
106

Formally Verified Samplers from Probabilistic Programs

with Loops and Conditioning

ALEXANDER BAGNALL, Ohio University, USA

GORDON STEWART, BedRock Systems, Inc., USA

ANINDYA BANERJEE, IMDEA Software Institute, Spain

We present Zar: a formally verified compiler pipeline from discrete probabilistic programs with unbounded
loops in the conditional probabilistic guarded command language (cpGCL) to proved-correct executable
samplers in the random bit model. We exploit the key idea that all discrete probability distributions can be
reduced to unbiased coin-flipping schemes. The compiler pipeline first translates cpGCL programs into choice-
fix trees, an intermediate representation suitable for reduction of biased probabilistic choices. Choice-fix trees
are then translated to coinductive interaction trees for execution within the random bit model. The correctness
of the composed translations establishes the sampling equidistribution theorem: compiled samplers are correct
wrt. the conditional weakest pre-expectation semantics of cpGCL source programs. Zar is implemented and
fully verified in the Coq proof assistant. We extract verified samplers to OCaml and Python and empirically
validate them on a number of illustrative examples.

CCS Concepts: • Software and its engineering→ Software verification; • Theory of computation→

Probabilistic computation.

Additional Key Words and Phrases: Probabilistic Programming, Verified Compilers

ACM Reference Format:

Alexander Bagnall, Gordon Stewart, and Anindya Banerjee. 2023. Formally Verified Samplers from Probabilistic
Programs with Loops and Conditioning. Proc. ACM Program. Lang. 7, PLDI, Article 106 (June 2023), 24 pages.
https://doi.org/10.1145/3591220

1 INTRODUCTION

Probabilistic programming languages [Bingham et al. 2019; Goodman et al. 2012; Gordon et al.
2014] formalize probabilistic systems by modeling them as programs with random sampling and
conditioning. Unlike conventional programs, for which meaning is deduced from executions over
states or sets of states, probabilistic programs are defined by their posterior distributions for given
inputs. Calculating this posterior distribution is called inference. In cases in which it is infeasible
to calculate the posterior directly, probabilistic programming languages (PPLs) typically support
sampling from this distribution. Many standard semantic notions such as weakest precondition
transformers have analogues – e.g., weakest pre-expectation transformers – in PPLs.
Inference on probabilistic programs (PPs) is automated by compiling the programs to Markov

Chain Monte Carlo (MCMC) samplers [Huang et al. 2017] or to other specialized representa-
tions [Holtzen et al. 2020, 2019]. Similarly, systems like Pyro [Bingham et al. 2019] use techniques
for semi-automated inference. Automation helps separate concerns: the programmer specifies a

Authors’ addresses: Alexander Bagnall, abagnalla@gmail.com, Ohio University, Athens, Ohio, USA; Gordon Stewart,

BedRock Systems, Inc., Boston, Massachusetts, USA, gordon@bedrocksystems.com; Anindya Banerjee, IMDEA Software

Institute, Pozuelo de Alarcon, Madrid, Spain, anindya.banerjee@imdea.org.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART106

https://doi.org/10.1145/3591220

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-6593-0661
HTTPS://ORCID.ORG/0000-0003-0244-2980
HTTPS://ORCID.ORG/0000-0001-9979-1292
https://doi.org/10.1145/3591220
https://orcid.org/0000-0001-6593-0661
https://orcid.org/0000-0003-0244-2980
https://orcid.org/0000-0001-9979-1292
https://doi.org/10.1145/3591220
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3591220&domain=pdf&date_stamp=2023-06-06

106:2 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

1 primes (? : Q) :=

2 { 1 ← true } [?] { 1 ← false };

3 while 1 do

4 ℎ← ℎ + 1;

5 { 1 ← true } [?] { 1 ← false }

6 end;

7 observe ℎ is prime

(a) ‘primes’ cpGCL program with geometric
posterior over the prime numbers.

(b) True posterior over ℎ with ? =
2
3 .

Fig. 1. Geometric primes program (le�) and its posterior distribution over ℎ (right).

probabilistic model in a convenient high-level language, and the inference engine takes care of
the details of calculating the posterior distribution. At the same time, errors in execution models
of probabilistic systems are especially difficult to detect and diagnose [Dutta et al. 2018, 2019],
and attempts at empirical validation may fail to detect small biases and low-probability error
conditions. The standard belief propagation algorithm for inference may converge to the wrong
equilibrium or fail to converge at all [Yedidia et al. 2003], and MCMC samplers may falsely appear
to have converged to the desired stationary distribution (known as “pseudo-convergence”) [Geyer
2011]. Even the straightforward task of uniform sampling is notoriously susceptible to “modulo
bias” [Security 2020], leading to violations of cryptographic guarantees [Aranha et al. 2020] due to
improper use of the modulus operator to restrict the range of the uniform distribution.
We implement Zar: a formally verified compiler from the conditional probabilistic guarded

command language (cpGCL [Olmedo et al. 2018]) to proved-correct samplers in the random bit
model [Saad et al. 2020b], in which samplers are provided a stream of independent and identically
distributed (i.i.d.) random bits drawn from a uniform distribution. Samplers generated by Zar are
guaranteed, under reasonable assumptions about the source of randomness (Section 4.3), to produce
samples from the true posterior of their source programs, and thus provide a foundation for high-
assurance sampling and Monte Carlo-based [Rubinstein and Kroese 2016] inference. Additionally
(Section 5.3), we apply the Zar compiler backend to generate discrete uniform samplers that are
proved free of modulo bias. Zar is implemented and fully verified in the Coq proof assistant.

1.1 Challenges

To understand the challenges, consider the ‘primes’ cpGCL program in Figure 1a, which computes
a geometric posterior over the prime numbers as shown in Figure 1b. This program combines
three fundamental features complicating inference: 1) nonuniform (biased) probabilistic choice, 2)
unbounded loop-carried dataflow (a “non-i.i.d.” loop [Kaminski 2019]), and 3) conditioning. The
variable 1 is drawn from a Bernoulli distribution with probability ? of “heads” (lines 2, 5). The
variable ℎ (with initial value 0 and updated on line 4) counts the number of heads encountered
before flipping tails. Finally, the terminal program state is conditioned on ℎ being prime (line 7).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:3

Eliminating Bias. The probabilistic choices in the program of Figure 1a are specialized in Figure 1b
to the nonuniform bias ? =

2
3
. To obtain a sampler in the random bit model, the program must

be transformed into a semantically equivalent one in which all choices have bias 1
2
. Moreover,

probability expressions in cpGCL can be functions of the program state, so reduction of biased
choices is not always possible via direct source-to-source translation (e.g., the probability expression
on line 5 could depend on variable ℎ). To address this state dependence and the use of nonuniform
biases, we develop a new intermediate representation called choice-fix trees (Section 3.3). We
compile cpGCL programs to the choice-fix representation and apply a debiasing transformation
(Section 3.4) on choice-fix trees to generate samplers in the random bit model.

Unbounded and Non-i.i.d. Loops. The loop in Figure 1a is unbounded; it is not guaranteed to
terminate within any fixed number of iterations, and can diverge (though with probability 0) when
only heads are flipped. The tasks of sampling and inference are greatly complicated by the infinitary
nature of unbounded loops, and thus much previous work on discrete PPs is limited to bounded
loops [Chavira and Darwiche 2008; Holtzen et al. 2020, 2019; Huang et al. 2017]. Formal reasoning
about infinitary computations requires substantial use of coinduction [Kozen and Silva 2017], which
is notoriously difficult to use in proof assistants like Coq [Hur et al. 2013].
Moreover, the loop in Figure 1a is “non-i.i.d.”; the update of counter variable ℎ on line 4 in-

duces nontrivial data dependence between iterations of the loop, and consequently every value
of ℎ ≥ 0 occurs with nonzero probability (the posterior has infinite support). Many interesting
probabilistic programs such as the discrete Gaussian (see Section 5.4) exhibit such “loop-carried
dependence” [Allen and Kennedy 1987]. Prior work on automated inference of unbounded loops
and conditioning on observations in probabilistic programs has been restricted to the subclass of
i.i.d. loops, i.e., those without loop-carried dependence [Bagnall et al. 2020].
Zar compiles the ‘primes’ program to an executable interaction tree (ITree) [Xia et al. 2020]

formally guaranteed to produce samples from the geometric posterior shown in Fig 1b when
provided uniform random bits from its environment (see Section 5.2 for empirical evaluation).
The coinductive type of ITrees, while suitable for encoding potentially unbounded processes, is
deceptively difficult to reason about formally. Coq’s built-in mechanism for coinduction is often not
sufficient [Chlipala 2013; Hur et al. 2013]. To facilitate reasoning on coinductive representations of
samplers, we employ concepts from domain theory such as Scott-continuity [Abramsky and Jung
1994] and algebraic CPOs [Gunter 1993] (see related discussion in Section 3.5).

Correctness of Samplers. Verified compilers of conventional programming languages like C have
somewhat well understood correctness guarantees (though see [Patterson and Ahmed 2019]).
CompCert [Leroy 2009], for example, uses a simulation argument to prove a form of behavioral
equivalence of source and target programs. Writing the specification of a compiler for a PPL is less
straightforward. What does “behavioral equivalence” even mean when the result of the compilation
pipeline is a probabilistic sampler that depends on a source of randomness?
A key idea of this paper is that the proof of a PPL compiler is essentially a reduction: as input,

it takes a source of randomness (in our case, uniformly distributed random bits) and as output
it produces a sampler on the posterior distribution generated by the conditional weakest pre-
expectation semantics (cwp) of the program being compiled. We thus reduce the problem of
sampling a program’s posterior distribution to the comparatively simpler problem of sampling
uniformly random bits. Making this reduction work formally means precisely characterizing the
input source of randomness and the distributional correctness of the output sampler. We specify
the input randomness in Section 4.1, drawing on the classic theory of uniform distribution modulo

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

106:4 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

Fig. 2. Zar pipeline diagram showing (1) the compiler from cpGCL to CF trees (Section 3.1), (2) debiasing
of probabilistic choices (Section 3.3), (3) generation of interaction trees from CF trees (Section 3.5), and (4)
extraction for efficient execution in OCaml and Python (Section 5).

1 [Weyl 1916]. We characterize distributional correctness by proving that our samplers satisfy an
equidistribution theorem (Section 4) wrt. the cwp semantics of source programs.

