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In a paper published in 1972 Hoare articulated the fundamental notions of hiding invariants and simulations.

Hiding: invariants on encapsulated data representations need not be mentioned in specifications that comprise

the API of a module. Simulation: correctness of a new data representation and implementation can be

established by proving simulation between the old and new implementations using a coupling relation defined

on the encapsulated state. These results were formalized semantically and for a simple model of state, though

the paper claimed this could be extended to encompass dynamically allocated objects. In recent years, progress

has been made towards formalizing the claim, for simulation, though mainly in semantic developments. In

this article, hiding and simulation are combined with the idea in Hoare’s 1969 paper: a logic of programs. For

an object-based language with dynamic allocation, we introduce a relational Hoare logic with stateful frame

conditions that formalizes encapsulation, hiding of invariants, and couplings that relate two implementations.

Relations and other assertions are expressed in first-order logic. Specifications can express a wide range of

relational properties such as conditional equivalence and noninterference with declassification. The proof

rules facilitate relational reasoning by means of convenient alignments and are shown sound with respect

to a conventional operational semantics. A derived proof rule for equivalence of linked programs directly

embodies representation independence. Applicability to representative examples is demonstrated using an

SMT-based implementation.
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1 INTRODUCTION

Data abstraction has been a cornerstone of software development methodology since the seventies.

Yet it is surprisingly difficult to achieve in a reliable manner in modern programming languages
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that permit manipulation of the global heap via dynamic allocation, shared mutable objects, and

callbacks. Aliasing can violate conventional syntactic means of encapsulation (modules, classes,

packages, access modifiers) and therefore can undercut the fundamental guarantee of abstraction:

equivalence of client behavior under change of a module’s data structure representations.

The theory of data abstraction is well-known since Hoare’s seminal paper [52]. Its main ingre-

dients are the encapsulation of effects, hidden invariants (that is, private invariants that do not

appear in a method’s interface specifications, so that clients are exempt from having to establish

them for calls to the method), and relational reasoning: coupling relations and simulations. Hoare’s

paper provides a semantic formalization of these ideas using a simple model of state and it claims

that the ideas can be extended to encompass dynamically allocated objects.

The justification of Hoare’s claim is a primary focus of this article, which is in the context of

two strands of recent work. One strand has made progress on automating proofs of conditional

equivalence and relational properties in general, based on automated theorem proving (e.g., SMT)

and techniques to decompose relational reasoning by expressing alignment of executions in terms

of “product programs”. The other strand has made progress towards formalizing Hoare’s claim in

semantic theories of representation independence (simulation and logical relations). This article

brings the strands together using the idea in Hoare’s 1969 paper [51]: a logic of programs. In this

way we address three goals:

Modular reasoning about relational properties of object-based programs. Such properties

include not just equivalence but many others such as noninterference. Conditional equivalence, for

example, is needed to justify bug fixes and refactorings (regression verification), taking into account

preconditions that capture usage context. Conditional noninterference expresses information flow

security policies with declassification; similar dependency properties express context conditions

for compiler optimizations. Modular reasoning requires procedural abstraction, i.e., reasoning about

code under hypotheses in the form of method contracts. It requires local reasoning, based on frame

conditions. And it requires data abstraction, based on program modules and encapsulated data

representations.

Automated reasoning. We aim to facilitate verification using what have been called auto-

active verification tools [63] like Why3 and Dafny. Users may be expected to provide source level

annotations (contracts and data invariants) and alignment hints (to decompose relational reasoning)

but are not expected to guide proof tactics or provide full functional specifications. The latter

is a key point. It is difficult for developers to formulate full functional specs of applications and

libraries, and such specs would often need mathematical types not amenable to automated provers.

Experience shows the value of weak specs of input validity and data structure consistency. Frame

conditions are particularly useful for the developer and for the reasoning system [49].

Foundational justification.We aim for tools that yield strong evidence of correctness based on

accurate program semantics. In this article we consider sequential programs at the source level, with

idealizations—unbounded integers, heap, stack—that often are used to simplify specs and facilitate

automated theorem proving. We carefully model dynamic allocation at the level of abstraction of

garbage-collected languages such as Java and ML. The ultimate goal is tools for languages used in

practice, for which semantics should be machine-checked and based on the compiler and machine

model.

Summary of the state of the art with respect to these goals. To position our work we give a quick

summary; thorough discussion with citations can be found in Section 10.

There are several mature automated verifiers for unary (non-relational) verification, including

local reasoning by separation logic and by stateful frame conditions (“dynamic frames”), based

on SMT solvers and other techniques for proof automation including inference of annotations
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and decentralized invariants [14, 41] to lessen the need for induction. While abstract data types

are commonly supported in specifications, encapsulation of heap structures remains a difficult

challenge. For relational reasoning, there has been good progress in automation; this has made

clear the need for both lockstep alignment of subcomputations using relational formulas and

“asynchronous” alignments using unary reasoning. Automated verifiers have varying degrees of

foundational justification, but a standard technique is well established: verification conditions are

based on a Hoare logic which in turn is proved sound.

The semantic theory of data abstraction is well understood for a wide range of languages, mostly

focused on syntactic means of encapsulation including type polymorphism, but also considering

state-based notions like ownership using specialized types or program annotations. These theories

account for heap encapsulation and simulation but have not been well connected with general

program reasoning: in brief, they say why simulation implies program equivalence but do not say

how to prove simulation. Some of this theory has been incorporated in interactive verification tools,

for example based on the Coq proof assistant. In such a setting, the powerful ambient logic makes

it possible to express all the theory, and recent work includes relational program logics that feature

local reasoning and hiding. These works focus on concurrency and higher order programs, and

have many complications needed to address those challenges—far from the simplicity of first-order

specs supported by automated provers and accessible to ordinary developers.

Our contribution, in a nutshell. This article presents a full-featured, general relational program

logic that supports modular reasoning about both unary and relational properties of object-based

programs. The logic formalizes state-based encapsulation and the hiding of invariants and coupling

relations, including a proof rule for equivalence of linked programs which directly embodies

the theory of representation independence. The logic uses a form of product program,
1
called

“biprogram”, to designate alignments of subprograms to facilitate use of simple relational assertions

that are amenable to automated proof. The verification conditions are all first-order, without need

for inductive predicates, and amenable to SMT-based automation. A foundational justification is

provided: detailed soundness proofs with respect to standard operational semantics.

Outline and reader’s guide. Section 2 summarizes the problem, the approach taken, and the

contributions of this article. Section 3 presents most of the syntactic ingredients of the unary logic,

including effect expressions, unary specs and correctness judgments. Novel syntactic elements are

explained informally via examples and an extended example illustrates encapsulation and modular

linking.

Section 4 first presents the syntactic ingredients of the relational logic—biprograms, relation

formulas, relational specs and correctness judgments—and then presents a series of examples to

illustrate alignment, relations on heap structures, and relational modular linking.

After Sections 2–4, readers who are not interested in semantic details may wish to skip to

Section 6 which presents the rules of the unary logic, and then skip again to Section 8 which

presents the rules of the relational logic, including the modular linking rule and its derivation from

simpler rules.

Section 5 defines the semantics of programs and unary correctness judgments; it is based

on standard small-step semantics but we need a number of notions concerning agreement and

dependency, leading to the novel and subtle semantics of encapsulation. Section 7 gives the semantics

of biprograms and relational correctness. Section 9 sketches the use of a prototype tool to evaluate

1
Some authors restrict the term “product” to mean a representation that is itself a program. Our usage is looser, encompassing

representations like pairs of programs [43] and our custom syntax.
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viability of the logic’s proof obligations for SMT-based verification. Section 10 surveys related work

and Section 11 concludes.

A lengthy appendix provides proofs and additional details, none of which should be needed to

understand the contents of the article. Nonetheless, cross-references to the appendix are included.

There is also a glossary of symbols and a table of metavariables (Section E). The article is self-

contained but includes some remarks to cater for readers who are familiar with prior work on

region logic on which we build.

2 SYNOPSIS

2.1 Modular reasoning about relational properties

module MCell

class Cell

meth Cell(c: Cell) /∗ constructor ∗/
meth cget (c: Cell) : int /∗ pure ∗/
meth cset (c: Cell, v: int)

requires { c ≠ null }

ensures { cget(c) = v }

Fig. 1. Example interface.

To introduce the problem addressed in this article, we begin

by sketching Hoare’s story about proofs of correctness of data

representations. Often a software component is revised with

the intent to improve some characteristic such as performance

while preserving its functional behavior. As a minimal example

consider this program in an idealized object-based language,

with integer global variables x,y.

var c: Cell in c := new Cell; x := x+1; cset(c,x); y := cget(c)

It is a client of the interface in Figure 1. An obvious implemen-

tation of the module
2
is for class Cell to declare an integer field

val that stores the value. Suppose we change the implementation: store the negated value, in a

field named f, and let cget return its negation. Client programs like the one above should not

be affected by this change, at the usual level of abstraction (e.g, ignoring timing). To be specific,

we have equivalence of the two programs obtained by linking the client with one or the other

implementation of the module. (Equivalence means equal inputs lead to equal outputs.) This has

nothing to do with the specific client. The point of data abstraction is to free the client programmer

from dependence on internal representations, and to free the library programmer from needing to

reason about specific clients.

The (relational) reasoning here is familiar in practice and in theories of representation inde-
pendence. There is a coupling relation that connects the two data representations; in this case, for

corresponding object references 𝑜, 𝑜 ′ of type Cell,

the value of field 𝑜 ′ .f is the negation of 𝑜.val. (1)

This relation is maintained, by paired execution of the two implementations, for each method of

the module and for all instances of the class. The fields are encapsulated within the module, so a

client can neither falsify the relation nor behave differently from related states since the visible

part of the relation is the identity.

Figure 2 depicts steps of two executions of the example client, linked with alternate implementa-

tions of the methods it calls. The top line indicates a relation between the initial states of the left

and right executions. The client’s precondition 𝑃 holds in both (B), and the initial states agree (A)
on the part of the state that is client-visible. Unknown to the client, the module coupling relation

M is established by the constructors and can be assumed in reasoning about the calls, provided the

method’s implementations preserve the relation. A client step, like x:=x+1 here, should preserveM
for reasons of encapsulation. The bottom line indicates agreement on the final result. Each method

has alternate implementations; the ones for cset are labelled (as 𝐵, 𝐵′) for expository purposes.

2
Classes are instantiable. For our purposes, modules are static [9, 77], like packages in Java and other languages.
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. A𝑣𝑖𝑠
𝑦 := cget(𝑐 )
?

.
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.

B𝑃 —both initial states satisfy 𝑃

A𝑣𝑖𝑠 —two states agree on client-visible locations

M —coupling relation on encapsulated locations

𝐵, 𝐵′ —alternate implementations of a method

Fig. 2. Two executions, with relations between aligned points.

In this work, we introduce a logic in which one can specify relational properties such as the

preservation of a coupling relation by the two implementations 𝐵, 𝐵′, as well as equivalence of
the two linked programs for a client 𝐶 . Moreover the equivalence can be inferred directly from

the preservation property. Equivalence is expressed in local terms, referring just to the part of the

state that 𝐶 acts on: In the example client program, the pre-relation is agreement on the value of

x and the post-relation is agreement on y. If 𝐶 is part of a larger context then a relational frame

rule can be applied to infer that relations on separate parts of the state are also maintained by 𝐶 as

discussed later.

Encapsulation. The above reasoning depends crucially on encapsulation, and many programming

languages have features intended to provide encapsulation. In unary verification, encapsulation

serves to protect invariants on internal data structures. It is well known, and often experienced

in practice, that references and mutable state can break encapsulation in conventional languages

like Java and ML. There has been considerable research on methodologies using type annotations

and assertions to enforce disciplines including ownership for the sake of encapsulation and local

reasoning. This work focuses on heap encapsulation, without commitment to any specific discipline,

but provides a framework in which such disciplines can be used.

In this article, encapsulation is at the granularity of a module, not a class or object. Thus the

implementation of a method cswap(c, d: Cell) that swaps the values of two cells can exploit that

the cells have the same internal representation. However, it is often useful for each instance of

an abstraction, say a cell or a stack, to “own” some locations that are separate from those of

other instances, so we can do framing at the granularity of an instance. This is manifest in frame

conditions, as we will see for cset, and it is also manifest in invariants. For example, a module for

stacks implemented using linked lists has the invariant that distinct stacks use disjoint list nodes.

Let us sketch how encapsulation and module invariants can be formalized in a unary logic. The

linking of a client 𝐶 with a method implementation 𝐵 can be represented by a simple construct,

let𝑚 = 𝐵 in 𝐶 that binds 𝐵 to method name𝑚. (For clarity we ignore parameters and consider

a single method rather than simultaneous linkage of several methods.) The modular linking rule

looks as follows, where we use notation 𝐶 : 𝑃 { 𝑄 instead of the usual Hoare triple {𝑃}𝐶{𝑄} (for
partial correctness).

3

𝑚 : 𝑅 { 𝑆 ⊢ 𝐶 : 𝑃 { 𝑄 𝑚 : (𝑅 ∧ 𝐼 ) { (𝑆 ∧ 𝐼 ) ⊢ 𝐵 : (𝑅 ∧ 𝐼 ) { (𝑆 ∧ 𝐼 )
⊢ let𝑚 = 𝐵 in 𝐶 : 𝑃 { 𝑄

(2)

3
Following O’Hearn et al [9, 77], we use the term modular for information hiding, not just procedural abstraction.
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The first premise says 𝐶 is correct under the hypothesis that 𝑚 satisfies the spec 𝑅 { 𝑆 . (The

general form allows other hypotheses, which are retained in the conclusion.) The second premise

says the body 𝐵 of𝑚 satisfies a different spec, 𝑅 ∧ 𝐼 { 𝑆 ∧ 𝐼 (and assumes the same, as needed

in case of recursive calls to𝑚 in 𝐵). The spec 𝑅 { 𝑆 should be understood as the interface on

which𝐶 relies—indeed,𝐶 is modularly correct in the sense that it satisfies its spec when linked with

any correct implementation of𝑚, so 𝐶 never calls𝑚 outside its specified precondition 𝑅. In the

verification of 𝐵, the internal invariant 𝐼 can be assumed initially and must be reestablished. The

invariant is hidden from clients of the module.

As displayed, rule (2) is obviously unsound because𝐶 might write a location on which 𝐼 depends

and then call𝑚 in a state where 𝐼 does not hold. The idea is to prevent that by encapsulation, for

which we are required to

(E1) delimit the module’s “internal locations”,

(E2) ensure that the module’s private invariant 𝐼 depends only on those locations,

(E3) frame the effects of 𝐶 and ensure its writes are separate from the internal locations, and

(E4) arrange that 𝐼 is established initially (e.g., by module initialization and object constructors).

Relational modular linking. Encapsulation licenses more than just the hiding of invariants. Once

the requirements (E1)–(E4) aremet in away thatmakes (2) sound, we can contemplate the adaptation

of (2) to relational reasoning and in particular proving equivalence of two linkages, let𝑚 = 𝐵 in 𝐶

and let𝑚 = 𝐵′ in 𝐶 . The labels (E1)–(E4) are used to also refer to the requirements as adapted to

relational reasoning.

The two linkages cannot be expected to behave identically: 𝐵 and 𝐵′ typically have different

internal state on which they act differently. What can be expected is that from initial states that are

equivalent in terms of client-visible locations, the two linkages yield final states that are equivalent

on visible locations, as indicated by the deliberately vague “𝑣𝑖𝑠” in Figure 2. We say equivalent states

because 𝐵 and 𝐵′ may do different allocations; so the resulting heap structure should be isomorphic

but need not be identical. (For many purposes one wants to reason at the source language level of

abstraction, ignoring differences due to timing, code size, and absolute addresses; that is our focus.)

Given that we have framing (E3), it suffices to establish “local equivalence” in the sense that initial

agreement on locations readable by 𝐶 leads to final agreement on locations writable by 𝐶—and on

freshly allocated locations. Agreement on other visible locations should then follow.

We write (𝐵 |𝐵′) : R ≈> S, for relations R and S on states, to say that pairs of terminated

executions of programs 𝐵 and 𝐵′, from states related by R, end in states related by S. For example,

(𝐶 |𝐶) : A𝑥 ≈> A𝑦 says two runs of 𝐶 from states that agree on the value of 𝑥 end in states that

agree on the value of 𝑦. The relational generalization of (2) is a relational modular linking rule of

this form:

𝑚 : 𝑅 { 𝑆 ⊢ 𝐶 : 𝑃 { 𝑄 𝑚 : . . . ⊢ (𝐵 |𝐵′) : B𝑅 ∧ A𝑖𝑛 ∧M ≈> B𝑆 ∧ A𝑜𝑢𝑡 ∧M
⊢ (let𝑚 = 𝐵 in 𝐶 | let𝑚 = 𝐵′ in 𝐶) : B𝑃 ∧ A𝑣𝑖𝑠 ≈> B𝑄 ∧ A𝑣𝑖𝑠

(3)

The first premise is unary correctness of 𝐶 assuming the interface spec of𝑚 as in rule (2). The

conclusion of (3) expresses local equivalence of the two linkages, under precondition 𝑃 . The second

premise relates the two implementations 𝐵 and 𝐵′ and is meant to say that if the client-visible

“input” locations are in agreement then the resulting visible outputs are in agreement. In addition,

a relationM is conjoined to the pre- and post-condition. A coupling relationM usually has three

conjuncts: it says the left state satisfies some invariant 𝐼 on the internal state used by 𝐵, the right

state satisfies invariant 𝐼 ′ on the internal state used by 𝐵′, and there is some connection between

the internal states. (We often use “left” and “right” in connection with two programs, states, or

executions to be related.) The hypothesis for𝑚 in the second premise is the same spec as proved for
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(𝐵 |𝐵′), following the pattern in (2). We elide that hypothesis for readability: relational reasoning

involves two of everything and the notations quickly become cluttered! As with the modular linking

rule (2), the relational modular linking rule (3) is unsound unless we satisfy requirements (E1)–(E4).

For relational reasoning, (E2) and (E4) are adapted to relations, and (E3) is strengthened to ensure

separation for reads, as one would expect to avoid dependence on internal representations.

Alignment. One technique for proving some relation on final states is to leverage functional

specs: a strong constraint on the output values, such as 𝑜𝑢𝑡 = 𝑓 (𝑖𝑛) for some mathematical function

𝑓 , entails that initial agreement on 𝑖𝑛 leads to final agreement on 𝑜𝑢𝑡 . But the need to find and

prove functional specs can often be avoided through judicious alignment of intermediate points in

execution. This technique is used to prove soundness of (3). To illustrate, consider an instantiation

of the general rule in which the three methods in Figure 1 are bound simultaneously (cset, cget,

and the Cell constructor). We show that two executions of the example client can be aligned as in

Figure 2, with the indicated relations holding at the aligned points. After the two constructor calls,

the resulting states should agree on visible locations and be related by the coupling, according

to the premise proved for the constructor. From any pair of states related by A𝑥 ∧ A𝑐 ∧M, two

executions of x:=x+1 maintain agreement on visible variables including 𝑥 , and according to (E3) this

step in the client code is not touching internal locations on whichM depends, soM continues to

hold. From any pair of states related by A𝑣𝑖𝑠 ∧M, a pair of calls to cset results in states related, by

the premise for cset. Similarly for cget. In factM relates the final states in Figure 2 but we omit it

there, to emphasize that it is an ingredient of proof rather than the property of ultimate interest.

In a good alignment, most of the intermediate relations are agreements (A) that amount to

simple equalities connecting values in locations of the two states. Finding and exploiting good

alignments is essential in order to leverage automatic theorem provers. For cset(c,v) in Figure 1,

the first implementation is c.val:= v; return c.val and the second is c.f:= −v; return −c.f. If we align their

executions at the semicolons, we can assert the coupling relation (1) at that point, by unary reasoning

about the effect of the two field updates. Again by unary reasoning about the return expressions

we get that the same values are returned, as needed for the final agreement on visible variable 𝑦.

Alignment does not eliminate the need for unary/functional reasoning, but rather reduces it to

small program fragments for which precise semantics can be computed by a theorem prover.

Alignment can be expressed by means of a product program, that is, a program, or some kind

of automaton, whose executions correspond to paired executions of the given programs. We call

this well known technique the product principle: to prove a correctness judgment (𝐶 |𝐶′) : R ≈> S
relating programs𝐶 and𝐶′, it suffices to prove the spec for some product programwhose executions

cover the executions of 𝐶 and 𝐶′.
To emphasize the role of alignment we consider another example, not about representation

independence but about secure information flow. The following program acts on a linked list of

integer values, where each node has a boolean field, pub, meant to indicate that this value is public.

𝑠𝑢𝑚𝑝𝑢𝑏 : s:=0; p:=head; while p ≠ null do if p.pub then s:=s+p.val fi; p:=p.nxt od (4)

We want to specify and prove that this does not reveal any information about non-public values.

Suppose we can define 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝) to be the mathematical list of public values reached from p.

To express that the final value of 𝑠 depends only on public elements of the list we use the spec

A𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝) ≈> A𝑠 . The program satisfies the unary spec 𝑡𝑟𝑢𝑒 { 𝑠 = 𝑠𝑢𝑚(𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (ℎ𝑒𝑎𝑑)), and
any program that satisfies this must also satisfy A𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (ℎ𝑒𝑎𝑑) ≈> A𝑠 . But we can prove the

relational spec without recourse to the unary spec. At points in execution where two runs have

passed the same number of public nodes, the relation A𝑠 ∧ A𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝) holds; this suggests an
alignment where it suffices to use relational invariant A𝑠 ∧ A𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝). Adding the same value to
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𝑠 on both sides maintains A𝑠 and there is no need to reason that 𝑠 is the sum of previously traversed

public values. The same relational invariant should suffice if sum is replaced by a more complicated

function. The alignment can be described as follows: consider an iteration just on the left (resp.

right), if the next left (resp. right) node is not public; and simultaneous execution of the body on

both sides, if both next nodes are public.

We cannot in fact define 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 as a function of 𝑝 , owing to the possibility of cycles in the heap.

Instead we use an inductive relation when we work out the details of this example Section 4.5.

Summary of ingredients needed. To achieve the three goals in Section 1 we need:

• A unary logic of functional correctness under hypotheses (for procedure-modularity), that

supports framing (for local reasoning) and encapsulation (for hiding and abstraction). To

support a wide range of programming patterns, the logic should support reasoning in terms

of encapsulation at the granularity of an object which “owns” some internal state, say

representing an instance of an ADT. It should also support reasoning at the granularity of

a module, where many instances of multiple classes may share the internal representation.

It should encompass flexible patterns of sharing in data structures and between clients and

components.

• A relational logic with framing and encapsulation, in which the relation formulas in specs and

intermediate assertions are sufficiently expressive to describe data structureswith dynamically

allocated objects. Agreement “modulo renaming” is needed to reason at the level of abstraction

of Java/ML which provide reference equality and preclude arithmetic comparisons and

operations on pointers, to express local equivalence and other relations. The logic must

provide means to reason with alignments that admit simple intermediate relations. Examples

like the 𝑠𝑢𝑚𝑝𝑢𝑏 program in (4) show the need to use state-dependent alignments in addition

to alignments of control structure.

These ingredients need to be provided in ways that facilitate verification tools that leverage

automated provers especially SMT solvers. Reasoning under hypotheses is straighforward to

implement, but effective expression of specs and alignment is less obvious.

2.2 An approach based on region logic

Our relational logic is based on prior work in which ghost state is used in frame conditions to

describe sets of heap locations. This approach, dubbed dynamic frames [54], has been shown to be

amenable to SMT-based automated reasoning in verification tools [62, 81, 87, 91], and shown to

be effective in expressing relations on dynamically allocated data structures [3, 11]. In particular

we build on a series of articles on region logic (RL); it provides a methodologically neutral basis

for heap encapsulation with sufficient generality for sequential first-order object-based programs

featuring callbacks between modules. We refer to key articles as RLI [14], RLII [9], and RLIII [12],

and summarize key ideas in the following.

Framing. In current tools, the most common form of frame condition is a “modifies clause” that

lists some expressions, meant to designate the writable locations. A reads clause is similar. In the

formalization of RL, specifications are written in the compact form 𝑝𝑟𝑒 { 𝑝𝑜𝑠𝑡 [frame] where
the effect expressions in the frame condition are tagged by keywords wr and rd to designate

writables and readables. We use rw to abbreviate the possibility to both read and write. In this

work, a region is a set of object references. For example, a possible spec of cset(c,v) is 𝑐 ≠ null {
𝑐𝑔𝑒𝑡 (𝑐) = 𝑣 [rw {𝑐}‘any] where the postcondition refers to the mathematical interpretation of the

pure method cget (as in RLIII). The singleton region {𝑐} is used in the frame condition. In the image

expression {𝑐}‘any, the token any is a data group [64] that abstracts from field names. Concrete
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field names can also be used in image expressions, e.g., {𝑐}‘𝑣𝑎𝑙 . This example designates a single

location, which may as well be written 𝑐.𝑣𝑎𝑙 . But the image notation can be used for larger sets of

heap locations. For variable 𝑟 of type region, 𝑟 ‘𝑣𝑎𝑙 designates the set of 𝑣𝑎𝑙 fields of all Cell objects

in 𝑟 . So rd 𝑟 ‘𝑣𝑎𝑙 in a frame condition allows any of these fields to be read.

Following separation logic, RL features local reasoning in the form of a frame rule, but achieves

this with ordinary first-order assertions. For an example, strengthening the precondition of cset(c,v)

gives 𝑐 ≠ null ∧ 𝑑 ≠ 𝑐 { 𝑐𝑔𝑒𝑡 (𝑐) = 𝑣 [rw {𝑐}‘any]. The frame rule lets us add 𝑑.𝑣𝑎𝑙 = 𝑧 to the pre-

and post-condition. Why? Because the condition 𝑑.𝑣𝑎𝑙 = 𝑧 cannot be falsified: the writes allowed by

the frame condition are separate from what is read
4
by the formula 𝑑.𝑣𝑎𝑙 = 𝑧. In case of the variables

𝑑 and 𝑧, this is a matter of checking that 𝑑 and 𝑧 are not writable. Distinctness of field names

can be used similarly. But here, rw {𝑐}‘any allows that 𝑐.𝑣𝑎𝑙 can be written and 𝑣𝑎𝑙 also occurs

in the formula 𝑑.𝑣𝑎𝑙 = 𝑧. Separation holds because the regions {𝑐} and {𝑑} are disjoint, written
{𝑐} # {𝑑}, which follows from precondition 𝑑 ≠ 𝑐 . As in the frame rule of separation logic [76], this

reasoning is inherently state dependent; separation would not hold if variables 𝑑 and 𝑐 held the

same reference. Our frame rule has this form:

from 𝐶 : 𝑃 { 𝑄 [𝜀] infer 𝐶 : 𝑃 ∧ 𝑅 { 𝑄 ∧ 𝑅 [𝜀]
provided that locations read by 𝑅 are separate from locations writable according to 𝜀.

(5)

In the frame rule of RL, separation is expressed by a conjunction of set disjointness formulas

derived syntactically from the frame condition 𝜀 and the read effects of 𝑅. In this example, the

relevant effects are wr 𝑐.𝑣𝑎𝑙 and rd𝑑.𝑣𝑎𝑙 and there is a single disjointness formula: {𝑐} # {𝑑}. This
formula is obtained by applying the separator function ·/. introduced later, in Figure 11.

Encapsulation. RLII features dynamic boundaries, in which the idea of dynamic frame is adapted

to encapsulation for module interfaces. The dynamic boundary of a module is simply an effect

expression that designates the locations meant to be internal to the module. Technically, it is a read

effect, in keeping with its role to cover the footprint of the module invariant. In addition to the

usual meaning of a partial correctness judgment, there is an additional obligation: the program

must not write locations within the boundary of any module other than its own module.

𝑠1

Stack Node Node Node

𝑠2

Stack Node Node

𝑝𝑜𝑜𝑙

𝑠1 .𝑟𝑒𝑝

𝑠2.𝑟𝑒𝑝

Fig. 3. The pool and rep idiom.

For the example module MCell, the dynamic boundary

(omitted from Figure 1) is formulated in terms of a ghost

variable, 𝑝𝑜𝑜𝑙 , of type region. The postcondition of the

Cell constructor says the new cell is added to 𝑝𝑜𝑜𝑙 . The

boundary is rd 𝑝𝑜𝑜𝑙, rd 𝑝𝑜𝑜𝑙 ‘any, so clients must not write

the variable 𝑝𝑜𝑜𝑙 or any field of an object in 𝑝𝑜𝑜𝑙 . One

could as well achieve this effect using module-scoped

field names, so let us briefly consider a less degenerate

example: a module for stacks.

In addition to ghost variable 𝑝𝑜𝑜𝑙 containing all in-

stances of the stack class, that class would have a ghost

field 𝑟𝑒𝑝 of type region. In an implementation using

linked lists, each stack’s list nodes would be in its 𝑟𝑒𝑝 , and the module invariant would spec-

ify some “object invariant” for each stack together with its nodes. This is depicted in Figure 3. In

an implementation using arrays, 𝑟𝑒𝑝 would contain the stack’s array, and the module invariant

would express some condition that holds for each stack object and its array. Of course there is a

4
For a formula’s meaning to depend on a location is different from a program reading the location during execution.

However, these two notions have closely related extensional semantics based on agreement between states. So, following

the RL articles, we use the terminology and notation of read effects for both.
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single interface for the module. Method frame conditions will refer to 𝑝𝑜𝑜𝑙 and 𝑟𝑒𝑝 , and not expose

implementation details. To facilitate per-instance framing, an invariant like 𝑠 ≠ 𝑡 ⇒ 𝑠 .𝑟𝑒𝑝 # 𝑡 .𝑟𝑒𝑝 is

used, which says the representations for distinct stacks are disjoint. A suitable dynamic boundary is

rd𝑝𝑜𝑜𝑙, rd 𝑝𝑜𝑜𝑙 ‘any, rd 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝‘any. It designates fields of the stack objects in 𝑝𝑜𝑜𝑙 and also fields

of all their rep objects. (Array slots can be viewed as fields.) The mentioned invariant enables use

of the frame rule to consider updates of a single instance, and it is suitable to be included in the

module interface for use by clients. (Either as explicit conjunct in method pre- and post-conditions,

or declared as a public invariant for syntactic sugar.) For example, s.push(n) writes 𝑠 .𝑟𝑒𝑝‘any; in

states where 𝑠 ≠ 𝑡 this preserves the value of t.top() which reads 𝑡 .𝑟𝑒𝑝‘any—and preservation holds

in virtue of frame conditions, without recourse to postconditions that specify functional behavior.

In summary, a module interface comprises a collection of method specs, and a dynamic boundary.

A module implementation maintains an internal invariant 𝐼 , the footprint of which should be

framed by the boundary. The invariant 𝐼 should be such that it follows from the initial conditions

of the main program. For example, universal quantification over elements of 𝑝𝑜𝑜𝑙 holds when 𝑝𝑜𝑜𝑙

is empty. An alternate approach is to require clients to call a module initializer.

Modular linking. Following the lead of O’Hearn et al. [77], the logic in RLII derives a modular

linking rule like (2) from two simpler rules: An obviously-sound rule for the linking construct

(let𝑚 = 𝐵 in𝐶) and a second order frame rule that accounts for hiding of invariants on encapsulated

state. A minimalistic formalization of modules is used, to keep the focus on the main ideas. The

unary correctness judgment takes the form Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀] with𝑀 the name of the module

in which 𝐶 is to be used. It says that, under hypotheses Φ and precondition 𝑃 , command 𝐶 stays

within the effects 𝜀 and establishes 𝑄 if it terminates—and in addition, 𝐶 respects the boundaries of

any modules in Φ other than its own module𝑀 . This formalizes requirement (E3). In RLII, “respect

of dynamic boundaries” means not writing locations inside them. In the present article, we must

strengthen respect to prohibit reading, to ensure that 𝐶 has no dependency—neither reads nor

writes—on the internal representation of modules other than its own.

2.3 Relational region logic

Our relational specs have the form P ≈> Q [𝜀 |𝜀′] where P (resp. Q) is the relational pre- (resp.
post-)condition. There is a separate frame condition 𝜀 for the left execution and 𝜀′ for the right.
Often those are the same, in which case we abbreviate as P ≈> Q [𝜀]. The meaning of frame

conditions and encapsulation is the same as in the unary logic. Leaving effects aside, there are

several ways one could interpret a spec (𝐶 |𝐶′) : P ≈> Q [𝜀 |𝜀′] in regards to termination. All

ways consider a pair of initial states, say 𝜎, 𝜎 ′, that satisfy P. The “∀∃ interpretation” says that
for every execution of 𝐶 from 𝜎 , terminating in a state 𝜏 , there is an execution of 𝐶′ from 𝜎 ′ that
terminates in a state related to 𝜏 by Q. The ∀∃ interpretation asserts relative termination and caters

for nondeterminacy. The “∀∀ interpretation” was already mentioned just before (3): every pair of

terminating runs of 𝐶 and 𝐶′ from P-related states end in Q-related states. The ∀∀ form is fine for

deterministic programs which is what we consider, and it is simpler, so we use it.

For relation formulas we build directly on image expressions. Agreements are interpreted in

terms of a partial bijection between the dynamically allocated references of the left and right

states, as commonly used to account for bijective renaming of references at the Java/ML level of

abstraction [7, 8, 23, 27]; we call these refperms. For region expression 𝐺 , the relation A𝐺 ‘𝑓 asserts

agreement on 𝑓 -fields for objects in𝐺 that correspond according to the refperm. We do not require

every allocated reference to be in the refperm: this is important, to specify relational properties

that allow differences in allocation behavior. Examples of such differences include internal data
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structures and reasoning about secure information flow (under low branch condition, allocated

locations can be added to the refperm, but not under high branch condition).

We formulate the logic in terms of an explicit representation for product programs which

designate alignments. The biprogram form (𝐶 |𝐶′) indicates no alignment except for the initial and

final states. Other biprogram forms express, for example, that iterations of a loop are to be aligned

in lockstep, or conditionally as needed for the 𝑠𝑢𝑚𝑝𝑢𝑏 example (4). For the implementations of

cset, the alignment described earlier is expressed as (c.val:= v | c.f:= −v); (return c.val | return −c.f).

A judgment for (𝐶 |𝐶′) directly entails the expected relation between unary executions of com-

mands 𝐶 and 𝐶′ (as confirmed by our adequacy theorem). The choice to use a different alignment

of 𝐶 with 𝐶′ is formalized by an explicit proof rule. The rule is formulated in terms of a weaving

relation that connects a biprogram with a more tightly aligned version, typically chosen because it

admits use of simpler relational assertions. The rule says that properties of the woven program

hold also for (𝐶 |𝐶′).
Given that we confine attention to sequential code, it seems natural to expect that programs

are deterministic, but we also aim for reasoning at the source code level abstraction—for which

determinacy is unrealistic owing to dynamic allocation! The behavior of an allocator typically

depends on things that are not visible at the source level. There is no need to make unrealistic

assumptions. Our program semantics allows that the allocator may be nondeterministic (while not

assuming that it is “maximally nondeterministic” as often done in the literature). Our program

semantics is quasi-deterministic in the sense that outcomes are unique up to bijective renaming

of references. Our relation formulas do not allow pointer arithmetic or comparisons other than

equality, so they are invariant under renaming. These design decisions entail some complications

in the technical development, but ensure that interesting programs do provably satisfy expected

∀∀ properties.
As already mentioned, the unary modular linking rule (2) is derived (in RLII) from two simpler

rules: a basic linking rule, where assumed and proved specs match exactly, together with a second

order frame rule. Our novel relational modular linking rule (3) is derived from a relational linking

rule, a relational second order frame rule, and a third rule. The third rule lifts a unary correctness

judgment to a relational judgment that says a program is locally equivalent to itself. For this to be

proved, it is stated in a stronger form: a program can be aligned with itself in lockstep such that

local equivalence holds at each intermediate step.

As for the goal of foundational justification, our approach is to work directly with a conventional

operational semantics for unary correctness, for which we formulate a semantics of encapsulation.

The biprogram semantics is based directly on that, so that soundness for rules in the relational

logic has a direct connection—adequacy theorem—to unary semantics. One benefit from carrying

out the development in terms of this elementary semantics is that one can see that most of the

soundness proofs can be adapted easily to total correctness (both runs always terminate) and to

relative termination (right run terminates whenever left does).

2.4 Contributions

We highlight the following contributions.

A unary logic for modular reasoning about sequential object-based programs using first-order

assertions. The key contribution and most difficult definition to get right is the extensional semantics

of encapsulation, which is part of the meaning of correctness judgments. Small-step operational

semantics is used so we can define what it means for a given step to be outside the boundaries

of all modules but its own. We build on the semantics in RLII but completely revamp it to handle

encapsulation of reads in addition to writes. Dynamic boundaries are taken from RLII; most of

the proof rules of RLII need little or no revision, but they must all be re-proved for the new
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semantics. Owing to the need for quasi-determinacy (for ∀∀ extensional semantics of read effects),

the new semantics of hypothetical judgments quantifies over possible denotations (called context

interpretations) rather than a single “least refined” denotation as in RLII and in O’Hearn et al [77].

We present detailed soundness proofs of the key rules (Theorem 6.1).

A relational logic. The logic relies on unary judgments for reasoning about atomic commands and

for enforcing encapsulation. Relational assertions are first-order formulas. Our presentation focuses

on data abstraction, because this is the first relational logic to embody representation independence

as a proof rule using only first-order means. But the logic is general, with a full range of rules that

facilitate reasoning with convenient alignments.

We present detailed soundness proofs of the key rules (Theorem 8.1). Formally, judgments of the

relational logic give properties of biprograms; the adequacy Theorem 7.11 connects those properties

with the expected properties in terms of paired unary executions in standard semantics (the product

principle).

Demonstration of suitability for automation via case studies in a prototype relational verifier. The

prototype translates biprograms and verification conditions specific to our logic, which are all first-

order, into Why3 code and lemmas, proved using SMT solvers (why3.lri.fr). The modular linking

rules (unary and relational) are implemented by generating suitable Why3 specs for the programs

involved. The case studies include noninterference, program transformations, and representation

independence.

2.5 About the proofs

The most difficult technical result is the lockstep alignment lemma (Lemma 8.9). It brings together the

semantics of encapsulation in the unary logic, which involves a single context interpretation, with

the semantics of relational correctness—which involves three context interpretations, to account

for un-aligned calls as well as aligned calls and relational specs.

The direct use of small-step semantics makes for lengthy soundness proofs that require, in some

cases, intricate inductive hypotheses. But transition semantics is a critical ingredient for a first-order

definition of heap encapsulation. It was quite difficult to arrive at rules for relational linking and

second order framing that are provably sound. Several variations on the semantics of encapsulation

turned out to be sound for the unary linking and second order frame rules but failed to validate a

sufficiently strong lockstep alignment property on which relational linking can be based.

Aside from lockstep alignment, the soundness proofs for linking rely on denotational semantics

which in turn relies on quasi-determinacy. This property is also used to establish embedding/pro-

jection results on which the adequacy theorem is based.

The semantics of correctness judgments is extensional in the sense that it refers only to behavior

in a standard transition semantics—no instrumentation artifacts. Like in RLII, it does rely on use

of transition semantics in order to express that control is currently within a specific module and

outside the boundaries of other modules in scope. This affects which program transformations are

correctness-preserving; more on this in Section 8.6.

Once the right definitions, lemmas, and induction hypotheses have been determined, the sound-

ness proofs go by induction on traces, with many details to check. We relegate them to appendices.

2.6 Current limitations

The formal development omits some features that were handled in the prior works on which we

build: parameters, private methods, constructor methods, pure methods for abstraction in specs.

These are all compatible with the formal development; all are implemented in the prototype and

used in exposition. The theory is compatible with standard forms of encapsulation based on scoping

mechanisms (e.g., module scoped variables), which for practical purposes should be leveraged as
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class Pnode { val: int; key: int; sibling: Pnode; child: Pnode; prev: Pnode; }

class Pqueue { head: Pnode; size: int; ghost rep: rgn; }

meth Pqueue (self:Pqueue) =

self.rep := {null}; pool := pool ∪ {self};

meth insert (self:Pqueue, val:int, key:int): Pnode =

result := new Pnode(val, key);

self.rep := self.rep ∪ {result};

if self.head = null then self.head := result;

else self.head := link(self, self.head, result) fi;

Fig. 4. Excerpts of priority queue (PQ) implementation (in the syntax of our prototype).

much as possible; for simplicity we refrain from formalizing such mechanisms.
5
The prototype also

supports public invariants; as noted in connection with the stack example, these are important for

client reasoning about boundaries using patterns like ownership. Public invariants need not be

formalized in the theory, as they can be explicitly included in method specs.

The simplicity of our semantic framework (e.g., standard semantics of formulas and programs)

may facilitate foundational justification of a verifier, but we have not formally proved the correctness

of our prototype.

There are two technical limitations. First, the semantics of encapsulation and the proved rules

handle collections of modules with both import hierarchy and callbacks. But the key rules for

relational linking and relational second order framing (rSOF) only handle simultaneous linking of

a collection of modules. This is enough to model linking as implemented in a verifier. However,

one may hope for a theory that accounts for distinct inference steps that successively link different

layers of hierarchy, as in our unary logic. To achieve this, the lockstep alignment lemma needs to be

strengthened to ensure agreements for already-linked methods. This requires to further complicate

an already intricate theory. In this article we just sketch the issue (Section 8.5).

Second, the current formulation has a technical condition (boundary monotonicity) that prevents

release of encapsulated locations, in the sense of reasoning with specs that describe outward

ownership transfer. (Inward transfer is fine.) Modules can create new objects for clients, as in the

shared handle objects for priority queues, one of our running examples. But a location that has been

within the boundary must stay there. Overcoming this restriction, or finding idiomatic specification

patterns that dodge it, is left to future work. Both inward and outward transfer are possible in RLII

(an example is in Section 2.2 of that article).

Addressing the limitations is the subject of ongoing and future work.

3 PROGRAMS: THEIR SYNTAX AND SPECIFICATIONS

This section defines the syntax of programs and their unary specifications and correctness

judgments. Subsections 3.1–3.4 collect together almost all the syntactic forms and definitions

concerning syntax, using a few examples to explain unusual things. Section 3.5 gives more holistic

examples to illustrate how the syntax is used and why we need various syntactic elements, focusing

on how requirements (E1)–(E4) for encapsulation in Section 2.1 are expressed and checked.

5
Specs involving explicit footprints are more verbose than those based on separation logic, and our minimalist formalization

of modules increases verbosity. This article does not propose concrete syntax for practical use, but the issue is addressed in

some related work (Section 10).
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𝑚 ∈ MethName 𝑥,𝑦, 𝑟 ∈ VarName 𝑓 , 𝑔 ∈ FieldName 𝐾 ∈ DeclaredClassName

(Classes) ::= class 𝐾 {𝑓 :𝑇 } (overline indicates finite lists)

(Types) 𝑇 ::= int | bool | rgn | 𝐾 (and math types, in specs and ghost code)

(Prog. expr.) 𝐸 ::= 𝑥 | 𝑛 | null | 𝐸 ⊗ 𝐸 where 𝑛 is in Z and ⊗ is in {=, +,−, ∗, ≥,∧, . . .}
(Region expr.) 𝐺 ::= 𝑥 | ∅ | {𝐸} | 𝐺‘𝑓 | 𝐺/𝐾 | 𝐺 ⊗ 𝐺 where ⊗ is in {∪,∩, \}
(Expressions) 𝐹 ::= 𝐸 | 𝐺
(Atomic com.) 𝐴 ::= skip | 𝑚() | 𝑥 := 𝐹 | 𝑥 := new 𝐾 | 𝑥 := 𝑥 .𝑓 | 𝑥 .𝑓 := 𝑥

(Commands) 𝐶 ::= 𝐴 | let𝑚() =𝐶 in 𝐶 | if 𝐸 then 𝐶 else 𝐶 | while 𝐸 do 𝐶 | 𝐶 ;𝐶 | var 𝑥 :𝑇 in 𝐶

(Biprograms) 𝐶𝐶 ::= (𝐶 |𝐶) | ⌊𝐴⌋ | let𝑚() = (𝐶 |𝐶) in 𝐶𝐶 | var 𝑥 :𝑇 |𝑥 :𝑇 in 𝐶𝐶 | 𝐶𝐶 ;𝐶𝐶

| if 𝐸 |𝐸 then 𝐶𝐶 else 𝐶𝐶 | while 𝐸 |𝐸 · P |P do 𝐶𝐶

Syntax sugar: while 𝐸 |𝐸′ do 𝐶𝐶 abbreviates while 𝐸 |𝐸′ · false |false do 𝐶𝐶 .
Identifiers: 𝐵,𝐶, 𝐷 for commands, 𝐵𝐵,𝐶𝐶, 𝐷𝐷 for biprograms.

Fig. 5. Programs and biprograms. For relation formulas P see Figure 14.

(skip;𝐶) ≡ 𝐶 (𝐶; skip) ≡ 𝐶 (𝐶0;𝐶1);𝐶2 ≡ 𝐶0; (𝐶1;𝐶2)
(skip|skip) ≡ ⌊skip⌋ ⌊skip⌋;𝐶𝐶 ≡ 𝐶𝐶 𝐶𝐶 ; ⌊skip⌋ ≡ 𝐶𝐶 (𝐶𝐶0;𝐶𝐶1);𝐶𝐶2 ≡ 𝐶𝐶0; (𝐶𝐶1;𝐶𝐶2)

Fig. 6. Syntactic equivalence ≡ of programs and biprogams.

3.1 Programs and Typing

A running example is introduced in Figure 4. We consider the priority queue module PQ which

exposes a class whose instances represent priority queues that store integer values and priorities,

referred to as “keys” (smaller key means higher priority) [98]. Our implementations (based on [98])

use pairing heaps, where each queue contains a ℎ𝑒𝑎𝑑 field that points to a Pnode object and each

Pnode contains 𝑠𝑖𝑏𝑙𝑖𝑛𝑔, 𝑝𝑟𝑒𝑣 , and 𝑐ℎ𝑖𝑙𝑑 fields that point to other Pnodes. The 𝑟𝑒𝑝 field of a queue is

used to hold references to the objects notionally owned by the queue.

The syntax of programs in our formal development is in Figure 5. The grammar includes bipro-

grams, to which we return in Section 4. Field read and write commands are written with deref-

erencing implicit, as in Java (though using the symbol :=) and are desugared to have a single

heap access which simplifies proof rules. The let construct, featured in the modular linking rule

(2), represents scoped method declarations.
6
Some examples, like Figure 4, use the syntax of our

prototype, in which keyword meth corresponds to the let construct. Examples use some syntax

sugars implemented in our prototype, e.g., invocation of method link in an update of field self.head

(Figure 4). A method named after a class (e.g, Pqueue) is meant to be used as a constructor, i.e.,

invoked on a newly allocated object, the fields of which are initialized with default values (null for

classes, ∅ for regions).

To lessen the need for uninteresting transitions in program semantics, we equate certain syntactic

forms. For example, there is no transition from (skip;𝐶) to 𝐶 because we consider them to be the

same syntactic object, see Figure 6. Working with syntax trees up to (i.e., quotiented by) syntactic

equivalence is done in the previous RL articles and elsewhere.
7
We sometimes use the symbol ≡ for

equality of other syntactic forms, like variables, just to emphasize that they are syntactic.

6
We use the short term “method” for what should properly be called procedure. The term “method” usually implies dynamic

dispatch which is beyond the scope of this article.

7
See, e.g., [6]. We use the symbol ≡ because it is used for structural congruences in process algebra, which have the same

purpose of streamlining the transition system.
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Programs and specs are typed in a conventional way. A typing context Γ maps variable names

to data types and method names to the token meth, written as usual as lists, e.g., 𝑥 :𝑇,𝑦:𝑇,𝑚:meth.

(In the formalization we omit method parameters and results.) Various definitions refer to a typing

context typically meant to be the global variables, including ghost variables which may be of type

rgn (region). We do not formalize ghost variables as such [14, 42].

The idea of ghost code is to instrument a program with extra state for the sake of reasoning, in

such a way that the termination and behavior of the original program is not affected. This can be

formalized in terms of a rule for elimination of ghost state [14, 42, 78]. We refrain from doing so in

this article; the additions would not be illuminating.

A class is just a named record type. In the formal development we assume an ambient class
table that declares some class types and the types of their fields. For simplicity this has global

scope. We assume that field names in different class declarations are distinct, so any declared field

𝑓 determines a unique class, DeclClass(𝑓 ), that declares it, and also a type, which we write 𝑓 : 𝑇 .

Section 2.2 introduced the region expressions used in frame conditions. In addition to (mutable)

variables of type region, there are set operations like union, singleton, subtraction (\), and image

expressions. The expression {𝑥} denotes the singleton set containing the value of 𝑥 . For𝐺 a region

expression, the image expression𝐺 ‘𝑓 is the empty region if 𝑓 : int. If 𝑓 is of some class type,𝐺 ‘𝑓 is

the set of current values of 𝑓 -fields of objects (i.e., object references) in 𝐺 . For 𝑓 of type rgn the

image is the union of the field values. For example, in the idiom using global variable 𝑝𝑜𝑜𝑙 : rgn

containing some objects with field 𝑟𝑒𝑝 : rgn, the image 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝 is the union of their 𝑟𝑒𝑝 fields.

The type restriction expression 𝐺/𝐾 denotes the elements of 𝐺 of type 𝐾 (which excludes null).

As usual in program logics, field access and update is limited to the primitive forms 𝑥 := 𝑦.𝑓 and

𝑥 .𝑓 := 𝑦. In specs and ghost code, a dereference chain like 𝑥 .𝑓 .𝑔.ℎ (for reference type fields) can be

expressed by the region expression {𝑥}‘𝑓 ‘𝑔‘ℎ; if 𝑥 is null the value is the empty set.

Γ ⊢ 𝐸 : 𝐾

Γ ⊢ {𝐸} : rgn

Γ ⊢ 𝐺 : rgn

Γ ⊢ 𝐺‘𝑓 : rgn

Fig. 7. Region expression typing (selected).

Owing to the simple model of classes, the notation

𝐺 ‘any can be defined as shorthand for 𝐺 ‘𝑓 where 𝑓 is

the list of all field names. An implementation can support

user-defined data groups which can be used to abstract

from specific sets of fields [64].

The typing rules for expressions and commands are

straightforward and omitted, with the exception of those

in Figure 7. We highlight those because we allow 𝑓 in an image expression 𝐺 ‘𝑓 to have any type;

as noted above, its value is empty unless 𝑓 has region or class type.
8

Program variables are partitioned into two sets, ordinary variables and spec-only variables.9
The distinguished variable alloc : rgn is an ordinary variable, but it is treated specially: It is present

in all states, and is automatically updated in the transition semantics by the transition for new, so in

every state its value is exactly the set of allocated references. Spec-only variables are used in specs

to “snapshot” initial values for reference in the postcondition. Spec-only variables do not occur in

code, even ghost code, or in effects.
10
In our prototype, “old” expressions are used to abbreviate the

use of snapshot variables [60].

8
Typing in RLI,RLII is slightly more restrictive.

9
As in RLII, we rely on a partition of ordinary variables into locals, which are bound by var (and in RLII also method

parameters), and globals; but we ignore the distinction where possible. Also, typing rules impose the hygiene property
that variable and method names are not re-declared; this facilitates modeling of states and environments as maps.

10
Spec-only variables are also used in RLII. But here we also disallow the use of alloc in ghost code, which was not necessary

in RLII, so we have additional need to snapshot alloc.
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Commands are typed in a context Γ. We omit the straightforward rules for typing of commands,

except to note that a call Γ ⊢𝑚() is well formed only if𝑚 : meth is in Γ. To streamline the formal de-

velopment we omit parameters for methods; by-value parameters can be handled straightforwardly

as in RLII and RLIII.
11

Program expressions 𝐸 are heap independent. For expressions of reference type, the only constant

is null and the only operation is equality test, written =. Region expressions can depend on the

heap but are always defined. Null dereference faults only occur in the primitive load and store

commands 𝑥 := 𝑦.𝑓 and 𝑥 .𝑓 := 𝑦. By contrast, if 𝑥 is null then {𝑥}‘𝑓 is defined to be empty.

3.2 Modules

Assume given a set ModName of module names, and map mdl : MethName → ModName that

associates each method with its module. Usually we use letters𝑀, 𝑁, 𝐿 for module names, but there

is a distinguished module name, •, that serves both as main program and as default module in the

proof rules for atomic commands. Assume given a preorder ⪯ (read “imports”) onModName, which

models the reflexive transitive closure of the import relation of a complete program. We write ≺
for the irreflexive part. Cycles are allowed, as needed for interdependent modules that respect each

other’s encapsulation boundaries. A module interface includes a spec for each method. The function

bnd fromModName to effect expressions associates each module with its dynamic boundary, which

is thus part of its interface along with its method specs. This lightweight formalization of modules

is adapted from RLII (its Section 6.1).

For the PQ interface in Figure 8, mdl(insert) = PQ. In one of our case studies, the main program

implements Dijkstra’s single-source shortest-paths (SSSP) algorithm, as a client of PQ and another

module Graph. The import relations are then • ≺ PQ and • ≺ Graph.

A module𝑀 specifies a dynamic boundary bnd (𝑀). The boundary can be expressed using regions
and data groups for abstraction, to cater for implementations that have differing internals. This is

why there is a single type, rgn, for sets of references of any type. Well-formedness conditions for

boundaries are defined in Section 3.3.

A proper module system would include module-scoped variables and fields that need not be

part of the interface and need not be the same in different implementations of a module 𝑁 . Our

simplified formulation streamlines the formal development, because we do not need syntax, typing

contexts, etc. for a full-fledged module calculus, nor correctness judgments for modules. But this

comes at a price: some well-formedness conditions on correctness judgments (in the following

subsections) and side conditions (in proof rules) merely serve to express lexical scoping that could

be handled more neatly using a proper module system.

3.3 Unary specifications

We assume a first-order signature providing primitive type, function, and predicate symbols for use

in specs and in ghost code. Predicate formulas are in Figure 9. The points-to relation 𝑥 .𝑓 = 𝐸 says

that 𝑥 is non-null and the value of field 𝑓 equals the value of 𝐸. For examples, see the postcondition

of insert in Figure 8. The predicate type(𝐺,𝐾) says that every non-null reference in𝐺 has one of

the class types in the list 𝐾 .

Typing of unary predicate formulas 𝑃 is straightforward. For example, the points-to formula

𝑥 .𝑓 = 𝐸 is well formed (wf ) in Γ provided Γ(𝑥) is some type 𝐾 that declares 𝑓 : 𝑇 and 𝐸 has type𝑇 .

11
As in those works, we also disallow let-commands inside let-bound commands and biprograms: in let𝑚 = 𝐵 in𝐶 there

must be no let in 𝐵. (By modeling only top-level method declarations, we simplify the semantics.) We also disallow free

occurrences of local variables in 𝐵; thus in var 𝑥 :𝑇 in let𝑚 = 𝐵 in𝐶 the module code 𝐵 can’t refer to 𝑥 . In practice, let is

only used outermost.
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module PQ =

public pool: rgn

boundary { pool, pool‘any, pool‘rep‘any }

meth Pqueue (self: Pqueue) /∗ constructor ∗/
meth isEmpty (self: Pqueue) : bool

meth findMin (self: Pqueue) : Pnode

meth insert (self: Pqueue, val: int, key: int) : Pnode

requires { self ≠ null ∧ self ∈ pool }
ensures { ¬ (isEmpty(self)) ∧ result ∈ self.rep ∧ result.val = val ∧ result.key = key }

writes { {self}‘any, self.rep‘any, alloc } reads { {self}‘any, self.rep‘any, alloc }

meth deleteMin (self: Pqueue)

meth decreaseKey (self: Pqueue, handle: Pnode, key: int)

end

Fig. 8. Priority queue interface PQ, eliding private methods and most specs.

𝑃 ::= 𝐸 | 𝑥 .𝑓 = 𝐸 | 𝐺 ⊆ 𝐺 | type(𝐺,𝐾) | 𝑅(𝐹 ) (atomic formulas, where 𝑅 is in the signature)
| 𝑃 ∧ 𝑃 | 𝑃 ⇒ 𝑃 | (∀𝑥 : 𝑇 . 𝑃)

Syntax sugar: 𝐺 # 𝐻 =̂ 𝐺 ∩ 𝐻 ⊆ {null} and 𝑥 ∈ 𝐺 =̂ {𝑥} ⊆ 𝐺 and standard defs of ¬, ∨, and (∃𝑥 : 𝑇 . 𝑃).
Precedence: ∧ binds more tightly than⇒ and less tightly than relations like =, ⊆.
Associativity: 𝑃 ⇒ 𝑄 ⇒ 𝑅 means 𝑃 ⇒ (𝑄 ⇒ 𝑅).

Fig. 9. State predicates. For expression forms 𝐸, 𝐹 and 𝐺 see Figure 5.

An expression 𝐸 counts as an atomic formula if it has type bool; this includes equality tests. The

signature may include equality at other math types, with standard interpretation.

Quantifiers at a class type 𝐾 range over allocated references of type 𝐾 . The logic does not require

quantification at type rgn but we include it to simplify the grammar. It is often useful to bound the

range of quantification at reference type to a specific region, in the form ∀𝑥 : 𝐾. 𝑥 ∈ 𝐺 ⇒ 𝑃 , to

facilitate framing. (This is explored in RLI.) In sugared form: ∀𝑥 : 𝐾 ∈ 𝐺. 𝑃 .

Effect expressions. A spec 𝑃 { 𝑄 [𝜀] comprises precondition 𝑃 , postcondition 𝑄 , and frame

condition 𝜀. Frame conditions are effect expressions 𝜀, defined by

(Left-expression) 𝐿𝐸 ::= 𝑥 | 𝐺 ‘𝑓
(Effect expression) 𝜀 ::= rd𝐿𝐸 | wr𝐿𝐸 | 𝜀, 𝜀 | • (6)

Left-expressions, 𝐿𝐸, are a subset of expressions (category 𝐹 in Figure 5). They have l-values, as

discussed below, and are used in effects and in agreement formulas.
12
An effect 𝜀 is wf in Γ provided

each of its left-expressions is.

Notation: Besides 𝜀 we often use identifiers 𝜂 and 𝛿 for effect expressions. We use the short

term effect for effect expressions, including compound ones like rd𝑥,wr𝑥,wr {𝑥}‘𝑓 . The singleton
image wr {𝑥}‘𝑓 can be abbreviated as wr𝑥 .𝑓 . We use the abbreviation rw to mean rd and wr . The

empty effect is given explicit notation • for clarity in certain parts of the development, but we omit

it when confusion seems unlikely. We often treat compound effects as sets of atomic reads and

writes. We also omit repeated tags, e.g., rd𝑥,𝑦 abbreviates rd𝑥, rd𝑦; and then reads are separated

from writes by semicolon, e.g., rd𝑥,𝑦;wr 𝑧,𝑤 .

12
For readers familiar with prior RL articles: Effect expressions are exactly the same as in previous articles; we have changed

the grammar for clarity.
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ftpt (𝑥) =̂ rd𝑥

ftpt (∅) =̂ •

ftpt ({𝐸}) =̂ ftpt (𝐸)
ftpt (𝐺/𝐾) =̂ ftpt (𝐺)
ftpt (𝐺‘𝑓 ) =̂ rd𝐺‘𝑓 , ftpt (𝐺)
ftpt (𝐹1 ⊙ 𝐹2) =̂ ftpt (𝐹1), ftpt (𝐹2) for ⊙ in {∪ ,∩ , \ , + ,−}
ftpt (𝐺0 ⊆ 𝐺1) =̂ ftpt (𝐺0), ftpt (𝐺1)
ftpt (𝑥 .𝑓 = 𝐹 ) =̂ rd𝑥, rd {𝑥}‘𝑓 , ftpt (𝐹 )
ftpt (𝐸 = 𝐸′) =̂ ftpt (𝐸), ftpt (𝐸′)

Fig. 10. Footprints of expressions and atomic formulas.

l-value and r-value. In common usage, the term r-value refers to the meaning of an expression

in contexts like the right side of an assignment. For those expressions allowed on the left of an

assignment, the l-value is the location to be assigned and the r-value is the current contents of that

location [95]. In our language there are two forms of mutable location: variables and heap locations.

A heap location is a pair (𝑜, 𝑓 ) where 𝑜 is an object reference and 𝑓 a field name; we write the pair

as 𝑜.𝑓 .

We identify a subset of expressions, called left-expressions (6), which have an l-value —in addition

to the r-values described in Sec. 3.1 (and formalized in Figure 21). In general, the l-value of a left-

expression designates a set of locations. In frame conditions, left-expressions are interpreted for

their l-values as is common in spec languages. (Note that our left-expression form𝐺 ‘𝑓 is not an

assignment target.)

In the write effect wr𝑥 , the l-value of expression 𝑥 is a single location, the variable 𝑥 itself,

independent of the current state. For the left-expression {𝑥}‘𝑓 , the l-value is again a single location,

namely 𝑜.𝑓 where 𝑜 is the r-value of 𝑥 in the current state —unless that value is null, in which case

the l-value is the empty set.

Consider a variable 𝑟 : rgn. The l-value of 𝑟 ‘𝑓 is the set of 𝑜.𝑓 where 𝑜 is a non-null reference

that is an element of the current value of 𝑟 . (We may say “object in 𝑟” to be casual.)

What about the l-value of 𝑟 ‘𝑓 ‘𝑔? It is the set of 𝑜.𝑔 where 𝑜 is a non-null reference in the region

𝑟 ‘𝑓—that is, 𝑜 is an element of the r-value of 𝑟 ‘𝑓 . In case 𝑓 has type int, that region is empty. In

case 𝑓 has some class type 𝐾 , the region 𝑟 ‘𝑓 is the set of contents of 𝑓 fields of objects in 𝑟 . So, for

𝑜.𝑔 to be in the l-value of 𝑟 ‘𝑓 ‘𝑔 means 𝑜 is the value in 𝑝.𝑓 for some non-null reference 𝑝 in 𝑟 .

Suppose instead that 𝑓 has type rgn. Then the r-value of 𝑟 ‘𝑓 is defined to be the union of the

values of the 𝑓 -fields of objects in 𝑟 . (We use the union in order to avoid sets of sets.) So, for 𝑜.𝑔 to

be in the l-value of 𝑟 ‘𝑓 ‘𝑔 means 𝑜 is an element of the set 𝑝.𝑓 for some non-null 𝑝 in 𝑟 .

In general, the l-value of a left-expression is dependent on the state, for the values of

variables and for the values of fields of allocated objects. For example, consider the pri-

vate method, link, used internally by insert (Figure 4). The ascribed effect of method link is

rw {self}‘𝑟𝑒𝑝‘𝑐ℎ𝑖𝑙𝑑, {self}‘𝑟𝑒𝑝‘𝑠𝑖𝑏𝑙𝑖𝑛𝑔, {self}‘𝑟𝑒𝑝‘𝑝𝑟𝑒𝑣 . Here, {self}‘𝑟𝑒𝑝 is used for its r-value which
is a set of objects in the 𝑟𝑒𝑝 field (the same as self.𝑟𝑒𝑝), and the left-expression {self}‘𝑟𝑒𝑝‘𝑐ℎ𝑖𝑙𝑑 is

used in the effect to refer to the locations of the child fields of all the Pnodes in self‘𝑟𝑒𝑝 .

