different references, due to different allocation by the two
implementations of AQueue. But the difference will be unobservable, because the pro-
gramming language does not allow comparison of references except for equality with
other references. The details of lifting a coupling are not obvious and are formalized
later.

Abstraction theorem. The goal is to show that the two versions of AQueue are equiva-
lent, when used by an arbitrary client. Because the induced coupling is a kind of identity
relation —on the client-visible part of the state— the two versions of a complete pro-
gram have equivalent behavior provided that they preserve the induced coupling. The



11

AQueue

subclasses...

Queue

AQueue

subclasses...

Queue

a d a d

T T

b bc c

X
F T

Fig. 5. Depiction of local coupling. This involves two instances of AQueue. Each is
depicted as being sliced into the fields declared in class Queue, the fields declared in
class AQueue, and those declared in subclasses there are down to the dynamic type of
the instance.

abstraction theorem says that for a complete program to preserve the induced coupling,
it is sufficient that the induced coupling is preserved by methods of AQueue —provided
there is sufficient encapsulation, specifically an adaptation of the inv/own discipline.

At first glance one might expect the proof obligation to be that each method of
AQueue preserves the local coupling, and indeed this will be the focus of reasoning in
practice. But in general a method may act on more than just the island for self, e.g., by
invoking methods on client objects or on other instances of AQueue. As a simple exam-
ple, consider the version of RTask.run that calls q.getRuns(), and an execution where
o.tsks.q6=o. So in general the proof obligation is formalized in terms of the induced
coupling.4

In fact the proof obligation is not simply that each corresponding pair of method
implementations preserves the coupling, but rather that they preserve the coupling un-
der the assumption that any method they invoke preserves the coupling.5 There is also
a proof obligation for initialization but it is straightforward so we do not discuss it in
connection with the examples.

For example, in the case of method runAll, one must prove that the implementations
given in Fig. 3 and in Fig. 4 preserve the coupling on the assumption that the invoked
methods getCount, getLimit, Qnode.run, etc. preserve the coupling. The assumption is
not so important for getCount or getLimit. For one thing, it is possible to fully describe
their simple behavior. For another, the alternative implementation of runAll does not
even invoke these methods but rather accesses the fields directly.

The assumption about Qnode.run is crucial, however. Because run invokes, in turn,
Task.run, essentially nothing is known about its behavior. For this reason both imple-
mentations of runAll invoke run on the same tasks in the same order; otherwise, it is
hard to imagine how equivalence of the implementations could be verified in a modu-

4 It also provides a technical simplification: we do not need to formulate a semantics of programs
acting on heap fragments.

5 The reason this is sound is similar to the justification for proof rules for recursive procedures: it
is essentially the induction step for a proof by induction on the maximum depth of the method
call stack.



12

lar way, i.e., reasoning only about class AQueue. But here we encounter the problem
with simulation based reasoning that is analogous to the problem with invariants and
reentrant callbacks. There is no reason for the coupling to hold at intermediate points of
the methods of AQueue. If a method is invoked at such a point, the assumption that the
called method preserves the coupling is of no use —just as the assumption of invariant-
preservation is of no use if a method is invoked in a state where the invariant does not
hold.

The inv/own discipline solves the invariant problem for an object o by replacing
the declared invariant I (o) with an implication —see (1)— that is true in all states. As
with invariants, so too with couplings: It does not make sense to ask a coupling to hold
in every state, because two different implementations with nontrivial differences do not
have lockstep correspondence of states. (For example, imagine that in the alternative
version, the arrays are compressed every 100th invocation of runAll.) Our generalization
of the inv/own idea is that the local coupling relation for a particular (pair of) island(s) is
conditioned on an inv field so that the local coupling may hold in some pairs of states at
intermediate points —in particular, at method calls that can lead to reentrant callbacks.

Proving the example. Consider corresponding instances o,o′ of the two versions of
AQueue. The local coupling serves to describe the corresponding pair of islands when
o and o′ are packed. So the induced coupling relation on all program states requires cor-
responding pairs of islands to satisfy the local coupling just when they are packed and
the client visible states to be related by identity (modulo allocation behavior). Because
inv is part of the behavior observable at the level of reasoning, we can assume both ver-
sions follow the same pattern of packing (though not necessarily of control structure)
and thus include o.inv = o′.inv as a conjunct of the induced coupling.

Consider the two implementations of runAll. To a first approximation, what matters
is that each updates some internal state and then both reach a point where run is invoked.
At that point, the local coupling does not hold —but the induced coupling relation on
all states can and does hold, because the island is unpacked. In more detail it holds
outside the island because the relation is the “identity” on client-visible states; note that
unpacking the island does not preclude side effects outside it: however, the side effects
must be the same for both versions. That the induced coupling holds for the island itself
parallels the way I C(o) can be false while o.inv ≤ C ⇒ I C(o) remains true, recall
(1). So we can use the assumption about called methods to conclude that the coupling
holds after the corresponding calls to run.

The hardest part of the proof for runAll is at the point where the two implementa-
tions pack self to AQueue. Just as both implementations invoke run (and on the same
queue nodes), both need to pack in order to preserve the coupling. And at this point
we have to argue that the local coupling is reestablished. To do so, we need to know
the state of the internal structures that have been modified. We would like to argue that
the only modifications are only those explicit in the code of runAll, but what about the
effect of run? Owing to the preconditions on add and runAll, i.e., the requirement that
Queue is packed, the only possible reentrant callbacks are to getRuns and this does no
updates. (In other examples, modifies specifications would be needed at this point for
modular reasoning.)



13

This concludes the informal sketch of how our abstraction theorem handles reen-
trant callbacks and encapsulation using the inv/own discipline. A more formal way of
establishing the relation o.inv = o′.inv between two implementations of runAll would
involve reasoning in a relational program logic. The development of such a logic is a
topic of active research [1,63] —no such widely accepted logic exists.

To justify reasoning along the lines sketched above, several features of the discipline
need to be adapted —in ways which also make sense in terms of informal considerations
of information hiding. The additional restrictions are formalized in Section 5 and their
significance discussed in Section 8. As a preview we make the following remarks, using
“Abs” as the generic name for a class for which two versions are considered.

Adapting the discipline for representation independence. We first describe the adap-
tations needed by field access, pack and hierarchical ownership. We then discuss the
adaptations for ownership transfer. The adaptations are summarized in Table 2.

The discipline does not constrain field access, as reading cannot falsify an invariant
predicate. However, for information hiding one expects visibility —and alias confine-
ment —to prevent reading as well as writing encapsulated state. Information hiding is
exactly what is formalized by representation independence and indeed the abstraction
theorem fails if a client can read fields of encapsulated objects. For the fields of the
class being revised, we can rely on scope, as indicated by the ’private’ modifier on the
fields of class AQueue. For representation objects, we augment the discipline by mak-
ing every field access y. f subject to a precondition: If y is transitively owned by some
instance o of the class, Abs, under revision, then either the field access occurs in code
of Abs or else self is transitively owned by o.

Another problematic feature is that “pack e as C” can occur in any class, so long as
its preconditions are established. This means that, unlike traditional theories, an invari-
ant is not simply established at initialization. In our theory the local coupling must be
established preceding each “pack e as Abs”. We aim for reasoning that is modular in
the sense that the proof obligations are only for the two implementations of Abs, so we
insist that pack e as Abs occurs only in code of Abs.

Although the discipline supports hierarchical ownership, our technical treatment
benefits from heap partitioning ideas from separation logic (we highlight the connec-
tions where possible, e.g., in Proposition 9). To this end, it is convenient to prevent an
instance of Abs from transitively owning another instance of Abs.6 As a result, their
islands are not nested. This can be achieved by a simple syntactic restriction. It does
not preclude that, say, class AQueue can hold tasks that own AQueue objects, because
an instance of AQueue owns its representation objects (the Qnodes), not the tasks they
contain. Nor does it preclude hierarchical ownership, in general; e.g., Abs could own a
hashtable that in turn owns some arrays. See Sect. 8 for futher discussion on this design
decision.

Ownership transfer. Finally, consider ownership transfer across the encapsulation bound-
ary. The case of transfer from client into the encapsulated abstraction is common in
practice; for example, the main routine of a compiler could construct an input stream,

6 A technical benefit is that the induced coupling does not need to be defined recursively.



14

assert x.inv = Object ∧ (e2 = null∨ e2.inv >C)
/* Include the following conjunct, in contexts where the static type of self is not Abs. */
∧ ((∃o | o�Abs x)⇒ C = Abs∨ (∃o | o�Abs e2));

setown x to (e2,C)

/* Use the following in contexts where the static type of self is not Abs. */
assert y 6= null∧ (∀o | o�Abs y⇒ o�Abs self);
x:= y. f

Table 2. Augmented preconditions for adapting the inv/own discipline for representa-
tion independence. Compare with Table 1 and see Def. 15. The preconditions for field
update, pack, and unpack are unchanged from Table 1. For clarity we omit the obvious
precondition x 6= null. An additional change is that pack e as Abs is disallowed outside
class Abs.

then hand ownership to the lexer [11]. Our example can easily be adapted to such a
scenario, by making the add method take ownership of its Task argument. Transfers in
and out of an abstraction occur in case the abstraction is some sort of resource manager;
such examples have been considered in [54,4]. In a setting like ours where there may
be many instances of the abstraction, transfers may also occur between instances; in [6]
we consider the example of queues that transfer owned tasks, as might be done for load
balancing. We observe in [6] that the confinement invariant used there does not depend
on the ownership relation being fixed. But the formalization there does not allow own-
ership transfer, basically because ownership confinement is formalized as a structural
property of the heap rather than being explicitly encoded in the program state.

Technically, the most challenging case is where a hitherto-encapsulated object is re-
leased to a client, e.g., when a resource manager constructs fresh instances of a resource
and later transfers ownership to a client. This can be seen as a deliberate exposure of
representation and thus is observable behavior that must be retained in a revised ver-
sion of the abstraction. Yet encapsulated data of the two versions can be in general
quite different. To support modular reasoning about the two versions, it appears essen-
tial to restrict outward transfer of objects encapsulated for Abs to occur only in code
of Abs. Given that restriction, it is part of the proof obligation for simulation that such
transfers preserve coupling. That is, although in general encapsulated representations
can be quite different between versions, any part of the representation that is transfered
outward must be observably equivalent in the two versions, at the time of transfer.

We consider in detail an example that involves transfer of owned objects between
instances of our example abstraction; see Fig. 6. In accord with the discipline [11,43],
method xferFirst needs to be overridden in AQueue, with the unpack/pack forcing a
check that the invariant of AQueue is maintained; in this case, additional code is needed
to maintain the invariant. That additional code would be different for the two versions of
AQueue, and the pack statements trigger an obligation to show that the local coupling
is preserved for both queues.



15

/* In Queue */
void xferFirst(Queue q) {

assert tsks 6= null ∧ . . .

unpack self from Queue; unpack q from Queue;

Qnode t := tsks;

unpack t from Qnode;

tsks := tsks.nxt; t.nxt := q.tsks; q.tsks := t;
setown t to (q,Queue);

pack t as Qnode; pack q as Queue; pack self as Queue; }

/* In AQueue */
void xferFirst(Queue q) {

assert tsks 6= null ∧ q is AQueue ∧ . . .

unpack self from AQueue; unpack q from AQueue;

super();
update the arrays to maintain invariants of AQueue;

pack q as AQueue; pack self as AQueue;

Fig. 6. Possible addition to class Queue in which ownership of self’s first task is trans-
ferred to another queue. Possible corresponding addition to class AQueue.

In this example, the transfer itself is in the superclass of Abs; indeed, the transferred
node is owned at Queue. One can also imagine a variation that transfers all of the
nodes from one queue to another, the latter having no tasks initially. In this variation,
the overrides in the two versions of AQueue could also transfer the arrays owned at
AQueue.

Finally, consider a variation where it is code in Queue that transfers the arrays.
This would be rather strange. Indeed, we are assuming the fields of AQueue are not
accessed in Queue. But it would be possible for some code in AQueue to “leak” the
arrays, for example by assigning to a field of Queue. Our adaptation of the discipline
restricts scenarios like this: transfer of an object p owned at Abs, in code outside Abs,
is only allowed if afterwards p is still owned at Abs. The restriction is in the form of
an added precondition for setown, see Table 2. The precondition would hold in the
variation under discussion. But it would be falsified if the code in Queue transferred
ownership of the arrays to a client, or to no owner at all.

3 An illustrative language

Following [11,43], we formalize the inv/own discipline in terms of a language in which
fields have public visibility, to illuminate the conditions necessary for sound reason-
ing about invariants and simulations. In practice, private and protected visibility and
perhaps lightweight alias control would serve to automatically check most of the con-
ditions. This section formalizes the language, adapting notations and typing rules from
Featherweight Java [37] and imperative features and the special commands from our



16

C ∈ ClassName m ∈MethName f ∈ FieldName x ∈ VarName
T ::= bool | void |C data type
M ::= T m(T̄ x̄) {S} method declaration
S ::= x:= e | x. f := y assign to local var. or param., update field
| x:=new C | x:= e.m(ē) | x:= y. f object creation, method call, field access
| T x:= e in S | S; S | if e then S else S fi local variable, sequence, conditional
| pack e as C | unpack e from C set inv to C, set inv to superC
| setown x to (e,C) set x.own to (e,C)
| assert P assert (semantic predicate P)

e ::= x | null | true | false variable, constant
| e = e | e is C | (C) e ptr. equality, type test, cast

Table 3. Grammar. The distinguished names self and result are in VarName.

previous papers [6,51]. We choose a denotational semantics, because it enables an ele-
gant formulation of simulations and because it was used in the latter papers.

A complete program is given as a class table, CT , that maps class name C to a
declaration CT (C) of the form class C extends D { T̄ f̄ ; M̄ }. The categories T,M are
given by the grammar in Table 3. Barred identifiers like T̄ indicate finite lists, e.g., T̄ f̄
stands for a list f̄ of field names with corresponding types T̄ . In most respects self and
result are like any other variables but self cannot be the target of assignment; the final
value of result serves as the result returned by a method.

