
A Fixed Point Iteration Technique for Proving
Correctness of Slicing for Probabilistic Programs

Torben Amtoft1 and Anindya Banerjee2

1 Kansas State University, Manhattan KS 66506, USA tamtoft@ksu.edu
2 IMDEA Software Institute, Pozuelo de Alarcon, Madrid, Spain

anindya.banerjee@imdea.org

Abstract. When proving the correctness of a method for slicing prob-
abilistic programs, it was previously discovered by the authors that for
a fixed point iteration to work one needs a non-standard starting point
for the iteration. This paper presents and explores this technique in a
general setting; it states the lemmas that must be established to use
the technique to prove the correctness of a program transformation, and
sketches how to apply the technique to slicing of probabilistic programs.

Keywords: Fixed Point Iteration · Program Slicing · Probabilistic Pro-
gramming.

1 Setting

We wish to reason about the correctness of a program transformation of a “source
semantics” ϕ into a “target semantics” γ, each semantics defined on a universe
U of “subprograms”. Typically, such correctness is established by demonstrating
some “correctness relation” R such that R ϕ γ can be proved. But we shall show
that for a certain application, the standard technique for such a proof cannot be
adapted directly but requires modification.

We assume that for each x ∈ U , ϕ(x) and γ(x) are continuous functions from
D to D where D is a complete partial order (cpo). Recall3 that

– a cpo D is a set equipped with a partial order ⊑ that satisfies:
if {di | i ≥ 0} is a chain (that is di ⊑ di+1 for all i ≥ 0) then it has
a least upper bound, written ⊔{di | i ≥ 0}, thus:
• di ⊑ ⊔{di | i ≥ 0} for all i ≥ 0, and
• if di ⊑ d′ for all i ≥ 0 then ⊔{di | i ≥ 0} ⊑ d′.

If in addition there is a least element ⊥ (thus ⊥ ⊑ d for all d ∈ D) we say
that D is a pointed cpo.

– a function f , from a cpo D1 into a cpo D2, is continuous if for all chains
{di | i ≥ 0} in D1 it holds that
• {f(di) | i ≥ 0} is a chain in D2 (this implies that f is monotone)

3 Throughout we employ elementary concepts of domain theory; see, e.g., Winskel’s
textbook [5].

2 T. Amtoft and A. Banerjee

• f(⊔{di | i ≥ 0}) = ⊔{f(di) | i ≥ 0}.
We write D1 →c D2 for the space of continuous functions from D1 to D2.

– if D1 and D2 are cpos then also D1 →c D2 is a cpo, with the partial order
defined pointwise, as is the least upper bound:

⊔{fk | k ≥ 0} = λd ∈ D1. ⊔ {fk(d) | k ≥ 0}

and if ⊥ is least in D2 then λd.⊥ is least in D1 →c D2.

2 Goal

We want ϕ and γ to be related as prescribed by a given correctness relation R
over (D →c D); that is we shall require R ϕ γ which is an abbreviation of

∀x ∈ U : R (ϕ x) (γ x). (1)

We shall aim at finding a widely applicable recipe for establishing (1), but shall
see that the most straightforward approach does not always work.

We shall assume that R is admissible in that if {fi | i ≥ 0} and {gi | i ≥ 0}
are chains in D →c D then

if R fi gi for all i ≥ 0 then R (⊔{fi | i ≥ 0}) (⊔{gi | i ≥ 0}). (2)

3 Example Setting

We shall consider probabilistic programming (with [4] a seminal contribution
and [3] giving a recent overview) where the effect of a program is to transform
probability distributions, and shall express a program as a probabilistic control-
flow graph [1]. In that setting,

– the subprograms in U are of the form (u, u′) where u, u′ are nodes such that
u′ postdominates u (that is, u′ occurs on every path from u to an end node).

– the members of D are probability distributions where a probability distri-
bution D maps a store, which is a (partial) map from program variables to
integers or booleans, into a real number in [0..1] which is the “probability”
of that store.
With D1 ⊑ D2 defined to hold iff D1(s) ≤ D2(s) for all stores s, D will be a
pointed cpo where

• the least element is λs.0
• the least upper bound of a chain {Di | i ≥ 0} is λs.S(s) where S(s) is

the supremum of the chain {Di(s) | i ≥ 0}.

We can think of ϕ(u, u′) as denoting the distribution transformation done along
the path(s) from u to u′: if D describes how stores are distributed at point u,
then ϕ(u, u′)(D) describes how stores are distributed at point u′.

