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We present a theory for slicing imperative probabilistic programs, containing random assignments and “observe”

statements for conditioning. We represent such programs as probabilistic control-flow graphs (pCFGs) whose

nodes modify probability distributions. This allows direct adaptation of standard machinery such as data

dependence, postdominators, relevant variables, etc. to the probabilistic setting. We separate the specification

of slicing from its implementation:

(1) first we develop syntactic conditions that a slice must satisfy (they involve the existence of another

disjoint slice such that the variables of the two slices are probabilistically independent of each other);

(2) next we prove that any such slice is semantically correct;

(3) finally, we give an algorithm to compute the least slice.

To generate smaller slices, we may in addition take advantage of knowledge that certain loops will terminate

(almost) always.

Our results carry over to the slicing of structured imperative probabilistic programs, as handled in recent

work by Hur et al. For such a program we can define its slice which has the same “normalized” semantics as

the original program; the proof of this property is based on a result proving the adequacy of the semantics of

pCFGs wrt. the standard semantics of structured imperative probabilistic programs.
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1 INTRODUCTION

The task of program slicing [Tip 1995; Weiser 1984] is to remove the parts of a program that are

irrelevant in a given context. This article addresses slicing of imperative probabilistic programs

which, in addition to the usual control structures, contain “random assignment” and “observe” (or

conditioning) statements. The former assign random values from a given distribution to variables.

The latter remove undesirable combinations of values, a feature which can be used to bias (or

condition) the variables according to real world observations. The excellent survey by Gordon et al.

[2014] depicts how probabilistic programs can be used in a variety of contexts, such as: encoding

applications from machine learning, biology, security; representing probabilistic models (Bayesian
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Networks, Markov Chains); estimating probability distributions through probabilistic inference

algorithms (like the Metropolis-Hastings algorithm for Markov Chain Monte Carlo sampling); etc.
Program slicing of deterministic imperative programs is increasingly well understood [Amtoft

2008; Ball and Horwitz 1993; Danicic et al. 2011; Podgurski and Clarke 1990; Ranganath et al. 2007].

A basic notion is that if the slice contains a program point which depends on some other program

points then these also should be included in the slice; here “depends” typically encompasses data

dependence and control dependence. However, Hur et al. [2014] recently demonstrated that in the

presence of random assignments and conditionings, standard notions of data and control dependence

no longer suffice for semantically correct (backward) slicing. They develop a denotational framework

in which they prove correct an algorithm for program slicing. In contrast, this article shows how

classical notions of dependence can be extended to give a semantic foundation for the (backward)
slicing of imperative probabilistic programs.

The article’s key contributions are:

• A formulation of probabilistic slicing in terms of probabilistic control-flow graphs (pCFGs) (Sec-

tion 3) that allows direct adaptation of standard machinery such as data and control dependence,

postdominators, relevant variables, etc. to the probabilistic setting.

To allow us to state and prove the correctness of slicing, we provide a novel semantics of pCFGs

(Section 4): the semantic function ω(v ,v
′)
transforms a probability distribution at node v into a

probability distribution at nodev ′ (much as the “Semantics 2” presented for a structured language

in the seminal work by Kozen [1981]) so as to model what happens when “control” moves from

v to v ′ in the control-flow graph. In Section 8 we discuss some choices involved in the design of

the semantics.

• Syntactic conditions for correctness (Section 5) that in a non-trivial way extend classical work

on program slicing [Danicic et al. 2011] and whose key feature is that they involve two disjoint
slices; in order for the first to be a correct final result of slicing, the other must contain any

“observe” nodes sliced away and all nodes on which they depend. We show that the variables of

one slice are probabilistically independent of the variables of the other, and this leads directly to

the correctness of probabilistic slicing (Theorem 6.6 in Section 6).

(A program’s behavior is its final probability distribution; we demand equality modulo a constant

factor so as to allow the removal of “observe” statements that do not introduce any bias in the final

distribution. This will be the case if the variables tested by “observe” statements are independent,

in the sense of probability theory, of the variables relevant for the final value.)

• An algorithm (Section 9), with running time at most cubic in the size of the program, that (given

an approximation of which loops terminate with probability 1) computes a slice which is optimal

in that it is contained in any other syntactic slice of the program.

Our approach separates the specification of slicing from algorithms to compute (optimal) slices.

The former is concerned with defining syntactic conditions for when a slice is correct, in that the

behavior of the sliced program is equivalent to that of the original. The latter is concerned with

how to compute a slice that satisfies the syntactic conditions and which is as small as possible; this

slice is automatically a semantically correct slice —no separate proof is necessary. (It is obviously

undecidable to compute the least semantically correct slice.)

This separation of concerns distinguishes our approach from the approach of Hur et al. [2014]

which (to the best of our knowledge) is the main prior work on slicing of imperative probabilistic

programs. That article does not state whether their algorithm computes slices that are in some sense

the least possible; neither does it address the complexity of the algorithm. Their work incorporates

powerful optimizations; in Section 10, we show that simple syntactic pre-processing may in some

cases allow our approach to produce similar small slices.
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Compared to the conference version of this article [Amtoft and Banerjee 2016], the additional

contributions are:

• We allow to slice away certain loops if they are known (through some analysis, or an oracle, or

deductive methods [McIver et al. 2018]) to terminate with probability 1.

• We show (Section 7) that our results apply to the slicing of structured imperative probabilistic

programs; this involves establishing the adequacy of the semantics of pCFGs with respect to the

“classical” semantics (based on expectation functions) of structured programs [Gordon et al. 2014;

Hur et al. 2014]. In particular, we show that slicing based on our syntactic conditions (for the

corresponding pCFG) will preserve the normalized semantics of a structured program.

We prove all non-trivial results; some proofs are in the main text but most are relegated to

Appendix B. Our development is based on domain theory whose basic concepts we recall in

Appendix A.

2 MOTIVATING EXAMPLES

2.1 Imperative Probabilistic Programs

Whereas in deterministic languages, a variable has only one value at a given time, we consider a

simple imperative language where a variable may have many different values at a given time, each

with a certain probability. (Determinism is a special case where one value has probability one, and

all others have probability zero.) We assume, to keep our development simple, that each possible

value is an integer. A more general development, somewhat orthogonal to the aims of this article,

would allow real numbers and would employ measure theory (as explained in [Panangaden 2009]).

Similarly to [Gordon et al. 2014], probabilities are introduced by the construct x := random(ψ )
which assigns to variable x a value with probability given by the random distributionψ which in

our setting is a mapping from Z (the set of integers) to [0, 1] such that

∑
z∈Zψ (z) = 1. A program

phrase modifies a distribution into another distribution, where a distribution assigns a probability

to each possible store. This was first formalized by Kozen [1981] in a denotational setting. As also

in [Gordon et al. 2014], we shall use the construct observe(B) to “filter out” values which do not

satisfy the boolean expression B. That is, the resulting distribution assigns zero probability to all

stores not satisfying B, while stores satisfying B keep their probability.

Slicing may be viewed as picking a set Q of “program points” and then removing from the

program the program points not in Q . In order for Q to be a “correct” slice, it must satisfy certain

conditions as we shall soon discuss.

The examples in this section all use a uniform random distribution ψ4 over {0, 1, 2, 3} where
ψ4(0) = ψ4(1) = ψ4(2) = ψ4(3) =

1

4
whereasψ4(i) = 0 for i < {0, 1, 2, 3}. The examples all consider

whether it is correct to let Q contain exactly x := random(ψ4) and return(x), and thus slice into

a program Px containing exactly these two instructions. The semantics of Px is straightforward:

after execution, the probability of each possible store is given by the distribution ∆′ defined as

∆′({x 7→ i}) = 1
4 if i ∈ {0, 1, 2, 3}; otherwise ∆′({x 7→ i}) = 0.

2.2 Initial Examples

Example 2.1. Consider the program P1 given by

1 : x := random(ψ4)

2 : y := random(ψ4)

3 : observe(y ≥ 2)

4 : return(x)

The distribution produced by the first two assignments will assign probability
1

4
· 1
4
= 1

16
to

each possible store {x 7→ i, y 7→ j} with i, j ∈ {0, 1, 2, 3}. In the final distribution D1, a store
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{x 7→ i, y 7→ j} with j < 2 is impossible, and for each i ∈ {0, 1, 2, 3} there are thus only two

possible stores that associate x with i: the store {x 7→ i, y 7→ 2}, and the store {x 7→ i, y 7→ 3}.

Restricting to the variable x that is ultimately returned,

D1({x 7→ i}) =
3∑
j=2

D1({x 7→ i, y 7→ j}) =
1

16

+
1

16

=
1
8

if i ∈ {0, 1, 2, 3} (otherwise, D1({x 7→ i}) = 0). We see that the probabilities in D1 do not add up

to 1 which reflects that the purpose of an observe statement is to cause undesired parts of the

current distribution to “disappear” (which may give certain branches more relative weight than

other branches). We also see that D1 equals ∆
′
except for a constant factor: D1 = 0.5 · ∆′. That is,

∆′ gives the same relative distribution over the values of x as D1 does. We shall therefore say that

Px is a correct slice of P1.

Example 2.2. Consider the program P2 given by

1 : x := random(ψ4)

2 : y := random(ψ4)

3 : observe(x + y ≥ 5)

4 : return(x)
Here the final distribution D2 allows only 3 stores: {x 7→ 2, y 7→ 3}), {x 7→ 3, y 7→ 2}) and {x 7→
3, y 7→ 3}), all with probability

1

16
, and hence D2({x 7→ 2}) = 1

16
and D2({x 7→ 3}) = 1

16
+ 1

16
= 1

8
.

Thus the program is biased towards x having value 2 or 3; in particular we cannot write D2 in the

form c∆′. Hence it is incorrect to slice P2 into Px .

Example 2.3. Consider the program P3 given by

1 : x := random(ψ4)

2 : if x ≥ 2

3 : z := random(ψ4)

4 : observe(z ≥ 3)

5 : return(x)
Since three quarters of the distribution disappears when x ≥ 2, P3 is biased in that it is more likely

to return 0 or 1 than 2 or 3; in fact, the final distribution D3 is given by D3({x 7→ i}) = 1
4 when

i ∈ {0, 1} and D3({x 7→ i}) = D3({x 7→ i, z 7→ 3}) = 1
16 when i ∈ {2, 3}. (And, when i < {0, 1, 2, 3},

D3({x 7→ i}) = 0.) Hence it is incorrect to slice P3 into Px .

2.3 Why Standard Approaches Do Not Work

We shall now explain why slicing is particularly challenging when done in a probabilistic setting.

First note that the effect of an observe statement, which is to filter out undesired values, might

also be achieved bymeans of a loop that does not terminate for those values. In particular, observe(B)
may be thought of as equivalent to while ¬B do skip, and we shall show (Example 4.30) that our

semantics (Section 4) will indeed not distinguish between these two constructs (like the semantics

in [Gordon et al. 2014; Hur et al. 2014] but unlike the semantics in [Bichsel et al. 2018]; see Section 8

for a further discussion). In principle, we could thus do our development without the observe
construct, but we shall keep it as it is an important special case with a simple semantics.

Now let us consider our previous examples, with observe replaced by loops, and argue that it

will not suffice to use standard techniques for slicing programs with loops. Such techniques [Ball

and Horwitz 1993; Podgurski and Clarke 1990] come in two flavors: those that are “non-termination
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sensitive” in that the sliced program must terminate exactly when the original does, and those

that allow “irrelevant” loops to be sliced away which may cause the sliced program to terminate

even when the original does not. In both cases, we need a slice to be closed under data dependence

and control dependence; to achieve non-termination sensitive slicing, we also need the slice to be

closed under weak control dependence [Podgurski and Clarke 1990]. (These concepts are informally

described below.)

First assume that we go for slicing that is non-termination sensitive, and let us consider the

program P1 in Example 2.1 with observe replaced by a loop. But then line 4 is weakly control

dependent on line 3, since from line 3 it is possible to avoid line 4 by looping forever. As we want

the slice to contain line 4, it must thus also contain line 3, even though we earlier argued that line 3

can safely be sliced away. Hence non-termination sensitive slicing cannot readily be adapted for

our purposes.

Next assume that we go for slicing that is non-termination insensitive, and let us consider the

program P2 in Example 2.2 with observe replaced by a loop. Line 4 is data dependent on line

1 (since line 4 uses x which is defined in line 1), but not on line 2 or line 3. Also, line 4 is not
control dependent on line 3, since there is no way to terminate from line 3 without reaching line

4. This shows that by using data dependence and (non-weak) control dependence, as done in

non-termination insensitive slicing, lines 2 and 3 can be eliminated. But we argued that this will

not be semantically correct, since line 3 in effect changes the distribution of x . It may appear there

is an easy fix: modify the notion of data dependence so that an observe statement observe(B) is
considered an implicit (random) assignment to the variables occurring in B. This will work for P2
in that then line 3 will have to be in the slice. But the fix does not work for P3 in Example 2.3 where

line 5 is data dependent on line 1 but not dependent on any other lines, in particular line 5 does

not depend on line 4 even if line 4 is considered an implicit (random) assignment to z. Yet it is not
semantically correct to remove lines 2–4. We conclude that non-termination insensitive slicing

cannot readily be adapted for our purposes.

The above considerations strongly suggest, as already observed by Hur et al. [2014], that to slice

imperative probabilistic programs we need a new perspective on dependences.

2.4 Our Approach

A basic intuition behind our approach is that an observe statement can be removed if it does not

depend on something on which the returned variable x also depends. This is the case in Example 2.1,

whereas in Example 2.2, the observe statement is data dependent on the assignment to x , and in

Example 2.3, the observe statement is control dependent on line 2 which is data dependent on the

assignment to x .
More formally, this suggests the following tentative correctness condition for the set Q picked

by slicing:

• Q is “closed under dependence”, i.e., if a program point in Q depends on another program point

then that program point also belongs to Q ;
• Q is part of a “slicing pair”: any observe statement that is sliced away belongs to a set Q0 that is

also closed under dependence and is disjoint from Q .
The above condition will be made precise in Definition 5.6 (Figure 4) which contains a further

requirement, motivated by the next example which addresses potentially non-terminating loops.

2.5 Examples with Various Degrees of Loop Termination

Example 2.4. Consider the program P4 given by
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1 : x := random(ψ4)

2 : y := 0

3 : if x ≥ 2

4 : while y < 3

5 : C
6 : return(x)

where C is a (random) assignment. If C is “y := y + 1” then the loop terminates after at most 3

iterations. In the resulting distribution D ′, for i ∈ {0, 1} we have D ′({x 7→ i}) = D ′({x 7→ i, y 7→
0}) = 1

4
, and for i ∈ {2, 3} we have D ′({x 7→ i}) = D ′({x 7→ i, y 7→ 3}) = 1

4
. For all i we thus have

D ′({x 7→ i}) = ∆′({x 7→ i}), and we see that it is correct to slice P4 into Px .
But if C is “y := 1” then the program will not terminate when x ≥ 2 (and hence the if construct

encodes observe(x < 2)). Thus the resulting distribution D4 is given by D4({x 7→ i}) = 1

4
when

i ∈ {0, 1} and D4({x 7→ i}) = 0 when i < {0, 1}. Thus it is incorrect to slice P4 into Px . Indeed,
Definition 5.6 rules out such a slicing.

Now assume that C is “y := random(ψ4)”. Then the loop may iterate arbitrarily many times, but

will yet terminate with probability 1. Again, it is correct to slice P4 into Px .

3 PROBABILISTIC CONTROL-FLOW GRAPHS

To reason about the slicing of imperative probabilistic programs, we shall assume they are repre-

sented as control-flow graphs. This section precisely defines the kind of probabilistic control-flow

graphs (pCFGs) we consider, as well as some key concepts that are needed to define the seman-

tics (Section 4) and conditions for slicing (Section 5). These concepts are mostly standard (see,

e.g., [Ball and Horwitz 1993; Podgurski and Clarke 1990]) and while defined for non-probabilistic

programs, still apply in a probabilistic setting. Some of the concepts involve flow of data, such as

data dependence (Definition 3.9) and relevant variables (Definition 3.10), while others involve only

control aspects, such as postdomination (Definition 3.1 and Lemma 3.2). We omit (standard) control

dependence since in Section 5 we shall take a recent alternative approach, but we do introduce a

notion (Definition 3.14) which we have found useful for reasoning about control flow graphs.

Just as in the non-probabilistic case, a control-flow graph consists of a set V of nodes. There is

a unique end node with no outgoing edges; from all nodes there must be a path to the end node.
Each node v ∈ V \ {end} has a label Lab(v); also end may have a label which will then be of the

form return(E) with E an arithmetic expression.

A branching node has a label containing a boolean expression and has two outgoing edges, one

to its true-successor and one to its false-successor.
All other nodes (apart from branching nodes and the end node) have exactly one outgoing edge,

to its successor. In the non-probabilistic case, a node with exactly one outgoing edge is labeled with

either x := E (x a program variable) or with skip. But in the probabilistic case, for a pCFG, such a

node may also be labeled by

• observe(B) with B a boolean expression, or

• x := random(ψ ) with ψ a random distribution, where for simplicity we shall assume, unlike

say [Hur et al. 2014], that the random distributionψ contains no program variables. We do not

believe this to be a severe restriction since a random assignment that uses a random distribution

employing program variables can often be encoded using variable-free random distributions.

We assume that one of the nodes is designated start (that node is always numbered 1 in our

examples), and require that from start there are paths to all other nodes.

Figure 1 depicts pCFGs that represent the programs P3 and P4 from Examples 2.3 and 2.4.
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1: x := random(ψ4)

2: x ≥ 2

3: z := random(ψ4)

4: observe(z ≥ 3)

5: return(x)

1: x := random(ψ4)

2: y := 0

3: x ≥ 2

4: y < 3

5: y := ???

6: return(x)

Fig. 1. The pCFGs for P3 (left) and P4 (right) from Examples 2.3 and 2.4.

Wewrite fv(E) for the free variables of E which (as there is no notion of bound variables) includes

all variables that occur in E, similarly for fv(B). We let Def (v) be the variable occurring on the left

hand side if v is a (random) assignment, and let Use(v) be the variables used in v , that is: if v is an

assignment then those occurring on the right hand side; if v is an observe node or a branching
node then those occurring in the boolean expression; and if v is return(E) then fv(E). We demand

that all variables be defined before they are used: for all nodes v ∈ V, for all x ∈ Use(v), and for all

paths π from start to v , there must exist v0 ∈ π with v0 , v such that x ∈ Def (v0).

Definition 3.1 (Postdomination). We say that v1 postdominates v , also written (v,v1) ∈ PD, if
v1 occurs on all paths from v to end; if also v1 , v , v1 is a proper postdominator of v .

It is easy to see that the relation “postdominates” is reflexive, transitive, and (since all nodes

have a path to the end node) antisymmetric. We say that v1 is the first proper postdominator of

v if whenever v2 is another proper postdominator of v then all paths from v to v2 contain v1.

Lemma 3.2. For any v with v , end, there is a unique first proper postdominator of v .

See Appendix B for the proof of this lemma, and of subsequent results not proved in main text.

We shall use the term FPPD(v) for the unique first proper postdominator of v . In Figure 1(right),

FPPD(1) = 2 (while also nodes 3 and 6 are proper postdominators of 1) and FPPD(3) = 6.

Definition 3.3 (LAP). For (v,v ′) ∈ PD, we define LAP(v,v ′) as the maximum length of an acyclic

path from v to v ′. (The length of a path is the number of edges.)

Thus LAP(v,v) = 0 for all nodes v . As expected, we have:

Lemma 3.4. If (v,v1) ∈ PD and (v1,v2) ∈ PD (and thus (v,v2) ∈ PD) then LAP(v,v2) =
LAP(v,v1) + LAP(v1,v2).

To reason about cycles, it is useful to pinpoint the kind of nodes that cause cycles:

Definition 3.5 (Cycle-inducing). A node v is cycle-inducing if with v ′ = FPPD(v) there exists a
successor vi of v such that LAP(vi ,v ′) ≥ LAP(v,v ′).

Note that ifv is cycle-inducing thenv must be a branching node (since ifv has only one successor

then that successor is v ′).

Example 3.6. In Figure 1(right), there are two branching nodes, 3 and 4, both having node 6

as their first proper postdominator. Node 4 is cycle-inducing, since 5 is a successor of 4 with

LAP(5, 6) = 2 > 1 = LAP(4, 6). On the other hand, node 3 is not cycle-inducing, since LAP(3, 6) = 2

which is strictly greater than LAP(4, 6) (= 1) and LAP(6, 6) (= 0).

Lemma 3.7. If v is cycle-inducing then there exists a cycle that contains v but not FPPD(v).
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Proof. Withv ′ = FPPD(v), by assumption there exists a successorvi ofv such that LAP(vi ,v ′) ≥
LAP(v,v ′); observe that v ′ is a postdominator of vi . Let π be an acyclic path from vi to v

′
with

length LAP(vi ,v ′); then the path vπ is a path from v to v ′ that is longer than LAP(vi ,v ′), and
thus also longer than LAP(v,v ′). This shows that vπ cannot be acyclic; hence v ∈ π and thus vπ
contains a cycle involving v but not v ′. □

Lemma 3.8. All cycles will contain at least one node which is cycle-inducing.

Proof. Let a cycle π be given. For each v ∈ π , define f (v) as LAP(v, end). There must exist

v0,v1 ∈ π such that v1 is a successor of v0 and f (v1) ≥ f (v0) (since otherwise we can infer

f (v) < . . . < f (v) for all v ∈ π ). With v ′ = FPPD(v0) we then have (by Lemma 3.4)

LAP(v1,v ′) = f (v1) − f (v ′) ≥ f (v0) − f (v ′) = LAP(v0,v ′)

which shows that v0 is cycle inducing. □

Definition 3.9 (Data dependence). We say that v2 is data dependent on v1, written v1
dd
→ v2, if

there exists x ∈ Use(v2) ∩ Def (v1), and there exists a path π (with at least one edge) from v1 to v2
such that x < Def (v) for all nodes v that are interior in π .

In Figure 1(right), 2

dd
→ 4 and 5

dd
→ 4. A set of nodes Q is closed under data dependence if

whenever v2 ∈ Q and v1
dd
→ v2 then also v1 ∈ Q .

Definition 3.10 (Relevant variable). We say that x is relevant to Q before v , written x ∈ rvQ (v),
if there exists v ′ ∈ Q such that x ∈ Use(v ′), and a path π from v to v ′ such that x < Def (v1) for all
v1 ∈ π \ {v

′}.

For example, in Figure 1(left), rv {4,5}(4) = {x, z} but rv {4,5}(3) = {x}. The following two lemmas

follow from the above definition.

Lemma 3.11. Assume v is an assignment, of the form x := E, with successor v ′. If v ∈ Q then

rvQ (v) = (rvQ (v ′) \ {x}) ∪ fv(E).

This follows since the variables free in E are relevant before v (as v ∈ Q), and all variables

relevant after v are also relevant before v except for x as it is being redefined.

Lemma 3.12. Assume that v is a branching node, with condition B and with successors v1 and v2. If
v ∈ Q then

rvQ (v) = fv(B) ∪ rvQ (v1) ∪ rvQ (v2).

Lemma 3.13. For all nodes v , and all node sets Q1 and Q2,
• rvQ1∪Q2

(v) = rvQ1
(v) ∪ rvQ2

(v).
• rvQ1

(v) ∩ rvQ2
(v) = ∅ if Q1 ∩Q2 = ∅ when Q1 and Q2 are both closed under data dependence.

Proof. The first claim is obvious. For the second claim, assume that Q1 and Q2 are closed under

data dependence, and let us prove the contrapositive: we shall show Q1 ∩Q2 , ∅, assuming that

there exists x ∈ rvQ1
(v) ∩ rvQ2

(v), that is: there exists v1 ∈ Q1 with x ∈ Use(v1) and a path from

v to v1 that does not define x until possibly v1, and there exists v2 ∈ Q2 with x ∈ Use(v2) and a

path from v to v2 that does not define x until possibly v2. As we have demanded that x is defined

before it is used, and that from start there are paths to all nodes, we infer that there is a path π
from start to v where at least one of the nodes in π defines x ; let vx be the last such node. As Q1

and Q2 are closed under data dependence, we infer that vx ∈ Q1 and vx ∈ Q2, yielding the desired

Q1 ∩Q2 , ∅. □
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Next, a concept we have discovered useful for the subsequent development:

Definition 3.14 (Staying outside until). With v ′ a postdominator of v , and Q a set of nodes, we

say that v stays outside Q until v ′ iff for all paths π from v to v ′ the following property holds: if

v ′ occurs in π only at the end, then no node in Q \ {v ′} will occur in π .

Trivially, v stays outside Q until v for all Q and v . In Figure 1(right), node 4 stays outside {1, 6}
until 6, but does not stay outside {1, 5, 6} until 6. Observe that rv {1,6}(4) = {x} = rv {1,6}(6) which
is an instance of a general property:

Lemma 3.15. If v stays outside Q until v ′ and Q is closed under data dependence then rvQ (v) =
rvQ (v ′).

Proof. The claim is trivial if v = v ′, so assume v , v ′. We shall show inclusions each way.

First assume that x ∈ rvQ (v). Thus there exists v0 ∈ Q with x ∈ Use(v0) and a path π from v
to v0 such that x < Def (v1) for all v1 ∈ π \ {v0}. Since v ′ postdominates v , and v stays outside Q
until v ′, we infer that v ′ belongs to π and thus a suffix of π is a path from v ′ to v0 which shows

that x ∈ rvQ (v ′).
Conversely, assume that x ∈ rvQ (v ′). Thus there exists v0 ∈ Q with x ∈ Use(v0) and a path π ′

from v ′ to v0 such that x < Def (v1) for all v1 ∈ π ′ \ {v0}. With π an acyclic path from v to v ′, the
concatenation of π and π ′ is a path from v to v0 which will show the desired x ∈ rvQ (v), provided
that π does not contain a node v1 , v

′
with x ∈ Def (v1). Towards a contradiction, assume that

such a node does exist; with v1 the last such node we would have v1
dd
→ v0 so from v0 ∈ Q and Q

closed under data dependence we could infer v1 ∈ Q which contradicts the assumption that v stays

outside Q until v ′. □

4 SEMANTICS

In this section we shall define the meaning of the pCFGs introduced in the previous section, in

terms of a semantics that manipulates distributions which assign probabilities to stores (Section 4.1).

Section 4.2 defines what it means for sets of variables to be independent wrt. a given distribution.

The semantics of pCFGs is defined in a number of steps: first (Section 4.3) we define distribution

transformers for traversing one edge of the pCFG, and next (Section 4.4) we present a functional, the

fixed point of which provides the meaning of a pCFG. The semantics also applies to sliced programs

and hence provides the meaning of slicing. We conclude by worked out examples (Section 4.5) that

show how to use the semantics to reason about the termination of loops.

Our semantics is different in flavor to the semantics of “structured” imperative probabilistic

programs given in [Gordon et al. 2014] (and [Hur et al. 2014]) which is a variation of one of the

semantics proposed in [Kozen 1985]. In Section 7.3, however, we show that for a pCFG that is the

translation of a structured imperative probabilistic program, the two semantics are adequately

related.