1.2 Contributions

Concept. We implement Zar: a formally verified compilation pipeline from discrete probabilistic
programs with conditioning to proved-correct executable samplers in the random bit model,
exploiting the key idea that all discrete distributions can be reduced to unbiased coin-flipping
schemes [Knuth and Yao 1976; Saad et al. 2020b], and culminating in the sampling equidistribution

theorem (Theorem 4.2) establishing correctness of compiled samplers. The entire system is fully
implemented and verified in Coq.
Technical. The Zar system includes:

- a formalization of cpGCL and its associated cwp semantics (Section 2),
- an intermediate representation for cpGCL programs called choice-fix trees (Section 3.1),
enabling optimizations and essential program transformations (e.g., elimination of redundant
choices and reduction to the random bit model),

- a compiler pipeline (Section 3.3) from cpGCL to ITree samplers (Section 3.5),
- statement and proof of a general result establishing correctness of compiled samplers wrt. the
cwp semantics of source programs, based on the notion of equidistribution (Section 4), and

- a Python 3 package for high-assurance uniform sampling (Section 5.3) as a thin wrapper
around proved-correct samplers extracted from Coq.

Evaluation. We perform empirical validation of illustrative examples (Section 5) including the
discrete Gaussian distribution (Section 5.4) and posterior inference over a simulated race between
a hare and tortoise (Section 5.5, inspired by [Szymczak and Katoen 2020, Section 1]).
Source Code. Embedded hyperlinks in the PDF point to the underlying Coq sources The Python 3
package for uniform sampling is available in the Zar repository.
Axiomatic Base. We extend the type theory of Coq with excluded middle, indefinite description,
and functional extensionality [Charguéraud 2017]. We also use Coq’s standard real number library
and a custom extensionality axiom for coinductive trees.

1.3 Current Limitations

Zar supports only discrete probabilistic cpGCL programs (which are naturally suited for many
applications [Holtzen et al. 2020]) that terminate either absolutely or almost surely (i.e., with
probability 1). Probabilities appearing in cpGCL programs must be rational numbers. We provide
no guarantees regarding time/space or entropy usage (number of random bits required to obtain a
sample), although we observe near entropy-optimality in some cases (cf. Section 5.3). We verify
only the compiler pipeline. Verification of cpGCL programs using a program logic that is sound wrt.
the cwp semantics is beyond the scope of this paper. Proofs on cpGCL programs wrt. their cwp

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/blob/release-pldi23
https://github.com/bagnalla/zar/tree/release-pldi23/python/zar
https://github.com/bagnalla/zar/tree/release-pldi23/cotree.v#L278

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:5

semantics can, however, be composed with our compiler correctness proofs (Theorems 3.7, 4.2) to
obtain end-to-end guarantees on generated samplers. In future work, we plan to address the current
limitation to discrete programs by extending cpGCL with sampling from continuous random
variates over the unit interval, and to experiment with alternative sampling backends.

2 SYNTAX AND SEMANTICS OF cpGCL

This section presents cpGCL together with its conditional weakest pre-expectation semantics,
cwp [Olmedo et al. 2018]. We extend cpGCL and cwp as follows:
(1) We add to cpGCL an additional command for drawing samples uniformly at random from a

range of natural numbers (Section 2.1).
(2) We let probability expressions in choice commands depend on the program state (Section 2.1).
(3) We extend the weakest (liberal) expectation transformerswp (wlp) to better support reasoning

about the probability of observation failure (Section 2.2).

2.1 Syntax of cpGCL

Definition 2.1 (cpGCL). Type cpGCL is defined inductively as:

cpGCL-skip

skip : cpGCL

cpGCL-assign

G : ident 4 : Σ→ val

G ← 4 : cpGCL

cpGCL-seq

21 : cpGCL 22 : cpGCL

21; 22 : cpGCL

cpGCL-observe

4 : Σ→ B

observe 4 : cpGCL

cpGCL-ite

4 : Σ→ B 21 : cpGCL 22 : cpGCL

if 4 then 21 else 22 : cpGCL

cpGCL-choice

? : Σ→ Q ∀f : Σ, 0 ≤ ? f ≤ 1 21 : cpGCL 22 : cpGCL

{ 21 } [?] { 22 } : cpGCL

cpGCL-uniform

4 : Σ→ N ∀f : Σ, 0 < 4 f : : N→ cpGCL

uniform 4 : : cpGCL

cpGCL-while

4 : Σ→ B 2 : cpGCL

while 4 do 2 end : cpGCL

The cpGCL (Definition 2.1) extends the guarded command language [Dijkstra 1975] with:
(1) Probabilistic choice: Given expression 4 : Σ → Q such that 4 f ∈ [0, 1] for all program

states f : Σ, the command { 21 } [4] { 22 } executes command 21 with probability 4 f , or 22
with probability 1 − 4 f .

(2) Conditioning: Given predicate % : Σ → B on program states, the command observe %

conditions the posterior distribution of the program on % .
Additionally, the command uniform 4 : uniformly samples a natural number 0 ≤ = < 4 f (where

f is the current program state) and continues execution with command : =.

2.2 Conditional Weakest Pre-Expectation Semantics

We follow [Olmedo et al. 2018] in interpreting cpGCL programs using conditional weakest pre-
expectation (cwp) semantics, a quantitative generalization of weakest precondition semantics [Dijk-
stra 1975]. Samplers produced by Zar are proved correct wrt. the cwp semantics of source programs.
An expectation is a function 5 : Σ → R∞≥0 mapping program states to the nonnegative reals

extended with +∞. The cwp semantics interprets programs as expectation transformers: Given a
post-expectation 5 : Σ → R∞≥0 and program 2 : cpGCL, the conditional weakest pre-expectation

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/cpGCL.v#L82
https://github.com/bagnalla/zar/tree/release-pldi23/cpGCL.v#L83
https://github.com/bagnalla/zar/tree/release-pldi23/cpGCL.v#L85
https://github.com/bagnalla/zar/tree/release-pldi23/cpGCL.v#L86
https://github.com/bagnalla/zar/tree/release-pldi23/cpGCL.v#L91
https://github.com/bagnalla/zar/tree/release-pldi23/cpGCL.v#L87
https://github.com/bagnalla/zar/tree/release-pldi23/cpGCL.v#L88
https://github.com/bagnalla/zar/tree/release-pldi23/cpGCL.v#L89
https://github.com/bagnalla/zar/tree/release-pldi23/cpGCL.v#L90

106:6 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

cwp 2 5 : Σ→ R∞≥0 is a function mapping program states f : Σ to the expected value of 5 over the
terminal states of 2 given initial state f that are consistent with all observations.

Given a predicate & : Σ→ B and program 2 : cpGCL, cwp 2 [&] : Σ→ R∞≥0 maps states f : Σ to
the probability that 2 , when executed from initial state f , terminates in a final state satisfying & .
Thus, cwp can be used to answer probabilistic queries about the execution behavior of programs.
For more background on weakest pre-expectation semantics, see [Kaminski 2019, Chapters 2-4].
The cwp semantics is defined in terms of the more primitive weakest pre-expectation (wp)

and weakest liberal pre-expectation (wlp) expectation transformers. Definitions 2.2 and 2.3 give
generalized variants of wp and wlp respectively, extended with an additional Boolean parameter
controlling how observation failure is handled (where 0 and 1 denote the constant expectations
__. 0 and __. 1, respectively, and �= denotes the =-fold composition of functional �).

Definition 2.2 (wpb). For b : B, 2 : cpGCL, 5 : Σ → R∞≥0, and f : Σ, define wpb 2 5 f : R∞≥0 by
induction on 2:

wpb : cpGCL→ (Σ→ R
∞
≥0) → Σ→ R∞≥0

skip 5 ≜ 5

G ← 4 5 ≜ 5 [G/4]
observe 4 5 ≜ [4] · 5 + [¬4 ∧ b]
21; 22 5 ≜ wpb 21 (wpb 22 5)
if 4 then 21 else 22 5 ≜ [4] · wpb 21 5 + [¬4] · wpb 22 5
{ 21 } [?] { 22 } 5 ≜ ? · wpb 21 5 + (1 − ?) · wpb 22 5

uniform 4 : 5 ≜ _f. 1
4 f

∑4 f−1
8=0 wpb (: 8) 5 f

while 4 do 2 end 5 ≜ sup (�= 0), where
� 6 ≜ [4] · wpb 2 6 + [¬4] · 5

Definition 2.3 (wlpb). For 1 : B, 2 : cpGCL, 5 : Σ → R≤1≥0 (a bounded expectation), and f : Σ,

define wlpb 2 5 f : R≤1≥0 by induction on 2 (showing only the while case as the rest are like wp,
mutatis mutandis):

wlpb : cpGCL→ (Σ→ R
≤1
≥0) → Σ→ R≤1≥0

while 4 do 2 end 5 ≜ inf (�= 1), where
� 6 ≜ [4] · wlpb 2 6 + [¬4] · 5

We often omit the subscript when 1 = false as wpfalse (wlpfalse) coincides with the classic
definition of wp (wlp). The sup (inf) operation is defined wrt. the pointwise lifting to expectations
of the standard order on R∞≥0 (i.e., 5 ⊑ 6 ⇐⇒ ∀f, 5 f ≤ 6 f for expectations 5 and 6). The
parameter b controls whether or not to include the probability mass of observation failure, so that
we have wpb 2 5 +wlp¬b 2 (1 − 5) = 1, where 5 ⊑ 1 (the invariant sum property). The fundamental
difference between wp and wlp can be characterized as follows:

• wp encodes total program correctness. When posing a query over predicate& using wp, we are
asking “what is the probability that the program terminates and does so in a state satisfying &?”.
Divergent execution paths (those which never terminate) contribute nothing to the pre-expectation.

• wlp encodes partial program correctness. When posing a query over predicate& using wlp, we
are asking “what is the probability that the program either diverges or terminates in a state satisfying
&?”. Divergent paths contribute their full probability mass to the weakest liberal pre-expectation.

Furthermore, wlp is defined only on bounded expectations 5 : Σ→ R≤1≥0 as it is only meaningful
for probabilities. It follows that wp and wlp coincide for bounded expectations on terminating
programs (whether absolutely or almost surely).
The conditional weakest pre-expectation of expectation 5 : Σ→ R∞≥0 with respect to program

2 : cpGCL is then defined following the approach of [Olmedo et al. 2018]:

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/cwp.v#L130
https://github.com/bagnalla/zar/tree/release-pldi23/cwp.v#L130
https://github.com/bagnalla/zar/tree/release-pldi23/cwp.v#L149
https://github.com/bagnalla/zar/tree/release-pldi23/cwp.v#L149

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:7

Definition 2.4 (cwp). For 2 : cpGCL and 5 : Σ→ R∞≥0,

cwp 2 5 : Σ→ R∞≥0 ≜
wpfalse 2 5

wlpfalse 2 1
.

3 COMPILING cpGCL

We compile cpGCL commands 2 to samplers that we prove correct (cf. Section 4) wrt. the cwp
semantics of 2 . First, we give an intermediate representation (Sections 3.1, 3.2)—choice-fix (CF)
tree—to which a command 2 is compiled (Section 3.3). Next, the generated CF tree is “unfolded”
into a coinductive interaction tree (Section 3.5) implementing a sampler from the posterior distri-
bution denoted by 2 . Finally, correctness of the compiler pipeline is established by the semantics
preservation theorem (Theorem 3.7).