A Fixed Point Iteration Technique 3

4 Example

We shall consider the probabilistic structured program in Figure 1 which

1. assigns 0 to the variables p and q
2. assigns random boolean values to the variables b and h, with the choices

independent and unbiased so that each outcome (say b = true and h = false)
has probability 1

2 · 1
2 = 1

4
3. if h is true, enters an infinite loop
4. if b is true (false), increments p (q) until a random boolean choice becomes

true (which in each iteration will happen with probability 1
2)

The corresponding control-flow graph is depicted in Figure 2.
We will expect that for arbitrary initial D, the distribution ϕ(start, end) (D)

is given by Table 1. To understand why say {b 7→ F, h 7→ F, p 7→ 0, q 7→ 2} has
probability 1

22+2 = 1
24 , observe that to obtain this store we need four fortunate

binary outcomes:

1. b becomes F (so that q, rather than p, is incremented)
2. h becomes F (so the infinite loop is not taken)
3. the first random choice is F (so q will become 2)
4. the second random choice is T (so q remains 2)

Observe that the probabilities add up to 1
2 , since if h = T we never get to end.

5 Slicing the Example

In general, if we care about only certain variables, we would like to slice away
all parts of the program that do not affect those variables; see Danicic et al. [2]
for a unifying framework for program slicing.

For our example, assume that the part of the store we care about is the value
of q, whereas we do not care about the value of p. Observe that we still need
to care about the value of b because it is relevant in that it determines whether
q is incremented, but p is irrelevant, as is h as it does not impact the relative
distribution of q (since h and b are independent). Accordingly, we can abstract
the distribution from Table 1 into Table 2.

We then slice the given program so as to eliminate irrelevant operations,
such as the assignments to p and h, and even the loop on h (as we consider
termination-insensitive slicing). Figure 3 shows the resulting control-flow graph,
which can be further simplified and corresponds to the structured program in
Figure 4.

That control-flow graph induces the target semantics γ. It is easy to see that
for arbitrary initial D, the distribution γ(start, end) (D) is given by Table 3.

By comparing Tables 2 and 3 we see:

ϕ(start, end) (D) =
1

2
· γ(start, end) (D)

4 T. Amtoft and A. Banerjee

p := 0; q := 0
b := random boolean value
h := random boolean value
if h

while true
skip

else
skip

if b
repeat

p := p+ 1
until random boolean choice becomes true

else
repeat

q := q + 1
until random boolean choice becomes true

Fig. 1. The source code of our running example.

start p, q := 0
b, h :=
random
bools

h? b?

p :=
p+ 1

q :=
q + 1

random
bool?

random
bool?

end

T

T

F

F

F

T
T

F

Fig. 2. The source control-flow graph of our running example.

s ϕ(start, end) (D)

{b 7→ T, h 7→ F, p 7→ k, q 7→ 0} 1

2k+2
for k ≥ 1

{b 7→ F, h 7→ F, p 7→ 0, q 7→ k} 1

2k+2
for k ≥ 1

Table 1. The distribution produced by the source semantics.

A Fixed Point Iteration Technique 5

s ϕ(start, end) (D) s

{b 7→ T, q 7→ 0} 1

4

{b 7→ F, q 7→ k} 1

2k+2
for k ≥ 1

Table 2. The relevant part of the distribution produced by the source semantics.

start q := 0
b :=

random
bool

skip b?

skip

q :=
q + 1

skip

random
bool?

end

T
F

T

F

Fig. 3. The target control-flow graph of our example program.

q := 0; b := random boolean value
if b

skip
else

repeat
q := q + 1

until random boolean choice becomes true

Fig. 4. The target code of our example program.

s γ(start, end) (D) (s)

{b 7→ T, q 7→ 0} 1

2

{b 7→ F, q 7→ k} 1

2k+1
for k ≥ 1

Table 3. The distribution produced by the target semantics.

6 T. Amtoft and A. Banerjee

and indeed, for this application, our correctness relation R requires:

R (ϕ(u, u′)) (γ(u, u′)) iff ∀D ∈ D ∃c : ϕ(u, u′)(D) = c · γ(u, u′)(D).

That is, the transformation must not affect the relative probabilities of the var-
ious stores.

We shall now study how to prove that this correctness relation holds.

6 Basic Approach

Recall the fixed-point theorem for cpos:

if D is a pointed cpo, and F belongs to D →c D, then {F i(⊥) | i ≥ 0} is
a chain with

F (⊔{F i(⊥) | i ≥ 0}) = ⊔{F i(⊥) | i ≥ 0}.