Well formed class tables are characterized using typing rules which are expressed
using some auxiliary functions that in turn depend on the class table, allowing classes
to make mutually recursive references to other classes, without restriction. In particular,
this allows recursive methods (so without loss of generality we omit loops). For conve-
nience, we use the some auxiliary functions on syntax. For a class C, fieldsC is defined
as the inherited and declared fields of C; dfieldsC is the fields declared in C; superC is
the direct superclass of C. We assume that a field name f uniquely determines the class,
declClass f , that declares it; so declClass f =C iff there is some T such that ( f : T ) is
in dfieldsC.

We use multi-letter identifiers, so one might read “dfieldsC” as a single identifier
rather than, as intended, the application of a function. We use parentheses when there
seems to be a risk of confusion, while avoiding them in cases where context or typog-
raphy should suffice.

For a method declaration, T m(T̄1 x̄) {S} in class C, the method type mtype(m,C) is
T̄1→T and list of parameter names, pars(m,C), is x̄. For m inherited in C, mtype(m,C)=
mtype(m,D) and pars(m,C) = pars(m,D) where D is the direct superclass of C.

For use in the semantics, xfieldsC extends fieldsC by assigning “types” to the auxil-
iary fields: com : bool, own : owntyp, and inv : (invtypC). Neither invtypC nor owntyp
are types in the programming language but the slight notational abuse is convenient.
These fields are present in every object, as if they were declared in class Object.

A typing context Γ is a finite function from variable names to types, such that self ∈
dom Γ . Selected typing rules for expressions and commands are given in Table 4. A



17

Γ ` e : T T ≤ Γ x

Γ ` x:= e

Γ ` x : D1 Γ ` e2 : D2 D2 ≤C

Γ ` setown x to (e2,C)

Γ ` e : D D≤C

Γ ` pack e as C

Γ ` e : D D≤C

Γ ` unpack e from C

B≤ Γ x x 6= self B 6= Object

Γ ` x:=new B

( f : T ) ∈ fields(Γ x) Γ y≤ T

Γ ` x. f := y

( f : T ) ∈ fields(Γ y) T ≤ Γ x

Γ ` x:= y. f

Γ ` e : D mtype(m,D) = T̄→U x 6= self Γ ` ē : Ū Ū ≤ T̄ U ≤ Γ x

Γ ` x:= e.m(ē)

Table 4. Typing rules for selected commands.

judgement of the form Γ ` e : T says that expression e has type T in the context of a
method of class Γ self, with parameters and local variables declared by Γ . A judgement
Γ ` S says that S is a command in the same context. A class table CT is well formed
if, for each class C, each method declaration M in CT (C) is well formed in C; this is
written C `M and defined by the following rule:

x̄ : T̄ ,self : C, result : T ` S
if mtype(m,superC) is defined then mtype(m,superC) = T̄→T and pars(m,superC) = x̄

C ` T m(T̄ x̄){S}

To formalize assertions, we prefer to avoid both the commitment to a particular
formula language and the complication of an environment for declaring predicate names
to be interpreted in the semantics. So we indulge in a mild abuse of notation: the syntax
of assert uses a semantic predicate. We say Γ ` assert P is well formed provided that
P is a set of program states for context Γ . We return to predicates later.

In the rest of the chapter we assume types and contexts are well formed, and that
typings are derivable, without explicit mention.

Semantics. We assume that a countable set Loc is given, along with a distinguished
value nil not in Loc. We assume given a function type from Loc to non-primitive types
distinct from Object, such that for each C there are infinitely many locations o with
type o = C. This is used in a way that is equivalent to tagging object states with their
type, which is immutable. It serves to slightly streamline some definitions. The syntax
is desugared, in the style of separation logic, so that access and update of mutable fields
occurs only in commands (x := y. f and x. f := y). So field read x := y. f is considered a
primitive command rather than an instance of ordinary assignment and y. f is not a stand



18

θ ::= T | Γ | θ⊥
| owntyp | invtypC | stateC own and inv val., object state
| pre-heap | heap | heap⊗Γ heap fragment, closed heap, state
| (Γ ` T ) | Γ  Γ ′ |menv expression meaning, state transformer, method environment

[[C]] = {nil}∪{o ∈ Loc | typeo≤C}
[[bool]] = {true, false}
[[void]] = {it}
[[invtypC]] = {B |C ≤ B}
[[owntyp]] = {(o,C) | o = nil∨ typeo≤C}
[[θ⊥]] = [[θ ]]∪{⊥}
[[Γ ]] = {s | doms = domΓ ∧ sself 6= nil ∧ ∀x ∈ doms | sx ∈ [[Γ x]]}
[[stateC]] = {s | doms = dom(xfieldsC) ∧ ∀( f : T ) ∈ xfieldsC | s f ∈ [[T ]]}
[[pre-heap]] = {h | dom h⊆fin Loc ∧ ∀o ∈ dom h | h o ∈ [[state(type o)]]}
[[heap]] = {h | h ∈ [[pre-heap]] ∧ ∀s ∈ rng h | rng s∩Loc⊆ dom h}
[[heap⊗Γ ]] = {(h,s) | h ∈ [[heap]] ∧ s ∈ [[Γ ]] ∧ rng s∩Loc⊆ dom h}
[[Γ ` T ]] = {v | v ∈ ([[Γ ]]→ [[T ]]⊥) ∧ ∀s | vs ∈ Loc⇒ vs ∈ rngs}
[[Γ  Γ ′]] = [[heap⊗Γ ]]→ [[(heap⊗Γ ′)⊥]]

[[menv]] = {µ | for all C,m, µCm is defined iff mtype(m,C) is defined,
and if so then µCm ∈ [[self : C, x̄ : T̄  result : T1]]
where pars(m,C) = x̄ and mtype(m,C) = T̄→T1 }

Table 5. Semantic categories θ and domains [[θ ]]. (Readers familiar with nota-
tion for dependent function spaces might prefer to write [[pre-heap]] = (o : Loc 9
[[state(type o)]]) and similarly for [[stateC]] and [[Γ ]].)

alone expression; this choice is not essential but streamlines the formal development.
In our semantics, type test and cast expressions do not depend on the heap.

Some semantic domains correspond directly to the syntax. For example, each data
type T denotes a set [[T ]] of values. The meaning of context Γ is a set [[Γ ]] of stores; a
store s ∈ [[Γ ]] is a type-respecting assignment of locations and primitive values to the
local variables and parameters given by a typing context Γ . The semantics, and later
the coupling relation, is structured in terms of category names θ given in Table 5 which
also defines the semantic domains. Subtyping is embodied in a simple way: if T ≤U
then [[T ]]⊆ [[U ]].

A program state for context Γ is a pair (h,s) where s is in [[Γ ]] and h is a heap, i.e., a
finite partial function from locations to object states. An object state is a type-respecting
mapping of field names to values. A command typable in Γ denotes a function mapping
each program state (h,s) either to a final state (h0,s0) or to the distinguished value ⊥
which represents runtime errors, divergence, and assertion failure. An object state is
a mapping from (extended) field names to values. A pre-heap is like a heap except for
possibly having dangling references. If h,h′ are pre-heaps with disjoint domains then we
write h∗h′ for their union; otherwise h∗h′ is undefined. Function application associates



19

[[Γ ` x:= y. f ]]µ(h,s) = let o = s y in if o = nil then⊥ else (h, [s | x 7→ho. f ])
[[Γ ` x:= e]]µ(h,s) = let v = [[Γ ` e : T ]](s) in (h, [s | x 7→v])
[[Γ ` x. f := y]]µ(h,s) = let o = s x in if o = nil then⊥ else ([h | o. f 7→s y],s)
[[Γ ` x:=new C]]µ(h,s) = let o = fresh(C,h) in

let h0 = [h | o 7→ [xfieldsC 7→ defaultsC]] in (h0, [s | x 7→o])
[[Γ ` x:= e.m(ē)]]µ(h,s) = let o = [[Γ ` e : D]](s) in if o = nil then⊥ else

let v̄ = [[Γ ` ē : Ū ]](s) in let x̄ = pars(m,D) in

let s1 = [x̄ 7→ v̄,self 7→ o] in

let (h1,s2) = µ(typeo)m(h,s1) in (h1, [s | x 7→s2 result])

[[Γ ` assert P]]µ(h,s) = if (h,s) ∈P then (h,s) else⊥
[[Γ ` pack e as C]]µ(h,s) =

let q = [[Γ ` e : D]](s) in if q = nil then⊥ else

let h1 = λ p ∈ dom h | if h p.own = (q,C) then [h p | com 7→ true] else h p in ([h1 | q.inv 7→C], s)
[[Γ ` unpack e from C]]µ(h,s) =

let q = [[Γ ` e : D]](s) in if q = nil then⊥ else

let h1 = λ p ∈ dom h | if h p.own = (q,C) then [h p | com 7→ false] else h p in

([h1 | q.inv 7→superC], s)
[[Γ ` setown x to (e2,C)]]µ(h,s) =

let q = sx in if q = nil then⊥ else

let p = [[Γ ` e2 : D2]](s) in ([h | q.own 7→(p,C)], s)

Table 6. Semantics of selected commands. To streamline the treatment of ⊥, the meta-
language expression “let α = β in . . .” denotes ⊥ if β is ⊥. We use notation [h | o 7→st]
for h extended or overridden at o with value st. For brevity the nested function extension
for field update is written [h | o. f 7→v].

to the left, so ho f is the value of field f of the object ho at location o. We also write
ho. f . Application binds more tightly than binary operator symbols and “,”.

The meaning of a derivable command typing Γ ` S will be defined to be a function
sending each method environment µ to an element of [[Γ  Γ ]]. That is, [[Γ ` S]]µ is a
state transformer [[heap⊗Γ ]]→ [[(heap⊗Γ )⊥]]. For a method m such that pars(m,C) =
x̄ and mtype(m,C) = T̄→U , the meaning µ C m will be a state transformer of type (self :
C, x̄ : T̄ ) (result : T1).

Meanings for expressions and commands are defined, in Table 6, by recursion on
typing derivation. In some of the defining equations, the right side refers to identifiers
in the typing rules. For example, T in the semantics of x:= e is the type of e as per the
first rule in Table 4. The semantic definition for pack e as C refers to D which is the
type of e in the typing rule for pack.

The semantics is defined for an arbitrary location-valued function fresh such that
type(fresh(C,h)) =C and fresh(C,h) 6∈ domh.

Consider a method call Γ ` x:= e.m(ē), where Γ ` e : D. Consider execution of the
call in initial state (h,s) and let o = [[Γ ` e : D]](h,s); so by type soundness type o≤D.



20

The meaning of the method body, used for the semantics of the call, is found in the
method environment µ as µ (type o)m. It is applied to state (h,s1) with argument store
s1 that maps self to o and parameters x̄ to their values v̄. It returns a state (h1,s2) where
s2 result provides the value assigned to x.

The meaning of a well typed method declaration M in class C, of the form M =
T m(T̄ x̄){S} is the total function in [[menv]]→ [[self : C, x̄ : T̄ result : T ]] defined as
follows: Given a method environment µ , a heap h and a store s ∈ [[x̄ : T̄ ,self : C]],

[[M]]µ(h,s) = let s1 = [s | result 7→default T] in
let (h0,s0) = [[Γ ` S]]µ(h,s1) in (h0, [result : s0 result])

(2)

A method environment µ maps each C,m to a meaning obtained in this way or by
inheritance. In more detail, we define for each i an environment µi; this is called the
approximation chain. The basis is µ0 C m is the everywhere-⊥ function, for all C,m. We
define µi+1 C m, for m declared as M in C, to be [[M]]µi. In case m is inherited in C from
B, we define µi+1 C m to be µi+1 Bm.

Note that the ith element in the chain approximates [[CT ]] in a way such that, in
operational terms, it gives the correct semantics for executions with method call stack
bounded in length by i. For well formed class table CT , the semantics [[CT ]] is defined as
the least upper bound of the approximation chain. For full details see [6] or the variation
that was machine checked in PVS [49].

Predicates. A predicate for state type Γ is just a subset P ⊆ [[heap⊗Γ ]]. For em-
phasis we can write (h,s) |= P for (h,s) ∈P . Note that ⊥ /∈P . We give no formal
syntax to denote predicates but rather use informal metalanguage for which the inter-
pretation should be clear. For example, “self. f 6= null” denotes the set of (h,s) with
h(sself). f 6= nil. and “∀o |P(o)” denotes the set of (h,s) such that (h,s) |= P(o) for
all o ∈ dom h. Note that quantification over objects (e.g., in Table 1 and Def. 4) is inter-
preted to mean quantification over allocated locations; the range of quantification can
include unreachable objects but this causes no problems.

To formalize encapsulation we need precise semantic formulations concerning de-
pendence. In terms of formulas, a predicate depends on e. f if it can be falsified by some
update of e. f . Some predicates are falsifiable by creation of new objects; an example is
the predicate ∀o | typeo =C⇒ o = self.

Definition 1 (depends, new-closed) A predicate P depends on o. f in (h,s) iff (h,s)∈
P , o ∈ dom h, and ([h | o. f 7→ v],s) /∈P for some v with [h | o. f 7→ v] ∈ [[heap]]. We
say P depends on o. f iff there is some (h,s) such that P depends on o. f in (h,s). We
say P is new-closed iff (h,s) ∈P implies ([h | o 7→defaults],s) ∈P for all o /∈ domh.

The condition [h | o. f 7→v] ∈ [[heap]] merely ensures that v is not a dangling pointer
or type-incorrect value.

4 The inv/own discipline

The discipline reviewed in Sect. 2.1 is designed to make Equation (1) a program invari-
ant for every object. This is achieved by using additional program invariants that govern



21

ownership. We formalize this as a global predicate, disciplined, defined in three steps.
Then we review prior results on how the discipline is enforced by proper annotation.
Finally, we use ownership to partition the heap, in preparation for Sect. 5.