3.1 Choice-Fix Trees

Choice-fix (CF) trees are named for their two nonleaf constructors: Choice nodes for probabilistic
choice and Fix nodes for encoding loops.

Definition 3.1 (CF trees). Define the type of CF trees T cf inductively as:

cf-leaf

f : Σ

Leaf f : T cf

cf-fail

Fail : T cf

cf-choice

? : Q 0 ≤ ? ≤ 1 : : B→ T cf

Choice ? : : T cf

cf-fix

f : Σ 4 : Σ→ B 6 : Σ→ T cf : : Σ→ T cf

Fix f 4 6 : : T cf

Choice ? (_10.

if 10 then

Fix {ℎ ↦→ 0, 1 ↦→ true} (_f. f [1])

(_f. Choice ? (_1 ′. if 1 ′

then Leaf (f [ℎ ↦→ ℎ + 1, 1 ↦→ true])

else Leaf (f [ℎ ↦→ ℎ + 1, 1 ↦→ false])))

(_f. if f ℎ is prime then Leaf f else Fail)

else Fail)

Fig. 3. CF tree term representation of Prog. 1a.

Leaf f denotes the end of a program ex-
ecution with terminal state f . Fail denotes
a program execution in which an observed
predicate (via the observe command) is vi-
olated. Choice?: represents a probabilistic
binary choice between two subtrees where
rational bias ? ∈ [0, 1] denotes the proba-
bility of “heads” or “going left” (and 1 − ?

the probability of “tails” or “going right”).
Lastly, Fix f 4 6 : encodes a loop with

initial state f , guard condition 4 , body gen-
erator 6, and continuation : , and should be
understood operationally as follows: Start-
ing with initial CF tree Leaf f , repeatedly
extend the leaves of the tree constructed thus far via either the generating function 6 (when
4 f = true) or continuation : (when 4 f = false). That is, f is the initial state of the loop, 4 is
the guard condition of the loop, 6 is the generating function of the body of the loop, and : is the
continuation of the program after exiting the loop. Figure 3 shows the CF tree representation of
the ‘primes’ program from Figure 1a.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/cwp.v#L168
https://github.com/bagnalla/zar/tree/release-pldi23/tree.v#L23
https://github.com/bagnalla/zar/tree/release-pldi23/tree.v#L24
https://github.com/bagnalla/zar/tree/release-pldi23/tree.v#L25
https://github.com/bagnalla/zar/tree/release-pldi23/tree.v#L26
https://github.com/bagnalla/zar/tree/release-pldi23/tree.v#L27

106:8 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

3.2 CF Tree Semantics

The inference (or twp) semantics of CF trees is defined analogously to the cwp semantics of cpGCL.
The expression twpfalse C 5 denotes the expected value of expectation 5 over CF tree C . When
b = true, twp includes the probability mass of observation failure (the Fail case of Definition 3.2).

Definition 3.2 (twpb). For C : T
cf a CF tree and 5 : Σ→ R∞≥0 an expectation, define twpb C 5 : R∞≥0

by induction on C :

twpb : T
cf → (Σ→ R∞≥0) → R

∞
≥0

Leaf f 5 ≜ 5 f

Fail _ ≜ [b]
Choice ? : 5 ≜ ? · twpb (: true) 5 + (1 − ?) · twpb (: false) 5

Fix f0 4 6 : 5 ≜ sup (�= 0) f0, where
� ℎ f ≜ if 4 f then twpb (6 f) ℎ else twpb (: f) 5

The “liberal” variant twlpb C 5 of inference semantics denotes the expected value of expectation
5 over CF tree C plus the probability mass of divergence (and plus the mass of observation failure
when 1 = true). Only the Fix case is shown here.

Definition 3.3 (twlpb). For C : T cf a CF tree and 5 : Σ → R≤1≥0 a bounded expectation, define

twlpb C 5 : R≤1≥0 by induction on C :

twlpb : T
cf → (Σ→ R≤1≥0) → R

≤1
≥0

Fix f0 4 6 : 5 ≜ inf (�= 1) f0, where
� ℎ f ≜ if 4 f then twlpb (6 f) ℎ else twlpb (: f) 5

The conditional (tcwp) semantics for CF trees then matches cwp (Def. 2.4):

Definition 3.4 (tcwp). For C : T cf and 5 : Σ→ R∞≥0,

tcwp C 5 : R∞≥0 ≜
twpfalse C 5

twlpfalse C 1
.

Our intent is that the tcwp semantics of the CF tree representation of a cpGCL program 2 should
coincide exactly with the cwp semantics of 2 . The following section presents a semantics-preserving
compiler from cpGCL to CF trees.

3.3 Compiling to CF Trees

A command 2 : cpGCL is compiled to a function J2K : Σ→ T cf mapping initial state f : Σ to the CF
tree encoding the sampling semantics of 2 starting from f . The operator ‘≫=’ used for compiling
sequenced commands denotes bind in the CF tree monad.

Definition 3.5 (J·K). For 2 : cpGCL a command and f : Σ a program state, define J2K f : T cf by
induction 2:

J·K : cpGCL→ Σ→ T cf

skip f ≜ Leaf f

G ← 4 f ≜ Leaf f [G ↦→ 4 f]

observe 4 f ≜ if 4 f then Leaf f else Fail
21; 22 f ≜ J21K f ≫= J22K
if 4 then 21 else 22 f ≜ if 4 f then J21K f else J22K f
{ 21 } [4] { 22 } f ≜ Choice (4 f) (_1. if 1 then J21K f else J22K f)
uniform 4 : f ≜ uniform_tree (4 f) ≫= _=. J: =K f
while 4 do 2 end f ≜ Fix f 4 J2K Leaf

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/tcwp.v#L21
https://github.com/bagnalla/zar/tree/release-pldi23/tcwp.v#L21
https://github.com/bagnalla/zar/tree/release-pldi23/tcwp.v#L37
https://github.com/bagnalla/zar/tree/release-pldi23/tcwp.v#L37
https://github.com/bagnalla/zar/tree/release-pldi23/tcwp.v#L53
https://github.com/bagnalla/zar/tree/release-pldi23/tree.v#L32
https://github.com/bagnalla/zar/tree/release-pldi23/compile.v#L16
https://github.com/bagnalla/zar/tree/release-pldi23/compile.v#L16

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:9

The symbol uniform_tree denotes a generic construction for uniform distributions over a fixed
range of natural numbers, the specification of which is captured by the following lemma:

Lemma 3.6 (Uniform tree correctness). Let 0 < = : N and 5 : N → R∞≥0 an R
∞
≥0-valued

function on N. Then, twpfalse (uniform_tree =) 5 =
1
=

∑=−1
8=0 5 8 . □

By setting 5 = [_<. < = :], we obtain as an immediate consequence of Lemma 3.6 that
twpfalse (uniform_tree =) [_<. < = :] = 1

=
for all : < =, or in other words, that uniform_tree is

truly uniformly distributed (and thus free of modulo bias). The compiler phase is then proved
correct by the following theorem establishing the correspondence of the cwp semantics of cpGCL
programs with the tcwp semantics of the CF trees generated from them.

Theorem 3.7 (CF tree compiler correctness). Let 2 : cpGCL, 5 : Σ→ R∞≥0, and f : Σ. Then,

tcwp (J2K f) 5 = cwp 2 5 f. □

3.4 Debiasing CF Trees

CF trees generated by Def. 3.5 may have arbitrary ? ∈ [0, 1] bias values at choice nodes. To move
toward the (uniform) random bit model, we apply a bias-elimination transformation debias : T cf →

T cf that uses the uniform_tree construction described above to replace probabilistic choices by
semantically equivalent fair coin-flipping schemes. The resulting CF trees have ? =

1
2
at all choice

nodes (we say that such trees are unbiased). Figure 4 shows how a choice node with bias 2
3
is

reduced to an equivalent unbiased CF tree.

The algorithm for translating a ‘�oice?:’ node with rational bias ? =

=

3
and subtrees C1 = : true

and C2 = : false goes as follows:
(1) Recursively translate C1 and C2, yielding C

′
1 and C

′
2 respectively,

(2) choose< : N such that 2<−1 < 3 ≤ 2< ,
(3) generate a perfect CF tree of depth< with all terminal nodes marked by a special loopba�

value,
(4) replace the first = terminals with copies of subtree C ′1, and the next 3 terminals with copies of

subtree C ′2, leaving B
< − = − 3 loopba� nodes remaining,

(5) coalesce duplicate leaf nodes to eliminate redundancy,
(6) wrap the tree in a fix constructor with guard condition that evaluates to true on the loopba�

value, and
(7) replace the original �oice node with the newly generated tree.
In essence, the biased choice is replaced by a rejection sampler that simulates a biased coin

by repeated flips of a fair one. An implementation of the choice translation algorithm is in the
file ‘uniform.v’ under the name ‘bernoulli_tree’. The overall debiasing transformation is then a
straightforward recursive traversal of the input CF tree, using bernoulli_tree to replace biased
Choice nodes with equivalent subtrees containing only unbiased choices.

Definition 3.8 (debias). For C : T cf a CF tree, define debias C : T cf inductively on C :

debias : T cf → T cf

Leaf f ≜ Leaf f

Fail ≜ Fail

Choice ? : ≜ bernoulli_tree p ≫= _b. if b then debias (k true) else debias (k false)
Fix f 4 6 : ≜ Fix f 4 (debias ◦ 6) (debias ◦ :)

The essential results for debias are: debias preserves tcwp semantics, and produces CF trees in
which all choice nodes are unbiased.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/uniform.v#L1146
https://github.com/bagnalla/zar/tree/release-pldi23/cwp_tcwp.v#L117
https://github.com/bagnalla/zar/tree/release-pldi23/debias.v#L25
https://github.com/bagnalla/zar/tree/release-pldi23/debias.v#L25
https://github.com/bagnalla/zar/tree/release-pldi23/debias.v#L25
https://github.com/bagnalla/zar/tree/release-pldi23/debias.v#L25

106:10 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

2
3

true false

(a) Biased choice with Pr(true) = 2
3

1
2

true 1
2

false

fix

(b) Debiased tree with Pr(true) = 2
3

Fig. 4. Choice CF tree with %A (true) = 2
3 (le�) and corresponding debiased CF tree (right).

Theorem 3.9 (debias is sound). Let C : T cf be a CF tree and 5 : Σ→ R∞≥0 an expectation. Then,

tcwp (debias C) 5 = tcwp C 5 . □

Theorem 3.10 (debias produces unbiased trees). Let C : T cf be a CF tree. Then,

? =

1

2
for every Choice ? : in debias C . □

The Need for Coinduction. Debiased CF trees are close to being executable samplers in the random
bit model. However, since they permit the existence of infinite execution paths (e.g., when 1 = true

ad infinitum in Program 1a), and hence denote sampling processes that can’t be expected in general
to terminate absolutely, we must first pass from the inductive CF tree encoding of samplers to an
infinitary coinductive encoding.