Dynamic boundary and operations on effects. For expressions and atomic formulas, read effects can

be computed syntactically by the footprint function, ftpt, defined in Figure 10. For example, the

private invariant for the PQ module (Figure 8) includes 𝑞.𝑟𝑒𝑝‘𝑝𝑟𝑒𝑣 ⊆ 𝑞.𝑟𝑒𝑝 . Its footprint, computed

by ftpt, is rd𝑞, rd {𝑞}‘𝑟𝑒𝑝, rd {𝑞}‘𝑟𝑒𝑝‘𝑝𝑟𝑒𝑣 , which can be abbreviated as rd𝑞, {𝑞}‘𝑟𝑒𝑝, 𝑞.𝑟𝑒𝑝‘𝑝𝑟𝑒𝑣 . It
has a closure property, framed reads, that will play a role in reasoning about encapsulation.
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rd𝐺1‘𝑓 ·/. wr𝐺2‘𝑔 = if 𝑓 ≡ 𝑔 or 𝑓 ≡ any or 𝑔 ≡ any then 𝐺1 #𝐺2 else true

rd𝑦 ·/. wr𝑥 = if 𝑥 ≡ 𝑦 then false else true

𝛿 ·/. 𝜀 = true for all other pairs of atomic effects

𝛿 ·/. 𝜀 = true in case 𝛿 or 𝜀 is empty

(𝜀, 𝛿) ·/. 𝜂 = (𝜀 ·/. 𝜂) ∧ (𝛿 ·/. 𝜂)
𝛿 ·/. (𝜀, 𝜂) = (𝛿 ·/. 𝜀) ∧ (𝛿 ·/. 𝜂)

Fig. 11. The separator function ·/. is defined by recursion on effects.

Definition 3.1 (framed reads; candidate dynamic boundary). An effect 𝜀 has framed reads
provided that for every rd𝐺 ‘𝑓 in 𝜀, its footprint ftpt (𝐺) is in 𝜀. A candidate dynamic boundary
is an effect that has framed reads, has no write effects, and has no spec-only or local variables.

In addition to the well-formedness assumption that the module import relation, ⪯, is a preorder,
we also assume that every declared boundary, bnd (𝑀), is a candidate dynamic boundary. The

distinguished default module name • has empty boundary: bnd (•) = •. For a finite set 𝑋 ⊆
ModName, we use the abbreviation (+𝑁 ∈ 𝑋 . bnd (𝑁 )) for the catenation (union) of the boundaries.
Note that such combined boundaries are themselves candidate dynamic boundaries. For PQ, the

dynamic boundary, bnd (PQ), is rd𝑝𝑜𝑜𝑙, 𝑝𝑜𝑜𝑙 ‘any, 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝‘any.
The syntactic operation of effect subtraction, 𝜀\𝜂 , is used to formulate local equivalence specs;

in particular we subtract a dynamic boundary from a method’s frame condition. Subtraction is

defined as follows. First, put 𝜀 and 𝜂 into the following normal form:
13
No field occurs outermost in

more than one field read ormore than one fieldwrite. This can be achieved bymerging rd𝐺 ‘𝑓 , rd𝐻 ‘𝑓

into rd (𝐺 ∪ 𝐻 )‘𝑓 and likewise for write. (Occurrences of field images within 𝐺 and 𝐻 , not being

outermost, are untouched.) Assuming 𝜀, 𝜂 are in normal form, define 𝜀\𝜂 to be (𝛿0, 𝛿1, 𝛿2, 𝛿3) where
𝛿0 = {rd𝑥 | rd𝑥 ∈ 𝜀 and rd𝑥 ∉ 𝜂}
𝛿1 = {rd𝐺 ‘𝑓 | rd𝐺 ‘𝑓 ∈ 𝜀 and 𝜂 has no 𝑓 read} ∪ {rd (𝐺\𝐻 )‘𝑓 | rd𝐺 ‘𝑓 ∈ 𝜀 and rd𝐻 ‘𝑓 ∈ 𝜂} (7)

and 𝛿2, 𝛿3 are defined the same way for writes. For example, let 𝑟 and 𝑠 be region variables. Then

(rd 𝑟, rd 𝑠, rd (𝑟 ∪ 𝑠)‘𝑛𝑥𝑡, rd 𝑟 ‘𝑣𝑎𝑙)\(rd 𝑟, rd {𝑥}‘𝑛𝑥𝑡) is rd 𝑠, rd ((𝑟 ∪ 𝑠)\{𝑥})‘𝑛𝑥𝑡, rd 𝑟 ‘𝑣𝑎𝑙 .
The separator function ·/. , mentioned in connection with the frame rule (5) is defined by

structural recursion on effects (Figure 11).
14
Given effects 𝜀, 𝜂 it generates a formula 𝜀 ·/. 𝜂 that

implies the read effects in 𝜀 are disjoint locations from thewrites in𝜂. Please note that ·/. is not syntax
in the logic; it’s a function in the metalanguage that is used to obtain formulas, dubbed separator
formulas, from effects. For example, rd 𝑟 ‘𝑛𝑥𝑡 ·/.wr 𝑟 ‘𝑣𝑎𝑙 is the formula 𝑡𝑟𝑢𝑒 and rd 𝑟 ‘𝑛𝑥𝑡 ·/.wr 𝑠‘𝑛𝑥𝑡
is the disjointness formula

15 𝑟 # 𝑠 . Note that 𝜀 ·/. 𝜂 is identical to rds(𝜀) ·/. wrs(𝜂) where rds keeps
just the read effects and wrs the writes. The separator function can be used to obtain disjointness

conditions for two read effects, say 𝜀 and 𝜂, by using the function we call r2w which discards write

effects and changes reads to writes, as in 𝜀 ·/. r2w(𝜂). Function w2r does the opposite. The upcoming

Example 3.5 shows a use of ·/. and the frame rule.

3.4 Unary correctness judgments

On the way to formalizing correctness judgments, we first consider specs. Spec-only variables are

implicitly scoped over the spec but not explicitly declared.

13
After replacing the data group any with the fields it stands for.

14
This is unchanged from prior work (RLI,RLII). The data group “any” can be expanded to all the field names. Computing

rd𝐺‘𝑓 ·/. wr𝐻 ‘any yields the formula𝐺 #𝐻 .

15
Note that 𝑟 # 𝑠 allows 𝑟 and/or 𝑠 to contain null; this is ok because there are no heap locations based on null.
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Definition 3.2 (wf spec). A spec 𝑃 { 𝑄 [𝜀] is well formed (wf ) in context Γ if

• Γ has no spec-only variables, and 𝜀 is wf in Γ.
• 𝑃 and 𝑄 are wf in Γ, Γ̂, for some Γ̂ that declares only spec-only variables.

16

• In 𝑃 , every occurrence of a spec-only variable 𝑠 is in an equation 𝑠 = 𝐹 that is a top-level

conjunct of 𝑃 , where 𝐹 has no spec-only variables; and every spec-only variable in 𝑄 occurs

in 𝑃 .

The last item says spec-only variables are used as “snapshot” variables.
17
In this article, the

′

symbol is often used for identifiers on the right side of a pair, so we avoid it for other decorative

purposes, instead using
ˆℎ𝑎𝑡𝑠 and ¤𝑑𝑜𝑡𝑠 .

A hypothesis context Φ (context, for short) maps some procedure names to specs and is written

as a comma-separated list of entries𝑚 : 𝑃 { 𝑄 [𝜀].
A correctness judgment has the form Φ ⊢Γ

𝑀
𝐶 : 𝑃 { 𝑄 [𝜀] where Φ is a hypothesis context

and𝑀 is a module name. The judgment is for code of the current module 𝑀 . We distinguish two

kinds of method calls in 𝐶: environment calls are those where a called method is bound by let

within 𝐶; the others, context calls, are those where a called method is specified in Φ. Informally,

the correctness judgment says executions of 𝐶 from 𝑃-states read and write only as allowed by 𝜀,

and 𝑄 holds in the final state if execution terminates. A context call to𝑚 in Φ may involve reading

and writing encapsulated state for the module, mdl(𝑚), of𝑚, and these effects must be allowed

by 𝜀. Commands are given small step semantics, with bodies of let-bound methods kept in an

environment. The judgment also says that, aside from context calls, steps of𝐶 must neither read nor

write locations encapsulated by any module in Φ except its own module𝑀 . These conditions must

hold for any correct implementation of Φ, so the judgment expresses “modular correctness” [61].

Typically, in a judgment Φ ⊢𝑀 𝐶 : . . . we will have𝑀 ⪯ 𝑁 for each 𝑁 in Φ (i.e., each 𝑁 for which

some𝑚 in Φ has mdl(𝑚) = 𝑁 ). However, we do not want to say Φ must contain every 𝑁 with

𝑀 ⪯ 𝑁 , because we use “small axioms” [76] to specify atomic commands, which are stated in terms

of the minimum relevant context. Additional hypotheses can be added using “context introduction”

rules with side conditions that enforce encapsulation, as discussed in Sections 3.5 and 6.3. At the

point in a proof where a client 𝐶 is linked with implementations of its context Φ, the judgment for

𝐶 will include all methods of the modules in Φ, and all transitive imports.

Because we are not formalizing a separate calculus of modules and module judgments, some

module-related scoping and typing conditions are associated with correctness judgments for

commands. The lack of an explicit binder for the spec-only variables of a spec also requires some

care.

Definition 3.3 (wf correctness judgment). A correctness judgment Φ ⊢Γ
𝑀
𝐶 : 𝑃 { 𝑄 [𝜀] is wf if

• Φ is wf, i.e., each spec in Φ is wf in Γ and they have disjoint spec-only variables.
18

• No spec-only variables, nor alloc, occur in 𝐶 .

16
Here is what is needed to formalize method parameters. They can be referenced in the pre- and postcondition. The frame

must not allow write of a parameter, for the usual reason in Hoare logic that the postcondition should refer to the initial

value. The frame should not allow read of a parameter: The call rule reflects that what is read is the argument expression in

the call. The linking rule allows the body of a method to read its parameters (see RLIII).

17
In Def. 3.2, Γ̂ is uniquely determined from the other conditions. This is why we can leave types of spec-only variables

implicit. Their scope is also not explicit, but in the semantics they are scoped over the pre- and post-states. We can refer to

“the spec-only variables of 𝑃” as a succinct way to refer to those used in the spec.

18
The latter condition loses no generality, since spec-only variables have scope over a single spec, and distinctness helps

streamline notation in some soundness proofs.
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• No methods occur in Γ, and 𝐶 is wf
19

in the typing context that extends Γ to declare the

methods in Φ.
• for all 𝑁 with 𝑁 ∈ Φ or 𝑁 = 𝑀 , the candidate dynamic boundary bnd (𝑁 ) is wf in Γ.
• 𝑃 { 𝑄 [𝜀] is wf in Γ, and its spec-only variables are distinct from those in Φ.

For example,

𝑚 : true { 𝑥 > 0 [rw𝑥] ⊢𝑥 :int,𝑦:int

• 𝑥 := 0;𝑚() : 𝑥 ≤ 0 { 𝑥 > 0 [rw𝑥]
is a wf judgment; in particular we have the typing 𝑥 :int, 𝑦:int,𝑚:meth ⊢ 𝑥 := 0;𝑚().

Example 3.4. This example illustrates boundaries and specs. To specify the priority queue ADT

(Figure 8), we use an ownership idiom mentioned earlier (Section 2.2). A ghost variable 𝑝𝑜𝑜𝑙 : rgn

is used to keep track of queue instances and each queue’s 𝑟𝑒𝑝 field contains objects it notionally

owns. For a particular implementation, the private invariant includes conditions that imply all

allocated queues have valid representations.

In one of our case studies we verify two implementations of the PQ module using pairing

heaps [98], both using objects of class Pnode. The private invariant of both versions includes the

condition that for each 𝑞 ∈ 𝑝𝑜𝑜𝑙 , 𝑞.𝑟𝑒𝑝‘𝑠𝑖𝑏𝑙𝑖𝑛𝑔 ∪ 𝑞.𝑟𝑒𝑝‘𝑝𝑟𝑒𝑣 ∪ 𝑞.𝑟𝑒𝑝‘𝑐ℎ𝑖𝑙𝑑 ⊆ 𝑞.𝑟𝑒𝑝 . This says the
𝑟𝑒𝑝 of 𝑞 is closed under these field images. An interesting feature of this example is that clients

manipulate Pnode references, as “handles” returned by insert, but must respect encapsulation by

not reading or writing the fields.

The leaves of the pairing heap are represented using null for the child in one implementation

and using references to a sentinel Pnode in the other. One benefit of using sentinels is that certain

checks for null can be avoided; our motivation is simply to exemplify two different but similar data

structures.

As per Figure 8 the dynamic boundary, bnd (PQ), is rd𝑝𝑜𝑜𝑙, 𝑝𝑜𝑜𝑙 ‘any, 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝‘any. To reason

that operations on one priority queue have no effect on others, the public invariant expresses

disjointness following the idiom mentioned in Section 2.2:

∀𝑝, 𝑞 ∈ 𝑝𝑜𝑜𝑙 . 𝑝 ≠ 𝑞 ⇒ 𝑝.𝑟𝑒𝑝 # 𝑞.𝑟𝑒𝑝 ∧ 𝑝 ∉ 𝑞.𝑟𝑒𝑝 (8)

While it is convenient for a module to declare a public invariant, there is no subtle semantics: a

public invariant simply abbreviates a predicate that is conjoined to the pre- and post-conditions

of the module’s method specs. That invariant is typically framed by the boundary, in which case

clients easily maintain the invariant (and use it in their loop invariants).

As an example spec, consider the one for PQ’s insert (Figure 8). Abbreviating the parameters as

𝑞, 𝑣, 𝑘 , a call insert(𝑞, 𝑣, 𝑘) adds to a given queue 𝑞, a Pnode with value 𝑣 and key 𝑘 . Its spec is

𝑞 ≠ null ∧ 𝑞 ∈ 𝑝𝑜𝑜𝑙 { ¬isEmpty(𝑞) ∧ 𝑟𝑒𝑠 ∈ 𝑞.𝑟𝑒𝑝 ∧ 𝑟𝑒𝑠.𝑣𝑎𝑙 = 𝑣 ∧ 𝑟𝑒𝑠.𝑘𝑒𝑦 = 𝑘

[rw {𝑞}‘any, 𝑞.𝑟𝑒𝑝‘any, alloc]
where 𝑟𝑒𝑠 is the return value, which references the inserted Pnode. This pointer to an internal object

serves as handle for a client to increase the priority, for which purpose it calls decreaseKey(𝑞, 𝑛, 𝑘)
with spec

𝑞 ≠ null ∧ 𝑞 ∈ 𝑝𝑜𝑜𝑙 ∧ ¬isEmpty(𝑞) ∧ 𝑛 ≠ null ∧ 𝑘 ≤ 𝑛.𝑘𝑒𝑦 ∧ 𝑛 ∈ 𝑞.𝑟𝑒𝑝
{ 𝑛.𝑘𝑒𝑦 = 𝑘 [rw {𝑞}‘any, 𝑞.𝑟𝑒𝑝‘any]

Clients see these pre- and postconditions conjoined with the public invariant. □

19
Strictly speaking, we assume that for any subprogram of the form if 𝐸 then 𝐶 else 𝐷 , we have 𝐶 . 𝐷 . This loses no

generality: it can be enforced using labels, or through the addition of dummy assignments. This is needed in order to express,

in the definitions for encapsulation (Def. 5.10), that two executions follow exactly the same control path.
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Example 3.5. The separator function (·/.) is used in the frame rule (5) (formalized in Figure 23). To

illustrate, consider a program with variables 𝑝 : Pqueue and 𝑞 : Pqueue. In accord with Example 3.4,

the proof rule for method call gives a judgment like this (eliding hypothesis context):

𝑛 := insert(𝑞, 𝑣, 𝑘) : 𝑅 { 𝑆 [rd𝑞, 𝑣, 𝑘 ;wr𝑛; rw {𝑞}‘any, 𝑞.𝑟𝑒𝑝‘any, alloc]

where 𝑅, 𝑆 are the pre- and post-condition of 𝑖𝑛𝑠𝑒𝑟𝑡 ’s spec. Note that the call reads the arguments,

and writes the result, in addition to the effects of the method spec (Figure 8).

Consider the formula 𝑝 ≠ 𝑞. It depends only on 𝑝 and 𝑞, which are not written by the displayed

call to 𝑖𝑛𝑠𝑒𝑟𝑡 ; so the frame rule lets us infer

𝑛 := insert(𝑞, 𝑣, 𝑘) : 𝑅 ∧ 𝑝 ≠ 𝑞 { 𝑆 ∧ 𝑝 ≠ 𝑞 [rd𝑞, 𝑣, 𝑘 ;wr𝑛; rw {𝑞}‘any, 𝑞.𝑟𝑒𝑝‘any, alloc]

To be precise, the rule requires a framing judgment confirming that rd𝑝, 𝑞 covers the footprint of

formula 𝑝 ≠ 𝑞. (This is formalized in Section 6.1 and used in rule Framewhich appears in Figure 23.)

That is, 𝑝 ≠ 𝑞 is “framed by rd𝑝, 𝑞”. The rule also requires to compute a separator for the reads of

the formula (rd 𝑝, 𝑞) and the writes of the command, namely rd𝑝, 𝑞 ·/. wr {𝑞}‘any, 𝑞.𝑟𝑒𝑝‘any, alloc
(see Figure 11) and show it follows from the precondition. In this case the separator formula is

simply true; the only locations read are the variables 𝑝 and 𝑞, and the only variable written is alloc.

Now consider the formula isEmpty(𝑝). The spec of isEmpty has frame condition rd {self }‘𝑠𝑖𝑧𝑒 ,
so the formula isEmpty(𝑝) is framed by rd𝑝, 𝑝.𝑠𝑖𝑧𝑒 , which abbreviates rd𝑝, rd {𝑝}‘𝑠𝑖𝑧𝑒 . The Frame
rule lets us add the formula before and after the call 𝑛 := insert(𝑞, 𝑣, 𝑘):

𝑅 ∧ 𝑝 ≠ 𝑞 ∧ isEmpty(𝑝) { 𝑆 ∧ 𝑝 ≠ 𝑞 ∧ isEmpty(𝑝) [rd𝑞, 𝑣, 𝑘, rw {𝑞}‘any, 𝑞.𝑟𝑒𝑝‘any, alloc]

Here the separator is rd 𝑝, rd {𝑝}‘𝑠𝑖𝑧𝑒 ·/. wr {𝑞}‘any, 𝑞.𝑟𝑒𝑝‘any, alloc. Unfolding the definition of

·/., and using that the data group, any, covers every field including 𝑠𝑖𝑧𝑒 , we get the formula

{𝑝} # {𝑞} ∧ {𝑝} # {𝑞}‘𝑟𝑒𝑝 . Rule Frame requires that the separator follows from the precondition.

The first conjunct, {𝑝} # {𝑞}, follows from precondition 𝑝 ≠ 𝑞. The second conjunct follows using

(8) which implies both 𝑝 ∉ 𝑞.𝑟𝑒𝑝 and 𝑞 ∉ 𝑝.𝑟𝑒𝑝 . □

Summary. So far we introduced the syntax of commands, unary specs and unary correctness

judgments. The symbol ≡ is sometimes used for equality of syntactic objects like variable names,

and especially in the case of commands and biprograms which we identify up to the equivalences

in Figure 6.

There are also a number of meta-operators on syntax which are used pervasively and should

not be confused with the syntax: effect subtraction (𝜀\𝜂), separator (𝜀 ·/. 𝜂), footprint (ftpt (𝜂)),
converting write effects to reads (w2r), etc. There is no concrete syntax for modules; instead there

are meta-operators for the boundary bnd (𝑀) of the module named 𝑀 , the import relation ⪯ on

module names, and the module name mdl(𝑚) associated with method𝑚.

Appendix Section E has a table of notations and a table of metavariables.

3.5 Encapsulation in unary reasoning about modules and clients

In this subsection we consider how the requirements (E1)–(E4) for encapsulation in Section 2.1,

are met in the unary logic. Figure 12 shows the interface of a module that provides a class whose

instances are union-find structures. The first requirement for encapsulation, (E1), is to delimit some

locations internal to the module. That is the purpose of the dynamic boundary, which in the logic

would be written rd𝑝𝑜𝑜𝑙, rd𝑝𝑜𝑜𝑙 ‘any, rd𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝‘any (in accord with Def. 3.1) and abbreviated

as rd 𝑝𝑜𝑜𝑙, 𝑝𝑜𝑜𝑙 ‘any, 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝‘any. An equivalent formulation of the boundary is rd𝑝𝑜𝑜𝑙, (𝑝𝑜𝑜𝑙 ∪
𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝)‘any.
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module UnionFind

class Ufind {id: IntArray; part: partition; rep: rgn;}

public pool : rgn

boundary { pool, pool‘any, pool‘rep‘any }

meth Ufind(self:Ufind, k:int) : unit

meth find(self:Ufind, k:int) : int

meth union(self:Ufind, x:int, y:int) : unit

end.

Fig. 12. Excerpts of union-find interface, eliding private methods and specs.

In this example we follow the idiom, and even the naming convention, sketched in Sec. 2.2 for a

module providing stacks. Aside from 𝑟𝑒𝑝 , the boundary does not mention specific fields but rather

uses the data group any for the sake of abstraction.

Because rd 𝑝𝑜𝑜𝑙 is in the boundary of UnionFind, client programs may neither read nor write

this variable. It serves in specs to designate references to, at least, the Ufind instances managed by

the module; so the constructor method Ufind, which should be invoked on newly allocated Ufind

objects, adds the new object to 𝑝𝑜𝑜𝑙 . The boundary includes rd𝑝𝑜𝑜𝑙 ‘any, which says fields of these

objects may neither be read nor written by client programs. In specs and reasoning about clients,

the 𝑟𝑒𝑝 field of a Ufind is important: it is used to delimit the locations modified by method calls

on that instance, and a public invariant of the module says distinct Ufind instances have disjoint

𝑟𝑒𝑝 . This enables reasoning that performing an operation on one Ufind does not affect the state

of another Ufind —which is locality, not encapsulation. Fields of objects in 𝑟𝑒𝑝 are encapsulated

by the module, as expressed by rd𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝‘any. Here 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝 is the union of the 𝑟𝑒𝑝 fields of all

allocated Ufinds.

We consider an implementation based on the quick-find data structure [88]. Math type partition

represents a partition on a set of numbers 0 . . . 𝑛 − 1. It is used in ghost code and specs, in par-

ticular the private invariant which says each queue 𝑝 satisfies a predicate defined on its internal

representation, which is an array referenced by field 𝑖𝑑 .

predicate ufInv (p: Ufind) =

p.id ≠ null ∧
let n = p.id.len in

size(p.part) = n ∧ p.rep = { p.id } ∧
(∀ x:int. 0 ≤ x < n⇒ 0 ≤ p.id[x] < n ∧ p.id[p.id[x]] = p.id[x]) ∧
(∀ x:int, y:int. 0 ≤ x < n ∧ 0 ≤ y < n⇒ ( y ∈ pfind(x,p.part)⇔ p.id[x] = p.id[y]) )

private invariant 𝐼𝑞𝑓 = ∀ p: Ufind ∈ pool. ufInv(p)
The union-find implementation uses a representative element for each block of the partition, with

𝑖𝑑 [𝑥] being the representative of 𝑥 , for each 𝑥 in 0 . . . 𝑛 − 1. If 𝑥 is a representative then 𝑖𝑑 [𝑥] = 𝑥 .
The private invariant says that for any 𝑥 , 𝑖𝑑 [𝑥] is a representative: 𝑝.𝑖𝑑 [𝑝.𝑖𝑑 [𝑥]] = 𝑝.𝑖𝑑 [𝑥]. The
last conjunct says 𝑥 and 𝑦 have the same representative in 𝑝.𝑖𝑑 just if they are in the same block of

the abstract partition. The ghost field 𝑟𝑒𝑝 has nothing to do with representatives; as in our usual

idiom it holds references to the internal representation objects, in this case just the 𝑖𝑑 .

Requirement (E2) for encapsulation is that a private invariant depends only on locations within

the boundary. This is formalized in the logic by a framing judgment which in our example is written

|= (rd 𝑝𝑜𝑜𝑙, rd (𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝)‘any) frm 𝐼𝑞𝑓 . As formalized later, its meaning is that if 𝐼𝑞𝑓 holds in

some state, then it holds in any other state that agrees on the values in the locations designated by

the read effect. Looking at its definition, 𝐼𝑞𝑓 depends on only one variable, 𝑝𝑜𝑜𝑙 . The heap locations
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on which it depends are in expressions 𝑝.𝑖𝑑 and index expressions 𝑝.𝑖𝑑 [𝑥]. As we have 𝑝.𝑖𝑑 ∈ 𝑝.𝑟𝑒𝑝 ,
by the invariant, and the slots of the array are effectively fields of 𝑖𝑑 , these heap locations are

indeed covered by rd (𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝)‘any. The meaning of the framing judgment can be encoded

as a universally quantified formula; this and other framing judgments in our case studies are easily

validated by SMT solvers.

Here we consider the quick-find implementation, which for the find method is:

meth find (self: Ufind, k: int) : int

= result := self.id[k]

A key postcondition of the spec of find is that 𝑟𝑒𝑠𝑢𝑙𝑡 ∈ pfind (𝑘, self .𝑝𝑎𝑟𝑡), where pfind is the

function that returns the block of the abstract partition that contains 𝑘 . The postcondition holds in

virtue of conditions in the private invariant, including that 𝑖𝑑 [𝑘] is a representative, for any 𝑘 , and
the connection between self .𝑝𝑎𝑟𝑡 and self .𝑖𝑑 .

Encapsulation of a client. As a case study we have verified Kruskal’s minimum spanning tree

algorithm as client, but for present purposes we consider a very simple client.

uf:=new Ufind(100); x:=new Thing; x.f:=y; z := find(uf,1)

To verify the client code, its hypothesis context needs to include the module specs, in particular for

find. So UnionFind is in scope and its boundary must be respected by the client. The logic enforces

encapsulation of clients, i.e., requirement (E3), using separation checks similar to those for frame

based reasoning as in Example 3.5.

To explain the checks, let us write 𝛿
uf

for the boundary of UnionFind. The command 𝑥 :=

new Thing has frame wr𝑥, rw alloc. Respect of 𝛿
uf
by this command is formulated in terms of the

separator function, in this case 𝛿
uf
·/. wr𝑥, alloc. Unfolding the definition (Figure 11) yields the

formula true∧ true. The only variable designated by 𝛿
uf
is 𝑝𝑜𝑜𝑙 , and this is distinct from 𝑥 and from

alloc. The proof obligation here also rules out client code that assigns or reads 𝑝𝑜𝑜𝑙 . In general it is

untenable to include rd alloc in a boundary, or even an image expression mentioning alloc, because

clients typically do allocation.

The command 𝑥 .𝑓 := 𝑦 has frame condition rd𝑥, rd𝑦,wr {𝑥}‘𝑓 . For the write to be outside the
boundary, the obligation can be written 𝛿

uf
·/. wr {𝑥}‘𝑓 . Unfolding by definition of the separator

function, and expanding the abbreviation any to be all field names in scope, we get a conjunction of

𝑡𝑟𝑢𝑒s (because the read and written variables are distinct) and two nontrivial conjuncts: 𝑝𝑜𝑜𝑙 # {𝑥}
and 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝 # {𝑥}. That is, the assigned object must be in neither 𝑝𝑜𝑜𝑙 nor any 𝑟𝑒𝑝 fields of objects

in 𝑝𝑜𝑜𝑙 . One way this obligation can be proved is via freshness: neither 𝑝𝑜𝑜𝑙 nor 𝑟𝑒𝑝 have been

updated since 𝑥 was assigned a fresh object. A related idiom used in some method specs is a

postcondition that says all fresh objects are in self .𝑟𝑒𝑝 , which a client can use to reason that its own

regions remain disjoint. In a postcondition, the fresh references are denoted by alloc\old(alloc). In
the formal logic state predicates only refer to a single state, so a postcondition must be expressed in

the same way that tools desugar “old” expressions. That is, a fresh spec-only variable, say 𝑟 , is used

to snapshot the initial value: the precondition includes 𝑟 = alloc and the idiomatic postcondition is

now alloc\𝑟 ⊆ self .𝑟𝑒𝑝 .

We are not finished with 𝑥 .𝑓 := 𝑦. In addition to its writes, its reads must be outside the boundary,

specifically, 𝑥 and 𝑦 must be outside 𝛿
uf
. This can be written 𝛿

uf
·/. wr𝑥,wr𝑦. Why wr ? Just so we

can use the separator function ·/. unchanged from prior work, though it is defined to separate read

effects from writes. (The proof rule for field update uses another metafunction, r2w, to convert the

reads to writes.)

As an example of how encapsulation checks can fail, consider a bad client of the PQ interface

(Figure 8) that calls insert and assigns the returned Pnode to variable 𝑛𝑑 , and then writes the 𝑘𝑒𝑦

field of 𝑛𝑑 —potentially invalidating a private invariant. The boundary of PQ is similar to the one
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for UnionFind, so the separator formula is 𝑝𝑜𝑜𝑙 # {𝑛𝑑} ∧ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝 # {𝑛𝑑}. This is not valid, since the
value of 𝑛𝑑 is in 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝 .

So far we saw how the frame conditions of atomic commands give rise to proof obligations that

ensure the client reads and writes are to locations disjoint from the locations designated by the

boundary. Please note that the interpretation of the boundary is at the point in execution where

the atomic command has its effects. This does not make a difference for variables, in the sense that

a separator rd𝑥 ·/.wr𝑦 is just true or false depending on whether the variable names are distinct. It

does make a difference for heap locations, designated by expressions like 𝑝𝑜𝑜𝑙 ‘any and {𝑥}‘𝑓 ; in
this case the obligation 𝑝𝑜𝑜𝑙 # {𝑥} discussed above must hold in the pre-state of the assignment

command 𝑥 .𝑓 := 𝑦.

Loops and conditionals also incur an encapsulation obligation that their test expressions read

outside the boundary. In our desugared syntax (Figure 5) these expressions are heap independent.

In the example the check is simply that variable 𝑝𝑜𝑜𝑙 does not occur in a test expression, since the

other locations in the boundary are heap locations. Here is an example where a test crosses the

boundary of PQ.

q := new Pqueue(); nd := insert(q,0,0); if nd.prev ≠ null then q := null fi; nd := insert(q,1,1)

This client works fine with the first implementation of PQ since 𝑛𝑑.𝑝𝑟𝑒𝑣 will be null. But for the

implementation with sentinels, the second call to insert will fault due to null dereference. The client

is not representation independent and the read of 𝑛𝑑.𝑝𝑟𝑒𝑣 will fail the encapsulation check.

In our prototype, WhyRel, encapsulation checks like this are straightforward. At points where

the encapsulation check is state dependent, like 𝑥 .𝑓 := 𝑦, WhyRel generates an assert statement that

encodes the disjointness obligation (Section 9). In the logic, encapsulation checks are disentangled

from other reasoning considerations by the context introduction proof rules. The modules whose

boundary must be respected are those of the methods in the hypothesis context, given using the

mdl function defined in Sec. 3.2. The technical details are not conceptually important, and are

explained in Section 6.3.

In summary, encapsulation requirement (E3) is achieved by checking separation from the relevant

boundaries, for each part of the client command. Separation is checked the same way as it is for the

ordinary Frame rule, using formulas generated from the effects using the separator function (·/.).
For effects on variables it is true or false depending on whether the requisite variables are distinct,

but for effects on heap locations (load and store commmands, method calls) the separation checks

are region disjointness formulas that must hold at the relevant points in control flow.

Modular linking. Suppose we verify the client, using the public specs, and discharge the proof

obligations, just discussed, for encapsulation. We verify the implementation of find, union, etc using

the private invariant 𝐼𝑞𝑓 , i.e., assuming it as precondition and establishing it as post, in accord

with the modular linking rule sketched as (2) in Section 2.1. Having verified the client and the

implementations of module methods, we would like to conclude that the linked program is correct,

i.e., satisfies the client spec as per rule (2). The private invariant is hidden from the client, in

the sense that the method bodies are verified for specs that include it, but it is omitted from the

hypotheses used to verify the client. There is one more requirement for this to be sound, namely

(E4): the client precondition implies the private invariant of the module. An appropriate such

precondition is 𝑝𝑜𝑜𝑙 = ∅, the default value for regions, which implies 𝐼𝑞𝑓 owing to its quantification

over 𝑝𝑜𝑜𝑙 .

The intuition that justifies (2) is that, given the client’s respect for the boundary, any judgment

𝐷 : 𝑃 { 𝑄 [𝜀] about a client subprogram 𝐷 yields 𝐷 : 𝑃 ∧ 𝐼 { 𝑄 ∧ 𝐼 [𝜀] by an application of the

frame rule (because the encapsulation obligation ensured the footprint of the private invariant 𝐼

is disjoint from the effects in 𝜀). In particular, at a point where the client has established public
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precondition 𝑅 of a method that has been verified using precondition 𝑅 ∧ 𝐼 , we do in fact have 𝑅 ∧ 𝐼 .
For example, having proved the judgment find : 𝑅 { 𝑆 ⊢ 𝐶 : 𝑃 { 𝑄 (omitting frame condition)

together with the encapsulation obligations for client 𝐶 , we have

find : 𝑅 ∧ 𝐼𝑞𝑓 { 𝑆 ∧ 𝐼𝑞𝑓 ⊢ 𝐶 : 𝑃 ∧ 𝐼𝑞𝑓 { 𝑄 ∧ 𝐼𝑞𝑓
This is formalized as the second order frame rule, SOF in Figure 23. The modular linking rule (2)

is a consequence of SOF together with the obvious linking rule that requires the method bodies to

satisfy exactly the specs assumed by the client. Please note that all formulas involved in the specs

are first-order; the SOF rule is called second order only in the sense that the framed formula is

conjoined to specs in the hypothesis context as well as to the consequent of the judgment.

On dynamic boundaries. In this article we repeatedly use the idiom with 𝑝𝑜𝑜𝑙 and 𝑟𝑒𝑝 , but this

is merely one convenient way to write specs that support module-based encapsulation and per-

instance local reasoning. Ghost variables and fields can just as well be used to express hierarchical

ownership or cooperating clusters of objects as in design patterns like subject-observer. Such

examples can be found in RLI–III.

A key point is that the dynamic boundary is part of a module interface, and should be expressed

in such a way that different module implementations can have different internal data structures.

Thus the same dynamic boundary may denote different locations for different implementations.

This can be achieved using ghost state, data groups, and pure methods. In this article we only

formalize a single data group, any, and we omit pure methods (see Sect. 2.6).

To prove the disjointnesses needed for client code to be outside a boundary, one can rely on

invariants that constrain the relevant ghost state. For this purpose it is convenient for a module

interface to include public invariants such as (8) in Example 3.4.

4 BIPROGRAMS: SYNTAX AND RELATIONAL REASONING

This section formalizes biprograms (Section 4.1), relation formulas (Section 4.2), relational specs

and correctness judgments (Section 4.3). Section 4.4 uses an example to illustrate how regions are

used in relation formulas and how biprograms express convenient alignments. Section 4.5 defines

the weaving relation and explains its use to account for helpful alignments. Section 4.6 sketches

example of relational modular linking.

In this section, as in Section 3, we use the syntax of our prototype for program code, together

with the math notations of the formal logic. We use syntax sugar and also some features that are

not formalized in the logic, namely parameters and return values (see Section 2.6), for the sake of

readable examples. More about the prototype can be found in Section 9.

4.1 Biprograms

Figure 5 gives the grammar of biprograms. A biprogram 𝐶𝐶 represents a pair of commands,

which are given by syntactic projections defined in Figure 13. For example, the left projection

↼−−−−−−−−−−−−−−−−−−−−−−−−−−(skip|𝑥 := 0); (𝑦 := 0|𝑧 := 1) is 𝑦 := 0, taking into account that we identify skip;𝑦 := 0 with 𝑦 := 0

(see Figure 6). The symbol | is used throughout the article, in program and spec syntax and also

as alternate notation for pairing in the metalanguage, when the pair represents a pair of states or

similar.
20

Biprograms are given small-step semantics. The bi-com form (𝐶 |𝐷) represents executions of
commands 𝐶 and 𝐷 which are meant to be aligned on their initial state and, if they terminate, final

state. Their execution steps are interleaved (i.e., dovetailed, in the terminology of automata theory),

to ensure that the traces of (𝐶 |𝐷) cover all traces of 𝐶 and 𝐷 by making progress on both sides

20
A small version of the symbol is used, interchangeably, for clarity in some contexts such as grammar rules.
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𝐹𝐹 ::= ⟨[𝐹 ⟨] | [⟩𝐹 ]⟩ Value in left (resp. right) state

P ::= 𝑅(𝐹𝐹 ) Primitive 𝑅 in signature

| 𝐹 ¥= 𝐹 Equal expressions, mod refperm

| A𝐿𝐸 Agreement mod refperm

| ^P Possibly (in some extended refperm)

| ⟨[𝑃 ⟨] | [⟩𝑃]⟩ In the left (resp. right) state

| P ∧ P | P ⇒ P | ∀𝑥 :𝑇 |𝑥 :𝑇 . P
Syntax sugar: B𝑃 =̂ ⟨[𝑃 ⟨] ∧ [⟩𝑃]⟩

□P =̂ ¬^¬P
false =̂ Bfalse true =̂ Btrue

A𝑥 .𝑓 =̂ A{𝑥}‘𝑓
A(rd𝐿𝐸) =̂ A𝐿𝐸 A(wr . . .) =̂ true A(𝜀, 𝜂) =̂ A(𝜀) ∧ A(𝜂)

Precedence: (tightest) A, ^, ¥=, ∧,⇒ (loosest).

Fig. 14. Relation formulas. See Figure 9 for unary formulas 𝑃 and (6) for left-expressions 𝐿𝐸.

even if one diverges. The parentheses of bi-coms are obligatory and the operator binds less tightly

than others: (𝐴;𝐵 |𝐶;𝐷) is the same as ((𝐴;𝐵) | (𝐶;𝐷)). In Section 4.5 we consider how the other

biprogram forms are introduced for a verification problem specified using a bi-com. For now we

briefly explain the other forms.

↼−−−−(𝐶 |𝐶′ ) =̂ 𝐶
↼−−⌊𝐴⌋ =̂ 𝐴
↼−−−−−−−−−−−−−−−−−−
if 𝐸 |𝐸′ then 𝐵𝐵 else𝐶𝐶 =̂ if 𝐸 then

↼−
𝐵𝐵 else

↼−
𝐶𝐶

↼−−−−−−−−−−−−−−−−−−−
while 𝐸 |𝐸′ · P |P′ do𝐶𝐶 =̂ while 𝐸 do

↼−
𝐶𝐶

↼−−−−−
𝐵𝐵 ;𝐶𝐶 =̂

↼−
𝐵𝐵 ;

↼−
𝐶𝐶

↼−−−−−−−−−−−−−−−
var 𝑥 :𝑇 |𝑥 ′:𝑇 ′ in𝐶𝐶 =̂ var 𝑥 :𝑇 in

↼−
𝐶𝐶

↼−−−−−−−−−−−−−−−−
let𝑚 = (𝐶 |𝐶′ ) in𝐶𝐶 =̂ let𝑚 =𝐶 in

↼−
𝐶𝐶

Symmetrically,

−−−−⇀(𝐶 |𝐶′ ) =̂ 𝐶′,
−−⇀⌊𝐴⌋ =̂ 𝐴, etc.

Fig. 13. Syntactic projections
↼−

and
−⇀

of bipro-

grams.

The sync form ⌊𝐴⌋ represents two executions

of the atomic command 𝐴, aligned as a single

step. This is mainly of interest for allocations

and method calls. For a call, ⌊𝑚()⌋ indicates
that a relational spec should be used to reason

about the two calls. For an allocation, the form

⌊𝑥 := new 𝐾⌋ has a proof rule in which the two

new references are considered in agreement, i.e.,

“added to the refperm”. In the grammar (Figure 5),

the bi-var form allows different names and types

but one also wants to allow multiple variables on

each side; this is implemented in our prototype.

The bi-if form, if 𝐸 |𝐸′ then 𝐶𝐶 else 𝐷𝐷 , asserts

that the two initial states agree on the value of

the test expressions 𝐸 and 𝐸′. The bi-while form while 𝐸 |𝐸′ · P |P′ do 𝐶𝐶 incorporates relation

formulas P and P′ which serve as alignment guards. These serve as directives to indicate how to

align iterations of the loop, catering for situations like the 𝑠𝑢𝑚𝑝𝑢𝑏 program in (4). This is explained

in more detail in Section 4.5; see the aligned 𝑠𝑢𝑚𝑝𝑢𝑏 (15).

Typing of biprograms can be defined in terms of syntactic projection, roughly as Γ |Γ′ ⊢ 𝐶𝐶 iff

Γ ⊢↼−𝐶𝐶 and Γ′ ⊢ −⇀𝐶𝐶 . But the alignment guard formulas in a bi-while should also be typechecked in

Γ |Γ′, and are required to be free of agreement formulas, i.e., those of the form A𝐺 ‘𝑓 and 𝐹 ¥= 𝐹 ′;
this ensures that the formula is refperm-independent as explained later. Although the two sides of

a biprogram may have different typing contexts, for simplicity a single class table is assumed. It is

straightforward to generalize this to allow different field declarations for a given class (and it is

implemented in our prototype).
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4.2 Relation formulas

Relation formulas are interpreted over a pair of states, meant to be at aligned points in two executions.

What is important is to express not only conditions relating integers and other mathematical values,

but also conditions relating structures between the two heaps. There are many ways to formalize

such formulas; it is only in the treatment of heap relations that the design choices made here have

significant impact on the later development.

The relation formulas are defined in Figure 14. Quantifiers range over allocated references; the

relational form binds a variable on each side. The form ⟨[𝑃 ⟨] (resp. [⟩𝑃 ]⟩) says unary predicate 𝑃 holds

in the left state (resp. right). Left and right embedded expressions are written ⟨[𝐹 ⟨] and [⟩𝐹 ]⟩ and
have nothing to do with left-expressions 𝐿𝐸. They may be used as arguments to atomic predicates

in the ambient mathematical theories: ⟨[𝐹 ⟨] (resp. [⟩𝐹 ]⟩) evaluates 𝐹 in the left (resp. right) state.
21

The forms A𝐿𝐸 and 𝐹 ¥= 𝐹 ′ are called agreement formulas. For 𝐸 and 𝐸′ of some reference type

𝐾 , the form 𝐸 ¥= 𝐸′ (pronounced “𝐸 bi-equals 𝐸′”) says the value of 𝐸 in the left is the same as 𝐸′

on the right, modulo refperm in the case of reference values. Similarly with 𝐺 ¥= 𝐺 ′ for regions.
The form A𝐺 ‘𝑓 says for each reference 𝑜 ∈ 𝐺 , with corresponding value 𝑜 ′ in the other state, the

value of 𝑜.𝑓 is the same as the value of 𝑜 ′ .𝑓 , modulo refperm if the value is of reference type. For

example, A𝑟 ‘𝑟𝑒𝑝‘𝑣𝑎𝑙 means the 𝑣𝑎𝑙 fields agree, for all objects in the 𝑟𝑒𝑝 field of all objects in 𝑟 .

The form A𝑥 is equivalent to 𝑥 ¥= 𝑥 . But the form A𝐺 ‘𝑓 is not equivalent to 𝐺 ‘𝑓 ¥= 𝐺 ‘𝑓 . The
former means pointwise field agreement (modulo refperm) and the latter means equal values

(modulo refperm), the two values being reference sets.

↼−−⟨[𝑃 ⟨] =̂ 𝑃
↼−−[⟩𝑃]⟩ =̂ true

↼−−
^P =̂

↼−P
↼−−−−−
𝐹 ¥= 𝐹 ′ =̂ (𝐹 = 𝐹 )
↼−−−
A𝐿𝐸 =̂ (𝐿𝐸 = 𝐿𝐸)
↼−−−−−−−−−−−−∀𝑥 :𝑇 |𝑥 ′:𝑇 ′ . P =̂ ∀𝑥 : 𝑇 .

↼−P
↼−−−−
𝑅(𝐹𝐹 ) =̂ true

↼−−−−−−−−−−−−P ≈> Q [𝜀 |𝜀′] =̂
↼−P { ↼−Q [𝜀]

Fig. 15. Syntactic projection
↼−

of relation formulas and specs;

right projection
−⇀

is symmetric.

The modal form ^P, read possibly P (for lack of a better word),

says P holds in a refperm possibly extended from the current one.

More on these points later.

Relation formulas and relational correctness judgments are typed

in a context of the form Γ |Γ′ comprises contexts Γ and Γ′ for the left
and right sides.

22
Leaving aside left/right embedded expressions,

typing can be reduced to typing of unary formulas: Γ |Γ′ ⊢ P iff

Γ ⊢↼−P and Γ′ ⊢ −⇀P . This refers to syntactic projections defined in

Figure 15. This does not work for left/right embedded expressions;

we gloss over those for clarity, in the following sections as well,

but handle them in our prototype.

In accord with the definition of projections, we have the formula

typing Γ |Γ′ ⊢ A𝑥 just if 𝑥 ∈ dom (Γ) ∩ dom (Γ′). We have Γ |Γ′ ⊢
A𝐺 ‘𝑓 just if Γ ⊢ 𝐺 : rgn and Γ′ ⊢ 𝐺 : rgn, with 𝑓 of any type.

Similarly, Γ |Γ′ ⊢ 𝐹 ¥= 𝐹 ′ provided Γ ⊢ 𝐹 : 𝑇 and Γ′ ⊢ 𝐹 ′ : 𝑇 . Also

Γ |Γ′ ⊢ ⟨[𝑃 ⟨] if Γ ⊢ 𝑃 and Γ |Γ′ ⊢ [⟩𝑃 ]⟩ if Γ′ ⊢ 𝑃 .

4.3 Relational specifications and correctness judgment

A relational spec P ≈> Q [𝜀 |𝜀′] has relational pre- and post-conditions and a pair of frame

conditions. We write P ≈> Q [𝜀] to abbreviate the frame condition [𝜀 |𝜀]. A spec P ≈> Q [𝜀 |𝜀′] is
wf in Γ |Γ′ provided↼−−−−−−−−−−−−P ≈> Q [𝜀 |𝜀′] is wf in Γ (resp.

−−−−−−−−−−−−⇀P ≈> Q [𝜀 |𝜀′] in Γ′), as per Def. 3.2. See Figure 15
for syntactic projections. The precondition P of a wf relational spec has spec-only variables only

21
Written ⟨1⟩𝐹 and ⟨2⟩𝐹 in works following Benton [25]. Our notations ⟨[𝐹 ⟨] and ⟨[𝑃 ⟨] are meant to point leftward.

22
This enables reasoning about two versions of a program acting on the same variables, by contrast with other works where

related programs are assumed to have been renamed to have no identifiers in common. Logics should account for renaming.
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as snapshot equations in top level conjuncts of P (inside the left and right embedding operators

⟨[ − ⟨], [⟩ − ]⟩). Any spec-only variables in postcondition Q must occur in P.
Recall from Section 2.1 that one important relational property is local equivalence. Later we

define a general construction, locEq, that applies to a unary spec 𝑃 { 𝑄 [𝜀] and yields a relational

spec (Example 4.3 and Section 8.1). The general form takes into account that encapsulated locations

are not expected to be in agreement; that is formalized by means of effect subtraction.

For local equivalence and other purposes, we often want postconditions that assert agreements

on fresh locations. These agreements are modulo refperm, so a relational correctness judgment

should say there is some refperm for which the final states are related. This can be expressed using

the ^ modality. Many specs of interest have the form P ≈> ^Q [𝜂 |𝜂′] where P,Q are ^-free. Such
specs are said to be in standard form. We gloss over this in some examples. In our prototype, the

encoding maintains a “current refperm” in ghost state to interpret agreement formulas, and does

not use the ^ modality explicitly in specs. The dual, □, is used in a couple of proof rules.

A relational hypothesis context for Γ |Γ′ is a tripleΦ = (Φ0,Φ1,Φ2) comprising unary hypothesis

contexts Φ0 for Γ and Φ1 for Γ
′
, together with a mapping Φ2 of method names to relational specs

that are wf.

Definition 4.1 (wf relational hypothesis context). A relational hypothesis context for Γ |Γ′ is wf
in Γ |Γ′ provided that Φ0,Φ1,Φ2 specify the same methods,

23 Φ0 and
↼−
Φ2 are wf in Γ, Φ1 and

−⇀
Φ2 are

wf in Γ′, the specs in Φ2 are wf in Γ |Γ′, and the distinct methods have distinct spec-only variables

in Φ2 (just as in Φ0 and Φ1). Moreover, for every𝑚, the formula

pre(Φ2 (𝑚)) ⇒ ⟨[pre(Φ0 (𝑚))⟨] ∧ [⟩pre(Φ1 (𝑚))]⟩
is valid (where metafunction pre extracts the precondition), and the effects of Φ2 (𝑚) project to
those of Φ0 (𝑚) and Φ1 (𝑚).24

The constraint on preconditions ensures a compatibility condition needed to connect relational

with unary context models, see Def. 7.9. Def. 4.1 allows left and right to have different global

variables. It also allows that some spec-only variables on the left may also occur on the right.

However, well formedness is in the context of a single module structure (module names and their

association with methods and dynamic boundaries; import relation).

Definition 4.2. A relational correctness judgment has the form Φ ⊢Γ |Γ
′

𝑀
𝐶𝐶 : P ≈> Q [𝜀 |𝜀′] . It

is wf provided

• Φ is wf in Γ |Γ′ (see above).
• No spec-only variables, nor alloc, occur in 𝐶𝐶 . Moreover, alignment guard assertions in

bi-whiles contain no agreement formulas.

• No methods occur in Γ |Γ′, and 𝐶𝐶 is wf in the typing context that extends Γ |Γ′ to declare

the methods in Φ.
• bnd (𝑁 ) is wf in Γ and wf in Γ′, for all 𝑁 with 𝑁 ∈ Φ or 𝑁 = 𝑀 .

• P ≈> Q [𝜀 |𝜀′] is wf in Γ |Γ′, and its spec-only variables are distinct from those in Φ.

Example 4.3 (coupling and local equivalence for PQ). The coupling relation expresses that for any

two corresponding queues in the left and right states’ 𝑝𝑜𝑜𝑙 , all the Pnodes in their 𝑟𝑒𝑝s are in the

refperm. The sentinel is in 𝑝𝑜𝑜𝑙 , not in a 𝑟𝑒𝑝 , and each pair of corresponding Pnodes have the same

23
One can allow different methods in context, provided that left (resp. right, resp. sync’d) context calls have left (resp. right,

resp. relational) spec’s, and this is implemented in our prototype.

24
In detail: Suppose Φ2 (𝑚) is R ≈> S [𝜂 |𝜂′ ], and the unary specs Φ0 (𝑚) and Φ1 (𝑚) are 𝑅0 { 𝑆0 [𝜂0 ] and 𝑅1 { 𝑆1 [𝜂1 ]

respectively. Then 𝜂 = 𝜂0 and 𝜂
′ = 𝜂1.
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meth tabulate (n:int) : List =

var t: List, i: int, p: Node;

t := new List;

i := 0;

while i < n do

i := i + 1;

p := new Node;

p.val := mf(i);

p.nxt := t.head;

t.head := p;

t.nds := t.nds ∪ {p};

od;

result := t; /∗ return value ∗/

(a) Left version, 𝑡𝑎𝑏𝑢

meth tabulate (n:int) : List =

var t: List, i: int, p: Node;

t := new List;

i := 1;

while i ≤ n do

p := new Node;

p.val := mf(i);

p.nxt := t.head;

t.head := p;

t.nds := t.nds ∪ {p};

i := i + 1;

od;

result := t;

(b) Right version, 𝑡𝑎𝑏𝑢′

/∗ Agr n ∗/
⌊ t := new List ⌋; connect t;
(i := 0 | i := 1);

while (i < n) | (i ≤ n) do

(i := i + 1 | skip); /∗ i ¥= i ∗/
⌊ p := new Node ⌋; connect p;
⌊ p.val := mf(i) ⌋; /∗ Agr p.val ∗/
⌊ p.nxt := t.head ⌋;
⌊ t.nds := t.nds ∪ {p} ⌋;
(skip | i := i + 1);

od;

⌊ result := t ⌋;

(c) Biprogram 𝐶𝐶𝑡𝑎𝑏𝑢

Fig. 16. Two implementations of tabulate, and a biprogram weaving them together.

value and priority. Moreover, null appears in the left state where the sentinel appears in the right.

As a relation formula:

∀𝑞 : Pqueue ∈ 𝑝𝑜𝑜𝑙 | 𝑞 : Pqueue ∈ 𝑝𝑜𝑜𝑙
A𝑞 ⇒ (A(𝑞.ℎ𝑒𝑎𝑑) ∨ (⟨[𝑞.ℎ𝑒𝑎𝑑 = null⟨] ∧ [⟩𝑞.ℎ𝑒𝑎𝑑 = 𝑞.𝑠𝑛𝑡𝑛𝑙]⟩))

∧ 𝑞.𝑟𝑒𝑝/Pnode ¥= 𝑞.𝑟𝑒𝑝/Pnode
∧ ∀ 𝑛:Pnode ∈ 𝑞.𝑟𝑒𝑝 | 𝑛:Pnode ∈ 𝑞.𝑟𝑒𝑝 .

A𝑛 ⇒ A(𝑛.𝑣𝑎𝑙) ∧ A(𝑛.𝑘𝑒𝑦)
∧(A(𝑛.𝑠𝑖𝑏𝑙𝑖𝑛𝑔) ∨ (⟨[𝑛.𝑠𝑖𝑏𝑙𝑖𝑛𝑔 = null⟨] ∧ [⟩𝑛.𝑠𝑖𝑏𝑙𝑖𝑛𝑔 = 𝑞.𝑠𝑛𝑡𝑛𝑙 ]⟩))
∧(A(𝑛.𝑐ℎ𝑖𝑙𝑑) ∨ (⟨[𝑛.𝑐ℎ𝑖𝑙𝑑 = null⟨] ∧ [⟩𝑛.𝑐ℎ𝑖𝑙𝑑 = 𝑞.𝑠𝑛𝑡𝑛𝑙]⟩))
∧(A(𝑛.𝑝𝑟𝑒𝑣) ∨ (⟨[𝑛.𝑝𝑟𝑒𝑣 = null⟨] ∧ [⟩𝑛.𝑝𝑟𝑒𝑣 = 𝑞.𝑠𝑛𝑡𝑛𝑙 ]⟩))

Here we use syntax sugar A𝑛.𝑣𝑎𝑙 for A{𝑛}‘𝑣𝑎𝑙 . Also, the pattern ∀𝑞:𝐾 ∈ 𝑟 | 𝑞:𝐾 ∈ 𝑟 . . . is sugar
for ∀𝑞:𝐾 | 𝑞:𝐾.⟨[𝑞 ∈ 𝑟 ⟨] ∧ [⟩𝑞 ∈ 𝑟 ]⟩ ⇒ . . .. Note the type restriction expressions in the agreement

𝑞.𝑟𝑒𝑝/Pnode ¥= 𝑞.𝑟𝑒𝑝/Pnode. LetM𝑃𝑄 be the above formula, conjoined with ⟨[𝐼 ⟨] ∧ [⟩𝐼 ′]⟩ where 𝐼 , 𝐼 ′
are the private invariants.

The relational spec for insert obtained by applying locEq looks like this:

A𝑞 ∧ A𝑘 ∧ B𝑃 ≈> ^(A(𝑟𝑒𝑠.𝑣𝑎𝑙) ∧ A(𝑟𝑒𝑠.𝑘𝑒𝑦) ∧ . . . ∧ B𝑄) [rw {𝑞}‘any, 𝑞.𝑟𝑒𝑝‘any, alloc] (9)

where 𝑃 and 𝑄 are the unary pre- and post- conditions for insert, including the public invariant of

PQ. We elide some postconditions likeA((𝑝𝑜𝑜𝑙\(𝑝𝑜𝑜𝑙 ∪𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝))‘ℎ𝑒𝑎𝑑) which arise by subtracting
the boundary from writes in the spec (and expanding any to all field names). This one can obviously

be simplified to A∅‘ℎ𝑒𝑎𝑑 which is equivalent to true. The meta-function locEq need not perform

such simplifications, as the reasoning can safely be left to the SMT solver or to the logic’s relational

consequence rule.

To verify the two implementations of insert, we conjoinM𝑃𝑄 to both the pre and postcondition of

the relational spec above. The resulting precondition is A𝑞∧A𝑘 ∧B𝑃 ∧M𝑃𝑄 and the postcondition

is ^(A(𝑟𝑒𝑠.𝑣𝑎𝑙) ∧A(𝑟𝑒𝑠.𝑘𝑒𝑦) ∧ . . .∧B𝑄∧M𝑃𝑄 ). Later we introduce a notation?M𝑃𝑄 for this. □

4.4 Relational verification with biprograms

We consider an example of relational verification which is modular in the sense of using relational

method specs, but no information hiding. We highlight how regions are used in relational specs,

and how biprograms are used to represent convenient alignments.
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List tabulation: illustrating procedure-modular reasoning. Consider the two programs in Figure 16,

which both tabulate a linked list of the values of some method mf that computes a function, applied

to the numbers 𝑛 down to 1. Objects of class List have two fields: ℎ𝑒𝑎𝑑 : Node references the head of

a linked list and𝑛𝑑𝑠 : rgn is ghost state, to which we return soon. The goal in this example is to prove

the programs are equivalent. We reason about executions of the two programs in close alignment, in

order to exploit their similarities and make use of a relational spec for mf. The example also serves

to show the use of regions to describe heap structure and in particular to express the equivalence of

the lists returned. The example illustrates two aspects of modular reasoning: procedural abstraction

and local reasoning; the third aspect, data abstraction, is considered in Section 4.6.

Both versions of the program use field 𝑛𝑑𝑠 to hold references to the nodes reached from ℎ𝑒𝑎𝑑 . It

is initially empty (the default value), and in each iteration the newly allocated node is added to

the list’s 𝑛𝑑𝑠 . An invariant of the loop, in both programs, is 𝑡 .𝑛𝑑𝑠‘𝑛𝑒𝑥𝑡 ⊆ 𝑡 .𝑛𝑑𝑠 . Here 𝑡 .𝑛𝑑𝑠 is set of
references. The image expression 𝑡 .𝑛𝑑𝑠‘𝑛𝑒𝑥𝑡 denotes the set of values in the next fields of objects

in 𝑡 .𝑛𝑑𝑠 (a direct image, thinking of the field as a relation). The containment 𝑡 .𝑛𝑑𝑠‘𝑛𝑒𝑥𝑡 ⊆ 𝑡 .𝑛𝑑𝑠
says for any object reference in 𝑡 .𝑛𝑑𝑠 , the value of the object’s 𝑛𝑒𝑥𝑡 field is in 𝑡 .𝑛𝑑𝑠 . There are no

recursive definitions involved. The containment, together with invariant 𝑡 .ℎ𝑒𝑎𝑑 ∈ 𝑡 .𝑛𝑑𝑠 , implies

that everything reachable from 𝑡 .ℎ𝑒𝑎𝑑 is in 𝑡 .𝑛𝑑𝑠 . It does not say that 𝑡 .𝑛𝑑𝑠 is exactly the reachable

set, though it will be; we do not need that stronger fact.

Method mf has an integer parameter 𝑥 and returns an integer result. Its unary spec is 𝑡𝑟𝑢𝑒 {
𝑡𝑟𝑢𝑒 [•], which says very little but the empty frame condition says it has no effect on the heap

or global variables. In particular, it does no allocation, since otherwise its frame condition would

have to include rw alloc. Implicitly it is allowed to read its parameter 𝑥 and write its 𝑟𝑒𝑠𝑢𝑙𝑡 , as we

saw in Example 3.5. As relational spec we use A𝑥 ≈> A𝑟𝑒𝑠𝑢𝑙𝑡 [•] which expresses determinacy as

self-equivalence in a way that is local: it refers only to locations that may be read or written. It is

this relational spec, and nothing more, that we wish to use for mf in relational reasoning about

tabulate.

For tabulate, the frame condition is [rw alloc]. It allocates, which implicitly updates the special

variable alloc by adding the newly allocated reference; the new value of alloc depends on its old

value, so the frame condition says alloc may be both read and written. Like method mf, method

tabulate reads its parameter and writes its result, but neither reads nor writes any other preexisting

locations.

Although we aim to prove equivalence of the two versions of tabulate without recourse to a

precise functional spec, we do include a postcondition that constrains 𝑛𝑑𝑠 , as this plays a role

in specifying equivalence. The postcondition says 𝑛𝑑𝑠 contains ℎ𝑒𝑎𝑑 and is closed under 𝑛𝑒𝑥𝑡 ;

formally: 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠‘𝑛𝑒𝑥𝑡 ⊆ 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠 and 𝑟𝑒𝑠𝑢𝑙𝑡 .ℎ𝑒𝑎𝑑 ∈ 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠 .
To express equivalence of the two versions, the (relational) precondition is agreement on what is

readable, namely the parameter 𝑛. The agreement formula A𝑛, or equivalently 𝑛 ¥= 𝑛, simply means

the two initial states have the same value for 𝑛. We do not assume agreement on alloc; we want the

equivalence to encompass initial states without constraint on allocated but irrelevant objects.

For the postcondition we want agreement on what is writable (aside from alloc), thus A𝑟𝑒𝑠𝑢𝑙𝑡 .
We also specify that the unary postcondition holds in both final states:

B(𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠‘𝑛𝑒𝑥𝑡 ⊆ 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠 ∧ 𝑟𝑒𝑠𝑢𝑙𝑡 .ℎ𝑒𝑎𝑑 ∈ 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠) (10)

But 𝑟𝑒𝑠𝑢𝑙𝑡 is just a reference to newly allocated list structure. To express that the two result lists have

the same content we needmore thanA𝑟𝑒𝑠𝑢𝑙𝑡 . A first guess is the agreement formulaA𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠‘𝑣𝑎𝑙 .
The formula uses syntax sugar, to abbreviateA{𝑟𝑒𝑠𝑢𝑙𝑡}‘𝑛𝑑𝑠‘𝑣𝑎𝑙 . Agreement formulas, as mentioned

in Section 2.3, are interpreted with respect to a refperm, that is, a type-respecting partial bijection on

references of the two states. Whereas A𝑛 means identical values for integer 𝑛, the formula A𝑟𝑒𝑠𝑢𝑙𝑡
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𝑜

𝑥

𝑜 ′
𝑥

𝑜

{𝑝, 𝑞, 𝑟 }

𝑝

𝑛𝑑𝑠

ℎ𝑒𝑎𝑑

List

𝑝

42

𝑞

𝑣𝑎𝑙

𝑛𝑥𝑡

𝑞

1

𝑟

𝑣𝑎𝑙

𝑛𝑥𝑡

𝑟

2

null

𝑣𝑎𝑙

𝑛𝑥𝑡

𝑡

5

𝑠

𝑣𝑎𝑙

𝑛𝑥𝑡

𝑠

5

𝑡

𝑣𝑎𝑙

𝑛𝑥𝑡

𝑜 ′

{𝑝′, 𝑞′, 𝑟 ′}

𝑝′

𝑛𝑑𝑠

ℎ𝑒𝑎𝑑

List

𝑝′

42

𝑞′

𝑣𝑎𝑙

𝑛𝑥𝑡

𝑞′

3

𝑟 ′

𝑣𝑎𝑙

𝑛𝑥𝑡

𝑟 ′

2

null

𝑣𝑎𝑙

𝑛𝑥𝑡

𝑠′

5

𝑠′

𝑣𝑎𝑙

𝑛𝑥𝑡

𝜋 (𝑟 ) = 𝑟 ′

left-expression l-value in 𝜎 r-value in 𝜎

𝑥 {𝑥} 𝑜

{𝑥}‘𝑛𝑑𝑠 {𝑜.𝑛𝑑𝑠} {𝑝, 𝑞, 𝑟 }
{𝑥}‘𝑛𝑑𝑠‘𝑣𝑎𝑙 {𝑝.𝑣𝑎𝑙, 𝑞.𝑣𝑎𝑙, 𝑟 .𝑣𝑎𝑙} ∅
{𝑥}‘𝑛𝑑𝑠‘𝑛𝑥𝑡 {𝑝.𝑛𝑥𝑡, 𝑞.𝑛𝑥𝑡, 𝑟 .𝑛𝑥𝑡} {𝑞, 𝑟, null}

𝜎 (alloc) = {𝑜, 𝑝, 𝑞, 𝑟, 𝑠, 𝑡}
𝜎′ (alloc) = {𝑜′, 𝑝′, 𝑞′, 𝑟 ′, 𝑠′}
𝜋 = {(𝑜, 𝑜′), (𝑝, 𝑝′), (𝑞, 𝑞′), (𝑟, 𝑟 ′), (𝑠, 𝑠′)}

𝜎 |𝜎′ |=𝜋 A𝑥 is true because 𝑜
𝜋∼ 𝑜′

𝜎 |𝜎′ |=𝜋 A{𝑥}‘𝑛𝑑𝑠 is true because 𝑜 𝜋∼ 𝑜′ and {𝑝, 𝑞, 𝑟 } 𝜋∼ {𝑝′, 𝑞′, 𝑟 ′}
𝜎 |𝜎′ |=𝜋 A{𝑥}‘𝑛𝑑𝑠‘𝑛𝑥𝑡 is true; note 𝑝.𝑛𝑥𝑡 𝜋∼ 𝑝′ .𝑛𝑥𝑡 , 𝑞.𝑛𝑥𝑡 𝜋∼ 𝑞′ .𝑛𝑥𝑡 , and 𝑟 .𝑛𝑥𝑡 𝜋∼ 𝑟 ′ .𝑛𝑥𝑡
𝜎 |𝜎′ |=𝜋 A{𝑥}‘𝑛𝑑𝑠‘𝑣𝑎𝑙 is false because 𝜎 (𝑞.𝑣𝑎𝑙) = 1 ≠ 3 = 𝜎′ (𝑞′ .𝑣𝑎𝑙)
𝜎 |𝜎′ |=𝜋 {𝑥}‘𝑛𝑑𝑠 ¥= {𝑥}‘𝑛𝑑𝑠 is true because {𝑝, 𝑞, 𝑟 } 𝜋∼ {𝑝′, 𝑞′, 𝑟 ′}, regardless of whether (𝑜, 𝑜′) is in 𝜋

Fig. 17. Refperm 𝜋 and relations between two states, 𝜎, 𝜎′ with variable 𝑥 (see Example 4.4).

means equivalent reference values, i.e., connected via the bijection. The formula A𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠‘𝑣𝑎𝑙
says that for pairs 𝑜, 𝑜 ′ of references connected by the bijection, with 𝑜 ∈ 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠 , the fields 𝑜.𝑣𝑎𝑙
and 𝑜 ′ .𝑣𝑎𝑙 have equal contents; equal because the type is integer.