The chain property follows by induction, with the base case being F 0(⊥) =
⊥ ⊑ F 1(⊥), and the inductive step using that F is monotone:

F i+1(⊥) = F (F i(⊥)) ⊑ F (F i+1(⊥)) = F i+2(⊥).

That the least upper bound is a fixed point follows from the continuity
of F :

F (⊔{F i(⊥) | i ≥ 0}) = ⊔{F (F i(⊥)) | i ≥ 0} = ⊔{F i(⊥) | i ≥ 0}

and it is actually the least fixed point since if also f is a fixed point then
for all i ≥ 0 we have F i(⊥) ⊑ f , as can be proved by induction with the
inductive step being F i+1(⊥) = F (F i(⊥)) ⊑ F (f) = f .

It will typically be the case that ϕ and γ have been defined as

ϕ = ⊔{F i(⊥) | i ≥ 0}
γ = ⊔{Gi(⊥) | i ≥ 0}

for functionals F and G with functionality

F,G : (U → D →c D) →c (U → D →c D).

where U → D →c D is a pointed cpo since

– D →c D is a pointed cpo, since D is
– equipped with the discrete partial order, U is a cpo and all functions from

U are continuous.

Thus the fixed point theorem can be applied; we shall often write ϕk for F k(⊥)
and γk for Gk(⊥).

To accomplish our goal (1), that is to prove that R ϕ γ, due to R being
admissible (2) it thus suffices to show that

R ϕk γk for all k ≥ 0 (3)

which indeed often can be proved by induction in k. But we shall now see that
(3) may not always hold.

A Fixed Point Iteration Technique 7

7 Problem

In the setting of control flow graphs, we will expect ϕk and γk to be the meaning
of the program assuming we are allowed at most k− 1 “backwards moves”, that
is control flowing away from the end node (as will necessarily happen each time
a loop is iterated). In particular, ϕ1 will allow only forward moves, and thus we
would expect (ignoring the values of h and p) that ϕ1(start, end) (D) is given by

s ϕ1(start, end) (D)

{b 7→ T, q 7→ 0} 1

8

{b 7→ F, q 7→ 1} 1

8

whereas ϕ2 allows for at most one backwards move and thus we would expect
that ϕ2(start, end) (D) is given by

s ϕ2(start, end) (D)

{b 7→ T, q 7→ 0} 1

8
+

1

16

{b 7→ F, q 7→ 1} 1

8

{b 7→ F, q 7→ 2} 1

16

Thus the probability that execution ends with q = 0 is 3
16 , which makes sense

since for this to happen we need two independent events:

– b becomes T and h becomes F ; this has probability 1
4

– the random choice at the upper branch becomes T either first time or second
time; this has probability 3

4 .

In general, for k ≥ 1, we would expect that the distribution ϕk(start, end) (D) is
given by Table 4, in particular we have

ϕk(start, end) (D) {b 7→ T, q 7→ 0}

=

k∑
i=1

ϕk(start, end) (D) {b 7→ T, p 7→ i, q 7→ 0}

=

k∑
i=1

1

2i+2
=

1

8
+

1

16
+ . . .

1

2k+2
=

1

4
− 1

2k+2

On the other hand, looking at the target control-flow graph (Figure 3), we
see that no backwards moves are needed for q to end up being 0, and hence we
would expect that the distribution γk(start, end) (D) is given by Table 5.

By comparing Tables 4 and 5 we see that (3) does not hold, in particular

ϕk(start, end) (D) ̸= 1

2
· γk(start, end) (D).

We shall now show how to repair this, by replacing {ϕk | k ≥ 0} by a more
appropriate chain.

8 T. Amtoft and A. Banerjee

8 Refined Approach

To prepare for the correctness proof, the idea is to first transform the source
control-flow graph. This involves replacing loops that are irrelevant, and even-
tually terminate, by skip.

In our setting, with p considered irrelevant, this will result in the control-flow
graph depicted in Figure 5.

With that control-flow graph as our starting point, we may define a chain
{ϕ′

k | k ≥ 0} where for k ≥ 1, we would expect that the distribution
ϕ′
k(start, end) (D) is given by Table 6.
By comparing Tables 6 and 5 we see that for k ≥ 1,

ϕ′
k(start, end) (D) =

1

2
· γk(start, end) (D)

which suggests that we do indeed have R ϕ′
k γk when k ≥ 1.