4.1 Ownership and invariants

The default values for the extended fields are inv = Object, own = (nil,Object), and
com = false. So initially a new object is neither packed nor owned.

Definition 2 (transitive C- and C↑-ownership) For any heap h, the relation o�h
C p on

dom h, read “o owns p at C in h”, holds iff either (o,C) = h p.own or there are q and D
such that (o,C) = hq.own and q�h

D p.
The relation o�h

C↑ p holds iff there is some D with C≤D and o�h
D p. This may be

read “o owns p at or above C in h”.

The relations are transitive in this sense: o�h
C p and p�h

D q implies o�h
C q.

The discipline ensures that if o owns p at C and p is not packed to its type then o is
unpacked at least above C. This is formalized in Corollary 6.

Definition 3 (admissible invariant) A predicate P ⊆ [[heap⊗ (self : C)]] is admissi-
ble as an invariant for C provided that it is new-closed and for every h,s,o, f such that
P depends on o. f in (h,s), field f is neither inv nor com, and one of the following
conditions holds: o = sself and f is in dom(xfieldsC) or sself�h

C↑ o.

For dependence on fields of self, the typing condition, f ∈ dom(xfieldsC), prevents an
invariant for C from depending on fields declared in a subclass of C (which could be
expressed in a formula using a cast) —while allowing dependence on fields declared or
inherited in C. An invariant can depend on any fields of objects owned at C or above.

We refrain from formalizing syntax for declaring invariants. In the subsequent def-
initions, we assume that an admissible invariant I C is given for every class C. We
assume I Ob ject = true.

Definition 4 (disciplined, J ) A heap h is disciplined if h |= J where J is defined
to be the conjunction of the following:

(D1) ∀o,C | o.inv≤C⇒ I C(o)
(D2) ∀o,C, p | o.inv≤C∧ p.own = (o,C)⇒ p.com
(D3) ∀o | o.com⇒ o.inv = type o

A state (h,s) is disciplined if h is.
Method environment µ is disciplined provided that every method preserves J in

the following sense: For any C,m,h,s, if h |= J and µ C m(h,s) = (h0,s0) then h0 |=
J .

In the sequel we refrain from reminding the reader that a hypothesis like µ C m(h,s) =
(h0,s0) implies that µ C m(h,s) 6=⊥.



22

Lemma 5 (transitive ownership) Suppose h is disciplined and o�h
C p. Then

(a) typeo≤C, and
(b) ho.inv≤C implies h p.com = true.

Corollary 6 If h is disciplined, o�h
C p, and h p.inv > type p, then ho.inv >C.

In a small-step semantics one would prove that every reachable state in a prop-
erly annotated program is disciplined. Instead, we will show that every command maps
disciplined initial states to disciplined final states —just like methods in a disciplined
environment. So our notion of program invariant is a predicate P that is preserved by
commands in the sense that

(h,s) |= P and [[Γ ` S]]µ(h,s) = (h0,s0) implies (h0,s0) |= P

and similarly for predicates on the heap alone.

4.2 The discipline

To impose the stipulated preconditions of Table 1 we consider programs with the req-
uisite syntactic structure (similar to formal proof outlines [3]).

Definition 7 (properly annotated) The annotated commands are the subset of the cat-
egory of commands where each pack, unpack, setown, and field update is immediately
preceded by an assert. A properly annotated command is an annotated command such
that each of these assertions implies the precondition stipulated in Table 1. A properly
annotated class table is one such that each method body is properly annotated.

For any class table and family of invariants there exists a proper annotation: just add
assert commands with the stipulated preconditions. For practical interest, of course, one
wants assertions that can collectively be proved correct.

For a properly annotated program, J is a program invariant. This property is shown
in terms of small-step semantics in [11,43]. For our purposes, the initial state of a com-
plete program has an empty heap, which satisfies J because the quantified objects in
(D1–D3) range over allocated objects. So we focus on preservation in the following
formulation.

Proposition 8 If method environment µ is disciplined then any properly annotated
command S preserves J in the sense that for all (h,s), if h |= J and (h0,s0) =
[[Γ ` S]]µ(h,s) then h0 |= J . If CT is a properly annotated class table then the method
environment [[CT ]] is disciplined, as is every method environment in the approximations
of [[CT ]].

The first statement is proved by induction on the structure of S. For the second state-
ment, first we prove we go by induction on approximations of [[CT ]], using the first
statement. Then we show that being disciplined is preserved at the limit, so [[CT ]] is
disciplined. For details see [51]. The corollary is that S preserves J , for any S that
occurs as constituent of a method body in CT (interpreting S in [[CT ]] or in any of the
approximants).



23

4.3 Partitioning the heap

Next we show how ownership is used to partition the objects in the heap in order to
formalize the encapsulation boundary depicted in Sect. 2.2.

Given an object o ∈ domh and class name A with typeo≤ A we can partition h into
pre-heaps Ah (the A-object), Rh (the representation of o for class A), Sh (objects owned
by o at a superclass), and Fh (free from o) determined by the following conditions: Ah
is the singleton [o 7→ ho], Rh is h restricted to the set of p with o�h

A p, Sh is h restricted
to the set of p with o�h

C p for some C > A, and Fh is the rest of h. Note that if o�h
B p

for some proper subclass B < A then p ∈ domFh. A pre-heap of the form Ah∗Rh∗Sh
is called an island. In these terms, dependency of admissible invariants is described in
the following Proposition. As an illustration, here is the island for the left side of the
situation depicted in Fig. 5 in Sect. 2.2:

AQueue

subclasses...

Queue Sh

Rh

Ah

...

X

Proposition 9 (island) Suppose I A is an admissible invariant for A and o∈ domh with
typeo≤A. If h=Fh∗Ah∗Rh∗Sh is the partition defined above then Fh0∗Ah∗Rh∗Sh |=
I C(o) iff h |= I C(o), for all Fh0 such that Fh0 ∗Ah∗Rh∗Sh is a heap.

In order to work with heap partitions it is convenient to have notation to extract the
one object in a singleton heap. We define pick by pick h = o where domh = {o}; it is
undefined if domh is not a singleton.

Prop. 9 considers a single object together with its owned representation; now we
consider all objects of a given class.

Definition 10 (A-decomposition) For any class A and heap h, the A-decomposition of
h is the set Fh,Ah1,Rh1,Sh1 . . . ,Ahk,Rhk,Shk (for some k≥ 0) of pre-heaps, all subsets
of h, determined by the following conditions:

– domAhi contains exactly one object o and typeo≤ A (for all i, 1≤ i≤ k);
– every o ∈ domh with typeo≤ A occurs in domAhi for some i;
– dom Rhi = {p | o�h

A p} where o = pick Ahi (for all i);
– dom Shi = {p | o�h

(super A)↑ p} where o = pick Ahi (for all i);
– domFh = domh\ (∪i | dom(Ahi ∗Rhi ∗Shi))

The conditions determine a unique decomposition. However, the numbering is not
unique. Note that each Rhi and Shi is transitively closed under ownership: if p∈ domRhi
(resp. domShi) and p�h

C q for some C then q ∈ domRhi (resp. q ∈ domShi).
We say that no A-object owns an A-object in h provided for every o, p in domh if

typeo ≤ A and o �h
(typeo)↑ p then type p � A. In this case decomposition partitions the



24

heap into separate islands of the form Ah ∗Rh ∗ Sh. We use the term “partition” even
though some blocks can be empty. Moreover, although it is the domain of the heap that
is partitioned, we also use the term “partition” to refer to the corresponding factorization
of the heap into a union of pre-heaps with disjoint domains.

Lemma 11 (A-partition) Suppose no A-object owns an A-object in h. Then the A-
decomposition is a partition of h, that is, h = Fh∗Ah1 ∗Rh1 ∗Sh1 ∗ . . .∗Ahk ∗Rhk ∗Shk.

We now define the function encap that removes from the heap the objects that are
owned at Abs.

Definition 12 (encap) Suppose no Abs-object owns an Abs-object in h. Define the pre-
heap encapAbsh to be Fh∗Ah1 ∗Sh1 ∗ . . .∗Ahk ∗Shk where the Abs-partition of h is as
in Lemma 11.

Def. 16 in Sect. 5 imposes a syntactic restriction to ensure that no Abs-object owns
an Abs-object, where Abs is the class for which two representations are compared. The
restriction is expressed by means of a static approximation of ownership.

Definition 13 (may own, �∃) Given well formed CT , define �∃ to be the least transi-
tively closed relation such that

(M1) D2 �∃ D1 for every occurrence of setown x to (e2,D) in a method of CT , with
static types x : D1 and e2 : D2

(M2) if C �∃ D, C′ ≤C and D′ ≤ D then C′ �∃ D′

Lemma 14 (a) It is a program invariant that o�h
C p implies typeo�∃ type p.

(b) If A 6�∃ A then it is a program invariant that no A-object owns an A-object.

Proof. Part (b) is a direct consequence of (a). Part (a) is proved by structural induction
on commands and then induction on the approximation chain, as in the proof of Prop. 8.
The only command forms that affect ownership relations are setown and new. Because
new constructs objects with no owner, the only interesting case is setown.

Suppose that some method body in CT contains setown x to (e2,C), with static
types x : D1 and e2 : D2. Suppose (h0,s0) = [[setown x to (e2,C)]](h,s), where the im-
plication holds in (h,s) (for all o, p,C). We show that o�h0

C p implies typeo�∃ type p,
for all o, p,C, by induction on the relation o �h0

C p in accord with Def. 2. (In essence,
induction on the length of ownership chains.)

The base case is h0 p.own = (o,C). If also h p.own = (o,C) then we are done since
the implication holds in (h,s). On the other hand, if h p.own 6= (o,C) then we must have
o = [[e2]](h,s) and p = [[e1]](h,s) since the command only changes the ownership of e1.
Hence by typing we have typeo ≤ D2 and type p ≤ D1. By (M1) in Def. 13 we have
D2 �∃ D1 whence typeo�∃ type p by (M2).

The inductive case is (o,C)= h0 q.own and q�h0
D p for some q,D. We have typeo�∃

typeq and typeq�∃ type p by induction. Hence typeo�∃ type p by the transitivity clause
in Def. 13.



25

5 The abstraction theorem

The Abstraction Theorem generalizes Proposition 8. The Proposition considers a pred-
icate on states and says the predicate is preserved by execution of command. The Theo-
rem considers a relation between states and says it is preserved by a pair of executions.
The Theorem builds on the use of inv and on ownership structure, and thus requires
proper annotation. It does not directly depend on the chosen invariants, so in theory one
may take I C = true for all C.

5.1 Comparing class tables

We compare two implementations of a designated class Abs, in the context of a fixed
but arbitrary collection of other classes, such that both implementations give rise to a
well formed class table. The two versions can have completely different declarations,
so long as methods of the same signatures are present — declared or inherited — in
both. It is mainly to simplify the additional precondition needed for reading fields that
we consider programs desugared into a form like that used in separation logic.

Definition 15 (properly annotated for Abs) The properly annotated commands for
Abs are those that are properly annotated according to Def. 7 and moreover

(A1) fields of Abs have private visibility (i.e., if f ∈ dfieldsAbs then accesses and up-
dates of f only occur in code of class Abs)

(A2) if Γ self 6= Abs then Γ ` pack e as Abs is not allowed
(A3) if Γ self 6= Abs then field access Γ ` x:= y. f is subject to stipulated precondition

y 6= null∧ (∀o | o�Abs y⇒ o�Abs self)
(A4) if Γ self 6= Abs then Γ ` setown x to (e2,C) is subject to an additional precondi-

tion: x 6= null∧ ((∃o | o�Abs x)⇒ C = Abs∨ (∃o | o�Abs e2))

(A1) merely embodies our choice to focus on change of representation for a single
class and its encapsulated representations, and in particular the most common form of
encapsulation, namely, private visibility. For practical purposes, other visibilities are
needed and would be treated in the same manner as fields of other classes.

(A2) is needed in reasoning about simulation for pack e as Abs. This command
reasserts the local coupling and we want to confine the proof obligation of simulation
to code in class Abs as explained in Sect. 2.2.

The effect of (A3) is that a method invocation on some q not of type Abs, but reading
an object p owned by an Abs object o, is only allowed if q is itself owned by o. A client
should not be reading owned objects and a rep should not read objects that do not belong
to its own owner. Perhaps surprisingly, (A3) does not disallow that a method invocation
on one instance of Abs reads objects owned by another instance. The effect of (A4) is
that if x is initially owned at Abs then after a transfer (that occurs in code outside class
Abs) it is still owned at Abs.

Conditions (A3) and (A4) use transitive ownership notation, but without an explicit
superscript. This is informal notation for semantic predicates. For example, “o�Abs e”
means {(h,s) | o �h

Abs e}. The annotations in Table 1 use no inductively defined pred-
icates, which is a distinct advantage for program verifiers like Spec# based on SMT



26

provers. Direct use of transitive ownership in the program invariants (D1–D3) is no
problem: these are part of the theory that justifies the discipline, not part of the veri-
fication conditions for programs. We have formulated (A3) and (A4) using transitive
ownership for the sake of clarity.

Direct use of transitive ownership can be avoided by maintaining additional ghost
state. For example, we can maintain an additional field, owns, of type ClassName→Loc,
with invariant ∀C,o | (o�C self⇔ o∈ self.ownsC). The invariant immediately gives an
alternative way to formulate (A3) and (A4). To maintain the invariant we merely aug-
ment the semantics of setown. For any state (h,s), we define [[setown x to (y,C)]]µ(h,s)
to update owns as follows. Consider the case where initially y 6= null and x.own= (o,B)
with o 6= null. So ownership of x is being transferred from o to y. We want to remove
from o.ownsB all p that is in x.ownsD for any D; and add to y.ownsC the union of
x.ownsD over all D. In the cases where the old or new owner is null, the corresponding
removal/addition is not done.7 This treatment of transitive ownership is straightforward
and would be preferable for practical use, but for clarity of presentation we do not de-
velop it in the sequel.