To fully constrain the lists to have the same structure we use this postcondition:

^(A𝑟𝑒𝑠𝑢𝑙𝑡 ∧ A𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠 ∧ A𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠‘𝑛𝑒𝑥𝑡 ∧ A𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠‘𝑣𝑎𝑙) (11)

Here ^ says there exists some refperm. The formula A𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠 abbreviates A{𝑟𝑒𝑠𝑢𝑙𝑡}‘𝑛𝑑𝑠 and
says the refperm cuts down to a (total) bijection between the regions 𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠 in the two states.

The condition A𝑟𝑒𝑠𝑢𝑙𝑡 .𝑛𝑑𝑠‘𝑛𝑒𝑥𝑡 says that bijection is compatible with the linked list structure.

The semantics of relation formulas is formalized in Sec. 7.1. It is a little subtle: {𝑥}‘𝑓 ¥= {𝑥}‘𝑓 is
different from A{𝑥}‘𝑓 , unless guarded by A𝑥 (as a conjunct or antecedent). We invariably use such

guarded formulas, e.g., conjuncts in (11) and antecedents in the coupling of Example 4.3.

Example 4.4. To illustrate the meaning of agreement formulas like those in (11), Figure 17

shows an example of two states with a single variable 𝑥 : List, and using {𝑥}‘𝑛𝑑𝑠 rather than its

sugared form 𝑥 .𝑛𝑑𝑠 . The semantic notations are defined in Section 7.1 but the picture is meant to

be understandable now. The values of some left-expressions are given; we consider the l-value of

any left-expression to be a set of locations, such as the single location 𝑥 (a variable name) and 𝑝.𝑣𝑎𝑙

(a heap location). □

Taken together, (10) and (11) say the results from tabulate are lists for which the nodes can be put

in bijective correspondence that is compatible with the 𝑛𝑥𝑡 pointers and for which corresponding

elements have the same value. They serve as postcondition, with precondition A𝑛, to specify

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



A Relational Program Logic with Data Abstraction and Dynamic Framing [version with index] 1:33

equivalence for tabulate. What else would we mean by equivalence of the programs? We do not

want to say they have literally identical values, because we want equivalence to be local: It should

not involve what else may have been allocated, so we do not assume agreement on alloc. Hence the

resulting lists may not have identical reference values. What matters is that the heap data produced

by the two implementations has the same structure.

On the modality ^. The modal operator ^ is needed for the relational postcondition (11) and

in any spec where allocation is possible. We gloss over it in some examples, but specs of interest

usually have this standard form: R ≈> ^S [𝜀] where ^ does not occur in R or S. The tabulate

spec can be put in standard form, because (10) expresses unary conditions, with no dependence on

refperm, so that formula can be put inside the ^ in (11).

While SMT solvers typically provide some heuristic support for quantifiers, existential quantifiers

are problematic and we cannot expect a solver to find witnesses for the existential expressed by

^. In the WhyRel prototype, specs do not include ^ explicitly. Instead, a refperm is maintained

in ghost state, thus witnessing the existential. A ghost instruction, connect − with −, can be used to

designate which references the user wants to be considered as corresponding. For example, the

biprogram Figure 16(c) uses connect p, which abbreviates connect p with p, to add newly allocated

Node references to the refperm, thereby establishing 𝑝 ¥= 𝑝 . The general form of connect caters for

programs using different variables.

Alignment for tabulate. Recall that (10) and (11) are meant to comprise the postcondition of a spec

to relate the bodies, 𝑡𝑎𝑏𝑢 and 𝑡𝑎𝑏𝑢′, of the two implementations of tabulate in Figure 16(a) and (b).

To say that they satisfy the relational spec we use a judgment like this:

Φ ⊢ (𝑡𝑎𝑏𝑢 |𝑡𝑎𝑏𝑢′) : A𝑛 ≈> R [rw alloc] where R is (10)∧(11)

The hypothesis context specifies mf; Φ is a triple, with Φ2 (mf) being the relational spec A𝑥 ≈>
A𝑟𝑒𝑠𝑢𝑙𝑡 . The unary specs Φ0 (mf) and Φ1 (mf) are not relevant to this example.

We derive the judgment for (𝑡𝑎𝑏𝑢 |𝑡𝑎𝑏𝑢′) from a judgment with the same spec for the more

conveniently aligned biprogram𝐶𝐶𝑡𝑎𝑏𝑢 in Figure 16(c), in a way that will be justified in Section 4.5.

Several features of 𝐶𝐶𝑡𝑎𝑏𝑢 are important. First, its left and right syntactic projections are the two

commands, 𝑡𝑎𝑏𝑢 and 𝑡𝑎𝑏𝑢′, to be related; semantically it represents pairs of their executions, aligned

in a particular way. Second, the calls to mf are in the sync’d form, which signals that reasoning

is to be done using the relational spec of mf. A comment in the biprogram indicates that we get

agreement on 𝑝.𝑣𝑎𝑙 following the calls tomf(𝑖), in virtue of that spec. Similarly, the two allocations

are also in the sync’d form and followed by the connect ghost operation, achieving agreement on the

allocated references. In the proof system, there is a rule for sync’d allocations, with postcondition

that yields for example ^A𝑝 for the Node allocation. Using this rule (or the connect ghost operation)
is a good choice in the present example, but in general it is not necessary to connect allocations,

even if they happen to be aligned; this is important when relating programs that are not building

the same heap structure, or when proving noninterference and reasoning about branches with

tests that depend on secrets. Finally, the bi-while in 𝐶𝐶𝑡𝑎𝑏𝑢 signals that we reason in terms of

lockstep alignment of the loop iterations. This enables us to reason that the two executions are

building isomorphic pointer structures, using a relational invariant similar to the postcondition of

the relational spec (11), conjoined with a simple relation between the counter variables:

𝑖 − 1 ¥= 𝑖 ∧ A𝑛 ∧ A𝑡 ∧ A𝑡 .𝑛𝑑𝑠 ∧ A𝑡 .𝑛𝑑𝑠‘𝑛𝑥𝑡 ∧ A𝑡 .𝑛𝑑𝑠‘𝑣𝑎𝑙

The biprogram provides a convenient alignment but incurs an additional proof obligation: the

invariant must imply that the loop tests agree, as otherwise it would be unsound to assume the
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iterations can be considered to be aligned in lockstep. Indeed, the implication is valid: A𝑛 and

𝑖 − 1 ¥= 𝑖 implies 𝑖 < 𝑛 ¥= 𝑖 ≤ 𝑛.
In summary, this example shows biprograms express alignment of the programs under consider-

ation in order to facilitate procedure-modular reasoning using relational specs and to facilitate the

use of simpler relational invariants for loops. In passing we introduced ways to express relations

on pointer structures, abstracting from specific addresses (as appropriate for Java- and ML-like lan-

guages) and making it possible to specify relations where some parts of the heap are meant to have

isomorphic structure while other parts may be entirely different. There are at least two important

use cases for such differences: encapsulated data structures, when relating implementations of a

module interface, and structure manipulated by “secret” computations, when proving information

flow properties.

The example happens to work well with close alignment of the program structure and agreement

on all the data involved. The logic must handle aligned allocation in a loop, as in this example. It

must also handle differing allocations, for example to relate programs using different encapsulated

data representations. Differing allocations also arise when proving noninterference, in cases where

allocation occurs under high branch conditions.

The proof rules used to derive a relational modular linking rule like (3) make use of a general form

of local equivalence specification, derived from the frame condition of a unary spec (and defined in

Section 8.1). But it is also possible to express local equivalence notions suited to specific situations,

as in the example, and it is possible to work with differing program structures as illustrated in some

case studies (e.g., Figure 19 and Section 4.6).

4.5 Defining and using biprogram weaving for alignment

In this subsection we define the weaving relation on biprograms. The purpose of the weaving

relation is to connect a bi-com (𝐶 |𝐶′), that expresses a relational verification problem, with a

more tightly aligned version that facilitates reasoning. If (𝐶 |𝐶′) weaves to 𝐷𝐷 , written (𝐶 |𝐶′) ↬
𝐷𝐷 , then the syntactic projections of 𝐷𝐷 are 𝐶 and 𝐶′, so 𝐷𝐷 models executions of the two

commands. The weaving relation ↬ is used in a proof rule that realizes the product principle:

any judgment that holds for 𝐷𝐷 also holds for (𝐶 |𝐶′), given (𝐶 |𝐶′) ↬ 𝐷𝐷 . In general, weaving

brings together similarly structured subprograms, introducing additional alignment points while

preserving syntactic projections. In addition to defining the relation↬, the rest of this section

gives examples of its use, and sketches the semantic considerations that justify the proof rule and

explain the orientation of the relation.

The weaving relation ↬ is defined inductively by axioms and congruence rules in Figure 18.

The axioms replace a bi-com by another biprogram form including those that can assert agreements

(bi-if and bi-while). The congruence rules, displayed as one rule with multiple conclusions, allow

weaving in all contexts except the procedure bodies in bi-let. Apropos congruence for bi-let, note

that bi-let does not bind general biprograms but only pairs of commands despite the appearance of

the concrete syntax (see Figure 5).

The weaving that introduces bi-while allows the introduction of so-called alignment guards. The

biprogram 𝐶𝐶𝑡𝑎𝑏𝑢 omits them (Figure 16(c)), which is syntax sugar taking them to be false. As an

example of their use, later in this subsection we follow up on the example program (4) discussed in

Section 2.1, sketching the three-premise relational loop rule that enables verification of the example

using a simple invariant.

Example 4.5. The sequence weaving axiom (second line of Figure 18) can be used for an ex-

ample mentioned in Section 2.3, namely (c.val:= v | c.f:= −v); (return c.val | return −c.f). For the bi-com

(𝑎;𝑏; 𝑐 | 𝑑 ; 𝑒 ; 𝑓 ) (temporarily using lower case letters for atomic commands), there are four different
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(𝐴|𝐴) ↬ ⌊𝐴⌋
(𝐶;𝐷 | 𝐶′;𝐷′) ↬ (𝐶 |𝐶′); (𝐷 |𝐷′)
(if 𝐸 then 𝐶 else 𝐷 | if 𝐸′ then 𝐶′ else 𝐷′) ↬ if 𝐸 |𝐸′ then (𝐶 |𝐶′) else (𝐷 |𝐷′)
(while 𝐸 do 𝐶 | while 𝐸′ do 𝐶′) ↬ while 𝐸 |𝐸′ · P |P′ do (𝐶 |𝐶′)
(let𝑚 = 𝐵 in 𝐶 | let𝑚 = 𝐵′ in 𝐶′) ↬ let𝑚 = (𝐵 |𝐵′) in (𝐶 |𝐶′)
(var 𝑥 :𝑇 in 𝐶 | var 𝑥 ′:𝑇 ′ in 𝐶′) ↬ var 𝑥 :𝑇 |𝑥 ′:𝑇 ′ in (𝐶 |𝐶′)

𝐵𝐵 ↬ 𝐶𝐶

𝐵𝐵;𝐷𝐷 ↬ 𝐶𝐶;𝐷𝐷 𝐷𝐷 ;𝐵𝐵 ↬ 𝐷𝐷 ;𝐶𝐶 if 𝐸 |𝐸′ then 𝐵𝐵 else 𝐷𝐷 ↬ if 𝐸 |𝐸′ then 𝐶𝐶 else 𝐷𝐷

if 𝐸 |𝐸′ then 𝐷𝐷 else 𝐵𝐵 ↬ if 𝐸 |𝐸′ then 𝐷𝐷 else 𝐶𝐶

while 𝐸 |𝐸′ · P |P′ do 𝐵𝐵 ↬ while 𝐸 |𝐸′ · P |P′ do 𝐶𝐶 let𝑚 = (𝐵 |𝐵′) in 𝐵𝐵 ↬ let𝑚 = (𝐵 |𝐵′) in 𝐶𝐶
var 𝑥 :𝑇 |𝑥 ′:𝑇 ′ in 𝐵𝐵 ↬ var 𝑥 :𝑇 |𝑥 ′:𝑇 ′ in 𝐶𝐶

Fig. 18. Axioms and congruence rules that define the weaving relation ↬ . Recall 𝐴 ranges over atomic

commands (Figure 5).

result := new Pnode(val, key);

result.sibling := self.sntnl;

result.child := self.sntnl;

result.prev := self.sntnl;

self.rep := self.rep ∪ {result};

if (self.head = self.sntnl) then

self.head := result;

else

self.head := link(self,self.head,result);

fi;

self.size := self.size + 1;

⌊ result := new Pnode(val, key) ⌋;
( skip

| result.sibling := self.sntnl;

result.child := self.sntnl;

result.prev := self.sntnl );

⌊ self.rep := self.rep ∪ {result} ⌋;
if (self.head = null | self.head = self.sntnl) then

⌊ self.head := result ⌋;
else

⌊ self.head := link(self,self.head,result) ⌋;
fi;

⌊ self.size := self.size + 1 ⌋;

Fig. 19. Body of alternative implementation of PQ’s insert (left) and woven biprogram (right).

alignments that can be obtained by a single application of sequence weaving:
25

(𝑎;𝑏; 𝑐 |𝑑 ; 𝑒; 𝑓 ) ↬ (𝑎;𝑏 |𝑑); (𝑐 |𝑒; 𝑓 )
(𝑎;𝑏; 𝑐 |𝑑 ; 𝑒; 𝑓 ) ↬ (𝑎 |𝑑 ; 𝑒); (𝑏; 𝑐 |𝑓 )
(𝑎;𝑏; 𝑐 |𝑑 ; 𝑒; 𝑓 ) ↬ (𝑎;𝑏; 𝑐 |skip); (skip|𝑑 ; 𝑒; 𝑓 )
(𝑎;𝑏; 𝑐 |𝑑 ; 𝑒; 𝑓 ) ↬ (skip|𝑑 ; 𝑒; 𝑓 ); (𝑎;𝑏; 𝑐 |skip)

(12)

These weavings introduce a semicolon at the biprogram level, which makes it possible to assert a

relation at that point. Different weavings of the same biprogram serve to align different intermediate

points. □

Using the sequence axiom and congruence, we have (𝑎;𝑏; 𝑐 |𝑑 ; 𝑒; 𝑓 ) ↬ (𝑎 |𝑑); (𝑏; 𝑐 |𝑒; 𝑓 ) ↬
(𝑎 |𝑑); (𝑏 |𝑒); (𝑐 |𝑓 ) which illustrates how fine grained alignment can be achieved when desired.

We also have (𝑡𝑎𝑏𝑢 |𝑡𝑎𝑏𝑢′) ↬∗ 𝐶𝐶𝑡𝑎𝑏𝑢 which connects 𝑡𝑎𝑏𝑢, 𝑡𝑎𝑏𝑢′ to the particular alignment we

choose for reasoning about them.

As noted earlier, the bi-if and bi-while forms are meant to designate reasoning in which it will

be shown that the test conditions are in agreement. Technically, we define small step semantics

for biprograms, in which these forms can have a fault —dubbed alignment fault— if the tests

25
Keep in mind the syntactic equivalences in Figure 6, which enable these different weavings.
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are not in agreement. This can be seen as a kind of assertion failure. As an example, recall the

implementation of insert in the PQ module in Figure 4. Part of the alternate implementation using

sentinels (mentioned in Example 3.4) is shown in Figure 19. We weave the two conditionals using

a bi-if, which introduces the possibility of alignment fault. We can use this weaving because our

coupling relation will ensure that self .ℎ𝑒𝑎𝑑 = null in the left state just when self .ℎ𝑒𝑎𝑑 = self .𝑠𝑛𝑡𝑛𝑙

on the right.

Use of bi-if or bi-while incurs additional proof obligations that ensure the absence of alignment

fault, which in turn implies that the designated alignment covers all pairs of executions of the under-

lying programs. Theweaving transformations can introduce the bi-if and bi-while forms but not elim-

inate them; nor can they eliminate any other faults. For example, (if 𝑥 > 0 then 𝑦.𝑓 := 𝑥 else skip |
if 𝑥 > 0 then 𝑦.𝑓 := 𝑥 else skip) weaves to if 𝑥 > 0|𝑥 > 0 then (𝑦.𝑓 := 𝑥 | 𝑦.𝑓 := 𝑥) else ⌊skip⌋, not-
ing that (skip|skip) ≡ ⌊skip⌋. Both biprograms can fault due to null dereference, but the second

also faults in a pair of states where 𝑥 > 0 on one side but 𝑥 ≤ 0 on the other.

Suppose𝐷𝐷 can be obtained from𝐶𝐶 by a sequence of weavings, i.e.,𝐶𝐶 ↬∗ 𝐷𝐷 . The relation↬
can introduce the possibility of additional alignment faults, but it cannot eliminate such possibility.

In this sense,↬ is oriented (and not symmetric). A consequence is the following: if, under some

precondition, 𝐷𝐷 has no faults, then under that precondition the executions of 𝐷𝐷 cover all those

of 𝐶𝐶 . This is the gist of the argument for soundness of the following proof rule:

from 𝐵𝐵 : R ≈> S [𝜀] infer (𝐶 |𝐶′) : R ≈> S [𝜀] provided (𝐶 |𝐶′) ↬∗ 𝐵𝐵 (13)

(See rule rWeave in Figure 30.) It is this rule that yields a relational judgment for (𝑡𝑎𝑏𝑢 |𝑡𝑎𝑏𝑢′)
from the same judgment for 𝐶𝐶𝑡𝑎𝑏𝑢 (Figure 16).

T𝐴U =̂ ⌊𝐴⌋ (atomic commands)

T𝐶 ;𝐷U =̂ T𝐶U;T𝐷U
Tif 𝐸 then𝐶 else 𝐷U =̂ if 𝐸 |𝐸 then T𝐶U else T𝐷U
Twhile 𝐸 do𝐶U =̂ while 𝐸 |𝐸 · false |false do T𝐶U
Tlet𝑚 = 𝐵 in𝐶U =̂ let𝑚 = (𝐵 |𝐵) in T𝐶U
Tvar 𝑥 :𝑇 in𝐶U =̂ var 𝑥 :𝑇 |𝑥 :𝑇 in T𝐶U

Fig. 20. Full alignment.

In general a biprogram may admit several pos-

sible weavings. For the form (𝐶 |𝐶) relating 𝐶
to itself there is a biprogram that is maximal in

the sense that it allows to reason about two ex-

ecutions aligned in lockstep. We write T𝐶U for

the full alignment defined in Figure 20. Apro-

pos linking, we have (let 𝑚 = 𝐵 in 𝐶 | let 𝑚 =

𝐵′ in 𝐶) ↬∗ let 𝑚 = (𝐵 |𝐵′) in T𝐶U. Full align-
ment plays a key role in deriving the relational

modular linking rule that was sketched as (3) and

is formalized in Figure 31.

Lemma 4.6. (↼−𝐶𝐶 |−⇀𝐶𝐶) ↬∗ 𝐶𝐶 for any 𝐶𝐶 .

As a corollary, we have (𝐶 |𝐶) ↬∗ T𝐶U for any 𝐶 , because
↼−−
T𝐶U ≡ −−⇀T𝐶U ≡ 𝐶 .

Sumpub: illustrating conditionally aligned loops. For the tabulate example it is effective to reason

by aligning all iterations of the two loops in lockstep. This is not the case for program (4) in

Section 2.1, recalled here.

𝑠𝑢𝑚𝑝𝑢𝑏 : s:=0; p:=head; while p ≠ null do if p.pub then s:=s+p.val fi; p:=p.nxt od

It sums the elements of a list that are flagged public. It has an information flow property: the

output, in variable 𝑠 , depends only on the public elements of the input list. (This can be viewed as a

declassification or as a value-dependent classification [4].) Typically such properties are expressed

using a precondition of agreement on some expression which in this case should denote “the public

elements of the input list”.

As a pointer structure, the list can have cycles, so care needs to be taken in defining predicates

and functions. In the tabulate example we choose specs that do not involve inductively defined
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predicates or relations. Here, we inductively define a predicate 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, 𝑙𝑠) that says 𝑙𝑠 is the list
of values of the public elements in a null-terminated list from 𝑝 .

𝑝 = 𝑛𝑢𝑙𝑙 ⇒ 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, [])
𝑝 ≠ 𝑛𝑢𝑙𝑙 ∧ ¬𝑝.𝑝𝑢𝑏 ∧ 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝.𝑛𝑥𝑡, 𝑙𝑠) ⇒ 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, 𝑙𝑠)
𝑝 ≠ 𝑛𝑢𝑙𝑙 ∧ 𝑝.𝑝𝑢𝑏 ∧ 𝑝.𝑣𝑎𝑙 = ℎ ∧ 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝.𝑛𝑥𝑡, 𝑙𝑠) ⇒ 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, ℎ :: 𝑙𝑠)

We consider the following relational spec, eliding the frame condition for clarity. The bound

variables, 𝑙𝑠, 𝑙𝑠′ are of the math type int list.

∃𝑙𝑠 : int list | 𝑙𝑠′ : int list. ⟨[𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (ℎ𝑒𝑎𝑑, 𝑙𝑠)⟨] ∧ [⟩𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (ℎ𝑒𝑎𝑑, 𝑙𝑠′)]⟩ ∧ 𝑙𝑠 ¥= 𝑙𝑠′ ≈> A𝑠

The syntax of quantifiers in relation formulas explicitly designates left- and right-side variables,

which is important in case of reference or region type (since the values must be allocated in the

respective states). There is no need to use distinct names here, so we can use a more succinct

precondition for the spec: ∃𝑙𝑠 |𝑙𝑠 . B(𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (ℎ𝑒𝑎𝑑, 𝑙𝑠)) ∧ A𝑙𝑠 .
We want to prove that (𝑠𝑢𝑚𝑝𝑢𝑏 |𝑠𝑢𝑚𝑝𝑢𝑏) satisfies the relational spec. One way is to first prove

unary judgment 𝑠𝑢𝑚𝑝𝑢𝑏 : 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, 𝑙𝑠) { 𝑠 = 𝑠𝑢𝑚(𝑙𝑠), again treating 𝑙𝑠 as spec-only, and thus

universally quantified over the spec. A simple embedding rule (rEmb in Figure 30) lifts this to

(𝑠𝑢𝑚𝑝𝑢𝑏 |𝑠𝑢𝑚𝑝𝑢𝑏) : B(𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, 𝑙𝑠)) ≈> B(𝑠 = 𝑠𝑢𝑚(𝑙𝑠)). The relational frame rule lets us conjoin

agreement on 𝑙𝑠 , to get

(𝑠𝑢𝑚𝑝𝑢𝑏 |𝑠𝑢𝑚𝑝𝑢𝑏) : B(𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, 𝑙𝑠)) ∧ A𝑙𝑠 ≈> B(𝑠 = 𝑠𝑢𝑚(𝑙𝑠)) ∧ A𝑙𝑠

The postcondition implies A𝑠 , so we complete the proof using the relational consequence rule.

Lifting unary judgments is an important pattern of reasoning and is satisfactory for reasoning

about assignment commands including those in the tabulate example. But 𝑠𝑢𝑚𝑝𝑢𝑏 has a loop, so

this argument comes at the cost of proving functional correctness, i.e., the judgment 𝑠𝑢𝑚𝑝𝑢𝑏 :

𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, 𝑙𝑠) { 𝑠 = 𝑠𝑢𝑚(𝑙𝑠). Finding a loop invariant is not difficult in this case, but it would be if

sum is replaced by a sufficiently complex computation.

There is an alternative proof of the relational spec that avoids functional correctness, using for

the loops a simple relational invariant:

∃𝑥𝑠 |𝑥𝑠. B(𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, 𝑥𝑠)) ∧ A𝑥𝑠 ∧ A𝑠 (14)

We verified the example usingWhyRel, and instead of asking the solvers to handle the existential we

used the standard technique: 𝑥𝑠 on each side is a ghost variable, initialized based on the precondition

and explicitly updated as appropriate.

The point of this example is that this simple invariant only suffices if we align the iterations

judiciously. In case 𝑝.𝑝𝑢𝑏 holds on both left and right, we take a lockstep iteration, i.e., both sides

execute the loop body, and it is straightforward to show the invariant holds afterwards using the

last clause in the definition of 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 and the fact that A𝑥𝑠 , i.e., equality of the mathematical lists,

implies agreement on their tails. If 𝑝𝑢𝑏 is true on one side but not the other, lockstep iteration does

not preserve (14). However, if 𝑝.𝑝𝑢𝑏 is false on the left, 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝, 𝑥𝑠) implies 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 (𝑝.𝑛𝑥𝑡, 𝑥𝑠),
and executing the body just on the left maintains the relation (14). Notice (14) does not include

agreement on 𝑝; indeed the precondition requires no agreement on references. Mutatis mutandis

on the right side. To express this reasoning, we weave (𝑠𝑢𝑚𝑝𝑢𝑏 |𝑠𝑢𝑚𝑝𝑢𝑏) to this biprogram:

(𝑠 := 0;𝑝 := ℎ𝑒𝑎𝑑 | 𝑠 := 0;𝑝 := ℎ𝑒𝑎𝑑);
while 𝑝 ≠ null | 𝑝 ≠ null . ⟨[¬𝑝.𝑝𝑢𝑏⟨] | [⟩¬𝑝.𝑝𝑢𝑏]⟩ do

( if 𝑝.𝑝𝑢𝑏 then 𝑠 := 𝑠 + 𝑝.𝑣𝑎𝑙 fi;𝑝 := 𝑝.𝑛𝑥𝑡

| if 𝑝.𝑝𝑢𝑏 then 𝑠 := 𝑠 + 𝑝.𝑣𝑎𝑙 fi; 𝑝 := 𝑝.𝑛𝑥𝑡 ) od

(15)
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Although the program is being related to itself, we do not bother to fully align the initialization or

loop body: these do not involve allocation or method calls, so reasoning about those parts of the

code is straightforward. For this reason, some uses of sync in Figure 16(c) could as well be bi-coms.

What is important is to use a bi-while. For loop alignment guards we choose the relation formulas

⟨[¬𝑝.𝑝𝑢𝑏⟨] and [⟩¬𝑝.𝑝𝑢𝑏]⟩. The alignment guards are used in the proof rule for bi-while, which has

the following form.

⊢ 𝐶𝐶 : Q ∧ ¬P ∧ ¬P′ ∧ ⟨[𝐸⟨] ∧ [⟩𝐸′]⟩ ≈> Q ⊢ (↼−𝐶𝐶 |skip) : Q ∧ P ∧ ⟨[𝐸⟨] ≈> Q
⊢ (skip|−⇀𝐶𝐶) : Q ∧ P′ ∧ [⟩𝐸′]⟩ ≈> Q Q ⇒ 𝐸 ¥= 𝐸′ ∨ (P ∧ ⟨[𝐸⟨]) ∨ (P′ ∧ [⟩𝐸′]⟩)

⊢ while 𝐸 |𝐸′ · P |P′ do 𝐶𝐶 : Q ≈> Q ∧ ⟨[¬𝐸⟨] ∧ [⟩¬𝐸′]⟩
(16)

This rule has omissions! For clarity we omit details not relevant to the current discussion: frame

conditions, hypothesis context, and side conditions that enforce encapsulation and immunity. The

encapsulation condition is discussed later and is lifted from the unary logic, as is immunity, a

technical condition needed for stateful frame conditions (adapted unchanged from RLI).

In the rule, Q is the relational loop invariant, like (14) in the example. The three premises cover

a lockstep iteration, a left-side iteration, and a right-side iteration. The one-sided iterations are

expressed using the syntactic projectionmetafunctions (Figure 13) to obtain unary commands. In the

example the two projections of the loop body are the same, namely if p.pub then s := s+p.val; fi; p := p.nxt.

In each premise the invariant must be preserved, but each has a strengthened precondition based

on the alignment guards. For the example, the first premise applies when both sides are at a public

element. The second (resp. third) premise applies when the element on the left (resp. right) is not

public. Besides alignment guards, the premises include the loop tests in the usual way, as does the

conclusion of the rule.

The side condition, Q ⇒ 𝐸 ¥= 𝐸′ ∨ (P ∧ ⟨[𝐸⟨]) ∨ (P′ ∧ [⟩𝐸′]⟩), ensures that for any initial states

satisfying Q, at least one of the three premises is applicable. The reader can confirm that the side

condition holds in the example, and thus the rule can be used to carry out the proof as described.

As another example, for tabulate in Figure 16(c) we use false alignment guards, so the one-sided

premises hold trivially and the side condition simplifies to the implication mentioned earlier: the

invariant implies agreement on loop tests. That is, 𝑖 − 1 ¥= 𝑖 ∧ A𝑛 ⇒ 𝑖 < 𝑛 ¥= 𝑖 ≤ 𝑛.
The biprogram syntax allows P and P′ to be relation formulas, but it happens that in the example

⟨[¬𝑝.𝑝𝑢𝑏⟨] only constrains the left state and the other alignment guard constrains the right state.

As stated in Section 3.1, P and P′ are not allowed to have agreement formulas; it is not evident

what refperm would be used to interpret agreements in such a context.

4.6 Relational reasoning with hiding and encapsulation

Having illustrated general relational reasoning (Sections 4.4 and 4.5) and the use of dynamic framing

for encapsulation in unary reasoning (Section 3.5), we now illustrate encapsulation in relational

reasoning. In doing so we sketch how requirements (E1)–(E4) adapt to the relational setting.

In Section 3.5 we considered the verification of a client linked with a quick-find implementa-

tion of UnionFind, hiding the private invariant. Here we consider two implementations of that

interface and consider a more interesting client: an implementation,𝑀𝑆𝑇 , of Kruskal’s minimum

spanning tree algorithm. For a second implementation of UnionFind we consider the quick-union

data structure [88].

The goal is to prove a relational property: equivalence of the two programs made by linking𝑀𝑆𝑇

with the two module implementations. To do so we use relational modular linking, as sketched

in the rule (3), hiding a coupling relation between the two implementations which includes their

private invariants. To use the rule we do the following.
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(i) Prove a unary judgement for 𝑀𝑆𝑇 , with the UnionFind specs in context. As explained in

Section 3.5, this ensures that 𝑀𝑆𝑇 respects the boundary of UnionFind, as per requirement

(E3).

(ii) Define a coupling relation M𝑢𝑓 to connect the encapsulated data structures of the two

implementations of UnionFind. Show that it is framed by the dynamic boundary, as per

requirement (E2), and follows from the𝑀𝑆𝑇 precondition, as per (E4).

(iii) For the two bodies 𝐵, 𝐵′ that provide alternate implementations of find, prove a relational

judgment for (𝐵 |𝐵′) (and likewise for the implementations of union). The specification should

express local equivalence, but withM𝑢𝑓 conjoined to the pre- and postcondition.

It then follows that the two linkages satisfy a local equivalence property, specifically a relational

spec that is derived by a general construction from the unary spec of𝑀𝑆𝑇 . Similar to the relational

spec of tabulate in Section 4.4, it requires agreement on inputs and ensures agreement on outputs.

But encapsulation must be taken into account: the two linkages will be equivalent in terms of

client-visible inputs and outputs, but the encapsulated data structures are different. More on this

later.

For item (i), we choose𝑀𝑆𝑇 for the sake of a nontrivial example, but we do not use a functional

correctness spec, i.e., we do not specify that it produces a minimum spanning tree. All we need is

a precondition under which 𝑀𝑆𝑇 does not fault, and a frame condition. The global variables of

𝑀𝑆𝑇 are 𝑔 of type Graph and 𝑒𝑠 of type List. For simplicity, 𝑔 is an abstract mathematical graph; 𝑒𝑠

references a list like that used in Section 4.4. The graph interface provides an enumeration of edges

and𝑀𝑆𝑇 produces, in 𝑒𝑠 , a list of edge numbers for edges in the spanning tree.

numVerts(𝑔) > 0 ∧ 𝑝𝑜𝑜𝑙 = ∅ { true [rd𝑔; rw 𝑒𝑠, alloc, 𝑝𝑜𝑜𝑙, (𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝)‘any] (17)

Note that the effects here include effects produced by call to UnionFind methods. We verify the

judgment Φ𝑢𝑓 ⊢• 𝑀𝑆𝑇 : 𝑠𝑝𝑒𝑐 where 𝑠𝑝𝑒𝑐 is (17) and Φ𝑢𝑓 has the public specs of find and union, i.e.,

without the private invariants. The current module is •, the default module with empty boundary.

The local equivalence spec for the two linked programs is derived, by a general construction

called locEq, based on the frame condition of a unary spec, and the dynamic boundaries of the

modules in scope. In the example there is just one module with a nontrivial boundary, UnionFind;

math modules like Graph have empty boundaries. Agreements in the precondition are derived

directly from the read effects and boundary, using the effect subtraction operator that excludes

from agreement the encapsulated locations. In this example, the relational precondition is

B(numVerts(𝑔) > 0 ∧ 𝑝𝑜𝑜𝑙 = ∅) ∧ B(𝑠alloc = alloc) ∧ A𝑒𝑠

The conjunct B(𝑠alloc = alloc) introduces snapshot variable 𝑠alloc to be used in the postcondition

to express freshness. The agreement A𝑒𝑠 is in simplified form. The general construction takes

the read effect, rd 𝑒𝑠, alloc, 𝑝𝑜𝑜𝑙, (𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝)‘any and subtracts the boundary rd𝑝𝑜𝑜𝑙, (𝑝𝑜𝑜𝑙 ∪
𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝)‘any and alloc, which results in the effect rd 𝑒𝑠, ((𝑝𝑜𝑜𝑙 ∪𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝)\(𝑝𝑜𝑜𝑙 ∪𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝))‘any
which trivially simplifies to rd 𝑒𝑠,∅‘any and then to rd 𝑒𝑠 .

What about agreements for a postcondition? In general a command may write preexisting

locations and allocate new ones. In this case the only preexisting locations that are writable

are the variables 𝑒𝑠 and alloc, so the postcondition includes A𝑒𝑠 . (In general, to handle writable

heap locations the general definition of locEq uses snapshots of the relevant expressions in write

effects; for details see Section 8.1.) To handle fresh locations, locEq uses the snapshot 𝑠alloc in

the way described in Section 3.5: the fresh references are alloc\𝑠alloc so the fresh locations are

(alloc\𝑠alloc)‘any. Again, effect subtraction is used to exclude alloc and the boundary. The resulting

agreement is A((alloc\𝑠alloc)\(𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝))‘any.
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In summary the local equivalence spec that we get from (17) for𝑀𝑆𝑇 is

B(numVerts(𝑔) > 0 ∧ 𝑝𝑜𝑜𝑙 = ∅) ∧ B(𝑠alloc = alloc) ∧ A𝑒𝑠
≈> ^(B(true) ∧ A𝑒𝑠 ∧ A((alloc\𝑠alloc)\(𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝))‘any) [. . .]

(18)

If one simply wants to know that the new and old versions of the program are the same, aside from

encapsulated state, this is enough. By construction, the locEq spec requires agreement on what the

program can read and ensures agreement on its results.

In this particular case, to obtain a more explicit postcondition that refers to the list constructed,

we can do as follows. First, strengthen the unary postcondition from true to something like

𝑒𝑠.ℎ𝑒𝑎𝑑 ∈ 𝑒𝑠.𝑛𝑑𝑠 ∧ 𝑒𝑠.𝑛𝑑𝑠‘𝑛𝑒𝑥𝑡 ⊆ 𝑒𝑠.𝑛𝑑𝑠 ∧ ({𝑒𝑠} ∪ 𝑒𝑠.𝑛𝑑𝑠) ⊆ (alloc\𝑠alloc) which expresses the

closure of 𝑛𝑑𝑠 and the freshness of the list (see Section 4.4). The relational spec (18) then changes

to have these conditions in place of true. Then using the rule of consequence and reasoning about

sets, we get A𝑒𝑠.𝑛𝑑𝑠‘𝑛𝑒𝑥𝑡 and A𝑒𝑠.𝑛𝑑𝑠‘𝑣𝑎𝑙 much like in the tabulate example.

For item (ii), as expected since Hoare‘72, the coupling relationM𝑢𝑓 conjoins a relational formula

that connects the two implementations, together with the two private invariants. In particular,

M𝑢𝑓 is ⟨[𝐼𝑞𝑓 ⟨] ∧ [⟩𝐼𝑞𝑢 ]⟩ ∧ . . ., where 𝐼𝑞𝑓 is the invariant discussed in Sec. 3.5, and 𝐼𝑞𝑢 is the private

invariant of the quick-union implementation. The two implementations have similar internal data

structure, in the sense that both use an array to represent an up-pointing tree, but quick-find and

quick-union manipulate the tree quite differently. To specify the connection between the two data

structures, the third conjunct ofM𝑢𝑓 is this formula:

A𝑝𝑜𝑜𝑙 ∧ ∀𝑢 : Ufind ∈ 𝑝𝑜𝑜𝑙 |𝑢 : Ufind ∈ 𝑝𝑜𝑜𝑙 . A𝑢 ⇒ 𝑒𝑞𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(⟨[𝑢.𝑝𝑎𝑟𝑡 ⟨], [⟩𝑢.𝑝𝑎𝑟𝑡 ]⟩) (19)

This says the two pools are in agreement, and for corresponding elements 𝑢 in the pool, the abstract

partition 𝑢.𝑝𝑎𝑟𝑡 on the left side is an equivalent partition to the one on the right. This means they

have the same blocks. This coupling uses a common idiom. The coupling relation is defined using a

mathematical abstraction: the two data structures are related if they have the same abstraction.

This idiom is especially suitable if the two data structures are very different. By contrast, in our two

implementations of PQ we consider two similar pointer structures and for their coupling we use

agreement formulas to describe fine-grained correspondence between the two pointer structures;

see Example 4.3.

To show thatM𝑢𝑓 is framed by the boundary, the technique is essentially the same as for unary

framing of an invariant (Section 3.5). The difference is that here we consider a pair of states that

satisfyM𝑢𝑓 , and a second pair where the two left (resp. right) states agree on locations within the

boundary, to show the second pair satisfiesM𝑢𝑓 . Given a suitable representation of states, as in

our prototype, the implication is easily checked by SMT solvers.

The last part of item (ii) is thatM𝑢𝑓 is implied by the precondition of the client spec, in this case

(17). To be precise, it is an implication at the level of relations: B(𝑛𝑢𝑚𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 (𝑔) > 0 ∧ 𝑝𝑜𝑜𝑙 =
∅) ⇒ M𝑢𝑓 . It holds owing to 𝑝𝑜𝑜𝑙 = ∅.
For item (iii), for each method we verify the local equivalence spec derived from the method’s

unary spec, withM𝑢𝑓 conjoined to pre- and postcondition. For example, the frame condition of

union is [rw ({self } ∪ self .𝑟𝑒𝑝)‘any], and its parameters are self , 𝑥,𝑦. Based on this, locEq uses a

precondition based on the agreement Aself ∧ A𝑥 ∧ A𝑦 ∧ A({self } ∪ self .𝑟𝑒𝑝)‘any. A snapshot

variable 𝑠 is used in precondition B𝑠 = {self }∪ self .𝑟𝑒𝑝 so the postcondition can express agreement

on writables by A𝑠‘any, in addition to agreement on fresh locations as described for𝑀𝑆𝑇 . Recall

that locEq then subtracts locations within the boundary; it is not agreement that we want for those

locations, but rather the connection expressed byM𝑢𝑓 .

The implementations of union and find are fairly different. For quick-find, the union operation

eagerly updates “parents” so find takes constant time. For quick-union, find has to traverse multiple
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parents to reach the representative element. To prove the relational judgments for the method

bodies, we use biprograms that are not tightly woven. The corresponding implementations are not

very similar and are not making external calls or doing allocation, so there is little motivation for

close alignment the way there is for the tabulate example.

More details about the 𝑀𝑆𝑇 verification can be found in Section 9. For now we review why

relational modular linking —shown in (3) and formalized in rule rMLink in Figure 31— is sound. In

other words, why do (i)–(iii) suffice to prove equivalence of the linkages? Intuitively, the coupling

is preserved by client steps owing to encapsulation, just like private invariants in the unary case.

This is formalized by a relational version of the SOF rule, called rSOF. For that rule to be sound,

the client needs to be aligned so that context calls can be sync’d (like the call to𝑚𝑓 in the tabulate

example) so a relational spec can be used —namely a local equivalence spec conjoined with the

coupling relation. So rule rSOF applies to the full alignment of some command, and its premise is

that this fully aligned biprogram satisfies a local equivalence spec. This we obtain from the unary

judgment of (i), by a rule which lifts a unary judgment to a relational one for the local equivalence

derived from the unary spec (rule rLocEq in Figure 30). It relates the command to itself, expressing

the dependency property of its read effect as a relational judgment.

Notations to conjoin couplings. To conclude this section, we define a metafunction that conjoins a

relation to a relational spec; this is used to formulate rSOF and the modular linking rule. It is based

on a similar metafunction, ? , which applies to a unary spec and a unary invariant 𝐼 :

(𝑅 { 𝑆 [𝜂]) ? 𝐼 =̂ 𝑅 ∧ 𝐼 { 𝑆 ∧ 𝐼 [𝜂] (20)

This lifts to an operation on unary contexts, written Φ? 𝐼 , by mapping ?𝐼 over the specs in Φ.
For relation formulaM, the operation ?M conjoinsM to a relational spec. The operation only

applies to relational specs in the standard form, meaning that ^ occurs only outermost on the

postcondition, or not at all.

Definition 4.7 (conjoin coupling ?M ). If R and S are ^-free then

(R ≈> ^S [𝜂]) ?M =̂ R ∧M ≈> ^(S ∧M) [𝜂]
(R ≈> S [𝜂]) ?M =̂ R ∧M ≈> S ∧M [𝜂]

For context Φ, let Φ?M conjoinM to the specs in Φ2 and for the unary specs give Φ0 ?
↼−M and

Φ1 ?
−⇀M. In other words, (Φ0,Φ1,Φ2) ?M is (Φ0 ?

↼−M, Φ1 ?
−⇀M, Φ2 ?M).

Note that Φ?M is only defined if the specs in Φ2 are in standard form, and then so is the result.

5 SEMANTICS OF PROGRAMS AND UNARY CORRECTNESS

For a correctness judgment Φ ⊢Γ
𝑀
𝐶 : 𝑃 { 𝑄 [𝜀], an informal sketch of the semantics is given

preceding Def. 3.3. Tomake it precise we use transition semantics, so we can formulate the semantics

of encapsulation in terms of the module in which a given step is taken, initially module 𝑀 . To

express modular correctness with respect to assumed specs, a context call makes a single step

to the result of the call, given by a context model 𝜑 which provides denotations that satisfy the

specifications of the hypothesis context Φ. Transitions go to fault,  , in case of runtime failure

(null dereference). Fault is also used to represent precondition violation in context calls.
26

A pre-model provides method denotations that do not necessarily satisfy specs; the transition

relation
𝜑↦−→ is defined for any pre-model 𝜑 .

26
One could distinguish between these two kinds of faults using different tokens, as done in RLII. Here we would need a

third kind, for alignment fault. But the correctness judgments disallow all three kinds, so for simplicity we conflate them.
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𝜎 (𝐸1 ⊗ 𝐸2) =̂ 𝜎 (𝐸1) ⊗ 𝜎 (𝐸2) where ⊗ is in {=, ≤, +, . . . }
𝜎 ({𝐸}) =̂ {𝜎 (𝐸)}
𝜎 (∅) =̂ ∅
𝜎 (𝐺1 ⊗ 𝐺2) =̂ 𝜎 (𝐺1) ⊗ 𝜎 (𝐺2) where ⊗ is in {∪,∩, \}
𝜎 (𝐺/𝐾) =̂ {𝑜 | 𝑜 ∈ 𝜎 (𝐺) ∧ 𝑜 ≠ null ∧ Type(𝑜, 𝜎) = 𝐾}
𝜎 (𝐺‘𝑓 ) =̂ ∅ if 𝑓 :int (or any primitive type)

=̂ {𝜎 (𝑜.𝑓 ) | 𝑜 ∈ 𝜎 (𝐺) ∧ 𝑜 ≠ null ∧ Type(𝑜, 𝜎) = DeclClass(𝑓 )} if 𝑓 :𝐾 for some 𝐾

=̂
⋃{𝜎 (𝑜.𝑓 ) | 𝑜 ∈ 𝜎 (𝐺) ∧ 𝑜 ≠ null ∧ Type(𝑜, 𝜎) = DeclClass(𝑓 )} if 𝑓 :rgn

Fig. 21. Semantics 𝜎 (𝐹 ) of selected program and region expressions (r-values), for state 𝜎 .

For readers familiar with O’Hearn et al [77] or RLII, we note that unlike those works here we

cannot use a single “most nondeterministic” denotation. We need context models to be quasi-

deterministic, in accord with the ∀∀-interpretation of relational correctness for deterministic

programs.

This section spells out the details, which are somewhat intricate. The most important and novel

part is the semantics of encapsulation, a condition called Encap in the semantics of correctness

judgments (Def. 5.10). Some readers may wish to skip to Section 6, after skimming Sections 5.1

and 5.2.

5.1 States, expressions, method environments and configurations

Assume given an infinite set Ref of references, disjoint from the integers, with distinguished

element null. A Γ-state comprises a finite heap and a type-respecting assignment of values to

the variables in Γ. We confine attention to contexts Γ that include the special variable alloc. We

write 𝜎 (𝑥) to look up the value of 𝑥 in state 𝜎 . In particular, 𝜎 (alloc) is the finite set of allocated
references. Any reference 𝑜 ∈ 𝜎 (alloc) has a class 𝐾 , which we write as Type(𝑜, 𝜎).
A location is either a variable 𝑥 or a heap location 𝑜.𝑓 , where we write 𝑜.𝑓 for the pair (𝑜, 𝑓 )

of a non-null reference 𝑜 and field name 𝑓 . For any state 𝜎 , define the set of its locations by

locations(𝜎) =̂ Vars(𝜎) ∪ {𝑜.𝑓 | 𝑜 ∈ 𝜎 (alloc) ∧ 𝑓 ∈ Fields(Type(𝑜, 𝜎))}

The heap provides a type-respecting assignment of values to heap locations. We write 𝜎 (𝑜.𝑓 ) for
the value of field 𝑓 of allocated reference 𝑜 . Type-respecting means that if Type(𝑜, 𝜎) is 𝐾 and 𝑓 : 𝑇

is in Fields(𝐾) then 𝜎 (𝑜.𝑓 ) is in J𝑇 K𝜎 . We write J𝑇 K𝜎 for the values of type 𝑇 in state 𝜎 . In the

case of a reference type 𝐾 , define J𝐾 K𝜎 by

J𝐾 K𝜎 =̂ {null} ∪ {𝑜 ∈ 𝜎 (alloc) | Type(𝑜, 𝜎) = 𝐾}

Define J rgn K𝜎 to be P(𝜎 (alloc) ∪ {null}). We write J Γ K for the set of Γ-states.
The transition semantics of a command typed in Γ may introduce additional variables for local

blocks, so it is convenient to define Vars(𝜎) to be the variables of the state. We write [𝜎+𝑥 : 𝑣] to
extend the state with additional variable 𝑥 with value 𝑣 , and [𝜎 | 𝑥 : 𝑣] to override the value of 𝑥

that is already in Vars(𝜎). We write 𝜎↾𝑥 to remove 𝑥 from the domain of 𝜎 .

We write 𝜎 (𝐹 ) for the value of expression 𝐹 . The semantics of program expressions 𝐸 and region

expressions 𝐺 is in Figure 21. (To be very precise, the semantics of expressions is defined on a

typing Γ ⊢ 𝐹 : 𝑇 , such that 𝜎 (𝐹 ) is in J𝑇 K𝜎 .) The syntax is designed to avoid undefinedness. We

are not formalizing arithmetic operators that can fail, there are no dangling pointers, and program

expressions 𝐸 do not depend on the heap. Region expressions can depend on the heap, in the case

of images𝐺 ‘𝑓 , and they are defined in any state. If 𝑓 :𝐾 for some 𝐾 , then 𝜎 (𝐺 ‘𝑓 ) is the set of values
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of the 𝑓 fields of objects in 𝜎 (𝐺). If 𝑓 :int then 𝜎 (𝐺 ‘𝑓 ) is empty. Finally, for 𝑓 :rgn, 𝜎 (𝐺 ‘𝑓 ) is the
union of the regions 𝜎 (𝑜.𝑓 ) for 𝑜 in 𝜎 (𝐺).

Transitions relate configurations of the form ⟨𝐶, 𝜎, 𝜇⟩. The environment 𝜇 maps method names

to commands. The empty environment is written _. In a configuration, the command𝐶 may include

the pseudo-commands: ecall(𝑚) ends the code of a call to method𝑚, evar(𝑥) ends the scope of a
local variable, and elet(𝑚) ends the scope of some methods𝑚 (arising from simultaneous binding

let𝑚=𝐵 in𝐶). The pseudo-commands do not occur in source programs. The code of a configuration

thus takes a form that represents the execution stack for environment calls:

𝐶𝑛 ; ecall(𝑚𝑛); . . . ;𝐶1; ecall(𝑚1);𝐶0 where 𝑛 ≥ 0 and each 𝐶𝑖 is ecall-free.

So the leftmost command𝐶𝑛 is on top of the stack and𝑚𝑛 is the leftmost environment call. We write

Active(𝐶) for the active command (which one might call the redex), i.e., the unique sub-command

that gets rewritten by the applicable transition rule.
27
For example, Active(𝑥 := 0;𝑦 := 1) is 𝑥 := 0.

To formalize the semantics of encapsulation we need to refer to themodule of the active command:

it must stay outside the boundary of every module except its own. So we define the top module
topm(𝐶,𝑀) to be 𝑁 where 𝑁 = mdl(𝑚𝑛) and𝑚𝑛 is the leftmost environment call (see above), or𝑀

if 𝐶 has no ecall (i.e., 𝑛 = 0). This is used in Def. 5.10 where the argument𝑀 is from the judgment

under consideration. In Def. 5.10 we also write 𝑁 ∈ (Φ, 𝜇), for hypothesis context Φ and method

environment 𝜇, to mean there is𝑚 ∈ dom (Φ) ∪ dom (𝜇) with mdl(𝑚) = 𝑁 .

For an empty method context, the transition relation is standard (Figure 34). For non-empty

contexts the transition relation depends on a pre-model, which is defined in terms of the semantics

of specs, to which we proceed.

5.2 Semantics of state predicate formulas and effects

Satisfaction of formula 𝑃 in state 𝜎 is written 𝜎 |= 𝑃 . The semantics of formulas is standard and two-

valued. The points-to relation 𝑥 .𝑓 = 𝐸 is defined by 𝜎 |= 𝑥 .𝑓 = 𝐸 iff 𝜎 (𝑥) ≠ null and 𝜎 (𝜎 (𝑥).𝑓 ) =
𝜎 (𝐸). The type predicate is defined by𝜎 |= type(𝐺,𝐾) iff Type(𝑜, 𝜎) ∈ 𝐾 for all𝑜 ∈ 𝜎 (𝐺). Quantifiers
for reference types range over allocated (thus non-null) references: 𝜎 |= ∀𝑥 : 𝐾. 𝑃 iff [𝜎+𝑥 :𝑜] |= 𝑃
for all 𝑜 ∈ 𝜎 (alloc) with Type(𝑜, 𝜎) = 𝐾 .

Lemma 5.1 (uniqe snapshots). If 𝑃, Γ, Γ̂ satisfy the condition for precondition 𝑃 in Def. 3.2

then for all Γ-states 𝜎 there is at most one (Γ, Γ̂)-state �̂� that extends 𝜎 such that �̂� |= 𝑃 .

In contexts where we consider a precondition 𝑃 and suitable state 𝜎 , we adopt the hat convention
of writing �̂� for the extension of 𝜎 uniquely determined by 𝜎 and 𝑃 as in Lemma 5.1.

For an effect 𝜀 in a given state 𝜎 , its read effects designate a set rlocs(𝜎, 𝜀) of locations. Specifically,
it is the set of l-values of the left-expressions in its read effects:

rlocs(𝜎, 𝜀) =̂ {𝑥 | 𝜀 contains rd𝑥} ∪
{𝑜.𝑓 | 𝜀 contains some rd𝐺 ‘𝑓 with 𝑜 ∈ 𝜎 (𝐺), 𝑜 ≠ null, 𝑓 ∈ Fields(Type(𝑜, 𝜎)) }

Define wlocs(𝜎, 𝜀) the same way but for the l-values in write effects. Note that for an effect of the

form rd𝐺 ‘𝑓 the definition of rlocs uses the r-value 𝜎 (𝐺) (Figure 21) where 𝐺 may itself involve

images. These functions are used in the key lemma about effect subtraction (see (7)).

Lemma 5.2 (subtraction). rlocs(𝜎, 𝜀\𝜂) = rlocs(𝜎, 𝜀)\rlocs(𝜎, 𝜂) and the same for wlocs.

27
We identify sequentially composed commands up to associativity (Figure 6) so Active (𝐶 ) can be defined as the leftmost

non-sequence command of a sequence.
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For use in the semantics of write effects, define the locations of 𝜎 that have been changed in 𝜏 as

wrttn(𝜎, 𝜏) =̂ {𝑥 | 𝑥 ∈ Vars(𝜎)∩Vars(𝜏)∧𝜎 (𝑥) ≠ 𝜏 (𝑥)}∪{𝑜.𝑓 | 𝑜.𝑓 ∈ locations(𝜎)∧𝜎 (𝑜.𝑓 ) ≠ 𝜏 (𝑜.𝑓 )}

This captures the variables still in scope that have been changed, together with changed heap

locations.
28
Say 𝜏 can succeed 𝜎 , written 𝜎 ↩→ 𝜏 , provided 𝜎 (alloc) ⊆ 𝜏 (alloc) and Type(𝑜, 𝜎) =

Type(𝑜, 𝜏) for all 𝑜 ∈ 𝜎 (alloc). Say 𝜀 allows change from 𝜎 to 𝜏 , in symbols 𝜎→𝜏 |= 𝜀 , iff 𝜎 ↩→ 𝜏

and wrttn(𝜎, 𝜏) ⊆ wlocs(𝜎, 𝜀). The locations of 𝜏 not present in 𝜎 are designated by freshL(𝜎, 𝜏).
Define freshRefs(𝜎, 𝜏) =̂ 𝜏 (alloc)\𝜎 (alloc) and

freshL(𝜎, 𝜏) =̂ {𝑝.𝑓 | 𝑝 ∈ freshRefs(𝜎, 𝜏) ∧ 𝑓 ∈ Fields(Type(𝑝, 𝜏))} ∪ Vars(𝜏)\Vars(𝜎)

Read effects and refperms. Read effects constrain the locations on which the outcome of a com-

putation can depend. Dependency is expressed by considering two initial states that agree on

the values in the locations deemed readable, though the states may differ on the values in other

locations. Agreement between a pair of states needs to take into account variation in allocation, as

the relevant pointer structure in the two states may be isomorphic but involve differently chosen

references. Such variation must also be taken into account in relation formulas, as in Example 4.3.

For use with both read effects and relation formulas, agreements are formalized using refperms, as

mentioned in Section 2.3.

Let 𝜋 range over partial bijections on Ref \{null}, i.e., injective partial functions. Write 𝜋 (𝑝) =
𝑝′ to express that 𝜋 is defined on 𝑝 and has value 𝑝′. A refperm from 𝜎 to 𝜎 ′ is a partial bijection 𝜋
such that 𝑑𝑜𝑚(𝜋) ⊆ 𝜎 (alloc), rng (𝜋) ⊆ 𝜎 ′ (alloc), and 𝜋 (𝑝) = 𝑝′ implies Type(𝑝, 𝜎) = Type(𝑝′, 𝜎 ′).
Define 𝑝

𝜋∼ 𝑝′ to mean 𝜋 (𝑝) = 𝑝′ or 𝑝 = null = 𝑝′. Extend
𝜋∼ to a relation on integers by 𝑖

𝜋∼ 𝑗 iff
𝑖 = 𝑗 . For reference sets𝑋,𝑌 , define𝑋

𝜋∼ 𝑌 to mean that 𝜋∪{(null, null)} restricts to a total bijection
between 𝑋 and 𝑌 . The image of 𝜋 on location set𝑊 is written 𝜋 (𝑊 ) and defined for variables and

heap locations by two conditions: 𝑥 ∈ 𝜋 (𝑊 ) iff 𝑥 ∈ 𝑊 , and 𝑜.𝑓 ∈ 𝜋 (𝑊 ) iff (𝜋−1 (𝑜)) .𝑓 ∈ 𝑊 . In

words: variables map to themselves, and a heap location 𝑝.𝑓 is transformed by applying 𝜋 to the

reference 𝑝 .

Next we define notations for agreement between states. Agreement is formalized in terms of a

condition which applies to two states together with a refperm and a subset𝑊 of the locations of 𝜎 .

The location agreement Lagree(𝜎, 𝜎 ′, 𝜋,𝑊 ) holds just if𝑊 is a set of locations of 𝜎 and for each

of these locations, the contents in 𝜎 is the same as the contents of the location that corresponds

according to 𝜋 . Of course “same as” is modulo 𝜋 , for reference values.

Definition 5.3 (agreement on a location set, Lagree). For𝑊 a set of locations in 𝜎 , and 𝜋 a

refperm from 𝜎 to 𝜎 ′, define

Lagree(𝜎, 𝜎 ′, 𝜋,𝑊 ) iff ∀𝑥 ∈𝑊 . 𝜎 (𝑥) 𝜋∼ 𝜎 ′ (𝑥) ∧ ∀(𝑜.𝑓 ) ∈𝑊 . 𝑜 ∈ 𝑑𝑜𝑚(𝜋) ∧ 𝜎 (𝑜.𝑓 ) 𝜋∼ 𝜎 ′ (𝜋 (𝑜).𝑓 )

This is defined for any𝑊 ⊆ locations(𝜎). Agreement is monotonic in the refperm, in the sense

that

Lagree(𝜎, 𝜎 ′, 𝜋,𝑊 ) and 𝜋 ⊆ 𝜌 implies Lagree(𝜎, 𝜎 ′, 𝜌,𝑊 ) (21)

Definition 5.4 (agreement on read effects, Agree). Let 𝜀 be an effect that is wf in Γ. Consider Γ-

states 𝜎, 𝜎 ′. Let 𝜋 be a refperm. Say that 𝜎 and 𝜎 ′ agree on 𝜀 modulo 𝜋 , written Agree(𝜎, 𝜎 ′, 𝜋, 𝜀) ,
iff Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜀)). Let Agree(𝜎, 𝜎 ′, 𝜀) =̂ Agree(𝜎, 𝜎 ′, 𝜋, 𝜀) where 𝜋 is the identity on

𝜎 (alloc) ∩ 𝜎 ′ (alloc).
28
The definitions are formulated to be applicable to intermediate states in the scope of local blocks, which introduce variables

not present in the typing context of the initial command.
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Often we use Agree(𝜎, 𝜏, 𝜀) where 𝜎 ↩→ 𝜏 , in which case 𝜎 (alloc) ∩ 𝜏 (alloc) = 𝜎 (alloc).
Agreement on location sets enjoys a kind of symmetry:

Lagree(𝜎, 𝜎 ′, 𝜋,𝑊 ) implies Lagree(𝜎 ′, 𝜎, 𝜋−1, 𝜋 (𝑊 )) for all 𝜎, 𝜎 ′, 𝜋,𝑊 (22)

By contrast, Def. 5.4 of agreement on read effects is left-skewed, in the sense that it refers to

the locations denoted by effects interpreted in the left state. The asymmetry makes working

with agreement somewhat delicate. For example, agreement on rd𝐺 ‘𝑓 (modulo 𝜋 ) implies that

𝜎 (𝐺) ⊆ dom (𝜋) (by Def. 5.3), but it does not imply 𝜎 (𝐺) 𝜋∼ 𝜎 ′ (𝐺). At a higher level there will be
symmetry, for reasons explained in due course.

5.3 Pre-models and program semantics

The transition relation depends on a pre-model 𝜑 , defined below, and is written
𝜑↦−→. The pre-model

provides semantics for context calls and represents denotations of method bodies. Transitions act

on configurations where the environment 𝜇 has procedures distinct29 from those of 𝜑 .

Definition 5.5 (state isomorphism
𝜋≈, outcome equivalence ≊𝜋 ). For Γ-states 𝜎, 𝜎 ′, define

𝜎
𝜋≈ 𝜎 ′ (read: isomorphic mod 𝜋 ) to mean that refperm 𝜋 is a total bijection from 𝜎 (alloc)

to 𝜎 ′ (alloc) and the states agree mod 𝜋 on all variables and all fields of all objects. That is,

Lagree(𝜎, 𝜎 ′, 𝜋, locations(𝜎)).30 For 𝑆, 𝑆 ′ ∈ P(J Γ K ∪ { }), define 𝑆 ≊𝜋 𝑆
′
(read equivalent mod

𝜋 ) to mean that (i)  ∈ 𝑆 iff  ∈ 𝑆 ′; (ii) for all states 𝜎 ∈ 𝑆 and 𝜎 ′ ∈ 𝑆 ′ there is 𝜌 ⊇ 𝜋 such that

𝜎
𝜌
≈ 𝜎 ′; and (iii) 𝑆 = ∅ iff 𝑆 ′ = ∅.

Note that item (ii) involves extensions of 𝜋 , whereas the relations
𝜋∼ and

𝜋≈ involve only 𝜋 itself.

Lemma 5.6. Suppose 𝜎
𝜋≈ 𝜎 ′. Then 𝜎 (𝐹 ) 𝜋∼ 𝜎 ′ (𝐹 ), and 𝜎 |= 𝑃 iff 𝜎 ′ |= 𝑃 .