4.1 Stores and Distributions

Let U be the universe of variables. A store s is a partial mapping from U to Z. We write s[x 7→ z] for
the store s ′ that is like s except s ′(x) = z, and write dom(s) for the domain of s . We write S(R) for the
set of stores with domain R, (and write SU for S(U)). If s1 ∈ S(R1) and s2 ∈ S(R2) with R1 ∩ R2 = ∅,

we may define s1 ⊕ s2 with domain R1 ∪R2 the natural way. If s ∈ S(R′) and R ⊆ R′ we define s |R as

the restriction of s to R. With R a subset of U, we say that s1 agrees with s2 on R, written s1
R
= s2, iff

R ⊆ dom(s1) ∩ dom(s2) and for all x ∈ R, s1(x) = s2(x). We assume that there is a function [[ ]] such

that [[E]]s is the integer result of evaluating E in store s and [[B]]s is the boolean result of evaluating

B in store s (the free variables of E and B must be in dom(s)).
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A distribution D ∈ D (we shall later also use the letter ∆) is a mapping from SU to R∞≥0, the non-
negative reals augmented with∞. We define

∑
D as

∑
s ∈SU D(s) which is well-defined even without

measure theory, since SU is a countable set due to our assumption that values are integers (as U can

be assumed finite). Recall that for a random distributionψ , used in random assignments, we require∑
z∈Zψ (z) = 1; similarly, wemight expect D to be a probability distribution in that

∑
D = 1. But we

also need to consider distributions D with

∑
D < 1, since a branching node “splits” a distribution,

and since we saw in Section 2 that parts of a distribution may “disappear” due to observe nodes
or non-terminating loops. On the other hand, we never need to consider distributions D with∑
D > 1. We may therefore implicitly assume that we consider only subprobability distributions,

that is, distributions D with

∑
D ≤ 1 (and thus D(s) ≤ 1 for all s ∈ SU). This assumption is justified

by, e.g., Lemma 4.29 which ensures that the semantics transforms a subprobability distribution into

a subprobability distribution.

We write D = 0 when D(s) = 0 for all s . We define D1 + D2 by stipulating (D1 + D2)(s) =
D1(s) + D2(s), and for c ≥ 0 we define cD by stipulating (cD)(s) = cD(s). Note that D1 + D2 may

not be a subprobability distribution even if D1 and D2 both are (similarly for cD) unless we put
some extra restrictions on D1 and D2. We find it convenient to develop our theory for general

distributions, rather than only for subprobability distributions, so as not to clutter the presentation

with checks that say D1 + D2 is well-defined.

Similarly, it is convenient to include∞ and consider R∞≥0 since it forms a a pointed cpo with the

usual ordering, as 0 is the bottom element and the supremum operator yields the least upper bound

(which could be∞) of a chain. (We refer to Appendix A for the basics of domain theory.) Hence

also the set D of distributions forms a pointed cpo, with ordering defined pointwise (D1 ≤ D2

iff D1(s) ≤ D2(s) for all stores s), with 0 the bottom element, and the least upper bound defined

pointwise. With Dfin the distributions with finite sum, that is D ∈ Dfin iff

∑
D < ∞ (and hence

D(s) < ∞ for all s ∈ SU), we shall state many of our results only for D ∈ Dfin (then our proofs do

not have to worry about divisions by∞).

The following result is often convenient; in particular, it shows that the least upper bound of a

chain {Dk | k} of subprobability distributions is a subprobability distribution.

Lemma 4.1. Assume that {Dk | k} is a chain of (not necessarily subprobability) distributions. With
S a (countable) set of stores, we have∑

s ∈S

(limk→∞ Dk )(s) = limk→∞

∑
s ∈S

Dk (s).

As suggested by the calculation in Example 2.1, we can extend D from a function from stores in

SU to a function on arbitrary stores:

Definition 4.2. For s ∈ S(R), let D(s) =
∑

s0∈SU | s0
R
=s

D(s0).

Observe that D(∅) =
∑
D. The equation in Definition 4.2 holds also when s0 does not range over

SU:

Lemma 4.3. If R ⊆ R′ then for s ∈ S(R) we have

D(s) =
∑

s ′∈S(R′) | s ′R=s

D(s ′).

If R′ = R this is trivial (as the right hand side is then the sum of the singleton set {D(s)}); if
R = ∅ we get D(∅) =

∑
s ′∈S(R′) D(s

′) and thus (by renaming)

Lemma 4.4. For all distributions D, and all R,
∑
D =

∑
s ∈S(R) D(s).
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Definition 4.5 (agrees with). We say thatD1 agrees withD2 on R, writtenD1

R
= D2, ifD1(s) = D2(s)

for all s ∈ S(R).

For example, D1

{x }
= D2 holds when D1({x 7→ 7, y 7→ 5}) = 1 and D2({x 7→ 7, y 7→ 8}) = 1 but

D1,D2 are 0 otherwise. Agreement on a set implies agreement on a subset:

Lemma 4.6. If D1

R′
= D2 and R ⊆ R′ then D1

R
= D2.

Proof. For s ∈ S(R) we infer from Lemma 4.3 that

D1(s) =
∑

s ′∈S(R′) | s ′R=s

D1(s
′) =

∑
s ′∈S(R′) | s ′R=s

D2(s
′) = D2(s).

□

Definition 4.7 (concentrated). We say that a distribution D is concentrated if there exists s0 ∈ SU
such that D(s) = 0 for all s ∈ SU with s , s0; for that s0, we say that D is concentrated on s0.

(Thus the distribution 0 is concentrated on everything.)

4.2 Probabilistic Independence

Some variables of a distribution D may be independent of other variables. That is, knowing the

values of the former gives no extra information about the values of the latter, or vice versa. Formally:

Definition 4.8 (independence). Let R1 and R2 be disjoint sets of variables. We say that R1 and R2

are independent in D iff for all s1 ∈ S(R1) and s2 ∈ S(R2), we have

D(s1 ⊕ s2)
∑

D = D(s1)D(s2). (1)

To motivate the definition, first observe that if

∑
D = 1 it amounts to the well-known definition

of probabilistic independence; next observe that if 0 <
∑
D < ∞ it still amounts to that definition

but for “normalized” probabilities:

D(s1 ⊕ s2)∑
D

=
D(s1)∑

D
·
D(s2)∑

D

Trivially, R1 and R2 are independent in D if D = 0 or R1 = ∅ or R2 = ∅.

Lemma 4.9. If R1 and R2 are independent in D, so are {x1} and {x2} for all x1 ∈ R1, x2 ∈ R2.

Example 4.10. In Example 2.1, {x} and {y} are independent in D1. To see this, first note that D1

produces a non-zero value for only 8 stores: for i = 0 . . . 3, these are the stores {x 7→ i,y 7→ 2},

{x 7→ i,y 7→ 3}.

For i ∈ {0, 1, 2, 3} and j ∈ {2, 3} we have D1({x 7→ i, y 7→ j}) =
1

16

and thus D1({x 7→ i}) =
1

8

and D1({y 7→ j}) =
1

4

. As

∑
D1 =

∑
s ∈SU

D1(s) = 8 ·
1

16

=
1

2

, we have the desired equality

D1({x 7→ i, y 7→ j})
∑

D1 =
1

32

= D1({x 7→ i}) · D1({y 7→ j}).

The equality holds trivially if i < {0, 1, 2, 3} or j < {2, 3} since then D1({x 7→ i, y 7→ j}) = 0 and

either D1({x 7→ i}) = 0 or D1({y 7→ j}) = 0.

Example 4.11. In Example 2.2, {x} and {y} are not independent in D2: D2({x 7→ 3, y 7→
3})

∑
D2 =

3

256
, while D2({x 7→ 3})D2({y 7→ 3}) = 4

256
.

Lemma 4.12. If D is concentrated then R1 and R2 are independent in D for all disjoint R1,R2.
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4.3 Distribution Transformers

To deal with traversing a single edge in the pCFG, we shall define a number of functions with

functionality D→ D. Each such distribution transformer f will be

• additive: if D1 + D2 is a distribution then f (D1 + D2) = f (D1) + f (D2) (this reflects that a

distribution is not more than the sum of its components);

• multiplicative: f (cD) = c f (D) for all distributions D and all real c with 0 ≤ c < ∞;
• continuous: f (limk→∞ Dk ) = limk→∞ f (Dk ) when {Dk | k} is a chain of distributions (this is a

key property for functions on cpos, cf. Appendix A);

• non-increasing:
∑

f (D) ≤
∑
D for all distributionsD (this reflects that distribution may disappear,

as we have seen in our examples, but cannot be created ex nihilo).

Some functions will even be

• lossless:
∑

f (D) =
∑
D for all distributions D (if D is such that this equation holds we say that f

is lossless for D).
Distribution transformers for observe nodes are not lossless (unless the condition is always true).

To show that a function is lossless, it suffices to consider concentrated distributions:

Lemma 4.13. Let f ∈ D→ D be continuous and additive. Assume that for all D that are concen-
trated, f is lossless for D. Then f is lossless.

For a boolean expression B, we define selectB by letting selectB (D) = D ′ where

D ′(s) = D(s) if [[B]]s

D ′(s) = 0 otherwise

Lemma 4.14. For all B, selectB is continuous, additive, multiplicative, and non-increasing; also, for
all D we have

selectB (D) + select¬B (D) = D.

Assignments. For a variable x and an expression E, we define assignx :=E by letting assignx :=E (D)
be a distribution D ′ such that for each s ′ ∈ SU,

D ′(s ′) =
∑

s ∈SU | s ′=s[x 7→[[E]]s]

D(s)

That is, the “new” probability of a store s ′ is the sum of the “old” probabilities of the stores that

become like s ′ after the assignment (this will happen for a store s if s ′ = s[x 7→ [[E]]s]).

Lemma 4.15. Assume that assignx :=E (D) = D ′ and x < R. Then D
R
= D ′.

Lemma 4.16. Each assignx :=E is additive, multiplicative, non-increasing, and lossless.

Proof. That assignx :=E is lossless, and hence non-increasing, follows from Lemma 4.15, with

R = ∅. Additivity and multiplicativity are trivial. □

Lemma 4.17. assignx :=E is continuous.

Random Assignments. For a variable x and a random distribution ψ , we define rassignx :=ψ by

letting rassignx :=ψ (D) be a distribution D ′ such that for each s ′ ∈ SU,

D ′(s ′) =
∑

s ∈SU | s ′
U\{x }
= s

ψ (s ′(x))D(s)

Lemma 4.18. Assume that rassignx :=E (D) = D ′ and x < R. Then D
R
= D ′.
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Lemma 4.19. Each rassignx :=E is additive, multiplicative, non-increasing, and lossless.

Proof. That rassignx :=E is lossless, and hence non-increasing, follows from Lemma 4.18, with

R = ∅. Additivity and multiplicativity are trivial. □

Lemma 4.20. rassignx :=E is continuous.

4.4 Fixed-point Semantics

Having expressed the semantics of a single edge, we shall now express the semantics of a full

pCFG. Our goal is to compute “modification functions” to express how a distribution is modified as

“control” moves from start to end. To accomplish this, we shall solve a more general problem: for

each (v,v ′) ∈ PD, state how a given distribution is modified as “control” moves from v to v ′ along
paths that may contain multiple branches and even loops but which do not contain v ′ until the end.

We would have liked to have a definition of the modification function that is inductive in

LAP(v,v ′), but this is not possible due to cycle-inducing nodes (cf. Definition 3.5). For such nodes,

the semantics cannot be expressed by recursive calls on the successors, but the semantics of (at

least) one of the successors will have to be provided as an argument. This motivates that our main

semantic function be a functional that transforms a modification function into another modification

function, with the desired meaning being the fixed point (cf. Lemma A.2 in Appendix A) of this

functional.

We shall now specify a functional HX which is parametrized on a set X of nodes; the idea is that

only the nodes in X are taken into account. To get a semantics for the original program, we must

let X be the set V of all nodes; to get a semantics for a sliced program, we must let X be the set Q
of nodes included in the slice.

HX operates on PD → D → D and we shall show (Lemma 4.23) that it even operates on

PD→ D→c D (we let→c denote the set of continuous functions) which, as stated in Lemma A.1

in Appendix A, is a pointed cpo:

Lemma 4.21. PD→ (D→c D) is a pointed cpo, with the ordering given pointwise, and with least
element 0 given as λ(v1,v2).λD.0.

Definition 4.22 (HX ). The functionality of HX is given by

HX : (PD→ D→ D) → (PD→ D→ D)

where, given

h0 : PD→ D→ D

we define

h = HX (h0) : PD→ D→ D

by letting h(v,v ′), written h(v ,v
′)
, be stipulated by the rules in Figure 2 that are inductive in

LAP(v,v ′).

We shall now briefly explain a couple of the clauses from Figure 2. Clause 3a expresses that only

nodes in X are taken into account whereas other nodes are treated as if labeled skip.
Clause 3e says that for a branching node v , the distribution is split into a true-part which is

given as input to the true-successor v1, and a false-part given as input to the false-successor v2;
the results are eventually combined. We must make sure it is well-defined to apply the semantic

function to a successorvi and since h
(v ,v ′)

is defined inductively in LAP(v,v ′)we cannot call h(vi ,v
′)

if LAP(vi ,v ′) ≥ LAP(v,v ′); in that case, we will have to use the function h0 given as input to the

functional HX .
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(1) if v ′ = v then h(v ,v
′)(D) = D;

(2) otherwise, if v ′ , v ′′ with v ′′ = FPPD(v) then

h(v ,v
′)(D) = h(v

′′,v ′)(h(v ,v
′′)(D))

(this is well-defined by Lemma 3.4);

(3) otherwise, that is if v ′ = FPPD(v):
(a) if v < X or Lab(v) = skip then h(v ,v

′)(D) = D;
(b) if v ∈ X with Lab(v) of the form x := E then h(v ,v

′)(D) = assignx :=E (D);
(c) if v ∈ X with Lab(v) of the form x := random(ψ ) then h(v ,v

′)(D) = rassignx :=ψ (D);
(d) if v ∈ X with Lab(v) of the form observe(B) then h(v ,v

′)(D) = selectB (D);
(e) otherwise, that is if v is a branching node with condition B, we compute h(v ,v

′)
as follows:

with v1 the true-successor of v and v2 the false-successor of v , let D1 = selectB (D) and
D2 = select¬B (D); we then let h(v ,v

′)(D) be D ′
1
+ D ′

2
where for each i ∈ {1, 2}, D ′i is

computed as

• if LAP(vi ,v ′) < LAP(v,v ′) then D ′i = h
(vi ,v ′)(Di );

• if LAP(vi ,v ′) ≥ LAP(v,v ′) (and thus v is cycle-inducing) then D ′i = h0
(vi ,v ′)(Di ).

Fig. 2. The rules for defining HX (h0)(v,v
′) : D→ D, written h(v ,v

′).

Lemma 4.23. Assume that h0(v ,v
′) is continuous for all (v,v ′) ∈ PD and let h = HX (h0). Then

h(v ,v
′) is continuous for all (v,v ′) ∈ PD.

Proof. This follows by an easy induction in LAP(v,v ′), using Lemmas 4.14, 4.17 and 4.20, and

the fact that the composition of two continuous functions is continuous. □

Thus HX is a mapping from PD→ (D→c D) to itself.

Lemma 4.24. The functional HX is continuous on PD→ (D→c D).

Lemmas 4.21 and 4.24, together with Lemma A.2 in Appendix A, give

Proposition 4.25. The functional HX has a least fixed point (belonging to PD → (D →c D)),
called fix(HX ), and given as limk→∞Hk

X (0), that is the limit of the chain {Hk
X (0) | k} (where H

k
X (0)

denotes k applications of HX to the modification function that maps all distributions to 0).

We can now define the meaning of the original program:

Definition 4.26 (Meaning of Original Program). Given a pCFG, with V the set of its nodes, we

define its meaning ω as ω = fix(HV). Thus ω = limk→∞ωk where ωk = Hk
V(0) (thus ω0 = 0).

Thus for all k > 0 we have ωk = HV(ωk−1). Intuitively speaking, ωk is the meaning of the

program assuming that control is allowed to loop, that is move “backwards”, at most k − 1 times.

(This is somewhat similar to the work by Barraclough et al. [2010] who to reason about slicing

in the presence of non-termination present a semantics where while-loops may iterate at most k
times; they define slicing to be correct if it preserves that semantics for arbitrarily large k , but not
necessarily in the “limit” as we require.)

Recall that we view a slice as a set Q of nodes to be included in the sliced program:

Definition 4.27 (Meaning of Sliced Program). Given a pCFG, and given a slice Q , we define the
meaning of the sliced program as ϕ = fix(HQ ). Thus ϕ = limk→∞ ϕk where ϕk = Hk

Q (0).

Example 4.28. Consider Example 2.1, with Q containing nodes 1 and 4. Thus nodes 2 and 3 are

treated like skip nodes, and for D we thus have ϕ(1,4)(D) = rassignx :=ψ4

(D).

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.



A Theory of Slicing for Imperative Probabilistic Programs 1:15

1

2

3

4

5

T

F

1

2

3

4

5
6

T
F

T F

1: x := random(ψ4)

2: x ≥ 2

3: z := random(ψ4)

4: observe(z ≥ 3)

5: return(x)

1: x := random(ψ4)

2: y := 0

3: x ≥ 2

4: y < 3

5: y := ???

6: return(x)

Fig. 3. The pCFGs for P3 (left) and P4 (right) from Examples 2.3 and 2.4 (copied from Figure 1).

The following result is applicable to the original program as well as to the sliced program:

Lemma 4.29. Given a set X of nodes, let h = fix(HX ), and for each k ≥ 0 let hk = Hk
X (0). Then

for each (v,v ′) ∈ PD, h(v ,v
′) is additive, multiplicative and non-increasing, as is each hk

(v ,v ′), in
particular (taking X = V) each ωk

(v ,v ′).

On the other hand, h(v ,v
′)
may fail to be lossless, due to observe nodes, or due to loops with

non-zero probability of non-termination. Recall that a primary contribution of this article is to show

that if a loop is lossless it may be safe to slice it away, even if it occurs in a branch (cf. Example 2.4).

Example 4.30. Consider a pCFG where a branching node v has condition B, true-successor v ′,
and false-successor v (itself). Then for all D we have

HV(h0)
(v ,v ′)(D) = selectB (D) + h0(v ,v

′)(select¬B (D))

We shall now prove by induction in k that for all k > 0 and all D we have ωk
(v ,v ′)(D) = selectB (D).

This is obvious if k = 1 (as ω1 = HV(0)), and for k > 1 we inductively have (as ωk = HV(ωk−1))

ωk
(v ,v ′)(D) = selectB (D)+ωk−1

(v ,v ′)(select¬B (D)) = selectB (D)+selectB (select¬B (D)) = selectBD.

We infer that for all D we have ω(v ,v
′)(D) = selectB (D). This demonstrates (as mentioned in the

beginning of Section 2.3) that in our semantics, observe(B) is equivalent to while ¬B do skip.

The next two lemmas provide justification that Definition 3.14 is indeed useful: if v stays outside

Q until v ′ then the sliced program behaves as the identity from v to v ′, and so does the original

program — at least on the relevant variables — if it is lossless.

Lemma 4.31. Given a pCFG, a slice Q , and (v,v ′) ∈ PD such that v stays outside Q until v ′. We
then have HQ (h)

(v ,v ′)(D) = D for all D ∈ D and all modification functions h.

Lemma 4.32. Let (v,v ′) ∈ PD. Assume that Q is closed under data dependence and that v stays
outside Q until v ′ (by Lemma 3.15 it thus makes sense to define R = rvQ (v) = rvQ (v ′)).

For all distributions D, if
∑
ω(v ,v

′)(D) =
∑
D then ω(v ,v

′)(D)
R
= D.

4.5 Formalizing Various Degrees of Loop Termination

We shall now again consider Example 2.4, with pCFG depicted in the right of Figure 3 (which for

the reader’s convenience we copy from Figure 1). We shall consider various possibilities for the

assignment at node 5; we shall prove that ω(4,6) is lossless when Lab(5) is an assignment y := y + 1
or a random assignment y := random(ψ4), but not when it is y := 1.

It is convenient to define, for integers i, j and for real r ≥ 0, the concentrated distribution Dr
i , j

by stipulating that (as U = {x,y})

Dr
i , j (s) = r if s = {x 7→ i, y 7→ j}

Dr
i , j (s) = 0 otherwise
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For all initial distributions D0 with

∑
D0 = 1, it will be the case that with D3 = ω

(1,3)(D0) we have

D3 =
∑

i ∈{0,1,2,3}

D0.25
i ,0

since y becomes zero in line 2. This shows that ω(1,6)(D0) does not depend on D0 (as long as D0 is a

probability distribution) and may hence be considered the “meaning” of the program; to compute it,

we need to compute ω(3,6)(D3) and for that purpose (cf. clause (3e) in Figure 2) we need to compute

ω(4,6)(D4) where D4 = selectx ≥2(D3) is given by

D4 =
∑
i=2,3

D0.25
i ,0 .

For slicing purposes, our main interest is to investigate, for the various instantiations mentioned in

Example 2.4, whether ω(4,6) is lossless; by Lemma 4.13, that will hold iff ω(4,6) is lossless for each
Dr
i , j . Our first goal is to find an equation for ω(4,6)(Dr

i , j ), with i and r ≥ 0 given; we shall use that

LAP(5, 6) > LAP(4, 6) (cf. Example 3.6) and our calculations will depend on j.
First consider j ≥ 3. Then selecty<3(Dr

i , j ) = 0 and select¬(y<3)(Dr
i , j ) = Dr

i , j ; thus we see from

clause (3e) in Figure 2 (substituting ωk−1 for h0) that for k ≥ 1 we have

ωk
(4,6)(Dr

i , j ) = ωk−1
(5,6)(0) + ωk

(6,6)(Dr
i , j ) = Dr

i , j

and we thus infer that

∀j ≥ 3 : ω(4,6)(Dr
i , j ) = Dr

i , j . (2)

Similarly, clause (3e) in Figure 2 also gives us

∀j < 3,∀k ≥ 1 : ωk
(4,6)(Dr

i , j ) = ωk−1
(5,6)(Dr

i , j ). (3)

Also, clause (2) in Figure 2 (and the definition of ω0) gives us

∀k ≥ 0,∀D ∈ Dist : ωk
(5,6)(D) = ωk

(4,6)(ωk
(5,4)(D)). (4)

We shall now look at the various cases for the assignment at node 5.

y := 1 For all k ≥ 1, and all j < 3, we have ωk
(5,4)(Dr

i , j ) = Dr
i ,1 and by line (4) thus ωk

(5,6)(Dr
i , j ) =

ωk
(4,6)(Dr

i ,1) (which also holds for k ≥ 0). Thus from line (3) we get that ωk
(4,6)(Dr

i , j ) =

ωk−1
(4,6)(Dr

i ,1) for all k ≥ 1 and j < 3. As ω0 = 0, we see by induction that ωk
(4,6)(Dr

i , j ) = 0

for all k ≥ 0 and j < 3, and for all j < 3 we thus have

ω(4,6)(Dr
i , j ) = 0

which confirms that from node 4 the probability of termination is zero (actually termination

is impossible) and that certainly ω(4,6) is not lossless.
y := y + 1 For all k ≥ 1, and all j < 3, we have ωk

(5,4)(Dr
i , j ) = Dr

i , j+1 and by line (4) thus

ωk
(5,6)(Dr

i , j ) = ωk
(4,6)(Dr

i , j+1) (which also holds for k ≥ 0). Thus from line (3) we get that

ωk
(4,6)(Dr

i , j ) = ωk−1
(4,6)(Dr

i , j+1) for all k ≥ 1 and j < 3. We infer that for all j < 3, and all

k > 3 − j,

ωk
(4,6)(Dr

i , j ) = ωk−(3−j)
(4,6)(Dr

i ,3) = Dr
i ,3

and thus we infer that for all j < 3 we have

ω(4,6)(Dr
i , j ) = Dr

i ,3

which together with line (2) confirms that ω(4,6) is lossless, as we would expect since any

loop from node 4 eventually (and soon) terminates.
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y := random(ψ4) For all k ≥ 1, and all j < 3, we have

ωk
(5,4)(Dr

i , j ) = 0.25 · (Dr
i ,0 + D

r
i ,1 + D

r
i ,2 + D

r
i ,3)

and by line (4), together with the fact (Lemma 4.29) that ωk
(4,6)

is additive and multiplicative,

thus

ωk
(5,6)(Dr

i , j ) = 0.25 · (ωk
(4,6)(Dr

i ,0) + ωk
(4,6)(Dr

i ,1) + ωk
(4,6)(Dr

i ,2) + ωk
(4,6)(Dr

i ,3))

(which also holds for k ≥ 0) so from line (3) we get that

∀k ≥ 1, j < 3 : ωk
(4,6)(Dr

i , j ) = 0.25 ·

( ∑
q=0,1,2,3

ωk−1
(4,6)(Dr

i ,q)

)
. (5)

One can easily prove by induction in k that if j1 < 3 and j2 < 3 then ωk
(4,6)(Dr

i , j1 ) =

ωk
(4,6)(Dr

i , j2 ) so if we define Dk = ωk
(4,6)(Dr

i ,0) we have ωk
(4,6)(Dr

i , j ) = Dk for all j < 3. We

shall now establish

limk→∞ Dk = Dr
i ,3 (6)

which together with line (2) will demonstrate that ω(4,6) is lossless, which tells us that any

loop from node 4 will terminate with probability 1.

To show equation (6), observe that line (5) makes it easy to prove by induction that Dk (s) =
0 = Dr

i ,3(s) for all k ≥ 0 when s , {x 7→ i, y 7→ 3}, and also gives the recurrences

D0(s3) = 0

D1(s3) = 0

Dk (s3) = 0.75 · Dk−1(s3) + 0.25 · r for k ≥ 2

when s3 = {x 7→ i, y 7→ 3}. We must prove that limk→∞ Dk (s3) = r (as D
r
i ,3(s3) = r ) but this

follows, with a = 0.75 and b = 0.25, from a general result:

Lemma 4.33. If {xi | i} is a sequence of non-negative reals, satisfying x0 = x1 = 0 and
xk = a xk−1 + b r for k > 1 where a,b, r are non-negative reals with b > 0 and a + b = 1, then
limi→∞ xi = r .

Proof. Observe that: (i) {xi | i} is a chain (as can be seen by induction since x0 = x1 ≤ x2
and if xk ≤ xk+1 then xk+1 ≤ xk+2); (ii) xi ≤ r for all i since if xk > r for some k then

xk+1 = axk + br = (1 − b)xk + br = xk + b(r − xk ) < xk which contradicts {xi | i}
being a chain; (iii) thus limi→∞ xi < ∞ and since limi→∞ xi = a · limi→∞ xi + br we get

b · limi→∞ xi = (1 − a)limi→∞ xi = br from which we infer the desired limi→∞ xi = r . □

5 CONDITIONS FOR SLICING

With Q a slice, we now develop conditions for Q that ensure semantic correctness. It is standard

to require Q to be closed under data dependence, cf. Def. 3.9, and additionally also under some

kind of “control dependence”, a concept on which we elaborate in this section, and then study the

extra conditions needed in our probabilistic setting. Eventually, Definition 5.6 gives conditions that

involve not only Q but also another slice Q0 containing all observe nodes to be sliced away. As

stated in Proposition 6.4, these conditions are sufficient to establish probabilistic independence of

Q andQ0. This in turn is crucial for establishing the correctness of slicing, as stated in Theorem 6.6.
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5.1 Weak Slice Sets

Danicic et al. [2011] showed that various kinds of control dependence can all be elegantly expressed

within a general framework whose core is the following notion:

Definition 5.1 (next visible). With Q a set of nodes, and v a node, a node v ′ is a next visible in Q
of v iff v ′ ∈ Q ∪ {end}, and v ′ occurs on all paths from v to a node in Q ∪ {end}.

A node v can have at most one next visible inQ . It thus makes sense to write v ′ = nextQ (v) if v ′

is a next visible in Q of v . If v ∈ Q ∪ {end} then nextQ (v) = v , and if v ′ = nextQ (v) then v ′ is a
postdominator of v . We say that Q provides next visibles iff nextQ (v) exists for all nodes v .