3.5 Generating Interaction Trees

Interaction trees [Xia et al. 2020] (ITrees) are a general-purpose coinductive data structure for
modeling effectful (co-)recursive programs that interact with their environments. The coq-itree
library provides a suite of combinators for constructing ITrees along with a collection of principles
for reasoning about their equivalence. An interaction tree computation performs an effect by raising
an event (which may carry data) that is then handled by the environment, possibly providing data
in return. This section shows how to generate executable ITree samplers from CF trees.

ITree Syntax. ITrees are parameterized by an event functor � : Type→ Type that specifies the
kinds of interactions the encoded process can havewith its environment. In our case (Definition 3.11),
there is only one kind of interaction: the sampler may query the environment for a single randomly
generated bit. Thus the event functor boolE has a single constructorGetBool taking zero arguments,
with type index B indicating that the environment’s response should be a single bit.

Definition 3.11 (T it
�
). Define T it

�
– the type of interaction trees with event functor boolE and

element type � – coinductively by:

boolE-GetBool

GetBool : boolE B

itree-ret

0 : �

Ret 0 : T it
�

itree-tau

C : T it
�

Tau C : T it
�

itree-vis

: : B→ T it
�

Vis GetBool : : T it
�

Unfolding a CF tree to an interaction tree proceeds in two steps:
(1) Generating an ITree C : T it

(1+Σ)
by induction on the input CF tree, and then

(2) “tying the knot” on C to produce the final ITree of type T it
Σ
.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/debias.v#L125
https://github.com/bagnalla/zar/tree/release-pldi23/debias.v#L134
https://github.com/DeepSpec/InteractionTrees
https://github.com/bagnalla/zar/tree/release-pldi23/itree.v#L43
https://github.com/bagnalla/zar/tree/release-pldi23/itree.v#L41

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:11

The LHS of the sum type 1 + Σ is used to encode observation failure. Since ITrees have just
one kind of terminal constructor (Ret) to CF trees’ two (Leaf and Fail), we translate Fail nodes to
Ret (inl ()), and nodes of the form Leaf G to Ret (inr G), where inl and inr are the left and right
sum injections. Fix nodes are translated via application of the ITree.iter combinator (see [Xia et al.
2020, Section 4] on iteration with ITrees).

The first step is implemented by the function to_itree_open (see Figure 5a):

Definition 3.12 (to_itree_open). For unbiased CF tree C : T cf , define to_itree_open C : T it
1+Σ by

induction on C as:
to_itree_open : T cf → T it

1+Σ

Leaf f ≜ Ret (inr f)
Fail ≜ Ret (inl ())
Choice _ : ≜ Vis GetBool (to_itree_open ◦ :)
Fix f0 4 6 : ≜ ITree.iter (_f. if 4 f then ~ ← to_itree_open (6 f) ; ;

match ~ with
| inl () ⇒ Ret (inr (inl ()))
| inr f ′⇒ Ret (inl f ′)
end

else ITree.map inr (to_itree_open (: f))) f0

ITrees produced by to_itree_open treat observation failure as a terminal state with unit value ()
(Figure 5a). The following definition tie_itree corecursively “ties the knot” [Elkins 2021] through
the left side of 1 + Σ via ITree.iter to produce an ITree rejection sampler that restarts from the
beginning upon observation failure (Figure 5b).

Definition 3.13 (tie_itree). For C : T it
1+Σ, define tie_itree C : T

it
Σ

as:

tie_itree C ≜ ITree.iter (__. C) ()

2
3

5 ...

()

()

()

(a) to_itree_open primes

2
3

5 ...

(b) tie_itree (to_itree_open primes)

Fig. 5. Interaction trees generated by ‘to_itree_open primes’ (le�) and then by “tying the knot” via ‘tie_itree’
(right), where ‘primes’ is the cpGCL program in Figure 1a.

ITree semantics. We wish to define an analogue itwp of the cwp semantics for ITree samplers
and prove the correctness of ITree generation, i.e., that for all C : T cf and 5 : Σ→ R∞≥0,

itwp 5 (tie_itree (to_itree_open C)) = tcwp C 5 .

This turns out, however, to be difficult due to the lack of induction principle for ITrees. To
overcome the problem, we note that ITree samplers form an algebraic CPO [Gunter 1993, Chapter 5],
i.e., a domain in which all elements can be obtained as suprema ofl-chains of finite approximations.
Moreover, the types R∞≥0 of extended reals and P of propositions are CPOs. We exploit these

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/itree.v#L169
https://github.com/bagnalla/zar/tree/release-pldi23/itree.v#L169
https://github.com/bagnalla/zar/tree/release-pldi23/itree.v#L206
https://github.com/bagnalla/zar/tree/release-pldi23/aCPO.v#L49

106:12 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

observations to provide a special kind of induction principle for coinductive trees (see [Gunter
1993, Lemma 5.24]). Such a principle enables the definition of Scott-continuous [Abramsky and
Jung 1994] functions like itwp, and gives rise to a powerful suite of proof principles for reasoning
about them via reduction to inductive proofs over inductive structures (for which Coq is much
better suited than for coinduction). While details of this framework are outside the scope of this
paper, they are implemented in the accompanying Coq sources.

End-to-end compiler. The compiler pipeline steps are composed via cpGCL_to_itree (where the
function elim_choices reduces rationals and coalesces duplicate Leaf nodes) and proved correct
by Theorem 3.15 (with positivity constraint on wlpfalse 2 1 f assuring that the program doesn’t
condition on contradictory observations):

Definition 3.14 (cpGCL_to_itree). For 2 : cpGCL and f : Σ, define

cpGCL_to_itree 2 f ≜ tie_itree (to_itree_open (debias (elim_choices (compile 2 f))))

Theorem 3.15 (Compiler Correctness). Let 2 : cpGCL, 5 : Σ → R∞≥0, and f : Σ such that

0 < wlpfalse 2 1 f . Then,

cwp 2 5 f = itwp 5 (cpGCL_to_itree 2 f). □

Theorem 3.15 establishes semantics preservation of the compiler pipeline wrt. itwp, but doesn’t
directly guarantee properties of samples generated by the resulting ITrees. Drawing on basic
measure theory [Halmos 2013] and the theory of uniform distribution modulo 1 [Kuipers and
Niederreiter 2012; Weyl 1916], the next section extends the result of Theorem 3.15 to show that
sequences of generated samples are equidistributed wrt. the cwp semantics of their source programs.

4 CORRECTNESS OF SAMPLING

Given a suitable source of i.i.d. randomness (Section 4.1), a sampler for program 2 : cpGCL is correct
if it produces a sequence G= : N → Σ such that for any observation & : Σ → P over terminal
program states, the proportion of samples falling within& asymptotically converges to the expected
value of [&] (i.e., the probability of &) according to 2’s cwp semantics. In other words, a sampler is
correct when the samples it produces are equidistributed [Becher and Grigorieff 2022] wrt. cwp.
This section formalizes the notion of equidistribution described above and proves the main

sampling equidistribution theorem (Theorem 4.2, Section 4.3). We first clarify what is meant by “a
suitable source of randomness” (Section 4.1) and then re-cast the problem of inference as that of
computing a measure (Section 4.2).

4.1 The Source of Randomness

We assume access to a stream of uniformly distributed bits. The Cantor space of countable sequences
of bits (bitstreams), denoted 2N, is modeled by the coinductive type StreamB. We interpret samplers
as measurable functions from 2N to the sample space Σ. To do so we first turn 2N into a measurable
space by equipping it with a measure.

Bisecting the Unit Interval. To help visualize the measure on 2N, consider (Figure 6a) the bisection
scheme for identifying strings of bits (e.g., “0”, “01”, “011”, etc.) with dyadic subintervals of the
unit interval [0, 1]. Let � (l) denote the interval corresponding to string l , and �(l) ⊆ 2N the
basic set of bitstreams with prefix l (i.e., �(l) = {B | l ⊑ B} where ‘⊑’ is the prefix order). We
arrange for the measure of �(l) (denoted `Ω (�(l))) to be equal to the length of � (l): exactly 2−=

where = is the length of l . We then define the source of randomness to be the measure space Ω

obtained by equipping 2N with measure `Ω lifted to the Borel f-algebra ΣΩ of countable unions

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/aCPO.v#L99
https://github.com/bagnalla/zar/tree/release-pldi23/itree.v#L100
https://github.com/bagnalla/zar/tree/release-pldi23
https://github.com/bagnalla/zar/tree/release-pldi23/itree.v#L402
https://github.com/bagnalla/zar/tree/release-pldi23/itree.v#L465

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:13

(a) Bisection scheme identifying bitstrings with dyadic
subintervals of [0, 1]

true

false

(b) ITree sampler C 2
3
.

true

(c) Preimage intervals of
event {true} under 5C 2

3

.

Fig. 6. Interval bisection scheme (le�) and its application to ITree C 2
3
(right).

and complements of basic sets, coinciding with the standard Lebesgue measure _ on the Borel
f-algebra generated by subintervals of [0, 1].

4.2 Inference as Measure

We view ITree sampler C : T it
Σ

as a partial measurable function 5C : Ω ⇀ Σ from Ω to the sample
space (Σ, ΣΣ) where ΣΣ is the discrete (power set) f-algebra on the space of program states Σ.
Evaluation of 5C on bitstream B : 2N has two possible outcomes:
(1) The sampler diverges, consuming bits ad infinitum without ever producing a sample. In that

case, we have 5C (B) = ⊥, i.e., 5C is undefined on B . We admit samplers for which such infinite
executions are permitted but occur with probability 0 (i.e., the set � ⊆ 2N of diverging inputs
has measure 0). Or,

(2) a value G is produced after consuming a finite prefix l of B corresponding to basic set �(l).
Thus, the function 5C sends all bitstreams in �(l) to output G .

For example, consider the ITree sampler C 2
3
in Figure 6b yielding true with probability 2

3
. The

preimage set 5 −1C 2
3

({true}) of event {true} under 5C 2
3

(i.e., the set of bitstreams sent by 5C 2
3

to true)

has measure 2
3
. To see why, observe that C 2

3
contains infinitely many disjoint paths to true (“0”,

“100”, “10100”, etc.), with corresponding interval lengths 1
2
, 1
8
, 1
32
, etc., a geometric series with sum

∑∞
:

1
2
· 1
4

:
=

1
2

1− 1
4

=
2
3
.