Definition 5.7. A pre-model for Γ is a mapping from some set of method names, such that for

𝑚 ∈ dom (𝜑), 𝜑 (𝑚) is a function of type J Γ K → P(J Γ K ∪ { }) such that 𝜎 ↩→ 𝜏 for all 𝜎, 𝜏 with

𝜏 ∈ 𝜑 (𝑚) (𝜎), and
(fault determinacy)  ∈ 𝜑 (𝑚) (𝜎) implies 𝜑 (𝑚) (𝜎) = { }
(state determinacy) 𝜎

𝜋≈ 𝜎 ′ implies 𝜑 (𝑚) (𝜎) ≊𝜋 𝜑 (𝑚) (𝜎 ′)
For Φ wf in Γ, a pre-model of Φ is a pre-model for Γ and dom (Φ).

We say pre-models are quasi-deterministic, because from a given initial state, these three

outcomes are mutually exclusive: fault, non-empty set of states, empty set. Moreover, instantiating

𝜎 ′ := 𝜎 and setting 𝜋 to the identity on 𝜎 (alloc) in the condition (state determinacy) yields that all

results from a given initial state are isomorphic.
31

The transition relation is defined in Figure 22. A trace via pre-model 𝜑 is a non-empty finite

sequence of configurations that are consecutive for the transition relation
𝜑↦−→. For example, this

sequence is a trace (for any 𝜑):

⟨𝑥 := 1;𝑦 := 2, [𝑥 :0, 𝑦:0], _⟩⟨𝑦 := 2, [𝑥 :1, 𝑦:0], _⟩⟨skip, [𝑥 :1, 𝑦:2], _⟩
Recall that we identify (skip;𝐶) with 𝐶 (Figure 6). By definition, a trace does not contain  .

29
This representation takes advantage of the hygiene condition that variable and method names are never re-used in nested

declarations.

30
Which is equivalent to Lagree (𝜎 ′, 𝜎, 𝜋−1, locations (𝜎 ′ ) ) , in this context where 𝜎 (alloc) 𝜋∼ 𝜎 ′ (alloc) .

31
In light of these definitions and the results to follow, we could as well replace the codomain of a pre-model, i.e., P(J Γ K ∪
{ }) , by the disjoint sum of P(J Γ K) and { }. The chosen formulation helps streamline a few things later.
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uCall

𝜏 ∈ 𝜑 (𝑚) (𝜎)

⟨𝑚(), 𝜎, 𝜇⟩ 𝜑↦−→ ⟨skip, 𝜏, 𝜇⟩

uCallX

 ∈ 𝜑 (𝑚) (𝜎)

⟨𝑚(), 𝜎, 𝜇⟩ 𝜑↦−→  

uCall0

𝜑 (𝑚) (𝜎) = ∅

⟨𝑚(), 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝑚(), 𝜎, 𝜇⟩

uCallE

𝜇 (𝑚) = 𝐶

⟨𝑚(), 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐶; ecall(𝑚), 𝜎, 𝜇⟩

uECall

⟨ecall(𝑚), 𝜎, 𝜇⟩ 𝜑↦−→ ⟨skip, 𝜎, 𝜇⟩

uLet

⟨let𝑚 = 𝐵 in 𝐶, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐶; elet(𝑚) , 𝜎, [𝜇+𝑚:𝐵]⟩
uElet

⟨elet(𝑚), 𝜎, 𝜇⟩ 𝜑↦−→ ⟨skip, 𝜎, 𝜇↾𝑚⟩

Fig. 22. Selected transition rules, for pre-model 𝜑 . The others are in appendix Figure 34.

5.4 Context models and program correctness

For syntactic substitution we use the notation 𝑃𝑥
𝐹
. Substitution notations are mainly used with

spec-only variables. In addition, for clarity we also use substitution notation for values, even

references—although the syntax does not include reference literals.

Definition 5.8 (substitution notation). If Γ, 𝑥 :𝑇 ⊢ 𝑃 and 𝜎 ∈ J Γ K and 𝑣 is a value in J𝑇 K𝜎 , we
write 𝜎 |=Γ 𝑃𝑥𝑣 to abbreviate [𝜎+𝑥 : 𝑣] |=Γ,𝑥 :𝑇 𝑃 .

A context model, or Φ-model when we refer to a specific context Φ, is a pre-model that satisfies

its specs.

Definition 5.9 (context model). Let Φ be wf in Γ and let 𝜑 be a pre-model. Say 𝜑 is a Φ-model
iff dom (𝜑) = dom (Φ) and for each𝑚 in dom (Φ) with Φ(𝑚) = 𝑅 { 𝑆 [𝜂] and for any 𝜎 and 𝜎 ′ in
J Γ K,

(a)  ∈ 𝜑 (𝑚) (𝜎) iff there are no values 𝑣 with 𝜎 |= 𝑅𝑠
𝑣
where 𝑠 are the spec-only variables.

(b) For all 𝜏 ∈ 𝜑 (𝑚) (𝜎), and all 𝑣 , if 𝜎 |= 𝑅𝑠
𝑣
then 𝜏 |= 𝑆𝑠

𝑣
and 𝜎→𝜏 |= 𝜂.

(c) For all 𝜏 ∈ 𝜑 (𝑚) (𝜎) and all 𝑁 with mdl(𝑚) ⪯ 𝑁 , rlocs(𝜎, bnd (𝑁 )) ⊆ rlocs(𝜏, bnd (𝑁 )).
(d) For all 𝜋 , if Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜂)\{alloc}) then

(i) 𝜑 (𝑚) (𝜎) = ∅ iff 𝜑 (𝑚) (𝜎 ′) = ∅, and
(ii) if𝜏 ∈ 𝜑 (𝑚) (𝜎) and𝜏 ′ ∈ 𝜑 (𝑚) (𝜎 ′) then there is 𝜌 ⊇ 𝜋 with 𝜌 (freshL(𝜎, 𝜏)) ⊆ freshL(𝜎 ′, 𝜏 ′)
and Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ wrttn(𝜎, 𝜏))\{alloc}).

Condition (a) says 𝜑 (𝑚) faults just on states outside the precondition of𝑚, (b) says the postcondi-

tion holds and write effect is respected, (c) is a technical condition we call boundary monotonicity,

and (d) is the dependency condition of the read effect.

The snapshot values 𝑣 in (a) and (b) are uniquely determined by 𝜎 (Lemma 5.1). So (a) can be

rephrased:  ∈ 𝜑 (𝑚) (𝜎) iff 𝜎 ̸ |= 𝑅𝑠
𝑣
where 𝑣 are the values uniquely determined by 𝑅 in 𝜎 . Similarly

for (b), which treats spec-only variables as being quantified over the pre- and post-condition.

Finally we can give the semantics of correctness judgments, which embodies encapsulation for

dynamic boundaries. In the definition to follow we write 𝛿⊕ to abbreviate 𝛿, rd alloc. Apropos

Def. 5.9(d), note that {alloc} = rlocs(𝜎, rd alloc) = rlocs(𝜎, •⊕).
The conditions for a valid correctness judgment include that there are no faulting executions,

terminated executions satisfy the postcondition and write effect, and boundary monotonicity. These

conditions are like (a)–(c) above for context model. The absence of fault means more than no

null dereference; it means there are no method calls outside the method’s precondition—because

otherwise the call would fault, by condition (a) for context models. An additional condition for
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correctness is that the read effects of the judgment should subsume the read effects in the specs

of methods in context calls; this is called r-safety. Finally, the Encap condition says that each step

reads and writes outside the boundaries of any module the step is not within. The Encap condition

is formulated using the read effects of the judgments and implies the expected end-to-end read

effect as will be explained later. Reading is meant in the extensional sense of a two-run dependency

property, similar to condition (d) for context model.

The Encap condition applies to every reachable step, and refers to the initial state, so we use the

following schema to designate identifiers for the elements of a step reached from command 𝐶 and

state 𝜎 :

⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ 𝜑↦−→ ⟨𝐷, 𝜐, 𝜈⟩
The step is taken by the active command of 𝐵, from state 𝜏 to state 𝜐. For such a step, we need to

refer to the locations encapsulated by all modules except the current module,𝑀 , of the correctness

judgment. To this end, the collective boundary is an effect 𝛿 defined by cases:

𝛿 =̂ (+𝑁 ∈ (Φ, 𝜇), 𝑁 ≠ topm(𝐵,𝑀). bnd (𝑁 )) if Active(𝐵) is not a context call
=̂ (+𝑁 ∈ (Φ, 𝜇),mdl(𝑚) ̸⪯ 𝑁 . bnd (𝑁 )) if Active(𝐵) is a context call of𝑚 (23)

Definition 5.10 (valid judgment). A wf judgment Φ ⊢Γ
𝑀
𝐶 : 𝑃 { 𝑄 [𝜀] is valid iff the following

hold for all Φ-models 𝜑 , all values 𝑣 for the spec-only variables 𝑠 in 𝑃 , and all states 𝜎 such that

𝜎 |=Γ 𝑃𝑠
𝑣
.

(Safety) It is not the case that ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗  .
(Post) 𝜏 |= 𝑄𝑠

𝑣
for every 𝜏 with ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨skip, 𝜏, _⟩.

(Write) 𝜎→𝜏 |= 𝜀 for every 𝜏 with ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨skip, 𝜏, _⟩.
(R-safe) Every reachable configuration ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ satisfies the r-safe condition for

(Φ, 𝜀, 𝜎): If Active(𝐵) is a context call to𝑚 with Φ(𝑚) ≡ 𝑚 : 𝑅 { 𝑆 [𝜂], then rlocs(𝜏, 𝜂) ⊆
freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀).

(Encap) Every reachable step ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ 𝜑↦−→ ⟨𝐷, 𝜐, 𝜈⟩ respects (Φ, 𝑀, 𝜑, 𝜀, 𝜎), i.e.,
• For every 𝑁 with 𝑁 ∈ (Φ, 𝜇) and 𝑁 ≠ topm(𝐵,𝑀), the step w-respects 𝑁 , which means:

either Active(𝐵) is a call to some𝑚 with mdl(𝑚) ⪯ 𝑁 or Agree(𝜏,𝜐, bnd (𝑁 )).
• For 𝛿 the collective boundary given by (23) for 𝐵, 𝜏, 𝜇, the step r-respects 𝛿 for (𝜑, 𝜀, 𝜎),
which means: for any

32 𝜋, 𝜏 ′, 𝜐′, 𝐷 ′

if ⟨𝐵, 𝜏 ′, 𝜇⟩ 𝜑↦−→ ⟨𝐷 ′, 𝜐′, 𝜈⟩ and Agree(𝜏 ′, 𝜐′, 𝛿) and
Lagree(𝜏, 𝜏 ′, 𝜋, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀))\rlocs(𝜏, 𝛿⊕)) (24)

then 𝐷 ′ ≡ 𝐷 and there is 𝜌 with 𝜌 ⊇ 𝜋 such that

Lagree(𝜐,𝜐′, 𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐))\rlocs(𝜐, 𝛿⊕)) and
𝜌 (freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿)) ⊆ freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿) (25)

• For every 𝑁 with 𝑁 ∈ Φ or 𝑁 = 𝑀 , the step satisfies boundary monotonicity:
rlocs(𝜏, bnd (𝑁 )) ⊆ rlocs(𝜐, bnd (𝑁 )).

□

In addition to the terms introduced above to refer to parts of the definition, we also use the

following derived notions: A trace from ⟨𝐶, 𝜎, _⟩ respects (Φ, 𝑀, 𝜑, 𝜀, 𝜎) just if each step of the

trace does, and it is r-safe for (Φ, 𝜀, 𝜎) just if each configuration is. A step is called r-safe if its
starting configuration is r-safe.

32
To be precise: such that 𝜏 ′ has the same variables as 𝜏—there may be local variables in addition to those declared by Γ.
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While w-respect can be defined one module at a time, this is not the case for r-respect, because

dependency properties do not compose in a simple way.
33
The absence of dependency needs to

be expressed in terms of the collective boundary 𝛿 with which a given step must not interfere.

As with w-respect, this depends on whether the step is a context call. If not, then the current

module’s boundary is exempt (see condition 𝑁 ≠ topm(𝐵,𝑀) in (23)). If so, the step is exempt

from the boundary of the callee’s module together with modules into which its implemenation

may call (second condition in (23)). Dependency is expressed as usual by an implication from

initial agreement (24) on reads to final agreement (25) on writes—subtracting the encapsulated

locations. The read effects in 𝜀 are interpreted in the pre-state 𝜎 , as are the write effects (which

cover the written locations according to the condition labelled Write). The collective boundary 𝛿 is

interpreted at intermediate states.

In case the module boundaries are all empty, in Def. 5.10, two parts of the Encap condition

become vacuous, namely w-respect and boundary monotonicity. And r-respect reduces to the

property that the dependency of each step is within the readable locations of the given frame

condition. This implies an end-to-end read effect condition given in the following lemma.
34
The

lemma is used to prove soundness of the linking rule; in that proof we derive a pre-model from the

denotation of the method body, and the lemma is used to show it is a context model.

Lemma 5.11 (read effect). Suppose Φ |=Γ
𝑀
𝐶 : 𝑃 { 𝑄 [𝜀] and 𝜑 is a Φ-model. Suppose 𝜎 |= 𝑃

and 𝜎 ′ |= 𝑃 . Suppose Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜀)\{alloc}). Then ⟨𝐶, 𝜎, _⟩ diverges iff ⟨𝐶, 𝜎 ′, _⟩
diverges. And for any 𝜏, 𝜏 ′, if ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨skip, 𝜏, _⟩ and ⟨𝐶, 𝜎 ′, _⟩ 𝜑↦−→∗ ⟨skip, 𝜏 ′, _⟩ then

∃𝜌 ⊇ 𝜋. Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ wrttn(𝜎, 𝜏))\{alloc}) and

𝜌 (freshL(𝜎, 𝜏)) ⊆ freshL(𝜎 ′, 𝜏 ′)

6 UNARY LOGIC

Correctness judgments of the unary logic play a crucial role in the relational logic. They are

premises in relational rules such as local equivalence. Framing and encapsulation are handled at

the unary level, separate from the concerns of alignment and relation formulas.

The unary proof rules use two subsidiary judgments, for subeffects and framing of formulas.

These can be presented by inference rules (as shown in RLI). In this article we present them

semantically, in Section 6.1, as the semantics is amenable to direct checking by SMT solver. Informal

descriptions are given, but for the detailed definitions in Section 6.1 the reader needs to be familiar

with the definitions in Sections 5.1 and 5.2. Aside from that, Section 6 can be read without being

familiar with Section 5.

6.1 Framing and subeffects

The subeffect judgment, written 𝑃 |= 𝜀 ≤ 𝜂 , says that in states satisfying 𝑃 , the readable or

writable locations designated by 𝜀 are contained in those designated by 𝜂. It is defined as follows:

𝑃 |= 𝜀 ≤ 𝜂 iff rlocs(𝜎, 𝜀) ⊆ rlocs(𝜎, 𝜂) and wlocs(𝜎, 𝜀) ⊆ wlocs(𝜎, 𝜂) for all 𝜎 with 𝜎 |= 𝑃 (26)

The framing judgment for formulas, written 𝑃 |= 𝜂 frm 𝑄 , can loosely be understood to say

the read effects in 𝜂 cover the footprint of 𝑄 . It is used in the frame rule and also second order

frame rule where we need framing of the module invariant by the dynamic boundary. To be precise,

the judgment says of states 𝜎 and 𝜏 that if 𝜎 satisfies 𝑃 ∧𝑄 and 𝜏 agrees with 𝜎 on the contents

33
For readers familiar with RLII, the w-respect condition is the same except that, here, to support r-respect we add w-respect

of modules in the environment (in addition to those in context).

34
The condition is much like the semantics of effects in RLIII, with a small difference concerning the treatment of variable

alloc. (See Def. 5.2 in RLIII.)
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of locations designated by the read effects of 𝜂, then 𝜏 satisfies 𝑄 . Here 𝜂 is interpreted in state 𝜎 ,

which only matters if its effect expressions mention mutable variables. The judgment is defined as

follows:

𝑃 |= 𝜂 frm 𝑄 iff for all 𝜎, 𝜏, if Agree(𝜎, 𝜏, 𝜂) and 𝜎 |= 𝑃 ∧𝑄 then 𝜏 |= 𝑄 (27)

For example, we have 𝑥 ∈ 𝑟 |= rd𝑥, rd 𝑟 ‘𝑓 frm 𝑥 .𝑓 = 0. The ftpt function, defined in Figure 10,

provides framing for atomic formulas. The basic lemmas about ftpt are that |= ftpt (𝑃) frm 𝑃 , for

atomic 𝑃 , and

Agree(𝜎, 𝜎 ′, 𝜋, ftpt (𝐹 )) implies 𝜎 (𝐹 ) 𝜋∼ 𝜎 ′ (𝐹 ) (28)

The framing judgment is used, in the Frame rule, in combinationwith a separator formula (Figure 11).

A key property of separators is that a formula obtained as𝜂 ·/.𝜀 holds in𝜎 iff rlocs(𝜎, 𝜂)∩wlocs(𝜎, 𝜀) =
∅. From this it follows that

𝜎→𝜏 |= 𝜀 and 𝜎 |= 𝜂 ·/. 𝜀 implies Agree(𝜎, 𝜏, 𝜂) (29)

Separator formulas are also used in the notion of immunity, which amounts to framing for frame

conditions. Immunity is only needed for the sequence and loop rules, which we relegate to the

appendix as there is no interesting change from RLI. Framing and immunity are about preserving

the value of an expression or formula from one control point to a later one. For preservation of

agreements, framed reads (Def. 3.1) are crucial; e.g., in proving the lockstep alignment Lemma 8.9.

6.2 Proof rules

Selected proof rules are in Figure 23. They are to be instantiated only with wf premises and

conclusions. In the rest of the section we comment briefly about some rules and derive the modular

linking rule. Then Section 6.3 discusses how the rules work together to enforce encapsulation.

The proof rules for assignment, like FieldUpd and Alloc, are “small axioms” [76] that have

empty context, are in the default module, and have precise frame conditions. The Conseq rule

can be used to subsume a frame condition like wr {𝑥}‘𝑓 by a more general one like wr 𝑟 ‘𝑓 , given

precondition 𝑥 ∈ 𝑟 and using subeffect judgment 𝑥 ∈ 𝑟 |= wr {𝑥}‘𝑓 ≤ wr 𝑟 ‘𝑓 . Rule Alloc can be

used with the Frame rule to express freshness in several ways.
35
These and the method call rule

have the minimum needed hypothesis context. Extending the context is done by rules discussed in

Section 6.3.

The gist of the second order frame rule, SOF, is to conjoin a formula not only to the spec in the

conclusion, like rule Frame, but also conjoin it to the specs in the hypothesis context. The rule

distils a property of program semantics; its practical role is to derive the modular linking rule.

In rule SOF, the conditions 𝑁 ∈ Θ and 𝑁 ≠ 𝑀 ensure that the command 𝐶 respects the

encapsulation of bnd (𝑁 ), in accord with the semantic condition Encap of Def. 5.10. Together with

the framing judgment |= bnd (𝑁 ) frm 𝐼 , this ensures that 𝐶 does not falsify 𝐼 . The condition 𝐶

binds no 𝑁 -method means 𝐶 contains no let-binding of a method𝑚 with mdl(𝑚) = 𝑁 . This and

the condition ∀𝑚 ∈ Φ. mdl(𝑚) ̸⪯ 𝑁 ensure that all of 𝑁 ’s method specs are in Θ and have the

invariant added simultaneously. Such conditions are the price we pay for not cluttering the logic

with explicit syntax and judgments for a module calculus. Rule Link has analogous conditions.

In rule Link, let𝑚=𝐵 in𝐶 means the simultaneous linking of𝑚𝑖 with 𝐵𝑖 for 𝑖 in some range. This

version of Link supports simultaneous linking of multiple methods that may be defined in different

modules. Note that Θ is in the hypotheses for 𝐵𝑖 because some methods in Θ may call others in Θ,
and for recursion. Condition ∀𝑁 ∈ Φ, 𝐿 ∈ Θ. 𝑁 ̸⪯ 𝐿 precludes dependency of the ambient modules

on the ones being linked. Condition ∀𝑁, 𝐿. 𝑁 ∈ Θ ∧ 𝑁 ≺ 𝐿 ⇒ 𝐿 ∈ (Φ,Θ) expresses import closure,

35
Shown in detail in RLIII (Section 7.1).
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Conseq

Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀 ] 𝑃1 ⇒ 𝑃 𝑄 ⇒ 𝑄1 𝑃1 |= 𝜀 ≤ 𝜀1

Φ ⊢𝑀 𝐶 : 𝑃1 { 𝑄1 [𝜀1 ]

Frame

Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀 ] 𝑃 |= 𝜂 frm 𝑅 𝑃 ∧ 𝑅 ⇒ 𝜂 ·/. 𝜀
Φ ⊢𝑀 𝐶 : 𝑃 ∧ 𝑅 { 𝑄 ∧ 𝑅 [𝜀 ]

SOF

Φ,Θ ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀 ]
|= bnd (𝑁 ) frm 𝐼 𝑁 ∈ Θ 𝑁 ≠ 𝑀 ∀𝑚 ∈ Φ. mdl (𝑚) ̸⪯ 𝑁 𝐶 binds no 𝑁 -method

Φ, (Θ? 𝐼 ) ⊢𝑀 𝐶 : 𝑃 ∧ 𝐼 { 𝑄 ∧ 𝐼 [𝜀 ]

CtxIntroIn1

Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀 ] mdl (𝑚) ∈ Φ
Φ,𝑚:𝑅 { 𝑆 [𝜂 ] ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀 ]

CtxIntro

Φ ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀 ] 𝑃 ⇒ bnd (mdl (𝑚) ) ·/. 𝜀 𝑃 ⇒ bnd (mdl (𝑚) ) ·/. r2w (𝜀 )
Φ, 𝑚 : 𝑅 { 𝑆 [𝜂 ] ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀 ]

Call 𝑚:𝑃 { 𝑄 [𝜀 ] ⊢• 𝑚 ( ) : 𝑃 { 𝑄 [𝜀 ] FieldUpd ⊢• 𝑥.𝑓 := 𝑦 : 𝑥 ≠ null { 𝑥.𝑓 = 𝑦 [wr𝑥.𝑓 , rd𝑥, rd 𝑦 ]

Link

Φ,Θ ⊢
mdl (𝑚𝑖 ) 𝐵𝑖 : Θ(𝑚𝑖 )

Φ,Θ ⊢• 𝐶 : 𝑃 { 𝑄 [𝜀 ] dom (Θ) =𝑚 ∀𝑁 ∈ Φ, 𝐿 ∈ Θ. 𝑁 ̸⪯ 𝐿 ∀𝑁, 𝐿. 𝑁 ∈ Θ ∧ 𝑁 ≺ 𝐿 ⇒ 𝐿 ∈ (Φ,Θ)
Φ ⊢• let𝑚 = 𝐵 in𝐶 : 𝑃 { 𝑄 [𝜀 ]

Alloc

Fields (𝐾 ) = 𝑓 : 𝑇 spec-only(𝑟 )
⊢• 𝑥 := new 𝐾 : 𝑟 = alloc { 𝑥 ∉ 𝑟 ∧ alloc = 𝑟 ∪ {𝑥 } ∧ 𝑥.𝑓 = default (𝑇 ) [wr𝑥, rw alloc]

If

Φ ⊢𝑀 𝐶1 : 𝑃 ∧ 𝐸 { 𝑄 [𝜀 ] Φ ⊢𝑀 𝐶2 : 𝑃 ∧ ¬𝐸 { 𝑄 [𝜀 ] (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 ) ) ·/. r2w (ftpt (𝐸 ) )
Φ ⊢𝑀 if 𝐸 then𝐶1 else𝐶2 : 𝑃 { 𝑃 ′ [𝜀, ftpt (𝐸 ) ]

Fig. 23. Selected unary proof rules. For others see appendix Figs. 35 and 36.

Φ ⊢• 𝐶 : 𝑃 { 𝑄 [𝜀 ]
Φ? 𝐼 ⊢• 𝐶 : (𝑃 { 𝑄 [𝜀 ] ) ? 𝐼

SOF

Φ? 𝐼 ⊢𝑀 𝐵 : Φ(𝑚) ? 𝐼

⊢• let𝑚 = 𝐵 in𝐶 : (𝑃 { 𝑄 [𝜀 ] ) ? 𝐼
Link

⊢• let𝑚 = 𝐵 in𝐶 : 𝑃 { 𝑄 [𝜀 ]
Conseq

Fig. 24. Derivation of MLink, with side conditions mdl(𝑚) = 𝑀 , |= bnd (𝑀) frm 𝐼 , and 𝑃 ⇒ 𝐼 .

which is needed to ensure that all relevant boundaries are considered in the Encap condition of the

premises.

Recall the modular linking rule (2) sketched in Section 2.1. It can now be made precise as follows.

MLink

Φ ⊢• 𝐶 : 𝑃 { 𝑄 [𝜀]
Φ? 𝐼 ⊢𝑀 𝐵 : Φ(𝑚) ? 𝐼 mdl(𝑚) = 𝑀 |= bnd (𝑀) frm 𝐼 𝑃 ⇒ 𝐼

⊢• let𝑚 = 𝐵 in 𝐶 : 𝑃 { 𝑄 [𝜀]
In Section 2.1 we mention requirements for soundness of (2), in vague terms which can now be

made precise. Requirement (E1) is to delimit some internal locations, which is expressed as a

dynamic boundary bnd (𝑀). Requirement (E2) is that the module invariant 𝐼 depends only on

encapsulated locations, which we express by a framing judgment |= bnd (𝑀) frm 𝐼 . Requirement

(E3) says the client stays outside boundaries, a part of the meaning of the correctness judgment for

𝐶; more on this in Section 6.3. Finally, (E4) requires that the invariant holds initially; we simply
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require that 𝐼 follows from the main program’s precondition (𝑃 ⇒ 𝐼 ). Rule MLink is derived in

Figure 24. The side conditions |= bnd (𝑀) frm 𝐼 , and 𝑃 ⇒ 𝐼 are the responsibility of the module

developer. The idea is that precondition 𝑃 expresses initial conditions for the linked program, e.g.,

that globals have default values (null for class types, ∅ for rgn). In our examples, the invariant

quantifies over elements of the global variable 𝑝𝑜𝑜𝑙 and holds when 𝑝𝑜𝑜𝑙 is empty. For a more

sophisticated language, we would have module initialization code to establish the module invariant.

Theorem 6.1 (soundness of unary logic). All the unary proof rules are sound (Figure 23 and

appendix Figs. 35 and 36).

6.3 How the proof rules ensure encapsulation

The proof rules for commands must enforce requirement (E3), i.e., a command respects the bound-

aries of modules in context other than the current module. In part this is done by what we call

context introduction rules. One may expect a weakening rule that allows additional specs to be

added to the context, and indeed there is such a rule (CtxIntroIn1) for the case that the method’s

module is already in context. If the method’s module is not already in context, adding its spec

actually strengthens the property expressed by the judgment, namely respect of the added module’s

boundary. For this we have a rule CtxIntro that extends the context by adding a spec for method

𝑚 and has side conditions (using separator formulas generated by ·/.) that ensure both the read

and write effects of atomic command 𝐴 are separate from the boundary of𝑚’s module. Two other

variations are needed to handle method calls and adding a spec for the current module; these are

relegated to the appendix. (A more elegant treatment may be possible using an explicit calculus of

modules and their correctness, but that would have its own intricacies.)

As an example, consider this code which acts on variables s: Stack and c,d: Cell.

d.val:=0; push(s,d); d:=new Cell; d.val:=1; push(s,d)

Using variable 𝑟 : rgn and idiomatic precondition 𝑑 ∈ 𝑟 ∧ 𝑟 # (𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝), this code has frame

condition rw𝑑, 𝑟, alloc, 𝑟 ‘𝑣𝑎𝑙 . (Here we use the spec idiom depicted in Figure 3.) The small axiom

for the store command 𝑑.𝑣𝑎𝑙 := 0 says it reads 𝑑 and writes 𝑑.𝑣𝑎𝑙 . To add the Stack module to this

command’s context, rule CtxIntro requires the precondition to imply a separator which when

simplified is {𝑑} # 𝑝𝑜𝑜𝑙 ∧ {𝑑} # 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝 . This says 𝑑 is neither in 𝑝𝑜𝑜𝑙 nor in any 𝑟𝑒𝑝 unless 𝑑 is

null.

There is also a rule to change the current module from the default module used in, e.g., rules

Call, FieldUpd, and Alloc. In a proof these and the context introduction rules are used at the

“leaves” of the proof, i.e., for atomic commands, in order to introduce the intended modules. This

organization is the same as used previously in RLII. However, here the notion of encapsulation

is stronger. To enforce that reads do not transgress boundaries (r-respect in Def. 5.10), the proof

rules for If and While also have side conditions to ensure the conditional expressions are separate

from boundaries. For test expression 𝐸, the condition is (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) ·/. r2w(ftpt (𝐸)).
This separator formula simplifies to true or false depending on whether any variable in 𝐸 occurs

in any of the boundaries of modules 𝑁 in scope other than the current module𝑀 . Although the

details are different from RLII, the general idea is the same so we relegate most of these rules to the

appendix (see Figure 35 and Remark 8). Relevant examples can be found in Section 8 of RLII.

7 BIPROGRAMS: SEMANTICS AND CORRECTNESS

This section defines (in Section 7.2) the relational analog of the pre-models used in unary program

semantics of Section 5.3. This is used (in Section 7.3) to define the transition semantics of biprograms.

Some details are intricate, as needed to ensure quasi-determinacy and to ensure that a biprogram

execution faithfully represents a pair of unary executions. On this basis, the semantics of relational
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𝜎 |𝜎 ′ |=𝜋 ⟨[𝑃 ⟨] iff 𝜎 |= 𝑃
𝜎 |𝜎 ′ |=𝜋 𝐹 ¥= 𝐹 ′ iff 𝜎 (𝐹 ) 𝜋∼ 𝜎 ′ (𝐹 ′ )
𝜎 |𝜎 ′ |=𝜋 A𝐺‘𝑓 iff Agree (𝜎, 𝜎 ′, 𝜋, rd𝐺‘𝑓 ) and Agree (𝜎 ′, 𝜎, 𝜋−1, rd𝐺‘𝑓 )
𝜎 |𝜎 ′ |=𝜋 A𝑥 iff 𝜎 (𝑥 ) 𝜋∼ 𝜎 ′ (𝑥 )
𝜎 |𝜎 ′ |=𝜋 ^P iff 𝜎 |𝜎 ′ |=𝜌 P for some 𝜌 ⊇ 𝜋
𝜎 |𝜎 ′ |=𝜋 P ⇒ Q iff 𝜎 |𝜎 ′ |=𝜋 P implies 𝜎 |𝜎 ′ |=𝜋 Q
𝜎 |𝜎 ′ |= P iff 𝜎 |𝜎 ′ |=𝜋 P for all 𝜋

|= P iff 𝜎 |𝜎 ′ |= P for all 𝜎, 𝜎 ′

Fig. 25. Relation formula semantics 𝜎 |𝜎′ |=Γ |Γ
′

𝜋 P (selected). See appendix Figure 37 for other cases.

𝑜

𝑥
𝑜

𝑞𝑓

𝑝

𝑟𝑓

𝑞

null𝑓

𝑟

null𝑓

𝑝′
𝑥

𝑜 ′

𝑞′𝑓

𝑝′

𝑟 ′𝑓

𝑞′

null𝑓

𝑟 ′

null𝑓

𝜋 (𝑟 ) = 𝑟 ′

Fig. 26. Refperm 𝜋 and states 𝜎, 𝜎′ that satisfy A{𝑥}‘𝑓 but neither {𝑥} ¥= {𝑥} nor {𝑥}‘𝑓 ¥= {𝑥}‘𝑓 .

judgments is defined and shown to entail the expected relational property of unary executions

(Section 7.4). The first step is to define the semantics of relation formulas (Section 7.1).

7.1 Relation formulas

Refperms and agreement, the basis for semantics of read effects, are also used for semantics

of agreement formulas. For relation formulas, satisfaction 𝜎 |𝜎 ′ |=𝜋 P says state 𝜎 relates to 𝜎 ′

according toP and refperm 𝜋 (see Figure 25). The propositional connectives have classical semantics.

Formula P is called valid if |= P.
Recall that semantic agreement (Lagree,Agree) is skewed in the sense that region expressions

are evaluated in the left state, as noted following (22). The semantics of A𝐺 ‘𝑓 uses agreement

via refperm 𝜋 and agreement via 𝜋−1
for the swapped pair of states. As a result, 𝜎 |𝜎 ′ |=𝜋 A𝐺 ‘𝑓

implies not only 𝜎 (𝐺) ⊆ 𝑑𝑜𝑚(𝜋) but also 𝜎 ′ (𝐺) ⊆ 𝑟𝑛𝑔(𝜋). However, A𝐺 ‘𝑓 does not imply 𝐺 ¥= 𝐺
in general. So the form 𝐺 ¥= 𝐺 ∧ A𝐺 ‘𝑓 is often used, e.g., formula (11); in particular it appears in

the agreements from a read framed effect.

The formulas A𝐺 ‘𝑓 and 𝐺 ‘𝑓 ¥= 𝐺 ‘𝑓 have different meaning and in general are incomparable.

In case 𝑓 : int, the region 𝐺 ‘𝑓 is empty in which case A𝐺 ‘𝑓 implies 𝐺 ‘𝑓 ¥= 𝐺 ‘𝑓 trivially. Using

a diagram like in Figure 17, Figure 26 shows two states and a refperm such that A{𝑥}‘𝑓 holds

(noting that (𝑞, 𝑞′) ∈ 𝜋 and (𝑟, 𝑟 ′) ∈ 𝜋 ). But {𝑥}‘𝑓 ¥= {𝑥}‘𝑓 does not; we have 𝜎 ({𝑥}‘𝑓 ) = {𝑞} and
𝜎 ′ ({𝑥}‘𝑓 ) = {𝑟 ′} but (𝑞, 𝑟 ′) ∉ 𝜋 . Also {𝑥} ¥= {𝑥} is false because (𝑜, 𝑝′) ∉ 𝜋 .

Here are some valid schemas: P ⇒ ^P, ^^P ⇒ ^P, and ^(P ∧ Q) ⇒ ^P ∧ ^Q. Another
validity is (alloc ¥= alloc) ∧^P ⇒ P, in which alloc ¥= alloc says the refperm is a total bijection on

allocated references. The strong condition alloc ¥= alloc is not local, and is not a useful requirement

for most purposes.
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Validity of P ⇒ □P is equivalent to P being refperm monotonic, i.e., not falsified by extension

of the refperm. Agreement formulas are refperm monotonic, as a consequence of (21). A key fact is:

If Q ⇒ □Q is valid then so is ^P ∧ Q ⇒ ^(P ∧ Q) (30)

Validity of ^P ⇒ P expresses that P is refperm-independent, i.e., 𝜎 |𝜎 ′ |=𝜋 P iff 𝜎 |𝜎 ′ |=𝜌 P, for
all 𝜎, 𝜎 ′, 𝜋, 𝜌 . If P contains no agreement formula then it is refperm-independent (even if ^ occurs

in P). For such formulas the condition in (30) can be strengthened:

If ^Q ⇒ Q is valid then so is ^P ∧ Q ⇐⇒ ^(P ∧ Q) (31)

Syntactic projection is weakening: P ⇒ ⟨[𝑃 ⟨] ∧ [⟩𝑃 ′]⟩ where 𝑃 is

↼−P and 𝑃 ′ is
−⇀P . The implication

is strict, in general, because projection discards agreements (Figure 15). Syntactic projection is

not⇒-monotonic: for boolean variable 𝑥 , the formula 𝑥 ¥= 𝑥 ∧ [⟩𝑥 > 0]⟩ ⇒ ⟨[𝑥 > 0⟨] is valid, but
↼−−−−−−−−−−−−−−
𝑥 ¥= 𝑥 ∧ [⟩𝑥 > 0]⟩ ≡ 𝑡𝑟𝑢𝑒 ∧ 𝑡𝑟𝑢𝑒 and ↼−−−−−−⟨[𝑥 > 0⟨] ≡ 𝑥 > 0. The example also shows that agreements can

have unary consequences. As another example, this is valid: ^(𝑥 ¥= 𝑥 ′ ∧ 𝑥 ¥= 𝑦′) ⇒ [⟩𝑥 ′ = 𝑦′]⟩. The
antecedent holds if the refperm relates the value of 𝑥 to both the values of 𝑥 ′ and 𝑦′, or can be

extended to do so. Neither is possible if the value of 𝑥 ′ is different from the value of 𝑦′.
The framing judgment generalizes the unary version (27).

Definition 7.1 (framing judgment). Let P |= 𝜂 |𝜂′ frm Q iff for all 𝜋, 𝜎, 𝜎 ′, 𝜏, 𝜏 ′, if Agree(𝜎, 𝜏, 𝜂),
Agree(𝜎 ′, 𝜏 ′, 𝜂′), and 𝜎 |𝜎 ′ |=𝜋 P ∧ Q then 𝜏 |𝜏 ′ |=𝜋 Q.

For example, 𝐺 ¥= 𝐺 |= 𝜂 |𝜂 frm A𝐺 ‘𝑓 where 𝜂 is ftpt (𝐺), rd𝐺 ‘𝑓 (Lemma C.2). Apropos relations

of the form R =̂ 𝐺 ¥= 𝐺 ∧ A𝐺 ‘𝑓 , we have |= 𝛿 |𝛿 frm R where 𝛿 is ftpt (𝐺), rd𝐺 ‘𝑓 . If 𝑃 |= 𝜂 frm 𝑄

then ⟨[𝑃 ⟨] |= 𝜂 |• frm ⟨[𝑄 ⟨] (and same on the right). Also, |= ftpt (𝐹 ) |ftpt (𝐹 ′) frm 𝐹 ¥= 𝐹 ′, which can

be shown using the footprint agreement lemma (28).

The subeffect judgment P |= (𝜀 |𝜀′) ≤ (𝜂 |𝜂′) is also a direct generalization of the unary version:

the inclusions of (26) hold on both sides, for 𝜎, 𝜎 ′, 𝜋 with 𝜎 |𝜎 ′ |=𝜋 P.

Definition 7.2 (substitution notation). If Γ, 𝑥 :𝑇 |Γ′, 𝑥 ′:𝑇 ′ ⊢ P, 𝜎 ∈ J Γ K, 𝑣 ∈ J𝑇 K𝜎 , 𝜎 ′ ∈ J Γ′ K,
and 𝑣 ′ ∈ J𝑇 ′ K𝜎 ′, we write 𝜎 |𝜎 ′ |=Γ |Γ′ P𝑥 |𝑥

′

𝑣 |𝑣′ to abbreviate [𝜎+𝑥 : 𝑣] | [𝜎 ′+𝑥 ′: 𝑣 ′] |=Γ,𝑥 :𝑇 |Γ′,𝑥 ′ :𝑇 ′ P.

7.2 Relational pre-models

A relational pre-model involves two unary pre-models (Def. 5.7) together with a function on state

pairs as appropriate for the denotation of a biprogram. This function is subject to similar conditions

as for unary pre-models, and must also be compatible with its two unary pre-models.

Definition 7.3 (state pair iso
𝜋 |𝜋 ′≈ , ≊𝜋 |𝜋 ′ ). Building on Def. 5.5, we define isomorphism of state

pairs modulo refperms: (𝜎 |𝜎 ′) 𝜋 |𝜋
′
≈ (𝜏 |𝜏 ′) iff 𝜎 𝜋≈ 𝜏 and 𝜎 ′ 𝜋

′
≈ 𝜏 ′ . For relational outcome sets 𝑆 and

𝑆 ′, i.e., 𝑆 and 𝑆 ′ are in P((J Γ K × J Γ′ K) ∪ { }), define 𝑆 ≊𝜋 |𝜋 ′ 𝑆 ′ (read equivalence mod 𝜋, 𝜋 ′) to
mean that (i)  ∈ 𝑆 iff  ∈ 𝑆 ′; (ii) for all state pairs (𝜎 |𝜎 ′) ∈ 𝑆 and (𝜏 |𝜏 ′) ∈ 𝑆 ′ there are 𝜌, 𝜌 ′ with
𝜌 ⊇ 𝜋 and 𝜌 ′ ⊇ 𝜋 ′, such that (𝜎 |𝜎 ′)

𝜌 |𝜌 ′
≈ (𝜏 |𝜏 ′); and (iii) 𝑆\{ } = ∅ iff 𝑆 ′\{ } = ∅.

Definition 7.4. A relational pre-model for Γ |Γ′ is a triple 𝜑 = (𝜑0, 𝜑1, 𝜑2) with dom (𝜑0) =
dom (𝜑1) = dom (𝜑2), such that 𝜑0 (resp. 𝜑1) is a unary pre-model for Γ (resp. Γ′) (Def. 5.7), and for

each𝑚, the bi-model 𝜑2 (𝑚) is a function 𝜑2 (𝑚) : J Γ K× J Γ′ K→ P(J Γ K× J Γ′ K ∪ { }) such that

(fault determinacy)  ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′) implies 𝜑2 (𝑚) (𝜎 |𝜎 ′) = { }
(state determinacy) (𝜎 |𝜎 ′)

𝜋 |𝜋 ′
≈ (𝜏 |𝜏 ′) implies 𝜑2 (𝑚) (𝜎 |𝜎 ′) ≊𝜋 |𝜋 ′ 𝜑2 (𝑚) (𝜏 |𝜏 ′)
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(divergence determinacy) (𝜎 |𝜎 ′)
𝜋 |𝜋 ′
≈ (𝜏 |𝜏 ′) implies that 𝜑2 (𝑚) (𝜎 |𝜎 ′) = ∅ iff 𝜑2 (𝑚) (𝜏 |𝜏 ′) = ∅.

Moreover 𝜑0, 𝜑1, 𝜑2 must be compatible in the following sense:

(unary compatibility) 𝜏 |𝜏 ′ ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′) ⇒ 𝜏 ∈ 𝜑0 (𝑚) (𝜎) ∧ 𝜏 ′ ∈ 𝜑1 (𝑚) (𝜎 ′)
(relational compatibility) 𝜏 ∈ 𝜑0 (𝑚) (𝜎) ∧ 𝜏 ′ ∈ 𝜑1 (𝑚) (𝜎 ′) ⇒ 𝜏 |𝜏 ′ ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′) ∨  ∈

𝜑2 (𝑚) (𝜎 |𝜎 ′)
(fault compatibility)  ∈ 𝜑0 (𝑚) (𝜎) ∨  ∈ 𝜑1 (𝑚) (𝜎 ′) ⇒  ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′)

We do not require  ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′) to imply  ∈ 𝜑0 (𝑚) (𝜎) or  ∈ 𝜑1 (𝑚) (𝜎 ′). The bi-model

denoted by a biprogram may fault due to relational precondition, or alignment conditions, even

though the underlying commands do not fault.

Lemma 7.5 (empty outcome sets). For any relational pre-model 𝜑 , 𝜑2 (𝑚) (𝜎 |𝜎 ′) = ∅ implies

that 𝜑0 (𝑚) (𝜎) = ∅ or 𝜑1 (𝑚) (𝜎 ′) = ∅.

Proof. If either 𝜑0 (𝑚) (𝜎) or 𝜑1 (𝑚) (𝜎 ′) contains fault then so does 𝜑2 (𝑚) (𝜎 |𝜎 ′), by fault com-

patibility; and if both𝜑0 (𝑚) (𝜎) and𝜑1 (𝑚) (𝜎 ′) contain states, say 𝜏 ∈ 𝜑0 (𝑚) (𝜎) and 𝜏 ′ ∈ 𝜑1 (𝑚) (𝜎 ′),
then by relational compatibility 𝜑2 (𝑚) (𝜎 |𝜎 ′) contains either (𝜏 |𝜏 ′) or  . □

In a relational pre-model, the bi-model outcome sets are convex in this sense:

𝜏 |𝜏 ′ ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′) and 𝜐 |𝜐′ ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′) imply 𝜏 |𝜐′ ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′) and 𝜐 |𝜏 ′ ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′)

This is a consequence of unary compatibility, relational compatibility, and fault determinacy. But it

is not a consequence of the three conditions imposed on bi-models alone.

7.3 Biprogram transition relation

Biprograms are given transition semantics by relation

𝜑Z=⇒ on configurations, defined in Figs. 27

and 28 for any (relational) pre-model 𝜑 . Configurations have the form ⟨𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ which
represents an aligned pair of unary configurations. These have projections

↼−−−−−−−−−−−−−−⟨𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ =̂

⟨↼−𝐶𝐶, 𝜎, 𝜇⟩ and−−−−−−−−−−−−−−⇀⟨𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ =̂ ⟨−⇀𝐶𝐶, 𝜎 ′, 𝜇′⟩. Environments are unchanged from unary semantics:

𝜇 and 𝜇′ map procedure names to commands, not biprograms.
36
The rules are designed to ensure

quasi-determinacy (see Lemma C.8).

The bi-com (𝐶 |𝐶′) represents a pair of programs for which the only alignment of interest is the

initial states and the final states (if any). Its steps are dovetailed, unless one side has terminated,

so that divergence on one side cannot prevent progress on the other side. It make direct use of

the unary transition relation. The exact order of dovetailing does not matter; what matters is

that one-sided divergence is not possible. Here are the details of the specific formulation we have

chosen. The bi-com (𝐶 |𝐶′) takes a step on the left (rule bComL in Figure 27), leaving the right side

unchanged. It transitions to the r-bi-com form (𝐶 |⊲𝐶′) which does not occur in source programs,

and which takes a right step (bComR). In configurations, identifier 𝐶𝐶 ranges over biprograms

that may include endmarkers from the unary semantics and also the r-bi-com.
37
Rule bComR0 is

needed to handle biprograms of the form (skip|𝐷). The rules ensure that (skip|⊲𝐷) never occurs
for 𝐷 . skip, and we identify (skip|⊲skip) ≡ ⌊skip⌋.

Rules bSeq and bSeqX simply close the transitions under command sequencing. Recall that we

identify some biprograms, e.g., (skip|skip) ≡ ⌊skip⌋, to avoid the need for bureaucratic transitions

(see Figure 6). A trace 𝑇 via 𝜑 is a finite sequence of configurations that is consecutive under

𝜑Z=⇒.

36
This simplification streamlines the development but is revisited in section 8.5.

37
The left and right projections of (− |⊲−) are as with (− |−) .
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bSync

𝐴 not a method call ⟨𝐴, 𝜎, 𝜇⟩ 𝜑0↦−→ ⟨skip, 𝜏, 𝜈 ⟩ ⟨𝐴, 𝜎 ′, 𝜇′ ⟩ 𝜑1↦−→ ⟨skip, 𝜏 ′, 𝜈′ ⟩

⟨⌊𝐴⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨⌊skip⌋, 𝜏 |𝜏 ′, 𝜈 |𝜈′ ⟩

bSyncX

𝐴 not a method call ⟨𝐴, 𝜎, 𝜇⟩ 𝜑0↦−→  or ⟨𝐴, 𝜎 ′, 𝜇′ ⟩ 𝜑1↦−→  

⟨⌊𝐴⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒  

bCallS

(𝜏 |𝜏 ′ ) ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′ )

⟨ ⌊𝑚 ( ) ⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨⌊skip⌋, 𝜏 |𝜏 ′, 𝜇 |𝜇′ ⟩

bCallX

 ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′ )

⟨ ⌊𝑚 ( ) ⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒  

bCall0

𝜑2 (𝑚) (𝜎 |𝜎 ′ ) = ∅

⟨⌊𝑚 ( ) ⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨⌊𝑚 ( ) ⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩

bCallE

𝜇 (𝑚) = 𝐵 𝜇′ (𝑚) = 𝐵′

⟨⌊𝑚 ( ) ⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨(𝐵 |𝐵′ ) ; ⌊ecall(𝑚) ⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩

bComL

⟨𝐶, 𝜎, 𝜇⟩ 𝜑0↦−→ ⟨𝐷, 𝜏, 𝜈 ⟩ 𝐷𝐷 = ( (𝐷 |⊲𝐶′ ) if (𝐶′ . skip) else (𝐷 |skip) )

⟨ (𝐶 |𝐶′ ), 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨𝐷𝐷, 𝜏 |𝜎 ′, 𝜈 |𝜇′ ⟩

bComR

⟨𝐶′, 𝜎 ′, 𝜇′ ⟩ 𝜑1↦−→ ⟨𝐷 ′, 𝜏 ′, 𝜈′ ⟩

⟨ (𝐶 |⊲𝐶′ ), 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨(𝐶 |𝐷 ′ ), 𝜎 |𝜏 ′, 𝜇 |𝜈′ ⟩

bComR0

⟨𝐶′, 𝜎 ′, 𝜇′ ⟩ 𝜑1↦−→ ⟨𝐷 ′, 𝜏 ′, 𝜈′ ⟩

⟨ (skip |𝐶′ ), 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨(skip |𝐷 ′ ), 𝜎 |𝜏 ′, 𝜇 |𝜈′ ⟩

bComLX

⟨𝐶, 𝜎, 𝜇⟩ 𝜑0↦−→  

⟨ (𝐶 |𝐶′ ), 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒  

bComRX

⟨𝐶′, 𝜎 ′, 𝜇′ ⟩ 𝜑1↦−→  𝐵𝐵 is (𝐶 |⊲𝐶′ ) or (skip |𝐶′ )

⟨𝐵𝐵, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒  

bLet

𝜈 = [𝜇+𝑚:𝐶 ] 𝜈′ = [𝜇′+𝑚:𝐶′ ]

⟨let𝑚 = (𝐶 |𝐶′ ) in 𝐷𝐷, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨𝐷𝐷 ; ⌊elet(𝑚) ⌋, 𝜎 |𝜎 ′, 𝜈 |𝜈′ ⟩

bIfTT

𝜎 (𝐸 ) = true = 𝜎 ′ (𝐸′ )

⟨if 𝐸 |𝐸′ then𝐶𝐶 else 𝐷𝐷, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩

bIfFF

𝜎 (𝐸 ) = false = 𝜎 ′ (𝐸′ )

⟨if 𝐸 |𝐸′ then𝐶𝐶 else 𝐷𝐷, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨𝐷𝐷, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩

bIfX

𝜎 (𝐸 ) ≠ 𝜎 ′ (𝐸′ )

⟨if 𝐸 |𝐸′ then𝐶𝐶 else 𝐷𝐷, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒  

bVar

𝑤 = FreshVar (𝜎 ) 𝑤′ = FreshVar (𝜎 ′ ) 𝜏 = [𝜎+𝑤: default (𝑇 ) ]
𝜏 ′ = [𝜎 ′+𝑤′: default (𝑇 ′ ) ] 𝐷𝐷 = ( ⌊evar(𝑤 ) ⌋ if 𝑤 ≡ 𝑤′ else (evar(𝑤 ) |evar(𝑤′ ) ) )

⟨var 𝑥 :𝑇 |𝑥 ′:𝑇 ′ in𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨𝐶𝐶𝑥,𝑥 ′

𝑤,𝑤′ ;𝐷𝐷, 𝜏 |𝜏
′, 𝜇 |𝜇′ ⟩

bSeq

⟨𝐵𝐵, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨𝐶𝐶, 𝜏 |𝜏 ′, 𝜈 |𝜈′ ⟩

⟨𝐵𝐵;𝐷𝐷, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒ ⟨𝐶𝐶 ;𝐷𝐷, 𝜏 |𝜏 ′, 𝜈 |𝜈′ ⟩

bSeqX

⟨𝐵𝐵, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒  

⟨𝐵𝐵;𝐷𝐷, 𝜎 |𝜎 ′, 𝜇 |𝜇′ ⟩ 𝜑
Z=⇒  

Fig. 27. Transition rules for biprograms, except bi-while (for which see Figure 28).
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bWhL

𝜎 (𝐸) = true 𝜎 |𝜎′ |= P

⟨𝐶𝐶, 𝜎 |𝜎′, 𝜇 |𝜇′⟩ 𝜑
Z=⇒ ⟨(↼−𝐵𝐵 |skip);𝐶𝐶, 𝜎 |𝜎′, 𝜇 |𝜇′⟩

bWhR

𝜎′ (𝐸′) = true 𝜎 |𝜎′ |= P′ (𝜎 (𝐸) = false or 𝜎 |𝜎′ ̸ |= P)

⟨𝐶𝐶, 𝜎 |𝜎′, 𝜇 |𝜇′⟩ 𝜑
Z=⇒ ⟨(skip|−⇀𝐵𝐵);𝐶𝐶, 𝜎 |𝜎′, 𝜇 |𝜇′⟩

bWhTT

𝜎 |𝜎′ ̸ |= P 𝜎 |𝜎′ ̸ |= P′ 𝜎 (𝐸) = true = 𝜎′ (𝐸′)

⟨𝐶𝐶, 𝜎 |𝜎′, 𝜇 |𝜇′⟩ 𝜑
Z=⇒ ⟨𝐵𝐵;𝐶𝐶, 𝜎 |𝜎′, 𝜇 |𝜇′⟩

bWhFF

𝜎 (𝐸) = false = 𝜎′ (𝐸′)

⟨𝐶𝐶, 𝜎 |𝜎′, 𝜇 |𝜇′⟩ 𝜑
Z=⇒ ⟨⌊skip⌋, 𝜎 |𝜎′, 𝜇 |𝜇′⟩

bWhX

(𝜎 (𝐸) = true and 𝜎′ (𝐸′) = false and 𝜎 |𝜎′ ̸ |= P)
or (𝜎 (𝐸) = false and 𝜎′ (𝐸′) = true and 𝜎 |𝜎′ ̸ |= P′)

⟨𝐶𝐶, 𝜎 |𝜎′, 𝜇 |𝜇′⟩ 𝜑
Z=⇒  

Fig. 28. Transition rules for bi-while, in which we abbreviate 𝐶𝐶 ≡ while 𝐸 |𝐸′ · P |P′ do 𝐵𝐵.

⟨𝑎;𝑏; 𝑐⟩ ⟨(𝑎;𝑏; 𝑐 |𝑑 ; 𝑒; 𝑓 ;𝑔)⟩ ⟨𝑑 ; 𝑒; 𝑓 ;𝑔⟩
⟨𝑏; 𝑐⟩ ⟨(𝑏; 𝑐 |⊲𝑑 ; 𝑒; 𝑓 ;𝑔)⟩

⟨(𝑏; 𝑐 |𝑒; 𝑓 ;𝑔)⟩ ⟨𝑒; 𝑓 ;𝑔⟩
⟨𝑐⟩ ⟨(𝑐 |⊲𝑒; 𝑓 ;𝑔)⟩

⟨(𝑐 |𝑓 ;𝑔)⟩ ⟨𝑓 ;𝑔⟩
⟨skip⟩ ⟨(skip|⊲ 𝑓 ;𝑔)⟩

⟨(skip|𝑔)⟩ ⟨𝑔⟩
⟨⌊skip⌋⟩ ⟨skip⟩

⟨𝑎;𝑏; 𝑐⟩ ⟨(𝑎 |𝑑 ; 𝑒); (𝑏; 𝑐 |𝑓 )⟩ ⟨𝑑 ; 𝑒; 𝑓 ⟩
⟨𝑏; 𝑐⟩ ⟨(skip|⊲𝑑 ; 𝑒); (𝑏; 𝑐 |𝑓 )⟩

⟨(skip|𝑒); (𝑏; 𝑐 |𝑓 )⟩ ⟨𝑒; 𝑓 ⟩
⟨(𝑏; 𝑐 |𝑓 )⟩ ⟨𝑓 ⟩

⟨𝑐⟩ ⟨(𝑐 |⊲ 𝑓 )⟩
⟨(𝑐 |skip)⟩ ⟨skip⟩

⟨skip⟩ ⟨⌊skip⌋⟩

Fig. 29. Two example biprogram traces, with alignments, omitting states and environments.

The projection lemma (Lemma 7.8) confirms that 𝑇 gives rise to unary trace𝑈 on the left via
𝜑0↦−→

and 𝑉 on the right via
𝜑1↦−→.

Example 7.6. To illustrate the dovetailed execution of bi-coms, we show a trace for the bi-com

(𝑎;𝑏; 𝑐 |𝑑 ; 𝑒 ; 𝑓 ;𝑔) of some atomic commands, omitting states and environments from the configura-

tions. The trace is displayed vertically on the left side of Figure 29, between the two corresponding

unary traces. Thus (𝑎;𝑏; 𝑐 |𝑑 ; 𝑒; 𝑓 ;𝑔) executes the commands in the order 𝑎, 𝑑, 𝑏, 𝑒, 𝑐, 𝑓 , 𝑔. Dashed

lines in the figure show the correspondence between unary and biprogram configurations. In this

example, the right side takes additional steps after the left has terminated. The opposite can also

happen, as in ⟨(𝑎;𝑏; 𝑐 |𝑑)⟩⟨(𝑏; 𝑐 |⊲𝑑)⟩⟨(𝑏; 𝑐 |skip)⟩⟨(𝑐 |skip)⟩⟨⌊skip⌋⟩ which executes 𝑎, 𝑑, 𝑏, 𝑐 .

The right side of Figure 29 shows a trace for the second of the weavings in (12). □

The sync atomic command ⌊𝐴⌋ steps 𝐴 by unary transition on both sides, unless 𝐴 is a context

call in which case the context bi-model is used. Endmarkers are considered to be atomic commands,

e.g., ⌊elet(𝑚)⌋ transitions via rule bSync and removes𝑚 from the environment on both sides.

A bi-if, if 𝐸 |𝐸′ then 𝐶𝐶 else 𝐷𝐷 , faults from initial states that do not agree on the tests 𝐸, 𝐸′,
which we call an alignment fault (rule biIfX). A bi-while, while 𝐸 |𝐸′ · P |P′ do 𝐶𝐶 , executes the
left part of the body,

↼−
𝐶𝐶 , if 𝐸 and the left alignment guard P both hold, and mutatis mutandis for

the right. If neither alignment guard holds, the loop faults unless the tests 𝐸, 𝐸′ agree (bWhX).
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The transition relation

𝜑Z=⇒ uses the unary models 𝜑0 and 𝜑1 for method calls in the bi-com form,

e.g., (𝑚() |skip) goes via 𝜑0 according to bComL. A sync’d call ⌊𝑚()⌋ in the body of a loop that

has non-false left or right alignment guards may give rise to steps where the active biprogram

has the form (𝑚();𝐶 |𝐷) or (skip|𝑚();𝐶) (rules bWhL, bWhR). The active biprogram, like the

active command in a unary configuration, is the unique sub-biprogram that gets rewritten by the

applicable transition rule. As with unary programs, we define Active(𝐶𝐶) to be the unique 𝐵𝐵 such

that𝐶𝐶 ≡ 𝐵𝐵;𝐷𝐷 for some 𝐷𝐷 and 𝐵𝐵 is not a sequence; it is what gets rewritten by the applicable

transition rule.

Projecting from a biprogram trace does not simply mean mapping the syntactic projections over

the trace, because that would result in stuttering steps that do not arise in the unary semantics

(where stuttering only happens for context calls and only if the model returns an empty set). In

the preceding diagrams, some unary configurations correspond with more than one biprogram

configuration; one may say the unary program is idling while a step is taken on the other side.

The alignment of biprogram traces with unary ones is formalized as follows. Here we treat a trace

𝑇 as a map defined on an initial segment of the naturals, so dom (𝑇 ) is the set {0, . . . , 𝑙𝑒𝑛(𝑇 ) − 1}.

Definition 7.7 (schedule, alignment, align(𝑙, 𝑟 ,𝑇 ,𝑈 ,𝑉 )). Let 𝑇 be a biprogram trace and 𝑈 ,𝑉

unary traces. A schedule of 𝑈 ,𝑉 for 𝑇 is a pair 𝑙, 𝑟 with 𝑙 : (dom (𝑇 )) → (dom (𝑈 )) and 𝑟 :

(dom (𝑇 )) → (dom (𝑉 )), each surjective and monotonic. A schedule 𝑙, 𝑟 is an alignment of𝑈 ,𝑉
for 𝑇 , written align(𝑙, 𝑟 ,𝑇 ,𝑈 ,𝑉 ), iff𝑈𝑙 (𝑖 ) =

↼−
𝑇𝑖 and 𝑉𝑟 (𝑖 ) =

−⇀
𝑇𝑖 for all 𝑖 in dom (𝑇 ).

The dashed lines in Figure 29 represent the 𝑙 and 𝑟 index mappings of a schedule. For Example 7.6,

left side of the figure, the mapping is 𝑟 (0) = 0, 𝑟 (1) = 0, 𝑟 (2) = 1, etc.

The following result makes precise that every biprogram trace represents a pair of unary traces.

It is phrased carefully to take into account the possibility of stuttering transitions at the unary level.

Lemma 7.8 (trace projection). Suppose 𝜑 is a pre-model. Then the following hold. (a) For any

step ⟨𝐵𝐵, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ 𝜑Z=⇒ ⟨𝐶𝐶, 𝜏 |𝜏 ′, 𝜈 |𝜈 ′⟩, either
• ⟨↼−𝐵𝐵, 𝜎, 𝜇⟩ 𝜑0↦−→ ⟨↼−𝐶𝐶, 𝜏, 𝜈⟩ and ⟨−⇀𝐵𝐵, 𝜎 ′, 𝜇′⟩ 𝜑1↦−→ ⟨−⇀𝐶𝐶, 𝜏 ′, 𝜈 ′⟩, or
• ⟨↼−𝐵𝐵, 𝜎, 𝜇⟩ = ⟨↼−𝐶𝐶, 𝜏, 𝜈⟩ and ⟨−⇀𝐵𝐵, 𝜎 ′, 𝜇′⟩ 𝜑1↦−→ ⟨−⇀𝐶𝐶, 𝜏 ′, 𝜈 ′⟩, or
• ⟨↼−𝐵𝐵, 𝜎, 𝜇⟩ 𝜑0↦−→ ⟨↼−𝐶𝐶, 𝜏, 𝜈⟩ and ⟨−⇀𝐵𝐵, 𝜎 ′, 𝜇′⟩ = ⟨−⇀𝐶𝐶, 𝜏 ′, 𝜈 ′⟩.

(b) For any trace𝑇 via

𝜑Z=⇒, there are unique traces𝑈 via
𝜑0↦−→ and𝑉 via

𝜑1↦−→, and schedule 𝑙, 𝑟 , such

that align(𝑙, 𝑟 ,𝑇 ,𝑈 ,𝑉 ).
(c) If Active(𝐵𝐵) ≡ T𝐵U for some 𝐵, then ⟨↼−𝐵𝐵, 𝜎, 𝜇⟩ 𝜑0↦−→ ⟨↼−𝐶𝐶, 𝜏, 𝜈⟩ and ⟨−⇀𝐵𝐵, 𝜎 ′, 𝜇′⟩ 𝜑1↦−→ ⟨−⇀𝐶𝐶, 𝜏 ′, 𝜈 ′⟩.

7.4 Relational context models, biprogram correctness and adequacy

Owing to careful design of Defs. 5.9, 5.10, and 7.4, the following notions are mostly about relational

aspects. Relational context models are pre-models that satisfy some specs. They play the same role

in the semantics of relational judgments as unary context models play in unary correctness.

Definition 7.9 (context model of relational spec, Φ-model). A pre-model 𝜑 is a Φ-model
provided that 𝜑0, 𝜑1 are Φ0,Φ1-models, and for each𝑚, with Φ2 (𝑚) = R ≈> S [𝜂 |𝜂′], the bi-model

𝜑2 (𝑚) satisfies the following, for all 𝜎, 𝜎 ′

(a)  ∈ 𝜑2 (𝑚) (𝜎, 𝜎 ′) iff there are no 𝜋, 𝑣, 𝑣 ′ such that 𝜎 |𝜎 ′ |=𝜋 R𝑠,𝑠
′

𝑣,𝑣′

where 𝑠, 𝑠′ are the spec-only variables on left and right.