In the pCFG for P3 (Figure 3(left)), lettingQ = {1, 3, 5}, node 5 is a next visible inQ of 4: all paths

from 4 to a node in Q will contain 5. But no node is a next visible in Q of 2: node 3 is not since

there is a path from 2 to 5 not containing 3, and node 5 is not since there is a path from 2 to 3 not

containing 5. Therefore Q cannot be a suitable slice: node 1 is not a branching node and hence can

have only one successor in the sliced program, but we have no reason to choose either of the nodes

3 and 5 over the other as that successor. This motivates the following definition:

Definition 5.2 (weak slice set). We say that Q is a weak slice set iff it provides next visibles, and

is closed under data dependence.

While the importance of “provides next visible” was recognized already in [Amtoft 2008; Ran-

ganath et al. 2007], Danicic et al. were the first to realize that it is the key property (together with

data dependence) to ensure semantically correct slicing; they call the property “weakly committing”

(thus our use of “weak”). In this article we have found it convenient to employ definitions slightly

different from theirs, in particular we always consider end as “visible”, and we demand nextQ (v) to
exist also when v is not reachable from Q .

Observe that the empty set is a weak slice set, since it is vacuously closed under data dependence,

and since for all v we have end = next ∅(v); also the set V of all nodes is a weak slice set since it is

trivially closed under data dependence, and since for all v we have v = nextV(v). The property of

being a weak slice set is also closed under union:

Lemma 5.3. If Q1 and Q2 are weak slice sets, also Q1 ∪Q2 is a weak slice set.

The following result is frequently used:

Lemma 5.4. Assume that Q and v are such that nextQ (v) exists, and that v < Q ∪ {end}. Then v
stays outside Q until FPPD(v).

Proof. Letv ′ = FPPD(v) and assume, to get a contradiction, that π is a path fromv tov ′ where
v ′ occurs only at the end and which contains a node in Q \ {v ′}; let v0 be the first such node. We

infer that v0 , v (as v < Q) and v0 , v
′
, and that v0 = nextQ (v). Thus v0 is a proper postdominator

of v , which entails (since v ′ = FPPD(v)) that v ′ occurs on all paths from v to v0. For the path π it

is thus the case that v ′ occurs before v0, which contradicts our assumption that v ′ occurs only at

the end. □

A weak slice set that covers all cycles must include all nodes that are cycle-inducing (cf. Defini-

tion 3.5):

Lemma 5.5. Assume that Q provides next visibles, and that each cycle contains a node in Q . Then
all cycle-inducing nodes belong to Q .

Proof. Let v be a cycle-inducing node, and let v ′ = FPPD(v) and v ′′ = nextQ (v). By Lemma 3.7

there is a cycle π which contains v but not v ′. By assumption, there exists v1 that belongs to π and

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.



A Theory of Slicing for Imperative Probabilistic Programs 1:19

also to Q . Since there is a path within π from v to v1, v
′′
will occur on that path; hence v ′′ belongs

to π , and v ′′ ∈ Q (as a cycle cannot contain end).
We know that v ′′ is a postdominator of v . Assume, to get a contradiction, that v ′′ is a proper

postdominator of v ; then v ′ will occur on all paths from v to v ′′, and hence v ′ belongs to π which

is a contradiction. We infer v ′′ = v and thus the desired v ∈ Q . □

5.2 Adapting to the Probabilistic Setting

As already motivated through Examples 2.1–2.4, the key challenge in slicing imperative probabilistic

programs is how to handle observe nodes. In Section 2 we hinted at some tentative conditions a

slice Q should satisfy; we can now phrase them more precisely:

(1) Q must be a weak slice set, and there exists another weak slice set Q0 such that

(2) Q and Q0 are disjoint and

(3) all observe nodes belong to either Q or Q0.

In applications, we shall also demand that Q contains the “slicing criterion”, that is the nodes of

interest. For imperative probabilistic programs, the slicing criterion will often be the singleton set

{end} where end is labeled return(x), and in our subsequent development we shall indeed require

end ∈ Q (even though this requirement is not needed for the statement of correctness, Theorem 6.6,

in Section 6). In particular, the algorithm BSP for computing an optimal slice (Figure 14) incorporates

this requirement (but could be easily modified to accommodate another slicing criterion).

We shall now see how these conditions work out for our example programs (represented as

pCFGs).

For programs P1, P2, the control flow is linear and hence all nodes have a next visible, no matter

the choice of Q ; thus a node set is a weak slice set iff it is closed under data dependence.

For P1 we may chooseQ = {1, 4} andQ0 = {2, 3} as they are disjoint, and both closed under data

dependence. As can be seen from Definitions 4.27 and 4.22, the resulting sliced program has the

same meaning as the program that results from P1 by replacing all nodes not in Q by skip, that is

1 : x := random(ψ4);

2 : skip;
3 : skip;
4 : return(x)

which is obviously equivalent to Px as defined in Section 2.

Next consider the program P2 where Q should contain 4 and hence (by data dependence) also

contain 1. Now assume, in order to remove the observe node (and produce Px ), that Q does not

contain 3. Then Q0 must contain 3, and (as Q0 is closed under data dependence) also 1. But then Q
andQ0 are not disjoint, which contradicts our requirements. ThusQ does contain 3, and hence also

2. That is, Q = {1, 2, 3, 4}. We see that the only possible slicing is the trivial one.

Any slice for P3 (Figure 3) will also be trivial. From 5 ∈ Q we infer (by data dependence) that

1 ∈ Q . Assume, to get a contradiction, that 4 < Q . As 4 is an observe node we must thus have

4 ∈ Q0, and for node 2 to have a next visible in Q0 we must then also have 2 ∈ Q0 which by data

dependence implies 1 ∈ Q0 which contradicts Q and Q0 being disjoint. This shows 4 ∈ Q which

implies 3 ∈ Q (by data dependence) and 2 ∈ Q (as otherwise 2 has no next visible in Q).
For P4, we need 6 ∈ Q and by data dependence thus also 1 ∈ Q ; actually, our tentative conditions

can be satisfied by choosingQ = {1, 6} andQ0 = ∅, as for allv , 1 wewould then have 6 = nextQ (v).
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Definition 5.6 (slicing pair). Let Q,Q0 be sets of nodes in a given pCFG. (Q,Q0) is a slicing pair iff

(1) Q,Q0 are both weak slice sets with end ∈ Q ;
(2) Q,Q0 are disjoint;

(3) all observe nodes are in Q ∪Q0; and

(4) for all cycle-inducing nodes v , either
(a) v ∈ Q ∪Q0, or

(b) ω(v ,F PPD(v)) is lossless (in which case we shall say that v is lossless).

Fig. 4. The definition of a slicing pair.

From Definitions 4.27 and 4.22 we see that the resulting sliced program has the same meaning as

1 : x := random(ψ4);

2 : skip;
3 : skip;
6 : return(x)

Yet, in Example 2.4 we saw that in general (as when node C is labeled y := 1) this is not a correct
slice of P4. This reveals a problem with our tentative correctness conditions; they do not take into

account that observe nodes may be “encoded” as non-terminating loops.

To repair that, we shall demand that just like all observe nodes must belong to either Q or Q0,

also all cycles must touch either Q or Q0, except if the cycle is known to terminate with probability

1. Allowing this exception is an added contribution to the conference version of this article [Amtoft

and Banerjee 2016].

Observe that all cycles touch either Q or Q0 iff all cycle-inducing nodes belong to Q or Q0: “only

if” follows from Lemma 5.5 (and 5.3), and “if” follows from Lemma 3.8.

We have motivated adding condition 4 in the (final) definition of what is a correct slice, listed in

Figure 4 and a main technical contribution of this article.

For Example 2.4, we saw in Example 3.6 that 4 is the only cycle-inducing node, and we must

demand either 4 ∈ Q ∪Q0 or that ω
(4,6)

is lossless. Recalling the findings in Section 4.5, we see that:

(1) If node 5 is labeled y := y + 1 or y := random(ψ4) then we don’t need 4 ∈ Q ∪Q0, and thus

({1, 6}, ∅) is a valid slicing pair.

(2) If node 5 is labeled y := 1 then we must require 4 ∈ Q ∪Q0. But 4 ∈ Q0 is impossible, as then

3 ∈ Q0 (since otherwise 3 has no next visible inQ0) which by data dependence implies 1 ∈ Q0

which contradicts Q ∩Q0 = ∅, since 1 ∈ Q . Thus 4 ∈ Q , and then 3 ∈ Q (since otherwise 3

has no next visible inQ) and 2, 5 ∈ Q (by data dependence). We see thatQ contains all nodes,

giving a trivial slice.

Let us next look at the pCFG in Figure 11(right) (on page 32) and see if we can remove nodes 4 and 6.

As they are not lossless, we need 4, 6 ∈ Q0; as node 3 must have a next visible inQ0, also 3 ∈ Q0. As

8 = end ∈ Q , by data dependence also 5, 7 ∈ Q ; as node 3 must have a next visible in Q , also 3 ∈ Q .

But this conflicts withQ∩Q0 = ∅. We thus cannot remove the loops in Figure 11(right), even though

that would be possible by standard slicing techniques if nodes 1,2 were deterministic assignments

(say reading from input). Thus our approach is not a conservative extension of standard slicing;

this may appear somewhat disconcerting but is not unexpected given that in Section 2.3 we argued

that the probabilistic setting requires a radically different approach to slicing.

As one may intuitively expect, a distribution transformer is lossless if the corresponding path

stays clear of observe-nodes and of non-lossless cycles:
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Lemma 5.7. Assume Q ′ is a node set which contains all observe nodes, and that for each cycle-
inducing node v0, either v0 ∈ Q ′ or ω(v0,F PPD(v0)) is lossless. If v stays outside Q ′ until v ′ then∑
ω(v ,v

′)(D) =
∑
D for all D.

We can now state a key result which shows that nodes not in a slicing pair are not relevant for

computing the final result:

Lemma 5.8. Assume that (Q,Q0) is a slicing pair, and that v stays outside Q ∪Q0 until v ′. With
R = rvQ∪Q0

(v) = rvQ∪Q0
(v ′) (equality holds by Lemma 3.15), we have ω(v ,v

′)(D)
R
= D for all D.

Proof. With the given assumptions, Lemma 5.7 is applicable (with Q ′ = Q ∪Q0) to establish

that for all D we have

∑
ω(v ,v

′)(D) =
∑
D. The claim now follows from Lemma 4.32. □

6 SLICING AND ITS CORRECTNESS

In this section, we shall embark on proving the semantic correctness of the slicing conditions

developed in Section 5. Doing so involved at least two major challenges: rephrasing the fixed

point semantics so as to facilitate proofs by induction, and stating a result about probabilistic

independence strong enough to justify the removal of (for example) non-terminating loops. We

shall address these challenges in the next two subsections, and then in Section 6.3 present the

correctness result.

6.1 Alternative Convergence Towards Fixed Point

A proof of semantic correctness will involve reasoning about the behavior ofω(v ,v
′)
for (v,v ′) ∈ PD,

but which reasoning principle should we employ? Just doing induction in LAP(v,v ′) will obviously
not work for a cycle-inducing node; instead, the following approach is often feasible:

(1) prove results about ωk
(v ,v ′)

by induction in k , where for each k we do an inner induction

on LAP(v,v ′) (possible since ωk+1 = HV(ωk ) where HV(ωk )
(v ,v ′)

is defined inductively in

LAP(v,v ′));
(2) lift the results about ωk

(v ,v ′)
to results about the limit ω(v ,v

′)
.

Unfortunately, this approach does not work for a property such as losslessness as this property

will hold only in the limit. To see why this is a problem for proving the correctness of slicing, again

consider the pCFG for P4 depicted in Figure 3(right), with Lab(5) given by y := random(ψ4). We

saw in Section 4.5 that then ω(4,6) is lossless, obviously implying that also ω(1,6) is lossless, so for

all D0 with

∑
D0 = 1 we will have ω(1,6)(D0)({x 7→ i}) = 0.25 for i ∈ {0, 1, 2, 3}. With ϕ and ϕk

as in Definition 4.27, using Q = {1, 6} since ({1, 6}, ∅) is a slicing pair (cf. Section 5.2), we will

also have ϕ(1,6)(D0)({x 7→ i}) = ϕk
(1,6)(D0)({x 7→ i}) = 0.25 for all i ∈ {0, 1, 2, 3} and all k ≥ 0.

Thus we have the expected correctness result ω(1,6)(D0)
{x }
= ϕ(1,6)(D0). To prove such a result in

general, it would be helpful if one could prove a similar relation for ωk and ϕk , in particular that

for each k ≥ 0 there exists c such that ωk
(1,6)(D0)

{x }
= c · ϕk

(1,6)(D0). But for the given example this

cannot be the case, since for each k ≥ 0 we have ωk
(1,6)(D0)({x 7→ 1}) = 0.25 (forcing c = 1) but

ωk
(1,6)(D0)({x 7→ 3}) < 0.25 (forcing c < 1).

To fix this problem, we shall introduce a family (k ≥ 0) of functions

γk : PD→ (D→c D)

such that we can prove that {γk | k} is a chain with limk→∞ γk = ω, Of course, already {ωk | k} is
such a chain, but we shall define γk in a way such that certain properties (cf. Lemma 6.9) hold from

the beginning of the fixed point iteration, not just at the limit. This is achieved by this inductive

definition:
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Definition 6.1. Given (as implicit parameter) a slicing pair (Q,Q0), for k ≥ 0 define γk by:

γ0
(v ,v ′) = ω(v ,v

′)
if v stays outside Q ∪Q0 until v

′

γ0
(v ,v ′) = 0 otherwise

γk = HV(γk−1) for k > 0

Lemma 6.2. Assume that v stays outside Q ∪Q0 until v ′. Then γk (v ,v
′) = ω(v ,v

′) for all k ≥ 0.

In the above example, since 3 stays outside {1, 6} until 6, for all k ≥ 0 we have γk
(3,6) = ω(3,6)

and thus for all D0 also γk
(1,6)(D0)

{x }
= ϕk

(1,6)(D0). We see that (for this example) we accomplish

our goal, that the correctness result should hold not just in the limit but also for each iteration, by

working with γk rather than with ωk (recall that we did not have ωk
(1,6)(D0)

{x }
= ϕk

(1,6)(D0)).

Observe that γ0
(v ,v ′) ≤ γ1

(v ,v ′)
holds for all (v,v ′) ∈ PD since by Lemma 6.2 we have equality

when v stays outside Q ∪Q0 until v
′
, and the left hand side is 0 otherwise. Thus γ0 ≤ γ1 which

enables us (since HV is monotone) to infer inductively that {γk | k} is a chain. Moreover, since

0 = ω0 ≤ γ0 ≤ ω trivially holds, we can inductively (since ω is a fixed point of HV) infer that

ωk ≤ γk ≤ ω for all k ≥ 0. This allows us to deduce that limk→∞ γk = ω; we have thus proved:

Proposition 6.3. The sequence {γk | k} is a chain, with limk→∞ γk = ω.

6.2 Probabilistic Independence

A main contribution of this article is that we have provided (in Definition 5.6) syntactic conditions

for probabilistic independence, in that the Q-relevant variables are probabilistically independent

(as defined in Definition 4.8) of the Q0-relevant variables, assuming they are at start (which will

be the case if say no variables are relevant there). This follows from

Proposition 6.4 (Independence). Let (Q,Q0) be a slicing pair, and let D ∈ Dfin be given with
D ′ = ω(v ,v

′)(D) (thus also D ′ ∈ Dfin). If rvQ (v) and rvQ0
(v) are independent in D then rvQ (v ′) and

rvQ0
(v ′) are independent in D ′.

To prove this proposition, and to justify that nodes in Q0 are sliced away, it turned out that we

need to prove a stronger result:

Lemma 6.5. Let (Q,Q0) be a slicing pair. LetD ∈ Dfin be given withD ′ = ω(v ,v
′)(D). Let R = rvQ (v),

R′ = rvQ (v ′), R0 = rvQ0
(v), and R′

0
= rvQ0

(v ′). If R and R0 are independent in D then
(1) R′ and R′

0
are independent in D ′

(2) if v stays outside Q until v ′ (and by Lemma 3.15 thus R′ = R) then for all s ∈ S(R) we have

D(s)
∑

D ′ = D ′(s)
∑

D

(3) if v stays outside Q0 until v ′ (and thus R′0 = R0) then for all s0 ∈ S(R0) we have

D(s0)
∑

D ′ = D ′(s0)
∑

D

We shall now briefly sketch (details in Appendix B) how part 2 of the Lemma justifies that

nodes in Q0 are sliced away. For if v ∈ Q0 then v < Q which by Lemma 5.4 implies (assuming

v ′ = FPPD(v)) that v stays outside Q until v ′. But then part 2 ensures that for the variables R
relevant for the sliced program, the distribution at v ′ equals the distribution at v except for a

constant factor.
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6.3 Correctness of Slicing

We can now precisely phrase the desired correctness result, which (as hinted at in Section 2) states

that the sliced program produces the same relative distribution over the values of the relevant

variables as does the original program, and will be at least as “defined”:

Theorem 6.6. For a given pCFG, let (Q,Q0) be a slicing pair, and letϕ = fix(HQ ) (cf. Definition 4.27)
be the meaning of the sliced program. For a given (v,v ′) ∈ PD, and a given D ∈ Dfin such that rvQ (v)
and rvQ0

(v) are independent in D, there exists a real number c (depending on v,v ′ and D) with
0 ≤ c ≤ 1 such that

ω(v ,v
′)(D)

rvQ (v ′)
= c · ϕ(v ,v

′)(D).

Moreover, if v stays outside Q0 until v ′ then c = 1.

It may happen that c = 0, since it is possible that the original program never terminates but the

sliced program may terminate, for example if the original program starts with an observe(false)
node as such a node can be sliced away.

In Theorem 6.6, we need to assume that theQ-relevant andQ0-relevant variables are independent,

so as to allow observe nodes in Q0 to be sliced away (since then such nodes will not change the

relative distribution of the Q-relevant variables), and also to allow certain branching nodes to be

sliced away.

To prove Theorem 6.6 (as done at the end of this section), we need to define a counterpart to γk
(Definition 6.1) for the sliced program:

Definition 6.7. Given a slicing pair (Q,Q0), for k ≥ 0 define Φk as follows:

Φ0

(v ,v ′)(D) = D if v stays outside Q ∪Q0 until v
′

Φ0

(v ,v ′)(D) = 0 otherwise

Φk = HQ (Φk−1) for k > 0

Lemma 6.8. {Φk | k} is a chain, with limk→∞ Φk = limk→∞ ϕk = ϕ.

Proof. By Lemma 4.31 we get ϕ0 ≤ Φ0 ≤ ϕ1 so by the monotonicity of HQ we inductively get

ϕk ≤ Φk ≤ ϕk+1 for all k ≥ 0

which yields the claim. □

We can now express γk in terms of Φk , where we allow (so as to facilitate a proof by induction

in LAP(v,v ′)) the sliced program to be given a distribution that, while agreeing on the relevant

variables, may differ from the distribution given to the original program:

Lemma 6.9. For a given pCFG, let (Q,Q0) be a slicing pair. For all k ≥ 0, all (v,v ′) ∈ PD with
R = rvQ (v) and R′ = rvQ (v ′) and R0 = rvQ0

(v), all D ∈ Dfin such that R and R0 are independent in

D, and all ∆ ∈ Dfin such that D R
= ∆, we have

γk
(v ,v ′)(D)

R′
= cv ,v

′

k ,D · Φk
(v ,v ′)(∆).

Here the numbers cv ,v
′

k ,D are given by

Definition 6.10. For k ≥ 0, (v,v ′) ∈ PD, and D ∈ Dfin, the number cv ,v
′

k ,D is given by the following

rules that are inductive in LAP(v,v ′):
(1) if v = v ′ then cv ,v

′

k ,D = 1
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(2) otherwise, if v ′ , v ′′ where v ′′ = FPPD(v) then

cv ,v
′

k ,D = c
v ,v ′′

k ,D · c
v ′′,v ′

k ,γk (v ,v′′)(D)

(3) otherwise, if v stays outside Q0 until v
′
then cv ,v

′

k ,D = 1

(4) otherwise, if D = 0 then cv ,v
′

k ,D = 1 else

cv ,v
′

k ,D =

∑
γk
(v ,v ′)(D)∑
D

.

We could have swapped the order of the first three clauses of Definition 6.10, since it is easy to

prove by induction in LAP(v,v ′) that

Lemma 6.11. If v stays outside Q0 until v ′ then c
v ,v ′

k ,D = 1 for all k ≥ 0 and D ∈ Dfin.

Since each γk is non-increasing (Lemma B.12), it is easy to prove by induction in LAP(v,v ′) that

Lemma 6.12. We have 0 ≤ cv ,v
′

k ,D ≤ 1 for all k ≥ 0, (v,v ′) ∈ PD, D ∈ Dfin.

Since we know (Proposition 6.3) that {γk | k} is a chain, we get:

Lemma 6.13. {cv ,v
′

k ,D | k} is a chain for each (v,v ′) ∈ PD and D ∈ Dfin.

Proof of Theorem 6.6. We are given (v,v ′) ∈ PD, and D ∈ Dfin such that rvQ (v) and rvQo (v) are
independent in D; let R′ = rvQ (v ′). For each s ′ ∈ S(R′) we have the calculation

ω(v ,v
′)(D)(s ′)

(Proposition 6.3) = limk→∞ γk
(v ,v ′)(D)(s ′)

(Lemma 6.9) = limk→∞ (c
v ,v ′

k ,D · Φk
(v ,v ′)(D)(s ′))

(Lemma 6.8) = (limk→∞ c
v ,v ′

k ,D ) · ϕ
(v ,v ′)(D)(s ′).

With c = limk→∞ c
v ,v ′

k ,D (well-defined by Lemma 6.13) we thus have

ω(v ,v
′)(D)

R′
= c · ϕ(v ,v

′)(D)

which yields the result since if v stays outside Q0 until v
′
then c = 1 (by Lemma 6.11).

7 STRUCTURED PROGRAMS

Probabilistic programming is usually, as in [Gordon et al. 2014; Hur et al. 2014], expressed using

structured programs, rather than control flow graphs. In this section we shall show that our results

on slicing of pCFGs can be applied to the slicing of structured imperative probabilistic programs.

We first present (Section 7.1) the syntax and semantics of the structured imperative probabilistic

language SL we are considering and next we present (Section 7.2) a translation from SL to pCFGs;

we then show (Section 7.3) an adequacy result relating the semantics of a structured probabilistic

program to the semantics of its translation into a pCFG. We next address slicing, first defining

(Section 7.4) what it means to slice a structured imperative probabilistic program, and then stating

(Section 7.5) a result expressing the correctness of slicing.

7.1 The Structured Imperative Probabilistic Language

We shall consider a statement-based language SL that is structured in that each non-atomic statement

is built compositionally from constructs that combine sub-statements.
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S ::= S1 ; S2

| l : skip
| l : x := E

| l : x := random(ψ )
| l : observe(B)
| l : if B then S1 else S2
| l : while B do S

P ::= S ; return(E)

Fig. 5. The grammar defining structured imperative probabilistic statements/programs.

Syntax of SL. We mostly adopt the syntax used in, e.g., [Gordon et al. 2014; Hur et al. 2014]; the

main difference is that (primarily to facilitate the translation presented in Section 7.2) we augment

each substatement (except for sequential composition) with a label l which is a natural number.

A program is a statement followed by the return of an expression, where a statement S is defined

by the BNF in Figure 5. That is, a statement S is either a sequential composition S1 ; S2, or consists
of a label and then either skip, an assignment x := E, a random assignment x := random(ψ ), a
conditioning statement observe(B), a conditional if B then S1 else S2, or a while loop while B do S .
We shall assume that no label occurs more than once within a statement.

Semantics. For the semantics of the structured imperative probabilistic language we shall fol-

low Gordon et al. [2014] (and [Hur et al. 2014]) who modified (in particular to handle conditioning)

one of the semantics proposed by Kozen [1985]. The semantics (which ignores the labels) ma-

nipulates “expectation functions” where an expectation function F maps stores to R∞≥0; we can
think of F (s) as the expected return value for store s . The semantics of a program will be given

in Definition 7.2; we shall first present the semantics of a statement S , written [[S]], which is a

transformation of expectation functions: with [[S]]F ′ = F , one should think of F ′ as taking a store
after S and giving its expected return value, and F as taking a store before S and giving its expected

return value.

In Figure 6, we define [[S]] by a definition inductive in S . Let us explain a few cases:

• the expected return value for a store before an assignment x := E equals the expected return

value for the updated store;

• the expected return value for a store before a random assignment x := random(ψ ) can be found

by taking the weighted average of the expected return values for the possible updated stores;

• the expected return value for a store before a conditioning statement observe(B) is 0 if B is not

true;

• the semantics of a while loop while B do S can be found as the limit of the semantics of the kth
iteration, while B dok S , which is defined inductively in k as follows:

while B do0 S = observe(false)

while B dok+1 S = if B then (S ; while B dok S) else skip

Example 7.1. Consider the statement S2 given by (cf. Example 2.2)

S2
def
= 1 : x := random(ψ4) ; 2 : y := random(ψ4) ; 3 : observe(x + y ≥ 5)
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F = [[l : skip]]F ′ iff F = F ′

F = [[l : x := E]]F ′ iff F (s) = F ′(s[x 7→ [[E]]s]) for all s

F = [[l : x := random(ψ )]]F ′ iff F (s) =
∑
z∈Z

ψ (z)F ′(s[x 7→ z]) for all s

F = [[l : observe(B)]]F ′ iff F (s) = F ′(s) for all s with [[B]]s

and F (s) = 0 for all other s

F = [[S1 ; S2]]F
′

iff F = [[S1]]([[S2]]F
′)

F = [[l : if B then S1 else S2]]F ′ iff F (s) = [[S1]](F
′)(s) for all s with [[B]]s

and F (s) = [[S2]](F
′)(s) for all other s

F = [[l : while B do S]]F ′ iff F (s) = limk→∞ Fk (s) for all s

where F0(s) = 0

and Fk+1(s) = [[S]](Fk )(s) if [[B]]s

and Fk+1(s) = F ′(s) otherwise

Fig. 6. The semantics of a structured probabilistic statement.

For all F that map stores into R∞≥0, and all stores s , we have

[[S2]]F s = [[x := random(ψ4)]]([[y := random(ψ4); observe(x + y ≥ 5)]]F ) s

=
∑

q∈0..3

1

4

([[y := random(ψ4); observe(x + y ≥ 5)]]F s[x 7→ q])

=
∑

q∈0..3

1

4

(
∑

q′∈0..3

1

4

([[observe(x + y ≥ 5)]]F s[x 7→ q][y 7→ q′]))

=
1

16

(F (s[x 7→ 2][y 7→ 3]) + F (s[x 7→ 3][y 7→ 2]) + F (s[x 7→ 3][y 7→ 3]) ) .

For a program P = S ; return(E), the expectation function at the end will map s into [[E]]s ,
and thus the expectation function at the beginning appears to be given as [[S]](λs .[[E]]s). But this
assumes that runs that fail conditioning statements count as zero; such runs should rather not

be taken into account at all. This motivates the following definition [Gordon et al. 2014] of the

normalized semantics of a structured imperative probabilistic program:

Definition 7.2 (Normalized Semantics). Given a structured imperative probabilistic program

P ≡ S ; return(E). With ⊥ an “initial store”, we define [[P]], the normalized semantics of P , as

[[P]] =
[[S]](λs .[[E]]s)(⊥)

[[S]](λs .1)(⊥)
(7)

Note that this may not be well-defined, in case [[S]](λs .1)(⊥) = 0 or [[S]](λs .1)(⊥) = ∞, and that the

choice of initial store ⊥ is irrelevant since we demand that all variables are defined before they are

used.
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To illustrate Definition 7.2, observe that P2 from Example 2.2 is essentially S2 ; return(x) with
S2 defined as in Example 7.1 from which we see (since [[x]]s = s(x)) that

[[S2]](λs .[[x]]s) ⊥ =
1

16

(2 + 3 + 3) =
8

16

[[S2]](λs .1) ⊥ =
1

16

(1 + 1 + 1) =
3

16

and hence we see by Equation (7) that

[[P2]] =
[[S2]](λs .[[x]]s)(⊥)

[[S2]](λs .1)(⊥)
=

8
3
.