This is a special case, of the general idea that we shall now present.

9 General Result

Recall the setting: with D a pointed cpo, U a set of subprograms, F and G
functionals of type (U → D →c D) →c (U → D →c D), and with R an admissible
correctness relation, we want to prove R ϕ γ where

ϕ = ⊔{F i(⊥) | i ≥ 0}

γ = ⊔{Gi(⊥) | i ≥ 0}.

For that purpose, we might be able to use the following result:

Theorem 1. With X ⊆ U given, for k ≥ 0 define ϕ′
k = F k(ϕ′

0) with ϕ′
0 given

by
ϕ′
0(x) = ϕ(x) if x ∈ X

ϕ′
0(x) = ⊥ otherwise

(thus the starting point for the iteration may be above the standard starting point
⊥), and similarly for k ≥ 0 define γ′

k = Gk(γ′
0) where γ′

0 is given by:

γ′
0(x) = γ(x) if x ∈ X

γ′
0(x) = ⊥ otherwise.

Now assume that the below 3 properties all hold:

∀k ≥ 0 : R ϕ′
k γ′

k (4)

∀x ∈ X : ϕ(x) ⊑ ϕ′
1(x) (5)

∀x ∈ X : γ(x) ⊑ γ′
1(x). (6)

Then we do have R ϕ γ.

A Fixed Point Iteration Technique 9

s ϕk(start, end) (D)

{b 7→ T, q 7→ 0} 1

4
− 1

2k+2

{b 7→ F, q 7→ i} 1

2i+2
when 1 ≤ i ≤ k

Table 4. The relevant part of the source distribution after k ≥ 1 iterations.

s γk(start, end) (D)

{b 7→ T, q 7→ 0} 1

2

{b 7→ F, q 7→ i} 1

2i+1
when 1 ≤ i ≤ k

Table 5. The relevant part of the target distribution after k ≥ 1 iterations.

start p, q := 0
b, h :=
random
bools

h? b?

skip

q :=
q + 1

skip

random
bool?

end

T
F

F

T
T

F

Fig. 5. The modified source control-flow graph of our example program.

s ϕ′
k(start, end) (D)

{b 7→ T, q 7→ 0} 1

4

{b 7→ F, q 7→ i} 1

2i+2
when 1 ≤ i ≤ k

Table 6. The relevant part of the revised source distribution after k ≥ 1 iterations.

10 T. Amtoft and A. Banerjee

Proof. Observe that due to (4) and (2), our goal R ϕ γ will follow if we can
prove that

{ϕ′
k | k ≥ 0} is a chain with ⊔{ϕ′

k | k ≥ 0} = ϕ

{γ′
k | k ≥ 0} is a chain with ⊔{γ′

k | k ≥ 0} = γ

and by symmetry it suffices to prove the first property. To do so, first observe
that

∀x ∈ U : ϕ′
0(x) ⊑ ϕ′

1(x)

which is trivial if x /∈ X and otherwise follows from (5). By monotonicity of F ,
this implies that {ϕ′

k | k ≥ 0} is a chain. Writing ϕi for F
i(⊥) (with i ≥ 0), we

obviously have

ϕ0 ⊑ ϕ′
0 ⊑ ϕ

which implies (since F is monotone and has ϕ as a fixed point)

ϕ1 ⊑ ϕ′
1 ⊑ F (ϕ) = ϕ

and in general (by induction in k)

ϕk ⊑ ϕ′
k ⊑ ϕ for all k ≥ 0

Because ⊔{ϕk | k ≥ 0} = ϕ, we obtain the desired ⊔{ϕ′
k | k ≥ 0} = ϕ.

To summarize, we see that the successful application of our approach requires
choosing a suitable set X, to be called an exclusion set as it is excluded from
the iteration process, and then establishing (4), (5), (6).

In the next section, we shall see that our example setting does allow a suitable
X to be found; we shall not address whether there are heuristics for that in a
general setting.

10 An Application

We have presented a recipe for proving the correctness of an algorithm for slicing
probabilistic programs. An elaborate, albeit unmotivated, proof of correctness
was furnished in the authors’ earlier work [1]. In contrast, the technique proposed
in Section 9 abstracts the essence of the proof structure, and clarifies the key
lemmas that are needed.