(b) for all (𝜏, 𝜏 ′) in 𝜑2 (𝑚) (𝜎, 𝜎 ′), and all 𝜋, 𝑣, 𝑣 ′ such that 𝜎 |𝜎 ′ |=𝜋 R𝑠,𝑠
′

𝑣,𝑣′
we have 𝜏 |𝜏 ′ |=𝜋 S𝑠,𝑠

′

𝑣,𝑣′

and 𝜎→𝜏 |= 𝜂 and 𝜎 ′→𝜏 ′ |= 𝜂′
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A direct consequence of Def. 7.9, together with unary compatibility of pre-models and condition

(c) of Def. 5.9, is that for all 𝑁 with mdl(𝑚) ⪯ 𝑁 , letting 𝛿 =̂ bnd (𝑁 ) we have
(𝜏 |𝜏 ′) ∈ 𝜑2 (𝑚) (𝜎 |𝜎 ′) implies rlocs(𝜎, 𝛿) ⊆ rlocs(𝜏, 𝛿) and rlocs(𝜎 ′, 𝛿) ⊆ rlocs(𝜏 ′, 𝛿)

and there is also a direct consequence of condition (d) of Def. 5.9.

The projections of Lemma 7.8 are used in the following definition of relational correctness.

Definition 7.10 (valid relational judgment Φ |=
𝑀
𝐶𝐶 : P ≈> Q [𝜀 |𝜀′] ). The judgment is

valid iff the following conditions hold for all states 𝜎 and 𝜎 ′, Φ-models 𝜑 , refperms 𝜋 , and values

𝑣, 𝑣 ′ such that 𝜎 |𝜎 ′ |=𝜋 P𝑠,𝑠
′

𝑣,𝑣′
(where 𝑠, 𝑠′ are the spec-only variables)

(Safety) It is not the case that ⟨𝐶𝐶, 𝜎 |𝜎 ′, _ | _⟩ 𝜑Z=⇒∗  .
(Post) 𝜏 |𝜏 ′ |=𝜋 Q𝑠,𝑠

′

𝑣,𝑣′
for every 𝜏, 𝜏 ′ with ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩

(Write) 𝜎→𝜏 |= 𝜀 and 𝜎 ′→𝜏 ′ |= 𝜀′ for every 𝜏, 𝜏 ′ with ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩
(R-safe) For every trace 𝑇 from ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩, let 𝑈 ,𝑉 be the projections of 𝑇 ; then every

configuration of𝑈 (resp. 𝑉 ) satisfies r-safe for (Φ0, 𝜀, 𝜎) (resp. (Φ1, 𝜀
′, 𝜎 ′)).

(Encap) For every trace𝑇 from ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩, let𝑈 ,𝑉 be the projections of𝑇 ; then every step

of𝑈 (resp. 𝑉 ) satisfies respect for (Φ0, 𝑀, 𝜑0, 𝜀, 𝜎) (resp. (Φ1, 𝑀, 𝜑1, 𝜀
′, 𝜎 ′)).

The values of spec-only variables are uniquely determined by the pre-states, just like in unary

specs. In virtue of the universal quantification over refperms 𝜋 , for a spec in standard formP ≈> ^Q,
the judgment says for any 𝜋 that supports the agreements in P there exists an extension 𝜌 ⊇ 𝜋
that supports the agreements in Q.

The following result confirms that the relational judgment is about unary executions. In particular,

a judgment about a bi-com (𝐶 |𝐶′) implies the expected property relating executions of 𝐶 and 𝐶′.
The proof uses the embedding Lemma C.9 which says a biprogram’s traces cover all the executions

of its unary projections, unless it faults.

Theorem 7.11 (adeqacy). Consider a valid judgment Φ |=
𝑀
𝐶𝐶 : P ≈> Q [𝜀 |𝜀′]. Consider any

Φ-model 𝜑 and any 𝜎, 𝜎 ′, 𝜋 with 𝜎 |𝜎 ′ |=𝜋 P. If ⟨↼−𝐶𝐶, 𝜎, _⟩ 𝜑0↦−→∗ ⟨skip, 𝜏, _⟩ and ⟨−⇀𝐶𝐶, 𝜎 ′, _⟩ 𝜑1↦−→∗
⟨skip, 𝜏 ′, _⟩ then 𝜏 |𝜏 ′ |=𝜋 Q. Moreover, all executions from ⟨↼−𝐶𝐶, 𝜎, _⟩ and from ⟨−⇀𝐶𝐶, 𝜎 ′, _⟩ satisfy
Safety, Write, R-safe, and Encap in Def. 5.10.

Remark 1. It is not straightforward to formalize a converse to this result. The judgment about

𝐶𝐶 says not only that the underlying unary executions are related as in the conclusion of the

theorem, but in addition certain intermediate states are in agreement according to the alignment

designated by the bi-ifs and bi-whiles in 𝐶𝐶 . □

8 RELATIONAL LOGIC

This section presents the rules for proving relational correctness judgments. Section 8.1 defines

how local equivalence specs are derived from unary specs. Section 8.2 gives the proof rules and

discusses them, including the derivation of the modular linking rule rMLink, sketched as (3) in

Section 2.1. Section 8.3 considers derived rules involving framing and the ^ modality. Section 8.4

states and explains the lockstep alignment lemma, which is the key to proving soundness of rules

rLocEq, rSOF, and rLink from which rMLink is derived. Section 8.5 considers nested linking and

Section 8.6 addressess unconditional equivalences. For Section 8.4 readers need to be familiar with

the semantic definitions in Section 7.

Theorem 8.1 (soundness of relational logic). All the relational proof rules are sound (Figure 30

and appendix Figure 38).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



A Relational Program Logic with Data Abstraction and Dynamic Framing [version with index] 1:59

8.1 Local equivalence

In Section 2.1 we introduced the notion of local equivalence. There is a relational proof rule,

rLocEq, which lifts a unary judgment to a relational one. The unary read effect, which has an

extensional semantics that is relational (Def. 5.10) gets lifted to an explicit relational property, a

local equivalence relating a command to itself. As basis for the proof rule, we now formalize a

construction, locEq, that applies to a unary spec and makes a relational spec—like the spec (9) in

Example 4.3, and others in Section 4.6—that expresses equivalence in terms of the given frame

condition and takes into account encapsulation boundaries.

Both unary and relational proof rules have conditions to enforce encapsulation with respect

to the boundaries of modules in scope. For unary this is discussed in Section 6.3. The semantic

condition Encap, in Def. 5.10, refers to a collective boundary. This is an effect formed as a union

of the relevant boundaries, for example in the expression (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) where𝑀 is

the current module and Φ is the hypothesis context. For brevity, several relational proof rules are

expressed using 𝛿 to name the collective boundary; in particular rule rLocEq which introduces the

locEq spec we now define.

Given a boundary 𝛿 and unary spec 𝑃 { 𝑄 [𝜀], the desired pre-relation expresses agreement

on the readable locations. Absent a boundary, this can be written A𝜀, taking advantage of our

abbreviations which say that A𝜀 abbreviates Ards(𝜀) which in turn abbreviates a conjunction of

agreement formulas (Figure 14). But we should avoid requiring agreement on variable alloc, as we

want to allow entirely different data structures within boundaries. The requisite agreement can be

expressed, using effect subtraction, as A(𝜀\𝛿⊕), where 𝛿 is the collective boundary of the modules

to be respected. Note that 𝛿⊕ abbreviates 𝛿, rd alloc (as in Def. 5.9).

A first guess for the post-relation would use agreement on the writable locations, but that cannot

be written as Aw2r (𝜀) because any state-dependent region expressions in write effects of 𝜀 should

be interpreted in the pre-state. This is why the concluding agreements in the definition of r-respect

are expressed in terms of the fresh and written locations. So this is what we need to express in

a spec. The solution is to use snapshot variables. If we use fresh variable 𝑠alloc in precondition

𝑠alloc = alloc, the fresh references can be described in post-states as alloc\𝑠alloc and agreement on

fresh locations can be expressed as A(alloc\𝑠alloc)‘any. For written (pre-existing) locations, we can

obtain the requisite agreements in terms of initial snapshots of the locations deemed writable by 𝜀.

For an example, see (18) in Section 4.6.

For each wr𝐺 ‘𝑓 in 𝜀 we add a snapshot equation 𝑠𝐺,𝑓 = 𝐺 to the precondition, or rather

B(𝑠𝐺,𝑓 = 𝐺). The desired post-relation is then A𝑠𝐺,𝑓 ‘𝑓 . Please note that 𝑠𝐺,𝑓 is just a fresh identifier,

written in a way to keep track of its use in connection with𝐺 ‘𝑓 . The snapshots and agreements are

given by functions snap and Asnap defined next. The following definitions make use of effects like

rd 𝑠𝐺,𝑓 ‘𝑓 in which spec-only variables occur. These are used to define agreement formulas used in

postconditions—they are not used in frame conditions, where spec-only variables are disallowed.

Definition 8.2 (write snapshots). For any effect 𝜀 we define functions snap from effects to unary

formulas and Asnap from effects to read effects.

snap(𝜀, 𝜂) =̂ snap(𝜀) ∧ snap(𝜂) Asnap(𝜀, 𝜂) =̂ Asnap(𝜀), Asnap(𝜂)
snap(wr𝑥) =̂ true Asnap(wr𝑥) =̂ rd𝑥 if 𝑥 . alloc else •

snap(wr𝐺 ‘𝑓 ) =̂ 𝑠𝐺,𝑓 = 𝐺 Asnap(wr𝐺 ‘𝑓 ) =̂ rd 𝑠𝐺,𝑓 ‘𝑓

snap(wr𝐺 ‘any) =̂ 𝑠𝐺,any = 𝐺 Asnap(wr𝐺 ‘any) =̂ rd 𝑠𝐺,any‘𝑓 , rd 𝑠𝐺,any‘𝑔, . . .

snap(. . .) =̂ true Asnap(. . .) =̂ •
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Notice that Asnap omits alloc and uses the snapshot variables introduced by snap.
38
Notice also

that in the case Asnap(wr𝐺 ‘any) a single snapshot variable 𝑠𝐺,any is used, but the image expression

in 𝐺 ‘any gets expanded to the constituent fields (𝑓 , 𝑔, . . . ).

The following result confirms that Asnap serves the purpose of designating the writable locations

from the perspective of the post-state. It uses semantic notions from Sections 5.1 and 5.2.

Lemma 8.3. If 𝜏 |= snap(𝜀) and 𝜏→𝜐 |= 𝜀 then wlocs(𝜏, 𝜀)\rlocs(𝜐, 𝛿⊕) = rlocs(𝜐,Asnap(𝜀)\𝛿).

The following definition of locEq uses effect subtraction to avoid asserting agreement inside the

given boundary, in both pre and post. For example, if 𝜀 includes wr𝑥,wr𝐺 ‘𝑓 we convert to read

effects and use the snapshot variable: rd𝑥, rd 𝑠𝐺,𝑓 ‘𝑓 . Then (rd𝑥, rd 𝑠𝐺,𝑓 ‘𝑓 )\𝛿 will remove 𝑥 if rd𝑥

is in 𝛿 , and result in rd (𝑠𝐺,𝑓 \𝐻 )‘𝑓 if rd𝐻 ‘𝑓 is in 𝛿 .

Definition 8.4 (local equivalence). For spec 𝑃 { 𝑄 [𝜀] and boundary 𝛿 , define relational spec

locEq𝛿 (𝑃 { 𝑄 [𝜀]) =̂ B𝑃 ∧ A𝜀←
𝛿
∧ B(𝑠alloc = alloc ∧ snap(𝜀)) ≈> ^(B𝑄 ∧ A𝜀→

𝛿
) [𝜀]

where 𝜀←
𝛿

=̂ rds(𝜀)\𝛿⊕ and 𝜀→
𝛿

=̂ (rd (alloc\𝑠alloc)‘any,Asnap(𝜀))\𝛿

For unary context Φ, define LocEq𝛿 (Φ) =̂ (Φ,Φ,Φ2) where Φ2 (𝑚) is locEq𝛿 (Φ(𝑚)) for each𝑚 ∈ Φ.

If 𝑃 { 𝑄 [𝜀] and 𝛿 are wf in Γ then locEq𝛿 (𝑃 { 𝑄 [𝜀]) is wf in Γ |Γ and has the same spec-only

variables on both sides.

Recall from Section 6.3 the Stack client with precondition 𝑃 =̂ 𝑐 ∈ 𝑟 ∧ 𝑟 # (𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝)
and frame 𝜀 =̂ rw 𝑐, 𝑟, alloc, 𝑟 ‘𝑣𝑎𝑙 , where the boundary 𝛿 is rd𝑝𝑜𝑜𝑙, 𝑝𝑜𝑜𝑙 ‘any, 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝‘any. For the

precondition, the reads are rd 𝑐, rd 𝑟, rd alloc, rd 𝑟 ‘𝑣𝑎𝑙 . Subtracting 𝛿⊕ leaves the variables 𝑐, 𝑟 and is

more interesting for 𝑟 ‘𝑣𝑎𝑙 . Expanding abbreviation any and discarding empty regions, we are left

with rd (𝑟\(𝑝𝑜𝑜𝑙 ∪𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝))‘𝑣𝑎𝑙 . So the preconditionA𝜀←
𝛿

isA𝑐∧A𝑟 ∧A(𝑟\(𝑝𝑜𝑜𝑙 ∪𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝))‘𝑣𝑎𝑙 .
(In conjunction with B𝑃 , the formula A(𝑟\(𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝))‘𝑣𝑎𝑙 is equivalent to A𝑟 ‘𝑣𝑎𝑙 .) There
is a snapshot variable in precondition 𝑠𝑟,𝑣𝑎𝑙 = 𝑟 , due to wr 𝑟 ‘𝑣𝑎𝑙 . It is used in this conjunct of the

Asnap part of the postcondition: A(𝑠𝑟,𝑣𝑎𝑙\(𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝))‘𝑣𝑎𝑙 .

8.2 Relational proof rules and derivation of rMLink

Selected proof rules are in Figure 30. For relational judgments, the validity conditions (Def. 7.10)

have been carefully formulated to leverage the unary ones (Def. 5.10). This obviates the need for

rules like CtxIntro at the relational level. Rule rCall, for aligned calls using a relational spec,

relies on unary premises to enforce the requisite encapsulation conditions. The relational rules

for bi-if and bi-while have separator conditions to enforce encapsulation, taken straight from

their unary rules (e.g., If in Figure 23). The relational rules for bi-while and sequence include an

immunity condition for framing of their effects, again taken straight from the unary rules.

The linking rule, rLink, relates a client command 𝐶 to itself using relations that imply its

executions can be aligned lockstep. It can be instantiated with local equivalence specs but also with

more general specs that include hidden invariants and coupling on encapsulated state. To allow

this generality in a sound way, rule rLink uses the following notion.

Definition 8.5 (covariant spec implication ⇛ ). Define (R0 ≈> S0 [𝜀0 |𝜀′0]) ⇛ (R1 ≈>

S1 [𝜀1 |𝜀′1]) iff R0 ⇒ R1 and S0 ⇒ S1 are valid and the effects are the same: 𝜀0 = 𝜀1 and 𝜀
′
0
= 𝜀′

1
.

38
The snapshot variables used should be distinct from each other, distinct from the ones used in the original spec, and

also globally unique so that the local equivalence specs of different methods use different variables. In the definition of

LocEq, where multiple method specs are considered, we adopt the convention of naming snapshots for method𝑚 as 𝑠𝑚
𝐺,𝑓

(and snap
𝑚
, Asnap

𝑚
for short), to distinguish them from each other and from the snapshots used in the conclusion of a

judgment.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



A Relational Program Logic with Data Abstraction and Dynamic Framing [version with index] 1:61

rLink

Φ,Θ ⊢• T𝐶U : P ≈> Q [𝜀 ]
Φ,Θ ⊢

mdl (𝑚) (𝐵 |𝐵′ ) : Θ2 (𝑚) Φ0,Θ0 ⊢mdl (𝑚) 𝐵 : Θ0 (𝑚) Φ1,Θ1 ⊢mdl (𝑚) 𝐵
′

: Θ1 (𝑚)
𝛿 = (+𝐿 ∈ (Φ,Θ) . bnd (𝐿) ) (Φ,Θ) ⇛ LocEq𝛿 ( ¤Φ, ¤Θ) P ⇒ 𝑝𝑟𝑒 (locEq𝛿 (𝑃 { 𝑄 [𝜀 ] ) )

∀𝑁 ∈ Φ, 𝐿 ∈ Θ. 𝑁 ̸⪯ 𝐿 ∀𝑁, 𝐿. 𝑁 ∈ Θ ∧ 𝑁 ≺ 𝐿 ⇒ 𝐿 ∈ (Φ,Θ) 𝐶 is let-free

Φ ⊢• let𝑚 = (𝐵 |𝐵′ ) in T𝐶U : P ≈> Q [𝜀 ]

rWeave

Φ ⊢ 𝐷𝐷 : P ≈> Q [𝜀 |𝜀′ ] 𝐶𝐶 ↬∗ 𝐷𝐷

Φ ⊢ 𝐶𝐶 : P ≈> Q [𝜀 |𝜀′ ]
rCall

Φ0 ⊢𝑚 ( ) : Φ0 (𝑚) Φ1 ⊢𝑚 ( ) : Φ1 (𝑚)
Φ ⊢ ⌊𝑚 ( ) ⌋ : Φ2 (𝑚)

rAlloc

(+𝐿 ∈ (Φ), 𝐿 ≠ 𝑀. bnd (𝐿) ) ·/. wr𝑥,wr alloc
Φ ⊢𝑀 ⌊𝑥 := new 𝐾 ⌋ : true ≈> ^ (𝑥 ¥= 𝑥 ) [wr𝑥, rw alloc] rEmpPre Φ ⊢ 𝐶𝐶 : false ≈> Q [𝜀 |𝜀′ ]

rLocEq

Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀 ] 𝑃 |= w2r (𝜀 ) ≤ rds (𝜀 ) 𝛿 = (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 ) ) 𝐶 is let-free

LocEq𝛿 (Φ) ⊢𝑀 T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀 ] )

rEmb

Φ0 ⊢ 𝐶 : 𝑃 { 𝑄 [𝜀 ] Φ1 ⊢ 𝐶′ : 𝑃 ′ { 𝑄 ′ [𝜀′ ]
Φ ⊢ (𝐶 |𝐶′ ) : ⟨[𝑃 ⟨] ∧ [⟩𝑃 ′]⟩ ≈> ⟨[𝑄 ⟨] ∧ [⟩𝑄 ′]⟩ [𝜀 |𝜀′ ]

rPoss

Φ ⊢ 𝐶𝐶 : P ≈> Q [𝜀 |𝜀′ ]
Φ ⊢ 𝐶𝐶 : ^P ≈> ^Q [𝜀 |𝜀′ ]

rSOF

LocEq𝛿 (Φ,Θ) ⊢𝑀 T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀 ] ) |= bnd (𝑁 ) |bnd (𝑁 ) frm N N ⇒ □N
𝑁 ≠ 𝑀 𝑁 ∈ Θ ∀𝑚 ∈ Φ. mdl (𝑚) ̸⪯ 𝑁 𝛿 = (+𝐿 ∈ (Φ,Θ), 𝐿 ≠ 𝑀. bnd (𝐿) ) 𝐶 is let-free

LocEq𝛿 (Φ), LocEq𝛿 (Θ) ? N ⊢𝑀 T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀 ] ) ? N

rFrame

Φ ⊢ 𝐶𝐶 : P ≈> Q [𝜀 |𝜀′ ] P |= 𝜂 |𝜂′ frm R P ∧ R ⇒ ⟨[𝜂 ·/. 𝜀⟨] ∧ [⟩𝜂′ ·/. 𝜀′]⟩
Φ ⊢ 𝐶𝐶 : P ∧ R ≈> Q ∧ R [𝜀 |𝜀′ ]

rConseq

Φ ⊢ 𝐶𝐶 : P ≈> Q [𝜀 |𝜀′ ] R ⇒ P Q ⇒ S P |= (𝜀 |𝜀′ ) ≤ (𝜂 |𝜂′ )
Φ ⊢ 𝐶𝐶 : R ≈> S [𝜂 |𝜂′ ]

rDisj

Φ ⊢ 𝐶𝐶 : P0 ≈> Q [𝜀 |𝜀′ ] Φ ⊢ 𝐶𝐶 : P1 ≈> Q [𝜀 |𝜀′ ]
Φ ⊢ 𝐶𝐶 : P0 ∨ P1 ≈> Q [𝜀 |𝜀′ ]

rConj

Φ ⊢ 𝐶𝐶 : P ≈> Q0 [𝜀 |𝜀′ ] Φ ⊢ 𝐶𝐶 : P ≈> Q1 [𝜀 |𝜀′ ]
Φ ⊢ 𝐶𝐶 : P ≈> Q0 ∧ Q1 [𝜀 |𝜀′ ]

Fig. 30. Selected relational proof rules (for others see appendix Figure 38). The typing context Γ |Γ′ is unchanged
thoughout, so omitted. The current module is omitted in rules where it is the same in all the judgments and

unconstrained.

For contexts Φ and Ψ, define Φ ⇛ Ψ to mean they have the same methods and ⇛ holds for the

relational spec of each method.

For example we have locEq𝛿 (𝑠𝑝𝑒𝑐) ?M ⇛ locEq𝛿 (𝑠𝑝𝑒𝑐) for any 𝛿, 𝑠𝑝𝑒𝑐,M.

In rLink, side conditions constrain module imports, exactly as in unary Link, as part of the

enforcement of encapsulation. As with Link, some of the conditions merely express module

structure. The soundness proof for rLink goes by induction on biprogram traces, similar to the

soundness proof for unary Link; the relational hypothesis can be used because the relevant context

calls are aligned (see appendix B.10 and D.10).

Rule rEmb lifts unary judgments to a relational one. It applies to arbitrary commands. For example,

it can be applied to the 𝑠𝑢𝑚𝑝𝑢𝑏 program of (4), to prove the judgment about (𝑠𝑢𝑚𝑝𝑢𝑏 |𝑠𝑢𝑚𝑝𝑢𝑏)
by lifting a unary spec as described in Section 4.5. It is also needed to obtain relational judgments

about assignments, and it enables the use of unary specs in one-sided method calls.
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For allocation, there needs to be a way to indicate when a pair of allocations are meant to

be aligned; this is the purpose of rAlloc. Using rConj, rEmb, the unary rule Alloc, and the

frame rules, one can add postconditions like A{𝑥}‘𝑓 and freshness of 𝑥 . (Detailed derivations for

freshness can be found in RLIII (Section 7.1)). Like rCall, rule rAlloc does not have the minimal

hypothesis context but rather allows an arbitrary one; this is needed because we do not have context

introduction rules at the relational level. To enforce encapsulation, rAlloc has a side condition

which simply says neither 𝑥 nor alloc occur in the boundaries of any models other than the current

one.

Rule rLocEq has a side condition about the unary judgment’s frame condition: the writes

must be subsumed by the reads (subeffect judgment 𝑃 |= w2r (𝜀) ≤ rds(𝜀)). This ensures that the
precondition of the relational conclusion has agreement for writable locations. The requirement

that 𝐶 is let-free is needed in accord with Lemma 8.9.

Example 8.6 (how framing is used with rLocEq). Just as the unary axioms for assignments are

“small” in the sense that they only describe the locations relevant to the command’s behavior, we

are interested in program equivalence described in terms of the relevant locations. As an example,

without methods, consider this valid judgment (omitting the module, which is irrelevant):

⊢ (𝑥 := 𝑦.𝑓 ; 𝑧 := 𝑤) : 𝑦 ≠ 0 { 𝑡𝑟𝑢𝑒 [𝜀]
where 𝜀 =̂ wr𝑥, 𝑧, rd𝑤,𝑦,𝑦.𝑓 . It should entail this relational one:

⊢ T𝑥 := 𝑦.𝑓 ; 𝑧 := 𝑤U : B(𝑦 ≠ 0) ∧ A(𝑦,𝑤, {𝑦}‘𝑓 ) ≈> Btrue ∧ A(𝑥, 𝑧) [𝜀]
Desugared, the precondition agreement is A𝑦 ∧ A𝑤 ∧ A{𝑦}‘𝑓 . The precondition only requires

agreement on locations that are read. The postcondition tells about the variables that are written.

In fact𝑤 and 𝑦 are unchanged, and we can strengthen the postcondition to

⊢ T𝑥 := 𝑦.𝑓 ; 𝑧 := 𝑤U : B(𝑦 ≠ 0) ∧ A(𝑦,𝑤, {𝑦}‘𝑓 ) ≈> Btrue ∧ A(𝑥, 𝑧,𝑦,𝑤) [𝜀]
using the rFrame rule, because A(𝑦,𝑤) is separate from the writes. Rule rConseq allows to

strengthen the precondition by adding the agreements A(𝑢, {𝑦}‘𝑔):
⊢ T𝑥 := 𝑦.𝑓 ; 𝑧 := 𝑤U : B(𝑦 ≠ 0) ∧ A(𝑦,𝑤, {𝑦}‘𝑓 ,𝑢, {𝑦}‘𝑔) ≈> Btrue ∧ A(𝑥, 𝑧,𝑦,𝑤) [𝜀]

Now rule rFrame allows to carry these agreements over the command, because the locations 𝑢 and

𝑦.𝑔 are separate from the write effects.

⊢ T𝑥 := 𝑦.𝑓 ; 𝑧 := 𝑤U : B(𝑦 ≠ 0) ∧ A(𝑦,𝑤, {𝑦}‘𝑓 ,𝑢, {𝑦}‘𝑔) ≈> Btrue ∧ A(𝑥, 𝑧,𝑦,𝑤,𝑢, {𝑦}‘𝑔) [𝜀]
In summary, the local equivalence spec expresses a program relation in terms of only the locations

readable and writable by the command. Such equivalence can be extended to arbitrary other

locations not touched by the command. □

Rule rSOF follows the pattern of the unary SOF in its use of ?M from Def. 4.7. It can only be

instantiated with specs in standard form, so that ?M is defined. It requires refperm monotonicity

of the coupling, i.e., N ⇒ □N ; more on this in Section 8.3.

Figure 31 presents the relational modular linking rule, rMLink, and its derivation. (Here special-

ized to a singlemethod, i.e., dom (Φ) = {𝑚}, for clarity). The side conditions are 𝑃 |= w2r (𝜀) ≤ rds(𝜀)
(for rLocEq); |= 𝛿 |𝛿 frm M and M ⇒ □M (for rSOF); dom (Φ) = {𝑚} (for rLink); and

𝑝𝑟𝑒 (locEq𝛿 (𝑃 { 𝑄 [𝜀])) ⇒ M (for rConseq, to drop ∧M from the precondition; of course

∧M is also dropped from postcondition). For rWeave we use the fact that (let 𝑚 = 𝐵 in 𝐶 |
let𝑚=𝐵′ in𝐶) ↬∗ let𝑚=(𝐵 |𝐵′) in T𝐶U. Vertical elipses in the derivation indicate that, in addition to
the expected relational premise for 𝐵 and 𝐵′, unary premises are required: Φ?↼−M ⊢𝑀 𝐵 : Φ(𝑚)?↼−M
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rMLink

Φ ⊢• 𝐶 : 𝑃 { 𝑄 [𝜀 ] Φ?M ⊢𝑀 (𝐵 |𝐵′ ) : locEq𝛿 (Φ) (𝑚) ?M 𝛿 = bnd (𝑀 )
Φ?↼−M ⊢𝑀 𝐵 : Φ(𝑚) ?↼−M Φ? −⇀M ⊢𝑀 𝐵′ : Φ(𝑚) ? −⇀M 𝑀 = mdl (𝑚) 𝑃 |= w2r (𝜀 ) ≤ rds (𝜀 )

|= 𝛿 |𝛿 frm M M ⇒ □M 𝐶 is let-free 𝑝𝑟𝑒 (locEq𝛿 (𝑃 { 𝑄 [𝜀 ] ) ) ⇒ M
⊢• (let𝑚 = 𝐵 in𝐶 | let𝑚 = 𝐵′ in𝐶 ) : locEq𝛿 (𝑃 { 𝑄 [𝜀 ] )

Φ ⊢• 𝐶 : 𝑃 { 𝑄 [𝜀 ]
LocEq𝛿 (Φ) ⊢• T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀 ] )

rLocEq

Ψ ⊢• T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀 ] ) ?M
rSOF

Ψ ⊢𝑀 (𝐵 |𝐵′ ) : locEq𝛿 (Φ(𝑚) ) ?M
.
.
.

⊢• let𝑚 = (𝐵 |𝐵′ ) in T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀 ] ) ?M
rLink

⊢• let𝑚 = (𝐵 |𝐵′ ) in T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀 ] )
rConseq

⊢• (let𝑚 = 𝐵 in𝐶 | let𝑚 = 𝐵′ in𝐶 ) : locEq𝛿 (𝑃 { 𝑄 [𝜀 ] )
rWeave

Fig. 31. rMLink and its derivation, where Ψ abbreviates LocEq𝛿 (Φ) ?M, Φ specifies𝑚, 𝛿 = bnd (𝑀), and
𝑀 = mdl(𝑚). See text for details.

and Φ? −⇀M ⊢𝑀 𝐵′ : Φ(𝑚) ? −⇀M. These are required by rLink, for technical reasons explained in its

proof (Section D.10).

The implication 𝑝𝑟𝑒 (locEq𝛿 (𝑃 { 𝑄 [𝜀])) ⇒ M refers to the precondition of local equivalence.

Typically, the implication is valid because 𝑃 includes initial conditions that implyM just as in

the case of unary modular linking and module invariant. This is the responsibility of the module

developer, who definesM, shows its framing by the boundary, and shows refperm monotonicity

ofM.

Example 8.7 (Illustrating rMLink with SSSP). We instantiate𝑀 in the rule with PQ (Section 3) and

Φwith the specs of PQ’s publicmethods. Let𝛿 be PQ’s dynamic boundary rd 𝑝𝑜𝑜𝑙, 𝑝𝑜𝑜𝑙 ‘any, 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝‘any.

We instantiate client 𝐶 with 𝐶𝑠𝑠𝑠𝑝 , an implementation of Dijkstra’s single-source shortest-paths

algorithm acting on global variables 𝑔𝑝ℎ, 𝑠𝑟𝑐 , and 𝑤𝑡𝑠 . For simplicity, 𝑔𝑝ℎ is a variable of type

“mathematical graph” for which we use an API supporting usual operations. We assume the vertex

set 𝑉 (𝑔𝑝ℎ) is an initial segment of naturals so the source vertex variable 𝑠𝑟𝑐 has type int. Edges

have positive integer weights. The integer array𝑤𝑡𝑠 , of length |𝑉 (𝑔𝑝ℎ) | and allocated by the client,

is for the output: for every vertex 𝑣 ∈ 𝑉 (𝑔𝑝ℎ), 𝐶𝑠𝑠𝑠𝑝 computes in𝑤𝑡𝑠 [𝑣] the weight of the shortest
path from 𝑠𝑟𝑐 to 𝑣 .

The unary spec for 𝐶𝑠𝑠𝑠𝑝 is 𝑃 { 𝑄 [𝜀] where 𝑃 =̂ 𝑠𝑟𝑐 ∈ 𝑉 (𝑔𝑝ℎ) ∧ 𝑝𝑜𝑜𝑙 = ∅; 𝑄 =̂ true;

and 𝜀 =̂ rd𝑔𝑝ℎ, 𝑠𝑟𝑐, rw𝑤𝑡𝑠, 𝑝𝑜𝑜𝑙, 𝑝𝑜𝑜𝑙 ‘any, 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝‘any, alloc. The trivial postcondition does not

specify functional behavior but the spec is still useful. The local equivalence spec locEq𝛿 (𝑃 { 𝑄 [𝜀])
is R ≈> ^S [𝜀] where R =̂ B(𝑠𝑟𝑐 ∈ 𝑉 (𝑔𝑝ℎ) ∧ 𝑝𝑜𝑜𝑙 = ∅ ∧ 𝑠alloc = alloc) ∧ A(𝑤𝑡𝑠, 𝑔𝑝ℎ, 𝑠𝑟𝑐); and
S =̂ A(𝑤𝑡𝑠, (alloc\(𝑠alloc ∪ 𝑝𝑜𝑜𝑙 ∪ 𝑝𝑜𝑜𝑙 ‘𝑟𝑒𝑝))‘any), eliding details about spec-only variables apart

from 𝑠alloc. Here 𝑠alloc snapshots alloc so fresh locations are those in alloc\𝑠alloc. This spec ensures
agreement on fresh locations that are not in PQ’s dynamic boundary.

The couplingM𝑃𝑄 is∀𝑞:Pqueue ∈ 𝑝𝑜𝑜𝑙 |𝑞:Pqueue ∈ 𝑝𝑜𝑜𝑙 .A𝑞 ⇒ ∀𝑛 ∈ 𝑞.𝑟𝑒𝑝 |𝑛 ∈ 𝑞.𝑟𝑒𝑝.A𝑛 ⇒ . . .,

conjoined with the private invariants 𝐼 and 𝐼 ′ (eliding parts shown in Example 4.3). One side

condition of rMLink is 𝑝𝑟𝑒 (locEq𝛿 (𝑃 { 𝑄 [𝜀])) ⇒ M𝑃𝑄 which is easy to show: expanding

definitions, the antecedent includes B(𝑝𝑜𝑜𝑙 = ∅) which implies the private invariants and the

coupling relation. The subeffect 𝑃 |= w2r (𝜀) ≤ rds(𝜀) is immediate from the definition of 𝜀. The

framing judgment, |= 𝛿 |𝛿 frm M𝑃𝑄 , is easily proved by SMT, as is refperm monotonicity of

M𝑃𝑄 . □
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8.3 Refperm monotonicity, standard form, and agreement compatibility

For modular linking and most other purposes, we are concerned with specs in the standard form,

i.e., either R ≈> ^S [𝜂] or R ≈> S [𝜂] where R and S are ^-free. In this section we consider the

rules that give rise to other forms, and related notions concerning formulas with ^. It is possible to
reformulate the logic to consider only standard form specs. We choose the present formulation

because some proof rules can be simpler and more orthogonal.

For reasoning about sequential composition one wants to combine judgments for specs P ≈> ^Q
and Q ≈> ^R into a judgment for P ≈> ^R (omitting frame for clarity). It is easy to derive a rule

for specs of this form, from the more basic rule for sequence together rules rPoss and rConseq.

From Q ≈> ^R we get ^Q ≈> ^^R by rPoss. Then we get ^Q ≈> ^R by rConseq, because

^^R ⇐⇒ ^R is valid. From P ≈> ^Q and ^Q ≈> ^R we get P ≈> ^R by the sequence rule.

Similarly, one can derive a relational rule for loops, with premises in standard form and relational

invariant Q that is ^-free. In accord with the loop rule sketched as (16), we elide frame conditions,

context, and side conditions for immunity and encapsulation. The derived rule looks like this:

⊢ 𝐶𝐶 : Q ∧ ¬P ∧ ¬P′ ∧ ⟨[𝐸⟨] ∧ [⟩𝐸′]⟩ ≈> ^Q ⊢ (↼−𝐶𝐶 |skip) : Q ∧ P ∧ ⟨[𝐸⟨] ≈> ^Q
⊢ (skip|−⇀𝐶𝐶) : Q ∧ P′ ∧ [⟩𝐸′]⟩ ≈> ^Q Q ⇒ 𝐸 ¥= 𝐸′ ∨ (P ∧ ⟨[𝐸⟨]) ∨ (P′ ∧ [⟩𝐸′]⟩)

⊢ while 𝐸 |𝐸′ · P |P′ do 𝐶𝐶 : Q ≈> ^(Q ∧ ⟨[¬𝐸⟨] ∧ [⟩¬𝐸′]⟩)
(32)

Given the premises, three applications of rPoss yields𝐶𝐶 : ^(Q∧¬P∧¬P′∧⟨[𝐸⟨]∧ [⟩𝐸′]⟩) ≈> ^^Q,
(↼−𝐶𝐶 |skip) : ^(Q ∧ P ∧ ⟨[𝐸⟨]) ≈> ^^Q and (skip|−⇀𝐶𝐶) : ^(Q ∧ P′ ∧ [⟩𝐸′]⟩) ≈> ^^Q. But ^^Q is

equivalent to ^Q. Furthermore, ⟨[𝐸⟨] and [⟩𝐸′]⟩ are agreement-free and thus refperm independent.

Also P,P′ are refperm independent, because they are agreement free by the wellformedness

condition mentioned at the end of Section 3.1. So, using property (31), the precondition of the

second judgment,^(Q∧P∧⟨[𝐸⟨]) is equivalent to onewhere^ is applied only toQ, i.e.,^Q∧P∧⟨[𝐸⟨].
Similarly for the other two preconditions. So by rConseq we get

• 𝐶𝐶 : ^Q ∧ ¬P ∧ ¬P′ ∧ ⟨[𝐸⟨] ∧ [⟩𝐸′]⟩ ≈> ^Q
• (↼−𝐶𝐶 |skip) : ^Q ∧ P ∧ ⟨[𝐸⟨] ≈> ^Q
• (skip|−⇀𝐶𝐶) : ^Q ∧ P′ ∧ [⟩𝐸′]⟩ ≈> ^Q

With these we instantiate the rule (16) with ^Q for Q, which yields while 𝐸 |𝐸′ · P |P′ do 𝐶𝐶 :

^Q ≈> ^Q ∧ ⟨[¬𝐸⟨] ∧ [⟩¬𝐸′]⟩. Finally, the implication Q ⇒ ^Q is valid and we can distribute

refperm independent formulas under ^; so using rConseq we obtain the conclusion of (32).

For a bi-while with false alignment guards, there is a derived rule with a single premise ⊢ 𝐶𝐶 :

Q ∧ ⟨[𝐸⟨] ∧ [⟩𝐸′]⟩ ≈> ^Q. It can be derived, using rule rEmpPre.

Refperm monotonicity. Given a judgment Φ ⊢ 𝐶𝐶 : P ≈> ^Q [𝜀 |𝜀′], rule rFrame yields

Φ ⊢ 𝐶𝐶 : P ∧ R ≈> ^Q ∧ R [𝜀 |𝜀′] which is not in the standard form. But suppose R is refperm

monotonic, i.e., R ⇒ □R is valid. Then by (30) we have ^Q ∧ R ⇒ ^(Q ∧ R). So using rConseq

we get this derived frame rule:

Φ ⊢ 𝐶𝐶 : P ≈> ^Q [𝜀 |𝜀′] P |= 𝜂 |𝜂′ frm R P ∧ R ⇒ ⟨[𝜂 ·/. 𝜀 ⟨] ∧ [⟩𝜂′ ·/. 𝜀′]⟩ R ⇒ □R
Φ ⊢ 𝐶𝐶 : P ∧ R ≈> ^(Q ∧ R) [𝜀 |𝜀′]

Refperm monotonicity is also a side condition for the coupling relation in rule rSOF. In that rule,

moving the coupling relation under ^ is done by the ? operation (Def. 4.7).

Agreement formulas are refperm monotonic, as are refperm independent formulas. But negation

does not preserve refperm monotonicity, and in particular a formula of the form A𝑥 ⇒ R is not

refperm monotonic even if R is. Such implications are used in our example couplings. In particular,
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implication is used in the following idiomatic pattern:

𝐺 ¥= 𝐺 ′ ∧ (∀𝑥 :𝐾 |𝑥 :𝐾. ⟨[𝑥 ∈ 𝐺 ⟨] ∧ [⟩𝑥 ∈ 𝐺 ′]⟩ ∧ A𝑥 ⇒ R). (33)

The second conjunct can be written in sugared form as ∀𝑥 :𝐾 ∈ 𝐺 |𝑥 :𝐾 ∈ 𝐺 ′ . A𝑥 ⇒ R.

Lemma 8.8 (refperm monotonicity). (i) Any agreement formula is refperm monotonic and

so is any refperm independent formula. (ii) Refperm monotonicity is preserved by conjunction,

disjunction, and quantification. (iii) Any formula of the form (33), with R refperm monotonic, is

refperm monotonic.

The couplingM𝑢𝑓 in Section 4.6 is refpermmonotonic. The embedded invariants ⟨[𝐼𝑞𝑓 ⟨] and [⟩𝐼𝑞𝑢 ]⟩
are refperm monotonic, by (i) in the lemma, as is the consequent 𝑒𝑞𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(⟨[𝑢.𝑝𝑎𝑟𝑡 ⟨], [⟩𝑢.𝑝𝑎𝑟𝑡 ]⟩)
in the relation (19). So refperm monotonicity ofM𝑢𝑓 follows using (ii) and (iii).

The couplingM𝑃𝑄 in Example 4.3 is refperm monotonic. To see why, first note that (33) is

equivalent to 𝐺/𝐾 ¥= 𝐺 ′/𝐾 ∧ (∀𝑥 :𝐾 ∈ 𝐺 |𝑥 :𝐾 ∈ 𝐺 ′ . A𝑥 ⇒ R) because a quantified variable of type

𝐾 ranges over allocated (non-null) references of type 𝐾 . So inside the quantification, 𝑥 ∈ 𝐺 is

equivalent to 𝑥 ∈ 𝐺/𝐾 . The relevant subformula ofM𝑃𝑄 is 𝑞.𝑟𝑒𝑝/Pnode ¥= 𝑞.𝑟𝑒𝑝/Pnode. Now we

distil the following pattern fromM𝑃𝑄 , in which we assume 𝑓 : rgn and assume both Q and R are

refperm monotonic.

𝐺 ¥= 𝐺 ∧ (∀𝑥 :𝐾 ∈ 𝐺 |𝑥 :𝐾 ∈ 𝐺. A𝑥 ⇒ Q ∧ {𝑥}‘𝑓 ¥= {𝑥}‘𝑓 ∧ (∀𝑦:𝐿 ∈ {𝑥}‘𝑓 |𝑦:𝐿 ∈ {𝑥}‘𝑓 . A𝑦 ⇒ R))
By (iii) in the lemma the subformula {𝑥}‘𝑓 ¥= {𝑥}‘𝑓 ∧ (∀𝑦:𝐿 ∈ 𝑥 .𝑓 |𝑦:𝐿 ∈ 𝑥 .𝑓 . A𝑦 ⇒ R) is refperm
monotonic. Then by (ii) we extend that to the conjunctionwithQ. Then by (iii) the displayed formula

is refperm monotonic. Note that this relies on agreement of the region values, {𝑥}‘𝑓 ¥= {𝑥}‘𝑓 , not
pairwise agreement A{𝑥}‘𝑓 on field values.

This discussion provides guidelines for writing specs, but checking refperm monotonicity can

be automated. Validity of R ⇒ □R only involves universal quantification. Unfolding semantic

definitions, it says: for all 𝜋, 𝜌, 𝜎, 𝜎 ′, if 𝜎 |𝜎 ′ |=𝜋 R and 𝜌 ⊇ 𝜋 then 𝜎 |𝜎 ′ |=𝜌 R. A straightforward

encoding of this in our prototype suffices to show refperm monotonicity of the example couplings.

Agreement compatibility. The last rule for which ^ is an issue is rConj. With premises of

the form P ≈> ^Q0 and P ≈> ^Q1 it yields P ≈> ^Q0 ∧ ^Q1. To obtain the standard form

P ≈> ^(Q0 ∧ Q1) one can use rConseq but only if Q0 and Q1 are agreement compatible which
means this implication is valid:

^Q0 ∧ ^Q1 ⇒ ^(Q0 ∧ Q1) (34)

An easy case is where Q0 or Q1 is refperm independent, in which case agreement compatibility

holds by (31). Formulas that depend on the refperm involve agreements, and for these we do not

have an easy characterization of agreement compatibility.

In the prototype, ^ is not explicit in specs. A current refperm is witnessed in ghost state, so

even when using conjunctive splitting we effectively get ^(Q0 ∧ Q1) as desired. So agreement

compatibility is not an issue in the tool. Morever our case studies show that agreement compatibility

is achievable in practical examples where it is needed. Please note that nontrivial formulas of the

form (34) are not amenable to validity checking by SMT, owing to the existential quantifier that

underlies ^ in the consequent.
39

We end this section with some examples regarding agreement compatibility. But it is not needed

later so it is safe to skip now to Section 8.4.

39
For the record, earlier versions of this article had a slightly different rSOF, with agreement compatibility as a side condition

for the coupling rather than refperm monotonicity (arXiv:1910.14560v3).
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As a first example, consider the agreements A(𝐺/List)‘ℎ𝑒𝑎𝑑 and A(𝐺/Cell)‘𝑣𝑎𝑙 , where class List
has field ℎ𝑒𝑎𝑑 : Node and class Cell has field 𝑣𝑎𝑙 : int. The truth value of A(𝐺/List)‘ℎ𝑒𝑎𝑑 depends

only on references of type List and Node. The truth value of A(𝐺/Cell)‘𝑣𝑎𝑙 depends only on refer-

ences of type Cell. Refperms respect types, so extensions of a refperm to witness ^A(𝐺/List)‘ℎ𝑒𝑎𝑑
and ^A(𝐺/Cell)‘𝑣𝑎𝑙 can be combined to witness ^(A(𝐺/List)‘ℎ𝑒𝑎𝑑 ∧ A(𝐺/Cell)‘𝑣𝑎𝑙). Such con-

siderations also apply in a case like Btype(𝐺, List) ∧ A𝐺 ‘ℎ𝑒𝑎𝑑 and Btype(𝐻,Cell) ∧ A𝐻 ‘𝑣𝑎𝑙 .
Agreement compatibility of Q0 and Q1 may fail even if both formulas are Q and R are refperm

monotonic. For example, the formula ^(𝑥 ¥= 𝑦)∧^(𝑥 ¥= 𝑧∧ [⟩𝑧 ≠ 𝑦]⟩) is satisfiable but ^(𝑥 ¥= 𝑦∧𝑥 ¥=
𝑧 ∧ [⟩𝑧 ≠ 𝑦]⟩) is not. This example may give the impression that disequalities are the culprit but they

are not. Consider these two formulas:^(𝑥 ¥= 𝑥 ′∧𝑦 ¥= 𝑦′) and^(𝑥 ¥= 𝑦′∧𝑦 ¥= 𝑥 ′) (for distinct variables
𝑥, 𝑥 ′, 𝑦,𝑦′). Both are satisfiable. In fact their combination, ^(𝑥 ¥= 𝑥 ′ ∧ 𝑦 ¥= 𝑦′ ∧ 𝑥 ¥= 𝑦′ ∧ 𝑦 ¥= 𝑥 ′), is
also satisfiable: it can hold when ⟨[𝑥 = 𝑦⟨] ∧ [⟩𝑥 ′ = 𝑦′]⟩. But the agreement-compatibility implication

is not valid. Consider 𝜎, 𝜎 ′, 𝜋 where 𝑥,𝑦, 𝑥 ′, 𝑦′ have four distinct values, none of which are in

the domain or range of 𝜋 . Then both ^(𝑥 ¥= 𝑥 ′ ∧ 𝑦 ¥= 𝑦′) and ^(𝑥 ¥= 𝑦′ ∧ 𝑦 ¥= 𝑥 ′) are true but
^(𝑥 ¥= 𝑥 ′ ∧ 𝑦 ¥= 𝑦′ ∧ 𝑥 ¥= 𝑦′ ∧ 𝑦 ¥= 𝑥 ′) is false.
Onemight guessA𝐺 ‘𝑓 is agreement compatible withA𝐻 ‘𝑔where 𝑓 , 𝑔 are distinct field names. But

consider A{𝑥}‘𝑓 and A{𝑥}‘𝑔 for distinct fields 𝑓 , 𝑔 of some reference type. Suppose 𝜎 |𝜎 ′ |=𝜋 𝑥 ¥= 𝑥 ,
so 𝜋 (𝜎 (𝑥)) = 𝜎 ′ (𝑥). Suppose 𝜎 (𝑥 .𝑓 ) and 𝜎 (𝑥 .𝑔) are non-null values not in dom (𝜋), and likewise

𝜎 ′ (𝑥 .𝑓 ) and 𝜎 ′ (𝑥 .𝑔) are non-null values not in rng (𝜋). Then we have 𝜎 |𝜎 ′ |=𝜋 ^A{𝑥}‘𝑓 ∧^A{𝑥}‘𝑔,
because 𝜋 can be extended to link 𝜎 (𝑥 .𝑓 ) with 𝜎 ′ (𝑥 .𝑓 ) and mut. mut. for 𝑔. However, if 𝜎 (𝑥 .𝑓 ) =
𝜎 (𝑥 .𝑔) and 𝜎 ′ (𝑥 .𝑓 ) ≠ 𝜎 ′ (𝑥 .𝑔) then there is no single extension of 𝜋 that satisfies A{𝑥}‘𝑓 ∧ A{𝑥}‘𝑔.

Region disjointness𝐺 #𝐻 does not entail agreement compatiblity of A𝐺 ‘𝑓 with A𝐻 ‘𝑓 . Consider
A{𝑥}‘𝑓 and A{𝑦}‘𝑔. Suppose 𝜎 |𝜎 ′ |=𝜋 𝑥 ¥= 𝑥 ∧ 𝑦 ¥= 𝑦 ∧ B(𝑥 ≠ 𝑦). Similar to the preceding example,

if 𝜎 (𝑥 .𝑓 ) = 𝜎 (𝑦.𝑔) and 𝜎 ′ (𝑥 .𝑓 ) ≠ 𝜎 ′ (𝑦.𝑔) and none of the field values are in 𝜋 , then we have

𝜎 |𝜎 ′ |=𝜋 ^A{𝑥}‘𝑓 ∧ ^A{𝑦}‘𝑔 but again there is no extension of 𝜋 that satisfies A{𝑥}‘𝑓 ∧ A{𝑦}‘𝑔.

8.4 Lockstep alignment lemma

The lockstep alignment lemma brings together the semantics of encapsulation in the unary logic

(Def. 5.10), in which dependency is expressed in terms of two runs under a single unary context

model, with the biprogram semantics which involves two possibly different unary context models

as needed for linking with two module implementations. The lemma says that, from states that

agree on what may be read, a fully-aligned biprogram remains fully aligned through its execution,

and maintains agreements sufficient to establish the postcondition of local equivalence—for any

of its traces that satisfy the r-safe and respect conditions of Def. 5.10. In light of trace projection

(Lemma 7.8), it says a pair of unary executions can be aligned lockstep, with strong agreements

asserted at each aligned pair of configurations. The result does not rely on validity of a judgment—

rather, we use this result to prove soundness of rules rLocEq, rSOF, and rLink.

A number of subtleties in the unary semantics of encapsulation, in the biprogram semantics, and

in the definition of locEq are all motivated by difficulties in obtaining a result that is sufficiently

strong to support the soundness proofs for the three rules from which the modular relational

linking rule is derived (rLocEq, rSOF, and rLink).

Lemma 8.9 (lockstep alignment). Suppose

(i) Φ ⇛ LocEq𝛿 (Ψ) and 𝜑 is a Φ-model, where 𝛿 = (+𝑁 ∈ Ψ, 𝑁 ≠ 𝑀. bnd (𝑁 )).
(ii) 𝜎 |𝜎 ′ |=𝜋 𝑝𝑟𝑒 (locEq𝛿 (𝑃 { 𝑄 [𝜀])).
(iii) 𝑇 is a trace ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ and 𝐶 is let-free.

(iv) Let 𝑈 ,𝑉 be the projections of 𝑇 . Then 𝑈 (resp. 𝑉 ) is r-safe for (Φ0, 𝜀, 𝜎) (resp. for (Φ1, 𝜀, 𝜎
′))

and respects (Φ0, 𝑀, 𝜑0, 𝜀, 𝜎) (resp. (Φ1, 𝑀, 𝜑1, 𝜀, 𝜎
′)).
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Then there are 𝐵, 𝜌 with

(v) 𝐵𝐵 ≡ T𝐵U, 𝜌 ⊇ 𝜋 , and 𝜇 = 𝜇′,
(vi) Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎, 𝜏))\rlocs(𝜏, 𝛿⊕)), and
(vii) Lagree(𝜏 ′, 𝜏, 𝜌−1, (freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀) ∪ wrttn(𝜎 ′, 𝜏 ′))\rlocs(𝜏 ′, 𝛿⊕)).

In words, the Lemma says that if we have fully aligned code, unary encapsulation (iv), initial

agreement (ii), and relational specs that imply the local equivalence spec (but may be strengthened

to include hidden invariants and coupling) (i), then the code remains fully aligned at every step, and

agreements outside encapsulated state are preserved. Condition (v) can be strengthened to say 𝜇

and 𝜇′ are empty, which holds owing to the assumption that𝐶 is let-free. We keep this formulation

because it suffices and shows what we expect for the extensions discussed in Section 8.5.

The lemma is proved by induction on steps, maintaining (v)–(vii), using several technical lemmas

for preservation of agreement (in appendix Section D.2).

Lemma 8.9 resembles Lemma 5.11 but has significant differences. Lemma 8.9 is for client code

outside boundaries, in a setting where there are different implementations of methods. Lemma 5.11

is for code potentially inside boundaries, but relating two runs of exactly the same program. In the

proofs of both results, r-safety helps ensure that the small-step dependency embodied by r-respect

implies an end-to-end dependency condition.

8.5 Nested linking

The unary and relational linking rules allow simultaneous linking of multiple modules, for example

linking𝑀𝑆𝑇 with the PQ and Graph modules. In RLII (Section 9), a modular linking rule is derived

for simultaneous linking of two modules with mutually recursive methods, each respecting the

other’s boundary. That can be done with both the unary and relational rules in this article: the

judgments for correctness of the bodies are extended with the other module’s invariant or coupling

(using SOF or rSOF) and then linked (using Link or rLink). In RLII and the unary logic in this

article, it is also possible for linking to be nested (shown by examples in Section 2.4 and 8.4 of RLII).

However, there is a limitation of the relational rules with nested use of bi-let.

To set the stage, we carry out the derivation of modular linking as in Figure 24 but with a second

module in context, to which we then apply modular linking. Methods of Φ may be used in both

the client 𝐶 and the implementation 𝐵. The implementation of Φ has its own internal state with

invariant 𝐽 .

Φ,Θ ⊢• 𝐶 : 𝑃 { 𝑄 [𝜀 ]
Φ, (Θ? 𝐼 ) ⊢• 𝐶 : (𝑃 { 𝑄 [𝜀 ] ) ? 𝐼 Φ, (Θ? 𝐼 ) ⊢𝑀 𝐵 : Θ(𝑚) ? 𝐼

Φ ⊢• let𝑚 = 𝐵 in𝐶 : (𝑃 { 𝑄 [𝜀 ] ) ? 𝐼

Φ? 𝐽 ⊢• let𝑚 = 𝐵 in𝐶 : (𝑃 { 𝑄 [𝜀 ] ) ? 𝐼 ? 𝐽 Φ? 𝐽 ⊢𝑁 𝐷 : Φ(𝑛) ? 𝐽

⊢• let 𝑛 =𝐷 in let𝑚 = 𝐵 in𝐶 : (𝑃 { 𝑄 [𝜀 ] ) ? 𝐼 ? 𝐽

We would like the relational analog of this derivation, so that with couplingM for module𝑀 and

coupling N for 𝑁 one could obtain the judgment

⊢• let 𝑛 = (𝐷 |𝐷 ′) in let𝑚 = (𝐵 |𝐵′) in T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀]) ?M ?N
Following the pattern of the derivation above, one would like to apply rSOF forN to the judgment

LocEq𝛿 (Φ) ⊢• let𝑚= (𝐵 |𝐵′) in T𝐶U : locEq𝛿 (𝑃{𝑄 [𝜀])?M, where 𝛿 = bnd (𝑀), bnd (𝑁 ). However,
the current rSOF and rLink are only for fully aligned client code, and the “client” body let𝑚 =

(𝐵 |𝐵′) in T𝐶U of the outer let is not in that form. Soundness of rSOF hinges on the calls being

sync’d—but in the program let𝑚 = (𝐵 |𝐵′) in T𝐶U, calls to 𝑛 (the method of Φ) from 𝐵 or 𝐵′ are not
sync’d, because𝑚() steps to (𝐵 |𝐵′) which has no sync’d calls. The restriction of bi-let to separate
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unary commands simplifies the technical development considerably. But we would like to generalize

the bi-let form to allow let𝑚 = 𝐵𝐵 in𝐶𝐶 where 𝐵𝐵 is sufficiently woven that all its calls are sync’d,

and 𝐶𝐶 is a nest of such bi-lets enclosing a fully aligned client. This requires Lemma 8.9 to be

generalized to account for such biprogram computations. The Lemma relies on agreements derived

from unary Encap, but this is no longer sufficient to handle computations with sub-computations

that are not fully aligned. The premises of rSOF and rLink entail that such computations can make

sync’d calls, but this fact is not retained in the semantics of relational judgments. Details of our

solution are beyond the scope of this article.

8.6 Unconditional equivalence transformations

An important feature of relational logic which is introduced in Banerjee et al. [11] (long version)

is unconditional rewrites. These are correctness-preserving transformations of control structure

in commands that enable the use of the bi-if and bi-while forms for programs with differing

control structure. An example is the equivalence while 𝐸 do𝐶 � while 𝐸 do (𝐶;while 𝐸 ∧ 𝐸0 do 𝐶).
Banerjee et al. use this and another loop unrolling equivalence to prove correctness of a loop tiling

optimization. In that proof the loop iterations are aligned lockstep, i.e., rule rWhile and a bi-while

with false alignment guards.

In the cited work, it suffices to define � as a safety-preserving trace equivalence. These sort of

transformations do not alter the series of states reached and which atomic commands are executed.

From the same initial state and environment, the computations proceed almost in step-by-step

correspondence, the exceptions being different manipulation of the control state in some cases,

which leaves the (data) state and method environment unchanged. As a result, correctness is

preserved in the sense that if 𝐶 � 𝐷 then Φ |= 𝐶 : 𝑃 { 𝑄 [𝜀] implies Φ |= 𝐷 : 𝑃 { 𝑄 [𝜀].
Moreover Φ |= (𝐶 |𝐶′) : P ≈> Q [𝜀 |𝜀′] implies Φ |= (𝐷 |𝐶′) : P ≈> Q [𝜀 |𝜀′] (and the same on the

right side). However, to cater for the stronger conditions of valid unary and relational judgments in

the present work (Defs. 5.10 and 7.10), a stronger notion is needed because those conditions refer

to the control.

As an example, suppose we have a valid correctness judgmentΦ ⊢𝑀 while 𝐸 do𝐶 : 𝑃 { 𝑄 [𝜀] and
consider the form while 𝐸 do (𝐶;while 𝐸 ∧ 𝐸0 do 𝐶). If 𝐸0 reads some variable that is encapsulated

by a module, different from𝑀 , inΦ, it may violate the Encap condition of Def. 5.10 and invalidate the

judgment Φ ⊢𝑀 while 𝐸 do (𝐶;while 𝐸 ∧ 𝐸0 do 𝐶) : 𝑃 { 𝑄 [𝜀]. For the equivalences considered
here, which involve rearranging control structure, branch conditions turn out to be the main

complication. Details of our formalization of � and its rules are beyond the scope of this article.

9 REMARKS ON CASE STUDIES

WhyRel is a proof-of-principle prototype relational verifier which we developed and used to

investigate the applicability of the logic and its amenability to automation. The tool supports

general relational verification and includes support for relational modular linking. It has been used

to specify and verify a number of examples. This includes examples discussed in earlier sections:

Kruskal’s𝑀𝑆𝑇 as client of two implementations of union-find; Dijkstra’s shortest-path algorithm

as client of two implementations of PQ; and the 𝑡𝑎𝑏𝑢𝑙𝑎𝑡𝑒 and 𝑠𝑢𝑚𝑝𝑢𝑏 examples. We have done

other examples taken from recent literature on relational verification, including information flow,

other relational properties, and equivalence for program transformations. A current version of the

prototype and examples are available open source.
40
In addition to the following highlights and

the documentation in the software distribution, further information is available in the thesis of

Nikouei [75] (but note it describes a previous implementation of WhyRel).

40
https://github.com/dnaumann/RelRL
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The WhyRel prototype is based on the Why3 platform.
41
. Why3 serves as an intermediate

verification language to which WhyRel translates specs and programs. Why3 generates verification

conditions for pre-post specs and programs in a first-order fragment of ML (WhyML) without

shared references, and discharges those conditions by orchestrating calls to automated provers

and proof assistants. Like Why3, WhyRel is “auto-active” [63], requiring some user interaction

while leveraging automated provers especially SMT solvers. Our translation involves substantial

encoding, because Why3 does not support shared mutable objects, dynamic frames, or hiding of

invariants. In this section we describe the encoding, the user interaction needed, and our experience

with the case studies.

The language supported by WhyRel extends the language of Figure 5 and Section 3.2 with arrays,

parameters/results, and mathematical data types (defined in Why3 theories). Module interfaces are

separate frommodule implementations and class fields can have module scope. The spec language is

like that of the article (with usual keywords requires, ensures, etc.), extended with “old” expressions,

assertions, loop invariants, assumptions, and explicit ghost declarations. WhyRel effectively works

with relational specs in standard form: the possibility modal (^) is not used and instead a ghost

refperm is updated by the connect−with ghost operation described in Section 4.4.

WhyRel has three main capabilities: unary verification, relational verification, and relational

verification with modular linking. The user provides module interfaces (class declarations, method

specs, and boundaries which may be empty) and unary module implementations which can import

Why3 theories providing mathematical types (like lists, graphs, and partitions used in our case

studies). These theories can include lemmas, which get proved by Why3. The user can also state

lemmas in our source language, e.g., useful consequences of public invariants. For relational

verification, the user provides a module with biprograms, which we call a bimodule. Each bimodule

relates two unary modules. WhyRel checks, for each bimethod in a bimodule, that its unary

projections conform to the (unary) programs being related. This ensures the biprogram can be

constructed by weaving those unary programs (Lemma 4.6). Thus, verification of the biprogram

implies a relation between the unary programs, as per the weaving rule (13).

For relational modular linking of a client program and two versions of a module the client

imports, WhyRel can generate the local equivalence specs for the module methods. The user can

edit the specs to add the chosen coupling relation, and use these in a bimodule for relating the

module methods. WhyRel also generates the side conditions of rule rMLink which include framing

of invariants/coupling by the boundary and refperm monotonicity of the coupling.

The user provides specs and also loop invariants and loop frame conditions; for hiding, the user

provides boundaries, private invariants, and coupling relations. Once WhyRel has translated the

specs and programs/biprograms to WhyML, Why3 generates verification conditions. The user

guides Why3 to prove these, by applying tactics (called transformations) like splitting conjunctions.

To complete a verification the user typically has to assert intermediate facts and sometimes state

and prove lemmas (expressed in our source language). In our case studies, the SMT-solvers Alt-Ergo,

Z3, and CVC4 discharge all obligations automatically.

Translation to Why3. We encode methods and specs as Why3 functions which have specs. Why3

is procedure-modular: it verifies each function assuming the specs of the ones it imports, which

corresponds to a hypothesis context in our logic. Why3 provides ghost annotations and checks that

ghost code terminates and does not interfere with the underlying program. We use this feature to

mark the allocation map, which is part of our heap model, and translate source code ghost state to

Why3 ghost state. Why3 is sound under idealizations also made in our logic: unbounded integers

and unbounded maps (which we used to model unbounded heap).