Definition 16 (comparable class tables) Well formed class tables CT and CT ′ are com-
parable with respect to class name Abs ( 6= Object) provided the following hold.

– CT (C) =CT ′(C) for all C 6= Abs.
– CT (Abs) and CT ′(Abs) have the same direct superclass and declare the same meth-

ods with the same signatures.
– CT and CT ′ are properly annotated for Abs.8

– Abs 6�∃ Abs in both CT and CT ′

The last condition ensures that the Abs-decomposition of any disciplined heap is a par-
tition, by Lemmas 11 and 14. We write `,`′ for the typing relation determined by
CT,CT ′ respectively; similarly we write [[−]], [[−]]′ for the respective semantics.

For properly annotated CT and CT ′, fields declared in Abs have “private scope” (see
(A1)), so the two typing relations coincide except when Γ self is Abs.

In the rest of the chapter we assume CT,CT ′ are comparable.

5.2 Coupling relations

The definitions are organized as follows. A local coupling (Def. 20) is a suitable relation
on islands. This induces a family of coupling relations R β θ (Def. 21), one for each
category name θ and typed bijection β (Def. 17). Each relation R β θ is from [[θ ]] to
[[θ ]]′. Here β is a bijection on locations, used to connect a heap in [[heap]] to one in
[[heap]]′. The idea is that β relates all objects except those in the Rhi or Rh′i blocks that
have never been exposed. Finally, a simulation is a coupling that is preserved by all
methods of Abs and holds initially.

7 This semantics can be written as a bulk update, just like the updates to com in the semantics
of pack/unpack, so the the axiomatic semantics used in a verifier does not need to use sets
explicitly.

8 Together with the requirement CT (C) =CT ′(C) for all C 6= Abs, this implies that the families
of invariants I C given for CT and CT ′ are the same.



27

o∼β o′ in [[C]] ⇔ β oo′∨o = nil = o′

v∼β v′ in [[T ]] ⇔ v = v′ for primitive types T
(o,C)∼β (o′,C′) in [[owntyp]] ⇔ (o = nil = o′)∨ (β oo′∧C =C′)
B∼β B′ in [[invtypC]] ⇔ B = B′

s∼β s′ in [[stateC]] ⇔ ∀( f : T ) ∈ (xfieldsC \ (dfieldsAbs∪dfields′Abs)) |
s f ∼β s′ f

s∼β s′ in [[Γ ]] ⇔ ∀x ∈ domΓ | sx∼β s′ x
h∼β h′ in [[pre-heap]] ⇔ ∀o ∈ domh,o′ ∈ domh′ | β oo′ ⇒ ho∼β h′o′

(h,s)∼β (h′,s′) in [[heap⊗Γ ]] ⇔ h∼β h′∧ s∼β s′

v∼β v′ in [[θ⊥]] ⇔ v =⊥= v′∨ (v 6=⊥ 6= v′∧ v∼β v′ in [[θ ]])

Table 7. Value equivalence for the designated class Abs. The relation for heap is the
same as for pre-heap. For object states, ∼ is independent from the declared fields of
CT (Abs) and CT ′(Abs).

Definition 17 A typed bijection is a bijective relation, β , from Loc to Loc, such that
β oo′ implies typeo = typeo′ for all o,o′. A total bijection on h,h′ is a typed bijection
with domh = domβ and domh′ = rngβ . Finally, β fully partitions h,h′ for Abs if, for
all p with type p≤Abs, if p∈ domh (resp. p∈ domh′) then p∈ domβ (resp. p∈ rngβ ).

Lemma 18 (typed bijection and Abs-partition) Suppose β is a typed bijection with
β ⊆ domh× domh′ and β fully partitions h,h′ for Abs. Suppose no Abs- object owns
an Abs-object in h or h′ (so that Lemma 11 applies). If h,h′ are disciplined and partition
as h = Fh∗ . . .Ah j ∗Rh j ∗Sh j and h′ = Fh′ ∗ . . .Ah′k ∗Rh′k ∗Sh′k then j = k.

A corollary is that, under the conditions of Lemma 18, we may w.l.o.g. assume that
islands in the two heaps are numbered such that β (pick Ahi)(pick Ah′i), for all i.

Definition 19 (equivalence for Abs modulo bijection) For any β we define a relation
∼β for data values, object states, heaps, and stores, in Table 7.

Equivalence hides the private fields of Abs. Later in the identity extension Lemma 31,
it is used in conjunction with the encap function from Def. 12, to hide the objects owned
at Abs.

The most important definition is of local coupling, which is analogous to an admis-
sible object invariant but is formulated, somewhat differently, as a relation on pairs of
pre-heaps. In Def. 3, we take an invariant I C to be a predicate (set of states) and the
program invariant J is based on the conjunction of these predicates for all objects and
types —subject to inv, see Def. 4). By contrast, we define a local coupling L in terms
of pre-heaps. And we are concerned with a single class, Abs, rather than all C. We im-
pose the same dependency condition as in Def. 3, but in terms of pre-heaps of the form
h = Ah∗Rh∗Sh. (Recall Proposition 9.)



28

Definition 20 (local coupling, L ) A local coupling is a function, L , that assigns to
each typed bijection β a binary relation L β on pre-heaps that satisfies the following.
First, L β does not depend on inv or com. Second, β ⊆ β0 implies L β ⊆L β0. Third,
for any β ,h,h′, if L β hh′ then there are locations o,o′ with β oo′ and typeo ≤ Abs
such that the Abs partitions of h,h′ are h = Ah∗Rh∗Sh and h′ = Ah′ ∗Rh′ ∗Sh′ with

– pick Ah = o and pick Ah′ = o′

– o�h
Abs p for all p ∈ dom Rh and o′ �h′

Abs p′ for all p′ ∈ dom Rh′

– o�h
(super Abs)↑ p for all p ∈ dom Sh and o′ �h′

(super Abs)↑ p′ for all p′ ∈ dom Sh′

– If L β depends on o. f then f is in xfieldsAbs

The first three conditions ensure that L relates a single island, for an object of
some subtype of Abs, to a single island for an object of the same type. Although L is
unconstrained for the private fields of CT (Abs) and CT ′(Abs), it may also depend on
fields inherited from a superclass of Abs (but not on subclass fields, nor inv or com). The
induced coupling relation, defined below, imposes the additional constraint that fields
of proper sub- and super-classes of Abs are linked by equivalence modulo β .

The restriction against dependence on inv or com is carried over from the inv/own
discipline. We do not have an example to show it is necessary for representation inde-
pendence. For friendship based invariants it is both useful and sound to allow depen-
dence on inv (see [51]), so this point may merit further investigation.

In applications, L β hh′ would be defined as something like this: h and h′ partition
as islands Ah∗Rh∗Sh and Ah′ ∗Rh′ ∗Sh′ such that Ah∗Rh∗Sh |= I Abs and Ah′ ∗Rh′ ∗
Sh′ |= I ′Abs and some condition links the data structures [36]. The bijection β would
not be explicit but would be induced as a property of the formula language.

For an example, note that the property defined informally in Fig. 5 relates two in-
stances of AQueue together with objects owned at AQueue and representation objects
owned at Queue.

A local coupling L induces a relation on arbitrary heaps by requiring that corre-
sponding islands are related by L . This in turn gives rise to a relation on commands.
Roughly, a pair of commands or methods are related if they send a related pair of initial
states to a related pair of outcomes. Howover, we cannot expect this to hold in case of
methods acting on receiver objects that are owned at Abs. (This exclusion is similar to
a type-based exclusion of “non-Rep classes” in [6].) In order to make this precise, we
define for Γ -states with self in Γ an abbreviation:

nonrep(h,s)⇔ ¬(∃o | o�h
Abs sself)

Definition 21 (coupling relation, R) Given local coupling L , we define for each θ

and β a relation R β θ ⊆ [[θ ]]× [[θ ]]′ by cases on θ .
Case θ is heap: Define R β heap h h′ iff

– h,h′ are disciplined
– β ⊆ domh×domh′

– β fully partitions h,h′ for Abs



29

Moreover, suppose the Abs-partitions are

h = Fh∗Ah1 ∗Rh1 ∗Sh1 . . .Ahk ∗Rhk ∗Shk and
h′ = Fh′ ∗Ah′1 ∗Rh′1 ∗Sh′1 . . .Ah′k ∗Rh′k ∗Sh′k

where, without loss of generality we assume β (pick Ahi)(pick Ah′i) for all i (in accord
with the remark following Lemma 18). Then we require:

(R1) β restricts to a total bijection between dom Fh and dom Fh′ (recall Def. 17);
(R2) Fh∼β Fh′; and
(R3) for all i,

(i) β restricts to a total bijection between dom Shi and dom Sh′i
(ii) (Ahi ∗Shi)∼β (Ah′i ∗Sh′i)
(iii) h(pick Ahi).inv≤ Abs ⇒L β (Ahi ∗Rhi ∗Shi) (Ah′i ∗Rh′i ∗Sh′i)

Case θ is any other category: R β θ is defined as follows:

R β θ α α ′ ⇔ α ∼β α ′ if θ is T , invtypC, owntyp, Γ , or stateC
R β (heap⊗Γ ) (h,s) (h′,s′) ⇔ R β heap h h′∧R β Γ s s′

R β (θ⊥) α α ′ ⇔ (α =⊥= α ′)∨ (α 6=⊥ 6= α ′∧R β θ α α ′)

R β (Γ ` T ) v v′ ⇔ ∀s,s′ |R β Γ s s′ ⇒ R β T⊥ (v(s)) (v′(s′))
R β (Γ  Γ ′) t t ′ ⇔ ∀h,s,h′,s′ |

R β (heap⊗Γ ) (h,s) (h′,s′)∧nonrep(h,s)∧nonrep(h′,s′)
⇒∃β0 ⊇ β |R β0 (heap⊗Γ )⊥ (t(h,s)) (t ′(h′,s′))

R menv µ µ ′ ⇔ ∀C,m,β |R β (self : C, x̄ : T̄  result : T1) (µCm) (µ ′Cm)

where mtype(m,C) = T̄→T and pars(m,C) = x̄

Condition (R3)(iii) is the key connection with the inv/own discipline; compare Eqn. (1).
All remaining items express that the relation is observable equivalence on everything
on which a client can directly depend (see Lemma 31).

Given the other conditions in the definition of R β heap, we have that (Ahi ∗Shi)∼β

(Ah′j ∗Sh′j) is equivalent to the conjunction of Ahi ∼β Ah′j and Shi ∼β Sh′j. And Ahi ∼β

Ah′j means that the two objects o,o′ agree on superclass and subclass fields (but not the
declared fields of Abs); in particular, typeo = typeo′ ≤ Abs and Ahi o.inv = Ah′j o′.inv.

By contrast with the definition of admissible invariant (Def. 3), there is no need
to separately disallow that a coupling is falsifiable by allocation. Owing to the use of
partial heaps, this property follows from the form of the definition, as becomes clear in
the proof of Lemma 29.

The case that θ is Γ  Γ ′ is for state transformers t, t ′ denoted by commands and
method declarations. It says they preserve coupling, while possibly growing the bijec-
tion β , and excluding computations where self is owned by an instance of Abs.

The gist of the abstraction theorem (Theorem 30) is that if methods of Abs are
related by R then all methods are. In terms of the preceding definitions, we can express
quite succinctly the conclusion that all methods are related: R menv [[CT ]] [[CT ′]]′ . We
want the antecedent of the theorem to be that the meaning [[M]] is related to [[M′]]′, for
any m with declaration M in CT (Abs) and M′ in CT ′(Abs). Moreover, [[M]] depends
on a method environment. Thus the antecedent of the theorem is that [[M]]µ is related



30

to [[M′]]′µ ′ for all related µ,µ ′. (It suffices for µ,µ ′ to be in the approximation chains
defining [[CT ]] and [[CT ′]]′.)

The rest of this subsection is devoted to technical results which may be skipped.

Lemma 22 If Ū ≤ T̄ and R β Ū v̄ v̄′ then R β T̄ v̄ v̄′.

Lemma 23 (closure under transitive owners) If Ph ∼β Ph′ and β p p′, and o �Ph
C p

then there is o′ such that β oo′ and o′ �Ph′
C p′.

Proof. By induction on o�Ph
C p. In the base case we have (o,C) = Ph p.own. Then by

Ph ∼β Ph′ and β p p′ we have some o′ with (o′,C) = Ph′ p′.own and β oo′, whence
o′ �Ph′

C p′. In the inductive case, there is q,B with (o,C) = Phq.own and q �Ph
B p. By

induction hypothesis there is q′ with β qq′ and q′ �Ph
B p′. By Ph ∼β Ph′ and (o,C) =

Phq.own there is o′ such that β oo′ and (o′,C) = Ph′ q′.own, whence o′ �Ph′
C p′.

Note that there may be locations not in domPh or domPh′ that are related by β and thus
enter into whether Ph∼β Ph′ holds. But o�Ph

C p implies that o and p are in domPh by
definition of �.

Corollary 24 (splitting) Let Ph,Ph′ be pre-heaps that are closed under transitive own-
ership, i.e., if o ∈ domPh and o �Ph

(typeo)↑ p then p ∈ domPh. Let β be a total bijection
from Ph to Ph′ and suppose Ph ∼β Ph′. Let o ∈ domPh and β oo′. Let Ph partition as
Ph+ ∗Ph− where Ph+ contains o and the objects transitively owned by o, i.e.,

dom Ph+ = {p | p = o∨o�Ph
(typeo)↑ p}

Let Ph′ = Ph′+ ∗Ph′− where Ph′+ and Ph′− are determined mutatis mutandis for Ph′

with respect to o′. Then

(a) β is a total bijection from Ph+ to Ph′+ and a total bijection from Ph− to Ph′−

(b) Ph+ ∼β Ph′+ and Ph− ∼β Ph′−.