This makes sense: if P2 terminates then x + y ≥ 5 which holds in 3 cases; in two cases, x = 3

whereas in one case, x = 2, for a weighted average of
8

3
.

7.2 Translating Structured Imperative Probabilistic Statements Into pCFGs

We shall present a translation T from structured imperative probabilistic programs (Section 7.1) to

pCFGs (Section 3). To allow for a deterministic translation (that does not rely on “fresh” nodes),

we shall assume functions l2v and l2v′ that map statement labels into nodes. Intuitively, if l2v(l)
occurs in the translation of the statement labeled l then it is its start node, and if l2v′(l) occurs
in the translation then it is its end node. We require uniqueness, in the sense that if l1 , l2 then
l2v(l1), l2v(l2), l2v′(l1), and l2v′(l2) are 4 distinct nodes.

Definition 7.3 (Translation from Structured Imperative Probabilistic Statements to pCFGs). For a
structured imperative probabilistic statement S we define a pCFG T(S) by structural induction in S ,
using the definition given in Figure 7 (and illustrated in Figure 8).

Definition 7.3 is such that for all structured imperative probabilistic statements S :
• T(S) has unlabeled end node;
• if v is a node in T(S) then v = l2v(l) or v = l2v′(l) for some l occurring in S (and thus T(S1) and
T(S2) have disjoint node sets if S1 and S2 have disjoint labels);
• if S1 is a substatement of S then T(S1) is a sub-pCFG of T(S), in the sense that all nodes and edges

in T(S1) will also belong to T(S) (and if a node has a label in T(S1) it will have the same label in

T(S)).
It is easy to see by induction in S (relying on the assumption that no label occurs more than once

in S) that the translation in Definition 7.3 does indeed always define a well-formed pCFG G with

the listed properties; in particular, all nodes are reachable from start(G) (the start node), and
can reach end(G) (the end node).

Lemma 7.4. When S is of the form l : _ then in G = T(S) it is then the case that end(G) =
FPPD(start(G)) where start(G) = l2v(l) and end(G) = l2v′(l).

Definition 7.5 (Translation from Structured Imperative Probabilistic Programs to pCFGs). For a
structured imperative probabilistic program P = S ; return(E), we define a pCFG T(P) as follows:
first construct the pCFG T(S); then label its end node (unlabeled so far) with return(E).

Example 7.6. Consider (cf. Example 2.2) the structured imperative probabilistic program P2
given by S2 ; return(x) with S2 defined in Example 7.1. Then G2 = T(P2) will be as depicted in

Figure 9(left), but can be simplified by compression of edges from nodes labeled skip.
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Below we define T(S) by induction in S , doing a case analysis on S .
• First assume S is of the form l : skip, or l : x := E, or l : x := random(ψ ), or l : observe(B). Then
T(S) is a pCFG with 2 nodes, v given by l2v(l) and v ′ given by l2v′(l), and with one edge, from v
to v ′. Here v is the start node and is labeled according to the form of S , whereas v ′ is the end
node with no label.

• Next assume that S is of the form S1 ; S2. Inductively, we construct a pCFGG1 = T(S1)with start
node v1 and unlabeled end node v ′

1
, and a pCFG G2 = T(S2) with start node v2 and unlabeled

end node v ′
2
. As illustrated in Figure 8 (left), the pCFG G = T(S) is then constructed by taking

the union ofG1 andG2 (which by our assumptions have disjoint node sets), and augmenting the

result as follows:

– let G have start node v1, and end node v ′
2
;

– let G contain an edge from v ′
1
to v2, and let the label of v ′

1
be skip.

• Next assume that S is of the form l : if B then S1 else S2. Inductively, we construct a pCFG

G1 = T(S1) with start node v1 and unlabeled end node v ′
1
, and a pCFG G2 = T(S2) with start

nodev2 and unlabeled end nodev
′
2
. As illustrated in Figure 8 (middle), the pCFGG = T(S) is then

constructed by taking the union of G1 and G2 (which by our assumptions must have disjoint

node sets), and augmenting the result as follows, where v = l2v(l) becomes the start node of G
and v ′ = l2v′(l) becomes the (unlabeled) end node of G:
– let v be a branching node with condition B, true-successor v1, and false-successor v2;
– let G contain edges from v ′

1
to v ′ and from v ′

2
to v ′, and let the labels of v ′

1
and v ′

2
be skip.

• Finally, assume that S is of the form l : while B do S1. Inductively, we construct a pCFGG1 = T(S1)
with start node v1 and unlabeled end node v ′

1
. As illustrated in Figure 8 (right), the pCFG

G = T(S) is then constructed by augmenting G1 as follows, where v = l2v(l) becomes the start
node of G and v ′ = l2v′(l) becomes the (unlabeled) end node of G:
– let v be a branching node with condition B, true-successor v1, and false-successor v ′;
– let G contain an edge from v ′

1
to v , and let the label of v ′

1
be skip.

Fig. 7. The rules for translating a structured imperative probabilistic statement S into a pCFG T(S).

v1

v ′
1

v2

v ′
2

v

T F

v1

v ′
1

v2

v ′
2

v ′

v

T
F

v1

v ′
1

v ′

Fig. 8. Translating sequential composition (left), conditionals (middle), while loops (right).
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1

1’

2

2’

3

3’

1 1’ 2

2’3

4
6

4’ 6’

3’

5

5’

T
F

T

F

1: x := random(ψ4)

1’: skip
2: x := random(ψ4)

2’: skip
3: observe(x + y ≥ 5)

3’: return(x)

1: x := random(ψ4)

1’: skip
2: y := 0

2’: skip
3: x ≥ 2

3’: return(x)
4: y < 3

4’: skip
5: y := A

5’: skip
6: skip
6’: skip

Fig. 9. Left: a pCFG G2 that is T(P2) (cf. Example 2.2); Right: a pCFG G4 that is T(P4) (cf. Example 2.4).

Example 7.7. Consider (cf. Example 2.4) the structured imperative probabilistic program P4
def
=

S4 ; return(x) where

S4
def
= 1 : x := random(ψ4) ; 2 : y := 0 ; 3 : if x ≥ 2 then 4 : while y < 3 do 5 : y := A else 6 : skip

ThenG4 = T(P4)will be as depicted in Figure 9(right), but can be simplified by compression of edges

from nodes labeled skip which will result in a pCFG isomorphic to the one given in Figure 1(right).

For a given pCFG G, there may not exist a structured imperative probabilistic program P such

that G is isomorphic to a simplification of T(P).

7.3 Adequacy Result for the Two Semantics

To motivate how the semantics in Section 7.1 relates to the semantics in Section 4, consider S2 as
defined in Example 7.1 where we saw that if F = [[S2]]F

′
for some F ′ then for all stores s we have

F (s) =
1

16

(F ′(s[x 7→ 2][y 7→ 3]) + F ′(s[x 7→ 3][y 7→ 2]) + F ′(s[x 7→ 3][y 7→ 3]) ) .

We saw in Example 7.6 that T(S2) is the pCFG G2 depicted in Figure 9(left), except that node 3
′
is

unlabeled. For that pCFG, it is not hard to see (cf. Example 2.2) that if D ′ = ω(1,3
′)(D) (with ω given

by Definition 4.26) for some D with

∑
D = 1 then

D ′(s) =
1

16

if s ∈ {{x 7→ 2, y 7→ 3}, {x 7→ 3, y 7→ 2}, {x 7→ 3, y 7→ 3}}

D ′(s) = 0 otherwise.

We now observe that (with the first equality due to F (s) not depending on s since U = {x,y})∑
s ∈SU

F (s)D(s) = F (s)
∑
s ∈SU

D(s) = F (s)

=
1

16

F ′{x 7→ 2, y 7→ 3} +
1

16

F ′{x 7→ 3, y 7→ 2} +
1

16

F ′{x 7→ 3, y 7→ 3}

=
∑
s ∈SU

F ′(s)D ′(s).

And this is indeed an instance of the general result (stated on an abstract level by Kozen [1985])

relating the two semantics:
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Theorem 7.8 (adeqacy). Let P be a structured imperative probabilistic program, letG = T(P),
and let ω be the meaning of G.

Let S be a structured imperative probabilistic statement that is part of P . Thus T(S) will be a
sub-pCFG of G; let v = start(T(S)) and v ′ = end(T(S)).

For all distributions D,D ′ and expectation functions F , F ′, if [[S]]F ′ = F and ω(v ,v
′)(D) = D ′ then∑

s ∈SU

F (s)D(s) =
∑
s ∈SU

F ′(s)D ′(s). (8)

This result shows that we do not lose any information by using the semantics in Section 4, in

that for any structured probabilistic statement S , and any expectation function F ′, we can retrieve

F = [[S]]F ′ from ω: for given s0 ∈ SU, define D0 such that D0(s0) = 1 but D0(s) = 0 otherwise; with

D ′
0
= ω(v ,v

′)(D0) we then have

F (s0) =
∑
s ∈SU

F (s)D0(s) =
∑
s ∈SU

F ′(s)D ′
0
(s).

Similarly, the new semantics can be retrieved from the old: for given s0 ∈ SU, define F ′ such that

F ′(s0) = 1 but F ′(s) = 0 otherwise; with F = [[S]]F ′ we then have

ω(v ,v
′)(D)(s0) =

∑
s ∈SU

F ′(s) · ω(v ,v
′)(D)(s) =

∑
s ∈SU

F (s) · D(s).

Let us explore some special cases of Theorem 7.8:

• If D ′ = 0 and D(s0) > 0 for some s0 ∈ SU then from Equation (8) we can infer F (s0) = 0. This

make sense, since for such s0 the program (almost) never returns anything.

• If D is concentrated on s0 and D ′ is concentrated on s ′
0
, with D(s0) = D ′(s ′

0
) = 1, then from

Equation (8) we can infer F (s0) = F ′(s ′
0
). This makes sense, since for such s0 the program will

(almost) always end up in store s ′
0
.

7.4 Slicing

We shall now show how to slice structured probabilistic programs. The approach is to translate such

a program P into a pCFG for which we then find a slice (which should satisfy certain conditions

mentioned in Section 5) which we finally use to slice P . More precisely, we have

Definition 7.9 (Slicing a Structured Probabilistic Program). Given a structured probabilistic pro-

gram P ≡ S ; return(x), and a subset L of the labels in P . Then the slice of P wrt L, written slcL(P),
is the structured probabilistic program slcL(S) ; return(x) where the slicing function slcL , defined
in Figure 10, transforms structured probabilistic statements.

Note that we do not put any requirements on L, but for the slicing to be “correct”, as expressed

in Theorem 7.13, there must exists Q,Q0 such that Q “extends” L in that l ∈ L iff l2v(l) ∈ Q , and
(Q,Q0) is a slicing pair (cf. Definition 5.6).

Example 7.10. Let us slice the structured probabilistic program P4 from Example 7.7, where T(P4)
was depicted in Figure 9(right). Let us assume that A is y + 1; then the cycle-inducing node 4 is

lossless (as shown in Section 4.5) and hence (Q, ∅) is a slicing pair for Q = {1, 3′}. With L = {1},
and thus l ∈ L iff l2v(l) ∈ Q , the structured probabilistic program slcL(P4) will be

1 : x := random(ψ4) ; 2 : skip ; 3 : skip ; return(x)

which is equivalent to 1 : x := random(ψ4) ; return(x) which in Section 2.5 was mentioned as the

slice of P4 when A is y + 1.
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slcL(S1 ; S2) = slcL(S1) ; slcL(S2)

slcL(l : _) = l : skip if l < L

slcL(l : if B then S1 else S2) = l : if B then slcL(S1) else slcL(S2) if l ∈ L

slcL(l : while B do S1) = l : while B do slcL(S1) if l ∈ L

slcL(S) = S otherwise

Fig. 10. The function slcL slices a structured probabilistic statement S wrt. labels L.

Lemma 7.11. For all structured probabilistic statements S , and all label sets L: start(T(slcL(S))) =
start(T(S)) and end(T(slcL(S))) = end(T(S))

Proof. An easy induction in S , using Lemma 7.4. □

For a structured probabilistic program, translating its slice has the same meaning as slicing its

translation:

Lemma 7.12. Let a structured probabilistic program P be given, and let V be the nodes in G = T(P).
For a given subset Q of V, let L = {l | l2v(l) ∈ Q}, and let PL = slcL(P) and GL = T(PL).

Let ϕ be the meaning of the slice Q in G, that is (cf. Definition 4.27) ϕ = limk→∞ ϕk where
ϕk = Hk

Q (0) with H defined as in Figure 2 for the graph G.
Let ω be the meaning of GL , that is (cf. Definition 4.26) ω = limk→∞ωk where ωk = Hk

VL
(0) with

H defined as in Figure 2 for the graph GL , and with VL the nodes in GL .
Then for all S that are substatements of P : with v = start(T(S)) and v ′ = end(T(S)), and by

Lemma 7.11 thus also v = start(T(slcL(S))) and v ′ = end(T(slcL(S)))), we have ϕ(v ,v
′) = ω(v ,v

′).

7.5 Correctness of Slicing Structured Programs

For a structured probabilistic program, slicing as defined in Section 7.4 does preserve the normalized
semantics (Definition 7.2):

Theorem 7.13. Given a structured program P ≡ S ; return(x) such that [[P]] is well-defined.
Assume that (Q,Q0) is a slicing pair (cf. Definition 5.6) on T(P), and let L = {l | l2v(l) ∈ Q}. Then
[[slcL(P)]] = [[P]].

(In the case when [[P]] is not well-defined, it may happen that [[slcL(P)]] is well-defined, as when
P is given by 1 : x := 1 ; 2 : observe(false) ; return(x) in which case there will exist a slicing pair

(Q,Q0) such that L = {1} and thus slcL(P) is 1 : x := 1 ; 2 : skip ; return(x).)

Proof. Let G = T(P), PL = slcL(P) = SL ; return(x) where SL = slcL(S), and GL = T(PL). By
Lemma 7.11, there exists v,v ′ such that v = start(G) = start(GL) and v

′ = end(G) = end(GL);

here v ′ ∈ Q is labeled return(x) and thus rvQ (v ′) = {x}.
Let ω be the meaning of G , that is (cf. Definition 4.26) ω = fix(HV) with H defined as in Figure 2

for the graph G, and with V the nodes in G.
Let ϕ be the meaning of the slice Q in G, that is (cf. Definition 4.27) ϕ = fix(HQ ) with H defined

as in Figure 2 for the graph G.
Let ωL be the meaning of GL , that is (cf. Definition 4.26) ω = fix(HVL ) with H defined as in

Figure 2 for the graph GL , and with VL the nodes in GL .

By Lemma 7.12,

ϕ(v ,v
′) = ωL

(v ,v ′). (9)
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1

2

3

4

5

6

7

8

T F

1: z := random(ψ4)

2: y := random(ψ4)

3: z ≥ 2

4: observe(y = 3)

5: x := 17

6: observe(y ≥ 2)

7: x := 27

8: return(x)

1

2

3

4

5

6

7

8

T F

T

F

T

F

1: z := random(ψ4)

2: y := random(ψ4)

3: z ≥ 2

4: y = 3

5: x := 17

6: y ≥ 2

7: x := 27

8: return(x)

Fig. 11. Examples showing how (local) distribution may be lost due to conditioning and/or non-termination.

Let ⊥ ∈ SU be the initial store mentioned in Definition 7.2, and let D0 be such that D0(⊥) = 1 but

D0(s) = 0 for all s ∈ SU \ {⊥}. Since (Q,Q0) is a slicing pair we know that Q ∩Q0 = ∅ and that Q
and Q0 are closed under data dependence; hence Lemma 3.13 tells us that rvQ1

(v) ∩ rvQ2
(v) = ∅

which by Lemma 4.12 implies (since D0 is concentrated) that rvQ1
(v) and rvQ2

(v) are independent
in D0. By Theorem 6.6, we therefore see that there exists a real number c with 0 ≤ c ≤ 1 such that

ω(v ,v
′)(D0)

rvQ (v ′)
= c · ϕ(v ,v

′)(D0).

Since rvQ (v ′) = {x}, this amounts (cf. Definition 4.5) to

∀q ∈ Z : ω(v ,v
′)(D0)({x 7→ q}) = c · ϕ(v ,v

′)(D0)({x 7→ q}). (10)

Let F ′ be any expectation function satisfying F ′(s1) = F ′(s2) whenever s1(x) = s2(x); we can thus

define F ′(q) such that F ′(q) = F ′(s) whenever s(x) = q. The calculation in Table 1 shows that

([[S]]F ′)(⊥) = c([[SL]]F
′)(⊥), in particular

([[S]]λs .1)(⊥) = c([[SL]]λs .1)(⊥)

([[S]]λs .s(x))(⊥) = c([[SL]]λs .s(x))(⊥)

By the assumption that [[P]] is well-defined, we see from Equation (7) that 0 < [[S]](λs .1)(⊥) < ∞
and then infer from the above that c > 0 and 0 < [[SL]](λs .1)(⊥) < ∞. Thus

[[slcL(P)]] =
[[SL]](λs .s(x))(⊥)

[[SL]](λs .1)(⊥)
=
c [[SL]](λs .s(x))(⊥)

c [[SL]](λs .1)(⊥)
=
[[S]](λs .s(x))(⊥)

[[S]](λs .1)(⊥)
= [[P]]

giving us the desired [[slcL(P)]] = [[P]].
□

8 CHOICE OF SEMANTICS

There is a variety of language models for probabilistic programming, and a variety of approaches

to giving their semantics (some of which are presented or mentioned in say [Olmedo et al. 2018]

which is partly inspired by the equivalences between certain formulations proved in [Gretz et al.

2014]). And indeed, while we have designed our pCFG semantics so as to facilitate a correctness

proof for slicing, alternative definitions are possible as we shall now discuss. As an illustrating

example, consider the pCFG listed in Figure 11(left).

Let us first show how it is handled by our semantics. With D0 a distribution with

∑
D0 = 1,

the distribution D3 = ω
(1,3)(D0) satisfies D3({y 7→ i, z 7→ j}) = 1

16
for all i, j ∈ {0, 1, 2, 3} (but 0
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([[S]]F ′)(⊥)

=
∑
s ∈SU

([[S]]F ′)(s) · D0(s)

Thm. 7.8
=

∑
s ∈SU

F ′(s) · ω(v ,v
′)(D0)(s)

=
∑
q∈Z

∑
s ∈SU | s(x )=q

F ′(s) · ω(v ,v
′)(D0)(s)

=
∑
q∈Z

F ′(q) ·
∑

s ∈SU | s(x )=q

ω(v ,v
′)(D0)(s)

Def. 4.2
=

∑
q∈Z

F ′(q) · ω(v ,v
′)(D0)({x 7→ q})

(10)
=

∑
q∈Z

F ′(q) · c · ϕ(v ,v
′)(D0)({x 7→ q})

= c
∑
q∈Z

F ′(q) ·
∑

s ∈SU | s(x )=q

ϕ(v ,v
′)(D0)(s)

= c
∑
q∈Z

∑
s ∈SU | s(x )=q

F ′(s) · ϕ(v ,v
′)(D0)(s)

= c
∑
s ∈SU

F ′(s) · ϕ(v ,v
′)(D0)(s)

(9)
= c

∑
s ∈SU

F ′(s) · ωL
(v ,v ′)(D0)(s)

Thm. 7.8
= c

∑
s ∈SU

([[SL]]F
′)(s) · D0(s)

= c([[SL]]F
′)(⊥)

Table 1. Proving ([[S]]F ′)(⊥) = c([[SL]]F ′)(⊥) for all F ′ such that F ′(s1) = F ′(s2) when s1(x) = s2(x).

otherwise). The distribution D5 = ω
(4,5)(selectz≥2(D3)) satisfies D5({y 7→ i, z 7→ j, x 7→ k}) = 1

16

when i = 3 and j ∈ {2, 3} and k = 17 (but is 0 otherwise) and thus

D5({x 7→ 17}) =
2

16

, D5({x 7→ k}) = 0 for k , 17.

The distribution D7 = ω(6,7)(selectz<2(D3)) satisfies D7({y 7→ i, z 7→ j, x 7→ k}) = 1

16
when

i ∈ {2, 3} and j ∈ {0, 1} and k = 27 (but is 0 otherwise) and thus

D7({x 7→ 27}) =
4

16

, D7({x 7→ k}) = 0 for k , 27.
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We conclude that with D8 = ω
(3,8)(D3) = ω

(1,8)(D0) we have

D8({x 7→ 17}) =
1

8

, D8({x 7→ 27}) =
1

4

, D8({x 7→ k}) = 0 for k < {17, 27}.

That is, the final distribution D8 is a subprobability distribution, with x = 27 twice as likely as

x = 17, but not a probability distribution.

It may seem more informative to “normalize” D8 into a probability distribution D ′ with D ′({x 7→
17}) = 1

3
and D ′({x 7→ 27}) = 2

3
. (Recall that normalization is implicit in Definition 4.8 of

probabilistic independence.) This would be perfectly valid (and allow us to use c = 1 when applying

Theorem 6.6 to the whole pCFG) as long as we do it “globally”. We cannot do it “locally” in each

branch, since a conditioning is indeed supposed to make the branch in which it occurs less likely,

as we mentioned for Example 2.3. Similarly, [Bichsel et al. 2018, p.148,paragraph 2] remarks that a

given example “illustrates that it is not possible to condition parts of the program on there being no

observation failure” in that “conditioning the two branches in isolation yields” an undesired result.

We have decided, however, to refrain from normalization, as it would add an extra layer (and

thus extra proof obligations) to our semantics. On the other hand, in Section 7 we showed how our

results apply to the slicing of structured imperative probabilistic programs and proved that slicing

preserves the normalized semantics given by, e.g., Gordon et al. [2014]; Hur et al. [2014] (who do

indeed normalize only on top-level and not locally).

Now consider Figure 11(right) where the conditioning statements on the left have been replaced

by a possibly non-terminating loop with the same effect (cf. Example 4.30). In this case, one could
argue that x = 17 and x = 27 should be equally likely, something which might be achieved by

doing local normalization.

To keep our semantic development reasonably simple, however, we have decided to consider

non-termination as equivalent to failure of a conditioning, just as done by Gordon et al. [2014]

and Hur et al. [2014]. This is in contrast to several approaches that do distinguish between non-

termination and observation failure, such as the semantics presented by Olmedo et al. [2018], and

by Bichsel et al. [2018] which considers ill-defined operations as a third kind of exception (also

the slicer presented by Léchenet et al. [2016] distinguishes, in a non-probabilistic setting, between

assertion failure and non-termination).

9 COMPUTING THE (LEAST) SLICE

There always exists at least one slicing pair, with Q the set of all nodes and with Q0 the empty set;

in that case, the sliced program is the same as the original. Our goal, however, is to find a slicing

pair (Q,Q0) where Q is as small as possible (whereas the size of Q0 is irrelevant):

Definition 9.1. A slicing pair (Q,Q0) is an optimal slicing pair iff whenever (Q ′,Q ′
0
) is also a

slicing pair then Q ⊆ Q ′.

This section describes an algorithm for doing so. Looking at Definition 5.6, we see a couple of

potential obstacles:

(1) Detecting whether a node is lossless is undecidable, as it is easy to see that the halting

problem can be reduced to it (see [Kaminski and Katoen 2015] for more results about the

decidability of termination in a probabilistic setting).

(2) While cycles in a graph can be detected in low polynomial time, itmay be harder to detect the

specific nodes that are “cycle-inducing” since this involves (cf. Definition 3.5) finding longest

acyclic paths which is in general an NP-hard problem (as the Hamiltonian path problem can

be reduced to it). However, since we only consider graphs where each node has at most two

outgoing edges, and since we do not need to actually compute the longest acyclic paths but

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.



A Theory of Slicing for Imperative Probabilistic Programs 1:35

only to compare their lengths, there may still exist a polynomial algorithm for checking if a

node is cycle-inducing (finding such an algorithm is a topic for future work).

Therefore, our approach shall be to assume that we have been provided (perhaps by an oracle) a
list ESS that approximates the essential nodes:

Definition 9.2 (essential nodes). A node v is essential iff

(1) v is an observe node, or
(2) v is cycle-inducing but not lossless.

We can now provide a computable version of Definition 5.6:

Definition 9.3. Let ESS be a set of nodes that contains all essential nodes. Then (Q,Q0) is a slicing
pair wrt. ESS iff

(1) Q,Q0 are both weak slice sets with end ∈ Q ;
(2) Q,Q0 are disjoint;

(3) ESS ⊆ Q ∪Q0.

If we find (Q,Q0) satisfying Definition 9.3 then (Q,Q0) will also satisfy Definition 5.6 (and hence

Theorem 6.6, etc, will apply):

Proposition 9.4. If (Q,Q0) is a slicing pair wrt. ESS then (Q,Q0) is a slicing pair.

On the other hand, the converse does not necessarily hold as ESS ⊈ Q ∪ Q0 may happen if

non-essential nodes are included in ESS. For example, in Example 2.4 with C as “y := y + 1” there
are no essential nodes, and thus (cf. the discussion after Definition 5.6) ({1, 6}, ∅) is a slicing pair.
However if we were unable to infer that 4 is lossless, we may have ESS = {4}, in which case

({1, 6}, ∅) is not a slicing pair wrt. ESS.
To approximate the essential nodes (which is outside the scope of this article) one may use

techniques from [Chakarov and Sankaranarayanan 2013; Fioriti and Hermanns 2015; Monniaux

2001] for detecting that loops terminate with probability one, or techniques from [Kaminski et al.

[n. d.]] for detecting a stronger property: that the expected run-time is finite.

If the pCFG in question is a translation of a structured imperative probabilistic program, cf. Sec-

tion 7.2, it will be safe to let ESS contain (in addition to the observe nodes) the branching nodes
created when translating while loops, but ESS does not need to contain the branching nodes created

when translating conditionals since such nodes will not be cycle-inducing.

With the set ESS given, we can now develop our algorithm to find the least Q that for some Q0

satisfies the conditions in Definition 9.3. We shall measure its running time in terms of |V|, the
number of nodes in the pCFG; we shall often write n instead of |V| (note that the number of edges

is at most 2n and thus in O(n)).
Our approach has four stages:

(1) to compute (Section 9.1) the data dependences (in time O(n3));
(2) to construct an algorithm PNV? (Section 9.2) that (in linear time) checks if a given set of nodes

provides next visibles, and if not, returns a set of nodes that definitely needs to be added;

(3) to construct an algorithm LWS (Section 9.3) that computes the least weak slice set that contains

a given set of nodes (each call to LWS takes time in O(n2));
(4) to compute (Section. 9.4) an optimal slicing pair wrt. the given ESS.

The resulting algorithm BSP (for best slicing pair) has a total running time in O(n3).

9.1 Computing Data Dependences

Our algorithms use a boolean table DD∗ such that DD∗(v,v ′) is true iff v
dd
→
∗

v ′ where
dd
→
∗

is the

reflexive and transitive closure of

dd
→ defined in Definition 3.9.
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PNV?(Q)
F ← Q ∪ {end}
C ← ∅
for each v ∈ V \ F

N [v] ← ⊥
for each v ∈ F

N [v] ← v
while F , ∅ ∧ C = ∅

F ′← ∅
for each edge v → v ′ with the source v < Q and the target v ′ ∈ F

if N (v) = ⊥
N (v) ← N (v ′)
F ′← F ′ ∪ {v}

else if N (v) , N (v ′)
C ← C ∪ {v}

F ← F ′

return C

Fig. 12. An algorithm to check if Q provides next visibles.

Lemma 9.5. There exists an algorithm that computes DD∗ in time O(n3).