We can exploit this observation to let the measure of any event & ⊆ {true, false} be equal
to the measure of its preimage under 5C 2

3

, thus inducing the following probability measure `C 2
3

:

{true, false} → R≤1≥0 (where _(�) denotes the length of interval �):

`C 2
3

(∅) = `Ω (5
−1
C 2
3

(∅)) = _(∅) = 0

`C 2
3

({true}) = `Ω (5
−1
C 2
3

({true})) = _([0, 23)) =
2
3

`C 2
3

({false}) = `Ω (5
−1
C 2
3

({false})) = _([23 , 1]) =
1
3

`C 2
3

({true, false}) = `Ω (5
−1
C 2
3

({true, false})) = _([0, 1]) = 1

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

106:14 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

Computing Preimages. We can generalize the above method to induce a probability measure
`C : Σ → R≤1≥0 from any C : T it

Σ
by letting `C (&) = `Ω (5

−1
C (&)) (the pushforward measure of

& under 5C), assigning to any event & : Σ → P a probability equal to the measure in Ω of its
preimage under 5C . However, the preimage 5 −1C (&) is not easy to determine in general: it may be the
union of infinitely many small intervals scattered throughout [0, 1] in a complicated arrangement
depending on the structure of C , where C may be infinite and nonregular. We define 5 −1C (&) using
the domain-theoretic machinery described in Section 3.5.

4.3 Equidistribution

To prove correctness of samplers generated by Zar, we show that any sequence of samples produced
by them is equidistributed wrt. the cwp semantics of the programs they were compiled from. Our
strategy is to assume uniform distribution of the source of randomness Ω, and “push it forward”
through the sampler to obtain the desired result. This section builds on the theory of uniform
distribution modulo 1 (generalized to the class Σ0

1 of countable unions of rational bounded intervals)
adapted to collections of bitstreams.

Uniform distribution of Ω. We assume access to a uniformly distributed sequence of bitstreams.
But what does it mean for a sequence of bitstreams to be uniformly distributed? We cannot simply
assert that any two bitstreams occur with equal probability because any particular bitstream occurs
with probability zero and this may be true even for nonuniform distributions. Instead, we turn to a
variation of the classic notion of “uniform distribution modulo 1”, generalized to the class Σ0

1 of

subsets of 2N [Kuipers and Niederreiter 2012].
A subset * ⊆ P(2N) is said to be Σ0

1 when it is equal to
⋃∞

8 �(l8) for some countable collection
{�(l8)} of basic sets. We remark that 5 −1C (&) is Σ

0
1 for all & : Σ → P and C : T it

Σ
. The required

notion of uniform distribution now follows:

Definition 4.1 (Σ0
1-u.d.). A sequence {G8 } of bitstreams is Σ0

1-uniformly distributed (Σ0
1-u.d.) when

for every* : Σ0
1, lim=→∞

1
=

∑=−1
8=0 [G8 ∈ *] = `Ω (*).

“Almost all” sequences of bitstreams are Σ
0
1-u.d. [Becher and Grigorieff 2022]. Moreover, Σ0

1-
u.d. has deep connections to Martin-Löf randomness [Martin-Löf 1966] and Schnorr random-
ness [Downey and Griffiths 2004] (cf. [Becher and Grigorieff 2022, Theorem 3]). We can now state
the equidistribution theorem:

Theorem 4.2 (cpGCL eqidistribution). Let 2 : cpGCL be a command, f : Σ a program state,

{G=} a Σ
0
1-u.d. sequence of bitstreams, & : Σ → P a predicate over program states, and C : T it

Σ
=

cpGCL_to_itree c f the ITree sampler compiled from 2 . Then, the sequence {5C (G=)} of samples is

cwp-equidistributed wrt. 2 :

lim
=→∞

1

=

=−1∑

8=0

[& (5C (G8))] = cwp 2 [&] f. □

Theorem 4.2 is proved by reduction to an analogous theorem on ITrees. The basic idea is to show
that cwp� [&] f is equal to `Ω (5

−1
C (&)) (i.e., that the probability of event Q according to cwp is

equal to the measure of the preimage of & under 5C). The goal then follows from the assumption
that {G=} is Σ

0
1-u.d. (by letting* = 5 −1C (&) in Definition 4.1).

5 EMPIRICAL VALIDATION

This section provides empirical validation of samplers compiled from cpGCL programs:
• Correctness. To validate Theorem 4.2, we compare the empirical distribution of generated

samples with the expected true distribution wrt. total variation (TV) distance, Kullback-Leibler

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/mu.v#L80
https://github.com/bagnalla/zar/tree/release-pldi23/itree.v#L103
https://github.com/bagnalla/zar/tree/release-pldi23/equidistribution.v#L71
https://github.com/bagnalla/zar/tree/release-pldi23/equidistribution.v#L519
https://github.com/bagnalla/zar/tree/release-pldi23/equidistribution.v#L262

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:15

let _ = Random.self_init () (* Seed PRNG. *)

let rec run t = (* t : (boolE, 'a) itree *)

match observe t with (* Unfold itree. *)

| RetF x -> x (* Produce sample. *)

| TauF t' -> run t' (* Skip tau node. *)

| VisF (_, k) -> (* Consume random bit. *)

run (k (Obj.magic (Random.bool ())))

Fig. 7. OCaml shim for execution of ITree samplers. The destructor ‘observe’ (not to be confused with the
cpGCL command of the same name) unfolds the structure of the ITree C .

(KL) divergence [Kullback and Leibler 1951], and Symmetric Mean Absolute Percentage Error
(SMAPE) [Armstrong 1985].
• Performance. Although generated samplers are not guaranteed to be entropy-optimal (in

contrast to OPTAS [Saad et al. 2020b]), we measure statistics of the number of uniform random
bits required to obtain a sample.

We do not verify the programs in this section wrt. their cwp semantics as we seek only to validate
the correctness of the compilation pipeline.

OCaml Shim. All programs in this section are compiled to verified ITree samplers (as described
in Section 3.5) and extracted to OCaml [Leroy et al. 2021; Letouzey 2008] for execution by the driver
code in Figure 7. Thus, correctness of extracted samplers depends on the PRNG provided by the
OCaml Random module being Σ

0
1-u.d. (Def. 4.1). Sample records are generated and written to disk

for external analysis with handwritten Python code (see, e.g., /extract/die/analyze.py) and statistics
routines provided by scipy.stats [SciPy 2022]).

Trusted Computing Base. Our TCB includes the Coq typechecker (and therefore the OCaml
compiler and runtime), the specifications of cwp (Section 2.2) and equidistribution (Section 4.3),
and the OCaml extraction mechanism and driver code in Figure 7.

Empirical Evaluation. The remainder of this section contains tables showing results of empirical
evaluation of accuracy and entropy-performance of a collection of illustrative cpGCL programs
(all wrt. a sample size of 100,000). In each table, the first column denotes the values taken by the
parameter of the distribution (e.g., the bias parameter ? for Bernoulli, range = for uniform, etc.). `G
and fG denote the mean and standard deviation of the posterior over variable G . TV, KL, and SMAPE
denote the total variation distance, Kullback-Leibler (KL) divergence [Kullback and Leibler 1951],
and symmetric mean absolute percentage error [Armstrong 1985], respectively, of the empirical
distribution wrt. the true distribution. `18C and f18C denote the mean and standard deviation of the
number of uniform random bits required to obtain a sample.

Entropy Usage. The Shannon entropy [Shannon 1948] of a probability distribution provides a
lower bound on the average number of uniformly random bits required to obtain a single i.i.d.
sample. [Knuth and Yao 1976] show that an “entropy-optimal” sampler in the random bit model
consumes nomore than 2 bits on average than the entropy of the encoded distribution. Our samplers
are not guaranteed to be entropy optimal (a direction for future work).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/extract/die/analyze.py

106:16 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

duel (p : Q) :=

a← false; b← false;

while a = b do flip a p; flip b p; end

(a) Dueling coins program with bias ? ∈ (0, 1).

die (= : N) :=

uniform = (_<. G ←< + 1)

(b) Rolling an =-sided die.

Fig. 8. Dueling coins (le�) and n-sided die (right) cpGCL programs.

Table 1. Accuracy and entropy usage for Prog. 8a with ? =
2
3 ,

4
5 , and

1
20 .<D18C and f18C increase as ? is goes

further from 1
2 due to increasing Shannon entropy of Bernoulli(?).

? `0 f0 TV KL SMAPE `18C f18C
2/3 0.50 0.50 2.02×10−3 1.20×10−5 2.02×10−3 12.0 9.39

4/5 0.50 0.50 2.16×10−3 1.30×10−5 2.16×10−3 27.59 23.49

1/20 0.50 0.50 2.83×10−3 2.30×10−5 2.83×10−3 134.97 129.07

Table 2. Accuracy and entropy usage for Prog. 1a with ? =
1
2 ,

2
3 , and

1
5 . `18C and f18C are high when ? =

1
5

due to low probability of ‘ℎ is prime’, illustrating a general weakness (entropy waste) of our rejection samplers
when conditioning on low-probability events.

? `ℎ fℎ TV KL SMAPE `18C f18C
1/2 2.64 1.10 2.33×10−3 6.40×10−5 7.63×10−2 9.66 7.21

2/3 3.24 1.93 2.48×10−3 1.10×10−4 4.12×10−2 25.31 20.59

1/5 2.19 0.44 7.44×10−4 5.0×10−6 5.19×10−3 142.51 132.70

Flip. The command flip G ? : cpGCL performs a probabilistic choice (i.e., “flips a coin”) with
probability ? : Q of true (or “heads”) and assigns the result to variable G .

Definition 5.1 (flip). For G : ident and ? ∈ [0, 1] ⊆ Q, define flip G ? as:

flip G ? ≜ { G ← true } [?] { G ← false }

5.1 Dueling Coins

Figure 8a illustrates an i.i.d. loop (unbounded but with no loop-carried dependence) simulating a
fair coin using a biased one. The posterior distribution over 0 is Bernoulli(1

2
) for any input bias

? ∈ (0, 1). The dueling coins illustrate a situation in which the average number of bits required
to obtain a sample (`18C ∼ 12 when ? =

2
3
and `18C ∼ 135 when ? =

1
20
, see Table 1) substantially

exceeds the entropy (exactly 1) of the posterior.

5.2 Geometric Primes

Figure 1a illustrates the use of a non-i.i.d. loop and conditioning as follows: Repeatedly flip a
coin with bias ? , counting the number of heads until landing one tails. Finally, observe that
the number of heads counted is a prime number. What, then, is the posterior over the number
of heads ℎ? The true posterior over prime ℎ is given by the probability mass function (pmf):

Pr(- = ℎ | ℎ is prime) =
(1−?)ℎ+1∑

:∈P (1−?)
:+1 , where P denotes the set of prime numbers. Table 2 shows

accuracy and entropy statistics of the corresponding sampler compiled by Zar.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/dueling_coins.v#L21
https://github.com/bagnalla/zar/tree/release-pldi23/die.v#L21
https://github.com/bagnalla/zar/tree/release-pldi23/prelude.v#L31

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:17

Table 3. Accuracy and entropy usage for Prog. 8b with = = 6, 200, and 10k (with Shannon entropies 2.59, 7.64,
and 13.29, respectively). `18C and f18C show good performance with near entropy-optimality.