Proof. By Lemma 5(a) we can restrict to (typeo)↑. As a consequence of Lemma 23 we
get that β is a total bijection from Ph+ to Ph′+. The rest follows from the definitions.

Lemma 25 If o�h
C p and h p.own = (r,B) then either (r,B) = (o,C) or o�h

C r.

Proof. We first prove (by induction on o �h
C p) that if o �h

C p then there is a series
of one or more pairs (qi,Di) with (omitting h for clarity) (o,C) = q0.own, (q0,D0) =
q1.own, (q1,D1) = q2.own, . . .(qn,Dn) = p.own and thus qi �Di

qi+1 for each i; also
D0 =C and (r,B) = (qn,Dn). Now an induction on i shows that o�h

C qi for each i.

A consequence of this result is that if R β (heap⊗Γ ) (h,s) (h′,s′) then nonrep(h,s)
iff nonrep(h′,s′). Hence the antecedent in the definition of R for Γ  Γ ′ can be sim-
plified.

Lemma 26 (partition and coupling) Suppose R β heap h h′ and β oo′. Let h = Fh∗
. . .Ahk ∗Rhk ∗Shk and h′ = Fh′ ∗ . . .Ah′k ∗Rh′k ∗Sh′k be the Abs-partitions, where w.l.o.g.
we assume pick Ahi ∼β pick Ah′i for all i. Then o ∈ domRhi iff o′ ∈ domRh′i.



31

Proof. Let o ∈ domRhi, to prove o′ ∈ domRh′i (the reverse being symmetric). Using
R β heap h h′ and Def. 21, o′ is not in any domAh′j or domSh′j, nor is it in domFh′, as
these parts of h′ are connected to h bijectively. Thus by partitioning o′ must be in some
Rh′j, and by Lemma 23 it must be the j such that o′ is transitively owned by pick Ah′j.

A fine point about assertions. Def. 16 of comparable class tables says CT (C) =CT ′(C)
for all C 6= Abs. But recall that we have used a “shallow embedding” formulation of
assertions: we embed sets of states in code. Moreover, these are well-formed states —
so, if CT (Abs) declares different fields from those of CT ′(Abs), a state for CT is not a
state for CT ′. So it cannot be that CT (T ) =CT ′(C) is literally true.

The intention is that CT and CT ′ have “the same” assertions, which in practice
would be formulas. Consider any formula F that is well formed in both CT and CT ′,
i.e., does not refer to private fields of Abs. Let P be the interpretation of F in CT and
P ′ its interpretation in CT ′. We claim the following,9 for all h,s,h′,s′:

If R β (heap⊗Γ ) (h,s) (h′,s′) then h,s |= P iff h′,s′ |= P ′. (3)

For ordinary assertions that may appear in code outside Abs, we expect that they respect
scope, and so do not depend on private fields of Abs. For such assertions, and for the
conditions in the stipulated preconditions —aside from pack— it is easy to prove the
claim from usual semantics of the formulas (entirely independent from fieldsAbs). For
pack, the precondition refers to I C and our formulation of admissibility for invariants
does not disallow dependence on private fields of Abs. However, the formula denoting
such an invariant would not be well formed in both class tables.

In this chapter, we refrain from spelling out syntax and semantics of formulas. We
simply assume that (3) holds for all corresponding assertions in classes other than Abs.

5.3 Simulation and the abstraction theorem

Definition 27 (simulation) A simulation is a coupling R such that the following hold.

– (L is initialized) For any C≤ Abs, and any o,o′ with β oo′ and typeo =C we have
L β hh′ where h = [o 7→ [dom(xfieldsC) 7→ defaultsC]] and
h′ = [o′ 7→ [dom(xfields′C) 7→ defaults′C]].

– (methods of Abs preserve R) For any disciplined µ,µ ′ such that R menv µ µ ′ we
have the following for every m declared in Abs. Let Ū→U = mtype(m,Abs) and
x̄ = pars(m,Abs). For every β , we have

R β (self : Abs, x̄ : Ū result : U) ([[M]]µ) ([[M′]]′µ ′)

where M (resp. M′) is the declaration of m in CT (Abs) (resp. CT ′(Abs)).

Perhaps surprisingly, there is no requirement for inherited methods. Rather, for practical
application of the results —and indeed for the inv/own discipline itself— it is often

9 Note that this does not mean there is a bijection between P and P ′. One or the other versions
of Abs may have more states, owing to the type or number of fields of Abs.



32

necessary for inheritance to be “expanded” into stubs that perform suitable unpack/pack
and super calls. The stubs are then subject to the proof obligation for declared methods.
We return to this topic in Sect. 6.

The main theorem is that if R is a simulation for comparable class tables CT,CT ′

then R menv [[CT ]] [[CT ′]]′ . The theorem is proved using the following Lemmas.
Because expressions do not include field access, an expression is typable in CT just

if it is typable in CT ′, and preservation for expressions is straightforward.

Lemma 28 (preservation by expressions) For all expressions Γ ` e : T and all β , we
have R β (Γ ` T ) ([[Γ ` e : T ]]) ([[Γ `′ e : T ]]′).

Proof. By induction on the structure of e, and by cases on e. In each case we assume
R β Γ s s′ (which amounts to s∼β s′) and must show

R β T⊥ ([[Γ ` e : T ]](s)) ([[Γ `′ e : T ]]′(s′))

For example, in case e is a variable x, from R β Γ s s′ we get R β T (sx) (s′ x) by
definition. In case e is (B) e, then by induction we have v ∼β v′ where v = [[Γ ` e]](s)
and mutatis mutandis for v′. So either v=⊥= v′ and by semantics both cast expressions
return ⊥, or β vv′ and thus typev = typev′ (because β is a typed bijection) so the casts
denote the same truth value. The other cases are similar.

For commands, the preservation lemma needs to rule out code in class Abs, since a
field access or update in CT (Abs) might not even be well formed in CT ′.

Lemma 29 (preservation by commands) Let µ,µ ′ be disciplined method environments
with R menv µ µ ′ . If Γ ` S is a properly annotated command for Abs, with Γ self 6=Abs,
then for all β we have R β (Γ  Γ ) ([[Γ ` S]]µ) ([[Γ `′ S]]′µ ′).

Proof. In accord with the definition of R for category Γ  Γ , we consider arbitrary
β and any (h,s), (h′,s′) such that R β (heap⊗Γ ) (h,s) (h′,s′) and nonrep(h,s) and
nonrep(h′,s′). We show, by structural induction on S, that the outcomes [[Γ ` S]]µ(h,s)
and [[Γ `′ S]]′µ ′(h′,s′) are related at some β0 with β0 ⊇ β . For brevity we only consider
a few cases on S such as field access and update. In each case we refer to the standard
partitions h = Fh∗ . . . and h′ = Fh′ ∗ . . . where w.l.o.g. β (pick Ahi)(pick Ah′i) for each i
(noting that by Def. 21 for heaps, we have that β fully partitions h,h′ for Abs).

We never show that the result heaps are disciplined, because that follows in every
case by Prop. 8.

Case of assignment x := e Let v = [[Γ ` e : T ]](h,s) and mutatis mutandis for v′.
The outcomes are (h,s0) and (h′,s′0) where s0 = [s | x 7→ v] s′0 = [s′ | x 7→ v′]. We take
β0 = β . To show R β0 (heap⊗Γ ) (h,s0) (h′,s′0) it suffices to show v ∼β v′ which we
have by Lemma 28.

Case of assert For this we rely on assumption (3), from which we get the result
directly by semantics of assert.

Case of field access x := y. f (Recall that by typing, f is an ordinary field, not inv,
com, or own.) In this case the output heap is the same as the input heap h. We choose
β0 = β and note that R β heap h h′ holds by hypothesis. Let p = s y and let the updated



33

store s0 be [s | x 7→ h p. f ] (and similarly for p′,s′0 for s′ as per our convention). To
prove R β (heap⊗Γ ) (h,s0) (h′,s′0) it suffices to show h p. f ∼β h′ p′. f . By hypothesis
R β (heap⊗Γ ) (h,s) (h′,s′) we have p ∼β p′ i.e., either β p p′ or p = nil = p′. By
stipulated precondition (A3) in Def. 15 neither is null, so β p p′.

Because Γ self 6= Abs, by the stipulated precondition for field access we get

∀o | o�h
Abs p⇒ o�h

Abs sself and ∀o | o�h′
Abs p′ ⇒ o�h′

Abs s′ self

Because R β heap h h′, it suffices to consider the following cases.

– p ∈ domFh. Then Fh ∼β Fh′ from R β (heap⊗Γ ) (h,s) (h′,s′), so by definition
h p. f ∼β h′ p. f , using that f is not in dfieldsAbs or dfields′Abs because type p�Abs
by definition of decomposition. (Note that Fh p = h p by decomposition, so we
choose to write the shorter one, h p.)

– p= pick Ahi for some i. Hence p′= pick Ah′i. By R β heap h h′ we have Ahi∼β Ah′j.
By hypothesis of the Lemma, Γ self 6= Abs, so by proper annotation Def. 15(A1),
f is not in dfieldsAbs or dfields′Abs. So Ahi ∼β Ah′j implies h p. f ∼β h′ p. f as
required.

– p ∈ domRhi for some i. We show by contradiction that this case cannot happen.
Suppose p ∈ domRhi. Then pick Ahi �h

Abs p by definition of Abs-partition. By pre-
condition we get pick Ahi �h

Abs sself, which contradicts the antecedent nonrep(h,s).
– p ∈ domShi for some i. Then by Def. 21 for heaps, item (R3), we have β p p′ and

Shi ∼β Sh′j. By definition of decomposition, we have type p� Abs so declClass f 6=
Abs and declClass′ f 6= Abs, so Shi ∼β Sh′j implies h p. f ∼β h′ p. f .

Case of field update x. f := y Let o = s x and v = s y. By typing we have Γ x ≤
declClass f . The stipulated preconditions are o 6= nil and ho.inv > declClass f . So the
outcome from (h,s) is (h0,s) where h0 is [h | o. f 7→v]. Mutatis mutandis for o′,v′,h′0. By
hypothesis R β (heap⊗Γ ) (h,s) (h′,s′), we have v∼β v′ and o∼β o′; and thus β oo′.
We take β0 to be β . To show R β heap h0 h′0 we have the following cases.

– o ∈ domFh. Then β oo′ and Fh ∼β Fh′ from R β (heap⊗Γ ) (h,s) (h′,s′) (items
(R1) and (R2) in Def. 21). It suffices to show h0 o. f ∼β h′0 o′. f which follows from
v∼β v′.

– o = pick Ahi for some i. So we have β oo′ and typeo ≤ Abs. We have Ahi ∼β Ah′i
by (R3)(ii) in Def. 21. By hypothesis of the Lemma, Γ self 6= Abs, so by proper
annotation Def. 15(A1), f is not in dfieldsAbs or dfields′Abs. Thus for (R3)(ii) to
hold for the updated heaps h0,h′0 we need the new values to be related; indeed, we
already established v∼β v′.
For (R3)(iii) we rely on the discipline. We have typeo ≤ Abs by decomposition.
By type soundness for x, typeo ≤ Γ x ≤ declClass f . By the tree property of the
subtype relation, one of these two cases must apply:
• Abs ≤ declClass f . Then ho.inv > Abs from the stipulated precondition; this

falsifies the antecedent in (R3)(iii) so we are done.
• declClass f < Abs: Then L is not allowed to depend on o. f (Def. 20); this

means precisely that an update of o. f cannot falsify L , so (R3)(iii) is pre-
served.



34

– o ∈ dom(Rhi ∗ Shi) for some i. By precondition, ho.inv > declClass f . By type
soundness for x, typeo≤ Γ x≤ declClass f ; hence ho.inv > typeo.
If o ∈ domRhi, then pick Ahi �h

Abs o, so by Corollary 6, h(pick Ahi).inv > Abs. If
o ∈ domShi, pick Ahi �h

C o for C > Abs, so h(pick Ahi).inv > C > Abs, by Corol-
lary 6 again. In either case, condition (R3)(iii) in Def. 21 holds in the updated heaps
because its antecedent is false.
Finally, if o ∈ domShi we must also show condition (R3)(ii) for the updated heaps.
Because Shi ∼β Sh′i holds initially, this follows from β oo′ and v ∼β v′ already
established.

Case of allocation x := new B Let o= fresh(B,h), so we have s0 = [s | x 7→o] and
h0 = [h | o 7→ [xfieldsB 7→ defaultsB]] (and mutatis mutandis for o′,h′0,s

′
0). We choose

β0 = β ∪{(o,o′)}. To show R β0 (heap⊗Γ ) (h0,s0) (h′0,s
′
0), first note that by the de-

faults we have h0 o.inv =Object, h0 o.com = false, and h0 o.own = (nil,Object). By the
latter default, β0 fully partitions h0,h′0 for Abs. To complete the argument, we consider
the following two cases on B.

– B ≤ Abs. Let Ahnew = [o 7→ [xfieldsB 7→ defaultsB]], so h0 = Ahnew ∗ h and the
partition of h0 has the form h0 = Fh ∗ . . . ∗ Ahnew ∗ Rhnew ∗ Shnew where the old
partition is unchanged but has an added island with Rhnew = Shnew = ∅. Similarly
for o′ and h′0.
Because o and o′ are fresh, they are unreachable from objects in h and h′ respec-
tively, so Fh∼β0 Fh′ follows from Fh∼β Fh′, and similarly for other parts of h and
h′. Thus to show R β0 heap h0 h′0, we just use conditions (R1), (R2), (R3)(i), and
(R3)(ii) in Def. 21 from the corresponding assumptions for β .
For condition (R3)(iii), consider any preexisting pair of corresponding islands Ahi ∗
Rhi ∗Shi and Ah′i ∗Rh′i ∗Sh′i. The condition (R3)(iii) pertains only to objects in these
islands, and is not falsifiable by the addition of another island. For the new island,
we have Ahnew ∼β0 Ah′new in virtue of the default field values (which have no pre-
existing references). Moreover, we have

Ahnew(o).inv≤ Abs⇒ L β0(Ahnew ∗Rhnew ∗Shnew)(Ah′new ∗Rh′new ∗Sh′new)

because the antecedent is false. The reason being that Ahnew(o).inv = Object =
Ah′new(o).inv and by typing B 6= Object.