In [1], slicing involves finding suitable node sets Q and Q0, where Q are those
nodes that impact the variable(s) of interest, whereas Q0 are those of the remain-
ing nodes that may cause non-termination. The exclusion set X (cf. Section 9) is
then defined to contain the pairs (v, v′) ∈ U where (using the terminology of [1])
“v stays outside Q∪Q0 until v′”, a property which (as proved in [1][Lemma 5.8])
ensures that from v, control will eventually (without risk of non-termination)
reach v′, without affecting relevant variables.

A Fixed Point Iteration Technique 11

For the control-flow graph in Figure 2, two nodes are not in Q ∪ Q0: the
node that increments p, and its successor (the node that tests h may cause non-
termination, and all other nodes impact q). With up the node that increments
p we thus have

(up, end) ∈ X (7)

In Section 9 we listed the properties sufficient for correctness: (4), (5), (6) and
admissibility (2). They are all stated in [1] (though with quite different naming
conventions4):

– property (4) is stated as [1][Lemma 6.9] (proved by induction in k, and with
a case analysis on (v, v′) ∈ U)

– property (5) is a special case of [1][Lemma 6.2] which (renamed) states that
ϕ′
k(x) = ϕ(x) for all x ∈ X and all k ≥ 0

– property (6) is a special case of [1][Lemma 4.31] which (renamed) entails
that G(g1)(x) = G(g2)(x) for all x ∈ X and all functions g1, g2, from which
we for x ∈ X infer γ(x) = G(γ)(x) = G(γ′

0)(x) = γ′
1(x)

– property (2) follows from the calculation in [1][Proof of Theorem 6.6], except
that we need to rectify [1][Lemma 6.13]. That lemma claims that a certain
sequence of reals is a chain; this is not necessarily the case, but (as shown
in Appendix A) still the sequence will have a limit, and that is sufficient to
establish property (2).

11 The Intuition Behind the Exclusion Set

In our application, where the source control-flow graph of Figure 2 is transformed
into the target control-flow graph of Figure 3. consider paths from start to end
along which b becomes true, thus causing the value of q at end to be 0.

– For the target program (Figure 3), the only such path is the one that takes
the upper branch. That path has no loops and hence the fixed point (which
assigns q = 0 the probability 1

2) is reached already in the first iteration,
as can be seen by comparing the first row of Table 5 with the first row of
Table 3.

– On the other hand, for the source program (Figure 2), there are denumerable
many such paths; all will follow the upper branch but one path will not loop,
another path will loop once, another path will loop twice, etc. Hence the fixed
point (which assigns q = 0 the probability 1

4) is reached only in the limit of
the iterations, as can be seen by comparing the first row of Table 4 with the
first row of Table 2.

We conclude that source iteration and target iteration get out of lockstep, which
is why we cannot establish the correctness relation between the iterands.

Our approach is to let the iteration on the source program start with the
parts in the exclusion set X already at their fixed point. This is accomplished

4 [1] uses “ω” for what the current paper calls “ϕ”, uses “γ” for “ϕ′”, uses “ϕ” for
“γ”, uses “Φ” for “γ′”, uses “HV ” for “F”, and uses “HQ” for “G”.

12 T. Amtoft and A. Banerjee

by ensuring that if (u, u′) in X then no path from u to u′ has loops. Recall (7)
that with up the node that increments p we have (up, end) ∈ X. And indeed, no
path from up to end has loops in the control-flow graph in Figure 5, as we put
skip at node up and at its successor.

As a consequence, the revised iterands of the source program (Table 6) are
in lockstep with the iterands of the target program (Table 5), with each iterand
of the source being 1

2 of the corresponding iterand of the target.

12 Perspectives

We have distilled a proof technique that in at least one (recently published)
situation [1] comes to the rescue when the standard technique falls short. We
conjecture that other applications exist, and encourage the discovery of such.

More generally, while we were surprised that we had to begin the fixed point
iteration above the bottom element, we believe it likely that other researchers
have encountered and reported similar situations, though so far we have not
come across it in our literature search.

We offer this paper as a tribute to Alan Mycroft who has inspired the authors
since early in their careers, by his kindness and enthusiasm, and his work on
program analysis where the computation of fixed points is ubiquitous.

Acknowledgments. We thank the anonymous reviewers for their comments
which in various ways helped improve the presentation of the paper, and also
thank Patrick Cousot for looking into our findings. Banerjee’s research is based
on work supported by the National Science Foundation (NSF), while working
at the Foundation. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect
the views of the NSF.