Proof. First, for each node v with Def (v) , ∅, we find the nodes v ′ with v
dd
→ v ′ which can

be done in time O(n) by a depth-first search which does not go past the nodes that redefine the

variable defined in v . Thus in time O(n2), we can compute a boolean table DD such that DD(v,v ′) is

true iff v
dd
→ v ′. To compute DD∗ we now take the reflexive and transitive closure of DD which can

be done in time O(n3) (for example using Floyd’s algorithm). □

Given DD∗, it is easy to ensure that sets are closed under data dependence, and we shall do that

in an incremental way, as stated by the following result:

Lemma 9.6. There exists an algorithm DDclose which given a node set Q that is closed under data
dependence, and a node set Q1, returns the least set containing Q and Q1 that is closed under data
dependence. Moreover, assuming DD∗ is given, DDclose runs in time O(n · |Q1 |).

9.2 Checking for Next Visibles

A key ingredient in our approach is the function PNV?, presented in Figure 12, that for a given Q
checks if it provides next visibles, and if not, returns a non-empty set of nodes which must be part

of any set that provides next visibles and containsQ . The function PNV? works by doing a backward
breadth-first search (with F being the current “frontier”) from Q ∪ {end} to find (using the table N
that approximates “next visible”) the first node(s), if any, from which two nodes in Q ∪ {end} are
reachable without going through Q ; such “conflict” nodes are stored in C and must be included in

any superset providing next visibles.

Example 9.7. Consider the program P1 from Example 2.1.

• Calling PNV? on {1, 4} returns ∅ after a sequence of iterations where F is first {1, 4} and next {3}

and next {2} and finally ∅.

• Calling PNV? on {2, 3} returns ∅ after a sequence of iterations where F is first {2, 3, 4} and next

{1} and finally ∅.
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LWS(Q̂)
Q ← DDclose(∅, Q̂)
C ← PNV?(Q)
while C , ∅

Q ← DDclose(Q,C)
C ← PNV?(Q)

return Q

Fig. 13. An algorithm that finds the least weak slice set containing Q̂ .

Example 9.8. Consider the program P4 from Example 2.4, with pCFG depicted in Figure 3(right).

Then

• PNV?({1, 6}) returns ∅, after a sequence of iterations where F is first {1, 6} and next {3, 4} and
next {2, 5} and finally ∅.

• PNV?({2, 4, 5}) returns {3}, as initially F = {2, 4, 5, 6} which causes the first iteration of the while

loop to put 3 in C .

The following result establishes the correctness of PNV?:

Lemma 9.9. The function PNV? runs in time O(n) and, given Q , returns C such that C ∩Q = ∅ and
• if C is empty then Q provides next visibles
• if C is non-empty then all supersets of Q that provide next visibles will contain C .

9.3 Computing Least Weak Slice Set

We are now ready to define, in Figure 13, a function LWS which constructs the least weak slice set

that contains a given set Q̂ ; it works by successively adding nodes to the set until it is closed under

data dependence, and provides next visibles.

Example 9.10. We shall continue Example 9.7 (which considers the program P1 from Example 2.1).

First observe that the non-trivial true entries of DD∗ are (1, 4) (since 1
dd
→ 4) and (2, 3).

• When running LWS on {4}, initiallyQ = {1, 4} which is also the final value ofQ since PNV?({1, 4})
returns ∅.

• When running LWS on {3}, initiallyQ = {2, 3} which is also the final value ofQ since PNV?({2, 3})
returns ∅.

Example 9.11. We shall continue Example 9.8 (which considers the program P4 from Example 2.4,

with pCFG depicted in Figure 3(right)).

First observe that

dd
→ is given as follows: 1

dd
→ 3, 1

dd
→ 6, 2

dd
→ 4, 2

dd
→ 5, 5

dd
→ 4, and 5

dd
→ 5.

• When running LWS on {6}, initiallyQ = {1, 6} which is also the final value ofQ since PNV?({1, 6})
returns ∅.

• When running LWS on {4}, we initially haveQ = {2, 4, 5}. The first call to PNV? thus (Example 9.8)

returns {3}. Since 1
dd
→ 3 holds, the next iteration of LWS will have Q = {1, 2, 3, 4, 5} which is also

the final value of Q since PNV? will return ∅ on that set.

The following result establishes the correctness of LWS:

Lemma 9.12. The function LWS, given Q̂ , returns Q such that
• Q is a weak slice set
• Q̂ ⊆ Q
• if Q ′ is a weak slice set with Q̂ ⊆ Q ′ then Q ⊆ Q ′.
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BSP(ESS)
W ← ESS
for each v ∈W ∪ {end}

Qv ← LWS({v})
Q ← ∅
F ← Qend

while F , ∅
Invariants:

Q and F are both weak slice sets, with end ∈ Q ∪ F
W ⊆ ESS and if v ∈W then Qv ∩Q = ∅
if v ∈ ESS but v <W then v ∈ Q ∪ F
if (Q ′,Q ′

0
) is a slicing pair wrt. ESS then Q ∪ F ⊆ Q ′

Q ← Q ∪ F
F ← ∅
for each v ∈W

if Qv ∩Q , ∅
W ←W \ {v}
F ← F ∪Qv

Q0 ←
⋃
v ∈W Qv

return (Q,Q0)

Fig. 14. Finding an optimal slicing pair (BSP) wrt. given ESS.

Moreover, assuming DD∗ is given, LWS runs in time O(n2).

9.4 Computing an Optimal Slicing Pair

We are now ready to define, in Figure 14, an algorithm BSP which given a set ESS that contains

all essential nodes (for an implicitly given pCFG) returns an optimal slicing pair (Q,Q0) wrt. that

ESS. The idea is to build Q incrementally, with Q initially containing only end; each iteration will

process the nodes in ESS that are not already in Q , and add them to Q (via F ) if they cannot be

placed in Q0 without causing Q and Q0 to overlap.

Example 9.13. We shall continue Examples 9.7 and 9.10 (which consider the program P1 from
Example 2.1). Here 3 is the only essential node so we may assume that ESS = {3}; BSP thus needs to
run LWS on {4} and on {3} and from Example 9.10 we see that we get Q4 = {1, 4} and Q3 = {2, 3}.
When the members ofW = {3} are first examined in the BSP algorithm, we have Q = Q4 and thus

Q3 ∩Q = ∅. Hence the while loop terminates after one iteration, with Q = {1, 4}, and subsequently

we get Q0 = Q3 = {2, 3}.

Example 9.14. We shall continue Examples 9.8 and 9.11 (which consider the program P4 from
Example 2.4, with pCFG depicted in Figure 3(right)). We know from Example 3.6 that node 4 is

cycle-inducing but node 3 is not; in Section 4.5 we showed that node 4 is essential when Lab(5) is
an assignment y := 1 (as then ω(4,6) is not lossless) and that node 4 is not essential when Lab(5) is
an assignment y := y + 1 or a random assignment y := random(ψ4) (as then ω

(4,6)
is lossless).

There are thus two natural possibilities for ESS: the set {4}, and the empty set; we shall consider

both:

• First assume that ESS = ∅. BSP thus needs to run LWS on only {6}, and from Example 9.11

we see that we get Q6 = {1, 6}. AsW = ∅, the while loop terminates after one iteration with

Q = Q6 = {1, 6}, and subsequently we get Q0 = ∅.
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• Next assume that ESS = {4}. BSP thus needs to run LWS on {4} and {6}, and from Example 9.11

we see that we get Q4 = {1, 2, 3, 4, 5} and Q6 = {1, 6}.
When the members ofW = {4} are first examined in the BSP algorithm, we have Q = Q6 and

thusQ4 ∩Q = {1} , ∅. HenceW will become empty, and eventually the loop will terminate with

Q = Q6 ∪Q4 = {1, 2, 3, 4, 5, 6} (and we also get Q0 = ∅).

That BSP produces an optimal slicing pair wrt. a given ESS is captured by the following result:

Theorem 9.15. The algorithm BSP returns, given a pCFG and a set of nodes ESS, sets Q and Q0

such that
• (Q,Q0) is a slicing pair wrt. ESS
• if (Q ′,Q ′

0
) is a slicing pair wrt. ESS then Q ⊆ Q ′.

Moreover, BSP runs in time O(n3) (with n the number of nodes in the pCFG).

10 IMPROVING PRECISION

Section 9 presented an algorithm for computing the least slice satisfying Definition 9.3; such a slice

will also satisfy Definition 5.6 and hence be semantically correct (as phrased in Theorem 6.6). Still,

a smaller semantically correct slice may exist; in this section we briefly discuss two approaches

for finding such slices: semantic analysis of the pCFG, and syntactic transformation of the pCFG.

(Obviously, it is undecidable to always find the smallest semantically correct slice.)

10.1 Improvement by Semantic Analysis

Already in Section 9 we discussed how a precise (termination) analysis may help us to construct a

set ESS that contains fewer (if any) non-essential nodes which in turn may enable us to slice away

some loops.

The size of the slice may also be reduced if a semantic analysis can determine that a boolean

expression always evaluates to true. This is illustrated by the pCFGs in Figure 15, as we shall now

discuss.

First consider the pCFG on the left. As y = 7 holds at node 4, the observe statement can be

discarded, and indeed, the pCFG is semantically equivalent to the pCFG containing only nodes 1

and 5. Yet it has no smaller syntactic slice, since if (Q,Q0) is a slicing pair, implying 5 ∈ Q and thus

1 ∈ Q , then Q = {1, 2, 3, 4, 5} as we now show. If 4 ∈ Q0 then 3 ∈ Q0 (as Q0 provides next visibles)

and thus 1 ∈ Q0 (by data dependence) which contradicts Q ∩Q0 = ∅. As 4 (as it is essential) must

belong toQ ∪Q0, we see that 4 ∈ Q ; but then 2 ∈ Q (by data dependence) and 3 ∈ Q (asQ provides

next visibles).

Next consider the pCFG on the right for which there exists no smaller syntactic slice, since if

(Q,Q0) is a slicing pair and thus 6 ∈ Q then (by data dependence) 4, 5 ∈ Q and thus (as Q provides

next visibles) 3 ∈ Q and thus (by data dependence) 1 ∈ Q ; also 2 ∈ Q as otherwise 2 ∈ Q0 and

thus (by data dependence) 1 ∈ Q0 which contradicts Q ∩Q0 = ∅. Still, it is semantically sound to

slice away nodes 3 and 5. Thus, even though (Q,Q0) = ({1, 2, 4, 6}, ∅) is not a slicing pair according
to Definition 5.6 as 3 has no next visible in {1, 2, 4, 6}, it may be considered a “semantically valid

slicing pair”.

10.2 Improvement by Syntactic Transformation

Simple analyses like constant propagation may improve the precision of slicing even in a determin-

istic setting, but the probabilistic setting gives an extra opportunity: after an observe(B) node, we
know that B holds. As richly exploited in [Hur et al. 2014], a simple syntactic transformation often

suffices to get the benefits of that information, as we illustrate on the program from [Hur et al. 2014,

Figure 4] whose pCFG (in slightly modified form) is depicted in Figure 16. In our setting, if (Q,Q0)
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1

x := r(ψ4)

2

y := 7

3

x ≥ 2

4

obs(y = 7)

5

ret(x)

T

F

1

y := r(ψ4)

2

obs(y > 1)

3

y > 0

4

x := 7

5

x := 8

6

ret(x)

T F

Fig. 15. A redundant observe node (left) and a potentially redundant branch (right).

with 18 ∈ Q is an optimal slicing pair, thenQ will contain everything except nodes 12, 13, 14, as can

be seen as follows: 16, 17 ∈ Q by data dependence; 15 ∈ Q as Q provides next visibles; 6, 7, 8, 9 ∈ Q
by data dependence; 3, 4, 5 ∈ Q as Q provides next visibles; 1, 2 ∈ Q by data dependence; also

10 ∈ Q as otherwise 10 ∈ Q0 and thus also 9 ∈ Q0 which contradicts Q ∩Q0 = ∅.

Alternatively, suppose we insert a node 11 labeled д := 0 between nodes 10 and 12. This

clearly preserves the semantics, but allows a much smaller slice: choose Q = {11, 15, 16, 17, 18}
and Q0 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. This is much like what is arrived at (through a more complex

process) in [Hur et al. 2014, Figure 15].

Future work involves exploring a larger range of examples, and (while somewhat orthogonal to

the current work) investigating useful techniques for computing slices that are smaller than the

least syntactic slice yet semantically correct.

11 CONCLUSION AND RELATED WORK

We have developed a theory for the slicing of imperative probabilistic programs. We have used and

extended techniques from the literature [Amtoft 2008; Ball and Horwitz 1993; Podgurski and Clarke

1990; Ranganath et al. 2007] on the slicing of deterministic imperative programs, represented as

control-flow graphs. These frameworks, some of which have been partly verified by mechanical

proof assistants [Blazy et al. 2015; Wasserrab 2010], were recently coalesced by Danicic et al. [2011]

who provide solid semantic foundations for the slicing of a large class of deterministic programs.

Our extension of that work is non-trivial in that we need to capture probabilistic independence

between two sets of variables, as done in Proposition 6.4, which requires two slices rather than
one. The technical foundations of our work rest on a novel semantics of probabilistic control-flow

graphs (pCFGs).

We establish an adequacy result that shows that for pCFGs that are translations of programs in

a structured imperative probabilistic language, our semantics is suitably related to that language’s

denotational semantics as formulated by first Kozen [1981] and later augmented by Gordon et al.

[2014] (in particular to handle conditioning). As a consequence, our results on slicing of pCFGs
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1

d := r(..)

2

i := r(..)

3

i = 0

T F
4

d = 0

T F

5

d = 0

T F

6

д := r(..)

7

д := r(..)

8

д := r(..)

9

д := r(..)

10

obs(д = 0)

12

i = 0

T F

13

s := r(..)

14

s := r(..)

15

д = 0

T F

16

l := r(..)

17

l := r(..)

18

ret(l)

Fig. 16. The program from Figure 4 of Hur et al. (modified).

allow us to prove a result stating the correctness of slicing structured imperative probabilistic

programs.

We were directly inspired by Hur et al. [2014] who point out the challenges involved in the

slicing of probabilistic programs, and present an algorithm which constructs a semantically correct

slice. That article does not state whether it is in some sense the least possible slice; neither does it

address the complexity of the algorithm. While Hur et al.’s approach differs from ours, for example

it is for a structured language and uses the semantics presented by Gordon et al. [2014] which is

based on expectation functions, it is not surprising that their correctness proof also has probabilistic

independence (termed “decomposition”) as a key notion. Our theory separates specification and
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implementation which we believe provides for a cleaner approach. But as mentioned in Section 10

they incorporate powerful optimizations (which in some cases we can also obtain by means of

simple syntactic transformations).

Much work remains. In future we plan to:

• investigate how our techniques can be used to statically analyze which sets of variables in a

given probabilistic program are probabilistically independent of each other (a topic explored in,

for example, [Bouissou et al. 2016]);

• investigate how to adapt our techniques to a semantics (such as [Bichsel et al. 2018; Olmedo et al.

2018]) that distinguishes between observation failure and non-termination;

• allow variables to contain reals rather than just integers (which will require us to employ measure

theory, cf. the remark in Section 2.1);

• generalize the semantics to a trace semantics and use it to verify/calculate properties of proba-

bilistic programs.
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is x ∈ D such that xk ⊑ x for all k and such that if also xk ⊑ y for all k then x ⊑ y; we shall often
write limk→∞ xk for that least upper bound. We say that a cpo is a pointed cpo if there exists a least

element, that is an element ⊥ such that ⊥ ⊑ x for all x ∈ D.
We say that a domain D is discrete if x ⊑ y implies x = y; a discrete domain is trivially a cpo (but

not a pointed cpo unless a singleton).

A function f from a cpo D1 to a cpo D2 is continuous if for each chain {xk | k} in D1 the

following holds: { f (xk ) | k} is a chain in D2, and limk→∞ f (xk ) = f (limk→∞ xk ). We let D1 →c D2

denote the set of continuous functions from D1 to D2. A continuous function f is also monotone,

that is f (x1) ⊑ f (x2) when x1 ⊑ x2 (for then x1, x2, x2, ... is a chain and by continuity thus also

f (x1), f (x2), f (x2), ... is a chain).

Lemma A.1. Let D1 and D2 be cpos. Then D1 →c D2 is a cpo, with ordering defined pointwise:
f1 ⊑ f2 iff f1(x) ⊑ f2(x) for all x ∈ D1.

If D2 is a pointed cpo then also D1 →c D2 is a pointed cpo.
If D1 is discrete then D1 →c D2 contains all functions from D1 to D2 (and thus we may just write

D1 → D2).

Proof. Let { fk | k} be a chain of continuous functions from D1 to D2, with f their pointwise

limit, that is: f (x) = limk→∞ fk (x) for all x ∈ D1. We have to show that f is continuous. But if

{xk | k} is a chain in D1 then

f (limk→∞ xk ) = limm→∞ fm(limk→∞ xk )

= limm→∞ limk→∞ fm(xk )

= limk→∞ limm→∞ fm(xk )

= limk→∞ f (xk ).

IfD2 has a bottom element⊥ then λx .⊥ is the bottom element inD1 →c D2, and ifD1 is discrete then

all functions from D1 to D2 are continuous since a chain in D1 can contain only one element. □

Lemma A.2. Let f be a continuous function on a pointed cpo D. Then1 { f k (⊥) | k} is a chain, and
limk→∞ f k (⊥) is the least fixed point of f .

Proof. From ⊥ ⊑ f (⊥) we by monotonicity of f infer that f k (⊥) ⊑ f k+1(⊥) for all k so

{ f k (⊥) | k} is indeed a chain. With y = limk→∞ f k (⊥) we see by continuity of f that y is indeed a

fixed point of f : f (y) = limk→∞ f k+1(⊥) = y. And if z is also a fixed point, we have ⊥ ⊑ z and by

monotonicity of f thus f k (⊥) ⊑ f k (z) = z for all k , from which we infer y ⊑ z. □

B MISCELLANEOUS PROOFS

We shall often let “;” denote function composition: (f ;д)(x) = д(f (x)).

B.1 Proofs for Section 3

Lemma B.1. For given v , let ≺v be an ordering among proper postdominators of v , by stipulating
that v1 ≺v v2 iff in all acyclic paths from v to end, v1 occurs strictly before v2. Then ≺v is transitive,
antisymmetric, and total. Also, if v1 ≺v v2 then for all paths from v to end it is the case that the first
occurrence of v1 is before the first occurrence of v2.

Proof. The first two properties are obvious.

We next show that ≺v is total. Assume, to get a contradiction, that there exists an acyclic path

π1 from v to end that contains v1 strictly before v2, and also an acyclic path π2 from v to end that

1
Recall that f k is defined by letting f 0(x ) = x , and f k+1(x ) = f (f k (x )) for k ≥ 0.
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contains v2 strictly before v1. But then the concatenation of the prefix of π1 that ends with v1, and
the suffix of π2 that starts with v1, is a path from v to end that avoids v2, yielding a contradiction

as v2 postdominates v .
Finally, assume that v1 ≺v v2, and that π is a path from v to end; to get a contradiction, assume

that there is a prefix π1 of π that ends with v2 but does not contain v1. Since there exists an acyclic

path from v to end, we infer from v1 ≺v v2 that there is an acyclic path π2 from v2 that does not
contain v1. But the concatenation of π1 and π2 is a path from v to end that does not contain v1,
which contradicts v1 being a proper postdominator of v . □

Lemma 3.2: For any v with v , end, there is a unique first proper postdominator of v .

Proof. It is obvious that v can have at most one first proper postdominator; we shall now argue

that v does have one.

Since Lemma B.1 says that ≺v is a linear order among the proper postdominators of v , and since

v has at least one proper postdominator (we can use end since v , end), we infer that v has a

proper postdominator v1 that is least wrt. the ≺v order.

To establish that v1 is indeed the first proper postdominator of v , let v ′ be another proper

postdominator of v and let π be a path from v to v ′; our task is to show that v1 occurs in π . As
v1 ≺v v

′
, and π can be extended into a path π ′ fromv to end, we infer that in π ′ the first occurrence

of v1 is before the first occurrence of v
′
, in particular that v1 occurs in π . □

Lemma3.4: If (v,v1) ∈ PD and (v1,v2) ∈ PD (and thus (v,v2) ∈ PD) then LAP(v,v2) = LAP(v,v1)+
LAP(v1,v2).

Proof. If v = v1 or v1 = v2, the claim is obvious; we can thus assume that v1 and v2 are proper
postdominators of v and by Lemma B.1 we further infer that v1 will occur before v2 in all paths

from v to end.
First consider an acyclic path π from v to v2. We have argued that π will contain v1, and hence

π is the concatenation of an acyclic path from v to v1, thus of length ≤ LAP(v,v1), and an acyclic

path fromv1 to v2, thus of length ≤ LAP(v1,v2). Thus the length of π is ≤ LAP(v,v1)+ LAP(v1,v2);
as π was an arbitrary acyclic path from v to v2, this shows “≤”.

To show “≥”, let π1 be an acyclic path from v to v1 of length LAP(v,v1), and π2 be an acyclic

path from v1 to v2 of length LAP(v1,v2). Let π be the concatenation of π1 and π2; π is an acyclic

path from v to v2 since if v
′ , v1 occurs in both paths then there is a path from v to v2 that avoids

v1 which is a contradiction. As π is of length LAP(v,v1) + LAP(v1,v2), this shows “≥”. □

Lemma B.2. Assume that v ′ is a proper postdominator of v , that with v ′′ = FPPD(v) we have
v ′ , v ′′, and that Q is a set of nodes.

If v stays outside Q until v ′ then (i) v stays outside Q until v ′′, and (ii) v ′′ stays outside Q until v ′.

Proof. For (i), let π be a path from v to v ′′ that contains v ′′ only at the end. Hence v ′ cannot
be in π (as v ′′ occurs in all paths from v to v ′), so we can extend π into a path π ′ from v to v ′

that contains v ′ only at the end. Since v stays outside Q until v ′, π ′ contains no node in Q except

possibly v ′, and hence π contains no node in Q .
For (ii), let π be a path from v ′′ to v ′ that contains v ′ only at the end. There is a path from v to

v ′′ that does not contain v ′, so we can extend π into a path π ′ from v to v ′ that contains v ′ only at

the end. Since v stays outside Q until v ′, π ′ contains no node in Q except possibly v ′, and hence π
contains no node in Q except possibly v ′. □

Lemma B.3. Assume that v ′ is a proper postdominator of v , that v1 is a successor of v , and that Q
is a set of nodes.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:46 T. Amtoft and A. Banerjee

If v stays outside Q until v ′ then also v1 stays outside Q until v ′.

Proof. Let π be a path from v1 to v
′
that contains v ′ only at the end. Since v , v ′, we can

extend π into a path π ′ from v to v ′ that contains v ′ only at the end. Since v stays outside Q until

v ′, π ′ contains no node inQ except possibly v ′, and hence π contains no node inQ except possibly

v ′. □

B.2 Proofs for Section 4

Lemma 4.1: Assume that {Dk | k} is a chain of (not necessarily subprobability) distributions with

D ′ = limk→∞ Dk . With S a (countable) set of stores, we have∑
s ∈S

D ′(s) = limk→∞

∑
s ∈S

Dk (s)

Proof. From Dk ≤ D ′ we get that

∑
s ∈S D

′(s) is an upper bound for {
∑

s ∈S Dk (s) | k}; as
limk→∞

∑
s ∈S Dk (s) is the least upper bound, we get

limk→∞

∑
s ∈S

Dk (s) ≤
∑
s ∈S

D ′(s).

To establish that equality holds, we shall assume limk→∞
∑

s ∈S Dk (s) <
∑

s ∈S D
′(s) so as to get a

contradiction. Then there exists ϵ > 0 such that limk→∞
∑

s ∈S Dk (s) + ϵ <
∑

s ∈S D
′(s). We infer

that there exists a finite set S0 with S0 ⊆ S such that limk→∞
∑

s ∈S Dk (s) + ϵ <
∑

s ∈S0 D
′(s). For

each s ∈ S0 there exists Ks such that Dk (s) > D ′(s) − ϵ/|S0 | for k ≥ Ks , and thus there exists K
(the maximum element of the finite set {Ks | s ∈ S0}) such that for each s ∈ S0, and each k ≥ K ,
Dk (s) + ϵ/|S0 | > D ′(s). But then we get the desired contradiction:∑

s ∈S0

D ′(s) <
∑
s ∈S0

(DK (s) + ϵ/|S0 |) =
∑
s ∈S0

DK (s) + ϵ ≤ limk→∞

∑
s ∈S

Dk (s) + ϵ

<
∑
s ∈S0

D ′(s).

□

Lemma 4.3: If R ⊆ R′ then for s ∈ S(R) we have

D(s) =
∑

s ′∈S(R′) | s ′R=s

D(s ′).

Proof. We have the calculation∑
s ′∈S(R′) | s ′R=s

D(s ′) =
∑

s ′∈S(R′) | s ′R=s

©­­«
∑

s0∈SU | s0
R′
=s ′

D(s0)
ª®®¬

=
∑

s0∈SU, s ′∈S(R′) | s ′
R
=s , s0

R′
=s ′

D(s0) =
∑

s0∈SU | s0
R
=s

D(s0) = D(s)

where the third equality is justified as follows: for a given s0 ∈ SU, exactly one s ′ ∈ S(R′) will satisfy

s0
R′
= s ′, and for that s ′ we will have (since R ⊆ R′) that s ′

R
= s iff s0

R
= s . □

Lemma 4.9: If R1 and R2 are independent in D, so are {x1} and {x2} for all x1 ∈ R1, x2 ∈ R2.
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Proof. This follows since for all values v1,v2 we have the calculation (due to Lemma 4.3):

D({x1 7→ v1} · D({x2 7→ v2}) =
∑

s1∈S(R1) | s1(x1)=v1

D(s1)
∑

s2∈S(R2) | s2(x2)=v2

D(s2)

=
∑

s1∈S(R1), s2∈S(R2) | s1(x1)=v1, s2(x2)=v2

D(s1)D(s2)

=
∑

s1∈S(R1), s2∈S(R2) | s1(x1)=v1, s2(x2)=v2

D(s1 ⊕ s2)
∑

D

=
∑

s ∈S(R1∪R2) | s(x1)=v1, s(x2)=v2

D(s)
∑

D

= D({x1 7→ v1, x2 7→ v2})
∑

D

□

Lemma 4.12: If D is concentrated then R1 and R2 are independent in D for all disjoint R1,R2.

Proof. Let s0 ∈ SU be such that D(s) = 0 for all s ∈ SU with s , s0. Let s1 ∈ S(R1) and s2 ∈ R(s2)
be given. We split into two cases:

• First assume that s1
R1

= s0 and s2
R2

= s0. Then D(s1), D(s2), D(s1 ⊕ s2) and
∑
D all equal D(s0).

• Otherwise, for some i ∈ {1, 2} we do not have si
Ri
= s0. Then D(si ) and D(s1 ⊕ s2) both equal 0.

In both cases, it is obvious that Equation (1) has been established. □

Lemma 4.13: Let f ∈ D→ D be continuous and additive. Assume that for all D that are concen-

trated, f is lossless for D. Then f is lossless.