41
why3.lri.fr
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meth sum (self:List | self:List) : (int | int)

requires { B self ≠ null }

requires { ∃ ls:int list | ls:int list.
B listpub(self.head,ls) ∧ ls ¥= ls }

ensures { A result }

= var ghost xs : int list | ghost xs : int list in

/∗ Initial values of math type variables are havoc'd;
assume they witness the existential
in the precondition ∗/

assume { B listpub(self.head,xs) };

/∗ Initial value of result:int is 0 ∗/
var p : Node | p : Node in

⌊ p := self.head ⌋;
while (p ≠ null) | (p ≠ null) . ⟨[ ¬ p.pub ⟨] | [⟩ ¬ p.pub ]⟩
invariant { B listpub(p,xs) ∧ A xs ∧ A result }

( if p.pub then

result := result + p.value; xs := tl(xs);

fi; p := p.nxt

| if p.pub then

result := result + p.value; xs := tl(xs);

fi; p := p.nxt )

od;

let sum (𝜎ℓ 𝜎𝑟 : state) (𝜋 : refperm)

(selfℓ self𝑟 : reference) : (int, int)

requires { selfℓ ≠ null ∧ 𝜎ℓ .alloct[selfℓ ] = List }

requires { self𝑟 ≠ null ∧ 𝜎𝑟 .alloct[self𝑟 ] = List }

requires { ∃ lsℓ , ls𝑟 : int list.
listpub 𝜎ℓ 𝜎ℓ .heap.head[selfℓ ] lsℓ

∧ listpub 𝜎𝑟 𝜎𝑟 .heap.head[self𝑟 ] ls𝑟
∧ lsℓ = ls𝑟 }

ensures { fst result = snd result }

= let ref resultℓ = 0 in (∗ default value for int ∗)
let ref result𝑟 = 0 in

(∗ variables of math type initialized using any ∗)
let ghost ref xsℓ = any (int list) in

let ghost ref xs𝑟 = any (int list) in

assume { listpub 𝜎ℓ 𝜎ℓ .heap.head[selfℓ ] xsℓ

∧ listpub 𝜎𝑟 𝜎𝑟 .heap.head[self𝑟 ] xs𝑟 }

let ref pℓ = 𝜎ℓ .heap.head[selfℓ ] in

let ref p𝑟 = 𝜎𝑟 .heap.head[self𝑟 ] in
while (pℓ ≠ null) || (p𝑟 ≠ null) do

invariant { listpub 𝜎ℓ pℓ xsℓ ∧ listpub 𝜎𝑟 p𝑟 xs𝑟 }

invariant { xsℓ = xs𝑟 ∧ resultℓ = result𝑟 }

invariant { (∗ generated using alignment guards ∗)
pℓ ≠ null ∧ ¬ 𝜎ℓ .heap.pub[pℓ ]

∨ p𝑟 ≠ null ∧ ¬ 𝜎𝑟 .heap.pub[p𝑟 ]
∨ pℓ ≠ null ∧ p𝑟 ≠ null

∨ pℓ = null ∧ p𝑟 = null }

if (pℓ ≠ null && ¬ 𝜎ℓ .heap.pub[pℓ ]) then (∗ left ∗)
pℓ ← 𝜎ℓ .heap.nxt[pℓ ]

else begin

if (p𝑟 ≠ null && ¬ 𝜎𝑟 .heap.pub[p𝑟 ]) then (∗ right ∗)
p𝑟 ← 𝜎𝑟 .heap.nxt[p𝑟 ]

else begin (∗ lockstep ∗)
resultℓ ← resultℓ + 𝜎ℓ .heap.value[pℓ ];

xsℓ ← tl xsℓ ;

pℓ ← 𝜎ℓ .heap.nxt[pℓ ];

result𝑟 ← result𝑟 + 𝜎𝑟 .heap.value[p𝑟 ];
xs𝑟 ← tl xs𝑟 ;

p𝑟 ← 𝜎𝑟 .heap.nxt[p𝑟 ]
end;

end;

done; (resultℓ , result𝑟 )

Fig. 32. WhyRel source biprogram for 𝑠𝑢𝑚𝑝𝑢𝑏 and translated WhyML (eliding frame conditions).

The Why3 language (including WhyML) does not include shared mutable objects. So we use

mutable records and maps to explicitly model the heap using the standard field-as-array repre-

sentation, with references as an uninterpreted type and an extra field, alloct, for allocation to

model the alloc variable and typing of references. WhyML has ML-style references constrained by

static analysis that precludes aliasing; we use those to encode local variables. Invariants of source

language semantics, like the absence of dangling pointers, are encoded using Why3’s invariant

feature for the data type of states. (States have the heap and global variables.) Common elements

of translation are included in a WhyRel standard library that includes lemmas about operations

on regions, which aids automated proving. Why3 specs include coarse grained reads and writes

clauses enforced by simple syntactic analysis, which is not suited to our purposes. To encode the

stateful frame conditions of our logic, WhyRel expresses write effects semantically, in universally

quantified postconditions using “old” expressions. In accord with Def. 5.10, read effects are checked

together with the encapsulation checks, discussed below.

WhyRel translates a biprogram to a WhyML function acting on a pair of states together with the

current refperm. Relational pre- and post-conditions are translated to WhyML requires/ensures.
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WhyRel represents a refperm by a pair of maps subject to universally quantified formulas that

express bijectivity and are type-respecting. As an example, Figure 32 shows our source code for

𝑠𝑢𝑚𝑝𝑢𝑏 biprogram (15), together with its translation to WhyML. The WhyML loop body reflects

the semantics of loop alignment guards. For readability, some dead code has been removed from

the actual translation.

Checking read effects and encapsulation. By contrast with the check of write effects, WhyRel

does not directly check the relational semantics of read effects (r-respect in Def. 5.10). Rather,

it performs local checks based on the relevant conditions in the proof rules of our logic. When

used for relational modular linking of modules with nontrivial boundaries, WhyRel must also

enforce encapsulation, that is, the conditions on reads of if, while, bi-if, and bi-while, as well as

the conditions of the context introduction rules used for atomic commands. These checks involve

computing separator formulas, following a preliminary step that normalizes dynamic boundaries

and expands the any datagroup to concrete fields. The tool immediately reports a violation when

variables are required to be distinct but are not, or are read but not included in the read effect. For

separation of heap locations, it generates disjointness formulas (in accord with Figure 11) in assert

statements added to the generated code where the encap checks should be made. For reads of heap

locations, it asserts an inclusion based on the reads allowed by the frame condition. A snapshot of

the initial state is used so the frame condition can be interpreted where it should be; the asserted

inclusion is at the point in the code where the read takes place, which may follow updates to the

state.

When true, the disjointness and inclusion assertions for reads and encapsulation are usually

proved without any need for user interaction. The user does see the assertions among the proof

obligations enumerated by Why3. The user does not compute separators or effect subtractions,

those are done by WhyRel.

Modular linking. In terms of the logic, Why3 verifies the premises of the standard linking rule

(Link in Figure 23) so the contracts assumed by a procedure’s callers are the ones for which the

procedure’s implementation is verified. WhyRel generates code that expresses hiding, i.e., the

premises of our modular linking rules: the implementations get to assume the private invariant

(or coupling, in the relational case) and must maintain it. For this to be sound, WhyRel checks

encapsulation, as described above, and generates Why3 lemmas to encode the additional proof

obligations.

For unary hiding, the private invariant should be framed by the module boundary; this obligation

is generated in the form of a lemma that expresses the framing semantics (27). At the same time,

WhyRel generates the obligation that the client precondition implies the private invariant. For

relational hiding, the coupling invariant should be framed, on both left and right, by the boundary

(using relational framing semantics Def. 7.1). Example framing lemmas are in Figure 33.

Another obligation generated in the form of a lemma is that the coupling should be refperm

monotonic:

lemma ufCoupling_is_monotonic :

∀ 𝜎 : state, 𝜏 : state, 𝜋 : refperm.

okRefperm 𝜎 𝜏 𝜋 ⇒ ufCoupling 𝜎 𝜏 𝜋 ⇒
∀ 𝜌 : refperm. okRefperm 𝜎 𝜏 𝜌 ⇒ extends 𝜋 𝜌 ⇒ ufCoupling 𝜎 𝜏 𝜌

WhyRel can generate a local equivalence spec, given boundaries and a unary spec; it is generated

as source code, which the user can include in a biprogram. Local equivalence specs are defined in

Section 8.1 and examples appear in Section 4.

Experience and findings. Despite achieving a high level of automation based on SMT solvers, auto-

active tools require user effort and intelligence to devise specs and find loop invariants. Here, there
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lemma boundary_frames_QuickFind_invariant :

∀ 𝜎 : state, 𝜏 : state, 𝜋 : refperm.

okRefperm 𝜎 𝜏 𝜋 ∧ identityRefperm 𝜋 (domain 𝜎 .alloct) (domain 𝜏 .alloct)⇒
idRgn 𝜋 𝜎 .pool 𝜏 .pool⇒ (∗ 𝜎(pool) ¥= 𝜏 (pool) ∗)
agreeAny 𝜎 𝜏 𝜋 (union 𝜎 .pool (imgRep 𝜎 𝜎 .pool))⇒
ufPriv 𝜎 ⇒ (∗ private invariant 𝐼𝑢𝑓 ∗)
ufPriv 𝜏

lemma boundary_frames_UnionFind_coupling :

∀ 𝜎 : state, 𝜏 : state, 𝜎 ′ : state, 𝜏 ′ : state, 𝜋 : refperm, 𝜋 ′ : refperm, 𝜌 : refperm.

okRefperm 𝜎 𝜏 𝜋 ∧ identityRefperm 𝜋 (domain 𝜎 .alloct) (domain 𝜏 .alloct)⇒
okRefperm 𝜎 ′ 𝜏 ′ 𝜋 ′ ∧ identityRefperm 𝜋 ′ (domain 𝜎 ′ .alloct) (domain 𝜏 ′ .alloct)⇒
okRefperm 𝜎 𝜎 ′ 𝜌 ∧ okRefperm 𝜏 𝜏 ′ 𝜌 ⇒
idRgn 𝜋 𝜎 .pool 𝜏 .pool⇒ (∗ 𝜎(pool) ¥= 𝜏 (pool) ∗)
agreeAny 𝜎 𝜏 𝜋 (union 𝜎 .pool (imgRep 𝜎 𝜎 .pool))⇒
idRgn 𝜋 ′ 𝜎 ′ .pool 𝜏 ′ .pool⇒ (∗ 𝜎 ′(pool) ¥= 𝜏 ′(pool) ∗)
agreeAny 𝜎 ′ 𝜏 ′ 𝜋 ′ (union 𝜎 ′ .pool (imgRep 𝜎 ′ 𝜎 ′ .pool))⇒
ufCoupling 𝜎 𝜎 ′ 𝜌 ⇒ (∗ coupling relationM𝑢𝑓 ∗)
ufCoupling 𝜏 𝜏 ′ 𝜌

Fig. 33. Framing judgments as lemmas.

is the additional task of writing a biprogram to express an alignment for which straightforward

invariants suffice. (See Section 10 for work on automated inference of alignments.) Use of dynamic

frames entails extensive reasoning about set expressions, set disjointness and containment. Aided

by some lemmas in the WhyRel standard library, the solvers have little difficulty in this regard; the

requisite reasoning about refperms also works fine. In most of our examples, the user needs to do a

few clicks in Why3 to invoke the tactic to split conjunctions, and sometimes introduce assertions

or lemmas that aid the solvers in finding proofs. Why3’s assert tactic is helpful for this. This sort of

interaction is typical in ordinary use of Why3.

For 𝑠𝑢𝑚𝑝𝑢𝑏 we provide a couple of lemmas about the 𝑙𝑖𝑠𝑡𝑝𝑢𝑏 relation, proved using the rule-

induction transformation (i.e., a Why3 induction rule, dispatched to SMT). For the SSSP biprogram

we needed a number of asserts in the code (plus assert tactics); but not many for the other examples.

Our priority has been to complete illustrative examples and a prototype that can be used by

interested researchers; we have not tried to find optimal specs and minimal use of Why3 tactics.

We are not proposing the concrete syntax for use in practice, nor does the tool provide sufficient

error handling to be usable by software engineers. Moreover, although the prototype implements

some syntax sugar relative to the formal development, the current language has desugared loads

and stores, which entails the use of annoyingly many temporary variables (sugared in examples in

the article).

Finally, Why3 generates many proof obligations about the state being well formed, which is

actually guaranteed by type-checking of source programs. The obligations are simple to prove but it

is still one more thing to do. It should be possible to eliminate these through more sophisticated use

of Why3’s abstraction mechanisms. In BoogiePL these pointless obligations could be avoided using

“free requires/ensures”, and we could achieve the same effect using Why3 assumptions instead of

type invariants; but the latter make it easier to read the generated WhyML.

Why3 records sessions in order to replay the user’s choices of provers and tactics to apply.

Replaying the sessions for our big case studies takes on the order of an hour or more of prover

time, though clock time is a little faster owing to parallelism. The smaller examples take minutes

or less. Less time would be needed if we used assumptions to avoid pointless checks about states

being well formed. Significantly more automation could be achieved if Why3 enabled scripting of

routine choices of tactics.
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In summary, the formal development in preceding sections shows that general relational rea-

soning with encapsulation, for first-order programs, can be carried out using only first-order

assertions and relations. The case studies carried out using WhyRel demonstrate that the veri-

fication conditions are well within what can be automated by SMT solvers. User interaction is

needed mainly to deal with specs and loop invariants involving mathematical properties of data

types and inductively defined predicates and relations. Inductive definitions are often needed for

problem-specific properties, but are not required for encapsulation, framing, hiding or any other

element of the logic.

10 RELATEDWORK

Our main result (Theorem 8.1) brings together modular reasoning techniques, relational properties,

representation independence, automated verification, and their semantic foundations.

We make a rough categorization of related work as follows: (Section 10.1) Directly related precur-

sors; (Section 10.2) Algorithmic studies and implementations of automated verification for relational

properties, often lacking detailed foundational justification and support for dynamic allocation

or data abstraction, but identifying FOL fragments enabling automated inference of relational

invariants and alignment; and (Section 10.3) Semantic studies of representation independence,

focused on contextual equivalence and challenging language features including dynamic allocation,

higher order procedures, and concurrency, leading to the higher order relational separation logic

ReLoC implemented in the Coq proof assistant.

Union-find implementations have been verified interactively using Coq [32]. Functional cor-

rectness of Kruskal has been verified in a proof assistant [48]. Functional correctness of C imple-

mentations of Dijkstra’s, Kruskal’s, and Prim’s algorithms have been verified by Mohan et al [66]

using VST [31]. The point of our case studies is to achieve automated equivalence proof for clients,

without recourse to functional correctness. A purely applicative implementation of pairing heaps

has been verified in Why3 (http://toccata.lri.fr/gallery/).

10.1 Region logic and other logics with explicit footprints

Bao et al. [15] introduce a unified fine-grained region logic with both separating conjunction and

explicit read/write effects, subsuming a fragment of separation logic. To enable effective use of

SMT solvers, Piskac et al. [80, 81] encode separation logic style specifications using explicit regions.

Several works implement implicit dynamic frames [67, 90] which combines the succinctness of

separation logic with the automation of SMT. For recent work on decidable fragments of separation

logic, see Echenim et al. [38]. Using an extension of FOL with recursive definitions, the logic of

Murali et al. [68] has an expression form for the footprint of a formula, akin to our ftpt operator but

usable in formulas, avoiding the need for a separate framing judgment; this can encode a fragment

of separation logic but effectiveness for automation has not been thoroughly evaluated.

The most closely related works are the RL articles. The image notation, introduced in RLI [14],

was inspired by the use of field images to express relations in the information flow logic of Amtoft

et al. [3]. In RLI this style of dynamic framing was shown to facilitate local reasoning about global

invariants, and this was extended to dynamic boundaries and hiding of invariants in RLII [9].

In RLIII [12], pure methods are formalized with end-to-end read effects. The end-to-end semantics

of read effects is also used in the preliminary work [11], from which we take biprograms, weaving,

and bi-while alignment guards. But we change the semantics of bi-com (𝐶 |𝐶′) to eliminate one-sided

divergences and to allow models to diverge (see rules uCall0 in Figure 22 and bCall0 in Figure 27).

This validates a better weaving rule (no termination conditions) and a stronger adequacy theorem

(Thm. 7.11). We drop their semantics of read effects, which is inadequate for our purposes (and is

subsumed by r-respects in Def. 5.10), but use quasi-determinacy and agreement-preservation results
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from RLIII. Neither RLIII nor [11] addresses information hiding or encapsulation. Our semantics of

encapsulation (Def. 5.10) is a major extension of that in RLII, from which we take the minimalist

formalization of modules; but we change the semantics to use context models (from RLIII where

models are called interpretations) and add r-respects etc. We adapt unary rules from RLII but use

the term modular linking for what they call mismatch. The case studies in RLIII are implemented

using Why3 with an encoding of heaps and frame conditions similar to the one used by WhyRel.

10.2 Relational verification

Francez [43, 74] articulated the product principle reducing relational verification to the inductive

assertion method and introduced a number of proof rules. Benton [25] introduced the term Rela-

tional Hoare Logic and brought to light applications including compiler optimizations. Yang [100]

introduced relational separation logic, motivated by data abstraction although the logic does not

formalize that as such. Beringer [27] extends Benton’s logic with heap (still not procedures), and

provides proof rules for non-lockstep loops, on which our rWhile is based; a similar rule appears in

Barthe et al [22]. There has been a lot of work on relational logics and verification techniques [24],

e.g., applications in security and privacy [21, 70, 83] and merges of software versions [94]. A shal-

low embedding of relational Hoare logic in 𝐹★ is used to interactively prove refinements between

union-find implementations [47]. Aguirre et al. [1] develop a logic based on relational refinement

types, for terminating higher order functional programs, and provide an extensive discussion of

work on relational logics.

Automated relational verification based on product programs is implemented in several works

which address effective alignment of control flow points and the inference of alignment points and

relational assertions and procedure summaries [16–18, 34, 40, 55, 99, 101, 102]. One line of work,

centered around the SymDiff verifier [50, 56, 57], proves properties of program differences using

relational procedure summaries. Godlin and Strichmann [46] prove soundness of proof rules for

equivalence checking taking into account similar and differing calls. Eilers et al. [39] implement a

novel product construction for procedure-modular verification of k-safety properties of a program,

maximizing use of relational specs for procedure calls. (We follow O’Hearn et al. [77] in using

“modular” to imply also information hiding.) Girka et al. [45] explore forms of alignment automata.

Shemer et al. [89] provide for flexible alignments and infer state-dependent alignment conditions,

as do Unno et al. [97]. The latter works rely on constraint solving techniques which are not yet

applicable to the heap. For the heap the state of the art for finding alignments is syntactic matching

heuristics.

For ∀∃ properties, product constructions appear in some recent works [5, 17, 35, 59, 97]. Pi-

oneering work by Rinard and Marinov [85, 86] introduces a logic of ∀∃ simulations for correct

compilation, for programs represented as control flow graphs.

Sousa and Dillig’s Cartesian Hoare Logic [93] (a generalization of Benton’s logic) can be used

to reason about 𝑘-safety properties such as secure information flow (2-safety) and transitivity (3-

safety). They also develop an algorithm, based on an implicit product construction, for automatically

proving 𝑘-safety properties; The corresponding tool, Descartes, has been used in the verification of

several user-defined relational operators in Java programs. For more efficient relational verification,

Pick et al. [79] introduce a new algorithm atop Descartes, which automatically detects opportunities

for alignment (the synchrony phase) and detects opportunities for pruning subtasks by exploiting

symmetries in program structure and relational specs.

None of the above works address hiding, and many do not fully handle the heap [58]. Our work

is complementary, providing a foundation for verified toolchains implementing these algorithmic

techniques. The use of rWhile with alignment guards, together with the disjunction rule to
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split cases and unconditional rewriting (Section 8.6), enables our logic to express a wide range of

state-dependent alignments.

10.3 Representation independence

It is difficult to account for encapsulation in semantics of languages with dynamically allocated

mutable state and especially with higher order features. Crary’s tour de force proves parametricity

for a large fragment of ML but excluding reference types [36]. Semantic studies of the problem [2, 7]

have been connected with unary [10] and relational logics [37]. The latter relies on intensional

atomic propositions about steps in the transition semantics. In this sense it is very different from

standard (Hoare-style) program logics.

Birkedal and Yang [30] show client code proved correct using the SOF rule of separation logic

is relationally parametric, using a semantics that does not validate the rule of conjunction which

plays a key role in automated verification. That rule is an issue in some other models as well, e.g.,

Iris (in part owing to its treatment of ghost updates as logical operators).

Thamsborg et al. [96] also lift separation logic to a relational interpretation, but instead of second

order framing, address abstract predicates. Their goal is to give a relational interpretation of proofs.

They uncover and solve a surprising problem: due to the nature of entailment in separation logic,

not all uses of the rule of consequence lift to relations. Our logic does not directly lift proofs but does

lift judgments from unary to relational (the rEmb and rLocEq rules). In general, most works on

representation independence, including work on encapsulation of mutable objects, are essentially

semantic developments [7, 10]; general categorical models of Reynolds’ relational parametricity [84]

which validate his abstraction theorem and identity extension lemma have been developed and are

under active study by Johann et al. [92].

The state of the art for data abstraction in separation logics is abstract predicates, which are

satisfactory in many specs where some abstraction of ADT state is of interest to clients, but less

attractive for composing libraries such as runtime resource management with no client-relevant

state. Such logics have been implemented in interactive provers [29, 53, 71]. These are unary logics

with concurrency; they do not feature second order framing but they have been used to verify

challenging concurrent programs. As shown by the recent extension of VST with Verified Software

Units [28], higher order logics with impredicative quantification facilitate expressive interface

specifications for modular reasoning about heap based programs.

ReLoC [44], based on Iris [53], is a relational logic for conditional contextual refinement of higher

order concurrent programs. Iris and the works in the preceding paragraph do support hiding in the

sense of abstraction: through existential quantification and abstract predicates, and in Iris through

the invariant-box modality and the associated “masks”. With respect to our context and goals, we

find such machinery to be overkill. Like O’Hearn et al. [77], we only need invariants in the sense of

conditions that hold when control enters or exits the module—not conditions that hold at every step.

There is a considerable gap between this work and the properties/techniques for which automation

has been developed; moreover their step-indexed semantics does not support termination reasoning

or transitive composition of relations (which needs relative termination [50]); our logic is easily

adapted to both.

Maillard et al. [65] provide a general framework for relational program logics that can be

instantiated for different computational effects represented by monads. The paper does not address

encapsulation except insofar as the system is based on dependent type theory.

11 CONCLUSION

We introduced a relational Hoare logic that accounts for strong encapsulation of data representations

in object-based programswith dynamic allocation and sharedmutable data structures. Consequently,
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changes to internal data representations of a module can be proved to lead to equivalent observable

behaviors of clients that have been proved to respect encapsulation. The technique of simulation,

articulated by Hoare [52] and formalized in theories of representation independence, is embodied

directly in the logic as a proof rule (rMLink in Figure 31). The logic provides means for specifying

state based encapsulation methodologies such as ownership. It also supports effective relational

reasoning about simulation between both similar and disparate control and data structure. Although

our exposition focuses on encapsulation and simulation, the logic is general, encompassing a range of

relational properties including conditional equivalence (including compiler optimizations), specified

differencing (as in regression verification), and secure information flow with downgrading [3, 11,

13, 33]. The rules are proved sound.

The programmer’s perspective articulated by Hoare is about a single module and client, distin-

guishing inside versus outside. The general case, with state based encapsulation for a hierarchy

of modules, requires a precise definition of the boundaries within which a given execution step

lies. While we build on prior work on state based encapsulation, we find that to support change

of representation, the semantics of encapsulation needs to be formulated in terms of not only the

context (hypotheses/library APIs) but also modular structure of what’s already linked, via the

dynamic call chain embodied by the runtime stack. This novel formulation of an extensional seman-

tics for encapsulation against dependency is subtle (Def. 5.10), yet it remains amenable to simple

enforcement. Our relational assertions and verification conditions for modules and clients are

first-order. As proof of concept, we demonstrate that they can be effectively used in an auto-active

SMT-based verification prototype.

To a great extent, the three goals in Section 1 have been achieved. Beyond this progress, for

foundational justification one might like to machine check the soundness proofs. For automation,

one could explore techniques for inferring alignment conditions and relational invariants [89, 97].

Apropos completeness of the logic, the ordinary notion of completeness is that valid relational

judgments are provable (relative to validity of entailments). Completeness in this sense is an

immediate consequence of completeness of the underlying unary logic together with the presence

of a single rule (like rEmb) that lifts unary judgments to relational ones [19, 20, 43]—provided

that unary assertions can express relations. That proviso is easy to establish for simple imperative

programs, by using renamed variables. For pointer programs, expressing a relation as an assertion

can be done using separating conjunction [19], but to do so using only FO assertions requires a

complicated encoding [72]. The recently introduced notion of alignment completeness [69] is better

than ordinary completeness as a way to evaluate relational logics. We have not yet investigated

completeness for either unary or relational region logic.

12 ENVOI

Hoare’s 1972 paper articulates the fundamental notions of hiding and encapsulationwith aminimum

of extraneous formalization. In seeking to formulate the ideas in a logic for first-order programs

using first-order assertions, we hoped to achieve a comparably elementary and transparent account.

In order to handle dynamically allocated mutable state, however, we have been unable to avoid

some amount of auxiliary notions.

Having incorporated encapsulation into a unary+relational logic that supports hiding of internal

invariants, we are poised to investigate a longstanding problem: the hiding of unobservable effects

for object-based programs. This is intimately connected with encapsulation [26, 73, 82] and appears

already in Hoare’s work under the term benevolent side effects [52].

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



A Relational Program Logic with Data Abstraction and Dynamic Framing [version with index] 1:77

ACKNOWLEDGMENTS

We thank the anonymous TOPLAS reviewers for their insightful technical feedback and stuctural

suggestions which have improved the exposition. We thank Andrew Myers for his encouragement

and diligent editing throughout the reviewing process. Stephen Sondheim’s lyrics “Perpetual

anticipation is good for the soul//But it’s bad for the heart” provided perspective as we worked

through multiple review iterations.

The ideas in this article arose from discussions between Banerjee and Naumann during a long

walk at PLDI 2009 in Dublin, following which, Naumann jotted down initial thoughts at a cafe.

The discussions spurred a long-term research program that has produced substantial intermediate

results (RLI–RLIII) that have culminated in this article. For arranging presentations of the work at

various stages of its development, and for their comments and encouragement, we thank Nina Amla,

Lennart Beringer, Lars Birkedal, Stephen Chong, Rance Cleaveland, Matthias Felleisen, Philippa

Gardner, Neil Immerman, Patricia Johann, Assaf Kfoury, Shriram Krishnamurthi, César Kunz, Gary

Leavens, David Liu, Aleks Nanevski, Minh Ngo, Noam Rinetzky, Mooly Sagiv, Don Sannella, Gordon

Stewart and Jan Vitek.

We thank the organizers and participants of the Dagstuhl Seminar 18151 on Program Equivalence.

The stimulating atmosphere of the seminar and Dagstuhl’s salubrious environs (which naturally

inspired us to take many long walks) aided technical progress at a crucial stage. Naumann acknowl-

edges Manuel Hermenegildo for arranging an enjoyable and fruitful stay at the IMDEA Software

Institute in 2011, and Andrew Appel for arranging an engaging stay at Princeton in 2017-18. Finally,

we thank our families for their continuing and steadfast support.

Nagasamudram and Nikouei were partially supported by National Science Foundation (NSF)

award 1718713. Naumann was partially supported by NSF award 1718713 and Office of Naval

Research (ONR) award N00014-17-1-2787. Banerjee’s research was based on work supported by the

NSF, while working at the Foundation; in particular, he gratefully acknowledges NSF’s support

of “Long-term Professional Development” for FY 2020. Any opinions, findings, and conclusions or

recommendations expressed in this article are those of the authors and do not necessarily reflect

the views of the NSF and other funding agencies.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:78 Banerjee, Nagasamudram, Naumann, Nikouei

A APPENDIX: PROGRAM SEMANTICS AND UNARY CORRECTNESS (RE SECTION 5)

A.1 On effects, agreement, and valid correctness judgment

Lemma 5.2 (subtraction). rlocs(𝜎, 𝜀\𝜂) = rlocs(𝜎, 𝜀)\rlocs(𝜎, 𝜂) and the same for wlocs.

Proof. Assume w.l.o.g. that 𝜀 and 𝜂 are in the normal form described as part of the definition,

Eqn. (7). For a variable 𝑥 we get 𝑥 ∈ rlocs(𝜎, 𝜀\𝜂) iff 𝑥 ∈ rlocs(𝜎, 𝜀)\rlocs(𝜎, 𝜂) directly from

definitions. For a heap location, 𝑜.𝑓 is in rlocs(𝜎, 𝜀)\rlocs(𝜎, 𝜂) just if there is rd𝐺 ‘𝑓 in 𝜀 with

𝑜 ∈ 𝜎 (𝐺) and there is no rd𝐻 ‘𝑓 in 𝜂 with 𝑜 ∈ 𝜎 (𝐻 ) (by definitions). This can happen in two cases:

either there is no read for 𝑓 in 𝜂, or there is rd𝐻 ‘𝑓 in 𝜂 but 𝑜 ∉ 𝜎 (𝐻 ). In the first case, rd𝐺 ‘𝑓 is

in 𝜀\𝜂 so 𝑜 ∈ rlocs(𝜀\𝜂). In the second case, rd (𝐺\𝐻 )‘𝑓 is in 𝜀\𝜂 and since 𝑜 ∈ 𝜎 (𝐺\𝐻 ) we have
𝑜 ∈ rlocs(𝜀\𝜂). □

Lemma 5.6. Suppose 𝜎
𝜋≈ 𝜎 ′. Then 𝜎 (𝐹 ) 𝜋∼ 𝜎 ′ (𝐹 ), and 𝜎 |= 𝑃 iff 𝜎 ′ |= 𝑃 .

Proof. Straightforward, by induction on 𝐹 and induction on 𝑃 . □

Remark 2. For partial correctness, all specs are satisfiable (at least by divergence). This is manifest

in Def. 5.9, which allows that 𝜑 (𝑚) (𝜎) can be ∅ for any 𝜎 that satisfies the precondition. In RLII, a

context call faults in states where the precondition does not hold. It gets stuck if the precondition

holds but there is no successor state that satisfies the postcondition. Here (and in RLIII, for impure

methods), the latter situation can be represented by a model that returns the empty set. Instead of

letting the semantics get stuck we include a stuttering transition, uCall0. □

Remark 3. Apropos Def. 5.10, one might expect r-respect to consider steps ⟨𝐵, 𝜏 ′, 𝜇⟩ 𝜑↦−→
⟨𝐷 ′, 𝜐′, 𝜈 ′⟩ with potentially different environment 𝜈 ′, and add to the consequent that 𝜈 ′ = 𝜈 . But in
fact the only transitions that affect the environment are those for let and for the elet command

used in the semantics at the end of its scope. The transitions for these are independent of the state,

and so 𝐵 and 𝜇 suffice to determine 𝜈 . □

Remark 4. The consequent (25) of r-respect express that the visible (outside boundary) writes

and allocations depend only on the visible starting state. One may wonder whether the conditions

fully capture dependency, noting that they do not consider faulting. But r-respects is used in

conjunction with the (Safety) condition that rules out faults. □

Remark 5. In separation logic, preconditions serve two purposes: in addition to the usual role as

an assumption about initial states, the precondition also designates the “footprint” of the command.

This is usually seen as a frame condition: the command must not read or write any preexisting

locations outside the footprint of the precondition. In a logic such as the one in this article, where

frame conditions are distinct from preconditions, it is possible for the frame condition to designate

a smaller set of locations than the footprint of the precondition. As a simple example, consider

the spec 𝑥 > 0 ∧ 𝑦 > 0 { true [rw𝑥]. In our logic, it is possible for two states to agree on the

read effect but disagree on the precondition. For example, the states [𝑥 : 1, 𝑦 : 0] and [𝑥 : 1, 𝑦 : 1]
agree on 𝑥 but only the second satisfies 𝑥 > 0 ∧𝑦 > 0. Lemma 5.11 describes the read effect only in

terms of states that satisfy the precondition. For a command satisfying the example spec, and the

states [𝑥 : 1, 𝑦 : 1] and [𝑥 : 1, 𝑦 : 2] which satisfy the precondition but do not agree on 𝑦, that the

command must either diverge on both states or converge to states that agree on the value of 𝑥 . □

Lemma A.1 (agreement symmetry). Suppose 𝜀 has framed reads. If Agree(𝜎, 𝜎 ′, 𝜋, 𝜀) then (a)

rlocs(𝜎 ′, 𝜀) = 𝜋 (rlocs(𝜎, 𝜀)) and (b) Agree(𝜎 ′, 𝜎, 𝜋−1, 𝜀).
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Proof. (a) For variables the equality follows immediately by definition of rlocs. For heap locations

the argument is by mutual inclusion. To show rlocs(𝜎 ′, 𝜀) ⊆ 𝜋 (rlocs(𝜎, 𝜀)), let 𝑜.𝑓 ∈ rlocs(𝜎 ′, 𝜀).
By definition of rlocs, there exists region 𝐺 such that 𝜀 contains rd𝐺 ‘𝑓 and 𝑜 ∈ 𝜎 ′ (𝐺). Since 𝜀 has
framed reads, 𝜀 contains ftpt (𝐺), hence from Agree(𝜎, 𝜎 ′, 𝜋, 𝜀) by Eqn (28) we get 𝜎 (𝐺) 𝜋∼ 𝜎 ′ (𝐺).
Thus 𝑜 ∈ 𝜋 (𝜎 (𝐺)). So, we have 𝑜.𝑓 ∈ 𝜋 (rlocs(𝜎, 𝜀)). Proof of the reverse inclusion is similar.

(b) For variables this is straightforward. For heap locations, consider any 𝑜.𝑓 ∈ rlocs(𝜎 ′, 𝜀). From
(a), we have 𝜋−1 (𝑜).𝑓 ∈ rlocs(𝜎, 𝜀). From Agree(𝜎, 𝜎 ′, 𝜋, 𝜀), we get 𝜎 (𝜋−1 (𝑜).𝑓 ) 𝜋∼ 𝜎 ′ (𝑜.𝑓 ). Thus we
have 𝜎 ′ (𝑜.𝑓 ) 𝜋

−1

∼ 𝜎 (𝜋−1 (𝑜) .𝑓 ). □

The definition of r-respect is formulated (in Def. 5.10) in a way to make evident that client steps

are independent from locations within the boundary. But r-respect can be simplified, as follows,

when used in conjunction with w-respects.

The following notion is used to streamline the statement of some technical results. It is used

with states 𝜎, 𝜏, 𝜏 ′, 𝜐, 𝜐′, where 𝜎 is an initial state from which 𝜏 and then later 𝜐 is reached, and in

a parallel execution 𝜏 ′ reaches 𝜐′. Moreover, 𝛿 is a dynamic boundary. We write 𝛿⊕ to abbreviate

𝛿, rd alloc.

Definition A.2. Say 𝜀 allows dependence from 𝜏, 𝜏 ′ to 𝜐,𝜐′ for 𝜎, 𝛿, 𝜋 , written 𝜏, 𝜏 ′
𝜋⇒𝜐,𝜐′ |=𝜎

𝛿
𝜀

iff the agreement Lagree(𝜏, 𝜏 ′, 𝜋, (freshL(𝜎, 𝜏)∪ rlocs(𝜎, 𝜀))\rlocs(𝜏, 𝛿⊕)) implies there is 𝜌 ⊇ 𝜋 with

Lagree(𝜐,𝜐′, 𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐))\rlocs(𝜐, 𝛿⊕)).

Like Definition 5.4, this definition is left-skewed, both because 𝜀 is interpreted in the left state 𝜎

and because the fresh and written locations are determined by the left transition 𝜎 to 𝜏 . This is

tamed in case 𝜀 has framed reads (Lemma A.1).

Allowed dependence gives an alternate way to express part of the Encap condition in Def. 5.10.

For a step ⟨𝐵, 𝜏, 𝜇⟩ 𝜑↦−→ ⟨𝐷, 𝜐, 𝜈⟩ that r-respects 𝛿 for (𝜑, 𝜀, 𝜎) and Active(𝐵) is not a call, and

alternate step (24), the condition implies 𝜏, 𝜏 ′
𝜋⇒𝜐,𝜐′ |=𝜎

𝛿
𝜀 in the notation of Def. A.2.

A critical but non-obvious consequence of framed reads is that for a pair of states 𝜎, 𝜎 ′ that are in
‘symmetric’ agreement and transition to a pair 𝜏, 𝜏 ′ forming an allowed dependence, the transitions

preserve agreement on any set of locations whatsoever. The formal statement is somewhat intricate;

it generalizes RLIII Lemma 6.12.

Lemma A.3 (balanced symmetry). Suppose 𝜏, 𝜏 ′
𝜋⇒𝜐,𝜐′ |=𝜎

𝛿
𝜀 and 𝜏 ′, 𝜏

𝜋−1

⇒𝜐′, 𝜐 |=𝜎 ′
𝛿
𝜀. Suppose

Lagree(𝜏, 𝜏 ′, 𝜋, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀))\rlocs(𝜏, 𝛿⊕))
Lagree(𝜏 ′, 𝜏, 𝜋−1, (freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀))\rlocs(𝜏 ′, 𝛿⊕))

Let 𝜌, 𝜌 ′ be any refperms with 𝜌 ⊇ 𝜋 and 𝜌 ′ ⊇ 𝜋−1
that witness the allowed dependencies, i.e.,

Lagree(𝜐,𝜐′, 𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐))\rlocs(𝜐, 𝛿⊕))
Lagree(𝜐′, 𝜐, 𝜌 ′, (freshL(𝜏 ′, 𝜐′) ∪ wrttn(𝜏 ′, 𝜐′))\rlocs(𝜐′, 𝛿⊕)) (35)

Furthermore suppose

𝜌 (freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿)) ⊆ freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿)
𝜌 ′ (freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿)) ⊆ freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿) (36)

Then we also have

Lagree(𝜐′, 𝜐, 𝜌−1, (freshL(𝜏 ′, 𝜐′) ∪ wrttn(𝜏 ′, 𝜐′))\rlocs(𝜐′, 𝛿⊕))
𝜌 (freshL(𝜏,𝜐))\rlocs(𝜐, 𝛿) = freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿)
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Proof. FromDefinition 5.3 and (35) we know that 𝜌 and 𝜌 ′ are total on freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿) and
freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿) respectively. Since 𝜌 and 𝜌 ′ are bijections, from (36), we have equal cardi-

nalities: |freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿) | = |freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿) |. Sowe get 𝜌 (freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿)) =
freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿). Now from (35) using the symmetry lemma Eqn (22) for Lagree we get

Lagree(𝜐′, 𝜐, 𝜌−1, 𝜌 (freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿)))

So, we have Lagree(𝜐′, 𝜐, 𝜌−1, freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿)). On other hand, we have wrttn(𝜏 ′, 𝜐′) ⊆
locations(𝜏 ′) and we have 𝜌 ′ |locations (𝜏 ′ ) = 𝜋−1 |locations (𝜏 ′ ) = 𝜌−1 |locations (𝜏 ′ ) , using vertical bar for

domain restriction. So from (35) we get

Lagree(𝜐′, 𝜐, 𝜋−1,wrttn(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿⊕))

which we can write as Lagree(𝜐′, 𝜐, 𝜌−1,wrttn(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿⊕)). Thus we get

Lagree(𝜐′, 𝜐, 𝜌−1, (freshL(𝜏 ′, 𝜐′) ∪ wrttn(𝜏 ′, 𝜐′))\rlocs(𝜐′, 𝛿⊕))

□

Lemma A.4 (preservation of agreement). Suppose 𝜏, 𝜏 ′
𝜋⇒𝜐,𝜐′ |=𝜎

𝛿
𝜀 and 𝜏 ′, 𝜏

𝜋−1

⇒𝜐′, 𝜐 |=𝜎 ′
𝛿
𝜀.

Suppose

Lagree(𝜏, 𝜏 ′, 𝜋, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀))\rlocs(𝜏, 𝛿⊕)) and

Lagree(𝜏 ′, 𝜏, 𝜋−1, (freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀))\rlocs(𝜏 ′, 𝛿⊕))
Then for any𝑊 ⊆ locations(𝜏), if Lagree(𝜏, 𝜏 ′, 𝜋,𝑊 ) then Lagree(𝜐,𝜐′, 𝜌,𝑊 \rlocs(𝜐, 𝛿⊕)), for any
refperm 𝜌 that witnesses 𝜏, 𝜏 ′

𝜋⇒𝜐,𝜐′ |=𝜎
𝛿
𝜀.

Proof. Suppose Lagree(𝜏, 𝜏 ′, 𝜋, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀))\rlocs(𝜏, 𝛿⊕)) suppose that 𝜌 ⊇ 𝜋 wit-

nesses 𝜏, 𝜏 ′
𝜋⇒𝜐,𝜐′ |=𝜎

𝛿
𝜀, so we get

Lagree(𝜐,𝜐′, 𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐))\rlocs(𝜐, 𝛿⊕))) (37)

Suppose Lagree(𝜏 ′, 𝜏, 𝜋−1, (freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀))\rlocs(𝜏 ′, 𝛿⊕)) and let 𝜌 ′ ⊇ 𝜋−1
witness

𝜏 ′, 𝜏
𝜋−1

⇒𝜐′, 𝜐 |=𝜎 ′
𝛿
𝜀 so we get

Lagree(𝜐′, 𝜐, 𝜌 ′, (freshL(𝜏 ′, 𝜐′) ∪ wrttn(𝜏 ′, 𝜐′))\rlocs(𝜐′, 𝛿⊕)) (38)

Now suppose𝑊 is a set of locations in 𝜏 such that Lagree(𝜏, 𝜏 ′, 𝜋,𝑊 ). We show that

Lagree(𝜐,𝜐′, 𝜌,𝑊 \rlocs(𝜐, 𝛿⊕))

For 𝑥 ∈𝑊 \rlocs(𝜐, 𝛿⊕), either 𝑥 ∈ wrttn(𝜏,𝜐) or 𝜏 (𝑥) = 𝜐 (𝑥).
• If 𝑥 ∈ wrttn(𝜏,𝜐) then from (37), we have 𝜐 (𝑥) 𝜌∼ 𝜐′ (𝑥).
• If 𝜏 (𝑥) = 𝜐 (𝑥), we claim that 𝜏 ′ (𝑥) = 𝜐′ (𝑥). It follows that from Lagree(𝜏, 𝜏 ′, 𝜋,𝑊 ) we have
𝜐 (𝑥) = 𝜏 (𝑥) 𝜋∼ 𝜏 ′ (𝑥) = 𝜐′ (𝑥).
We prove the claim by contradiction. If it does not hold then 𝑥 ∈ wrttn(𝜏 ′, 𝜐′). By (38)

this implies 𝜐′ (𝑥) 𝜌
′
∼ 𝜐 (𝑥) = 𝜏 (𝑥) 𝜋∼ 𝜏 ′ (𝑥). Then, since 𝜌 ′ ⊇ 𝜋−1

, we would have 𝜏 ′ (𝑥) =
𝜋 (𝜋−1 (𝜐′ (𝑥))) = 𝜐′ (𝑥), which is a contradiction.

For 𝑜.𝑓 ∈𝑊 \rlocs(𝜐, 𝛿⊕), either 𝑜.𝑓 ∈ wrttn(𝜏,𝜐) or 𝜏 (𝑜.𝑓 ) = 𝜐 (𝑜.𝑓 ).
• If 𝑜.𝑓 ∈ wrttn(𝜏,𝜐) then from (37), we have 𝜐 (𝑜.𝑓 ) 𝜌∼ 𝜐′ (𝜌 (𝑜).𝑓 ).
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uLoad

𝜎 (𝑦) = 𝑜 𝑜 ≠ null

⟨𝑥 := 𝑦.𝑓 , 𝜎, 𝜇⟩ 𝜑↦−→ ⟨skip, [𝜎 | 𝑥 :𝜎 (𝑜.𝑓 )], 𝜇⟩

uLoadX

𝜎 (𝑦) = null

⟨𝑥 := 𝑦.𝑓 , 𝜎, 𝜇⟩ 𝜑↦−→  

uStore

𝜎 (𝑥) = 𝑜 𝑜 ≠ null

⟨𝑥 .𝑓 := 𝑦, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨skip, [𝜎 | 𝑜.𝑓 :𝜎 (𝑦)], 𝜇⟩

uStoreX

𝜎 (𝑥) = null

⟨𝑥 .𝑓 := 𝑦, 𝜎, 𝜇⟩ 𝜑↦−→  

uAssg

⟨𝑥 := 𝐹, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨skip, [𝜎 | 𝑥 :𝜎 (𝐹 )], 𝜇⟩

uSeq

⟨𝐶, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐷, 𝜏, 𝜈⟩

⟨𝐶;𝐵, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐷 ;𝐵, 𝜏, 𝜈⟩

uSeqX

⟨𝐶, 𝜎, 𝜇⟩ 𝜑↦−→  

⟨𝐶;𝐵, 𝜎, 𝜇⟩ 𝜑↦−→  

uNew

𝑜 ∈ Fresh(𝜎)
Fields(𝐾) = 𝑓 : 𝑇 𝜎1 = “𝜎 with 𝑜 added to heap, with type 𝐾 and default field values”

⟨𝑥 := new 𝐾, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨skip, [𝜎1 | 𝑥 :𝑜], 𝜇⟩

uVar

𝑥 ′ = FreshVar (𝜎)

⟨var 𝑥 :𝑇 in 𝐶, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐶𝑥𝑥 ′ ; evar(𝑥
′), [𝜎+𝑥 ′: default (𝑇 )], 𝜇⟩

uEVar

⟨evar(𝑥), 𝜎, 𝜇⟩ 𝜑↦−→ ⟨skip, 𝜎↾𝑥, 𝜇⟩

uWhT

𝜎 (𝐸) = true

⟨while 𝐸 do 𝐶, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐶;while 𝐸 do 𝐶, 𝜎, 𝜇⟩

uWhF

𝜎 (𝐸) = false

⟨while 𝐸 do 𝐶, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨skip, 𝜎, 𝜇⟩

uIfT

𝜎 (𝐸) = true

⟨if 𝐸 then 𝐶 else 𝐷, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐶, 𝜎, 𝜇⟩

uIfF

𝜎 (𝐸) = false

⟨if 𝐸 then 𝐶 else 𝐷, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐷, 𝜎, 𝜇⟩

Fig. 34. Rules for unary transition relation
𝜑↦−→ omitted from Fig. 22.

• If𝜏 (𝑜.𝑓 ) = 𝜐 (𝑜.𝑓 ), we claim that𝜏 ′ (𝜋 (𝑜).𝑓 ) = 𝜐′ (𝜋 (𝑜).𝑓 ). It follows that from Lagree(𝜏, 𝜏 ′, 𝜋,𝑊 )
we have 𝜐 (𝑜.𝑓 ) = 𝜏 (𝑜.𝑓 ) 𝜋∼ 𝜏 ′ (𝜋 (𝑜).𝑓 ) = 𝜐′ (𝜋 (𝑜).𝑓 ).
The claim 𝜏 ′ (𝜋 (𝑜).𝑓 ) = 𝜐′ (𝜋 (𝑜).𝑓 ) is proved by contradiction. If it does not hold then 𝜋 (𝑜).𝑓 ∈
wrttn(𝜏 ′, 𝜐′). By (38) this implies 𝜐′ (𝜋 (𝑜).𝑓 ) 𝜌

′
∼ 𝜐 (𝜌 ′𝜋 (𝑜).𝑓 ) = 𝜐 (𝑜.𝑓 ) = 𝜏 (𝑜.𝑓 ) 𝜋∼ 𝜏 ′ (𝜋 (𝑜).𝑓 ).

Then, since 𝜌 ′ ⊇ 𝜋−1
, we would have 𝜏 ′ (𝜋 (𝑜).𝑓 ) = 𝜋 (𝜋−1 (𝜐′ (𝜋 (𝑜).𝑓 ))) = 𝜐′ (𝜋 (𝑜).𝑓 ), hence

𝜏 ′ (𝜋 (𝑜).𝑓 ) = 𝜐′ (𝜋 (𝑜).𝑓 ), which is a contradiction.

This completes the proof of Lagree(𝜐,𝜐′, 𝜋,𝑊 \rlocs(𝜐, 𝛿⊕)) for heap locations. □

Lemma A.5 (subeffect). If 𝑃 |= 𝜀 ≤ 𝜂 then the following hold for all 𝜎, 𝜎 ′, 𝜏, 𝜏 ′, 𝜐, 𝜐′, 𝜋, 𝛿 such that
𝜎 |= 𝑃 and 𝜎 ′ |= 𝑃 : (a) 𝜎→𝜏 |= 𝜀 implies 𝜎→𝜏 |= 𝜂; (b) Agree(𝜎, 𝜎 ′, 𝜋, 𝜂) implies Agree(𝜎, 𝜎 ′, 𝜋, 𝜀);
and (c) 𝜏, 𝜏 ′

𝜋⇒𝜐,𝜐′ |=𝜎
𝛿
𝜀 implies 𝜏, 𝜏 ′

𝜋⇒𝜐,𝜐′ |=𝜎
𝛿
𝜂.

Proof. Straightforward from the definitions. For part (c), we have rlocs(𝜎, 𝜀) ⊆ rlocs(𝜎, 𝜂), so 𝜂
gives a stronger antecedent in Def. A.2 and the consequent is unchanged between 𝜀 and 𝜂. □
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A.2 On the transition relation

Fig. 34 completes the definition of the transition relation, with respect to a given pre-model 𝜑 .42

The definition is also parameterized by a function, Fresh, for which we assume that, for any 𝜎 ,

Fresh(𝜎) a non-empty set of non-null references that are not in 𝜎 (alloc).
We take care to model realistic allocators, allowing their behavior to be nondeterminisic at the

level of states, to model their dependence on unobservable low-level implementation details, yet not

requiring the full, unbounded allocator required by some separation logics. However, the language

is meant to be deterministic modulo allocation. To make that possible for local variables, we assume

given a function FreshVar : 𝑠𝑡𝑎𝑡𝑒𝑠 → LocalVar such that FreshVar (𝜎) ∉ Vars(𝜎). We also assume

that FreshVar depends only on the domain of the state:

Vars(𝜎)\𝑆𝑝𝑒𝑐𝑂𝑛𝑙𝑦𝑉𝑎𝑟𝑠 = Vars(𝜎 ′)\𝑆𝑝𝑒𝑐𝑂𝑛𝑙𝑦𝑉𝑎𝑟𝑠 implies FreshVar (𝜎) = FreshVar (𝜎 ′) (39)

These technicalities are innocuous and consistent with stack allocation of locals.

A configuration cfg faults if cfg 𝜑↦−→∗  . It faults next if cfg 𝜑↦−→  . It terminates if cfg 𝜑↦−→∗
⟨skip, 𝜏, _⟩ for some 𝜏— so “terminates” means eventual normal termination. When applied to

traces, these terms refer to the last configuration: a trace faults if it can be extended to a trace in

which the last configuration faults next. Perhaps it goes without saying that cfg diverges means it

begins an infinite sequence of transitions; in other words, it has traces of unbounded length.

For any pre-model 𝜑 , the transition relation
𝜑↦−→ is total in the sense that, for any ⟨𝐶, 𝜎, 𝜇⟩ with

𝐶 . skip, there is an applicable rule and hence a successor—which may be another configuration

or  . This relies on the starting configuration being well formed in the sense that all free methods

are bound either in the model or the environment, all free variables are bound in the state, and the

command has no occurrences of evar or elet. Moreover, evar(𝑥) (resp. elet(𝑚)) only occurs in a

configuration if 𝑥 is in the state (resp.𝑚 is in the environment).

Well formedness is preserved by the transition rules, and can be formalized straightforwardly

(see RLII) but in this article we gloss over it for the sake of clarity.

The transition relation
𝜑↦−→ is called rule-deterministic if for every configuration ⟨𝐶, 𝜎, 𝜇⟩

there is at most one applicable transition rule. Strictly speaking, this is a property of the definition

(Figs. 22 and 34), not of the relation
𝜑↦−→.

Lemma A.6 (qasi-determinacy of transitions). For any pre-model 𝜑 ,

(a)
𝜑↦−→ is rule-deterministic.

(b) If 𝜎
𝜋≈ 𝜎 ′ and ⟨𝐶, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐷, 𝜏, 𝜈⟩ and ⟨𝐶, 𝜎 ′, 𝜇⟩ 𝜑↦−→ ⟨𝐷 ′, 𝜏 ′, 𝜈 ′⟩ then 𝐷 ≡ 𝐷 ′, 𝜈 = 𝜈 ′, and

𝜏
𝜌
≈ 𝜏 ′ for some 𝜌 ⊇ 𝜋 .

(c) If 𝜎
𝜋≈ 𝜎 ′ then ⟨𝐶, 𝜎, 𝜇⟩ 𝜑↦−→  iff ⟨𝐶, 𝜎 ′, 𝜇⟩ 𝜑↦−→  .

Proof. (a) This is straightforward to check by inspection of the transition rules: for each com-

mand form, check that the applicable rules are mutually exclusive. One subtlety is in the case of

context call. If there is 𝜏 ∈ 𝜑 (𝑚) (𝜎), and also  ∈ 𝜑 (𝑚) (𝜎), then two transition rules can be used

for ⟨𝑚(), 𝜎, 𝜇⟩. This is disallowed by Def. 5.7 (fault determinacy). Also, Def. 5.7 (state determinacy),

42
To be very precise, in the transition rules for context calls (Fig. 22), we implicitly use a straightforward coercion: the

pre-model is applied to states which may have more variables than the ones in scope for the method context Φ for𝜑 . Suppose

Φ is wf in Γ. For method𝑚 in Φ, 𝜑 (𝑚) is defined on Γ-states. Suppose 𝜎 is a state for Γ plus some additional variables 𝑥

(including but not limited to spec-only variables). Then 𝜑 (𝑚) (𝜎 ) is defined by discarding the additional variables and

applying 𝜎 . If the result is a set of states, then each of these states is extended with the additional variables mapped to their

initial values. This coercion is implicitly used in the rules context calls, i.e., rules uCall, uCallX, and uCall0 in Figure 22.

The coercion is also used in RLIII where it is formalized in more detail.
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and condition (iii) in the definition of ≊𝜋 (Def. 5.5) distinguishes between the two transition rules

for empty and non-empty 𝜑 (𝑚) (𝜎) (see Fig. 22).
(b) Go by cases on Active(𝐶). For any command other than context call or allocation, take 𝜌 = 𝜋

and inspect the transition rules. For example, 𝑥 .𝑓 := 𝑦 changes the state by updating a field with

values that are in agreement mod 𝜋 . For the case of 𝑥 := 𝐸 we need that expression evaluation

respects isomorphism of states, Lemma 5.6. For allocation, let 𝜌 = {(𝑜, 𝑜 ′)} ∪ 𝜋 where 𝑜, 𝑜 ′ are
the allocated objects. For context call we get the result by the determinacy conditions of Def. 5.7.

The only commands that alter the environment are let and elet, and we get 𝜈 = 𝜈 ′ because their
behavior is independent of the state.

(c) Similar to the proof of (b); using item (i) in the definition of ≊𝜋 , for context calls. □

A consequence of (a) is that the transition relation is fault deterministic: no configuration has

both a fault and non-fault successor (by inspection, no single rule yields both fault and non-fault).

We note these other corollaries:

(d) For all 𝑖 , if 𝜎
𝜋≈ 𝜎 ′ and ⟨𝐶, 𝜎, 𝜇⟩ 𝜑↦−→𝑖 ⟨𝐷, 𝜏, 𝜈⟩ and ⟨𝐶, 𝜎 ′, 𝜇⟩ 𝜑↦−→𝑖 ⟨𝐷 ′, 𝜏 ′, 𝜈 ′⟩ then 𝐷 ≡ 𝐷 ′, 𝜈 = 𝜈 ′,

and 𝜏
𝜌
≈ 𝜏 ′ for some 𝜌 ⊇ 𝜋 (by induction on 𝑖).

(e) If 𝜎
𝜋≈ 𝜎 ′ and ⟨𝐶, 𝜎, 𝜇⟩ 𝜑↦−→ ⟨𝐷, 𝜏, 𝜈⟩ then ⟨𝐶, 𝜎 ′, 𝜇⟩ 𝜑↦−→ ⟨𝐷, 𝜏 ′, 𝜈⟩ and 𝜏

𝜌
≈ 𝜏 ′, for some 𝜏 and

some 𝜌 ⊇ 𝜋 (because only skip lacks a successor).

(f) From a given configuration ⟨𝐶, 𝜎, 𝜇⟩, exactly one of these three outcomes is possible: normal

termination, faulting termination, divergence.

Lemma 5.11 (read effect). Suppose Φ |=Γ
𝑀
𝐶 : 𝑃 { 𝑄 [𝜀] and 𝜑 is a Φ-model. Suppose 𝜎 |= 𝑃

and 𝜎 ′ |= 𝑃 . Suppose Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜀)\{alloc}). Then ⟨𝐶, 𝜎, _⟩ diverges iff ⟨𝐶, 𝜎 ′, _⟩
diverges. And for any 𝜏, 𝜏 ′, if ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨skip, 𝜏, _⟩ and ⟨𝐶, 𝜎 ′, _⟩ 𝜑↦−→∗ ⟨skip, 𝜏 ′, _⟩ then

∃𝜌 ⊇ 𝜋. Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ wrttn(𝜎, 𝜏))\{alloc}) and

𝜌 (freshL(𝜎, 𝜏)) ⊆ freshL(𝜎 ′, 𝜏 ′)
Proof. To prove the lemma we prove a stronger result.

Claim: Under the assumptions of Lemma 5.11, for any 𝑖 ≥ 0 and any 𝐵, 𝐵′, 𝜇, 𝜇′ with

⟨𝐶, 𝜎, _⟩ 𝜑↦−→𝑖 ⟨𝐵, 𝜏, 𝜇⟩ and ⟨𝐶, 𝜎 ′, _⟩ 𝜑↦−→𝑖 ⟨𝐵′, 𝜏 ′, 𝜇′⟩
there is some 𝜌 ⊇ 𝜋 such that 𝐵 ≡ 𝐵′, 𝜇 = 𝜇′, and

Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎, 𝜏))\{alloc})
Lagree(𝜏 ′, 𝜏, 𝜌−1, (freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀) ∪ wrttn(𝜎 ′, 𝜏 ′))\{alloc})
𝜌 (freshL(𝜎, 𝜏)) ⊆ freshL(𝜎 ′, 𝜏 ′)
𝜌−1 (freshL(𝜎 ′, 𝜏 ′)) ⊆ freshL(𝜎, 𝜏)

This directly implies the conclusion of the Lemma.

The claim is proved by induction on 𝑖 . The base case holds because the fresh and written locations

are empty, and agreement on rlocs(𝜎, 𝜀) is an assumption of the Lemma. For the induction step,

suppose the above holds and consider the next steps:

⟨𝐵, 𝜏, 𝜇⟩ 𝜑↦−→ ⟨𝐷, 𝜐, 𝜈⟩ and ⟨𝐵, 𝜏 ′, 𝜇⟩ 𝜑↦−→ ⟨𝐷 ′, 𝜐′, 𝜈 ′⟩
Go by cases on whether Active(𝐵) is a call.
Case Active(B) not a call. By judgment Φ |=Γ

𝑀
𝐶 : 𝑃 { 𝑄 [𝜀], the step from 𝜏 to 𝜐 respects

(Φ, 𝑀, 𝜑, 𝜀, 𝜎), as does the step from 𝜏 ′ to 𝜐′. As this is not a call, the collective boundary is

𝛿 = (+𝑁 ∈ (Φ, 𝜇), 𝑁 ≠𝑚𝑜𝑑 (𝐵,𝑀). bnd (𝑁 ))
So by w-respect for each step we have Agree(𝜏,𝜐, 𝛿) and Agree(𝜏 ′, 𝜐′, 𝛿).
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We begin by proving the left-to-right agreement and inclusion for the induction step, i.e., we will

find ¤𝜌 such that Lagree(𝜐,𝜐′, ¤𝜌, (freshL(𝜎,𝜐)∪rlocs(𝜎, 𝜀)∪wrttn(𝜎,𝜐))\{alloc}) and ¤𝜌 (freshL(𝜎,𝜐)) ⊆
freshL(𝜎 ′, 𝜐′).
We will apply r-respect of the left step, instantiated with 𝜋 := 𝜌 and with the right step. The two

antecedents in r-respect are Agree(𝜏 ′, 𝜐′, 𝛿), which we have, and

Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀))\rlocs(𝜏, 𝛿⊕))
which follows directly from the induction hypothesis. So r-respect yields some ¤𝜌 ⊇ 𝜌 (and hence

¤𝜌 ⊇ 𝜋 ) with 𝐷 ≡ 𝐷 ′, 𝜈 = 𝜈 ′, and

Lagree(𝜐,𝜐′, ¤𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐))\rlocs(𝜐, 𝛿⊕))
¤𝜌 (freshL(𝜏,𝜐)) ⊆ freshL(𝜏 ′, 𝜐′) (40)

To conclude the left-to-right Lagree part of the induction step it remains to show the two conditions

Lagree(𝜐,𝜐′, ¤𝜌, rlocs(𝜎, 𝜀)\{alloc})
Lagree(𝜐,𝜐′, ¤𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐)) ∩ rlocs(𝜐, 𝛿⊕))

The latter holds because the intersection is empty, owing toAgree(𝜏,𝜐, 𝛿) andAgree(𝜏 ′, 𝜐′, 𝛿) (noting
that rlocs(𝜐, 𝛿) = rlocs(𝜏, 𝛿) from those agreements and using Eqn (28) and the requirement that

boundaries have framed reads). For the same reasons, we have

Lagree(𝜐,𝜐′, ¤𝜌, rlocs(𝜎, 𝜀) ∩ rlocs(𝜐, 𝛿))
So it remains to show Lagree(𝜐,𝜐′, ¤𝜌, rlocs(𝜎, 𝜀)\rlocs(𝜐, 𝛿⊕)). This we get by applying Lemma A.4,

instantiated by 𝜋, 𝜌 := 𝜌, ¤𝜌 and𝑊 := rlocs(𝜎, 𝜀) (fortunately, the other identifiers in the Lemma

are just what we need here). The antecedents of the Lemma include allowed dependencies and

agreements that we have established above, and also the reverse of (40), for ¤𝜌−1
, which we get by

symmetric arguments, using the reverse conditions in the induction hypothesis. The Lemma yields

exactly what we need: Lagree(𝜐,𝜐′, ¤𝜌, rlocs(𝜎, 𝜀)\rlocs(𝜐, 𝛿⊕).
Finally, we have ¤𝜌 (freshL(𝜎,𝜐)) = 𝜌 (freshL(𝜎, 𝜏)) ∪ ¤𝜌 (freshL(𝜏,𝜐)) ⊆ freshL(𝜎 ′, 𝜏 ′) ∪
¤𝜌 (freshL(𝜏,𝜐)) ⊆ freshL(𝜎 ′, 𝜏 ′) ∪ freshL(𝜏 ′, 𝜐′) = freshL(𝜎 ′, 𝜐′) by definitions, (40), and the in-

duction hypothesis.

The reverse agreement and containment in the induction step is proved symmetrically.

Case Active(B) is a call. Let the method be𝑚 and suppose Φ(𝑚) = 𝑅 { 𝑆 [𝜂]. By R-safe from

the judgment Φ |=Γ
𝑀
𝐶 : 𝑃 { 𝑄 [𝜀], we have rlocs(𝜏, 𝜂) ⊆ rlocs(𝜎, 𝜀) ∪ freshL(𝜎, 𝜏). So by induction

hypothesis we have Lagree(𝜏, 𝜏 ′, 𝜌, rlocs(𝜏, 𝜂)\{alloc}). So by 𝜑 |= Φ and Def. 5.9(d), there are two

possibilities:

• 𝜑 (𝑚) (𝜏) = ∅ = 𝜑 (𝑚) (𝜏 ′) and the steps both go by uCall0.

• 𝜑 (𝑚) (𝜏) ≠ ∅ ≠ 𝜑 (𝑚) (𝜏 ′) and the steps both go by uCall.

In the first case, 𝐷 ≡ 𝐵 ≡ 𝐷 ′, 𝜈 = 𝜇 = 𝜈 ′, and the states are unchanged so the agreements hold and

we are done.

In the second case, we have 𝐷 ≡ 𝐵 ≡ 𝐷 ′, 𝜈 = 𝜇 = 𝜈 ′, 𝜐 ∈ 𝜑 (𝑚) (𝜏) and 𝜐′ ∈ 𝜑 (𝑚) (𝜏 ′). Moreover,

by Def. 5.9(d) there is some ¤𝜌 ⊇ 𝜌 such that

Lagree(𝜐,𝜐′, ¤𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐))\{alloc}
¤𝜌 (freshL(𝜏,𝜐)) ⊆ freshL(𝜏 ′, 𝜐′) (41)

We also get reverse conditions, for ¤𝜌−1
, by instantiating Def. 5.9(d) with 𝜌−1

and the states reversed.