– B � Abs. Because the default owner is (nil,Object), the partition is h0 = Fh0 ∗
. . . where the islands are unchanged and Fh0 = Fh∗ [o 7→ [xfieldsB 7→ defaultsB]].
Because o and o′ are fresh, Fh ∼β0 Fh′ follows from Fh ∼β Fh′. Moreover, we
have Fh0 ∼β0 Fh′0 because the default field values in the new objects do not refer
to preexisting objects. Thus we have (R1) and (R2) in Def. 21. Condition (R3)
holds for h0,h′0 because (R3)(iii) pertains to the unchanged part of the heap and
conditions (R3)(i–ii) are preserved because o,o′ are fresh.

Case of pack e as C Owing to (A2) in Def. 15, we have C 6= Abs. By semantics
of pack e as C, what is changed is the value of e.inv and the com fields of objects owned
by e at C. Let p = [[e]](s) and p′ = [[e]](s′) Neither p nor p′ is in an Rh part of the heap,
for the same reasons as in the case of field access. The objects owned by p (resp. p′)



35

at C are not owned at Abs so from R β (heap⊗Γ ) (h,s) (h′,s′) we get that the two
states agree (modulo β on what is owned by p (resp. p′) at C). So everything involved
is related by ∼β and that remains true after the updates of inv and com.

Case of setown x to (e2,C) Let q = sx and note that q 6= nil by stipulated precon-
dition. Let p= [[e2 : D2]](h,s) and for future reference let (r,B) = hq.own. By typing we
have type p≤D2 ≤C. The resulting heap h0 is [h | q.own 7→(p,C)]. We take β0 to be β .
As usual, q′, p′,r′,B′,h′0 are determined mutatis mutandis from (h′,s′). The ownership
structure is changed (unless (r,B) = (p,C)), but what is relevant to R is changes in Abs-
partition. To reason carefully about these cases, we give notation for the Abs-partitions
of the updated heaps: h0 = F̂h∗ . . .∗ ˆAhn ∗ ˆRhn ∗ ˆShn and h′0 = F̂h

′ ∗ . . .∗ Âh
′
n ∗ R̂h

′
n ∗ Ŝh

′
n.

Although case analysis is needed, we begin with general considerations.
By the stipulated precondition for setown we obtain

(a) q∼β q′ and p∼β p′ (by hypothesis and by Lemma 28 on e2, respectively);
(b) h q.inv = Object= h′ q′.inv (by stipulated precondition)
(c) p = nil = p′ or else h p.inv >C and h′ p′.inv >C (by stipulated precondition)
(d) both h and h′ satisfy (∃o | o�Abs q)⇒ C = Abs∨(∃o | o�Abs p) (owing to hypoth-

esis Γ self 6= Abs and stipulated precondition (A4) in Def. 15)
(e) r = nil = r′ or else h r.inv > B and h′ r′.inv > B′ (from (b), Corollary 6, and hypoth-

esis R β heap h h′)

We complete the proof by cases on whether q is in the domain of Fh or one of Ahi,
Rhi, or Shi for some i.

Case q ∈ domFh. By R β heap h h′ and q∼β q′ we have q′ ∈ domFh′. Moreover,
either r = nil = r′ or r ∈ domFh and also r′ ∈ domFh′ by partitioning. There are the
following subcases on p:

– If p ∈ domFh or p = nil = p′ then the structure of the partition of h0,h′0 is un-
changed from the initial one. We get R β heap h0 h′0 because the only change is to
set field own of q,q′ to related values p, p′, whence F̂h∼β F̂h′.

– If p = pick Ahi then by R β heap h h′ we have p′ = pick Ah′i. By type soundness,
type p≤ D2 and D2 ≤C, and by definition of partition type p≤ Abs, so by the tree
property of ≤ either C < Abs or Abs≤C.
• If C < Abs then, in the partition of h0 we have q ∈ domF̂h, i.e., the partition

has the same structure as initially and the same is true for q′, F̂h′. Then we get
R β heap h0 h′0 because the only change is to set field own of q,q′ to related
values p, p′.

• If Abs =C then q and the objects it transitively owns are being transferred into
island i, i.e., the partition of h0 has q in domR̂hi. Similarly for q′ and R̂h′i. By
(c) we have h p.inv > Abs and h′ p′.inv > Abs, so the only condition in Def. 21
to check is (R3)(iii), which holds because the antecedent is false —”L is not
in force”.

• If Abs < C then q and the objects it transitively owns are transferred from Fh
into Ŝhi and q′ into Ŝh

′
i. Again, by (c) we have h p.inv>Abs and h′ p′.inv>Abs.

To show coupling for the updated islands i, j it remains to show conditions
(R3)(i) and (R3)(ii) Ŝhi ∼β Ŝh

′
j. This follows from R β heap h h′ and q ∼β q′

and p∼β p′.



36

– If p∈ dom(Rhi∗Shi) for some i then p′ must be in dom(Rh′i∗Sh′i) owing to Lemma 26
and Shi ∼β Sh′j. So q (resp. q′) is transferred into island i (resp. j). Let o = pick Ahi

(resp. o′ = pick Ah′j) so that there is B≥ Abs (resp. B′ ≥ Abs) such that o�h
B p (resp.

o′ �h′
B′ p′). By (c) and Corollary 6 we get h o.inv > B (resp. h′ o′.inv > B′) and thus

L is not currently in force for these islands. It remains to show that if q,q′ are
being transferred into Shi,Sh′j (because p ∈ domShi and thus p′ ∈ domSh j) then
Shi ∼β Sh′j and this follows from R β heap h h′ and p∼β p′.

Case q = pick Ahi for some i. So q′ = pick Ah′i. Owing to the invariant that no Abs-
object owns an Abs-object, we have r ∈ domFh and for the same reason p is also in
domFh Mutatis mutandis for r,Fh′. So again the partition structure is unchanged. We
get R β heap h0 h′0 because the only change is to set field own of q,q′ to related values
p, p′.

Case q ∈ domRhi for some i. Then pick Ahi �h
Abs q by definition of Abs-partition.

Now either r = pick Ahi and B = Abs or pick Ahi �h
Abs r, by Lemma 25. By Lemma 26

we have q′ ∈ domRh′i. By (d), either C = Abs or there is o such that o�h
Abs p. In the case

C = Abs, we have type p≤ Abs (by the typing rule for setown) and thus p = pick Ahk for
some k, whence p′ = pick Ah′k. In the other case, because typeo≤ Abs (by Lemma 5(a))
there is some k with o = pick Ahk Similarly, there is some Abs-object o′ that owns p′

and some l with o′ = pick Ahl . By β p p′ and Lemma 23 we have β oo′ and so l = k. In
the rest of the argument, the two cases are treated together.

Informally, the sub-heap consisting of q and the objects it transitively owns are being
transferred from island i to island k, and in particular from Rhi into ˆRhk; in parallel, q′

and its transitively owned objects are transferred from Rh′i to ˆRh′k. So couplings for i
and k are at risk. By (b) and Corollary 6 we have h(pick Ahi).inv > Abs and thus basic
coupling L is not in force for i in h, nor is it in force for i in h′. By (c) and Corollary 6
we have h o.inv > Abs (or h p.inv > Abs in the case C = Abs) and thus L is not in force
for k in either h or h′. Because the transfer of q is into R̂hk and q′ into R̂hk, Thus the
condition (R3)(iii) holds in the final heap. The conditions (R3)(i–ii) are not affected.

Case q ∈ domShi for some i. In regards to L , this case is similar to the case for q ∈
domRhi. By coupling of the initial states we have q′ ∈ domSh′i. The relevant islands are
unpacked, by (e), so L is not in force and (R3)(iii) is preserved. We have to deal with
the equivalence and bijection requirements (R3)(i–ii). From R β heap h h′ we have that
β is a total bijection from Shi to Sh′i and Shi ∼β Sh′i. By definition of Abs-partition, both
Shi and Sh′i are closed under transitive ownership. Let Sh+i be the sub-heap of Sh with
domain consisting of q and objects transitively owned by q; mutatis mutandis for q′ and
Sh′+i . Let Sh−i and Sh′−i be the remainders so that Shi = Sh+i ∗Sh−i and Sh′i = Sh′+i ∗Sh′−i .
Then by Corollary 24 we have that β is a total bijection from domSh+i to domSh′+i and
from domSh−i to domSh′−i ; moreover Sh+i ∼β Sh′+i and Sh−i ∼β Sh′−i . In the final heaps
h0,h′0, ˆShi = Sh−i and ˆShi = Sh−i . By the above considerations, these satisfy the bijection
and equivalence conditions.

What remains is to account for Sh+i and Sh′+i which get transferred into islands k.
We go by cases on p.

– If p ∈ domFh then the partition for h0 has F̂h = Fh∗Sh+i and similarly for h′0. The
coupling conditions hold because Sh+i ∼β Sh′+i .



37

– If p is in some domAhk (resp. domShk) we have p′ is the domAh′k (resp. p′ ∈
domShk). An argument like in the case for q ∈ domRhi shows that L is not in
force so (R3)(iii) is preserved. And if q is going into Shk (resp. q′ into Shk) then the
coupling conditions for Ŝhk = Shk ∗ Sh+i and Ŝh

′
k = Sh′k ∗ Sh′+i hold by the earlier

considerations, e.g., Sh+i ∼β Sh′+i .
– If p is in some domRhk then the argument is similiar to the preceding case but sim-

pler as there is no bijection or equivalence condition with which to be concerned.

Our main result says that if methods of Abs preserve the coupling then all methods do.

Theorem 30 (abstraction).
If R is a simulation for comparable class tables CT,CT ′ that are properly annotated for
Abs, then R menv [[CT ]] [[CT ′]]′ .

Proof. Assume that R is a simulation. We show that R holds for each step in the
approximation chain in the semantics of class tables. That is, we show by induction on
i that

R menv µi µ
′
i for every i ∈ N

The result R menv [[CT ]] [[CT ′]]′ then follows, because [[CT ]] and [[CT ′]]′ are the least
upper bounds of these ascending chains and the relation distributes over lubs of chains.

Base case, i = 0: We must show

R β (self : C, x̄ : T̄ T ) (µ0 C m) (µ ′0 C m)

for every β ,m,C, where pars(m,C) = x̄ and mtype(m,C) = T̄ → T . This holds by defi-
nition of µ0,µ

′
0, because λ (h,s) | ⊥ relates to itself.

Induction step: Suppose R menv µi µ ′i . We must show R menv µi+1 µ ′i+1 , that is,
for every β , every C, and every m with mtype(m,C) defined:

R β (self : C, x̄ : T̄ T ) (µi+1 C m) (µ ′i+1 C m) (†)

where pars(m,C) = x̄ and mtype(m,C) = T̄ → T .
For arbitrary m we show (†) for all C with mtype(m,C) defined, using a secondary

induction on inheritance chains.
The base case of the secondary induction is when class C declares m (i.e., m is

declared in both CT (C) and CT ′(C) by Def. 16). We go by cases on C.

– Case C = Abs. We get (†) from the assumption that R is a simulation. In detail:
Using assumption R menv µi µ ′i and Def. 27 we get

R β (self : C, x̄ : T̄ T ) ([[M]]µi) ([[M′]]′µ ′i )

whence (†) by definition of µi+1 and µ ′i+1.
– Case C 6= Abs. Then by Def. 16 of comparable class tables we have CT (C) =

CT ′(C) and in particular both class tables have the same declaration T m(T̄ x̄) {S},
which we call M for short. To show (†), observe first that by semantics we have
µi+1 C m = [[M]]µi and µ ′i+1 C m = [[M]]′µ ′i . Unfolding the definition of [[M]]µi and
[[M]]′µ ′i according to (2) in Sect.3, and the definition of R β (self : C, x̄ : T̄ T ), it



38

suffices to proceed as follows. Consider any (h,s) and (h′,s′) such that R β (heap⊗
Γ ) (h,s) (h′,s′) where Γ = (self : C, x̄ : T̄ ). Because the class tables are properly an-
notated and µi,µ

′
i are in the approximation chains, we have by Prop. 8 that µi and µ ′i

are disciplined. So we can appeal to Lemma 29, using assumption R menv µi µ ′i ,
to get that the results from S are related. That is, either [[Γ ` S]]µi(h,s) = ⊥ =
[[Γ `′ S]]′µ ′i (h′,s′) or neither is ⊥. In the latter case, (h0,s0) is related to (h′0,s

′
0) for

some β0 ⊇ β , where (h0,s0) = [[Γ ` S]]µi(h,s) and (h′0,s
′
0) = [[Γ `′ S]]′µ ′i (h′,s′).

Then, by definition of R β Γ , we get R β0 (result : T ) [result 7→ s0 result] [result 7→
s′0 result] from R β0 Γ s0 s′0. This concludes the argument that the outcomes are
related by R β0 (heap⊗T ).

This concludes the base case of the secondary induction.
The induction step is for m inherited in CT (C) and CT ′(C). By the secondary induc-

tion hypothesis we have (†) for superC. By semantics, µi+1 C m = µi+1 (superC)m and
µ ′i+1 C m = µ ′i+1 (superC)m so we get (†) for C directly from the secondary induction
hypothesis.

6 Using the theorem

A complete program is a command S in the context of a class table. To show equiva-
lence between CT,S and CT ′,S, one proves simulation for Abs and then appeals to the
abstraction theorem to conclude that [[S]] is related to [[S]]′. Finally, one appeals to an
identity extension lemma that says the relation is the identity for programs where the
encapsulated representation is not visible. We choose simple formulations that can also
serve to justify more specification-oriented formulations. We say that a state (h,s) is
Abs-free if typeo� Abs for all o ∈ domh.