Proof. Let s1, s2, . . . be an enumeration of stores in SU. For given D ∈ D, and for each k ≥ 1, let

Dk be given by stipulatingDk (sk ) = D(sk ) butDk (s) = 0 when s , sk . Thus eachDk is concentrated,

and D = limk→∞ D ′k where D ′k = D1 + . . . + Dk . Since f is assumed continuous and additive,

f (D) = f (limk→∞ D ′k ) = limk→∞ f (D ′k ) = limk→∞ (f (D1) + . . . + f (Dk ))

and thus the desired result follows from the calculation (where we use Lemma 4.1 twice, and exploit

that f is lossless for each Dk )∑
f (D) =

∑
s ∈SU

f (D)(s)

=
∑
s ∈SU

limk→∞ (f (D1)(s) + . . . + f (Dk )(s))

= limk→∞

∑
s ∈SU

(f (D1)(s) + . . . + f (Dk )(s))

= limk→∞ (
∑
s ∈SU

f (D1)(s) + . . . +
∑
s ∈SU

f (Dk )(s))

= limk→∞ (
∑
s ∈SU

D1(s) + . . . +
∑
s ∈SU

Dk (s))

= limk→∞

∑
s ∈SU

D ′k (s)

=
∑
s ∈SU

limk→∞ D ′k (s) =
∑
s ∈SU

D(s) =
∑

D.
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□

Lemma 4.15: Assume that assignx :=E (D) = D ′ and that x < R. Then D
R
= D ′.

Proof. Given s0 ∈ S(R), we must show that D ′(s0) = D(s0). But this follows since

D ′(s0) =
∑

s ′∈SU | s ′
R
=s0

D ′(s ′) =
∑

s ′∈SU | s ′
R
=s0

©­«
∑

s ∈SU | s ′=s[x 7→[[E]]s]

D(s)
ª®¬

=
∑

s ,s ′∈SU | s ′
R
=s0, s ′=s[x 7→[[E]]s]

D(s)

(as x < R) =
∑

s ,s ′∈SU | s
R
=s0, s ′=s[x 7→[[E]]s]

D(s) =
∑

s ∈SU | s
R
=s0

D(s) = D(s0)

□

Lemma 4.17 assignx :=E is continuous.

Proof. Obviously, assignx :=E is monotone. To show continuity, let {Dk | k} be a chain. With

D ′k = assignx :=E (Dk ), monotonicity implies that also {D ′k | k} is a chain; let D = limk→∞ Dk and

D ′ = limk→∞ D ′k . Our goal is to prove that D
′ = assignx :=E (D). But this follows since by Lemma 4.1

for each s ′ we have the calculation

D ′(s ′) = limk→∞ D ′k (s
′) = limk→∞

∑
s ∈SU | s ′=s[x 7→[[E]]s]

Dk (s)

=
∑

s ∈SU | s ′=s[x 7→[[E]]s]

limk→∞ Dk (s) =
∑

s ∈SU | s ′=s[x 7→[[E]]s]

D(s)

□

Lemma 4.18: Assume that rassignx :=E (D) = D ′ and that x < R. Then D
R
= D ′.

Proof. Given s0 ∈ S(R), we must show that D ′(s0) = D(s0). But this follows since

D ′(s0) =
∑

s ′∈SU | s ′
R
=s0

D ′(s ′) =
∑

s ′∈SU | s ′
R
=s0

©­­«
∑

s ∈SU | s ′
U\{x }
= s

ψ (s ′(x))D(s)
ª®®¬

(as x < R) =
∑

s ,s ′∈SU | s
R
=s0, s ′

U\{x }
= s

ψ (s ′(x))D(s) =
∑

s ∈SU | s
R
=s0

©­­«
∑

s ′∈SU | s ′
U\{x }
= s

ψ (s ′(x))D(s)
ª®®¬

=
∑

s ∈SU | s
R
=s0

©­­«D(s)
©­­«

∑
s ′∈SU | s ′

U\{x }
= s

ψ (s ′(x))
ª®®¬
ª®®¬ =

∑
s ∈SU | s

R
=s0

(
D(s)

(∑
z∈Z

ψ (z)

))
=

∑
s ∈SU | s

R
=s0

(D(s) · 1) = D(s0)

□

Lemma 4.20 rassignx :=E is continuous.
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Proof. Obviously, rassignx :=E is monotone. To show continuity, let {Dk | k} be a chain. With

D ′k = rassignx :=E (Dk ), monotonicity implies that also {D ′k | k} is a chain; let D = limk→∞ Dk
and D ′ = limk→∞ D ′k . Our goal is to prove that D ′ = rassignx :=E (D). But this follows since by

Lemma 4.1 for each s ′ we have the calculation

D ′(s ′) = limk→∞ D ′k (s
′) = limk→∞

∑
s ∈SU | s ′

U\{x }
= s

ψ (s ′(x))Dk (s)

=
∑

s ∈SU | s ′
U\{x }
= s

limk→∞ψ (s
′(x))Dk (s)

=
∑

s ∈SU | s ′
U\{x }
= s

ψ (s ′(x))D(s)

□

Lemma 4.24 The functional HX is continuous on PD→ (D→c D).

Proof. Consider a chain {дk | k}, so as to prove that HX (limk→∞ дk ) = limk→∞HX (дk ). For all
(v,v ′) ∈ PD and all D in D, we must thus prove

HX (limk→∞ дk )(v,v
′)(D) = limk→∞HX (дk )(v,v

′)(D)

and shall do so by induction in LAP(v,v ′), with a case analysis in Figure 2. We shall consider some

sample cases:

• If v ∈ X with Lab(v) of the form x := E then both sides evaluate to assignx :=E (D).
• If v ′ , v ′′ where v ′′ = FPPD(v) then we have the calculation

HX (limk→∞ дk )(v,v
′)(D) = HX (limk→∞ дk )(v

′′,v ′)(HX (limk→∞ дk )(v,v
′′)(D))

= (limk→∞HX (дk )(v
′′,v ′))(limk→∞HX (дk )(v,v

′′)(D))

= limk→∞HX (дk )(v
′′,v ′)(HX (дk )(v,v

′′)(D))

= limk→∞HX (дk )(v,v
′)(D)

where the second equality follows from the induction hypothesis, and the third equality from

continuity of HX (дk )(v
′′,v ′) (Lemma 4.23).

• If v is a branching node with condition B, true-successor v1, and false-successor v2, where
LAP(v1,v ′) ≥ LAP(v,v ′) and LAP(v2,v ′) < LAP(v,v ′) (other cases are similar), with D1 =

selectB (D) and D2 = select¬B (D) we have the calculation (where the second equality follows

from the induction hypothesis):

HX (limk→∞ дk )(v,v
′)(D) = limk→∞ дk (v1,v

′)(D1) + HX (limk→∞ дk )(v2,v
′)(D2)

= limk→∞ (дk (v1,v
′)(D1) + HX (дk )(v2,v

′)(D2))

= limk→∞HX (дk )(v,v
′)(D)

□

The following two lemmas are often convenient.

Lemma B.4. Assume that assignx :=E (D) = D ′. Assume that R,R′ are such that x ∈ R′, and that
R′′ ∪ fv(E) ⊆ R where R′′ = R′ \ {x}. For s ′ ∈ S(R′) we then have

D ′(s ′) =
∑

s ∈S(R) | sR
′′
= s ′, s ′(x )=[[E]]s

D(s).
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Proof. This follows from the calculation

D ′(s ′) =
∑

s ′
0
∈SU | s ′

0

R′
=s ′

D ′(s ′
0
) =

∑
s ′
0
∈SU | s ′

0

R′
=s ′

©­«
∑

s0∈SU | s ′
0
=s0[x 7→[[E]]s0]

D(s0)
ª®¬

=
∑

s ′
0
,s0∈SU | s ′

0
=s0[x 7→[[E]]s0], s ′

0

R′′
= s ′, s ′(x )=[[E]]s0

D(s0) =
∑

s0∈SU | s0
R′′
= s ′, s ′(x )=[[E]]s0

D(s0)

=
∑

s0∈SU | s0|R
R′′
= s ′, s ′(x )=[[E]](s0|R )

D(s0) =
∑
s0∈SU

∑
s ∈S(R) | s=s0|R , s

R′′
= s ′, s ′(x )=[[E]]s

D(s0)

=
∑

s ∈S(R) | sR
′′
= s ′, s ′(x )=[[E]]s

©­­«
∑

s0∈SU | s0
R
=s

D(s0)
ª®®¬ =

∑
s ∈S(R) | sR

′′
= s ′, s ′(x )=[[E]]s

D(s)

□

Lemma B.5. Assume that rassignx :=ψ (D) = D ′. Assume that R,R′ are such that x ∈ R′, and that
R′′ ⊆ R where R′′ = R′ \ {x}. For s ′ ∈ S(R′) we then have

D ′(s ′) = ψ (s ′(x))
∑

s ∈S(R) | sR
′′
= s ′

D(s)

Proof. This follows from the calculation

D ′(s ′) =
∑

s ′
0
∈SU | s ′

0

R′
=s ′

D ′(s ′
0
) =

∑
s ′
0
∈SU | s ′

0

R′
=s ′

©­­«
∑

s0∈SU | s ′
0

U\{x }
= s0

ψ (s ′
0
(x))D(s0)

ª®®¬
=

∑
s0,s ′

0
∈SU | s0

R′′
= s ′, s ′

0
=s0[x 7→s ′(x )]

ψ (s ′(x))D(s0)

=
∑

s0∈SU | s0
R′′
= s ′

ψ (s ′(x))D(s0) = ψ (s
′(x))

∑
s ∈S(R) | sR

′′
= s ′

∑
s0∈SU | s0

R
=s

D(s0)

= ψ (s ′(x))
∑

s ∈S(R) | sR
′′
= s ′

D(s)

□

Next some results that prepare for the proof of Lemma 4.29.

Lemma B.6. Let { fk | k} be a chain of additive functions. Then f = limk→∞ fk is additive.

Proof. For all distributions D1 and D2, we have

f (D1 + D2) = limk→∞ fk (D1 + D2) = limk→∞ (fk (D1) + fk (D2))

= limk→∞ fk (D1) + limk→∞ fk (D2) = f (D1) + f (D2).

□
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Lemma B.7. Let { fk | k} be a chain of multiplicative functions. Then f = limk→∞ fk is multiplica-
tive.

Proof. For all distributions D, and for all c with c ≥ 0, we have

f (cD) = limk→∞ fk (cD) = limk→∞ c fk (D) = c limk→∞ fk (D) = c f (D).

□

Lemma B.8. Let { fk | k} be a chain of non-increasing functions. Then f = limk→∞ fk is a non-
increasing function.

Proof. For all distributions D, by assumption

∑
fk (D) ≤

∑
D for all k so by Lemma 4.1 we get:∑

f (D) =
∑

limk→∞ fk (D) = limk→∞

∑
fk (D) ≤ limk→∞

∑
D =

∑
D.

□

Lemma B.9. With HX as defined in Def. 4.22, we have:
• if h0(v ,v

′) is additive for all (v,v ′) ∈ PD then HX (h0)
(v ,v ′) is additive for all (v,v ′) ∈ PD;

• ifh0(v ,v
′) is multiplicative for all (v,v ′) ∈ PD thenHX (h0)

(v ,v ′) is multiplicative for all (v,v ′) ∈ PD;
• if h0(v ,v

′) is non-increasing for all (v,v ′) ∈ PD then HX (h0)
(v ,v ′) is non-increasing for all (v,v ′) ∈

PD.

Proof. An easy induction in LAP(v,v ′), using Lemmas 4.14, 4.16 and 4.19. □

Lemma 4.29 Given a set X of nodes, let h = fix(HX ), and for each k ≥ 0 let hk = Hk
X (0). Then

for each (v,v ′) ∈ PD, h(v ,v
′)
is additive, multiplicative and non-increasing, as is each hk

(v ,v ′)
, in

particular (taking X = V) each ωk
(v ,v ′)

.

Proof. The function 0 is obviously additive, multiplicative and non-increasing, so by Lemma B.9

we infer that for each k ≥ 0, and for each (v,v ′) ∈ PD, hk (v ,v
′)
is additive, multiplicative and

non-increasing. The claim about h now follows from Lemmas B.6, B.7, and B.8. □

Lemma 4.31 Given a pCFG, a slice Q , and (v,v ′) ∈ PD such that v stays outside Q until v ′. We

then have HQ (h)
(v ,v ′)(D) = D for all D ∈ D and all modification functions h.

Proof. We do induction in LAP(v,v ′). The claim is obvious if v = v ′. If with v ′′ = FPPD(v)
we have v ′ , v ′′, we can (by Lemmas B.2 and 3.4) apply the induction hypothesis to (v,v ′′) and

(v ′′,v ′), to get the desired HQ (h)
(v ,v ′)(D) = HQ (h)

(v ′′,v ′)(HQ (h)
(v ,v ′′)(D)) = HQ (h)

(v ′′,v ′)(D) = D.
We are left with the case when v ′ = FPPD(v), and since v stays outside Q until v ′ we see that

v < Q and thus clause (3a) in Figure 2 gives the desired HQ (h)
(v ,v ′)(D) = D. □

We now prepare for the proof of Lemma 4.32.

Definition B.10. A function f : D→ D is non-increasing wrt. R, a set of variables, if f (D)(s) ≤
D(s) holds for all D ∈ D and s ∈ S(R).

Observe that with R = ∅, this reduces to the previous notion of non-increasing.

Lemma B.11. With (v,v ′) ∈ PD, assume that Q is closed under data dependence and that v stays
outside Q until v ′. Let R = rvQ (v) = rvQ (v ′) (well-defined by Lemma 3.15), and let ωk = Hk

V(0) for
each k ≥ 0. Then ωk

(v ,v ′) is non-increasing wrt. R for all k ≥ 0.

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.



1:52 T. Amtoft and A. Banerjee

Proof. Induction in k , followed by induction in LAP(v,v ′). The case where k = 0 is trivial as

then ωk = 0. Now let k > 0, in which case ωk = HV(ωk−1). If v
′ = v , then ωk

(v ,v ′)(D) = D and the

claim is trivial. Otherwise, let v0 = FPPD(v); if v0 , v
′
then Lemma B.2 tells us that we can apply

the induction hypothesis twice to infer that ωk
(v ,v0)

and ωk
(v0,v ′)

are both non-increasing wrt. R
which shows that ωk

(v ,v ′)
is non-increasing wrt. R since for s ∈ S(R) we have

ωk
(v ,v ′)(D)(s) = ωk

(v0,v ′)(ωk
(v ,v0)(D))(s) ≤ ωk

(v ,v0)(D)(s) ≤ D(s).

We are left with case where v ′ = FPPD(v). If Lab(v) is of the form observe(B) the claim is trivial.

If Lab(v) is of the form x := E or of the form x := random(ψ ) we first infer that x < R because

otherwise, as Q is closed under data dependence, we would have v ∈ Q which contradicts that v
stays outside Q until v ′. But then the claim follows from Lemmas 4.15 and 4.18.

The last case is if v is a branching node with condition B, with v1 the true-successor of v and

v2 the false-successor of v . For each D ∈ D, let D1 = selectB (D) and D2 = select¬B (D) and let (for

i ∈ {1, 2})D ′i be defined asωk
(vi ,v ′)(Di ) if LAP(vi ,v ′) < LAP(v,v ′), but otherwise asωk−1

(vi ,v ′)(Di ).

For each i ∈ {1, 2}we can apply, asvi stays outsideQ untilv ′ (Lemma B.3), either the outer induction

hypothesis, or the inner induction hypothesis, to infer that for all s ∈ S(R), D ′i (s) ≤ Di (s). For each
s ∈ S(R) we thus infer the desired

ωk
(v ,v ′)(s) = D ′

1
(s) + D ′

2
(s) ≤ D1(s) + D2(s) = D(s).

□

Lemma 4.32With (v,v ′) ∈ PD, assume thatQ is closed under data dependence and thatv stays

outside Q until v ′ (by Lemma 3.15 it thus makes sense to define R = rvQ (v) = rvQ (v ′)).

For all distributions D, if
∑
ω(v ,v

′)(D) =
∑
D then ω(v ,v

′)(D)
R
= D.

Proof. GivenD ∈ Dwith

∑
ω(v ,v

′)(D) =
∑
D, for all s ∈ S(R), LemmaB.11 yieldsωk

(v ,v ′)(D)(s) ≤
D(s) for all k ≥ 0, and as ω = limk→∞ωk this implies —since ω is the least upper bound—
ω(v ,v

′)(D)(s) ≤ D(s). We thus get (using Lemma 4.4)∑
ω(v ,v

′)(D) =
∑

s ∈S(R)

ω(v ,v
′)(D)(s) ≤

∑
s ∈S(R)

D(s) =
∑

D.

If

∑
ω(v ,v

′)(D) =
∑
D we infer from the above that∑

s ∈S(R)

ω(v ,v
′)(D)(s) =

∑
s ∈S(R)

D(s)

which since ω(v ,v
′)(D)(s) ≤ D(s) for all s ∈ S(R) is possible only if ω(v ,v

′)(D)(s) = D(s) for all

s ∈ S(R), that is ω(v ,v
′)(D)

R
= D. □

B.3 Proofs for Section 5

Lemma 5.3 If Q1 and Q2 are weak slice sets, also Q1 ∪Q2 is a weak slice set.

Proof. Let Q = Q1 ∪Q2. To see that Q is closed under data dependence, assume that v
dd
→ v ′

with v ′ ∈ Q ; wlog. we can assume v ′ ∈ Q1 which since Q1 is closed under data dependence implies

v ∈ Q1 and thus v ∈ Q .
We shall now look at a node v , and argue that nextQ (v) exists. If nextQ1

(v) = v or nextQ2
(v) = v ,

then v ∈ Q ∪ {end} and thus nextQ (v) = v . Otherwise, let v1 = nextQ1
(v) and v2 = nextQ2

(v); both
v1 and v2 are proper postdominators of v so by Lemma B.1 we can wlog. assume that v1 occurs
before v2 in all paths from v to end (or that v1 = v2).
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We shall now show that v1 = nextQ (v), where we first observe that v1 ∈ Q ∪ {end}. Now
consider a path π from v to Q ∪ {end}. We must show that π contains v1, which is obvious if the

path π is to Q1 ∪ {end}. Otherwise, when π is to Q2, we infer that π contains v2 (which yields the

claim if v1 = v2). Since all nodes have a path to end, π is a prefix of a path π ′ from v to end; as v1
occurs before v2 in all paths from v to end, we see that v1 occurs before v2 in π

′
. We infer that v1

occurs also in π , as desired. □

Lemma 5.7 Assume Q ′ is a node set which contains all observe nodes, and that for each cycle-

inducing node v0, either v0 ∈ Q ′ or ω(v0,F PPD(v0))
is lossless. If v stays outside Q ′ until v ′ then∑

ω(v ,v
′)(D) =

∑
D for all D.

Proof. We do induction in LAP(v,v ′). The claim is obvious if v ′ = v , so we can assume that v ′

is a proper postdominator of v .
With v ′′ = FPPD(v), let us first assume that v ′ , v ′′. By Lemma 3.4 we have LAP(v,v ′′) <

LAP(v,v ′) and LAP(v ′′,v ′) < LAP(v,v ′), and by Lemma B.2 we see that v stays outside Q ′ until
v ′′ and that v ′′ stays outside Q ′ until v ′. We can thus apply the induction hypothesis on ω(v ,v

′′)

(the third equality) and on ω(v
′′,v ′)

(the second equality) to infer that for all D we have∑
ω(v ,v

′)(D) =
∑

ω(v
′′,v ′)(ω(v ,v

′′)(D)) =
∑

ω(v ,v
′′)(D) =

∑
D.

Thus we can now assume that v ′ = FPPD(v). If v is labeled skip the claim is trivial; if v is labeled

x := E (or x := random(ψ )) then the claim follows from Lemma 4.16 (or Lemma 4.19). Note that

v < Q ′ (as v stays outside Q ′ until v ′), so our assumptions entail that v cannot be an observe node,
and that if v is cycle-inducing then ω(v ,v

′)
is lossless and thus the claim.

We are thus left with the case that v is a branching node which is not cycle-inducing. With

v1 the true-successor and v2 the false-successor of v , we thus have LAP(v1,v ′) < LAP(v,v ′) and
LAP(v2,v ′) < LAP(v,v ′), and by Lemma B.3 also thatv1 andv2 both stay outsideQ ′ untilv ′. Hence
we can apply the induction hypothesis to ω(v1,v ′)

and ω(v2,v ′)
, to get the desired result:∑

ω(v ,v
′)(D) =

∑
(ω(v1,v ′)(selectB (D)) + ω(v2,v ′)(select¬B (D)))

=
∑

ω(v1,v ′)(selectB (D)) +
∑

ω(v2,v ′)(select¬B (D))

=
∑

selectB (D) +
∑

select¬B (D) =
∑

D.

□

B.4 Proofs for Section 6

Lemma B.12. For each (v,v ′) ∈ PD, and each k ≥ 0, γk (v ,v
′) is additive, multiplicative and

non-increasing.

Proof. We know from Lemma 4.29 that ω is additive, multiplicative and non-increasing (and so

is the function 0); the result thus follows from Lemma B.9. □

Similarly, we have (with Φk defined in Def. 6.7):

Lemma B.13. For each (v,v ′) ∈ PD, and each k ≥ 0, Φk
(v ,v ′) is additive, multiplicative and

non-increasing,

Lemma 6.2 Assume that v stays outside Q ∪ Q0 until v
′
. Then γk

(v ,v ′) = ω(v ,v
′)
holds for all

k ≥ 0.
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Proof. We do induction in k , where the base case k = 0 follows from the definition of γ0.
For the inductive case, where γk = HV(γk−1) with k > 0, we do induction in LAP(v,v ′), with a

case analysis on the definition of HV:

• If v ′ = v then γk
(v ,v ′)(D) = D = ω(v ,v

′)(D);
• If withv ′′ = FPPD(v)we havev ′ , v ′′ then we know from Lemma B.2 thatv stays outsideQ∪Q0

until v ′′, and that v ′′ stays outside Q ∪Q0 until v
′
; by Lemma 3.4 we know that LAP(v,v ′′) <

LAP(v,v ′) and LAP(v ′′,v ′) < LAP(v,v ′). Hence we can apply the inner induction hypothesis to

infer that γk
(v ,v ′′) = ω(v ,v

′′)
and γk

(v ′′,v ′) = ω(v
′′,v ′)

. But then we get the desired

γk
(v ,v ′) = γk

(v ,v ′′)
; γk

(v ′′,v ′) = ω(v ,v
′′)
; ω(v

′′,v ′) = ω(v ,v
′).

• Otherwise, when v ′ = FPPD(v), the claim is trivial except when v is a branching node. So

consider such a v , and let B be its condition, v1 its true-successor, and v2 its false-successor. Our
goal is to prove, for a given D, that γk

(v ,v ′)(D) = ω(v ,v
′)(D) which amounts to

HV(γk−1)
(v ,v ′)(D) = HV(ω)

(v ,v ′)(D).

WithD1 = selectB (D) andD2 = select¬B (D), examining the definition ofHV shows that it suffices

if for i ∈ {1, 2} we can prove:

– if LAP(vi ,v ′) < LAP(v,v ′) then

γk
(vi ,v ′)(Di ) = ω

(vi ,v ′)(Di )

which follows by the inner induction hypothesis;

– if LAP(vi ,v ′) ≥ LAP(v,v ′) then

γk−1
(vi ,v ′)(Di ) = ω

(vi ,v ′)(Di )

which follows by the outer induction hypothesis.

□

To prepare for the proof of Lemma 6.5, we state a result about branching nodes:

Lemma B.14. Assume that v is a branching node, with B its condition, and v1 its true-successor
and v2 its false-successor. Let D ∈ Dfin with D1 = selectB (D) and D2 = select¬B (D). Assume that
R,R0,R1,R2 are such that fv(B) ∪ R1 ∪ R2 ⊆ R and R ∩ R0 = ∅. Finally assume that R and R0 are
independent in D. Then for i = 1, 2 we have

(1) Ri and R0 are independent in Di , and
(2) ∀s0 ∈ S(R0) : D(s0)

∑
Di = Di (s0)

∑
D.
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Proof. We shall consider only the case i = 1 (as the case i = 2 is symmetric). For part 2, we

have the calculation (where the 3rd equality follows from R and R0 being independent in D)

D(s0)
∑

D1 = D(s0)
∑

s ∈S(R) | [[B]]s

D(s) =
∑

s ∈S(R) | [[B]]s

D(s0)D(s)

=
∑

s ∈S(R) | [[B]]s

(
D(s0 ⊕ s)

∑
D
)
=

©­«
∑

s ∈S(R) | [[B]]s

D(s0 ⊕ s)
ª®¬
∑

D

=
©­­«

∑
s ′∈S(R∪R0) | s ′

R
0

= s0, [[B]]s ′

D(s ′)
ª®®¬
∑

D

=
©­­«

∑
s ∈SU | s

R
0

= s0, [[B]]s

D(s)
ª®®¬
∑

D =
©­­«

∑
s ∈SU | s

R
0

= s0

D1(s)
ª®®¬
∑

D = D1(s0)
∑

D

For part 1 we have with s1 ∈ S(R1) and s0 ∈ S(R0) the calculation (which uses part 2 and the fact

that if D = 0 then the claim is trivial)

D1(s1 ⊕ s0)
∑

D1 =
©­­«

∑
s ∈S(R) | s

R
1

= s1, [[B]]s

D(s ⊕ s0)
ª®®¬
∑

D1

=
©­­«

∑
s ∈S(R) | s

R
1

= s1, [[B]]s

D(s)D(s0)∑
D

ª®®¬
∑

D1

=
©­­«

∑
s ∈S(R) | s

R
1

= s1, [[B]]s

D(s)
ª®®¬
D(s0)

∑
D1∑

D

= D1(s1)D1(s0).

□

To facilitate the proof of Lemma 6.5, we introduce some notation:

Definition B.15. We say that h ∈ PD→ D→c D preserves probabilistic independence iff for

all slicing pairs (Q,Q0), the following holds for all (v,v ′) ∈ PD, with R = rvQ (v), R′ = rvQ (v ′),
R0 = rvQ0

(v), and R′
0
= rvQ0

(v ′): for all D ∈ Dfin such that R and R0 are independent in D, with

D ′ = h(v ,v
′)(D) it is the case that

(1) R′ and R′
0
are independent in D ′

(2) if v stays outside Q until v ′ (and thus R′ = R) then for all s ∈ S(R) we have

D(s)
∑

D ′ = D ′(s)
∑

D

(3) if v stays outside Q0 until v
′
(and thus R′

0
= R0) then for all s0 ∈ S(R0) we have

D(s0)
∑

D ′ = D ′(s0)
∑

D.

Lemma B.16. For each k ≥ 0, γk preserves probabilistic independence.
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Proof. We shall proceed by induction in k . We shall first consider the base case k = 0. For a

given (v,v ′) ∈ PD, the claims are trivial if γ0
(v ,v ′) = 0, so assume thatv stays outsideQ∪Q0 untilv

′

(implying R′ = R and R′
0
= R0) and thusγ0

(v ,v ′) = ω(v ,v
′)
. We can apply Lemma 5.8 (and Lemma 3.13)

to infer that for all D, with D ′ = γ0
(v ,v ′)(D) we have D ′

R∪R0

= D, and by Lemma 4.6 thus also D ′
R
= D

and D ′
R0

= D and D ′
∅
= D. That is, for s ∈ S(R) and s0 ∈ S(R0) we have D

′(s ⊕ s0) = D(s ⊕ s0) and
D ′(s) = D(s) and D ′(s0) = D(s0), and also D

′(∅) = D(∅) which amounts to

∑
D ′ =

∑
D. This clearly

implies claims 2 and 3 in Definition B.15, and also claim 1 since for s ∈ S(R) and s0 ∈ S(R0) we have,

by our assumption that R and R0 are independent in D:

D ′(s ⊕ s0)
∑

D ′ = D(s ⊕ s0)
∑

D = D(s)D(s0) = D ′(s)D ′(s0).