We must show

Lagree(𝜐,𝜐′, ¤𝜌, (freshL(𝜎,𝜐) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎,𝜐))\{alloc}
¤𝜌 (freshL(𝜎,𝜐)) ⊆ freshL(𝜎 ′, 𝜐′)
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(and the reverse, which is by a symmetric argument). We get ¤𝜌 (freshL(𝜎,𝜐)) ⊆ freshL(𝜎 ′, 𝜐′) using
the induction hypothesis and (41), similar to the proof above for the non-call case. For the Lagree

condition for 𝜐,𝜐′, we have it for some locations by (41). It remains to show 𝜐,𝜐′ agree via ¤𝜌 on the

locations freshL(𝜎, 𝜏), rlocs(𝜎, 𝜀)\wrttn(𝜏,𝜐), and wrttn(𝜎,𝜐)\wrttn(𝜏,𝜐). The latter simplifies to

wrttn(𝜎, 𝜏) because wrttn(𝜎,𝜐) ⊆ wrttn(𝜎, 𝜏) ∪ wrttn(𝜏,𝜐). We obtain the agreements by applying

Lemma A.4 with 𝛿 := •, 𝜋 := 𝜌 , and𝑊 := freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀)\wrttn(𝜏,𝜐) ∪wrttn(𝜎, 𝜏). To that
end, observe that the above arguments have established 𝜏, 𝜏 ′

𝜌
⇒𝜐,𝜐′ |=𝜎• 𝜀, and symmetric arguments

establish 𝜏 ′, 𝜏
𝜌
⇒𝜐′, 𝜐 |=𝜎 ′• 𝜀. Moreover we have the antecedent agreements and ¤𝜌 as witness. So

Lemma A.4 yields the requisite agreements and we are done. □

Definition A.7 (denotation of command, J Γ ⊢ 𝐶 K ). Suppose 𝐶 is wf in Γ and 𝜑 is a pre-model

that includes all methods called in𝐶 and not bound by let in𝐶 . Define J Γ ⊢ 𝐶 K𝜑 to be the function

of type J Γ K→ P(J Γ K ∪ { }) given by

J Γ ⊢ 𝐶 K𝜑 (𝜎) =̂ {𝜏 | ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨skip, 𝜏, _⟩} ∪ ({ } if ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗  else ∅)

The denotation of a command can be used as a pre-model (Def. 5.7), owing to this easily-proved

property of the transition semantics: if ⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, 𝜇⟩ then 𝜎 ↩→ 𝜏 . We define a pre-model

suited to be a context model, by taking into account a possible precondition: Given𝐶 , 𝜑 , formula 𝑅,

and method name𝑚 not in dom (𝜑) and not called in 𝐶 , one can extend 𝜑 to ¤𝜑 that models𝑚 by

¤𝜑 (𝑚) (𝜎) =̂ ({ } if 𝜎 ̸ |= 𝑅 else J Γ ⊢ 𝐶 K𝜑 (𝜎)) (42)

The outcome is empty in case 𝐶 diverges. The conditions of Def. 5.7 hold owing to Lemma A.6,

see corollaries (e) and (f) mentioned following that Lemma. (Note that 𝜎 ̸ |= 𝑅 means there is no

extension of 𝜎 with values for spec-only variables in 𝑅 that make it hold.)

Lemma A.8 (context model denoted by command). Suppose Φ |=Γ
𝑀
𝐶 : 𝑅 { 𝑆 [𝜂] and

𝑀 = mdl(𝑚). Suppose 𝜑 is a Φ-model. Let ¤Φ be Φ extended with𝑚 : 𝑅 { 𝑆 [𝜂], where𝑚 ∉ dom (Φ)
and𝑚 not called in 𝐶 . Let ¤𝜑 be the extension given by (42). If 𝑁 ∈ Φ for all 𝑁 with mdl(𝑚) ⪯ 𝑁
then ¤𝜑 is a ¤Φ-model.

Proof. To check ¤𝜑 (𝑚) with respect to 𝑅 { 𝑆 [𝜂], observe that𝐶 does not fault (via𝜑) from states

that satisfy 𝑅, by Φ |=𝑀 𝐶 : 𝑅 { 𝑆 [𝜂] and 𝜑 being a Φ-model. So we get part (a) in Def. 5.9. Part (b)

is an immediate consequence of Φ |=𝑀 𝐶 : 𝑅 { 𝑆 [𝜂]. Part (c) requires boundary monotonicity for

every 𝑁 with mdl(𝑚) ⪯ 𝑁 . Encap for the judgment gives monotonicity for every 𝑁 ∈ Φ and also

for𝑀 itself. We’re done owing to hypothesis 𝑁 ∈ Φ for every 𝑁 with𝑀 ≺ 𝑁 . That condition is for

single steps, but by simple induction on steps it implies rlocs(𝜎, 𝛿) ⊆ rlocs(𝜏, 𝛿) for any 𝜏 such that

⟨𝐶, 𝜎, _⟩ 𝜑↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ for some 𝐵, 𝜇. Part (d) is by application of Lemma 5.11. □

B APPENDIX: UNARY LOGIC AND ITS SOUNDNESS (RE SECTION 6)

B.1 Additional definitions and proof rules; soundness theorem

Figures 35 and 36 present the proof rules omitted from Fig. 23. They are to be instantiated only with

well-formed premises and conclusions. To emphasize the point we make the following definitions.

A correctness judgment is derivable iff it can be inferred using the proof rules instantiated with

well-formed premises and conclusion. A proof rule is sound if for any instance with well-formed

premises and conclusion, the conclusion is valid if the premises are valid and the side conditions

hold.

Expression 𝐺 is 𝑃/𝜀-immune iff this is valid: 𝑃 ⇒ ftpt (𝐺) ·/. 𝜀. Effect 𝜂 is 𝑃/𝜀-immune iff 𝐺 is

𝑃/𝜀-immune for every 𝐺 with wr𝐺 ‘𝑓 or rd𝐺 ‘𝑓 in 𝜂 (see RLI). The key fact about immunity is that
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FieldAcc

𝑧 . 𝑥

⊢• 𝑥 := 𝑦.𝑓 : 𝑦 ≠ null ∧ 𝑧 = 𝑦 { 𝑥 = 𝑧.𝑓 [wr𝑥, rd𝑦, rd𝑦.𝑓 ]

Assign

𝑦 . 𝑥

⊢• 𝑥 := 𝐹 : 𝑥 = 𝑦 { 𝑥 = 𝐹𝑥𝑦 [wr𝑥, ftpt (𝐹 )]

Seq

Φ ⊢𝑀 𝐶1 : 𝑃 { 𝑃1 [𝜀1]
Φ ⊢𝑀 𝐶2 : 𝑃1 { 𝑄 [𝜀2, rw𝐻 ‘𝑓 ] 𝑃1 ⇒ 𝐻#𝑟 𝜀2 is 𝑃/𝜀1-immune spec-only(𝑟 )

Φ ⊢𝑀 𝐶1;𝐶2 : 𝑃 ∧ 𝑟 = alloc { 𝑄 [𝜀1, 𝜀2]

While

Φ ⊢𝑀 𝐶 : 𝑃 ∧ 𝐸 { 𝑃 [𝜀, rw𝐻 ‘𝑓 ] 𝜀 is 𝑃/(𝜀,wr𝐻 ‘𝑓 )-immune

𝑃 ⇒ 𝐻#𝑟 (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) ·/. r2w(ftpt (𝐸)) spec-only(𝑟 )
Φ ⊢𝑀 while 𝐸 do 𝐶 : 𝑃 ∧ 𝑟 = alloc { 𝑃 ∧ ¬𝐸 [𝜀, ftpt𝐸]

Fig. 35. Syntax-directed proof rules not given in Fig. 23.

ModIntro

Φ ⊢• 𝐴 : 𝑃 { 𝑄 [𝜀]
Φ ⊢• 𝐴 : 𝑃 ∧ Bsnap𝑀 { Bmon𝑀 [𝜀] if𝑀 ∈ Φ then 𝐴 is a call

Φ ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀]

CtxIntroIn2

Φ ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀] mdl(𝑚) = 𝑀 𝐴 is not a call

Φ,𝑚:𝑅 { 𝑆 [𝜂] ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀]

CtxIntroCall

Φ ⊢𝑀 𝑝 () : 𝑃 { 𝑄 [𝜀]
Φ ⊢𝑀 𝑝 () : 𝑃 ∧ Bsnap𝑁 { Bmon𝑁 [𝜀] 𝑁 = mdl(𝑚) mdl(𝑝) ⪯ mdl(𝑚)

Φ,𝑚:𝑅 { 𝑆 [𝜂] ⊢𝑀 𝑝 () : 𝑃 { 𝑄 [𝜀]

Conj

Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄0 [𝜀] Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄1 [𝜀]
Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄0 ∧𝑄1 [𝜀]

Disj

Φ ⊢𝑀 𝐶 : 𝑃0 { 𝑄 [𝜀] Φ ⊢𝑀 𝐶 : 𝑃1 { 𝑄 [𝜀]
Φ ⊢𝑀 𝐶 : 𝑃0 ∨ 𝑃1 { 𝑄 [𝜀]

Exist

Φ ⊢Γ,𝑥 :𝑇

𝑀
𝐶 : 𝑃 { 𝑄 [𝜀]

Φ ⊢Γ𝑀 𝐶 : (∃𝑥 : 𝑇 . 𝑃) { 𝑄 [𝜀]

Fig. 36. Structural proof rules not given in Fig. 23.

if 𝜂 is 𝑃/𝜀-immune then

𝜎 |= 𝑃 and 𝜎→𝜏 |= 𝜀 imply rlocs(𝜎, 𝜂) = rlocs(𝜏, 𝜂) and wlocs(𝜎, 𝜂) = wlocs(𝜏, 𝜂) (43)

Definition B.1 (boundarymonotonicity spec). 𝐵𝑛𝑑𝑀𝑜𝑛𝑆𝑝 (𝑃, 𝜀, 𝑀) is 𝑃∧𝐵𝑠𝑛𝑎𝑝𝑀 { 𝐵𝑚𝑜𝑛𝑀 [𝜀]
where 𝐵𝑠𝑛𝑎𝑝𝑀 and 𝐵𝑚𝑜𝑛𝑀 are defined as follows. Let 𝛿 be bnd (𝑀), normalized so that for each

field 𝑓 for which rd𝐻 ‘𝑓 occurs in bnd (𝑀) for some 𝐻 , there a single region expression 𝐺 𝑓 with

rd𝐺 𝑓 ‘𝑓 in 𝛿 . Let 𝐵𝑠𝑛𝑎𝑝𝑀 (for “boundary snap”) be the conjunction over fields 𝑓 of formulas 𝑠𝑓 = 𝐺 𝑓
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where each 𝑠𝑓 is a fresh spec-only variable. Let 𝐵𝑚𝑜𝑛𝑀 be the conjunction over fields 𝑓 of formulas

𝑠𝑓 ⊆ 𝐺 𝑓 .

Remark 6. In case boundaries are empty, the postcondition becomes vacuously true. As a result,

the second premises in rules ModIntro and CtxIntroCall, for boundary monotonicity, become

trivial consequences of the main premises.

Remark 7. The syntax directed rules in Fig. 35 are very similar to the unary proof rules in

RLIII. Other than addition of modules, one noticeable difference is that in RLIII rules Seq and

While require the effects to be read framed. This is not needed with the current definition of valid

judgment which imposes a stronger condition for read effects (Def. 5.10). □

Remark 8. Recall that rule CtxIntro (Fig. 23) allows the introduction of additional modules, by

adding methods to the hypothesis context (see Section 6.3). It has side conditions which ensure

encapsulation. For method calls, CtxIntro is useful to add context that is not imported by the

method’s module. A separate rule, CtxIntroCall, is needed to add context that is imported by

the method’s module (as it was in RLII). To add a method of the current module to the context,

rule CtxIntroIn2 is used if the judgment is for a non-call; otherwise CtxIntroCall is used. To

add a method to the context for a module already present in context, rule CtxIntroIn1 is used.

The context intro rules are not applicable to control structures, so requisite context should be

introduced for their constituents before their proof rules are used.

The axioms for atomic commands (e.g., Alloc in Fig. 23) are for the default module • and the

empty context, or in the case of Call the context with just the called method. Rule ModIntro

changes the current module from • to another one; this is not needed in RLII because it’s main

significance is to enforce boundary monotonicity (Def. 5.10) which is not needed in RLII. For

non-call atomic commands, the rule needs to be used before introducing methods of the current

module into the context.

Some of the rules use a second premise, the boundary monotonicity spec of Def. B.1, to enforce

boundary monotonicity.
43
In many cases, this judgment can be derived from the primary judgment

of the rule, by a simple use of the Frame rule to get Bsnap in the postcondition, and then Conseq

to get Bmon. □

Theorem 6.1 (soundness of unary logic). All the unary proof rules are sound (Figure 23 and

appendix Figs. 35 and 36).

The proofs comprise the following subsections B.2–B.10. We prove the R-safe and Encap con-

ditions for all rules, since Encap differs from the definition in RLII and R-safe is a new addition.

Otherwise, the proofs are mostly as in RLII. We give full proofs for the rules that have significantly

changed from RLII,RLIII, e.g., CtxIntro and SOF.

B.2 Soundness of Call

To show soundness of the axiom𝑚 : 𝑃 { 𝑄 [𝜀] ⊢• 𝑚() : 𝑃 { 𝑄 [𝜀], consider any 𝜎 with �̂� |= 𝑃
where �̂� =̂ [𝜎+𝑠: 𝑣] and 𝑠 are the spec-only variables of 𝑃 . Consider any𝜑 that is an (𝑚 : 𝑃 { 𝑄 [𝜀])-
model. Owing to �̂� |= 𝑃 and Def. 5.9 of context model, there is no faulting transition. So either

𝜑 (𝑚) (𝜎) is empty and the stuttering transition is taken (transition rule uCall0), or execution

terminates in a single step ⟨𝑚(), 𝜎, _⟩ 𝜑↦−→ ⟨skip, 𝜏, _⟩ with 𝜏 ∈ 𝜑 (𝑚) (𝜎) (transition rule uCall).

The stuttering transition repeats indefinitely, and Safety, Post, Write, R-safe, and Encap all hold

because the configuration never changes. In case execution terminates in ⟨skip, 𝜏, _⟩, Safety, Post,
43
One can contrive a rule with only one premise, subject to conditions that ensure it refines the second spec, but we prefer

this way.
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and Write are immediate from Def. 5.9, which in particular says 𝜏 |= 𝑄 where 𝜏 =̂ [𝜏+𝑠: 𝑣]. For
R-safe, there is only one configuration that is a call, the initial one, and it is r-safe because the

frame condition in the judgment is exactly the frame condition of the method’s spec.

Encap requires boundary monotonicity for the current module and every module in context.

Boundary monotonicity for module • holds because bnd (•) = •. It holds formdl(𝑚), the one module

in context, by Def. 5.9(c), since ⪯ is reflexive.

Encap requires w-respect for every 𝑁 in context different from the current module, which in

this case means either mdl(𝑚) or nothing, depending whether mdl(𝑚) = •. The step w-respects

mdl(𝑚) because it is a call and mdl(𝑚) ⪯ mdl(𝑚).
Encap considers 𝜎 ′, 𝜋 such that Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜂)\rlocs(𝜎, 𝛿⊕)) where collective bound-

ary 𝛿 is the union of boundaries for 𝑁 in context and not imported by mdl(𝑚); hence 𝛿 = •. By

condition (d) in Def. 5.9, we have 𝜑 (𝑚) (𝜎) = ∅ iff 𝜑 (𝑚) (𝜎 ′) = ∅, so either both transition go via

uCall0 to unchanged states, thus satisfying r-respect, or both transition go via uCall to states

𝜏, 𝜏 ′ with 𝜏 ∈ 𝜑 (𝑚) (𝜎) and 𝜏 ′ ∈ 𝜑 (𝑚) (𝜎 ′). In the latter case, rlocs(𝜎, •)⊕ is {alloc} by definition of

rlocs, and the r-respect condition to be proved is exactly the condition (d) in Def. 5.9. In a little

more detail, we must show the final states agree on freshL(𝜎, 𝜏) ∪ wrttn(𝜎, 𝜏)\rlocs(𝜏, •⊕) which
simplifies to freshL(𝜎, 𝜏) ∪ wrttn(𝜎, 𝜏)\{alloc}. R-respects also requires a condition which simplies

to 𝜌 (freshL(𝜎, 𝜏)) ⊆ freshL(𝜎 ′, 𝜏 ′) because rlocs(𝜏, •) = ∅.

B.3 Soundness of FieldUpd

This is an axiom: ⊢• 𝑥 .𝑓 := 𝑦 : 𝑥 ≠ null { 𝑥 .𝑓 = 𝑦 [wr𝑥 .𝑓 , rd𝑥, rd𝑦]. The Safety, Post, and Write

conditions are straightforward and proved the same way as in RLI. R-safe holds because there is no

method call. For Encap, the only steps to consider are the single terminating steps from states where

𝑥 is not null. So suppose ⟨𝑥 .𝑓 := 𝑒, 𝜎, _⟩ 𝜑↦−→ ⟨skip, 𝜐, _⟩, where 𝜐 = [𝜎 | 𝜎 (𝑥).𝑓 :𝜎 (𝑦)]. For Encap,
boundary monotonicity: the only relevant boundary is bnd (•) which is empty, so monotonicity

holds vacuously. For Encap, w-respect is vacuously true for the empty boundary. For r-respect,

since the command is not a call the collective boundary is empty. As we are considering the initial

step and the boundary is empty, the antecedent of r-respect can be written

Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜀)\{alloc}) and ⟨𝑥 .𝑓 := 𝑒, 𝜎 ′, _⟩ 𝜑↦−→ ⟨skip, 𝜐′, _⟩ (44)

Since there is no allocation, extending 𝜋 is not relevant, and the condition about fresh locations

is vacuous, so it remains to show that Lagree(𝜐,𝜐′, 𝜋, (wrttn(𝜎,𝜐))\{alloc}). What is written is

the location 𝜎 (𝑥).𝑓 , so this simplifies to Lagree(𝜐,𝜐′, 𝜋, {𝜎 (𝑥).𝑓 }). Given that rd𝑥 is in the frame

condition, we have 𝑥 ∈ rlocs(𝜎, 𝜀) so the assumption (44) gives agreement on which location is

written. It remains to show agreement on the value written, which is 𝜎 (𝑦) versus 𝜎 ′ (𝑦). From the

frame condition we have 𝑦 ∈ rlocs(𝜎, 𝜀), so by (44) we have initial agreement on it and we are done.

B.4 Soundness of If

Suppose the premises are valid: Φ |=
𝑀
𝐶1 : 𝑃 ∧ 𝐸 { 𝑄 [𝜀] and Φ |=

𝑀
𝐶2 : 𝑃 ∧ ¬𝐸 { 𝑄 [𝜀].

Suppose the side condition is valid: (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) ·/. r2w(ftpt (𝐸)). To show Φ ⊢
𝑀

if 𝐸 then 𝐶1 else 𝐶2 : 𝑃 { 𝑄 [𝜀, ftpt (𝐸)], we only consider R-safe and Encap, because the rest is

straightforward and similar to previously published proofs. Consider any Φ-model𝜑 , noting that the

premises have the same context. Consider and any 𝜎 with 𝜎 |= 𝑃 . Consider the case that 𝜎 (𝐸) = 𝑡𝑟𝑢𝑒
(the other case being symmetric). So the first step is ⟨if 𝐸 then𝐶1 else𝐶2, 𝜎, _⟩ 𝜑↦−→ ⟨𝐶1, 𝜎, _⟩. This
is not a call, so the step (or rather, its starting configuration) satisfies r-safe. For Encap, the first

step does not write, so it satisfies boundary monotonicity and w-respect.
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For r-respect, the requisite collective boundary is 𝛿 = (+𝑁 ∈ (Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) because there
is no ecall and the environment is empty. We show r-respect for the first step, i.e., instantiating

r-respect with 𝜏,𝜐 := 𝜎, 𝜎 . The requisite condition for this step is that for any 𝜎 ′, if

⟨if 𝐸 then 𝐶1 else 𝐶2, 𝜎
′, _⟩ 𝜑↦−→ ⟨𝐷 ′, 𝜎 ′, _⟩

and Lagree(𝜎, 𝜎 ′, 𝜋, (freshL(𝜎, 𝜎) ∪ rlocs( [𝜎+𝑠: 𝑣], (𝜀, ftpt (𝐸)))\rlocs(𝜎, 𝛿⊕)) then 𝐷 ′ ≡ 𝐶1 and

two agreement conditions about fresh and written locations. (We omitted one antecedent,

Agree(𝜎 ′, 𝜎 ′, 𝛿), which is vacuous.) There are no fresh or written locations, so those two conditions

hold. It remains to prove 𝐷 ′ ≡ 𝐶1. We can simplify the antecedent to

Lagree(𝜎, 𝜎 ′, 𝜋, (rlocs(𝜎, (𝜀, ftpt (𝐸)))\rlocs(𝜎, 𝛿⊕)))

Because the side condition is true, (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) ·/. r2w(ftpt (𝐸)), we have

rlocs(𝜎, ftpt (𝐸)) disjoint from rlocs(𝜎, 𝛿⊕). So Lagree(𝜎, 𝜎 ′, 𝜋, (rlocs(𝜎, (𝜀, ftpt (𝐸)))\rlocs(𝜎, 𝛿⊕)))
implies Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, ftpt (𝐸))). Hence 𝜎 (𝐸) = 𝜎 ′ (𝐸) by footprint agreement lemma. By

semantics, 𝐷 ′ ≡ 𝐶1 and we are done.

For subsequent steps in the case 𝜎 (𝐸) = 𝑡𝑟𝑢𝑒 , we can appeal to the premise for 𝐶1 which applies

to the trace starting from ⟨𝐶1, 𝜎, _⟩ since 𝜎 |= 𝑃 ∧ 𝐸. This yields r-safe and respect (as well as the

other conditions for validity).

B.5 Soundness of Var

Suppose the premise is valid: Φ |=Γ,𝑥 :𝑇

𝑀
𝐶 : 𝑃 ∧ 𝑥 = default (𝑇 ) { 𝑃 ′ [rw𝑥, 𝜀]. To prove the R-safe

and Encap conditions for Φ |=Γ
𝑀

var 𝑥 :𝑇 in 𝐶 : 𝑃 { 𝑃 ′ [𝜀], let 𝜑 be a Φ-model and �̂� |= 𝑃 (where �̂�

extends 𝜎 with values for the spec-only variables of 𝑃 ). The first step is ⟨var 𝑥 :𝑇 in 𝐶, 𝜎, 𝜇⟩ 𝜑↦−→
⟨𝐶𝑥
𝑥 ′ ; evar(𝑥 ′), [𝜎+𝑥 ′: default (𝑇 )], 𝜇⟩ where 𝑥 ′ = FreshVar (𝜎). Let 𝛿 = (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )).

This step satisfies w-respect because the variables in 𝛿 are already in scope, so are distinct from

𝑥 ′. (Indeed, 𝑥 ′ is a local variable and boundaries cannot contain locals.) The first configuration

satisfies r-safe because it is not a call. To show the first step satisfies r-respect, note first that

rlocs(𝜎, 𝛿) = rlocs( [𝜎+𝑥 ′: default (𝑇 )], 𝛿), again because 𝑥 ′ is not in 𝛿 . Consider taking the first

step from an alternate state 𝜎 ′ satisfying the requisite agreements with 𝜎 . Now 𝜎 ′ has the same

variables as 𝜎 (by definition of r-respect, including footnote 32), and by assumption (39) the choice

of 𝑥 ′ depends only on the domain of 𝜎 , so the alternate step introduces the same local 𝑥 ′ and the

same command 𝐶𝑥
𝑥 ′ ; evar(𝑥 ′). We have freshL(𝜎, [𝜎+𝑥 ′: default (𝑇 )]) = {𝑥 ′} by definition, and the

agreements for r-respect follow directly, noting that default (𝑇 ) is a fixed value dependent only on

the type 𝑇 .

If execution reaches the last step, that last step satisfies r-safe and respects because it merely

removes 𝑥 ′ from the state. For any other step, the result follows straightforwardly from R-safe and

Encap for the premise: The state [𝜎+𝑥 ′: default (𝑇 )]) satisfies 𝑃 ∧ 𝑥 = default (𝑇 ), and a trace of

𝐶𝑥
𝑥 ′ ; evar(𝑥 ′) gives rise to a trace of 𝐶 (by dropping evar(𝑥 ′) and renaming), for which the premise

yields r-safe, respects, and indeed Safety etc.

B.6 Soundness of ModIntro

ModIntro

Φ ⊢• 𝐴 : 𝑃 { 𝑄 [𝜀]
Φ ⊢• 𝐴 : 𝑃 ∧ Bsnap𝑀 { Bmon𝑀 [𝜀] if𝑀 ∈ Φ then 𝐴 is a call

Φ ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀]
For Encap, as 𝐴 is an atomic command 𝐴, the only reachable step is the single step taken in a

terminating execution ⟨𝐴, 𝜎, _⟩ 𝜑↦−→ ⟨skip, 𝜏, _⟩ or the stutter step by uCall0, which has the form
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⟨𝐴, 𝜎, _⟩ 𝜑↦−→ ⟨𝐴, 𝜎, _⟩. (A stutter step may repeat, but no other state is reached.) In either case,

there is no ecall in the configuration, and the environment is empty.

For Encap, boundary monotonicity for 𝑁 ∈ Φ is from the first premise, and boundary mono-

tonicity for 𝑁 = 𝑀 is from the second premise.

For Encap, the w-respect condition quantifies over 𝑁 ∈ (Φ, _) different from the𝑚𝑜𝑑 (𝐴,𝑀).
Since the environment is empty, 𝑁 ∈ (Φ, _) is the same as 𝑁 ∈ Φ. Since 𝐴 has no ecall,𝑚𝑜𝑑 (𝐴,𝑀)
is 𝑀 . So the condition quantifies over 𝑁 ∈ Φ with 𝑁 ≠ 𝑀 . By side condition 𝑀 ∉ Φ, this is the
same as 𝑁 ∈ Φ. So the condition for the conclusion is the same as for the first premise, from which

we obtain Encap (a).

For Encap r-respect, go by cases whether 𝐴 is a method call. If not, then the collective bound-

ary for the premise is (+𝑁, 𝑁 ∈ (Φ, _), 𝑁 ≠ 𝑚𝑜𝑑 (𝐴, •). bnd (𝑁 )), and for the conclusion it is

(+𝑁, 𝑁 ∈ (Φ, _), 𝑁 ≠ 𝑚𝑜𝑑 (𝐴,𝑀). bnd (𝑁 )). These are the same, owing to side condition 𝑀 ∉ Φ,
and simplifying as above. So r-respect is immediate by the first premise.

If𝐴 is a call to some method 𝑝 , the collective boundary is (+𝑁, 𝑁 ∈ (Φ, _),mdl(𝑝) ̸⪯ 𝑁 . bnd (𝑁 )).
This is independent of the current module, so again the conclusion is direct from the first premise.

B.7 Soundness of CtxIntro

CtxIntro

Φ ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀] 𝑃 ⇒ bnd (mdl(𝑚)) ·/. 𝜀 𝑃 ⇒ bnd (mdl(𝑚)) ·/. r2w(𝜀)
Φ, 𝑚 : 𝑅 { 𝑆 [𝜂] ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀]

Proof. Consider any (Φ,𝑚:𝑅 { 𝑆 [𝜂])-model 𝜑 . By definitions, 𝜑↾𝑚 is a Φ-model, with which

we can instantiate the premise. The Safety, Post, Write, and R-safe conditions follow from those for

the premise—it is only the Encap condition that has a different meaning for the conclusion than it

does for the premise.

For Encap, as 𝐴 is an atomic command 𝐴, the only reachable step is a single step, either the

terminating step ⟨𝐴, 𝜎, _⟩ 𝜑↦−→ ⟨skip, 𝜏, _⟩ given by uCall or the stuttering step by uCall0, which

is ⟨𝐴, 𝜎, _⟩ 𝜑↦−→ ⟨𝐴, 𝜏, _⟩ with 𝜏 = 𝜎 .
For Encap, for boundary monotonicity we need rlocs(𝜎, bnd (𝑁 )) ⊆ rlocs(𝜏, bnd (𝑁 )) for all 𝑁

with 𝑁 ∈ (Φ,𝑚 : 𝑅 { 𝑆 [𝜂]) or 𝑁 = 𝑀 . This holds for all 𝑁 ∈ Φ, and for 𝑁 = 𝑀 , by the same

condition from the premise, so it remains to consider 𝑁 = mdl(𝑚). From the premise we have

𝜎→𝜏 |= 𝜀. By side condition (and 𝜎 |= 𝑃 ) we have 𝜎 |= bnd (𝑁 ) ·/. 𝜀. So we have Agree(𝜎, 𝜏, bnd (𝑁 )
by separator property (29). Since boundaries are read framed (Def. 3.1), we can apply footprint

agreement (28) to get rlocs(𝜐, bnd (𝑁 )) = rlocs(𝜏, bnd (𝑁 )).
For Encap, we need w-respect of each 𝑁 with 𝑁 ∈ (Φ,𝑚 : 𝑅 { 𝑆 [𝜂]) and 𝑁 ≠ 𝑚𝑜𝑑 (𝐴,𝑀).

(simplified for the empty environment, as in the proof of ModIntro). Since ecall does not occur in

𝐴, 𝑁 ≠𝑚𝑜𝑑 (𝐴,𝑀) simplifies to 𝑁 ≠ 𝑀 . Again, we have this condition from the premise for all 𝑁

except 𝑁 = mdl(𝑚). For that, in the case that 𝐴 is not a call to a method𝑚 with mdl(𝑚) ⪯ 𝑁 , we

must show Agree(𝜎, 𝜏, bnd (𝑁 )); and it was shown already in the proof of (c).

For Encap, we show r-respect by cases:

Case: the step is not a call. Then the collective boundary is 𝛿 = (+𝑁 ∈ (Φ,𝑚 : 𝑅 { 𝑆 [𝜂]), 𝑁 ≠

𝑚𝑜𝑑 (𝐴,𝑀). bnd (𝑁 )), and 𝑁 ≠𝑚𝑜𝑑 (𝐴,𝑀) is just 𝑁 ≠ 𝑀 .

Let
¤𝛿 be the collective boundary for the premise:

¤𝛿 = (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) (again,
simplifying 𝑁 ≠ 𝑚𝑜𝑑 (𝐴,𝑀) to 𝑁 ≠ 𝑀). So 𝛿 is

¤𝛿, bnd (𝑁 ). If 𝑁 = 𝑀 , or 𝑁 ∈ Φ, or bnd (𝑁 ) = •

then
¤𝛿 is equivalent to 𝛿 and we get r-respect directly from the premise. Otherwise, suppose

⟨𝐴, 𝜎 ′, _⟩ 𝜑↦−→ ⟨𝐵, 𝜏 ′, _⟩ and Agree(𝜎 ′, 𝜏 ′, 𝛿) and

Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜀)\rlocs(𝜎, 𝛿⊕)) (45)
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(This is simplified from the general condition of r-respect, which includes fresh locations in the

assumed agreement; here, because we consider the first step of computation, there are none.) We

must show

Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ wrttn(𝜎, 𝜏))\rlocs(𝜏, 𝛿⊕))
𝜌 (freshL(𝜎, 𝜏)\rlocs(𝜏, 𝛿)) ⊆ freshL(𝜎 ′, 𝜏 ′)\rlocs(𝜏 ′, 𝛿) (46)

The premise gives an implication similar to (45)⇒(46) but for
¤𝛿 . Now ¤𝛿 may be a proper subeffect

of 𝛿 , so we only have rlocs(𝜎, ¤𝛿) ⊆ rlocs(𝜎, 𝛿) and thus rlocs(𝜎, 𝜀)\rlocs(𝜎, 𝛿⊕) may be a proper

subset of rlocs(𝜎, 𝜀)\rlocs(𝜎, ¤𝛿⊕). This means (45) does not imply the antecedent in r-respects for

the premise so we cannot simply apply that. Instead, we exploit the fact that the command 𝐴 is one

of the assignment forms: 𝑥 := 𝐹 , 𝑥 := new 𝐾 , 𝑥 := 𝑥 .𝑓 , 𝑥 .𝑓 := 𝑥 . Each of these has a minimal set of

locations on which it depends in the relevant sense.

Claim: for each of the atomic, non-call commands, and for each𝜎, 𝜎 ′, 𝜇, 𝜇′, there is a finite number

of minimal sets 𝑋 ⊆ locations(𝜎) such that if ⟨𝐴, 𝜎, 𝜇⟩ ↦−→ ⟨skip, 𝜏, 𝜇⟩, ⟨𝐴, 𝜎 ′, 𝜇⟩ ↦−→ ⟨skip, 𝜏 ′, 𝜇⟩,
and Lagree(𝜎, 𝜎 ′, 𝜋, 𝑋 ), then there is 𝜌 ⊇ 𝜋 with

Lagree(𝜏, 𝜏 ′, 𝜌, freshL(𝜎, 𝜏) ∪ wrttn(𝜎, 𝜏)) and 𝜌 (freshL(𝜎, 𝜏)) ⊆ freshL(𝜎 ′, 𝜏 ′)
(Here we omit the model for ↦−→, which is not relevant to semantics of non-call atomics.) In fact

the minimal sets are unique in most cases, but we do not need that.
44

Now, consider the antecedent of r-respect for the premise:

Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜀)\rlocs(𝜎, ¤𝛿⊕)). We must have 𝑋 ⊆ rlocs(𝜎, 𝜀)\rlocs(𝜎, ¤𝛿⊕), as oth-

erwise, according to the Claim, r-respect would not hold for the premise. By side condition, we have

�̂� |= bnd (mdl(𝑚)) ·/. r2w(𝜀), hence rlocs(𝜎, bnd (𝑁 )) is disjoint from rlocs(𝜎, 𝜀) by the basic sepa-

rator property mentioned just before (29). By set theory, from 𝑋 ⊆ rlocs(𝜎, 𝜀)\rlocs(𝜎, ¤𝛿⊕)
and rlocs(𝜎, bnd (𝑁 )) ∩ rlocs(𝜎, 𝜀) = ∅ we get 𝑋 ⊆ rlocs(𝜎, 𝜀)\rlocs(𝜎, 𝛿⊕). By mono-

tonicity of Lagree, Eqn. (21), the agreement (45) implies by 𝑋 ⊆ rlocs(𝜎, 𝜀)\rlocs(𝜎, 𝛿⊕)
the antecedent agreement in the Claim. Whence by the Claim we get agreement on

everything fresh and written, which implies the agreement in (46). As for the sec-

ond line of (46), what the Claim gives is 𝜌 (freshL(𝜎, 𝜏)) ⊆ freshL(𝜎 ′, 𝜏 ′). This implies

𝜌 (freshL(𝜎, 𝜏)\rlocs(𝜏, 𝛿)) ⊆ freshL(𝜎 ′, 𝜏 ′). From Agree(𝜎 ′, 𝜏 ′, 𝛿) we have rlocs(𝜏 ′, 𝛿) = rlocs(𝜎 ′, 𝛿
so there are no fresh locations in rlocs(𝜏 ′, 𝛿). Hence freshL(𝜎 ′, 𝜏 ′) = freshL(𝜎 ′, 𝜏 ′)\rlocs(𝜏 ′, 𝛿) so
we have 𝜌 (freshL(𝜎, 𝜏)\rlocs(𝜏, 𝛿)) ⊆ freshL(𝜎 ′, 𝜏 ′)\rlocs(𝜏 ′, 𝛿) and we are done.

The Claim is a straightforward property of the semantics. For each of the assignment forms, one

defines the evident location set (which underlies the small axioms in the proof system) and shows

that it suffices for the final agreement. Then by counterexamples one shows that the location set is

minimal.

Case: the step is a call. We show r-respect in the case that 𝐴 is a call to some method 𝑝 . Note

that 𝑝 ≠𝑚, because rules can only be instantiated by wf judgments and𝑚 is not in scope in the

premise. The primary step has the form ⟨𝑝 (), 𝜎, _⟩ 𝜑↦−→ ⟨𝐴0, 𝜏, _⟩ where either 𝐴0 ≡ skip and

𝜏 ∈ 𝜑 (𝑝) (𝜎) or 𝐴0 ≡ 𝑝 (), 𝜏 = 𝜎 , and 𝜑 (𝑝) (𝜎) = ∅. It turns out that we do not need to distinguish
between these cases. We need r-respect for

𝛿 = (+𝑁 ∈ (Φ,𝑚:𝑅 { 𝑆 [𝜂]),mdl(𝑝) ̸⪯ 𝑁 . bnd (𝑁 ))
(as the environment is empty). The premise gives r-respect for

¤𝛿 = (+𝑁 ∈ Φ,mdl(𝑝) ̸⪯ 𝑁 . bnd (𝑁 )).
If mdl(𝑚) ∈ Φ or mdl(𝑝) ⪯ mdl(𝑚) then 𝛿 is

¤𝛿 and we have r-respect from the premise. It remains

44
It is only assignments 𝑥 := 𝐹 for which non-uniqueness is possible, owing to information loss in arithmetic expressions.

For example, with the assignment 𝑥 := 𝑦 ∗ 𝑧 and for 𝜎 with 𝜎 (𝑦) = 0 = 𝜎 (𝑧 ) then agreement on either 𝑦 or 𝑧 is enough to

ensure the values written to 𝑥 agree. The minimal sets are {𝑦} and {𝑧}. This also happens with conditional branches, like

“if x or y”.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:92 Banerjee, Nagasamudram, Naumann, Nikouei

to consider the case that mdl(𝑚) ∉ Φ and mdl(𝑝) ̸⪯ mdl(𝑚), in which case 𝛿 = ¤𝛿, bnd (mdl(𝑚)).
Let us spell out r-respect for the premise and this step. The r-respect from the premise says that

Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜀)\rlocs(𝜎, ¤𝛿⊕)) and Agree(𝜎 ′, 𝜏 ′, 𝛿) (47)

implies there is 𝜌 with 𝜌 ⊇ 𝜋 such that Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ wrttn(𝜎, 𝜏))\rlocs(𝜏, ¤𝛿⊕))
and 𝜌 (freshL(𝜎, 𝜏)\rlocs(𝜏, ¤𝛿)) ⊆ freshL(𝜎 ′, 𝜏 ′)\rlocs(𝜏 ′, ¤𝛿). (The antecedent is simplified from the

definition of r-respect, by omitting the set of fresh locations which is empty in the initial state.)

For the conclusion, the condition is the same except with 𝛿 in place of
¤𝛿 . So suppose

Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, 𝜀)\rlocs(𝜎, 𝛿⊕))
This implies (47) because rlocs(𝜎, 𝜀) is disjoint from bnd (mdl(𝑚)) owing to the condi-

tion bnd (mdl(𝑝)) ·/. 𝜀 in the rule. So we get some 𝜌 as above, and the agreement

Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪wrttn(𝜎, 𝜏))\rlocs(𝜏, ¤𝛿⊕)) implies the needed agreement for 𝛿 , since ¤𝛿
is a subeffect of 𝛿 which is being subtracted. Finally, we need to show 𝜌 (freshL(𝜎, 𝜏)\rlocs(𝜏, 𝛿)) ⊆
freshL(𝜎 ′, 𝜏 ′)\rlocs(𝜏, 𝛿). By w-respect for the 𝜎-to-𝜏 step and by assumption Agree(𝜎 ′, 𝜏 ′, 𝛿),
there are no fresh locations in rlocs(𝜏, 𝛿) or rlocs(𝜏 ′, 𝛿), so this simplifies to 𝜌 (freshL(𝜎, 𝜏) ⊆
freshL(𝜎 ′, 𝜏 ′), which for the same reasons is equivalent to the inclusion 𝜌 (freshL(𝜎, 𝜏)\rlocs(𝜏, ¤𝛿)) ⊆
freshL(𝜎 ′, 𝜏 ′)\rlocs(𝜏 ′, ¤𝛿) from the premise.

□

B.8 Soundness of other context introduction rules

In RLII the rule “CtxIntroIn” has a disjunctive antecedent. In the present work we need additional

side conditions, so we split the rule into multiple rules.

CtxIntroIn1

Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀] mdl(𝑚) ∈ Φ
Φ,𝑚:𝑅 { 𝑆 [𝜂] ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀]

Proof. Given a model 𝜑 for the conclusion, 𝜑↾𝑚 is a model for the hypotheses of the premise.

Owing tomdl(𝑚) ∈ Φ, we have 𝑁 ∈ (Φ,𝑚 : 𝑠𝑝𝑒𝑐) iff 𝑁 ∈ Φ. As a result, all the conditions of Encap
(a–c) are have identical meaning for the conclusion as for the premise. The same is true for Safety,

Post, Write, and R-safe. □

CtxIntroIn2

Φ ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀] mdl(𝑚) = 𝑀 𝐴 is not a call

Φ,𝑚:𝑅 { 𝑆 [𝜂] ⊢𝑀 𝐴 : 𝑃 { 𝑄 [𝜀]

Proof. Note that𝐴 is an atomic command. Given a model 𝜑 for the conclusion, 𝜑↾𝑚 is an model

for the hypotheses of the premise. Validity of the premise implies validity of the conclusion, for

all conditions except Encap. Boundary monotonicity is immediate, because the premise already

requires boundary monotonicity for all 𝑁 ∈ Φ and for 𝑁 = 𝑀 . For w-respect, note that𝐴 is not a call

and there is only a single step which has no ecall in the configuration. The condition exempts the

current module𝑀 and is a direct consequence of Encap (a) of the premise, owing to mdl(𝑚) = 𝑀 .

For r-respect, the current module is not included in the collective boundary for non-call commands,

so again the addition of𝑚 does not change the requirement. □

CtxIntroCall

Φ ⊢𝑀 𝑝 () : 𝑃 { 𝑄 [𝜀]
Φ ⊢𝑀 𝑝 () : 𝑃 ∧ Bsnap𝑁 { Bmon𝑁 [𝜀] 𝑁 = mdl(𝑚) mdl(𝑝) ⪯ mdl(𝑚)

Φ,𝑚:𝑅 { 𝑆 [𝜂] ⊢𝑀 𝑝 () : 𝑃 { 𝑄 [𝜀]
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Proof. We get Safety, Post, Write, and R-safe from the first premise. For Encap, we get boundary

monotonicity from the first premise, except for𝑁 in the case that𝑁 = mdl(𝑚) ≠ 𝑀 andmdl(𝑚) ∉ Φ.
Boundary monotonicity for 𝑁 is directly checked by the second premise.

We get w-respect, by side condition mdl(𝑝) ⪯ mdl(𝑚), as a consequence of the first premise.

Finally, r-respect is also a consequence of the first premise, because the collective boundary for

the premise is (+𝑁 ∈ Φ,mdl(𝑝) ̸⪯ 𝑁 . bnd (𝑁 )) and by side condition mdl(𝑝) ⪯ mdl(𝑚) this is the
same set as for the conclusion. □

B.9 Soundness of SOF

SOF

Φ,Θ ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀] |= bnd (𝑁 ) frm 𝐼

𝑁 ∈ Θ 𝑁 ≠ 𝑀 ∀𝑚 ∈ Φ. mdl(𝑚) ̸⪯ 𝑁 𝐶 binds no 𝑁 -method

Φ, (Θ? 𝐼 ) ⊢𝑀 𝐶 : 𝑃 ∧ 𝐼 { 𝑄 ∧ 𝐼 [𝜀]
Observe that, because boundaries have no spec-only variables (Def. 3.1), and bnd (𝑁 ) frames 𝐼 ,

the latter does not depend on any spec-only variables. To prove validity of the conclusion, suppose

𝜓+ is a (Φ,Θ ? 𝐼 )-model. In order to use the premise, define 𝜓 − (𝑚) as follows. For 𝑚 in Φ, let
𝜓 − (𝑚) =̂ 𝜓+ (𝑚). For𝑚 in Θ with Θ(𝑚) = 𝑅 { 𝑆 [𝜂] define, for any 𝜏

𝜓 − (𝑚) (𝜏) =̂

{ } 𝜏 ̸ |= 𝑅
∅ 𝜏 |= 𝑅 ∧ ¬𝐼
𝜓+ (𝑚) (𝜏) 𝜏 |= 𝑅 ∧ 𝐼

The precondition 𝑅 may have spec-only variables, in which case 𝜏 |= 𝑅∧ 𝐼 abbreviates that there are
some values for the spec-only variables so that 𝑅∧ 𝐼 holds. Because 𝐼 has no spec-only variables, the
clauses are exhaustive and mutually disjoint. It is straightforward to check that𝜓 − is a (Φ,Θ)-model

according to Definition 5.9.

For the rest of the proof we consider arbitrary 𝜎 with �̂� |= 𝑃 ∧ 𝐼 , where �̂� =̂ [𝜎+𝑠: 𝑣] is the
extension of 𝜎 uniquely determined by 𝑃 and 𝜎 according to Lemma 5.1.

To finish the proof, we need the following.

Claim. If ⟨𝐶, 𝜎, _⟩ 𝜓+↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ then 𝜏 |= 𝐼 and that sequence of configurations is

also a trace ⟨𝐶, 𝜎, _⟩ 𝜓 −↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ via𝜓 − .
We also need the following observations, to prove the Claim and to prove the rule. For any 𝐵, 𝜏, 𝜇,

(a) If Active(𝐵) is not a call to method in Θ, then the transitions from ⟨𝐵, 𝜏, 𝜇⟩ via 𝜓+↦−→, to  or to

a configuration, are the same as those via 𝜓 − . Because: the model is only used for calls, and the

models differ only on methods of Θ.
(b) If Active(𝐵) is a call to some method𝑚 of Θ, and 𝜏 |= 𝐼 , then the transitions from ⟨𝐵, 𝜏, 𝜇⟩ via
𝜓+↦−→ are the same as those via𝜓 − . Because: For faults, fault via

𝜓+↦−→ is when the precondition of the

original spec Θ(𝑚) does not hold, and that is one conjunct of the precondition for𝜓 − , the other
being 𝐼 . For non-fault,𝜓 − (𝑚) (𝜏) is defined to be𝜓+ (𝑚) (𝜏) when 𝜏 |= 𝐼 .

Before proving the Claim, we use it to prove the conditions for validity of the conclusion of SOF.

Safety. Suppose ⟨𝐶, 𝜎, _⟩ 𝜓+↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ 𝜓+↦−→  . By the Claim, ⟨𝐶, 𝜎, _⟩ 𝜓 −↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ and 𝜏 |= 𝐼 .
So by observations (a) and (b), we get a faulting step from ⟨𝐵, 𝜏, 𝜇⟩ via𝜓 − , whence ⟨𝐶, 𝜎, _⟩ 𝜓 −↦−→∗  
which contradicts the premise of SOF.

Post. For all 𝜏 such that ⟨𝐶, 𝜎, _⟩ 𝜓+↦−→∗ ⟨skip, 𝜏, _⟩, we have 𝜏 |= 𝐼 and ⟨𝐶, 𝜎, _⟩ 𝜓 −↦−→∗ ⟨skip, 𝜏, _⟩
by the Claim. By premise of the rule, we have 𝜏 |= 𝑄𝑠

𝑣
. So we have 𝜏 |= (𝑄 ∧ 𝐼 )𝑠

𝑣
, because 𝐼 has no

spec-only variables.

Write. Direct consequence of the premise and the Claim.
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R-safe. For𝑚 in Θ, the frame condition of (Θ? 𝐼 ) (𝑚) is the same as that of Θ(𝑚), by definition

of ?. So this is a direct consequence of the premise and the Claim.

Encap. Boundary monotonicity is a direct consequence of the Claim, using the premise. So too

the w-respects condition: the condition for the conclusion is the same as for the premise, because

Φ,Θ? 𝐼 has the same methods, thus the same modules, as Φ,Θ has.

For r-respects, consider any reachable step ⟨𝐶, 𝜎, _⟩ 𝜓+↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ 𝜓+↦−→ ⟨𝐷, 𝜐, 𝜈⟩ and an alternate

step ⟨𝐵, 𝜏 ′, 𝜇⟩ 𝜓+↦−→ ⟨𝐷 ′, 𝜐′, 𝜈 ′⟩ where Agree(𝜏 ′, 𝜐′, 𝛿) and 𝜏 ′ agrees with 𝜏 according to the r-respect
condition for 𝛿 , where the collective boundary 𝛿 is determined by Active(𝐵), Φ,Θ, and𝑀 , in the

same way for the conclusion as for the premise (i.e., 𝛿 is the same for both).

If the active command of 𝐵 is not a call to a method in Θ, the steps can be taken via𝜓 − (see (a)
above) and so r-respect from the premise can be applied. If the active command of 𝐵 is a call to

some method𝑚 ∈ Θ, then we have 𝜏 |= 𝐼 and 𝜏 ′ |= 𝐼 by definition of𝜓+ (𝑚). So the steps can both

be taken via𝜓 − (see (b) above). So we can appeal to r-respect from the premise and we are done.

Proof of Claim. By induction on steps.

Base case zero steps: immediate from �̂� |= 𝑃 ∧ 𝐼 .
Induction case: ⟨𝐶, 𝜎, _⟩ 𝜓+↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ 𝜓+↦−→ ⟨𝐷, 𝜐, 𝜈⟩. The inductive hypothesis is that

⟨𝐶, 𝜎, _⟩ 𝜓 −↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩, by the same intermediate configurations, and 𝜏 |= 𝐼 .
CaseActive(𝐵) not a call to a method ofΘ: by observation (a) above, the step to𝐷 can be taken via

𝜓 − . So we can use Encap from the premise. In particular, we get Agree(𝜏,𝜐, bnd (𝑁 )) by w-respect,

owing to side condition 𝑁 ∈ Θ and 𝑀 ≠ 𝑁 and also the fact that if the step calls 𝑚 in Φ then

mdl(𝑚) ̸⪯ 𝑁 by side condition. Moreover we use side condition that 𝐶 binds no 𝑁 -method, so

that in the definition of w-respect we have that topm(𝐵,𝑀) is not 𝑁 . So from |= bnd (𝑁 ) frm 𝐼 and

induction hypothesis 𝜏 |= 𝐼 , by definition (27) of the frames judgment we get 𝜐 |= 𝐼 .
Case Active(𝐵) is a call to some𝑚 ∈ Θ. Suppose Θ(𝑚) = 𝑅 { 𝑆 [𝜂]. By induction hypothesis

⟨𝐶, 𝜎, _⟩ 𝜓 −↦−→∗ ⟨𝐵, 𝜏, 𝜇⟩ we have 𝜏 |= 𝑅𝑡
𝑢
(with 𝑢 the uniquely determined values of 𝑅’s spec-only

variables 𝑡 ) because otherwise there would be a fault via 𝜓 − contrary to the premise. Because

𝜏 |= 𝑅𝑡
𝑢
∧ 𝐼 , we have𝜓 − (𝑚) (𝜏) = 𝜓+ (𝑚) (𝜏) by definition of𝜓 − (𝑚), so the step can be taken via𝜓 −

and moreover 𝜐 |= 𝐼 because𝜓+ is a Φ, (Θ? 𝐼 )-model.

B.10 Soundness of Link

Link

Φ,Θ ⊢mdl (𝑚𝑖 ) 𝐵𝑖 : Θ(𝑚𝑖 ) Φ,Θ ⊢• 𝐶 : 𝑃 { 𝑄 [𝜀]
dom (Θ) =𝑚 ∀𝑁 ∈ Φ, 𝐿 ∈ Θ. 𝑁 ̸⪯ 𝐿 ∀𝑁, 𝐿. 𝑁 ∈ Θ ∧ 𝑁 ≺ 𝐿 ⇒ 𝐿 ∈ (Φ,Θ)

Φ ⊢• let𝑚 = 𝐵 in 𝐶 : 𝑃 { 𝑄 [𝜀]

Remark 9. It is sound to generalize the rule to allow any module𝑀 for 𝐶 and for the linkage,

provided that bnd (𝑀) = •. □

For clarity, the proof is specialized to case that Θ has a single method named𝑚. We spell out the

proof in considerable detail, as there are a number of subtleties. However, we assume there are

no recursive calls in the bodies of the linked method. There is no difficulty with recursion, it just

complicates the proof: recursion can be handled using a fixpoint construction for the denotational

semantics (as in proof of the linking rule in Section A.1 of RLIII, and using quasi-determinacy) and

an extra induction on calling depth (as in the linking proofs in both RLII and RLIII).

We use the following from RLII: For method𝑚 in the environment, a trace is called𝑚-truncated
provided that ecall(𝑚) does not occur in the last configuration. This means that a call to𝑚 is not

in progress, though it allows that a call may happen next. In a trace that is not𝑚-truncated, an

environment call has been made to𝑚, making the transition from a command of the form𝑚();𝐶
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to 𝐵; ecall(𝑚);𝐶 where 𝐵 is the method body, and then further steps may have been taken. Note

that in an𝑚-truncated trace, it is possible that the active command of the last configuration is𝑚().
To prove soundness of the rule, suppose Θ(𝑚) is 𝑅 { 𝑆 [𝜂] and let 𝑁 =̂ mdl(𝑚). Assume

validity of the premises for 𝐵 and 𝐶:

Φ,Θ |=𝑁 𝐵 : 𝑅 { 𝑆 [𝜂] and Φ,Θ |=• 𝐶 : 𝑃 { 𝑄 [𝜀] (48)

To prove validity of the conclusion, i.e.,

Φ |=• let𝑚 = 𝐵 in 𝐶 : 𝑃 { 𝑄 [𝜀] (49)

let 𝜑 be any Φ-model. Define 𝜃 to be the singleton mapping [𝑚:J𝐵 K𝜑 ], using the denotation of 𝐵,

so that 𝜑 ∪ 𝜃 is a (Φ,Θ)-model, by Lemma A.8. (To handle recursive methods, the generalization of

Lemma A.8 is proved by induction as in Lemma A.10 of RLIII.) For brevity we write 𝜑, 𝜃 for 𝜑 ∪ 𝜃
and

𝜑𝜃↦−→ for
𝜑∪𝜃↦−→.

For any 𝜎 , the first step is ⟨let𝑚=𝐵 in𝐶, 𝜎, _⟩ 𝜑↦−→ ⟨𝐶 ; elet(𝑚), 𝜎, [𝑚:𝐵]⟩, and if the computation

reaches a terminal configuration then the last step is the transition for elet(𝑚) which removes𝑚

from the environment but does not change the state. So to prove (49) we use facts about traces

from ⟨𝐶, 𝜎, [𝑚:𝐵]⟩.
The following result is used not only to prove (49) but also used to prove soundness of the

relational linking rule. In its statement, we rely on Lemma 5.1 about spec-only variables in wf

preconditions.

Lemma B.2. Suppose we have valid judgments Φ,Θ |=𝑁 𝐵 : Θ(𝑚) and Φ,Θ |=• 𝐶 : 𝑃 { 𝑄 [𝜀],
and also𝑚 ∉ 𝐵. Let 𝜑 be a Φ-model and 𝜃 =̂ [𝑚:J𝐵 K𝜑 ]. Let 𝜎 be any state such that 𝜎 |= 𝑃 . Suppose
⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, ¤𝜇⟩ is𝑚-truncated (for some 𝐷, 𝜏, ¤𝜇). Then
• ⟨𝐶, 𝜎, _⟩ 𝜑𝜃↦−→∗ ⟨𝐷, 𝜏, 𝜇⟩, where 𝜇 = ¤𝜇↾𝑚.

• If 𝐷 ≡𝑚();𝐷0 for some 𝐷0 then 𝜏 |= 𝑅.
(Here the abbreviations 𝜎 |= 𝑃 and 𝜏 |= 𝑅 mean satisfaction by the states extended with the uniquely

determined values for spec-only variables.)

Proof. We refrain from giving a detailed proof; it requires a somewhat intricate induction

hypothesis, similar to the one for impure methods in RLIII (Section A.2, Claim B) and the one in

RLII (Section 7.6). The main ideas are as follows.

The combination 𝜑, 𝜃 is a (Φ,Θ)-model, by Lemma A.8. If ⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, ¤𝜇⟩ is𝑚-

truncated then we can factor it into segments alternating between code of 𝐶 and code of 𝐵 during

environment calls to𝑚. The steps taken in code of𝐶 can be taken via
𝜑𝜃↦−→ because the two transition

relations are identical except for calls to𝑚. A completed call to𝑚 amounts to a terminated execution

of 𝐵 (with a continuation command and environment left unchanged). A completed call gives rise

to a single step via
𝜑𝜃↦−→ with the same outcome, because 𝜃 (𝑚) is the denotation of 𝐵, which is

defined directly in terms of executions of 𝐵.45 Reasoning by induction on the number of completed

calls, we construct a trace via
𝜑𝜃↦−→. At each call of𝑚, we appeal to the premise for 𝐶 to conclude

that the precondition of𝑚 holds, as otherwise there would be a faulting trace of 𝐶 via
𝜑𝜃↦−→. □

Proof of Link. Using Lemma B.2 we prove (49), validity of the conclusion of rule Link, as

follows, for any 𝜎 such that �̂� |= 𝑃 where �̂� is [𝜎+𝑠: 𝑣] for the unique values 𝑣 determined by 𝜎 .

45
A fine point: calls of𝑚 may occur in the scope of local variable blocks, so the state may have locals in addition to the

variables of the context Γ of the judgment; this is handled using the implicit conversion of context models is discussed in

Section 5.3 footnote 42.
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Post. An execution of ⟨let𝑚 = 𝐵 in 𝐶, 𝜎, _⟩ via 𝜑 that terminates in state 𝜏 gives an execution

for ⟨𝐶, 𝜎, [𝑚:𝐵]⟩ via 𝜑 that ends in 𝜏 . It is𝑚-truncated, so by Lemma B.2 we have ⟨𝐶, 𝜎, _⟩ 𝜑𝜃↦−→∗
⟨skip, 𝜏, _⟩. By validity of the premise for 𝐶 , see (48), we get 𝜏 |= 𝑄𝑠

𝑣
.

Write. By an argument very similar to the one for Post.

Safety. By semantics of let𝑚 = 𝐵 in 𝐶 and of elet(𝑚), a faulting execution has the form

⟨let𝑚 = 𝐵 in 𝐶, 𝜎, _⟩ 𝜑↦−→ ⟨𝐶; elet(𝑚), 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷 ; elet(𝑚), 𝜏, ¤𝜇⟩ 𝜑↦−→  

for some 𝐷, 𝜏, ¤𝜇 with 𝐷 . skip. This yields a faulting execution

⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, ¤𝜇⟩ 𝜑↦−→  (50)

We show by two cases that this contradicts the premises (48) of Link.

Case The trace ⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, ¤𝜇⟩ is𝑚-truncated. Note that Active(𝐷) is not a call to
𝑚, because that would be an environment call and would not fault next. By Lemma B.2, we get

⟨𝐶, 𝜎, _⟩ 𝜑𝜃↦−→∗ ⟨𝐷, 𝜏, 𝜇⟩ (where 𝜇 = ¤𝜇↾𝑚), and the transition from ⟨𝐷, 𝜏, 𝜇⟩ to  can be taken

via
𝜑𝜃↦−→ because it is the same relation as

𝜑↦−→ except for calls to𝑚. But a faulting trace via 𝜑, 𝜃

contradicts the premise for 𝐶 .

Case The trace ⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, ¤𝜇⟩ is not𝑚-truncated. So (50) can be factored as

⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝑚();𝐷0, 𝜏0, ¤𝜇0⟩ 𝜑↦−→ ⟨𝐵;𝐷0, 𝜏0, ¤𝜇0⟩ 𝜑↦−→∗ ⟨𝐵0;𝐷0, 𝜏, ¤𝜇⟩ 𝜑↦−→  

for some 𝐷0, 𝐵0, 𝜏0, ¤𝜇0 where 𝐷 ≡ 𝐵0;𝐷0. Applying Lemma B.2 to the𝑚-truncated prefix, we get

⟨𝐶, 𝜎, _⟩ 𝜑 𝜃↦−→∗ ⟨𝑚();𝐷0, 𝜏0, 𝜇0⟩ (where 𝜇0 = ¤𝜇0↾𝑚) and 𝜏0 |= 𝑅𝑡𝑢′ for some𝑢′. We also have a faulting

execution of 𝐵 from 𝜏0, i.e., ⟨𝐵, 𝜏0, 𝜇0⟩ 𝜑↦−→∗ ⟨𝐵0, 𝜏, 𝜇⟩ 𝜑↦−→  , which (because𝑚 is not called in 𝐵)

yields the same via 𝜑, 𝜃 , which contradict the premise for 𝐵 in (48).

R-safe. The first step is not a call, nor is the elet step if reached. Consider any other reachable

configuration: ⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, ¤𝜇⟩. If Active(𝐷) is a call to some 𝑝 where Φ(𝑝) is 𝑅𝑝 {
𝑆𝑝 [𝜂𝑝 ], we must show rlocs(𝜏, 𝜂𝑝 ) ⊆ freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀). Depending on whether Active(𝐷)
is in code of 𝐶 or 𝐵, the conclusion follows from the premise of 𝐶 or 𝐵, similarly to the proof for

Safety. In the non-𝑚-truncated case, i.e., steps of 𝐵, a called method 𝑝 is different from𝑚 since we

are assuming no recursion. The R-safe condition refers to starting state of 𝐵 (which is 𝜏0 in the

Safety proof above). The premise yields an inclusion of the 𝑝’s readable locations in those of𝑚 in

its starting state 𝜏0. Because the R-safe condition holds for the call of𝑚 (by induction hypothesis),

its readable locations are included in rlocs(𝜎, 𝜀). Moreover locations that are fresh relative to 𝜏0

are also fresh relative to 𝜎 . So the result follows using transitivity of inclusion. A more detailed

argument of this form can be found in the proof of Encap below.

Encap. For boundary monotonicity, we must prove, for every 𝑁 ′ with 𝑁 ′ = • or 𝑁 ′ ∈ Φ, that
every reachable step, say with states 𝜏 to 𝜐, has rlocs(𝜏, bnd (𝑁 ′)) ⊆ rlocs(𝜐, bnd (𝑁 ′)). For steps
of 𝐶 this is immediate from boundary monotonicity from the premise for 𝐶 , where boundary

monotonicity is for all 𝑁 ′ ∈ (Φ,Θ) and 𝑁 ′ = •. For steps of 𝐵 and 𝑁 ′ ∈ Φ this is immediate from

Encap from the premise for 𝐵, where boundary monotonicity is for all 𝑁 ′ ∈ (Φ,Θ) and 𝑁 ′ = 𝑁 .

However, the judgment for 𝐵 does not imply anything about the boundary of • (unless • happens to

be in Φ,Θ). But by wf we have bnd (•) = •, which makes boundary monotonicity for bnd (•) vacuous.
For w-respect and r-respect, we need to consider arbitrary reachable steps. The first step of

let𝑚 = 𝐵 in 𝐶 deterministically steps to 𝐶; elet(𝑚), putting𝑚 : 𝐵 into the environment without

changing or reading the state, so both w-respect and r-respect hold for that step. Both conditions
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also hold for the step of elet(𝑚) which again does not change or read the state. So it remains to

consider reachable steps of the following form, in which we abbreviate 𝐴 =̂ elet(𝑚).
⟨let𝑚 = 𝐵 in 𝐶, 𝜎, _⟩ 𝜑↦−→ ⟨𝐶;𝐴, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷 ;𝐴, 𝜏, ¤𝜇⟩ 𝜑↦−→ ⟨𝐷0;𝐴, 𝜐, ¤𝜈⟩ (51)

where 𝐷 . skip. Aside from the first step, such traces correspond to traces of the form

⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, ¤𝜇⟩ 𝜑↦−→ ⟨𝐷0, 𝜐, ¤𝜈⟩
i.e., exactly the same sequence of configurations, but for lacking the trailing elet(𝑚).