Lemma 31 (identity extension) If R β (heap⊗Γ ) (h,s) (h′,s′)
then encapAbs(h,s)∼β encapAbs(h′,s′).

Lemma 32 (inverse identity extension) Suppose (h,s) and (h′,s′) are Abs-free. If
(h,s)∼β (h′,s′) and β is total on h,h′ then R β (heap⊗Γ ) (h,s) (h′,s′).

Definition 33 (program equivalence) Suppose programs CT,(Γ ` S) and CT ′,(Γ `′
S′) are such that CT,CT ′ are comparable and properly annotated, and moreover S,S′ are
properly annotated. The programs are equivalent iff for all disciplined, Abs-free (h,s)
and (h′,s′) in [[heap⊗Γ ]] and all β with β total on h,h′ and (h,s) ∼β (h′,s′), there
is some β0 ⊇ β with encapAbs([[Γ ` S]]µ(h,s)) ∼β0 encapAbs([[Γ `′ S′]]′µ ′(h′,s′))
where µ = [[CT ]] and µ ′ = [[CT ′]]′.

Proposition 34 (simulation and equivalence) Suppose programs CT,(Γ ` S) and
CT ′,(Γ `′ S) are properly annotated and R is a simulation from CT to CT ′. If Γ self 6=
Abs then the programs are equivalent.



39

On inheritance. The stipulated preconditions for unpack, pack, setown all include
exact type tests on inv, i.e., conditions of the form self.inv =C. A typical pattern is for
a method in class C to unpack itself from C —so, when inherited into a subclass B <C,
the precondition of this code is bound to fail. This motivates a second pattern mentioned
in Sect. 2.2: instead of simply inheriting a method, it may be better to override it with an
implementation that merely unpacks, makes a super call, and repacks. In Figs. 3 and 4,
method add has roughly this form, though with a little extra code.

The original paper [11] deals with programs that have explicit specifications, in
which case this issue is manifest in terms of pre- and post-conditions for methods that
may be inherited. That paper introduces a short-hand notation for specifications which
is justified in terms of boilerplate method overrides as described just above. The Spec#
tool achieves this effect, without requiring explicit method declarations, by re-verifying
code inherited in subclasses.

In the present work, we are not concerned with specifications as such, but the issue
is still present: in our semantics, a method of C inherited and acting on an object of dy-
namic type B <C will return⊥ if it asserts inv =C. Our technical results are sound with
no restrictions on inheritance —in particular, Def. 27 does not require inherited meth-
ods to preserve the coupling. But to be useful, an inherited method that unpacks needs
to be replaced by boilerplate method implementations using the unpack/super/pack pat-
tern as in method add. Consider a class table where inheritance has been “expanded”
in this way. Methods inherited into Abs give rise to declarations in Abs that must be
shown to preserve the coupling. On the other hand, a method that is inherited and does
not touch state encapsulated for the subclass (e.g., getRuns in our example) necessarily
preserves the coupling and is subject to no proof obligation.

7 Related work

Representation independence. Representation independence is proved in [6] for a lan-
guage with shared mutable objects on the basis of ownership confinement imposed
using restrictions expressed in terms of ordinary types; but these restrictions disallow
ownership transfer. The results are extended to encompass ownership transfer in [4] but
at the cost of substantial technical complications and the need for reachability analysis
at transfer points, which are designated by explicit annotations. Like the present chap-
ter, our previous results are based on a semantics in which the semantics of primitive
commands is given in straightforward operational terms. It is a denotational semantics
in that a command denotes a state transformer function, defined by induction on pro-
gram structure. To handle recursion, method calls are interpreted relative to a method
environment that gives the semantics of all methods. This is constructed as the limit of
approximations, each exact up to a certain maximum calling depth. This model directly
matches the recursion rule of Hoare logic, of which the abstraction theorem is in some
sense a generalization.

Representation independence is needed not only for modular proof of equivalence
of class implementations but also for modular reasoning about improvements (called
data refinement). Such reasoning is needed for correctness preserving refactoring. The
refactoring rules of Borba et al. [15] were validated using the data refinement theory



40

of Cavalcanti and Naumann [20] which does not model sharing/aliasing. A recent pa-
per [52] achieves correctness preserving refactoring for a class based language with
shared mutable objects similar to the one considered in this chapter but adapted to
encompass protected visibility and ownership of instances of library classes. The own-
ership regime of [6] is adapted to this setting. Their abstraction theorem accounts for
changes of data representation in an inheritance hierarchy of classes. The theorem en-
tails a data refinement law (similar to our Prop. 34) and facilitates correctness proofs of
several refactorings that impact entire class trees.

Filipovic et al [33] provide an elegant semantic analysis of encapsulation and simu-
lation, also in terms of refinement rather than equivalence. By contrast with the present
chapter, they consider a ’static module’ that owns internal state, rather than multi-
ple instances of an abstraction, and their programming language allows pointer arith-
metic. Using an instrumented semantics, they characterize client programs that do not
read/write encapsulated locations, and show that such clients are representation inde-
pendent. Like the inv/own discipline, and unlike type-based approaches, it is reads and
writes, rather than the existence of pointers, that is controlled. Their theory makes min-
imal assumptions and thus provides a fundamental account of abstraction in the pres-
ence of shared mutable objects including those that are transferred across the encap-
sulation boundary. By contrast, our instrumentation is more intricate and less general,
but provides a practical technique whereby clients can be proved to respect encapsula-
tion. Filipovic et al require couplings to satisfy a condition, called ’growing relations’.
Technically, it is needed due to non-determinacy of the allocator, but they argue that
the semantic issue would arise even with a deterministic allocator, if specifications are
taken into account, due to under-determinacy. Semantic analysis of this issue remains
an open question.

In the realm of functional languages representation independence has been well
studied, particularly for System F [59] and its extensions, e.g., with recursive func-
tions [58] and general recursive types [2,25,44]. Several recent papers [62,40,14,31]
consider representation independence for languages with references but do not address
class based languages directly. An exception is the work of Koutavas and Wand [41] in
which Kripke logical relations are used to verify the examples in our earlier work [6].
Ahmed et al. [1] achieve representation independence for a higher-order call-by-value
λ -calculus with existential type abstraction as well as higher-order store (obtained by
allowing general ML-style references). Their couplings are Kripke logical relations that
involve ‘islands’ akin to ours, but which grow monotonically, disallowing ownership
transfer. These semantic results are adapted by Dreyer et al [31] to a relational modal
logic for the same programming language.

In a technical report [5], we generalize the results in the present chapter to a lan-
guage with generic classes, but this is still first-order and quite different from ML-like
languages.

Just as we show how the inv/own discipline for modular reasoning about data in-
variants gives rise to a form of representation indpendence, Birkedal and Yang [14]
show how modular reasoning in separation logic gives rise to representation indepen-
dence. They provide a relational interpretation of separation logic with higher order
frame rules; such rules account for hiding of invariants on mutable state in higher order



41

programs. The relational interpretation shows that, if a client of an abstraction is proved
correct then it is independent of the hidden representation. Thamsborg et al [63] develop
similar results for a version of separation logic in which ‘abstract predicates’ (explained
towards the end of this section) serve to isolate clients from invariants/relations on in-
ternal representations.

Methodologies. Several facets of the ownership methodology and its enforcement using
static analysis techniques such as ownership types are presented in this volume. Here we
sample some of the existing related work. Much of the literature concerns hierarchical
ownership which is imposed by arranging the heap in a manner such that there is a single
dominating owner [22] of representation objects. Clients are restricted from directly
accessing representation objects. Ownership confinement is maintained in all reachable
program states, hence it is a program invariant.

Static analyses for confinement such as ownership type systems [16,21,17] are a
means to enforce hierarchical ownership. Most ownership type systems preclude own-
ership transfer; where allowed, it is achieved using nonstandard constructs such as de-
structive reads and restrictive linearity constraints (e.g., [18,61]). The overall objective
of these static analyses is to provide some means of encapsulation for the purpose of
modular reasoning. However they do not formalize exactly how the confinement invari-
ant facilitates modular reasoning.

Müller and Rudich [48] extend Universe Types which provides encapsulation and
has been adopted by JML for invariants, to solve the difficult problem of ownership
transfer.

Drossopoulou et al. [32] introduce a general framework to describe verification
techniques for invariants. The framework is based on variations on the idea that invari-
ants hold exactly when control crosses module boundaries, e.g., visible state semantics
requires all invariants to hold on all public method call/return boundaries. Several own-
ership disciplines are studied as instances of the framework.

While ownership is widely applicable, many programs involve local object struc-
tures which do not follow the ownership discipline. For example, friends and peer de-
pendencies [43,13,51] exhibit non-hierarchical dependencies via cooperating classes
of objects. Similarly, design patterns [34] involve local object structures which do not
follow the ownership discipline. In the observer pattern, neither the subject nor its ob-
servers own each other; in the composite pattern, a client can have direct access to any
node (not just the root) in a composite tree.

Cameron et al. [19] addressed the need for clusters without a single dominating
owner. Ownership types are adapted to a system of “boxes” (clusters) which do not
ensure encapsulation. However an effect system for disjointness of boxes is provided
and proven sound.

The friendship discipline [51] that augments the inv/own discipline, can be used for
modular reasoning about dependencies involving cooperating classes of objects. For
concurrent programs, the inv/own discipline has been generalized by Locally Checked
Invariants [24] which is implemented in the VCC tool [23]. In this case, ownership is
complemented by non-hierarchical dependencies which are tracked in ghost state called
“claims”, generalizing the friendship discipline.



42

A key observation about the above examples is that reasoning about hierarchical and
non-hierarchical dependencies ultimately involves the preservation of global program
invariants. Local reasoning [53] about global invariants allows scalability of reasoning
and ease of automation. For example, in the observer pattern, although there may be
global invariants that hold over all objects in a heap, at any one point of time one can
reason locally about a cooperating cluster of objects comprising of a single subject and
its observers. The global invariant can be factored into two parts: one part that depends
on this cluster of objects and another part that is independent of the cluster. The latter
cannot be falsified by operations that affect the cluster, so it is enough to establish the
former to show preservation of the global invariant.

Local reasoning as described above is embodied in frame conditions of a procedure
specification that designates what part of the state is susceptible to change, together with
frame-based reasoning that “all else is unchanged”. The frame condition of a command
is often termed its footprint (following separation logic [53]) and can be expressed us-
ing ghost state in the form of mutable auxiliary fields and variables. Use of ghost state
in frame conditions was pioneered by Kassios, who dubbed it “dynamic framing” [39].
Region logic [10,8] is a Hoare logic for object-based programs that features local rea-
soning with frame conditions expressed in terms of sets of references (termed regions).
VERL [64] is a verifier based on region logic that embodies local reasoning.

We have already seen the use of ghost states such as inv,own,com in the inv/own
discipline. The implicit frame condition in the discipline is that clients cannot write
fields of objects they do not own. Therefore writes to owned fields do not need to ap-
pear in the frame conditions of specifications. The Spec# tool [12] automatically gen-
erates such implicit frame conditions. In these tools particular methodologies such as
friendship or ownership are an integral part of the verification conditions. The goal of
verifiers such as VERL or Dafny [26,42] is to decouple methodologies from verification
condition generation —both for tool modularity and for methodological flexibility.

To reason about non-ownership disciplines Parkinson and Bierman [57] propose
abstraction instead of hiding, via second order assertions in separation logic. The jS-
tar [30] tool implements this idea. Client reasoning can be done by means of “abstract
predicates” —predicates whose concrete implementations are unknown to the client.
For example a client may use an abstract predicate whose concrete implementation
might be the layout of the heap. Parkinson [56] clearly articulates the case for specifica-
tions at the level of object clusters and shows an example specification of the Observer
pattern that uses abstract predicates. For more insight on these issues we refer the reader
to the companion chapter [55].

8 Discussion

Adaptations of the inv/own discipline. As compared with previous work on the disci-
pline, we have imposed some additional restrictions to achieve sufficient information
hiding to justify a modular rule for equivalence of class implementations. We argue
that the restrictions are not onerous for practical application, though further practical
experience is needed with the discipline and with our rule.



43

The first restriction is on field reads. Code in a client class cannot be allowed to
read a field of an encapsulated representation object, although the discipline allows the
existence of the reference; otherwise the client code could be representation dependent.
On the other hand, a class such as Hashtable might be used both by clients and in the
internal representation of the class Abs under revision; certainly the code of Hashtable
needs to read its own fields. A distinction can be made on the basis of whether the
current target object, i.e., self, is owned by an instance o of Abs. If it is, then we do
not need the method invocation to preserve the coupling and we can allow reading of
objects owned by o. If the target object is not owned by an instance of Abs then it should
have no need to access objects owned by Abs. This distinction appears in the statement
of Lemma 29 and it is used to stipulate a precondition for field access (see (A3) in
Def. 15).10

Because the coupling relation imposes the user-defined local coupling only when
an Abs-object is packed, it appears necessary to restrict pack e as Abs to occur only in
code of Abs in order for simulation to be checked only for that code. In the majority of
known examples, packing to a class C is only done in code of C, and this is required in
Leino and Müller’s extension of the discipline to handle static fields.

Similar considerations apply to setown x to (y,C): care must be taken to prevent
arbitrary code from moving objects across the encapsulation boundary for Abs in ways
that do not admit modular reasoning. One would expect that code outside Abs cannot
move objects across the Abs-boundary at all, but it turns out that the only problematic
case is transfer out from an Abs island. In the unusual case that setown x to (y,C) occurs
in code outside Abs but x is initially inside the island for some Abs-object, x must end up
in the island for some Abs-object. Our stipulated precondition says just this. In practice
it seems that the obligation can be discharged by simple syntactic considerations of
visibility and/or lightweight alias control.