= `ℎ fℎ TV KL SMAPE `18C f18C
6 3.49 1.71 3.86×10−3 5.80×10−5 3.87×10−3 3.66 1.33

200 100.42 57.65 1.77×10−2 1.36×10−3 1.77×10−2 9.01 2.18

10k 5011.87 2892.0 1.24×10−1 7.33×10−2 1.28×10−1 15.62 2.74

Table 4. Comparison of 200-sided die samplers with output G .)8=8C denotes time elapsed over construction
and initializion of the sampler, and)B the total time to generate 100k samples.

`G fG TV KL SMAPE `18C f18C)8=8C)B
Zar (OCaml) 99.43 57.73 1.91×10−2 1.75×10−3 2.41×10−2 9.0 2.16 <1ms 105ms
Zar (Py) 99.87 57.63 1.95×10−2 1.03×10−3 2.20×10−2 9.01 2.19 <1ms 292ms
FLDR (C) 99.39 57.79 1.96×10−2 1.18×10−3 2.21×10−2 9.01 2.18 <1ms 6ms
FLDR (Py) 99.32 57.70 2.08×10−2 1.36×10−3 2.33×10−2 9.0 2.16 <1ms 290ms
OPTAS (C) 99.50 57.74 1.85×10−2 1.20×10−3 2.10×10−2 8.55 1.27 3ms 5ms
OPTAS (Py) 99.58 57.69 2.12×10−2 1.37×10−3 2.37×10−2 8.55 1.27 15ms 330ms

5.3 Uniform Sampling

Prog. 8b illustrates a program for rolling an n-sided die. Table 3 shows accuracy and entropy usage
for = = 6, 200, and 10000.

Comparison with FLDR and OPTAS. The Fast Loaded Dice Roller (FLDR) [Saad et al. 2020a] is a
time- and space-efficient algorithm for rolling an =-sided die, with implementations available in
Python and C. Related to FLDR is OPTAS [Saad et al. 2020b], a system for optimal approximate
sampling from discrete distributions wrt. a user-specified number of random bits, also with imple-
mentations in Python and C. Table 4 shows a comparison of a 200-sided die in FLDR and OPTAS
(with 32-bit precision and the “hellinger” kernel) with OCaml and Python implementations of the
200-sided die based on a variant of uniform_tree from Section 3.3 that uses binary-encoded integers
rather than unary natural numbers. Initialization time is negligible for both Zar and FLDR.

Zar and TensorFlow 2. We provide a Python 3 package (built from extracted samplers using
pythonlib [pythonlib 2022]) exposing a simple interface for generating samples from verified uni-
form samplers. To demonstrate Zar’s use as a high-assurance replacement for unverified samplers,
we implement a TensorFlow 2 [Raschka and Mirjalili 2019] project (/python/tf/ in the source di-
rectory) for training an MNIST [LeCun et al. 1998] classifier via stochastic gradient descent. We
observe a negligible effect on training performance and excellent accuracy on the test set.

5.4 Discrete Laplace and Gaussian

We define discrete variants of Laplace and Gaussian distributions (based on [Canonne et al. 2020]) as
reusable subroutines for larger cpGCL programs (e.g., the hare and tortoise program in Section 5.5).
These subroutines differ from flip in Def. 5.1 by making use of local variables. Although cpGCL
lacks built-in support for procedure calls (which can be done in principle, as in [Olmedo et al. 2016]),
they can be shallowly embedded if we take careful account of variables modified (i.e, “clobbered”)
within subroutines.

5.4.1 Discrete Laplace. A discrete analogue LapZ (1) [Canonne et al. 2020] of the Laplace distribu-
tion (useful for, e.g., differential privacy [Ghosh et al. 2009], and as a subroutine for the discrete

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/uniform_Z.v#L403
https://github.com/bagnalla/zar/tree/release-pldi23
https://github.com/bagnalla/zar/tree/release-pldi23/python/tf
https://github.com/bagnalla/zar/tree/release-pldi23/python/tf

106:18 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

laplace (>DC : ident) (B C : N) :=

;? ← true;

while ;? do

uniform C (_D.

bernoulli_exponential 3 (_B. D
C
);

if 3 then

E ← 0; bernoulli_exponential 8; 1;

while 8; do E ← E + 1; bernoulli_exponential 8; 1 end;

G ← D + C · E ; ~← G
B
; flip 2 1

2
;

if 2 ∧ ~ = 0 then skip

else ;? ← false; >DC ← (1 − 2 · [2]) · ~

else skip)

end

Fig. 9. Sampling from LapZ. Modified variables: : , 0, 8 , 1, ;? , 3 , E , 8; , G , ~, and 2 . Variables ;? and 8; (“loop” and
“inner loop”) are used for control flow. See [Canonne et al. 2020] for explanation and proof-of-correctness of
the sampling algorithm.

B, C `>DC f>DC TV KL SMAPE `18C f18C
1, 2 1.79×10−2 2.81 3.51×10−3 4.20×10−4 1.64×10−1 10.47 7.04

2, 1 1.79×10−3 0.60 1.47×10−3 7.10×10−5 5.30×10−2 9.77 8.17

5, 2 −8.50×10−4 0.44 1.24×10−3 1.09×10−4 1.37×10−1 15.53 12.38

Fig. 10. Accuracy and entropy usage for Figure 9 with scale parameter C
B .

Gaussian in the following section) with scale parameter1 is defined by the probability mass function

PrLapZ (1) (- = G) = 41/1−1
41/1+1

· 4−|G |/1 . Figure 9 shows a cpGCL program for sampling from LapZ (
C
B
)

for positive integers B and C . The subroutine bernoulli_exponential, which takes parameter W and
samples from a Bernoulli distribution with bias 4−W , is defined in Appendix A.

5.4.2 Discrete Gaussian. A discrete analogue NZ (`, f
2) [Canonne et al. 2020] of the Gaussian

(“normal”) distribution (useful for, e.g., lattice-based cryptography [Zhao et al. 2020], and as a
subroutine for the hare-and-tortoise program in Section 5.5) with parameters ` and f is defined by
the probability mass function:

PrNZ (`,f2) (- = G) =
4−(G−`)

2/2f2

∑
~:Z 4

−(~−`)2/2f2
.

Figure 11 shows a cpGCL program for sampling from NZ (`, f
2).

5.5 Hare and Tortoise

Our final example shown in Figure 13a illustrates the use of the discrete Gaussian subroutine along
with a non-i.i.d. loop and conditioning to simulate a race between a hare and a tortoise along a
one-dimensional line, and the use of Zar to perform Bayesian inference [Box and Tiao 2011]. The
tortoise begins with uniformly-distributed head start C0 and proceeds at a steady pace of 1 unit
per time step. The hare begins at position 0 and occasionally (with probability 2

5
) leaps forward

a Gaussian-distributed distance. The race ends when the hare reaches the tortoise, and then the
terminal state is conditioned on predicate % . For example, by setting % (C8<4) = C8<4 ≥ 10 and

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/gaussian.v#L127

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:19

gaussian_0 (I : ident) (f : Q) :=

>; ← false;

while ¬>; do laplace I 1 ⌊f⌋ + 1; bernoulli_exponential >; (_B.
(|I |−f

2

C
)2

2f2) end

gaussian (>DC : ident) (` : Σ→ Z) (f : Q) :=

gaussian >DC f ; >DC ← >DC + `

Fig. 11. Sampling from NZ (`, f
2). Note that the entropy usage depends only on f and not `. Modified

variables: : , 0, 8 , 1, ;? , 3 , E , 8; , G , ~, 2 , >; , I. Variable >; (“outer loop”) is used for control flow. See [Canonne
et al. 2020] for explanation and proof-of-correctness of the sampling algorithm.

`, f `I fI TV KL SMAPE `18C f18C
0, 1 −3.03×10−3 1.0 2.71×10−3 1.03×10−4 4.49×10−2 26.68 24.43

10, 2 10.0 2.0 3.69×10−3 1.16×10−4 7.22×10−2 37.61 29.10

−50, 5 −50.01 5.01 6.11×10−3 4.46×10−4 5.70×10−2 43.66 31.20

Fig. 12. Accuracy and entropy usage for Figure 11 with mean ` and variance f2.

hare_tortoise (% : Σ→ P) :=

uniform 10 (_=. C0← =);

C>AC>8B4 ← C0; ℎ0A4 ← 0; C8<4 ← 0;

while ℎ0A4 < C>AC>8B4 do

C8<4 ← C8<4 + 1;

C>AC>8B4 → C>AC>8B4 + 1;

{ gaussian 9D<? 4 2;

ℎ0A4 ← ℎ0A4 + 9D<? } [2
5
] { skip }

end;

observe %

(a) cpGCL program simulating a race between a hare
and tortoise.

% `C0 fC0 `18C f18C
true 4.49 2.87 193.88 220.06

C8<4 ≤ 10 3.80 2.79 273.87 378.82

C8<4 ≥ 10 6.18 2.31 596.68 359.85

C8<4 ≥ 20 6.40 2.25 1376.74 930.20

(b) Accuracy and entropy usage for Figure 13a. `C0
and fC0 denote the mean and std deviation of the
posterior over the tortoise’s head start C0, condi-
tioned on % .

Fig. 13. Hare and tortoise cpGCL program (le�) with accuracy and entropy statistics (right).

querying the posterior over C0, we ask: “Given that it took at least 10 time steps for the hare to
reach the tortoise, what are likely values for the tortoise’s head start?” (see Figure 13b).

6 RELATED WORK

Compilation. [Holtzen et al. 2020, 2019] compile discrete probabilistic programs with bounded
loops and conditioning to a symbolic representation based on binary decision diagrams (BDDs) [Ak-
ers 1978; Darwiche and Marquis 2002], exploiting independence of variables for efficient exact
inference. Our CF trees are not as highly optimized as BDDs, and we currently do not support exact
inference. However, while BDDs are suitable for representing finite Boolean functions, they are
fundamentally insufficient for programs with unbounded loops for which no upper bound can be
placed on the number of input bits per sample.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/gaussian.v#L214
https://github.com/bagnalla/zar/tree/release-pldi23/hare.v#L82
https://github.com/bagnalla/zar/tree/release-pldi23/hare.v#L82

106:20 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

[Huang et al. 2017] compile PPs with continuous distributions (but not loops) to MCMC sam-
plers for efficient approximate inference. MCMC algorithms generally provide better inference
performance than Zar (which employs an “ordinary Monte Carlo” (OMC) strategy), but suffer from
reliability issues (see Section 1). Zar is, to our knowledge, the only formally verified compiler for
probabilistic programs with loops and conditioning.