We shall next consider the case k > 0, where we assume that γk−1 preserves probabilistic indepen-
dence and with γk = HV(γk−1) we must then prove that γk preserves probabilistic independence,

that is: given (v,v ′) ∈ PD with R = rvQ (v), R′ = rvQ (v ′), R0 = rvQ0
(v), and R′

0
= rvQ0

(v ′), and

given D ∈ Dfin such that R and R0 are independent in D, with D ′ = γk
(v ,v ′)(D) we must show that:

(1) R′ and R′
0
are independent in D ′

(2) if v stays outside Q until v ′ (and thus R′ = R) then for all s ∈ S(R) we have

D(s)
∑

D ′ = D ′(s)
∑

D

(3) if v stays outside Q0 until v
′
(and thus R′

0
= R0) then for all s0 ∈ S(R0) we have

D(s0)
∑

D ′ = D ′(s0)
∑

D.

We shall establish the required claims by induction in LAP(v,v ′). First observe that if D ′ = 0 the

claims are trivial. We can thus assume that

∑
D ′ > 0, which by Lemma B.12 entails that

∑
D > 0.

If v ′ = v , then D ′ = D and R′ = R and R′
0
= R0 and again the claims are trivial.

Otherwise, let v ′′ = FPPD(v), and first assume that v ′ , v ′′ in which case the situation is that

there exists D ′′ such that γk
(v ,v ′′)(D) = D ′′ and γk

(v ′′,v ′)(D ′′) = D ′; by Lemma B.12 we can assume

that D ′′ , 0 (as otherwise D ′ = 0 which we have already considered). By Lemma 3.4 we have

LAP(v,v ′′) < LAP(v,v ′) and LAP(v ′′,v ′) < LAP(v,v ′), so we can apply the induction hypothesis

on γk
(v ,v ′′)

and on γk
(v ′′,v ′)

. With R′′ = rvQ (v ′′) and R′′0 = rvQ0
(v ′′), the induction hypothesis now

first gives us that R′′ and R′′
0
are independent in D ′′, and next that R′ and R′

0
are independent in D ′.

Concerning claim 2 (claim 3 is symmetric), assume that v stays outsideQ until v ′; by Lemma B.2

we see that v stays outside Q until v ′′ and v ′′ stays outside Q until v ′. Inductively, we can thus

assume that for s ∈ S(R) we have

D(s)
∑

D ′′ = D ′′(s)
∑

D and D ′′(s)
∑

D ′ = D ′(s)
∑

D ′′.

which since

∑
D ′′ > 0 gives us the desired

D(s)
∑

D ′ =
D ′′(s)

∑
D∑

D ′′

∑
D ′ = D ′′(s)

∑
D ′

∑
D∑
D ′′

= D ′(s)
∑

D ′′
∑
D∑
D ′′
= D ′(s)

∑
D.

We are left with the casev ′ = FPPD(v), and split into several cases, depending on Lab(v), where
the case for skip is trivial.

Case 1: v is an observe node. With B the condition, for s ′ with fv(B) ⊆ dom(s ′) we thus have
D ′(s ′) = D(s ′) if [[B]]s ′, and D ′(s ′) = 0 otherwise. As (Q,Q0) is a slicing pair, either v ∈ Q or

v ∈ Q0. Let us assume that v ∈ Q ; the other case is symmetric. Thus fv(B) ⊆ R, and also R′ ⊆ R as

Def (v) = ∅; as v stays outside Q0 until v
′
, by Lemma 3.15 we also have R′

0
= R0.
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The following calculation, where the 3rd equality is due to the assumption that R and R0 are

independent in D, shows that for s0 ∈ S(R0) we have D
′(s0)

∑
D = D(s0)

∑
D ′:

D ′(s0)
∑

D =
©­«

∑
s ∈S(R)

D ′(s ⊕ s0)
ª®¬
∑

D =
©­«

∑
s ∈S(R) | [[B]]s

D(s ⊕ s0)
ª®¬
∑

D

=
∑

s ∈S(R) | [[B]]s

D(s)D(s0) = D(s0)
©­«

∑
s ∈S(R) | [[B]]s

D(s)
ª®¬

= D(s0)
©­«

∑
s ∈S(R)

D ′(s)
ª®¬ = D(s0)

∑
D ′.

This yields claim (3) (while claim (2) vacuously holds) and also gives the last equality in the following

derivation that establishes (again using the assumption that R and R0 are independent inD) claim (1)

by considering s ′ ∈ S(R′) and s0 ∈ S(R0):

D ′(s ′ ⊕ s0)
∑

D ′ =
©­­«

∑
s ∈S(R) | sR

′
=s ′

D ′(s ⊕ s0)
ª®®¬
∑

D ′

=
©­­«
©­­«

∑
s ∈S(R) | sR

′
=s ′, [[B]]s

D(s ⊕ s0)
ª®®¬
∑

D
ª®®¬
∑
D ′∑
D

=
©­­«

∑
s ∈S(R) | sR

′
=s ′, [[B]]s

D(s)D(s0)
ª®®¬
∑
D ′∑
D

=
©­­«

∑
s ∈S(R) | sR

′
=s ′

D ′(s)
ª®®¬
D(s0)

∑
D ′∑

D

= D ′(s ′)D ′(s0).

Case 2: v has exactly one successor and is not an observe node. Then v is labeled with an

assignment or with a random assignment; in both cases, the distribution transformer is lossless

(Lemmas 4.16 and 4.19) so we get

∑
D ′ =

∑
D. We further infer by Lemma 4.32 that if v < Q then

R′ = R and D ′
R
= D (as then v stays outside Q until v ′); similarly, if v < Q0 then R′

0
= R0 and

D ′
R0

= D.
The above observations obviously establish the claims (2) and (3). We shall now address claim (1),

that is show that D ′(s ⊕ s0)
∑
D ′ = D ′(s)D ′(s0) for s

′ ∈ S(R′) and s0 ∈ S(R0). To do so, we shall do a

case analysis on whether v ∈ Q ∪Q0.

First consider the case where v < Q ∪Q0. Then (by Lemma 4.32) we get R′ = R and R′
0
= R0 and

D ′
R∪R0

= D. This establishes claim 1 since for s ∈ S(R) and s0 ∈ S(R0) we have (using the assumption

that R and R0 are independent in D) D ′(s ⊕ s0)
∑
D ′ = D(s ⊕ s0)

∑
D = D(s)D(s0) = D ′(s)D ′(s0).
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Next consider the case where v ∈ Q ∪Q0. Without loss of generality, we may assume that v ∈ Q .

Thus v < Q0 so R
′
0
= R0 and R0 ∩Def (v) = ∅ and D ′(s0) = D(s0) for all s0 ∈ S(R0). We split into two

cases, depending on whether R′ ∩ Def (v) is empty or not.

First assume that R′ ∩ Def (v) = ∅. Then R′ ⊆ R, and by Lemmas 4.15 and 4.18 (as (R′ ∪ R0) ∩

Def (v) = ∅) we get D
R′∪R0

= D ′. For s ′ ∈ S(R′) and s0 ∈ S(R0) we thus have D
′(s ′ ⊕ so) = D(s ′ ⊕ s0)

and D ′(s ′) = D(s ′) and D ′(s0) = D(s0) and
∑
D ′ =

∑
D, which (using the assumption that R and R0

are independent in D) gives us the desired result

D ′(s ′ ⊕ s0)
∑

D ′ = D(s ′ ⊕ s0)
∑

D

=
©­­«

∑
s ∈S(R) | sR

′
=s ′

D(s ⊕ s0)
ª®®¬
∑

D

=
∑

s ∈S(R) | sR
′
=s ′

D(s)D(s0) = D(s ′)D(s0) = D ′(s ′)D ′(s0).

Next assume that R′ ∩ Def (v) , ∅. We now (finally) need to do a case analysis on the kind of

assignment.

If Lab(v) = x := E, we have (by Lemma 3.11) R = (R′\{x})∪fv(E) and from our case assumptions

also x ∈ R′ and x < R0. Let us now consider s ′ ∈ S(R′) and s0 ∈ S(R0); the claim follows from the

below calculation where the third equality uses the assumption that R and R0 are independent in

D, and the first and last equality both uses Lemma B.4:

D ′(s ′ ⊕ s0)
∑

D ′ =
©­­«

∑
s1∈S(R∪R0) | s1

R′\{x }∪R
0

= s ′⊕s0, (s ′⊕s0)(x )=[[E]]s1

D(s1)
ª®®¬
∑

D

=
©­­«

∑
s ∈S(R) | s

R′\{x }
= s ′, s ′(x )=[[E]]s

D(s ⊕ s0)
ª®®¬
∑

D

=
∑

s ∈S(R) | s
R′\{x }
= s ′, s ′(x )=[[E]]s

D(s)D(s0)

= D ′(s ′)D ′(s0).

Finally, if Lab(v) = x := random(ψ ), we have R = (R′ \ {x}) and from our case assumptions also

x ∈ R′ and x < R0. Let us now consider s ′ ∈ S(R′) and s0 ∈ S(R0): the claim follows from the below

calculation where the third equality uses the assumption that R and R0 are independent in D, and
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the first and last equality both uses Lemma B.5:

D ′(s ′ ⊕ s0)
∑

D ′ = ψ ((s ′ ⊕ s0)(x))
©­­«

∑
s1∈S(R∪R0) | s1

R′\{x }∪R
0

= s ′⊕s0

D(s1)
ª®®¬
∑

D

= ψ (s ′(x))
©­­«

∑
s ∈S(R) | s

R′\{x }
= s ′

D(s ⊕ s0)
ª®®¬
∑

D

= ψ (s ′(x))
©­­«

∑
s ∈S(R) | s

R′\{x }
= s ′

D(s)D(s0)
ª®®¬

= D ′(s ′)D ′(s0).

Case 3: v is a branching node. First assume that v < Q ∪Q0. Here Q ∪Q0 is a weak slice set

(Lemma 5.3), so from Lemma 5.4 we see thatv stays outsideQ∪Q0 untilv
′
; thus R′ = R and R′

0
= R0

(by Lemma 3.15). By Lemma 6.2 we see that D ′ = γk
(v ,v ′)(D) = ω(v ,v

′)(D), and Lemma 5.8 thus

tells us that D ′
R∪R0

= D. In particular for all s ∈ S(R) and s0 ∈ S(R0) we have D
′(s ⊕ s0) = D(s ⊕ s0),

D ′(s) = D(s), D ′(s0) = D(s0) and
∑
D ′ =

∑
D. But this clearly entails all the 3 claims.

In the following, we can thus assume thatv ∈ Q ∪Q0, and shall only look at the casev ∈ Q as the

case v ∈ Q0 is symmetric. Claim 2 thus holds vacuously; we shall embark on the other two claims.

As v ∈ Q we have (by Lemma 3.12) fv(B) ⊆ R = rvQ (v), and as v < Q0 we see (by Lemma 5.4) that

v stays outside Q0 until v
′
so that (by Lemma 3.15) R′

0
= R0. With v1 the true-successor of v and

v2 the false-successor of v , and with D1 = selectB (D) and D2 = select¬B (D), the situation is that

D ′ = D ′
1
+ D ′

2
where for each i ∈ {1, 2}, D ′i is computed as

• if LAP(vi ,v ′) < LAP(v,v ′) then D ′i = γk
(vi ,v ′)(Di );

• if LAP(vi ,v ′) ≥ LAP(v,v ′) then D ′i = γk−1
(vi ,v ′)(Di ).

Let R1 = rvQ (v1) and R2 = rvQ (v2); thus (by Lemma 3.12) R1 ⊆ R and R2 ⊆ R.
By Lemma B.14, we see that

∀i ∈ {1, 2} : Ri and R0 are independent in Di (11)

∀i ∈ {1, 2} : D(s0)
∑

Di = Di (s0)
∑

D for all s0 ∈ S(R0). (12)

Given line (11), and the fact that vi stays outside Q0 until v
′
, we can infer that

∀i ∈ {1, 2} : R′ and R0 are independent in D ′i (13)

∀i ∈ {1, 2} : Di (s0)
∑

D ′i = D ′i (s0)
∑

Di for all s0 ∈ S(R0) (14)

since when LAP(vi ,v ′) < LAP(v,v ′) this follows from the (inner) induction hypothesis, and

otherwise it follows from the assumption (the outer induction) about γk−1. We also have

D(s0)
∑

D ′ = D ′(s0)
∑

D for all s0 ∈ S(R0) (15)
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since for s0 ∈ S(R0) we have

D ′(s0)
∑

D = (D ′
1
(s0) + D

′
2
(s0))

∑
D

by (14) =

(
D1(s0)

∑
D ′
1∑

D1

+ D2(s0)

∑
D ′
2∑

D2

) ∑
D

by (12) = D(s0)
∑

D ′
1
+ D(s0)

∑
D ′
2
= D(s0)

∑
D ′

where we have assumed that D1 , 0 and D2 , 0; if say D1 = 0 then D ′
1
= 0 (as each γk is non-

increasing by Lemma B.12) and D = D2 and D
′ = D ′

2
in which case the claim follows directly from

line (14).

From line (15) we get claim 3, and are thus left with showing claim 1 which is that R′ and R0

are independent in D ′. If D ′
1
= 0 then D ′ = D ′

2
and it follows from line (13); similarly if D ′

2
= 0.

Otherwise, in which case also

∑
D1 > 0 and

∑
D2 > 0, for s ′ ∈ S(R′) and s0 ∈ S(R0) we have

D ′(s ′ ⊕ s0)
∑

D ′ = (D ′
1
(s ′ ⊕ s0) + D

′
2
(s ′ ⊕ s0))

∑
D ′

by (13) = D ′
1
(s ′)D ′

1
(s0)

∑
D ′∑
D ′
1

+ D ′
2
(s ′)D ′

2
(s0)

∑
D ′∑
D ′
2

by (14) = D ′
1
(s ′)D1(s0)

∑
D ′∑
D1

+ D ′
2
(s ′)D2(s0)

∑
D ′∑
D2

by (12) = D ′
1
(s ′)D(s0)

∑
D ′∑
D
+ D ′

2
(s ′)D(s0)

∑
D ′∑
D

= D ′(s ′)D(s0)

∑
D ′∑
D

by (15) = D ′(s ′)D ′(s0)

□

Lemma 6.5 [rephrased using Definition B.15]: ω preserves probabilistic independence.

Proof. Let a slicing pair (Q,Q0) be given, and let {γk | k} be defined as in Definition 6.1.

By Lemma B.16, each element in the chain {γk | k} preserves probabilistic independence; by

Proposition 6.3, it is sufficient to prove that also limk→∞ γk preserves probabilistic independence.

With (v,v ′) and D given, let Dk = γk
(v ,v ′)(D) for each k ≥ 0, and let D ′ = (limk→∞ γk )

(v ,v ′)(D).
Then we can establish each of the 3 claims about D ′; claim (1) follows from the calculation

D ′(s1 ⊕ s2)
∑

D ′ = (limk→∞ Dk (s1 ⊕ s2))
∑

limk→∞ Dk

(Lemma 4.1) = (limk→∞ Dk (s1 ⊕ s2)) (limk→∞

∑
Dk ) = limk→∞ (Dk (s1 ⊕ s2)

∑
Dk )

(Lemma B.16) = limk→∞ (Dk (s1)Dk (s2)) = D ′(s1)D
′(s2)

whereas claim (2) (claim (3) is symmetric) follows from the calculation

D(s)
∑

D ′ = D(s)
∑

limk→∞ Dk

(Lemma 4.1) = D(s)limk→∞

∑
Dk = limk→∞ (D(s)

∑
Dk )

(Lemma B.16) = limk→∞ (Dk (s)
∑

D) = D ′(s)
∑

D.

□
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Lemma 6.9 For a given pCFG, let (Q,Q0) be a slicing pair. For all k ≥ 0, all (v,v ′) ∈ PD with

R = rvQ (v) and R′ = rvQ (v ′) and R0 = rvQ0
(v), all D ∈ Dfin such that R and R0 are independent in

D, and all ∆ ∈ Dfin such that D
R
= ∆, we have

γk
(v ,v ′)(D)

R′
= cv ,v

′

k ,D · Φk
(v ,v ′)(∆).

Proof. The proof is by induction in k , with an inner induction on LAP(v,v ′).
Let us first (for all k) consider the case where v stays outside Q ∪ Q0 until v′. By Lemma 6.2

we see that γk
(v ,v ′) = ω(v ,v

′)
, and we also see that Φk

(v ,v ′)(∆) = ∆ (by Definition 6.7 if k = 0, and

by Lemma 4.31 otherwise).

Our proof obligation is thus, since R′ = R, that

ω(v ,v
′)(D)

R
= 1 · ∆.

But from Lemma 5.8 we get ω(v ,v
′)(D)

R
= D, and by assumption we have D

R
= ∆, so the claim follows

since

R
= is obviously transitive.

If k = 0 but v does not stay outside Q ∪ Q0 until v′ then our proof obligation is

0

R′
= cv ,v

′

k ,D · 0

which obviously holds (no matter what cv ,v
′

k ,D is).

We now consider k > 0, in which case γk = HV(γk−1) and Φk = HQ (Φk−1), and again consider

several cases.

First assume that v′ = v, and thus R′ = R. Then our obligation is

D
R′
= 1 · ∆

which follows directly from our assumptions.

Next assume that v′ , v′′ with v′′ = FPPD(v). Then, by Figure 2, γk
(v ,v ′) = γk

(v ,v ′′)
; γk
(v ′′,v ′)

andwithD ′′ = γk
(v ,v ′′)(D)we thus haveγk

(v ,v ′)(D) = γk
(v ′′,v ′)(D ′′); similarly, with∆′′ = Φk

(v ,v ′′)(∆)
we have Φk

(v ,v ′)(∆) = Φk
(v ′′,v ′)(∆′′). Since LAP(v,v ′′) < LAP(v,v ′) we can apply the inner induc-

tion hypothesis to (v,v ′′) and get

D ′′
R′′
= cv ,v

′′

k ,D · ∆
′′

where R′′ = rvQ (v ′′). With R′′
0
= rvQ0

(v ′′), by Lemma B.16 we moreover see that R′′ and R′′
0
are

independent in D ′′. Hence we can apply the inner induction hypothesis to (v ′′,v ′) to get

γk
(v ′′,v ′)(D ′′)

R′
= cv

′′,v ′

k ,D′′ · Φk
(v ′′,v ′)(cv ,v

′′

k ,D · ∆
′′)

which since Φk is multiplicative (Lemma B.13) amounts to

γk
(v ,v ′)(D)

R′
= cv

′′,v ′

k ,D′′ · c
v ,v ′′

k ,D · Φk
(v ,v ′)(∆)

which is as desired since cv ,v
′

k ,D = c
v ,v ′′

k ,D · c
v ′′,v ′

k ,γk (v ,v′′)(D)
.

We are left with the situation that v ′ = FPPD(v) (and k > 0) and v does not stay outside Q ∪Q0

until v ′. By Lemma 5.4, we infer v ∈ Q or v ∈ Q0; we now consider each of these possibilities.

Assume v ∈ Q0 (and k > 0 and v′ = FPPD(v)). Thus v < Q , and hence (by Lemma 5.4) v stays

outside Q until v ′ and thus R′ = R. With D ′ = γk
(v ,v ′)(D), by Lemma B.16 we see that

D(s)
∑

D ′ = D ′(s)
∑

D for all s ∈ S(R). (16)
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Since v < Q , and Φk = HQ (Φk−1) as k > 0, we see from clause (3a) in Figure 2 that Φk
(v ,v ′)(∆) = ∆.

Thus our proof obligation is

D ′
R
= cv ,v

′

k ,D · ∆

which (as we assume D
R
= ∆) amounts to proving that for all s ∈ S(R):

D ′(s) = cv ,v
′

k ,D · D(s)

If D = 0 and hence D ′ = 0 then this is obvious. Otherwise, Definition 6.10 stipulates

cv ,v
′

k ,D =

∑
D ′∑
D

and equation (16) yields the claim.

We shall finally consider the case v ∈ Q (and k > 0 and v′ = FPPD(v)). Thus v < Q0, and

hence (by Lemma 5.4) v stays outside Q0 until v
′
; thus cv ,v

′

k ,D = 1 so that our proof obligation,

with D ′ = γk
(v ,v ′)(D) and ∆′ = Φk

(v ,v ′)(∆), is to establish D ′
R′
= ∆′, that is D ′(s ′) = ∆′(s ′) for all

s ′ ∈ S(R′). We need a case analysis on the label of v , where the case skip is trivial.

If Lab(v) = observe(B), we have fv(B) ⊆ R = rvQ (v) and as Def (v) = ∅ also R′ ⊆ R; for
s ′ ∈ S(R′) this gives us the desired

∆′(s ′) =
∑

s ∈S(R) | sR
′
=s ′

∆′(s) =
∑

s ∈S(R) | sR
′
=s ′, [[B]]s

∆(s) =
∑

s ∈S(R) | sR
′
=s ′, [[B]]s

D(s)

=
∑

s ∈S(R) | sR
′
=s ′

D ′(s) = D ′(s ′).

If v is a branching node, with B its condition, andv1 its true-successor andv2 its false-successor,
withD1 = selectB (D) andD2 = select¬B (D) and ∆1 = selectB (∆) and ∆2 = select¬B (∆) the situation
is that D ′ = D ′

1
+ D ′

2
and ∆′ = ∆′

1
+ ∆′

2
where for each i ∈ {1, 2}, D ′i and ∆′i is computed as

• if LAP(vi ,v ′) < LAP(v,v ′) then D ′i = γk
(vi ,v ′)(Di ) and ∆′i = γk

(vi ,v ′)(∆i );

• if LAP(vi ,v ′) ≥ LAP(v,v ′) then D ′i = γk−1
(vi ,v ′)(Di ) and ∆′i = γk−1

(vi ,v ′)(∆i ).

Let R1 = rvQ (v1) and R2 = rvQ (v2); thus (by Lemma 3.12) R1 ⊆ R and R2 ⊆ R, and also fv(B) ⊆ R.
For each i = 1, 2, we see
• that Ri is independent of R0 in Di (by Lemma B.14),

• that Di
Ri
= ∆i (by Lemma 4.6 from Di

R
= ∆i which holds as for s ∈ S(R) we have D1(s) = ∆1(s) and

D2(s) = ∆2(s) since if say [[B]]s is false then the first equation amounts to 0 = 0 and the second

to D(s) = ∆(s)),

• that vi stays outside Q0 until v
′
, and thus cvi ,v

′

k ,Di
= 1.

We now infer that for each i = 1, 2 we have D ′i
R′
= ∆′i (when LAP(vi ,v ′) < LAP(v,v ′) this follows

from the inner induction hypothesis, and otherwise it follows from the outer induction hypothesis

on k). For s ∈ S(R′) we thus have D ′
1
(s ′) = ∆′

1
(s ′) and D ′

2
(s ′) = ∆′

2
(s ′), which implies D ′(s ′) = ∆′(s ′).

This amounts to the desired D ′
R′
= ∆.

If v is a (random) assignment, let x = Def (v) and first assume that x < R′. Thus R′ ⊆ R so

that D
R′
= ∆, and by Lemma 4.15 (4.18) we get D

R′
= D ′ and ∆

R′
= ∆′. But this implies the desired

D ′
R′
= ∆′ since for s ′ ∈ S(R′) we have D ′(s ′) = D(s ′) = ∆(s ′) = ∆′(s ′).
We can thus assume x ∈ R′ and first consider when Lab(v) = x := E. Then (by Lemma 3.11)

R = R′′ ∪ fv(E) with R′′ = R′ \ {x}, so given s ′ ∈ S(R′) we can use Lemma B.4 twice to give us the
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desired

D ′(s ′) =
∑

s ∈S(R) | sR
′′
= s ′, s ′(x )=[[E]]s

D(s) =
∑

s ∈S(R) | sR
′′
= s ′, s ′(x )=[[E]]s

∆(s) = ∆′(s ′).

We next consider the case when Lab(v) = x := random(ψ ). Then R = R′ \ {x}, so given s ′ ∈ S(R′)
we can use Lemma B.5 twice to give us the desired

D ′(s ′) = ψ (s ′(x))
©­­«

∑
s ∈S(R) | sR=s ′

D(s)
ª®®¬ = ψ (s ′(x))

©­­«
∑

s ∈S(R) | sR=s ′

∆(s)
ª®®¬ = ∆′(s ′)

□

B.5 Proofs for Section 7

We know from clause (2) in Figure 2 that when v ′′ = FPPD(v) we have the equation ω(v ,v
′) =

ω(v ,v
′′)
;ω(v

′′,v ′)
(and similarly for ωk ). But to reason about the translation of structured programs,

we need that equation to hold for all (v,v ′′), (v ′′,v ′) ∈ PD.

Lemma B.17. Given a pCFG, let H be given as in Definition 4.22. For all (v,v1), (v1,v2) ∈ PD, and
for all h0 ∈ PD→ D→ D, with h = H(h0) we have

h(v ,v2) = h(v ,v1)
;h(v1,v2).

Proof. The claim is by induction in LAP(v,v1). If v1 = v , the claim is obvious (as then h(v ,v1)
is

the identity); if v1 = FPPD(v), the equality follows from the definition of H.
So assume that with v0 = FPPD(v) we have v1 , v and v1 , v0. By Lemma 3.4, LAP(v0,v1) <

LAP(v,v1). Inductively, we thus have h(v0,v2) = h(v0,v1)
;h(v1,v2)

which gives us the desired result:

h(v ,v2) = h(v ,v0)
;h(v0,v2) = h(v ,v0)

; (h(v0,v1)
;h(v1,v2)) = h(v ,v1)

;h(v1,v2).

□

Lemma B.18. Given a pCFG, let ω be as in Definition 4.26. For all (v,v1), (v1,v2) ∈ PD:

ω(v ,v2) = ω(v ,v1)
;ω(v1,v2).

Proof. This follows from Lemma B.17 since ω = H(ω). □

Theorem 7.8 Let P be a structured probabilistic program, letG = T(P), and letω be the meaning

of G (cf. Definition 4.26).

Let S be a structured probabilistic statement that is part of P . Thus T(S) will be a sub-pCFG ofG;
let v = start(T(S)) and v ′ = end(T(S)).

For all distributions D,D ′ and expectation functions F , F ′, if [[S]]F ′ = F and ω(v ,v
′)(D) = D ′ then∑

s ∈SU

F (s)D(s) =
∑
s ∈SU

F ′(s)D ′(s).

Proof. We do structural induction in S , with a case analysis.

• The case with S = skip is trivial, as then F = F ′ and D ′ = D.
• For the case S = observe(B), the claim follows from the calculation∑

s ∈SU

F ′(s)D ′(s) =
∑
s ∈SU

F ′(s)selectB (D)(s) =
∑

s ∈SU | [[B]]s

F ′(s)D(s)

=
∑
s ∈SU

F (s)D(s).
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• For the case S = x := E, the claim follows from the calculation

∑
s ′∈SU

F ′(s ′)D ′(s ′) =
∑
s ′∈SU

F ′(s ′)
©­«

∑
s ∈SU | s ′=s[x 7→[[E]]s]

D(s)
ª®¬ =

∑
s ′∈SU, s ∈SU | s ′=s[x 7→[[E]]s]

F ′(s ′)D(s)

=
∑
s ∈SU

F ′(s[x 7→ [[E]]s])D(s) =
∑
s ∈SU

F (s)D(s).

• For the case S = x := random(ψ ), the claim follows from the calculation∑
s ′∈SU

F ′(s ′)D ′(s ′) =
∑
s ′∈SU

F ′(s ′)
∑

s ∈SU | s ′
U\{x }
= s

ψ (s ′(x))D(s)

=
∑

s ,s ′∈SU | s ′=s[x 7→s ′(x )]

F ′(s ′)ψ (s ′(x))D(s) =
∑
s ∈SU

∑
z∈Z

∑
s ′∈SU | s ′=s[x 7→z]

F ′(s ′)ψ (s ′(x))D(s)

=
∑
s ∈SU

∑
z∈Z

F ′(s[x 7→ z])ψ (z)D(s) =
∑
s ∈SU

D(s)
∑
z∈Z

F ′(s[x 7→ z])ψ (z) =
∑
s ∈SU

D(s)F (s).