References

1. Amtoft, T., Banerjee, A.: A theory of slicing for imperative probabilistic programs.
ACM Trans. Program. Lang. Syst. 42(2) (Apr 2020). https://doi.org/10.1145/
3372895

2. Danicic, S., Barraclough, R.W., Harman, M., Howroyd, J.D., Kiss, Á., Laurence,
M.R.: A unifying theory of control dependence and its application to arbitrary
program structures. Theoretical Computer Science 412(49), 6809–6842 (Nov 2011).
https://doi.org/10.1016/j.tcs.2011.08.033

3. Gordon, A.D., Henzinger, T.A., Nori, A.V., Rajamani, S.K.: Probabilistic pro-
gramming. In: Future of Software Engineering Proceedings. pp. 167—-181. FOSE
2014, Association for Computing Machinery, New York, NY, USA (2014). https:
//doi.org/10.1145/2593882.2593900

4. Kozen, D.: Semantics of probabilistic programs. Journal of Computer and Sys-
tem Sciences 22(3), 328–350 (1981), https://doi.org/10.1016/0022-0000(81)

90036-2

5. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cam-
bridge, MA, USA (1993), https://doi.org/10.7551/mitpress/3054.001.0001

https://doi.org/10.1145/3372895
https://doi.org/10.1145/3372895
https://doi.org/10.1145/3372895
https://doi.org/10.1145/3372895
https://doi.org/10.1016/j.tcs.2011.08.033
https://doi.org/10.1016/j.tcs.2011.08.033
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.1016/0022-0000(81)90036-2
https://doi.org/10.7551/mitpress/3054.001.0001

A Fixed Point Iteration Technique 13

A Rectifying Lemma 6.13 in [1]

We shall refer to the setting of [1], where U is the set of pairs (v, v′) such that

v′ postdominates v, and D is the set of probability distributions. With cv,v
′

k,D a
real number as defined in Definition 6.10, we shall replace Lemma 6.13 by the
following result:

Lemma 6.13, restated. Assume {Dk | k ≥ 0} is a chain in D, and that
{fk | k ≥ 0} is a chain of functions in D →c D.

Then for all (v, v′) ∈ U , the limit limk→∞ cv,v
′

k,fk(Dk)
does exist.

Observe that as a special case, with each fk the identity and each Dk equal D,
we have

For all (v, v′) ∈ U and D ∈ D, there does exist a real number c such that

limk→∞ cv,v
′

k,D = c

which suffices to prove Theorem 6.6, stating the correctness of slicing in [1].
We shall prove the restated Lemma 6.13 by induction in the maximum length

of an acyclic path from v to v′, where two cases are non-trivial; in each we let
v′′ denote the first proper postdominator of v:

– Assume v′ ̸= v and v′ ̸= v′′. We can inductively assume that there exists
c′′, c′ such that

limk→∞ cv,v
′′

k,fk(Dk)
= c′′

limk→∞ cv
′′,v′

k,γ
(v,v′′)
k

(fk(Dk))
= c′

but then

limk→∞ cv,v
′

k,fk(Dk)
= limk→∞ (cv,v

′′

k,fk(Dk)
· cv

′′,v′

k,γ
(v,v′′)
k

(fk(Dk))
) = c′′ · c′.

– Assume v′ = v′′ but v does not stay outside Q0 until v′.

Since {fk(Dk) | k ≥ 0} and {γ(v,v′)
k (fk(Dk)) | k ≥ 0} are chains in the cpo

D, there exists D1 and D2 such that

limk→∞ fk(Dk) = D1

limk→∞ γ
(v,v′)
k (fk(Dk)) = D2.

By Lemma 4.1 we see that

limk→∞ (
∑

fk(Dk)) =
∑

D1

limk→∞ (
∑

γ
(v,v′)
k (fk(Dk))) =

∑
D2.

14 T. Amtoft and A. Banerjee

If D1 = 0 we for all k have fk(Dk) = 0 and thus cv,v
′

k,fk(Dk)
= 1 making the

claim trivial. We can thus assume that D1 ̸= 0, in which case we see that

limk→∞ cv,v
′

k,fk(Dk)
= limk→∞

∑
γ
(v,v′)
k (fk(Dk))∑

fk(Dk)
=

∑
D2∑
D1

which yields the claim.

But observe that while {cv,v
′

k,fk(Dk)
| k ≥ 0} has a limit, we apparently have

no assurance it is a chain (it is rather a ratio between two chains) and thus
the original Lemma 6.13 makes an unwarranted claim.

	A Fixed Point Iteration Technique for Proving Correctness of Slicing for Probabilistic Programs