Verified Probabilistic Systems. [Wang et al. 2021] implement a type system based on guide types to
guarantee compatibility between model and guide functions in a PPL that compiles to Pyro [Bing-
ham et al. 2019]. Pyro is more versatile than Zar, as it supports continuous distributions and
programmable inference, but provides no formal guarantees on correctness of inference. [Sel-
sam et al. 2018] implement Certigrad, a PP system for stochastic optimization with correctness
guarantees in Lean [de Moura et al. 2015], but which does not support conditioning or inference.

The Conditional Probabilistic Guarded Command Language. The cpGCL and its corresponding
cwp semantics were introduced by [Olmedo et al. 2018] and further developed by [Kaminski 2019]
(including discussion of nondeterminism and expected running time) and [Szymczak and Katoen
2020] (adding support for continuous distributions). These works focus on using cwp as a program
logic for verifying individual programs and metatheoretical properties of cpGCL, in contrast to
Zar which focuses on verification of compilation to executable samplers.

Interaction Trees. Interaction trees have been used to verify compilation of an imperative pro-
gramming language [Xia et al. 2020], networked servers [Koh et al. 2019; Letan and Régis-Gianas
2020], an HTTP key-value server [Zhang et al. 2021], and transactional objects [Lesani et al. 2022].
The Zar system presents a novel application of interaction trees to verified executable semantics
of probabilistic programs, and employs a novel domain-theoretic framework for reasoning about
them (see discussion in Section 3.5) based on the concept of algebraic CPO.

Evaluation of PPLs. [Dutta et al. 2018] implement a testing framework for PPLs called ProbFuzz
that generates random test programs for various PPLs and attempts to detect irregularities in their
inference results. We expect that Zar could be incorporated into ProbFuzz as a reference against
which other discrete PPLs should be evaluated.

7 CONCLUSION

This paper presents the first formalization of cpGCL and its cwp semantics in a proof assistant,
and implements Zar, the first formally verified compiler from a discrete PPL to proved-correct
executable samplers. Zar uses a novel intermediate representation, CF trees, to optimize and debias
probabilistic choices. CF trees are compiled to executable interaction trees encoding the sampling
semantics of source programs in the random bit model. The full compilation pipeline is formally
proved to satisfy an equidistribution theorem showing that the empirical distribution of generated
samples converges to the true posterior distribution of the source cpGCL program. Zar’s backend
supports extraction to OCaml and has been used to generate samplers for a collection of probabilistic
programs including the discrete Gaussian distribution.

Acknowledgments.We thank the anonymous reviewers and the paper’s shepherd, Jan Hoffmann,
for their comments. Banerjee’s research was based on work supported by the National Science
Foundation (NSF), while working at the Foundation. Any opinions, findings, and conclusions or
recommendations expressed in this article are those of the authors and do not necessarily reflect
the views of the NSF. Bagnall and Stewart were partially supported by NSF award #1657358.

Data Availability Statement. Sources for Zar and all examples in this paper are available on
Zenodo with the identifier 10.5281/zenodo.7809333 [Bagnall et al. 2023].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://doi.org/10.5281/zenodo.7809333

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:21

A SUBROUTINES FOR DISCRETE LAPLACE AND GAUSSIAN

This appendix contains cpGCL subroutines used in the discrete Laplace and Gaussian programs in
Section 5.4.

A.0.1 Inverse Exponential Bernoulli. To sample from a discrete Laplace, we first require a subroutine
for sampling from a Bernoulli distribution with inverse exponential bias. We begin with a routine
(bernoulli_exponential_0_1) for the special case of 0 ≤ W ≤ 1, which modifies variables : and 0

(used as a counter and loop flag, respectively), followed by its generalization (bernoulli_exponential)
to 0 ≤ W , additionally modifying variables 8 and 1 (also a counter and loop flag).

bernoulli_exponential_0_1 (>DC : ident) (W : Σ→ Q) :=

: ← 0; 0← true;

while 0 do { : ← : + 1 } [
W

:+1
] { 0← false} end;

if even : then >DC ← true else >DC ← false end

Fig. 14. Sampling from Bernoulli(exp(−W)), where 0 ≤ W ≤ 1

bernoulli_exponential (>DC : ident) (W : Σ→ Q) :=

if W ≤ 1

then bernoulli_exponential_0_1 >DC W

else 8 ← 1; 1 ← true;

while 1 ∧ 8 ≤ W do bernoulli_exponential_0_1 1 1; 8 ← 8 + 1 end;

if 1 then bernoulli_exponential_0_1 >DC (W − ⌊W⌋) else >DC ← 0 end

Fig. 15. Sampling from Bernoulli(exp(−W)), where 0 ≤ W

W `>DC f>DC TV KL SMAPE `18C f18C
1/2 0.61 0.49 1.86×10−3 1.0×10−5 1.95×10−3 2.54 2.16

3/2 0.23 0.42 1.36×10−3 8.0×10−6 1.96×10−3 3.84 3.59

10 9.0×10−5 9.49×10−3 4.50×10−5 2.50×10−5 1.65×10−1 4.56 5.11

Fig. 16. Accuracy and entropy usage for Figure 15.

REFERENCES

Samson Abramsky and Achim Jung. 1994. Domain Theory. In Handbook of Logic in Computer Science, S. Abramsky, D. M.

Gabbay, and T. S. E. Maibaum (Eds.). Vol. 3. Clarendon Press, 1–168. https://global.oup.com/academic/product/handbook-

of-logic-in-computer-science-9780198537625

Sheldon B. Akers. 1978. Binary Decision Diagrams. IEEE Trans. Computers 27, 6 (1978), 509–516. https://doi.org/10.1109/TC.

1978.1675141

Randy Allen and Ken Kennedy. 1987. Automatic Translation of Fortran Programs to Vector Form. ACM Trans. Program.

Lang. Syst. 9, 4 (1987), 491–542. https://doi.org/10.1145/29873.29875

Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi, and Yuval Yarom. 2020. LadderLeak: Breaking

ECDSA with Less than One Bit of Nonce Leakage. In CCS ’20: 2020 ACM SIGSAC Conference on Computer and Communi-

cations Security, Virtual Event, USA, November 9-13, 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna

(Eds.). ACM, 225–242. https://doi.org/10.1145/3372297.3417268

J. Scott Armstrong. 1985. Long-Range Forecasting: From Crystal Ball to Computer. John Wiley & Sons, New York.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://github.com/bagnalla/zar/tree/release-pldi23/gaussian.v#L34
https://github.com/bagnalla/zar/tree/release-pldi23/gaussian.v#L62
https://global.oup.com/academic/product/handbook-of-logic-in-computer-science-9780198537625
https://global.oup.com/academic/product/handbook-of-logic-in-computer-science-9780198537625
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1145/29873.29875
https://doi.org/10.1145/3372297.3417268

106:22 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

Alexander Bagnall, Gordon Stewart, and Anindya Banerjee. 2020. Coinductive Trees for Exact Inference of Probabilistic

Programs. In LAFI 2020: Languages for Inference.

Alexander Bagnall, Gordon Stewart, and Anindya Banerjee. 2023. Formally Verified Samplers From Probabilistic Programs

With Loops and Conditioning. https://doi.org/10.5281/zenodo.7809333

Verónica Becher and Serge Grigorieff. 2022. Randomness and uniform distribution modulo one. Inf. Comput. 285, Part

(2022), 104857. https://doi.org/10.1016/j.ic.2021.104857

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,

Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman. 2019. Pyro: Deep Universal Probabilistic Programming. J. Mach.

Learn. Res. 20 (2019), 28:1–28:6. http://jmlr.org/papers/v20/18-403.html

George E. .P. Box and George C. Tiao. 2011. Bayesian Inference in Statistical Analysis. John Wiley & Sons.

Clément L Canonne, Gautam Kamath, and Thomas Steinke. 2020. The discrete gaussian for differential privacy. Advances in

Neural Information Processing Systems 33 (2020), 15676–15688.

Arthur Charguéraud. 2017. CoqAndAxioms. https://github.com/coq/coq/wiki/CoqAndAxioms

Mark Chavira and Adnan Darwiche. 2008. On probabilistic inference by weighted model counting. Artif. Intell. 172, 6-7

(2008), 772–799. https://doi.org/10.1016/j.artint.2007.11.002

Adam Chlipala. 2013. Certified Programming with Dependent Types - A Pragmatic Introduction to the Coq Proof Assistant.

MIT Press. http://mitpress.mit.edu/books/certified-programming-dependent-types

Adnan Darwiche and Pierre Marquis. 2002. A Knowledge Compilation Map. J. Artif. Intell. Res. 17 (2002), 229–264.

https://doi.org/10.1613/jair.989

Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean

Theorem Prover (System Description). In Automated Deduction - CADE-25 - 25th International Conference on Automated

Deduction, Berlin, Germany, August 1-7, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9195), Amy P. Felty and

Aart Middeldorp (Eds.). Springer, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

Edsger W. Dijkstra. 1975. Guarded Commands, Nondeterminacy and Formal Derivation of Programs. Commun. ACM 18, 8

(1975), 453–457. https://doi.org/10.1145/360933.360975

Rodney G. Downey and Evan J. Griffiths. 2004. Schnorr randomness. J. Symb. Log. 69, 2 (2004), 533–554. https://doi.org/10.

2178/jsl/1082418542

Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing probabilistic programming systems. In

Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations

of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens,

Alessandro Garcia, and Corina S. Pasareanu (Eds.). ACM, 574–586. https://doi.org/10.1145/3236024.3236057

Saikat Dutta, Wenxian Zhang, Zixin Huang, and Sasa Misailovic. 2019. Storm: program reduction for testing and debugging

probabilistic programming systems. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019,

Marlon Dumas, Dietmar Pfahl, Sven Apel, and Alessandra Russo (Eds.). ACM, 729–739. https://doi.org/10.1145/3338906.

3338972

Derek Elkins. 2021. Tying the Knot. https://wiki.haskell.org/Tying_the_Knot

Charles Geyer. 2011. Introduction to Markov Chain Monte Carlo. Handbook of markov chain monte carlo 20116022 (2011),

45.

Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. 2009. Universally utility-maximizing privacy mechanisms. In

Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2,

2009, Michael Mitzenmacher (Ed.). ACM, 351–360. https://doi.org/10.1145/1536414.1536464

Noah D. Goodman, Vikash Mansinghka, Daniel M. Roy, Kallista A. Bonawitz, and Joshua B. Tenenbaum. 2012. Church: a

language for generative models. CoRR abs/1206.3255 (2012). arXiv:1206.3255 http://arxiv.org/abs/1206.3255

Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. 2014. Probabilistic programming. In

Proceedings of the on Future of Software Engineering, FOSE 2014, Hyderabad, India, May 31 - June 7, 2014, James D. Herbsleb

and Matthew B. Dwyer (Eds.). ACM, 167–181. https://doi.org/10.1145/2593882.2593900

Carl A. Gunter. 1993. Semantics of programming languages - structures and techniques. MIT Press.