• For the case S = S1 ; S2, let G1 = T(S1) and G2 = T(S2), and let v1 = start(G1), v
′
1
= end(G1),

v2 = start(G2), and v
′
2
= end(G2). By construction (Figure 7), with G = T(S) we have v1 =

start(G) and v ′
2
= end(G), and in G it is the case that v ′

1
postdominates v1, that v2 = FPPD(v ′

1
),

and that v ′
2
postdominates v2. Hence we infer, by Lemma B.18, that

ω(v1,v ′
2
) = ω(v1,v ′

1
)
;ω(v

′
1
,v2)

;ω(v2,v ′
2
)

and since ω(v
′
1
,v2)

is the identity there exists D ′′ such that

D ′′ = ω(v1,v ′
1
)(D) and D ′ = ω(v2,v ′

2
)(D ′′).

From Figure 6 we see that that there exists F ′′ such that F ′′ = [[S2]]F
′
and F = [[S1]]F

′′
. By

applying the induction hypothesis to first S2 and next S1, we get the desired∑
s ∈SU

F ′(s)D ′(s) =
∑
s ∈SU

F ′′(s)D ′′(s) =
∑
s ∈SU

F (s)D(s).

• For the case S = l : if B then S1 else S2, let G1 = T(S1) and G2 = T(S2), and let v1 = start(G1),

v ′
1
= end(G1), v2 = start(G2), and v

′
2
= end(G2). Also, let v = l2v(l) and v ′ = l2v(l ′). By

construction (Figure 7), withG = T(S) we see that v = start(G) which is a branching node with

condition B and true-successor v1 and false-successor v2, and that v ′ = end(G) to which there

are edges from v ′
1
and v ′

2
which both have label skip. We further see that in G it is the case that

v ′ = FPPD(v), that v ′
1
postdominates v1, and that v ′

2
postdominates v2.

Hence, with D1 = selectB (D) and D2 = select¬B (D), and with D ′
1
= ω(v1,v ′

1
)(D1) and D ′

2
=

ω(v2,v ′
2
)(D2), by Lemma B.18 we have the calculation

D ′ = ω(v ,v
′)(D) = ω(v1,v ′)(D1) + ω

(v2,v ′)(D2) = ω
(v1,v ′

1
)(D1) + ω

(v2,v ′
2
)(D2) = D ′

1
+ D ′

2
.

From Figure 6 we see that F (s) = [[S1]](F
′)(s) if [[B]]s holds, and F (s) = [[S2]](F

′)(s) otherwise.
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By applying the induction hypothesis to S1 and S2, the claim now follows from the calculation∑
s ∈SU

F ′(s)D ′(s) =
∑
s ∈SU

F ′(s)D ′
1
(s) +

∑
s ∈SU

F ′(s)D ′
2
(s)

=
∑
s ∈SU

([[S1]](F
′)(s) · D1(s)) +

∑
s ∈SU

([[S2]](F
′)(s) · D2(s))

=
∑

s ∈SU | [[B]]s

F (s)D(s) +
∑

s ∈SU | [[¬B]]s

F (s)D(s) =
∑
s ∈SU

F (s)D(s).

• For the case S = l : while B do S1, let G1 = T(S1) and let v1 = start(G1) and v
′
1
= end(G1); also,

letv = l2v(l) andv ′ = l2v(l ′). By construction (Figure 7), withG = T(S)we see thatv = start(G)
which is a branching node with condition B and true-successor v1 and false-successor v ′ where
v ′ = end(G), and that v ′

1
is labeled skip and has an edge to v .

We further see that in G it is the case that v ′ = FPPD(v), and that v postdominates v ′
1
which

postdominates v1; moreover, LAP(v,v ′) = 1 < LAP(v1,v ′). For each k ≥ 0 we thus have the

calculation

ωk+1
(v ,v ′)(D)

= ωk+1
(v ′,v ′)(select¬B (D)) + ωk

(v1,v ′)(selectB (D))

= select¬B (D) + ωk
(v ,v ′)(ωk

(v1,v ′
1
)(selectB (D))).

where the first equality follows by clause (3e) in Figure 2, and where the second equality is

obvious if k = 0 and otherwise follows by Lemma B.17 (since ωk
(v ′

1
,v)

is the identity).

For our proof, it is convenient to define a chain {дk | k} of functions in D →c D by stipulating

д0(D) = 0

дk+1(D) = select¬B (D) + дk (ω(v1,v ′
1
)(selectB (D))).

Observe that for all k , and all D, we have

ωk
(v ,v ′)(D) ≤ дk (D). (17)

This is trivial for k = 0, and for the inductive step we have

ωk+1
(v ,v ′)(D) = select¬B (D) + ωk

(v ,v ′)(ωk
(v1,v ′

1
)(selectB (D)))

≤ select¬B (D) + дk (ω(v1,v ′
1
)(selectB (D)))

= дk+1(D).

For all k , and all D, we also have

дk (D) ≤ limk→∞ωk
(v ,v ′)(D). (18)

For k = 0 this is obvious, and for the inductive step we have

дk+1(D) = select¬B (D) + дk (ω(v1,v ′
1
)(selectB (D)))

= select¬B (D) + дk (limk→∞ωk
(v1,v ′

1
)(selectB (D)))

≤ select¬B (D) + limk→∞ωk
(v ,v ′)(limk→∞ωk

(v1,v ′
1
)(selectB (D)))

= select¬B (D) + limk→∞ (ωk
(v ,v ′)(ωk

(v1,v ′
1
)(selectB (D))))

= limk→∞ (select¬B (D) + ωk
(v ,v ′)(ωk

(v1,v ′
1
)(selectB (D))))

= limk→∞ωk+1
(v ,v ′)(D).
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From lines (17) and (18) we see that for all k , and all D, we have

ωk
(v ,v ′)(D) ≤ дk (D) ≤ limk→∞ωk

(v ,v ′)(D)

from which we infer that

for all D : limk→∞ дk (D) = limk→∞ωk
(v ,v ′)(D). (19)

The virtue of working on дk rather than on ωk is that we can then prove the following result:

for all k and D,
∑
s ∈SU

Fk (s) · D(s) =
∑
s ∈SU

F ′(s) · дk (D)(s). (20)

where in Figure 6 we defined Fk as follows:

F0(s) = 0

Fk+1(s) = [[S1]](Fk )(s) if [[B]]s

Fk+1(s) = F ′(s) otherwise.

The proof of equation (20) is by induction in k , where the base case k = 0 is obvious as F0 = 0 =

д0(D). For the inductive step, we have the calculation∑
s ∈SU

Fk+1(s) · D(s)

=
∑

s ∈SU | [[B]]s

[[S1]](Fk )(s) · D(s) +
∑

s ∈SU | [[¬B]]s

F ′(s) · D(s)

=
∑
s ∈SU

[[S1]](Fk )(s) · selectB (D)(s) +
∑
s ∈SU

F ′(s) · select¬B (D)(s)

=
∑
s ∈SU

Fk (s) · ω
(v1,v ′

1
)(selectB (D))(s) +

∑
s ∈SU

F ′(s) · select¬B (D)(s)

=
∑
s ∈SU

F ′(s) · дk (ω
(v1,v ′

1
)(selectB (D)))(s) +

∑
s ∈SU

F ′(s) · select¬B (D)(s)

=
∑
s ∈SU

F ′(s) ·
(
дk (ω

(v1,v ′
1
)(selectB (D))) + select¬B (D)

)
(s)

=
∑
s ∈SU

F ′(s) · дk+1(D)(s)

where the 3rd equality comes from applying the outer (structural) induction hypothesis to S1
while the 4th equality comes from the inner induction hypothesis (in k).
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Since F (s) = limk→∞ Fk (s) (by Figure 6), the desired claim now follows from∑
s ∈SU

F (s)D(s) =
∑
s ∈SU

limk→∞ Fk (s)D(s)

(Lemma 4.1) = limk→∞

∑
s ∈SU

Fk (s)D(s)

(by (20)) = limk→∞

∑
s ∈SU

F ′(s)дk (D)(s)

(Lemma 4.1) =
∑
s ∈SU

limk→∞ F ′(s)дk (D)(s)

(by (19)) =
∑
s ∈SU

F ′(s)limk→∞ωk
(v ,v ′)(D)

=
∑
s ∈SU

F ′(s)D ′(s).

This concludes the proof of Theorem 7.8.

□

Lemma 7.12 Let a structured probabilistic program P be given, and let V be the nodes in

G = T(P). For a given subset Q of V, let L = {l | l2v(l) ∈ Q}, and let PL = slcL(P) and GL = T(PL).
Let ϕ be the meaning of the slice Q in G, that is (cf. Definition 4.27) ϕ = limk→∞ ϕk where

ϕk = Hk
Q (0) with H defined as in Figure 2 for the graph G.

Let ω be the meaning ofGL , that is (cf. Definition 4.26) ω = limk→∞ωk where ωk = Hk
VL
(0) with

H defined as in Figure 2 for the graph GL , and with VL the nodes in GL .

Then for all S that are substatements of P : with v = start(T(S)) and v ′ = end(T(S)), and by

Lemma 7.11 thus also v = start(T(slcL(S))) and v ′ = end(T(slcL(S)))), we have ϕ(v ,v
′) = ω(v ,v

′)
.

Proof. It is sufficient to prove ϕk
(v ,v ′) = ωk

(v ,v ′)
for all k ≥ 0, which we shall do by induction

in k where the case k = 0 is obvious (as both sides are zero).

For k > 0, we do an inner structural induction on S , looking at the various cases in Figure 10.

• First assume S = S1 ; S2. Then slcL(S1 ; S2) = slcL(S1) ; slcL(S2). By Lemma 7.11, there exists

v1,v
′
1
,v2,v

′
2
such thatv1 = start(T(S1)) = start(T(slcL(S1))),v ′1 = end(T(S1)) = end(T(slcL(S1))),

v2 = start(T(S2)) = start(T(slcL(S2))), and v ′2 = end(T(S2)) = end(T(slcL(S2))). Then, cf. the
translation rules in Figure 7, v1 = start(T(S)) = start(T(slcL(S))) = v and v ′

2
= end(T(S)) =

end(T(slcL(S))) = v ′; also, in T(S) as well as in T(slcL(S)), v ′1 is labeled skip with an edge to v2.

By Lemma B.17, we have (since ϕk
(v ′

1
,v2)

is the identity as is ωk
(v ′

1
,v2)

)

ϕk
(v ,v ′) = ϕk

(v1,v ′
1
)
;ϕk
(v2,v ′

2
)

ωk
(v ,v ′) = ωk

(v1,v ′
1
)
;ωk

(v2,v ′
2
).

Inductively on S1 and S2, we have

ϕk
(v1,v ′

1
) = ωk

(v1,v ′
1
)
and ϕk

(v2,v ′
2
) = ωk

(v2,v ′
2
).

But this shows the desired equality:

ϕk
(v ,v ′) = ϕk

(v1,v ′
1
)
;ϕk
(v2,v ′

2
) = ωk

(v1,v ′
1
)
;ωk

(v2,v ′
2
) = ωk

(v ,v ′).

• Next assume S is of the form l : _ with l < L, that is l2v(l) < Q . Then slcL(S) = l : skip. We know

from Lemma 7.4 that v = start(T(S)) = start(T(slcL(S))) = l2v(l) and that v ′ = end(T(S)) =
end(T(slcL(S))) = l2v′(l).
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In T(S), Lemma 7.4 also tells us that v ′ = FPPD(v). Since v < Q , we see from clause (3a) in

Figure 2 that ϕk
(v ,v ′)

is the identity.

In T(slcL(S)), v is labeled skip and has an edge to v ′, so also ωk
(v ,v ′)

is the identity.

• Next assume S = l : if B then S1 else S2 with l ∈ L, that is l2v(l) ∈ Q . Then slcL(l : if B then S1 else S2) =
l : if B then slcL(S1) else slcL(S2). By Lemma 7.11, there exists v1,v

′
1
,v2,v

′
2
such that v1 =

start(T(S1)) = start(T(slcL(S1))), v ′1 = end(T(S1)) = end(T(slcL(S1))), v2 = start(T(S2)) =
start(T(slcL(S2))), and v ′2 = end(T(S2)) = end(T(slcL(S2))). Then, cf. the translation rules in

Figure 7, the following holds for T(S) and for T(slcL(S)): the start node is v = l2v(l) which is a

branching node with condition B and true-successor v1 and false-successor v2; the end node is
v ′ = l2v′(l) to which there are edges from v ′

1
and from v ′

2
which are both labeled skip.

For a given D, with D1 = selectB (D) and D2 = select¬B (D), we now have

ϕk
(v ,v ′)(D) = ϕk

(v1,v ′)(D1) + ϕk
(v2,v ′)(D2) = ϕk

(v1,v ′
1
)(D1) + ϕk

(v2,v ′
2
)(D2)

ωk
(v ,v ′)(D) = ωk

(v1,v ′)(D1) + ωk
(v2,v ′)(D2) = ωk

(v1,v ′
1
)(D1) + ωk

(v2,v ′
2
)(D2)

where we have used that LAP(vi ,v ′) < LAP(v,v ′) for i = 1, 2 holds in T(S) and in T(slcL(S)),
and also used Lemma B.17 together with the fact that ϕk

(v ′
1
,v ′)

is the identity as is ωk
(v ′

1
,v ′)

.

The desired equality ϕk
(v ,v ′)(D) = ωk

(v ,v ′)(D) now follows since inductively on S1, S2 we have

ϕk
(v1,v ′

1
) = ωk

(v1,v ′
1
)
and ϕk

(v2,v ′
2
) = ωk

(v2,v ′
2
)
.

• Next assume S = l : while B do S1 with l ∈ Q , that is l2v(l) ∈ Q . Then slcL(l : while B do S1) =
l : while B do slcL(S1). By Lemma 7.11, there exists v1,v

′
1
such that v1 = start(T(S1)) =

start(T(slcL(S1))) and v ′1 = end(T(S1)) = end(T(slcL(S1))). Then, cf. the translation rules in

Figure 7, the following holds for T(S) and for T(slcL(S)): the start node is v = l2v(l) and the

end node is v ′ = l2v′(l), where v is a branching node with condition B and true-successor v1 and
false-successor v ′, and v ′

1
is labeled skip and has an edge to v; thus v postdominates v ′

1
which

postdominates v1, and LAP(v ′,v ′) < LAP(v,v ′) = 1 < LAP(v1,v ′).
For a given D, with D1 = selectB (D) and D2 = select¬B (D), we now have (using Lemma B.17)

ϕk
(v ,v ′)(D) = ϕk−1

(v1,v ′)(D1) + ϕk
(v ′,v ′)(D2)

= ϕk−1
(v ,v ′)(ϕk−1

(v ′
1
,v)(ϕk−1

(v1,v ′
1
)(D1))) + D2

ωk
(v ,v ′)(D) = ωk−1

(v1,v ′)(D1) + ωk
(v ′,v ′)(D2)

= ωk−1
(v ,v ′)(ωk−1

(v ′
1
,v)(ωk−1

(v1,v ′
1
)(D1))) + D2

The desired equality ϕk
(v ,v ′)(D) = ωk

(v ,v ′)(D) now follows since we have the equations

ϕk−1
(v1,v ′

1
) = ωk−1

(v1,v ′
1
)

ϕk−1
(v ′

1
,v) = ωk−1

(v ′
1
,v)

ϕk−1
(v ,v ′) = ωk−1

(v ,v ′)

where the first is due to the outer induction hypothesis (applied to S1), the second holds because

each side is the identity when k > 1 and is 0 when k = 1, and the third is due to the outer

induction hypothesis (applied to S).
• If none of the above cases hold then slcL(S) = S , and there exists l with l ∈ Q , that is l2v(l) ∈ Q ,
such that S is of the form l : skip or l : x := E or l : x := random(ψ ) or l : observe(B). In
T(S) = T(slcL(S)), we see from Figure 7 that the start node v is l2v(l) (with l2v′(l) the end node

v ′) and that there is only one edge, from v to v ′. Since v ∈ Q , obviously ϕk
(v ,v ′) = ωk

(v ,v ′)
.

□
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B.6 Proofs for Section 9

Lemma 9.6 There exists an algorithm DDclose which given a node set Q that is closed under data

dependence, and a node set Q1, returns the least set containing Q and Q1 that is closed under data

dependence. Moreover, assuming DD∗ is given, DDclose runs in time O(n · |Q1 |).

Proof. We incrementally augment Q as follows: for each v1 ∈ Q1, and each v < Q , we add v
to Q iff DD∗(v,v1) holds. This is necessary since any set containing Q1 that is closed under data

dependence must contain v ; observe thatQ will end up containingQ1 since for all v1 ∈ Q1 we have

DD∗(v1,v1).
Thus the only non-trivial claim is that the resulting Q will be closed under data dependence.

With v ∈ Q we must show that if v ′
dd
→ v then v ′ ∈ Q . If v was in Q initially, this follows since

Q was assumed to be closed under data dependence. Otherwise, assume that v was added to Q

because for some v1 ∈ Q1 we have DD
∗(v,v1). By correctness of DD∗ this means that v

dd
→
∗

v1 which

implies v ′
dd
→
∗

v1 and thus DD∗(v ′,v1) holds. Hence also v
′
will be added to Q . □

Lemma 9.9 The function PNV? runs in time O(n) and, given Q , returns C such that C ∩Q = ∅
and

• if C is empty then Q provides next visibles

• if C is non-empty then all supersets of Q that provide next visibles will contain C .

Proof. It is convenient to introduce some terminology: we say that q ∈ Q ∪ {end} ism-next

from v iff there exists a path v = v1 . . .vk = q with k ≤ m and vj < Q for all j with 1 ≤ j < k .
Also, we use superscriptm to denote the value of a variable when the guard of the while loop is

evaluated for them’th time; note that if q = Nm(v) andm′ > m then also q = Nm′(v). A key part

of the proof is to establish 3 facts, for eachm ≥ 1:

(1) if q = Nm(v) then q ism-next from v
(2) if v ∈ Fm then Nm(v) , ⊥ and no q ∈ Q is (m − 1)-next from v
(3) if Cm = ∅ and q ism-next from v then

(a) q = Nm(v), and
(b) if q is not (m − 1)-next from v then v ∈ Fm .

We shall prove the above facts simultaneously, by induction inm. The base case is whenm = 1

and the facts follow from inspecting the preamble of the while loop: for fact (1), if q = N 1(v) then
q = v ∈ Q ∪ {end} and the trivial path v shows that q is 1-next from v; for fact (2), if v ∈ F 1 then
N 1(v) , ⊥ and no q can be 0-next from v ; for fact (3), if q is 1-next from v then q = v ∈ Q ∪ {end}
in which case q = N 1(v) and v ∈ F 1.

We now do the inductive case wherem > 1. Note that Cm−1 = ∅ (as otherwise the loop would

have exited already). For fact (1), we assume thatq = Nm(v), and split into two cases: ifq = Nm−1(v)
then we inductively infer that q is (m − 1)-next of v and thus alsom-next of v . Otherwise, v < Q
and there exists an edge fromv to somev ′ ∈ Fm−1 with q = Nm−1(v ′). Inductively, q is (m− 1)-next
from v ′. But then, as v < Q , q ism-next from v .

For fact (2), we assume that v ∈ Fm in which case code inspection yields that Nm−1(v) = ⊥
and that Nm(v) = Nm−1(v ′) for some v ′ ∈ Fm−1 so inductively Nm(v) , ⊥. Also, no q can be

m − 1-next from v , for if so then we could inductively use fact (3a) to infer Nm−1(v) = q.
For fact (3), we assume that Cm = ∅ and q ism-next from v . We have two cases:

• if q is (m − 1)-next from v then fact (3b) holds vacuously, and as Cm−1 = ∅ we infer inductively

that q = Nm−1(v) and thus q = Nm(v) which is fact (3a).

• if q is not (m − 1)-next from v , we can inductively use fact (1) to get q , Nm−1(v), and also infer

that there is a path vv ′ . . .q where v < Q and q is (m − 1)-next from v ′ but not (m − 2)-next
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from v ′. AsCm−1 = ∅ we inductively infer that q = Nm−1(v ′) and v ′ ∈ Fm−1. Thus the edge from
v to v ′ has been considered in the recent iteration, and since Cm = ∅ it must be the case that

Nm−1(v) = ⊥ so we get the desired q = Nm(v) and v ∈ Fm .
We are now ready to address the claims in the lemma. From fact (2) we see that each node gets into

F at most once and hence the running time is inO(n). ThatC ∩Q = ∅ follows since only nodes not

in Q get added to C . Next we shall prove that
if C is empty then Q provides next visibles

and thus consider the situation where for somem, Cm = ∅ and Fm = ∅.
We shall first prove that for all v ∈ V, all q ∈ Q ∪ {end}, and all k ≥ 1 we have that if q is k-next

from v then Nm(v) = q. To see this, we may wlog. assume that k is chosen as small as possible,

that is, q is not (k − 1)-next from v . It is impossible that k > m since then there would be a path

v . . .v ′ . . .q where q is m-next from v ′ but not (m − 1)-next from v ′ which by fact (3b) entails

v ′ ∈ Fm which is a contradiction. Thus k ≤ m and q ism-next from v so fact (3a) yields the claim.

Now let v ∈ V be given, to show that v has a next visible in Q . Since there is a path from v to

end there will be a node q ∈ Q ∪ {end} such that (for some k) q is k-next from v . By what we

just proved, Nm(v) = q and we shall show that q is a next visible in Q of v . Thus assume, to get

a contradiction, that we have a path not containing q from v to a node in Q ∪ {end}. Then there

exists q′ , q and k ′ such that q′ is k ′-next fromv . Again applying what we just proved, Nm(v) = q′

which is a contradiction.

Finally, we shall prove that

if C is non-empty

then all supersets of Q that provide next visibles will contain C
and thus consider the situation where for somem, Cm , ∅. It is sufficient to consider v ∈ Cm

(and

thus v < Q) and prove that if Q ⊆ Q1 where Q1 provides next visibles then v ∈ Q1.

Since v ∈ Cm
, the situation is that there is an edge from v to some v ′ ∈ Fm−1 with q , q′

where q = Nm(v) and q′ = Nm−1(v ′). From fact (1) we see that q ism-next from v , and that q′ is
(m − 1)-next from v ′. That is, there exists a path π from v to q and a path π ′ from v to q′. Since
q,q′ ∈ Q1 ∪ {end} and Q1 provides next visibles, there exists v0 ∈ Q1 that occurs on both paths. If

v0 , v then q and q′ are both (m−1)-next fromv0 which sinceC
m−1 = ∅ implies q = Nm−1(v0) = q

′

which is a contradiction. Hence v0 = v which amounts to the desired v ∈ Q1. □

Lemma 9.12 The function LWS, given Q̂ , returns Q such that

• Q is a weak slice set

• Q̂ ⊆ Q
• if Q ′ is a weak slice set with Q̂ ⊆ Q ′ then Q ⊆ Q ′.
Moreover, assuming DD∗ is given, LWS runs in time O(n2).

Proof. We shall establish the following loop invariant:

• Q is closed under data dependence;

• Q includes Q̂ and is a subset of any weak slice set that includes Q̂ .
This holds before the first iteration, by the properties of DDclose.

We shall now argue that each iteration preserves the invariant. This is obvious for the part

about Q being closed under data dependence and including Q̂ . Now assume that Q ′ is a weak slice

set that includes Q̂ ; we must prove that Q ⊆ Q ′ holds after the iteration. We know that before

the iteration we have Q ⊆ Q ′, and also C = PNV?(Q) , ∅ so we know from Lemma 9.9 (since Q ′

provides next visibles) that C ⊆ Q ′; hence we can apply Lemma 9.6 to infer (since Q ′ is closed
under data dependence) DDclose(Q,C) ⊆ Q ′ which yields the claim.
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When the loop exits, withC = ∅, Lemma 9.9 tells us thatQ provides next visibles. Together with

the invariant, this yields the desired correctness property.

The loop will terminate, asQ cannot keep increasing; the total number of calls to PNV? is inO(n).
By Lemma 9.9 we see that the total time spent in PNV? is in O(n2). And by Lemma 9.6 we infer that

the total time spent in DDclose is in O(n2). Hence the running time of LWS is in O(n2). □

Theorem 9.15 The algorithm BSP returns, given a pCFG and a set of nodes ESS, sets Q and Q0

such that

• (Q,Q0) is a slicing pair wrt. ESS
• if (Q ′,Q ′

0
) is a slicing pair wrt.ESS then Q ⊆ Q ′.

Moreover, BSP runs in time O(n3) (where n is the number of nodes in the pCFG).

Proof. As stated in Figure 14, we shall use the following invariants for the while loop:

(1) Q is a weak slice set

(2) F is a weak slice set

(3) end ∈ Q ∪ F
(4) W ⊆ ESS
(5) if v ∈W then Qv ∩Q = ∅
(6) if v ∈ ESS but v <W then v ∈ Q ∪ F
(7) if (Q ′,Q ′

0
) is a slicing pair wrt. ESS then Q ∪ F ⊆ Q ′.

We shall first show that the invariants are established by the loop preamble, which is mostly trivial;

for invariants (2), (3), (7) we use Lemma 9.12.

Let us next show that the invariants are preserved by each iteration of the while loop. For

invariant (1) this follows from Lemma 5.3, the repeated application of which and Lemma 9.12 gives

invariant (2). Code inspection easily gives invariants (3), (4), (5). To show invariant (6) we do a case

analysis: either v was not inW before the iteration so that (by the invariant) v belonged to Q ∪ F
and thus v ∈ Q by the end of the iteration, or v was removed fromW during the iteration in which

case Qv ⊆ F and thus (Lemma 9.12) v ∈ F .
For invariant (7), let (Q ′,Q ′

0
) be a slicing pair wrt. ESS; we know that Q ∪ F ⊆ Q ′ holds before

the iteration and thusQ ⊆ Q ′ holds before the members ofW are processed. It is sufficient to prove

that if v ∈W with Qv ∩Q , ∅ then Qv ⊆ Q ′. The invariant tells us that v ∈ ESS, so as (Q ′,Q ′
0
) is a

slicing pair wrt. ESS we infer that v ∈ Q ′ or v ∈ Q ′
0
; by Lemma 9.12 this showsQv ⊆ Q ′ (as desired)

or Qv ⊆ Q ′
0
which we can rule out: for then we would have Qv ∩ Q

′ = ∅ and thus Qv ∩ Q = ∅
beforeW is processed which contradicts our assumption.

The while loop will terminate sinceW keeps getting smaller which cannot go on infinitely, and

if an iteration does not makeW smaller then it will have F = ∅ at the end and the loop exits.

When the loop exits, with F = ∅, we have:
• Q is a weak slice set with end ∈ Q , by invariants (1) and (3);

• Q0 is a weak slice set, by Lemmas 9.12 and 5.3;

• Q ∩Q0 = ∅, by invariant (5);

• if v ∈ ESS then v ∈ Q ∪Q0 since

– if v <W then v ∈ Q by invariant (6) (and F = ∅),
– if v ∈W then v ∈ Q0 by construction of Q0.

Thus (Q,Q0) is a slicing pair. If (Q ′,Q ′
0
) is another slicing pair we see from invariant (7) that

Q ∪ F ⊆ Q ′ and thus Q ⊆ Q ′.
Finally, we can address the running time. By Lemma 9.5, we can compute DD∗ in time O(n3).

Then Lemma 9.12 tells us that each call to LWS takes time in O(n2). As there are O(n) such calls,

this shows the the code in BSP before the while loop runs in time O(n3). The while loop iterates
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O(n) times, with each iteration processing O(n) members ofW ; as each such processing (taking

intersection and union) can be done in timeO(n) this shows that the while loop runs in timeO(n3).
The total running time is thus in O(n3). □
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