The last restriction is that an Abs object cannot own other Abs objects. This does not
preclude containers holding containers, because a container does not own its content
(e.g., AQueue owns the Qnodes but not the tasks). It does preclude certain recursive
situations. For example, we could allow Qnode instances to own their successors but
then we could not instantiate the theory with Abs:=Qnode. This does not seem too
important since it is Queue that is appropriate to view as an abstraction coupled by
a simulation. The restriction is not needed for soundness of simulation. But absent the
restriction, nested islands would require a healthiness condition on couplings (similar to
the healthiness condition used by Cavalcanti and Naumann [20, Def. 5]); e.g., coupling
for an instance of Qnode would need to recursively impose the same predicate on the
nxt node. We disallow nested islands in the present work for simplicity and to highlight
connections with separation logic.

10 This is unattractive in that the other stipulated preconditions mention only direct ownership
whereas this one uses transitive ownership. However, in practical examples code outside Abs
rarely has references to encapsulated objects. We believe such references can be adequately
restricted using visibility control and/or lightweight confinement analyses, e.g., [65,6]. More-
over, as noted following Def. 15, the transitive ownership relation can be maintained in ghost
state so that the stipulated precondition can be expressed without induction.



44

Future work. The discipline may seem somewhat onerous in that it uses verification
conditions rather than lighter weight static analysis for control of the use of aliases. (We
have to say “use of”, because whereas confinement disallows certain aliases, the invari-
ant discipline merely prevents faulty exploitation of aliases.) The Spec# tool provides
some support for inference of annotations [12]. For many situations, simple confine-
ment rules and other checks are sufficient to discharge the proof obligations and this
needs to be investigated for the additional obligations we have introduced. The advan-
tage of a verification discipline over types is that, while simple cases can be checked
automatically, complicated cases can be checked with additional annotations rather than
simply rejected.

The generalization to a small group of related classes is important, as revisions often
involve several related classes. One example would be a revision of our Queue example
that involves revising Qnode as well. If nodes are used only by Queue then this is sub-
sumed by our theory, as we can consider a renamed version of Qnode that coexists with
it. The more interesting situations arise in refactoring and in design patterns with tightly
related configurations of multiple objects. Naumann et al. explore this generalization in
recent work [52].

We are currently working on a relational version of region logic as a basis for veri-
fication of e.g., soundness of refactorings as well as examples discussed here and in our
earlier work [6]. A crucial part of this verification process is reasoning about represen-
tation independence using proof rules of the relational logic.

Acknowledgments

We thank Amal Ahmed, Mike Barnett, Lars Birkedal, Sophia Drossopoulou, Ivana Fil-
ipovic, Rustan Leino, Peter Müller, Peter O’Hearn, Uday Reddy, Wolfram Schulte,
Noah Torp-Smith, and Hongseok Yang for discussions. Thanks to the anonymous ECOOP
2005 referees as well as the referees of this chapter for their detailed comments.

Banerjee was supported in part by CM Project S2009TIC-1465 Prometidos, MICINN
Project TIN2009-14599-C03-02 Desafios, EU NoE Project 256980 Nessos. Naumann
was supported in part by NSF grant CCF-0915611 and by Microsoft Research.

References

1. Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation inde-
pendence. In ACM Symp. on Princ. of Program. Lang., pages 340–353, 2009.

2. Amal J. Ahmed. Step-indexed syntactic logical relations for recursive and quantified types.
In European Symposium on Programming, pages 69–83, 2006.

3. Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification of Sequential
and Concurrent Programs. Springer, 3 edition, 2009.

4. Anindya Banerjee and David A. Naumann. Ownership transfer and abstraction. Technical
Report TR 2004-1, Computing and Information Sciences, Kansas State University, 2003.

5. Anindya Banerjee and David A. Naumann. State based encapsulation and generics. Techni-
cal Report CS Report 2004-11, Stevens Institute of Technology, 2004.

6. Anindya Banerjee and David A. Naumann. Ownership confinement ensures representation
independence for object-oriented programs. J. ACM, 52(6):894–960, 2005.



45

7. Anindya Banerjee and David A. Naumann. State based ownership, reentrance, and encapsu-
lation. In European Conference on Object-Oriented Programming, pages 387–411, 2005.

8. Anindya Banerjee and David A. Naumann. Local reasoning for global invariants, part II: Dy-
namic boundaries. Extended version of [50]. http://www.cs.stevens.edu/~naumann/
pub/locResGloInvII.pdf, 2011.

9. Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Regional logic for local rea-
soning about global invariants. In European Conference on Object-Oriented Programming,
volume 5142 of LNCS, pages 387–411, 2008.

10. Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Local reasoning for global
invariants, part I: Region logic. Extended version of [9]. http://www.cs.stevens.edu/
~naumann/pub/locResGloInvI.pdf, 2011.

11. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wolfram Schulte.
Verification of object-oriented programs with invariants. Journal of Object Technology,
3(6):27–56, 2004.

12. Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
volume 3362 of LNCS, pages 49–69, 2004.

13. Mike Barnett and David A. Naumann. Friends need a bit more: Maintaining invariants over
shared state. In Dexter Kozen, editor, Mathematics of Program Construction, pages 54–84,
2004.

14. Lars Birkedal and Hongseok Yang. Relational parametricity and separation logic. Logical
Methods in Computer Science, 4(2), 2008.

15. Paulo Borba, Augusto Sampaio, and Márcio Cornélio. A refinement algebra for object-
oriented programming. In European Conference on Object-Oriented Programming, number
2743 in LNCS, pages 457–482, 2003.

16. Chandrasekhar Boyapati, Robert Lee, and Martin C. Rinard. Ownership types for safe pro-
gramming: preventing data races and deadlocks. In ACM Conference on Object-Oriented
Programming Languages, Systems, and Applications, pages 211–230, 2002.

17. Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for object
encapsulation. In ACM Symp. on Princ. of Program. Lang., pages 213–223, 2003. Invited
paper.

18. John Boyland, James Noble, and William Retert. Capabilities for sharing: A generalisation
of uniqueness and read-only. In European Conference on Object-Oriented Programming,
volume 2072 of LNCS, pages 2–27, 2001.

19. Nicholas R. Cameron, Sophia Drossopoulou, James Noble, and Matthew J. Smith. Multiple
ownership. In ACM Conference on Object-Oriented Programming Languages, Systems, and
Applications, pages 441–460, 2007.

20. Ana Cavalcanti and David A. Naumann. Forward simulation for data refinement of classes.
In Formal Methods Europe, volume 2391 of LNCS, pages 471–490, 2002.

21. David Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of
type and effect. In ACM Conference on Object-Oriented Programming Languages, Systems,
and Applications, pages 292–310, November 2002.

22. David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias pro-
tection. In OOPSLA ’98 Conference Proceedings, volume 33(10) of SIGPLAN, pages 48–64,
October 1998.

23. Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach, Michal Moskal,
Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: a practical system for veri-
fying concurrent C. In Theorem Proving in Higher Order Logics (TPHOLS), volume 5674
of LNCS, pages 23–42, 2009.

http://www.cs.stevens.edu/~naumann/pub/locResGloInvII.pdf
http://www.cs.stevens.edu/~naumann/pub/locResGloInvII.pdf
http://www.cs.stevens.edu/~naumann/pub/locResGloInvI.pdf
http://www.cs.stevens.edu/~naumann/pub/locResGloInvI.pdf


46

24. Ernie Cohen, Michal Moskal, Wolfram Schulte, and Stephan Tobies. Local verification of
global invariants in concurrent programs. In Computer Aided Verification, volume 6174 of
LNCS, pages 480–494, 2010.

25. Karl Crary and Robert Harper. Syntactic logical relations for polymorphic and recursive
types. Electr. Notes Theor. Comput. Sci., 172:259–299, 2007.

26. Dafny. Available at http://boogie.codeplex.com/.
27. Willem-Paul de Roever and Kai Engelhardt. Data Refinement: Model-Oriented Proof Meth-

ods and their Comparison. Cambridge University Press, 1998.
28. D. L. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. Research 156,

DEC Systems Research Center, 1998.
29. Werner Dietl and Peter Müller. Object ownership in program verification. In Dave Clarke,

James Noble, and Tobias Wrigstad, editors, Aliasing in Object-oriented Programming, pages
XXX–XXX. Springer, 2012.

30. Dino Distefano and Matthew J. Parkinson. jStar: Towards practical verification for Java. In
ACM Conference on Object-Oriented Programming Languages, Systems, and Applications,
pages 213–226, 2008.

31. Derek Dreyer, Georg Neis, Andreas Rossberg, and Lars Birkedal. A relational modal logic
for higher-order stateful adts. In ACM Symp. on Princ. of Program. Lang., pages 185–198,
2010.

32. Sophia Drossopoulou, Adrian Francalanza, Peter Müller, and Alexander J. Summers. A
unified framework for verification techniques for object invariants. In European Conference
on Object-Oriented Programming, volume 5142 of LNCS, pages 412–437, 2008.

33. Ivana Filipovic, Peter W. O’Hearn, Noah Torp-Smith, and Hongseok Yang. Blaming the
client: on data refinement in the presence of pointers. Formal Asp. Comput., 22(5):547–583,
2010.

34. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

35. John V. Guttag and James J. Horning, editors. Larch: Languages and Tools for Formal
Specification. Texts and Monographs in Computer Science. Springer-Verlag, 1993. With
Stephen J. Garland, Kevin D. Jones, Andrés Modet, and Jeannette M. Wing.

36. C. A. R. Hoare. Proofs of correctness of data representations. Acta Informatica, 1:271–281,
1972.

37. Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3):396–459, May 2001.

38. Bart Jacobs and Erik Poll. Java program verification at Nijmegen: Developments and per-
spective. In International Symposium on Software Security, volume 3233 of LNCS, pages
134–153, 2004.

39. Ioannis T. Kassios. The dynamic frames theory. Formal Aspects of Computing, 23(3):267–
288, 2011.

40. Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about higher-order
imperative programs. In ACM Symp. on Princ. of Program. Lang., pages 141–152, 2006.

41. Vasileios Koutavas and Mitchell Wand. Reasoning about class behavior. In Informal pro-
ceedings of FOOL/WOOD., 2007.

42. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Logic for Programming, Artificial Intelligence, and Reasoning - 16th International Confer-
ence, volume 6355 of LNCS, pages 348–370, 2010.

43. K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts. In European
Conference on Object-Oriented Programming, pages 491–516, 2004.

http://boogie.codeplex.com/


47

44. Paul-André Melliès and Jerome Vouillon. Recursive polymorphic types and parametricity
in an operational framework. In IEEE Symp. on Logic in Computer Science, pages 82–91,
2005.

45. Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, second
edition, 1997.

46. John C. Mitchell. Representation independence and data abstraction. In ACM Symp. on
Princ. of Program. Lang., pages 263–276, 1986.

47. Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered
object structures. Sci. Comput. Program., 62(3):253–286, 2006.

48. Peter Müller and Arsenii Rudich. Ownership transfer in universe types. In ACM Conference
on Object-Oriented Programming Languages, Systems, and Applications, pages 461–478,
2007.

49. David A. Naumann. Verifying a secure information flow analyzer. In Theorem Proving in
Higher Order Logics (TPHOLS), volume 3603 of LNCS, pages 211–226, 2005.

50. David A. Naumann and Anindya Banerjee. Dynamic boundaries: Information hiding by
second order framing with first order assertions. In European Symposium on Programming,
volume 6012 of LNCS, pages 2–22, 2010. Invited paper.

51. David A. Naumann and Mike Barnett. Towards imperative modules: Reasoning about in-
variants and sharing of mutable state. Theoretical Computer Science, 365:143–168, 2006.

52. David A. Naumann, Augusto Sampaio, and Leila Silva. Refactoring and representation in-
dependence for class hierachies. Theoretical Computer Science, 433:60–97, 2012.

53. Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In Computer Science Logic, volume 2142 of LNCS, pages 1–19,
2001.

54. Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and information
hiding. ACM Trans. Program. Lang. Syst., 31(3), 2009.

55. Matthew Parkinson and Gavin Bierman. Separation logic for object-oriented programming.
In Dave Clarke, James Noble, and Tobias Wrigstad, editors, Aliasing in Object-oriented
Programming, pages XXX–XXX. Springer, 2012.

56. Matthew J. Parkinson. Class invariants: the end of the road? In International Workshop on
Aliasing, Confinement and Ownership in object-oriented programming, 2007.

57. Matthew J. Parkinson and Gavin M. Bierman. Separation logic and abstraction. In ACM
Symp. on Princ. of Program. Lang., pages 247–258, 2005.

58. Andrew M. Pitts. Typed operational reasoning. In B. C. Pierce, editor, Advanced Topics in
Types and Programming Languages, chapter 7, pages 245–289. The MIT Press, 2005.

59. John C. Reynolds. Types, abstraction, and parametric polymorphism. In R.E.A. Mason,
editor, Information Processing ’83, pages 513–523. North-Holland, 1984.

60. Jan Smans, Bart Jacobs, Frank Piessens, Willem Penninckx, Frédéric Vogels, and Pieter
Philippaerts. Verifying java programs with VeriFast. In Dave Clarke, James Noble, and
Tobias Wrigstad, editors, Aliasing in Object-oriented Programming, pages XXX–XXX.
Springer, 2012.

61. Frederick Smith, David Walker, and J. Gregory Morrisett. Alias types. In European Sympo-
sium on Programming, volume 1782 of LNCS, pages 366–381, 2000.

62. Eijiro Sumii and Benjamin C. Pierce. A bisimulation for type abstraction and recursion.
J. ACM, 54(5), 2007.

63. Jacob Thamsborg, Lars Birkedal, and Hongseok Yang. Two for the price of one: lifting
separation logic assertions. Logical Methods in Computer Science, 2012. To appear.

64. Verl: VErifier for Region Logic. Software distribution, at http://www.cs.stevens.edu/
~naumann/pub/VERL/.

65. Jan Vitek and Boris Bokowski. Confined types in Java. Software Practice and Experience,
31(6):507–532, 2001.

http://www.cs.stevens.edu/~naumann/pub/VERL/
http://www.cs.stevens.edu/~naumann/pub/VERL/

	State Based Encapsulation for Modular Reasoning about Behavior-Preserving Refactorings 