Paul R Halmos. 2013. Measure theory. Vol. 18. Springer.

Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. 2020. Scaling exact inference for discrete probabilistic programs.

Proc. ACM Program. Lang. 4, OOPSLA (2020), 140:1–140:31. https://doi.org/10.1145/3428208

Steven Holtzen, Todd D. Millstein, and Guy Van den Broeck. 2019. Symbolic Exact Inference for Discrete Probabilistic

Programs. CoRR abs/1904.02079 (2019). arXiv:1904.02079 http://arxiv.org/abs/1904.02079

Daniel Huang, Jean-Baptiste Tristan, and Greg Morrisett. 2017. Compiling Markov chain Monte Carlo algorithms for

probabilistic modeling. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 111–125.

https://doi.org/10.1145/3062341.3062375

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://doi.org/10.5281/zenodo.7809333
https://doi.org/10.1016/j.ic.2021.104857
http://jmlr.org/papers/v20/18-403.html
https://github.com/coq/coq/wiki/CoqAndAxioms
https://doi.org/10.1016/j.artint.2007.11.002
http://mitpress.mit.edu/books/certified-programming-dependent-types
https://doi.org/10.1613/jair.989
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/360933.360975
https://doi.org/10.2178/jsl/1082418542
https://doi.org/10.2178/jsl/1082418542
https://doi.org/10.1145/3236024.3236057
https://doi.org/10.1145/3338906.3338972
https://doi.org/10.1145/3338906.3338972
https://wiki.haskell.org/Tying_the_Knot
https://doi.org/10.1145/1536414.1536464
https://arxiv.org/abs/1206.3255
http://arxiv.org/abs/1206.3255
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/3428208
https://arxiv.org/abs/1904.02079
http://arxiv.org/abs/1904.02079
https://doi.org/10.1145/3062341.3062375

Formally Verified Samplers from Probabilistic Programs with Loops and Conditioning 106:23

Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. 2013. The power of parameterization in coinductive proof.

In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy -

January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 193–206. https://doi.org/10.1145/2429069.

2429093

Benjamin Lucien Kaminski. 2019. Advanced weakest precondition calculi for probabilistic programs. Ph. D. Dissertation.

RWTH Aachen University, Germany. http://publications.rwth-aachen.de/record/755408

Donald E. Knuth and Andrew C. Yao. 1976. The Complexity of Nonuniform Random Number Generation. In Algorithms and

Complexity: New Directions and Recent Results, Joseph F. Traub (Ed.). Academic Press.

Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf Honoré, William Mansky, Benjamin C. Pierce, and Steve

Zdancewic. 2019. From C to interaction trees: specifying, verifying, and testing a networked server. In Proceedings of the

8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January 14-15,

2019, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM, 234–248. https://doi.org/10.1145/3293880.3294106

Dexter Kozen and Alexandra Silva. 2017. Practical coinduction. Math. Struct. Comput. Sci. 27, 7 (2017), 1132–1152.

https://doi.org/10.1017/S0960129515000493

Lauwerens Kuipers and Harald Niederreiter. 2012. Uniform distribution of sequences. Courier Corporation.

Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency. The annals of mathematical statistics 22, 1

(1951), 79–86.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document

recognition. Proc. IEEE 86, 11 (1998), 2278–2324. https://doi.org/10.1109/5.726791

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/

1538788.1538814

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2021. The OCaml system

release 4.13: Documentation and user’s manual. Intern report. Inria. 1–876 pages. https://hal.inria.fr/hal-00930213

Mohsen Lesani, Li-yao Xia, Anders Kaseorg, Christian J. Bell, Adam Chlipala, Benjamin C. Pierce, and Steve Zdancewic. 2022.

C4: verified transactional objects. Proc. ACM Program. Lang. 6, OOPSLA (2022), 1–31. https://doi.org/10.1145/3527324

Thomas Letan and Yann Régis-Gianas. 2020. FreeSpec: specifying, verifying, and executing impure computations in Coq. In

Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans,

LA, USA, January 20-21, 2020, Jasmin Blanchette and Catalin Hritcu (Eds.). ACM, 32–46. https://doi.org/10.1145/3372885.

3373812

Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Logic and Theory of Algorithms, 4th Conference on Computability

in Europe, CiE 2008, Athens, Greece, June 15-20, 2008, Proceedings (Lecture Notes in Computer Science, Vol. 5028), Arnold

Beckmann, Costas Dimitracopoulos, and Benedikt Löwe (Eds.). Springer, 359–369. https://doi.org/10.1007/978-3-540-

69407-6_39

Per Martin-Löf. 1966. The Definition of Random Sequences. Inf. Control. 9, 6 (1966), 602–619. https://doi.org/10.1016/S0019-

9958(66)80018-9

Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Annabelle McIver.

2018. Conditioning in Probabilistic Programming. ACM Trans. Program. Lang. Syst. 40, 1 (2018), 4:1–4:50. https:

//doi.org/10.1145/3156018

Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2016. Reasoning about recursive

probabilistic programs. In 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 1–10.

Daniel Patterson and Amal Ahmed. 2019. The next 700 compiler correctness theorems (functional pearl). Proc. ACM Program.

Lang. 3, ICFP (2019), 85:1–85:29. https://doi.org/10.1145/3341689

pythonlib. 2022. pythonlib. https://github.com/janestreet/pythonlib

Sebastian Raschka and Vahid Mirjalili. 2019. Python machine learning: Machine learning and deep learning with Python,

scikit-learn, and TensorFlow 2. Packt Publishing Ltd.

Reuven Y Rubinstein and Dirk P Kroese. 2016. Simulation and the Monte Carlo method. John Wiley & Sons.

Feras Saad, Cameron E. Freer, Martin C. Rinard, and VikashMansinghka. 2020a. The Fast Loaded Dice Roller: A Near-Optimal

Exact Sampler for Discrete Probability Distributions. In The 23rd International Conference on Artificial Intelligence and

Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy] (Proceedings of Machine Learning Research,

Vol. 108), Silvia Chiappa and Roberto Calandra (Eds.). PMLR, 1036–1046. http://proceedings.mlr.press/v108/saad20a.html

Feras A. Saad, Cameron E. Freer, Martin C. Rinard, and Vikash K. Mansinghka. 2020b. Optimal approximate sampling from

discrete probability distributions. Proc. ACM Program. Lang. 4, POPL (2020), 36:1–36:31. https://doi.org/10.1145/3371104

SciPy. 2022. scipy.stats. https://docs.scipy.org/doc/scipy/reference/stats.html

Kudelski Security. 2020. The definitive guide to "Modulo Bias and how to avoid it"! https://research.kudelskisecurity.com/

2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/

Daniel Selsam, Percy Liang, and David L Dill. 2018. Formal methods for probabilistic programming. In Workshop on

Probabilistic Programming Languages, Semantics, and Systems.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2429069.2429093
http://publications.rwth-aachen.de/record/755408
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://hal.inria.fr/hal-00930213
https://doi.org/10.1145/3527324
https://doi.org/10.1145/3372885.3373812
https://doi.org/10.1145/3372885.3373812
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1007/978-3-540-69407-6_39
https://doi.org/10.1016/S0019-9958(66)80018-9
https://doi.org/10.1016/S0019-9958(66)80018-9
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3156018
https://doi.org/10.1145/3341689
https://github.com/janestreet/pythonlib
http://proceedings.mlr.press/v108/saad20a.html
https://doi.org/10.1145/3371104
https://docs.scipy.org/doc/scipy/reference/stats.html
https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/

106:24 Alexander Bagnall, Gordon Stewart, and Anindya Banerjee

Claude E. Shannon. 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 3 (1948), 379–423. https:

//doi.org/10.1002/j.1538-7305.1948.tb01338.x

Marcin Szymczak and Joost-Pieter Katoen. 2020. Weakest Preexpectation Semantics for Bayesian Inference. CoRR

abs/2005.09013 (2020). arXiv:2005.09013 https://arxiv.org/abs/2005.09013

Di Wang, Jan Hoffmann, and Thomas W. Reps. 2021. Sound probabilistic inference via guide types. In PLDI ’21: 42nd ACM

SIGPLAN International Conference on Programming Language Design and Implementation, Virtual Event, Canada, June

20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 788–803. https://doi.org/10.1145/3453483.3454077

Hermann Weyl. 1916. Über die gleichverteilung von zahlen mod. eins. Math. Ann. 77, 3 (1916), 313–352.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory Malecha, Benjamin C. Pierce, and Steve Zdancewic.

2020. Interaction trees: representing recursive and impure programs in Coq. Proc. ACM Program. Lang. 4, POPL (2020),

51:1–51:32. https://doi.org/10.1145/3371119

Jonathan S Yedidia, William T Freeman, and Yair Weiss. 2003. Understanding belief propagation and its generalizations.

Exploring artificial intelligence in the new millennium 8 (2003), 236–239.

Hengchu Zhang, Wolf Honoré, Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, William Mansky, Benjamin C.

Pierce, and Steve Zdancewic. 2021. Verifying an HTTP Key-Value Server with Interaction Trees and VST. In 12th

International Conference on Interactive Theorem Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual Conference)

(LIPIcs, Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 32:1–32:19.

https://doi.org/10.4230/LIPIcs.ITP.2021.32

Raymond K Zhao, Ron Steinfeld, and Amin Sakzad. 2020. COSAC: Compact and scalable arbitrary-centered discrete Gaussian

sampling over integers. In International Conference on Post-Quantum Cryptography. Springer, 284–303.

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 106. Publication date: June 2023.

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://arxiv.org/abs/2005.09013
https://arxiv.org/abs/2005.09013
https://doi.org/10.1145/3453483.3454077
https://doi.org/10.1145/3371119
https://doi.org/10.4230/LIPIcs.ITP.2021.32

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Contributions
	1.3 Current Limitations

	2 Syntax and Semantics of cpGCL
	2.1 Syntax of cpGCL
	2.2 Conditional Weakest Pre-Expectation Semantics

	3 Compiling cpGCL
	3.1 Choice-Fix Trees
	3.2 CF Tree Semantics
	3.3 Compiling to CF Trees
	3.4 Debiasing CF Trees
	3.5 Generating Interaction Trees

	4 Correctness of Sampling
	4.1 The Source of Randomness
	4.2 Inference as Measure
	4.3 Equidistribution

	5 Empirical Validation
	5.1 Dueling Coins
	5.2 Geometric Primes
	5.3 Uniform Sampling
	5.4 Discrete Laplace and Gaussian
	5.5 Hare and Tortoise

	6 Related Work
	7 Conclusion
	A Subroutines for Discrete Laplace and Gaussian
	References