For w-respect, our obligation is to prove that the step ⟨𝐷, 𝜏, ¤𝜇⟩ 𝜑↦−→ ⟨𝐷0, 𝜐, ¤𝜈⟩ w-respects 𝐿 for

every 𝐿 ∈ (Φ, ¤𝜇) and 𝐿 ≠ topm(𝐷, •). In the case of an𝑚-truncated trace from 𝐶 to 𝐷 , we appeal to

Lemma B.2. In the case of a non𝑚-truncated trace from 𝐶 to 𝐷 , the above step is one arising from

an environment call to𝑚 and therefore occurs in the trace from 𝐵. So we use w-respects for 𝐵. The

result follows because the condition for w-respects 𝐿 for 𝐵 is 𝐿 ∈ (Φ,Θ, 𝜇) and 𝐿 ≠ topm(𝐷, 𝑁 )
and this is equivalent to the w-respects condition for the step from 𝐷 , because both conditions are

equivalent to 𝐿 ∈ (Φ, 𝜇). In the case of an𝑚-truncated trace from 𝐶 to 𝐷 , we appeal to Lemma B.2.

We can use w-respects for the premise 𝐶 . In the case where Active(𝐷) is not a context call this
condition is 𝐿 ∈ (Φ,Θ, 𝜇) and 𝐿 ≠ topm(𝐷, •) which is equivalent to 𝐿 ∈ (Φ, ¤𝜇) and 𝐿 ≠ topm(𝐷, •).
In the case where Active(𝐷) is a context call to some 𝑝 ∈ Φ, the condition to be proved is 𝐿 ∈ (Φ, ¤𝜇)
and 𝐿 ≠ topm(𝐷, •) and mdl(𝑝) ⪯ 𝐿. We obtain this from the w-respects condition for the premise

which is 𝐿 ∈ (Φ,Θ, 𝜇) and 𝐿 ≠ topm(𝐷, •) and𝑚𝑑𝑙 (𝑝) ⪯ 𝐿.
For r-respect, we must show the step ⟨𝐷, 𝜏, ¤𝜇⟩ 𝜑↦−→ ⟨𝐷0, 𝜐, ¤𝜈⟩ r-respects 𝛿 for (𝜑, 𝜀, 𝜎) where 𝛿 is

defined by cases on Active(𝐷):
• if Active(𝐷) is not a call, then 𝛿 =̂ (+𝐿 ∈ (Φ, ¤𝜇), 𝐿 ≠ topm(𝐷, •). bnd (𝐿))
• if Active(𝐷) is a call to some𝑚, then 𝛿 =̂ (+𝐿 ∈ (Φ, ¤𝜇),mdl(𝑚) ̸⪯ 𝐿. bnd (𝐿))

Let us spell out the r-respect conditions for the given trace (51).

(*) For any𝜋, 𝜏 ′, 𝜐′, ifAgree(𝜏 ′, 𝜐′, 𝛿) and ⟨𝐷, 𝜏 ′, ¤𝜇⟩ 𝜑↦−→ ⟨𝐷 ′
0
, 𝜐′, ¤𝜈⟩ and Lagree(𝜏, 𝜏 ′, 𝜋, freshL(𝜎, 𝜏)∪

rlocs(𝜎, 𝜀)\rlocs(𝜏, 𝛿⊕)), then 𝐷 ′
0
≡ 𝐷0 and there is 𝜌 ⊇ 𝜋 such that

Lagree(𝜐,𝜐′, 𝜌, freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐)\rlocs(𝜐, 𝛿⊕))
𝜌 (freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿)) ⊆ freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿) (†)

To prove (*) we go by cases on whether the trace up to 𝐷, 𝜏 is𝑚-truncated.

Suppose the antecedent of (*) holds: that is,

Agree(𝜏 ′, 𝜐′, 𝛿) and ⟨𝐷, 𝜏 ′, ¤𝜇⟩ 𝜑↦−→ ⟨𝐷 ′
0
, 𝜐′, ¤𝜈⟩ and

Lagree(𝜏, 𝜏 ′, 𝜋, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀))\rlocs(𝜏, 𝛿⊕))

Case ⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, ¤𝜇⟩ is𝑚-truncated.

Then by Lemma B.2 we have ⟨𝐶, 𝜎, _⟩ 𝜑𝜃↦−→∗ ⟨𝐷, 𝜏, 𝜇⟩ where 𝜇 = ¤𝜇↾𝑚.

If Active(𝐷) is not a context call, the r-respect condition to be proved is for

𝛿 = (+𝐿 ∈ (Φ, ¤𝜇), 𝐿 ≠ topm(𝐷, •). bnd (𝐿))
= (+𝐿 ∈ (Φ, 𝜇), 𝐿 ≠ topm(𝐷, •). bnd (𝐿)), bnd (𝑁 )

We have the additional step ⟨𝐷, 𝜏, 𝜇⟩ 𝜑𝜃↦−→ ⟨𝐷 ′
0
, 𝜐, 𝜈⟩ because in this case 𝜑 and 𝜑𝜃 agree. For the

same reason the step ⟨𝐷, 𝜏 ′, ¤𝜇⟩ to ⟨𝐷 ′
0
, 𝜐′, ¤𝜈⟩ can also be taken via 𝜑𝜃 , so ⟨𝐷, 𝜏 ′, 𝜇⟩ 𝜑𝜃↦−→ ⟨𝐷 ′

0
, 𝜐′, 𝜈⟩,

where 𝜈 = ¤𝜈↾𝑚. The Encap condition for the premise for 𝐶 says that

⟨𝐶, 𝜎, _⟩ 𝜑𝜃↦−→∗ ⟨𝐷, 𝜏, 𝜇⟩ 𝜑𝜃↦−→ ⟨𝐷 ′
0
, 𝜐, 𝜈⟩
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respects ((Φ,Θ), •, (𝜑𝜃 ), 𝜀, 𝜎).
Unpacking definitions, from r-respect we have that the step ⟨𝐷, 𝜏, 𝜇⟩ 𝜑𝜃↦−→ ⟨𝐷 ′

0
, 𝜐, 𝜈⟩ r-respects ¤𝛿

for (𝜑𝜃, 𝜀, 𝜎) where ¤𝛿 = (+𝐿 ∈ (Φ,Θ, 𝜇), 𝐿 ≠ topm(𝐷, •) . bnd (𝐿))
= (+𝐿 ∈ (Φ, 𝜇), 𝐿 ≠ topm(𝐷, •). bnd (𝐿)), bnd (𝑁 )
= 𝛿

Now to establish (†)we showAgree(𝜏 ′, 𝜐′, ¤𝛿) and Lagree(𝜏, 𝜏 ′, 𝜋, freshL(𝜎, 𝜏)∪rlocs(𝜎, 𝜀)\rlocs(𝜏, ¤𝛿⊕)).
Because

¤𝛿 = 𝛿 , both hold by assumption.

If Active(𝐷) is a context call to 𝑝 ∈ Φ, the r-respect condition to be proved is for

𝛿 = (+𝐿 ∈ (Φ, ¤𝜇),mdl(𝑝) ̸⪯ 𝐿. bnd (𝐿))
= (+𝐿 ∈ (Φ, 𝜇),mdl(𝑝) ̸⪯ 𝐿. bnd (𝐿)), bnd (𝑁 )

where the last equality follows because mdl(𝑚) = 𝑁 and mdl(𝑝) ̸⪯ 𝑁 by side condition of Link,

and bnd (•) is empty. For the premise for𝐶 , note that there is a step ⟨𝐷, 𝜏, 𝜇⟩ 𝜑𝜃↦−→ ⟨𝐷 ′
0
, 𝜐, 𝜈⟩ because

𝜑 and 𝜑𝜃 agree on 𝑝 . For the same reason the step ⟨𝐷, 𝜏 ′, ¤𝜇⟩ to ⟨𝐷 ′
0
, 𝜐′, ¤𝜈⟩ can also be taken via

𝜑𝜃 , so ⟨𝐷, 𝜏 ′, 𝜇⟩ 𝜑𝜃↦−→ ⟨𝐷 ′
0
, 𝜐′, 𝜈⟩, where 𝜈 = ¤𝜈 ↾𝑚. The r-respect condition for the premise is for

collective boundary
¤𝛿 where ¤𝛿 = (+𝐿 ∈ (Φ,Θ, 𝜇),mdl(𝑝) ̸⪯ 𝐿. bnd (𝐿))

= (+𝐿 ∈ (Φ, 𝜇),mdl(𝑝) ̸⪯ 𝐿. bnd (𝐿)), bnd (𝑁 )
= 𝛿

where the second equality follows becausemdl(𝑝) ̸⪯ 𝑁 by the side condition of the Link rule. From

these we get an argument similar to above because Active(𝜏 ′, 𝜐′, 𝛿) and Lagree(𝜏, 𝜏 ′, 𝜋, freshL(𝜎, 𝜏)∪
rlocs(𝜎, 𝜀)\rlocs(𝜏, 𝛿⊕)) hold by assumption.

This completes the proof of (*) for𝑚-truncated traces.

Case ⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝐷, 𝜏, ¤𝜇⟩ is not𝑚-truncated. As in the proof of Safety, we factor out

the𝑚-truncated prefix for the last call to𝑚. That is, there are 𝐵0, 𝐷1, 𝜏1, ¤𝜇1 such that

⟨𝐶, 𝜎, [𝑚:𝐵]⟩ 𝜑↦−→∗ ⟨𝑚();𝐷1, 𝜏1, ¤𝜇1⟩ 𝜑↦−→ ⟨𝐵; ecall(𝑚);𝐷1, 𝜏1, ¤𝜇1⟩ since ¤𝜇1 (𝑚) = 𝐵
𝜑↦−→∗ ⟨𝐵0; ecall(𝑚);𝐷1, 𝜏, ¤𝜇⟩ with 𝐷 ≡ 𝐵0; ecall(𝑚);𝐷1

𝜑↦−→ ⟨𝐵1; ecall(𝑚);𝐷1, 𝜐, ¤𝜈⟩ with 𝐷0 ≡ 𝐵1; ecall(𝑚);𝐷1

So for just 𝐵 we have

⟨𝐵, 𝜏1, ¤𝜇1⟩ 𝜑↦−→∗ ⟨𝐵0, 𝜏, ¤𝜇⟩ 𝜑↦−→ ⟨𝐵1, 𝜐, ¤𝜈⟩
and as in the proof of Safety we have 𝜏1 |= 𝑅 by Lemma B.2. Note that Active(𝐷) = Active(𝐵0).
Moreover,𝑚 does not occur in 𝐵, 𝐵0, 𝐵1 because there is no recursion. Hence 𝜑 and 𝜑𝜃 agree so that

⟨𝐵, 𝜏1, 𝜇1⟩ 𝜑𝜃↦−→∗ ⟨𝐵0, 𝜏, 𝜇⟩ 𝜑𝜃↦−→ ⟨𝐵1, 𝜐, 𝜈⟩

By assumption, ⟨𝐷, 𝜏 ′, ¤𝜇⟩ 𝜑↦−→ ⟨𝐷 ′
0
, 𝜐′, ¤𝜈⟩. That is,

⟨𝐵0; ecall(𝑚);𝐷1, 𝜏
′, ¤𝜇⟩ 𝜑↦−→ ⟨𝐵′

1
; ecall(𝑚);𝐷 ′

1
, 𝜐′, ¤𝜈⟩

where 𝐷 ′
0
=̂ 𝐵′

1
; ecall(𝑚);𝐷 ′

1
. There are no calls to𝑚 so

⟨𝐵0, 𝜏
′, 𝜇⟩ 𝜑𝜃↦−→ ⟨𝐵′

1
, 𝜐′, 𝜈⟩

Because 𝜏 is reached from 𝜎 via 𝜏1, we have freshL(𝜎, 𝜏) = freshL(𝜎, 𝜏1) ∪ freshL(𝜏1, 𝜏), whence
freshL(𝜏1, 𝜏) ⊆ freshL(𝜎, 𝜏). Moreover, by the validity of premise for 𝐶 we can use its R-safe

condition for the call to𝑚 to obtain rlocs(𝜏1, 𝜂) ⊆ rlocs(𝜎, 𝜀).
If Active(𝐷) is a context call to some 𝑝 ∈ Φ, the r-respect condition to be proved is for collective

boundary 𝛿 = (+𝐿 ∈ (Φ, ¤𝜇),mdl(𝑝) ̸⪯ 𝐿. bnd (𝐿))
= (+𝐿 ∈ (Φ, 𝜇),mdl(𝑝) ̸⪯ 𝐿. bnd (𝐿)), bnd (𝑁 )
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(in which we omit 𝐿 = • because bnd (•) is empty). For the premise for 𝐵, the r-respect condition is

for collective boundary
¤𝛿 where ¤𝛿 = (+𝐿 ∈ (Φ,Θ, 𝜇),mdl(𝑝) ̸⪯ 𝐿. bnd (𝐿))

= (+𝐿 ∈ (Φ, 𝜇),mdl(𝑝) ̸⪯ 𝐿. bnd (𝐿)), bnd (𝑁 )
= 𝛿

where the second equality holds by side condition mdl(𝑝) ̸⪯ 𝑁 of the Link rule.

Using the antecedent of (*) and noting
¤𝛿 = 𝛿 we get

Lagree(𝜏, 𝜏 ′, 𝜋, (freshL(𝜏1, 𝜏) ∪ rlocs(𝜏1, 𝜂)\rlocs(𝜏, 𝛿⊕)))

Now by the r-respect condition for the premise for 𝐵 (and because Agree(𝜏 ′, 𝜐′, 𝛿) holds by assump-

tion) we obtain 𝜌 ⊇ 𝜋 such that

Lagree(𝜐,𝜐′, 𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐))\rlocs(𝜐, 𝛿⊕) and
𝜌 (freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿)) ⊆ freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿)

Furthermore, 𝐵′
1
≡ 𝐵1, whence 𝐷

′
1
≡ 𝐷1 because 𝐵1 in the source code has a unique continuation.

Thus 𝐷 ′
0
≡ 𝐷0. Thus (†) is established.

If Active(𝐷) is not a context call, note that topm(𝐷, •) = topm(𝐵0; ecall(𝑚);𝐷1, •). Hence the

r-respect condition to be proved is for collective boundary

𝛿 = (+𝐿 ∈ (Φ, ¤𝜇), 𝐿 ≠ topm(𝐷, •). bnd (𝐿))

If 𝐵0 doesn’t contain an ecall, then topm(𝐷, •) = 𝑁 . Then

𝛿 = (+𝐿 ∈ (Φ, ¤𝜇), 𝐿 ≠ 𝑁 . bnd (𝐿))
= (+𝐿 ∈ (Φ, 𝜇) . bnd (𝐿))

where the second equality follows because𝑚𝑑𝑙 (𝑚) = 𝑁 and𝑚 ∈ dom ¤𝜇.
If 𝐵0 contains an outermost ecall(𝑝), then 𝑝 ≠𝑚 and topm(𝐷, •) =𝑚𝑑𝑙 (𝑝). Then

𝛿 = (+𝐿 ∈ (Φ, ¤𝜇), 𝐿 ≠𝑚𝑑𝑙 (𝑝). bnd (𝐿))
= (+𝐿 ∈ (Φ, 𝜇), 𝐿 ≠ •. bnd (𝐿)), bnd (𝑚𝑑𝑙 (𝑝)), bnd (𝑁 )
= (+𝐿 ∈ (Φ, 𝜇). bnd (𝐿)), bnd (𝑚𝑑𝑙 (𝑝)), bnd (𝑁 )

The premise for 𝐵 gives r-respect for the collective boundary

¤𝛿 = (+𝐿 ∈ (Φ,Θ, 𝜇), 𝐿 ≠ topm(𝐵0, 𝑁 ). bnd (𝐿))

If 𝐵0 has no ecalls, then topm(𝐵0, 𝑁 ) = 𝑁 . In this case

¤𝛿 = (+𝐿 ∈ (Φ,Θ, 𝜇), 𝐿 ≠ 𝑁 . bnd (𝐿))
= (+𝐿 ∈ (Φ, 𝜇). bnd (𝐿))

If 𝐵0 contains an outermost ecall(𝑝) as above, then 𝑝 ≠𝑚 and topm(𝐵0, 𝑁 ) =𝑚𝑑𝑙 (𝑝). Then
¤𝛿 = (+𝐿 ∈ (Φ,Θ, 𝜇), 𝐿 ≠𝑚𝑑𝑙 (𝑝). bnd (𝐿))

= (+𝐿 ∈ (Φ, 𝜇). bnd (𝐿)), bnd (𝑚𝑑𝑙 (𝑝)), bnd (𝑁 )

In either case
¤𝛿 = 𝛿 . To obtain (†) we must show Agree(𝜏 ′, 𝜐′, ¤𝛿) and

Lagree(𝜏, 𝜏 ′, 𝜋, (freshL(𝜏1, 𝜏) ∪ rlocs(𝜏1, 𝜂))\rlocs(𝜏, ¤𝛿⊕)

Since
¤𝛿 = 𝛿 , both of these hold by assumption.
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𝜎 |𝜎′ |=𝜋 [⟩𝑃]⟩ iff 𝜎′ |= 𝑃
𝜎 |𝜎′ |=𝜋 P ∧ Q iff 𝜎 |𝜎′ |=𝜋 P and 𝜎 |𝜎′ |=𝜋 Q
𝜎 |𝜎′ |=𝜋 P ∨ Q iff 𝜎 |𝜎′ |=𝜋 P or 𝜎 |𝜎′ |=𝜋 Q
𝜎 |𝜎′ |=𝜋 ∀𝑥 :𝐾 |𝑥 ′:𝐾 ′ . P iff [𝜎+𝑥 : 𝑣] | [𝜎′+𝑥 ′: 𝑣 ′] |=𝜋 P for all 𝑣 ∈ J𝐾 K𝜎\{null} and 𝑣 ′ ∈ J𝐾 ′ K𝜎′\{null}
𝜎 |𝜎′ |=𝜋 ∀𝑥 :rgn|𝑥 ′:rgn. P iff [𝜎+𝑥 : 𝑣] | [𝜎′+𝑥 ′: 𝑣 ′] |=𝜋 P for all 𝑣 ∈ J rgn K𝜎 and 𝑣 ′ ∈ J rgn K𝜎′
𝜎 |𝜎′ |=𝜋 ∀𝑥 :int|𝑥 ′:int. P iff [𝜎+𝑥 : 𝑣] | [𝜎′+𝑥 ′: 𝑣 ′] |=𝜋 P for all 𝑣 ∈ Z and 𝑣 ′ ∈ Z
𝜎 |𝜎′ |=𝜋 𝑅(𝐹𝐹 ) iff J 𝐹𝐹 K(𝜎 |𝜎′) ∈ J𝑅 K (and similarly for list 𝐹𝐹 )

Fig. 37. Relation formula semantics cases omitted from Fig. 25. See Fig. 14 for syntax.

C APPENDIX: BIPROGRAM SEMANTICS AND RELATIONAL CORRECTNESS (RE

SECTION 7)

C.1 On relation formulas

Semantics of relation formulas is given in Figs. 25 and 37. Omitted in the figures are the left and

right typing contexts for the formula. Semantics for quantifiers is written in a way to make clear

there is no built-in connection between the left and right values. In particular, we allow one side to

bind a reference type while the other binds a variable of integer type. This is useful when a variable

is only needed on one side (whereas using a dummy of reference type would make the formula

vacuously true in states with no allocated references on that side). For practical purposes we find

little use for quantification at type rgn and on the other hand it is convenient to exclude null at

reference type.

The form𝑅(𝐹𝐹 ), where 𝐹𝐹 is a list of 2-expressions, is restricted for simplicity to heap-independent

expressions of mathematical type (including integers but excluding references and regions). So the

semantics can be defined in terms of given denotations J𝑅 K that provide a fixed interpretation

for atomic predicates 𝑅 in the signature, as assumed already for semantics of unary formulas. The

semantics of left and right expressions is written using J− K and defined as follows: J ⟨[𝐹 ⟨] K(𝜎 |𝜎 ′) =
𝜎 (𝐹 ) and J [⟩𝐹 ]⟩ K(𝜎 |𝜎 ′) = 𝜎 ′ (𝐹 ).

Lemma C.1 (uniqe snapshots). If P is the precondition in a wf relational spec with spec-only

variables 𝑠 on the left and 𝑠′ on the right, then for all 𝜎, 𝜎 ′, 𝜋 there is at most one valuation 𝑣, 𝑣 ′ such

that 𝜎 |𝜎 ′ |=𝜋 P𝑠,𝑠
′

𝑣,𝑣′
. Moreover, they are independent from 𝜋 , i.e., determined by 𝜎, 𝜎 ′ and

↼−P ∧ −⇀P .

The proof is straightforward.

Lemma C.2 (framing of region agreement). 𝐺 ¥= 𝐺 |= 𝜂 |𝜂 frm A𝐺 ‘𝑓 where 𝜂 is ftpt (𝐺), rd𝐺 ‘𝑓 .

Proof. Suppose 𝜎 |𝜎 ′ |=𝜋 𝐺 ¥= 𝐺 ∧ A𝐺 ‘𝑓 and Agree(𝜎, 𝜏, 𝜂) and Agree(𝜎 ′, 𝜏 ′, 𝜂). By semantics,

𝜎 |𝜎 ′ |=𝜋 A𝐺 ‘𝑓 iff Agree(𝜎, 𝜎 ′, 𝜋, rd𝐺 ‘𝑓 ) and Agree(𝜎 ′, 𝜎, 𝜋−1, rd𝐺 ‘𝑓 ), i.e.,
Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, rd𝐺 ‘𝑓 )) and Lagree(𝜎 ′, 𝜎, 𝜋, rlocs(𝜎 ′, rd𝐺 ‘𝑓 ))

We must show Lagree(𝜏, 𝜏 ′, 𝜋, rlocs(𝜏, rd𝐺 ‘𝑓 )) and Lagree(𝜏 ′, 𝜏, 𝜋−1, rlocs(𝜏 ′, rd𝐺 ‘𝑓 )).
From Agree(𝜎, 𝜏, 𝜂) we get 𝜎 (𝐺) = 𝜏 (𝐺), and from Agree(𝜎 ′, 𝜏 ′, 𝜂) we get 𝜎 ′ (𝐺) = 𝜏 ′ (𝐺). From

𝜎 (𝐺) = 𝜏 (𝐺) we get that rlocs(𝜎, rd𝐺 ‘𝑓 ) = rlocs(𝜏, rd𝐺 ‘𝑓 ) and from 𝜎 ′ (𝐺) = 𝜏 ′ (𝐺) we get that
rlocs(𝜎 ′, rd𝐺 ‘𝑓 ) = rlocs(𝜏 ′, rd𝐺 ‘𝑓 ). So it suffices to show

Lagree(𝜏, 𝜏 ′, 𝜋, rlocs(𝜎, rd𝐺 ‘𝑓 )) and Lagree(𝜏 ′, 𝜏, 𝜋−1, rlocs(𝜎 ′, rd𝐺 ‘𝑓 ))
First the left conjunct: For any 𝑜.𝑓 ∈ rlocs(𝜎, rd𝐺 ‘𝑓 ), we have from above that 𝜏 (𝑜.𝑓 ) = 𝜎 (𝑜.𝑓 ) 𝜋∼

𝜎 ′ (𝜋 (𝑜).𝑓 ) so it remains to show 𝜎 ′ (𝜋 (𝑜).𝑓 ) = 𝜏 ′ (𝜋 (𝑜).𝑓 ). From 𝜎 |𝜎 ′ |=𝜋 𝐺 ¥= 𝐺 we have

𝜎 (𝐺) 𝜋∼ 𝜎 ′ (𝐺), i.e., 𝜋 (𝜎 (𝐺)) = 𝜎 ′ (𝐺). So 𝜋 (𝑜) ∈ 𝜎 ′ (𝐺) and we get 𝜎 ′ (𝜋 (𝑜).𝑓 ) = 𝜏 ′ (𝜋 (𝑜).𝑓 )
from Agree(𝜎 ′, 𝜏 ′, rd𝐺 ‘𝑓 ).
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Now the right conjunct: For any 𝑜.𝑓 ∈ rlocs(𝜎 ′, rd𝐺 ‘𝑓 ), 𝜎 (𝜋−1 (𝑜).𝑓 ) 𝜋∼ 𝜎 ′ (𝑜.𝑓 ) = 𝜏 ′ (𝑜.𝑓 )
so it remains to show 𝜏 (𝜋−1 (𝑜).𝑓 ) = 𝜎 (𝜋−1 (𝑜).𝑓 ). From 𝜎 |𝜎 ′ |=𝜋 𝐺 ¥= 𝐺 we have 𝜎 (𝐺) 𝜋∼
𝜎 ′ (𝐺), i.e., 𝜋 (𝜎 (𝐺)) = 𝜎 ′ (𝐺). So 𝜋−1 (𝑜) ∈ 𝜎 (𝐺) and we get 𝜎 (𝜋−1 (𝑜).𝑓 ) = 𝜏 (𝜋−1 (𝑜) .𝑓 ) from
Agree(𝜎, 𝜏, rd𝐺 ‘𝑓 ). □

Lemma C.3. If (𝜎 |𝜎 ′) 𝜋,𝜋
′
≈ (𝜏 |𝜏 ′) then 𝜎 |𝜎 ′ |=𝜌 P implies 𝜏 |𝜏 ′ |=𝜋−1

;𝜌 ;𝜋 ′ P.

Here 𝜋−1
; 𝜌 ;𝜋 ′ denotes composition of refperms in diagrammatic order, so (𝜋−1

; 𝜌 ;𝜋 ′) (𝑜) is
𝜋 ′ (𝜌 (𝜋−1 (𝑜))) if it is defined on 𝑜 .

Proof. Proof by induction on P. We consider two cases; the other cases are similar or simpler.

Consider the case of 𝐹 ¥= 𝐹 ′, where 𝐹, 𝐹 ′ are expressions of some class type 𝐾 . (The argument for

type rgn is similar and for base types int and bool straightforward.) Now suppose 𝜎 |𝜎 ′ |=𝜌 𝐹 ¥= 𝐹 ′,
i.e., 𝜎 (𝐹 ) 𝜌∼ 𝜎 ′ (𝐹 ′). For the non-null case, this is equivalent to 𝜌 (𝜎 (𝐹 )) = 𝜎 ′ (𝐹 ′). (We leave the

null case to the reader.) We must show 𝜏 (𝐹 ) 𝜋
−1

;𝜌 ;𝜋 ′∼ 𝜏 ′ (𝐹 ), i.e., 𝜋 ′ (𝜌 (𝜋−1 (𝜏 (𝐹 )))) = 𝜏 ′ (𝐹 ′). From
(𝜎 |𝜎 ′) 𝜋,𝜋

′
≈ (𝜏 |𝜏 ′) we have 𝜎 𝜋≈ 𝜏 and 𝜎 ′

𝜋 ′≈ 𝜏 ′ by definition. By Lemma 5.6 we get 𝜎 (𝐹 ) 𝜋∼ 𝜏 (𝐹 )
and 𝜎 ′ (𝐹 ′) 𝜋

′
∼ 𝜏 ′ (𝐹 ′), which for non-null values means 𝜋 (𝜎 (𝐹 )) = 𝜏 (𝐹 ) and 𝜋 ′ (𝜎 ′ (𝐹 ′)) = 𝜏 ′ (𝐹 ′).

We conclude by using the equations to calculate 𝜋 ′ (𝜌 (𝜋−1 (𝜏 (𝐹 )))) = 𝜋 ′ (𝜌 (𝜋−1 (𝜋 (𝜎 (𝐹 ))))) =
𝜋 ′ (𝜌 (𝜎 (𝐹 ))) = 𝜋 ′ (𝜎 ′ (𝐹 )) = 𝜏 ′ (𝐹 ′).

Consider the case ofA𝐺 ‘𝑓 where 𝑓 is a reference type field. Suppose 𝜎 |𝜎 ′ |=𝜌 A𝐺 ‘𝑓 . By semantics

and the definitions of Agree, rlocs, and Lagree, this is equivalent to

∀𝑜 ∈ 𝜎 (𝐺). 𝜎 (𝑜.𝑓 ) 𝜌∼ 𝜎 ′ (𝜌 (𝑜).𝑓 ) (52)

In the rest of the proof we consider the non-null case, so the body can be rephrased as 𝜌 (𝜎 (𝑜.𝑓 )) =
𝜎 ′ (𝜌 (𝑜).𝑓 ). We must show

∀𝑝 ∈ 𝜏 (𝐺). 𝜏 (𝑝.𝑓 ) 𝜋
−1

;𝜌 ;𝜋 ′∼ 𝜏 ′ (𝜋 ′ (𝜌 (𝜋−1 (𝑝))) .𝑓 )

i.e., 𝜋 ′ (𝜌 (𝜋−1 (𝜏 (𝑝.𝑓 )))) = 𝜏 ′ (𝜋 ′ (𝜌 (𝜋−1 (𝑝))).𝑓 ). By 𝜎 𝜋≈ 𝜏 , we have 𝑝 ∈ 𝜏 (𝐺) iff 𝜋−1 (𝑝) ∈ 𝜎 (𝐺) so
we reformulate our obligation in terms of 𝜋 (𝑜):

∀𝑜 ∈ 𝜎 (𝐺). 𝜋 ′ (𝜌 (𝜋−1 (𝜏 (𝜋 (𝑜).𝑓 )))) = 𝜏 ′ (𝜋 ′ (𝜌 (𝜋−1 (𝜋 (𝑜)))).𝑓 ) (53)

By the isomorphisms 𝜎 (𝐹 ) 𝜋∼ 𝜏 (𝐹 ) and 𝜎 ′ (𝐹 ′) 𝜋
′
∼ 𝜏 ′ (𝐹 ′), we have 𝜋 (𝜎 (𝑜.𝑓 )) = 𝜏 (𝜋 (𝑜).𝑓 ) and

𝜋 ′ (𝜎 ′ (𝑝.𝑓 )) = 𝜏 ′ (𝜋 ′ (𝑝).𝑓 ) for any 𝑜, 𝑝 . We prove (53) by calculating for any 𝑜 ∈ 𝜎 (𝐺):

𝜋 ′ (𝜌 (𝜋−1 (𝜏 (𝜋 (𝑜).𝑓 ))))
= 𝜋 ′ (𝜌 (𝜋−1 (𝜋 (𝜎 (𝑜.𝑓 ))))) by 𝜋 (𝜎 (𝑜.𝑓 )) = 𝜏 (𝜋 (𝑜).𝑓 )
= 𝜋 ′ (𝜌 (𝜎 (𝑜.𝑓 ))) by 𝜋 bijective

= 𝜋 ′ (𝜎 ′ (𝜌 (𝑜).𝑓 )) by 𝜌 (𝜎 (𝑜.𝑓 )) = 𝜎 ′ (𝜌 (𝑜).𝑓 ) from (52)

= 𝜏 ′ (𝜋 ′ (𝜌 (𝑜)) .𝑓 ) by 𝜋 ′ (𝜎 ′ (𝑝.𝑓 )) = 𝜏 ′ (𝜋 ′ (𝑝).𝑓 )
= 𝜏 ′ (𝜋 ′ (𝜌 (𝜋−1 (𝜋 (𝑜)))).𝑓 ) by 𝜋 bijective

□

Lemma 8.8 (refperm monotonicity). (i) Any agreement formula is refperm monotonic and

so is any refperm independent formula. (ii) Refperm monotonicity is preserved by conjunction,

disjunction, and quantification. (iii) Any formula of the form (33), with R refperm monotonic, is

refperm monotonic.
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Proof. (i) To show 𝑅 is refperm monotonic we must show for all 𝜋, 𝜌, 𝜎, 𝜎 ′, if 𝜎 |𝜎 ′ |=𝜋 R and

𝜌 ⊇ 𝜋 then 𝜎 |𝜎 ′ |=𝜌 R. This is immediate in case R is refperm independent.

There are two general forms for agreement formulas. For the form 𝐹 ¥= 𝐹 ′, we only need to

consider 𝐹 (and thus 𝐹 ′) of reference or region type, as otherwise it is refperm independent. For

both reference type and region type we have 𝜎 |𝜎 ′ |=𝜋 𝐹 ¥= 𝐹 ′ iff 𝜎 (𝐹 ) 𝜋∼ 𝜎 ′ (𝐹 ′) (by semantics, see

Fig. 25). The latter holds only if 𝜎 (𝐹 ) is in the domain of 𝜋 (for 𝐹 : 𝐾 ) or a subset of the domain (for

𝐹 : rgn), and mut. mut. for 𝜎 ′ (𝐹 ′) and the range of 𝜋 . So 𝜎 |𝜎 ′ |=𝜋 𝐹 ¥= 𝐹 ′ implies 𝜎 |𝜎 ′ |=𝜌 𝐹 ¥= 𝐹 ′ for
any 𝜌 ⊇ 𝜋 .
The other form of agreement formula is A𝐿𝐸 where 𝐿𝐸 may be a variable 𝑥 —in which case the

meaning is the same as 𝑥 ¥= 𝑥 and the above argument applies— or 𝐿𝐸 has the form 𝐺 ‘𝑓 . Suppose

𝜎 |𝜎 ′ |=𝜋 𝐺 ‘𝑓 . Unfolding the semantics, we haveAgree(𝜎, 𝜎 ′, 𝜋, rd𝐺 ‘𝑓 ) andAgree(𝜎 ′, 𝜎, 𝜋−1, rd𝐺 ‘𝑓 ).
That is, Lagree(𝜎, 𝜎 ′, 𝜋, rlocs(𝜎, rd𝐺 ‘𝑓 )) and Lagree(𝜎 ′, 𝜎, 𝜋−1, rlocs(𝜎 ′, rd𝐺 ‘𝑓 ). This does not entail
𝜎 (𝐺) 𝜋∼ 𝜎 ′ (𝐺) (see Section 7.1). But it does entail that 𝜎 (𝐺) ⊆ dom (𝜋) and 𝜎 ′ (𝐺) ⊆ rng (𝜋) (as
already remarked in Section 7.1). So extending 𝜋 to some 𝜌 ⊇ 𝜋 does not affect the agreements: we

have Lagree(𝜎, 𝜎 ′, 𝜌, rlocs(𝜎, rd𝐺 ‘𝑓 )) and Lagree(𝜎 ′, 𝜎, 𝜌−1, rlocs(𝜎 ′, rd𝐺 ‘𝑓 ), (cf. Eqn. (21)
(ii) Conjunction and disjunction are straightforward by definitions. For quantification at a

reference type, suppose R is refperm monotonic and suppose 𝜎 |𝜎 ′ |=𝜋 ∀𝑥 :𝐾 |𝑥 ′:𝐾 ′ . R. Thus by
definition (see Fig. 37) we have [𝜎+𝑥 :𝑜] | [𝜎 ′+𝑥 ′:𝑜 ′] |=𝜋 R for all 𝑜 ∈ J𝐾 K𝜎\{null} and 𝑜 ′ ∈
J𝐾 ′ K𝜎 ′\{null}. Now, if 𝜌 ⊇ 𝜋 then for any 𝑜 ∈ J𝐾 K𝜎\{null} and 𝑜 ′ ∈ J𝐾 ′ K𝜎 ′\{null} we have
[𝜎+𝑥 :𝑜] | [𝜎 ′+𝑥 ′:𝑜 ′] |=𝜌 R by refperm monotonicity of R. Hence 𝜎 |𝜎 ′ |=𝜌 ∀𝑥 :𝐾 |𝑥 ′:𝐾 ′ . R. For
existential quantification, and quantification at type int and type rgn, the argument is the same.

(iii) Suppose 𝜎 |𝜎 ′ |=𝜋 𝐺 ¥= 𝐺 ′ ∧ (∀𝑥 :𝐾 ∈ 𝐺 |𝑥 :𝐾 ∈ 𝐺 ′ . A𝑥 ⇒ R). So 𝜎 |𝜎 ′ |=𝜋 𝐺 ¥= 𝐺 ′, i.e.,

by semantics 𝜎 (𝐺) 𝜋∼ 𝜎 ′ (𝐺 ′). Thus each element of 𝜎 (𝐺) (resp. 𝜎 ′ (𝐺 ′)) is in the domain (resp.

range) of 𝜋 . Also by semantics we have [𝜎+𝑥 :𝑜] | [𝜎 ′+𝑥 :𝑜 ′] |=𝜋 R, for every (𝑜, 𝑜 ′) ∈ 𝑋 where

𝑋 = {(𝑜, 𝑜 ′) | 𝑜 ∈ 𝜎 (𝐺), 𝑜 ′ ∈ 𝜎 ′ (𝐺 ′), and (𝑜, 𝑜 ′) ∈ 𝜋}.
Now suppose 𝜌 ⊇ 𝜋 . We have 𝜎 |𝜎 ′ |=𝜌 𝐺 ¥= 𝐺 ′ — As already noted, agreements are refperm

monotonic. For the second conjunct, we need [𝜎+𝑥 :𝑜] | [𝜎 ′+𝑥 :𝑜 ′] |=𝜌 R for every (𝑜, 𝑜 ′) in the set

𝑌 where 𝑌 = {(𝑜, 𝑜 ′) | 𝑜 ∈ 𝜎 (𝐺), 𝑜 ′ ∈ 𝜎 ′ (𝐺 ′), and (𝑜, 𝑜 ′) ∈ 𝜌}. But 𝑌 = 𝑋 , owing to 𝜎 (𝐺) 𝜋∼ 𝜎 ′ (𝐺 ′)
hence 𝑜 ∈ dom (𝜋) and 𝑜 ′ ∈ rng (𝜋). So the result follows by refperm monotonicity of R. □

C.2 On biprogram semantics

Example C.4. Bi-coms deterministically dovetail unary steps, without regard to the unary control

structure. For example, traces of (while 1 do 𝑎;𝑏; 𝑐 | while 1 do 𝑑) look like this:
46

⟨(while 1 do (𝑎;𝑏; 𝑐) | while 1 do 𝑑)⟩
⟨(𝑎;𝑏; 𝑐;while 1 do (𝑎;𝑏; 𝑐) |⊲ while 1 do 𝑑)⟩
⟨(𝑎;𝑏; 𝑐;while 1 do (𝑎;𝑏; 𝑐) | 𝑑 ;while 1 do 𝑑)⟩
⟨(𝑏; 𝑐;while 1 do (𝑎;𝑏; 𝑐) |⊲ 𝑑 ;while 1 do 𝑑)⟩
⟨(𝑏; 𝑐;while 1 do (𝑎;𝑏; 𝑐) | while 1 do 𝑑)⟩
⟨(𝑐;while 1 do (𝑎;𝑏; 𝑐) |⊲ while 1 do 𝑑)⟩
⟨(𝑐;while 1 do (𝑎;𝑏; 𝑐) | 𝑑 ;while 1 do 𝑑)⟩
⟨(while 1 do (𝑎;𝑏; 𝑐) |⊲ 𝑑 ;while 1 do 𝑑)⟩
⟨(while 1 do (𝑎;𝑏; 𝑐) | while 1 do 𝑑)⟩
. . .

46
The details depend on the unary transition semantics for loops, which is a standard one that takes a step to unfold the

loop body. An alternate semantics, e.g., using a stack of continuations, would work slightly differently but the point is the

same: bi-com deterministically dovetails the unary executions without regard to unary control structure.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



A Relational Program Logic with Data Abstraction and Dynamic Framing [version with index] 1:103

The right side iterated twice, the left once. □

Example C.5. In terms of operational semantics, the respective computations of the five bipro-

grams in Eqn. (12) are as follows, where for clarity we underline the active command for the

underlying unary transition, and abbreviate skip as •.

⟨(𝑎;𝑏; 𝑐 |𝑑 ; 𝑒; 𝑓 )⟩⟨(𝑏; 𝑐 |⊲𝑑 ; 𝑒; 𝑓 )⟩⟨(𝑏; 𝑐 |𝑒; 𝑓 )⟩⟨(𝑐 |⊲𝑒; 𝑓 )⟩⟨(𝑐 |𝑓 )⟩⟨(•|⊲ 𝑓 )⟩⟨⌊•⌋⟩
⟨(𝑎;𝑏 |𝑑); (𝑐 |𝑒; 𝑓 )⟩⟨(𝑏 |⊲𝑑); (𝑐 |𝑒; 𝑓 )⟩⟨(𝑏 |•); (𝑐 |𝑒; 𝑓 )⟩⟨(𝑐 |𝑒; 𝑓 )⟩⟨(•|⊲𝑒; 𝑓 )⟩⟨(•|𝑓 )⟩⟨⌊•⌋⟩
⟨(𝑎 |𝑑 ; 𝑒); (𝑏; 𝑐 |𝑓 )⟩⟨(•|⊲𝑑 ; 𝑒); (𝑏; 𝑐 |𝑓 )⟩⟨(•|𝑒); (𝑏; 𝑐 |𝑓 )⟩⟨(𝑏; 𝑐 |𝑓 )⟩⟨(𝑐 |⊲ 𝑓 )⟩⟨(𝑐 |•)⟩⟨⌊•⌋⟩
⟨(𝑎;𝑏; 𝑐 |•); (•|𝑑 ; 𝑒; 𝑓 )⟩⟨(𝑏; 𝑐 |•); (•|𝑑 ; 𝑒; 𝑓 )⟩⟨(𝑐 |•); (•|𝑑 ; 𝑒; 𝑓 )⟩⟨(•|𝑑 ; 𝑒; 𝑓 )⟩⟨(•|𝑒; 𝑓 )⟩⟨(•|𝑓 )⟩⟨⌊•⌋⟩
⟨(•|𝑑 ; 𝑒; 𝑓 ); (𝑎;𝑏; 𝑐 |•)⟩⟨(•|⊲𝑒; 𝑓 ); (𝑎;𝑏; 𝑐 |•)⟩⟨(•|⊲ 𝑓 ); (𝑎;𝑏; 𝑐 |•)⟩⟨(𝑎;𝑏; 𝑐 |•)⟩⟨(𝑏; 𝑐 |•)⟩⟨(𝑐 |•)⟩⟨⌊•⌋⟩

Note that 𝑑-steps of the last two examples go by rule bComR0. □

Example C.6. In the preceding, we illustrate what happens when the commands do not fault.

Now suppose that the transition for 𝑐 faults but none of the others do. (I.e., the 𝑐-transitions

above do not exist.) Thus there are unary traces completing actions 𝑎𝑏 and 𝑑𝑒 𝑓 which can be

covered by ((𝑎 |𝑑 ; 𝑒); (𝑏; 𝑐 |𝑓 )) and by ((•|𝑑 ; 𝑒; 𝑓 ); (𝑎;𝑏; 𝑐 |•)) but not by (𝑎;𝑏; 𝑐 |𝑑 ; 𝑒; 𝑓 ) or the other
rearrangements.

If instead both 𝑐 and 𝑒 fault, then both (𝑎;𝑏 |𝑑); (𝑐 |𝑒 ; 𝑓 ) and (𝑎;𝑏; 𝑐 |skip); (skip|𝑑 ; 𝑒 ; 𝑓 ) fault trying
to execute 𝑐 , while the others fault trying to execute 𝑒 .

Here is an example of the weaving axiom for conditional:

(if 𝐸 then 𝑎;𝑏 else 𝑐;𝑑 |if 𝐸′ then 𝑒; 𝑓 else 𝑔;ℎ) ↬ if 𝐸 |𝐸′ then (𝑎;𝑏 |𝑒; 𝑓 ) else (𝑐;𝑑 |𝑔;ℎ)
Consider a trace of the lhs, where 𝐸 is true in the left state and 𝐸′ is false on the right. Absent faults,

the trace may look as follows: ⟨(if 𝐸 then 𝑎;𝑏 else 𝑐;𝑑 |if 𝐸′ then 𝑒; 𝑓 else 𝑔;ℎ)⟩
⟨(𝑎;𝑏 |⊲if 𝐸′ then 𝑒; 𝑓 else 𝑔;ℎ)⟩
⟨(𝑎;𝑏 |𝑔;ℎ)⟩
⟨(𝑏 |⊲𝑔;ℎ)⟩
⟨(𝑏 |ℎ)⟩
⟨(skip|⊲ℎ)⟩
⟨⌊skip⌋⟩

For the rhs, a trace from the same states has only the initial configuration:

⟨if 𝐸 |𝐸′ then (𝑎;𝑏 |𝑒; 𝑓 ) else (𝑐;𝑑 |𝑔;ℎ)⟩
It faults next, an alignment fault due to test disagreement. □

Lemma 4.6. (↼−𝐶𝐶 |−⇀𝐶𝐶) ↬∗ 𝐶𝐶 for any 𝐶𝐶 .

Proof. We need the fact that↬∗ is a congruence. This is proved by induction on the reflexive-

transitive closure, using the congruence rules for↬ (Figure 18).

The proof of the lemma proceeds by induction on 𝐶𝐶 . It’s easy to check the lemma holds when

CC is of the form ⌊𝐴⌋. For the inductive cases, we rely on congruence and transitivity of↬∗. For

example, consider the case when 𝐶𝐶 ≡ 𝐷𝐷 ;𝐸𝐸. We need to show (↼−−−−−−𝐷𝐷 ;𝐸𝐸 |−−−−−−⇀𝐷𝐷 ;𝐸𝐸) ↬∗ (𝐷𝐷 ;𝐸𝐸).
We have,

(↼−−−−−−𝐷𝐷 ;𝐸𝐸 |−−−−−−⇀𝐷𝐷 ;𝐸𝐸)
≡ (↼−−𝐷𝐷 ;

↼−
𝐸𝐸 |−−⇀𝐷𝐷 ;

−⇀
𝐸𝐸) def of projection

↬ (↼−−𝐷𝐷 |−−⇀𝐷𝐷); (↼−𝐸𝐸 |−⇀𝐸𝐸) using↬ axiom for sequence

↬∗ 𝐷𝐷 ; (↼−𝐸𝐸 |−⇀𝐸𝐸) congruence and ind hyp (↼−−𝐷𝐷 |−−⇀𝐷𝐷) ↬∗ 𝐷𝐷
↬∗ 𝐷𝐷 ;𝐸𝐸 congruence and ind hyp (↼−𝐸𝐸 |−⇀𝐸𝐸) ↬∗ 𝐸𝐸
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So (↼−−−−−−𝐷𝐷 ;𝐸𝐸 |−−−−−−⇀𝐷𝐷 ;𝐸𝐸) ↬∗ 𝐷𝐷 ;𝐸𝐸 by transitivity. The other cases follow the same pattern. □

Lemma C.7. For any 𝐶 we have Active(T𝐶U) = TActive(𝐶)U.

The proof is by induction on 𝐶 using definitions.

Lemma C.8 (qasi-determinacy of biprogram transitions). Let 𝜑 be a relational pre-model.

Then (a)

𝜑Z=⇒ is rule-deterministic. (b) If (𝜎 |𝜎 ′)
𝜋 |𝜋 ′
≈ (𝜎0 |𝜎 ′0) and ⟨𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩

𝜑Z=⇒ ⟨𝐷𝐷, 𝜏 |𝜏 ′, 𝜈 |𝜈 ′⟩
and ⟨𝐶𝐶, 𝜎0 |𝜎 ′0, 𝜇 |𝜇′⟩

𝜑Z=⇒ ⟨𝐷𝐷0, 𝜏0 |𝜏 ′0, 𝜈0 |𝜈 ′0⟩ then 𝐷𝐷 ≡ 𝐷𝐷0, 𝜈 = 𝜈0, 𝜈
′ = 𝜈 ′

0
, and there are 𝜌 ⊇ 𝜋

and 𝜌 ′ ⊇ 𝜋 ′ such that (𝜏 |𝜏 ′)
𝜌 |𝜌 ′
≈ (𝜏0 |𝜏 ′0). (c) If (𝜎 |𝜎 ′)

𝜋 |𝜋 ′
≈ (𝜎0 |𝜎 ′0) then ⟨𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩

𝜑Z=⇒  iff

⟨𝐶𝐶, 𝜎0 |𝜎 ′0, 𝜇 |𝜇′⟩
𝜑Z=⇒  .

Proof. Similar to the proof of Lemma A.6. For the one-sided biprogram transition rules like

bComL, the argument makes direct use of Lemma A.6. Explicit side conditions of rules bSync and

bSyncX ensure that ⌊𝑚()⌋ transitions only by bCall, bCallX, or bCall0.

A configuration for (𝐶 |𝐷) with 𝐶 . skip takes a step via either bComL or bComLX depending

whether 𝐶 faults or steps; and these are mutually exclusive according to a result about the unary

transition relation. A configuration for (skip|𝐷) with 𝐷 . skip goes via either bComR0 or bComRX,

depending on whether 𝐷 faults or not. A configuration for (𝐶 |⊲𝐷) goes via bComR or bComRX. The

slightly intricate formulation of the rules for bi-com is necessitated by the need for determinacy

and liveness.

Similarly, the rules for bi-while in Fig. 28 are formulated to be rule deterministic, e.g., bWhR is

only enabled if bWhL is not. □

Projection and embedding: between unary and biprogram traces. It is convenient to classify the

biprogram transition rules as follows. Leaving aside bSeq and bSeqX, all the other biprogram rules

apply to a non-sequence biprogram of some form. Rules bComL and bWhL take left-only steps,

leaving the right side unchanged, whereas bComR, bComR0, and bWhR take right-only steps. All

the other rules are for both-sides steps or faulting steps.

Lemma 7.8 (trace projection). Suppose 𝜑 is a pre-model. Then the following hold. (a) For any

step ⟨𝐵𝐵, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ 𝜑Z=⇒ ⟨𝐶𝐶, 𝜏 |𝜏 ′, 𝜈 |𝜈 ′⟩, either
• ⟨↼−𝐵𝐵, 𝜎, 𝜇⟩ 𝜑0↦−→ ⟨↼−𝐶𝐶, 𝜏, 𝜈⟩ and ⟨−⇀𝐵𝐵, 𝜎 ′, 𝜇′⟩ 𝜑1↦−→ ⟨−⇀𝐶𝐶, 𝜏 ′, 𝜈 ′⟩, or
• ⟨↼−𝐵𝐵, 𝜎, 𝜇⟩ = ⟨↼−𝐶𝐶, 𝜏, 𝜈⟩ and ⟨−⇀𝐵𝐵, 𝜎 ′, 𝜇′⟩ 𝜑1↦−→ ⟨−⇀𝐶𝐶, 𝜏 ′, 𝜈 ′⟩, or
• ⟨↼−𝐵𝐵, 𝜎, 𝜇⟩ 𝜑0↦−→ ⟨↼−𝐶𝐶, 𝜏, 𝜈⟩ and ⟨−⇀𝐵𝐵, 𝜎 ′, 𝜇′⟩ = ⟨−⇀𝐶𝐶, 𝜏 ′, 𝜈 ′⟩.

(b) For any trace𝑇 via

𝜑Z=⇒, there are unique traces𝑈 via
𝜑0↦−→ and𝑉 via

𝜑1↦−→, and schedule 𝑙, 𝑟 , such

that align(𝑙, 𝑟 ,𝑇 ,𝑈 ,𝑉 ).
(c) If Active(𝐵𝐵) ≡ T𝐵U for some 𝐵, then ⟨↼−𝐵𝐵, 𝜎, 𝜇⟩ 𝜑0↦−→ ⟨↼−𝐶𝐶, 𝜏, 𝜈⟩ and ⟨−⇀𝐵𝐵, 𝜎 ′, 𝜇′⟩ 𝜑1↦−→ ⟨−⇀𝐶𝐶, 𝜏 ′, 𝜈 ′⟩.

Proof. Part (a) is by case analysis of the biprogram transition rules. For the rules bCallS and

bCallX, observe that the condition (unary compatibility) ensures that the unary steps can be

taken. For rule bCall0, the biprogram transition is a stutter, with both ⟨↼−𝐵𝐵, 𝜎, 𝜇⟩ = ⟨↼−𝐶𝐶, 𝜏, 𝜈⟩ and
⟨−⇀𝐵𝐵, 𝜎, 𝜇⟩ = ⟨−⇀𝐶𝐶, 𝜏, 𝜈⟩. Indeed, either the left or right step is in the transition relation (or both),

via the unary rule uCall0 for empty model, owing to Lemma 7.5.

In all other cases, it is straightforward to check that the rule corresponds to a unary step on one

or both sides, and in case it is a step on just one side the other side remains unchanged. Note that it

can happen that a step changes nothing: in the unary transition relation, this happens for empty

model of a context call, e.g., biprogram step via bComL using unary transition uCall0.
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For part (b) the proof goes by induction on 𝑇 and case analysis on the rule by which the last

step was taken. Recall that traces are indexed from 0. The base case is 𝑇 comprised of a single

configuration, 𝑇0. Let 𝑈 be
↼−
𝑇0 , 𝑉 be

−⇀
𝑇0 , and let both 𝑙 and 𝑟 be the singleton mapping {0 ↦→ 0}.

For the induction step, suppose 𝑇 has length 𝑛 + 1 and let 𝑆 be the prefix including all but the last

configuration 𝑇𝑛 . By induction hypothesis we get 𝑙, 𝑟 ,𝑈 ,𝑉 such that align(𝑙, 𝑟 , 𝑆,𝑈 ,𝑉 ). There are
three sub-cases, depending on whether the step from 𝑇𝑛−1 to 𝑇𝑛 is a left-only step (rule bComL or

bWhL), or right-only, or both sides. In the case of left-only, let𝑈 ′ be𝑈
↼−
𝑇𝑛 , let 𝑙

′
be 𝑙 ∪ {𝑛 ↦→ 𝑙𝑒𝑛(𝑈 )},

and let 𝑟 ′ be 𝑟 ∪ {𝑛 ↦→ 𝑙𝑒𝑛(𝑉 ) − 1}. Then align(𝑙 ′, 𝑟 ′,𝑇 ,𝑈 ′,𝑉 ). The other two sub-cases are similar.

Part (c) holds because one-sided steps are taken only by transition rules bComL, bComR, bComR0,

bWhL, and bWhR, none of which are applicable to fully aligned programs. □

Lemma C.9 (trace embedding). Suppose 𝜑 is a pre-model. Let cfg be a biprogram configuration.

Let 𝑈 be a trace via 𝜑0 from

↼−
cfg, and 𝑉 via 𝜑1 from

−⇀
cfg. Then there is trace 𝑇 via 𝜑 from cfg and

traces𝑊 from

↼−
cfg and 𝑋 from

−⇀
cfg and 𝑙, 𝑟 with align(𝑙, 𝑟 ,𝑇 ,𝑊 ,𝑋 ), such that either

(a) 𝑈 ≤𝑊 and 𝑉 ≤ 𝑋
(b) 𝑈 ≤𝑊 and 𝑋 < 𝑉 and𝑊 faults next and so does 𝑇 ,

(c) 𝑉 ≤ 𝑋 and𝑊 < 𝑈 and 𝑋 faults next and so does 𝑇 ,

(d) 𝑊 < 𝑈 or 𝑋 < 𝑉 and the last configuration of 𝑇 faults, via one of the rules bCallX, bIfX, or

bWhX, i.e., alignment fault.

Proof. First we make some preliminary observations about the possibilities for a single step.

Let cfg be ⟨𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ such that cfg does not fault next and𝐶𝐶 . ⌊skip⌋ so there is a next step.
By rule determinacy (Lemma C.8(a)), there is a unique applicable transition rule. That rule may be

a left-only, right-only, or both-sides step, as per Lemma 7.8(a). For all but one of the biprogram

transition rules, the form of the rule determines whether its transitions are left-, right-, or both-sides.

The one exception is bCall0: in case of a transition by this rule, at least one of the unary parts can

take a transition, owing to Lemma 7.5, but whether it is left, right, or both depends on the unary

models and the states.

For left-only transitions, the applicable rules are bComL and bWhL. In case of bWhL,
↼−
𝐶𝐶 is a loop

with test true in 𝜎 and ⟨↼−𝐶𝐶, 𝜎, 𝜇⟩ takes a deterministic step, unrolling the loop and leaving the state

and environment unchanged. In case of bComL, 𝐶𝐶 ≡ (𝐶 |𝐶′) for some 𝐶,𝐶′ with 𝐶 . skip, and

⟨𝐶, 𝜎, 𝜇⟩ can step via
𝜑0↦−→ to some ⟨𝐷, 𝜏, 𝜈⟩ where 𝜏 may be nondeterministically chosen in case𝐶 is

an allocation or a context call. (If 𝜈 differs from 𝜇 it is because𝐶 is a let command and its transition is

deterministic.) For any choice of 𝜏 , rule bComL allows ⟨(𝐶 |𝐶′), 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ 𝜑Z=⇒ ⟨(𝐷 |⊲𝐶′), 𝜏 |𝜎 ′, 𝜈 |𝜇′⟩
(or (𝐷 |skip) if 𝐶′ is skip). For right-only transitions, the applicable rules are bComR, bComR0, and

bWhR, which are similar to the left-only ones.

The remaining transitions are both-sides. By cases on the many applicable both-sides rules, we

find in each case that: (i) the left and right projections have successors under
𝜑0↦−→, 𝜑1↦−→ and (ii) if

⟨↼−𝐶𝐶, 𝜎, 𝜇⟩ 𝜑0↦−→ ⟨𝐷, 𝜏, 𝜈⟩ and ⟨−⇀𝐶𝐶, 𝜎 ′, 𝜇′⟩ 𝜑1↦−→ ⟨𝐷 ′, 𝜏 ′, 𝜈 ′⟩ then there is some 𝐷𝐷 with
↼−−
𝐷𝐷 ≡ 𝐷 ,

−−⇀
𝐷𝐷 ≡ 𝐷 ′, and ⟨𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ 𝜑Z=⇒ ⟨𝐷𝐷, 𝜏 |𝜏 ′, 𝜈 |𝜈 ′⟩. Note that, as in the one-sided cases, 𝜏 and/or

𝜏 ′ may be nondeterministically chosen (e.g., in the case of bSync), and any such choices can also

be used for the biprogram transition. In case the active command of cfg is a sync’d conditional or

loop, the applicable rules include ones like bIfTT that have corresponding unary transitions, but

also the rules bIfX and bWhX in which the biprogram faults although the left and right projections

can continue.

For a both-sides step by rule bCallS we rely on condition (relational compatibility) in Def. 7.4

of pre-model, to ensure that the two unary results 𝜏, 𝜏 ′ can be combined to an outcome 𝜏 |𝜏 ′ from
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𝜑2 (𝑚)—since otherwise the biprogram configuration faults via bCallX, contrary to the hypothesis

of our preliminary observation above that cfg does not fault.

To prove the lemma, we construct 𝑇,𝑊 ,𝑋 by iterating the preceding observations, choosing the

left and right unary steps in accord with𝑈 and 𝑉 , unless and until those traces are exhausted. If

needed,𝑊 (resp. 𝑋 ) is extended beyond𝑈 (resp. 𝑉 ).

Let us describe the construction in more detail, as an iterative procedure in which 𝑙, 𝑟 ,𝑊 ,𝑋,𝑇 are

treated as mutable variables, and there is an additional variable 𝑘 . Initialize𝑊,𝑋,𝑇 to the singleton

traces

↼−
cfg,

−⇀
cfg, and cfg respectively. Initially let 𝑘 := 0. Let 𝑙 and 𝑟 both be the singleton mapping

{0 ↦→ 0}. The loop maintains this invariant:

align(𝑙, 𝑟 ,𝑇 ,𝑊 ,𝑋 ) and (𝑈 ≤𝑊 ∨𝑊 ≤ 𝑈 ) and (𝑉 ≤ 𝑋 ∨ 𝑋 ≤ 𝑉 )
𝑙𝑒𝑛(𝑇 ) = 𝑘 + 1 and 𝑙𝑒𝑛(𝑊 ) = 𝑙 (𝑘) + 1 and 𝑙𝑒𝑛(𝑋 ) = 𝑟 (𝑘) + 1

Thus the last configurations of 𝑇,𝑊 ,𝑋 are indexed 𝑘, 𝑙 (𝑘), 𝑟 (𝑘) respectively.
• While (𝑈 ≰ 𝑊 or 𝑉 ≰ 𝑋 ) and neither𝑊 , 𝑋 , nor 𝑇 faults next, do the following updates,

defined by cases on whether 𝑇𝑘 is left-only, right-only, or both-sides.

For left-only: update 𝑙, 𝑟 ,𝑊 ,𝑇 as follows:

• set 𝑙 (𝑘 + 1) := 𝑙 (𝑘) + 1, 𝑟 (𝑘 + 1) := 𝑟 (𝑘)
• if𝑊 < 𝑈 , set𝑊 :=𝑊 ·𝑈𝑙 (𝑘 ) ; otherwise extend𝑊 by a choosen successor of𝑊𝑙 (𝑘 )
• set 𝑇 := 𝑇 · cfg′ where cfg

′
is determined by the configuration added to 𝑊 , in accord

with the preliminary observations above. Note in particular that 𝑇𝑘 does not fault due to

failed alignment condition, i.e., by rules bIfX, bCallX, or bWhX, because if it does the loop

terminates.

For right-only: update 𝑙, 𝑟 , 𝑋,𝑇 as follows:

• set 𝑙 (𝑘 + 1) := 𝑙 (𝑘), 𝑟 (𝑘 + 1) := 𝑟 (𝑘) + 1

• set 𝑋 := 𝑋 ·𝑉𝑟 (𝑘 ) if 𝑋 < 𝑉 , otherwise extend 𝑋 with a choosen successor of 𝑋𝑟 (𝑘 )
• set 𝑇 := 𝑇 · cfg′ where cfg′ is determined by the configuration added to 𝑋 .

For both-sides steps, set 𝑙 (𝑘 + 1) := 𝑙 (𝑘) + 1, 𝑟 (𝑘 + 1) := 𝑟 (𝑘) + 1, and update𝑊,𝑋,𝑇 similarly to

the preceding cases, in accord with the preliminary observations.

To see that the invariants hold following these updates, note that the invariant implies
↼−
𝑇𝑘 =𝑊𝑙 (𝑘 )

and
−⇀
𝑇𝑘 = 𝑋𝑟 (𝑘 ) . Then by construction we get a match for the new configuration:

↼−−
𝑇𝑘+1 =𝑊𝑙 (𝑘+1) and−−⇀

𝑇𝑘+1 = 𝑋𝑟 (𝑘+1) .
The loop terminates, because each iteration decreases the natural number

(2 × (𝑙𝑒𝑛(𝑊 ) .− 𝑙𝑒𝑛(𝑈 )) + (𝑙𝑒𝑛(𝑋 ) .− 𝑙𝑒𝑛(𝑉 )) + (1 if “active cmd is bi-com” else 0)

Here 𝑛
.− 𝑚 means subtraction but 0 if𝑚 > 𝑛. The term (1 if “active cmd is bi-com” else 0) is

needed in case 𝑙𝑒𝑛(𝑊 ) > 𝑙𝑒𝑛(𝑈 ) and a left-only step must be taken before the next step happens

on the right. The factor 2× compensates for that term. (Alternatively, a lexicographic order can be

used.)

Now we can prove the lemma. If the loop terminates because condition 𝑈 ≰𝑊 ∨𝑉 ≰ 𝑋 is false

then we have condition (a) of the Lemma. If it terminates because𝑊 faults next then we have (b),

using invariants 𝑈 ≤ 𝑊 ∨𝑊 ≤ 𝑈 and 𝑉 ≤ 𝑋 ∨ 𝑋 ≤ 𝑉 , noting that we cannot have𝑊 < 𝑈 if

𝑊 faults next, owing to fault determinacy of unary transitions (a corollary mentioned following

Lemma A.6). Similarly, we get (c) if it terminates because 𝑋 faults next. If it terminates because 𝑇

faults, but the other cases do not hold, then we have (d) owing to the invariants 𝑈 ≤𝑊 ∨𝑊 ≤ 𝑈
and 𝑉 ≤ 𝑋 ∨ 𝑋 ≤ 𝑉 . □
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Definition C.10 (denotation of biprogram J Γ |Γ′ ⊢ 𝐶𝐶 K ). Suppose 𝐶𝐶 is wf in Γ |Γ′ and 𝜑 is

a pre-model that includes all methods called in 𝐶 . Let J Γ |Γ′ ⊢ 𝐶𝐶 K𝜑 to be the function of type

J Γ K × J Γ′ K→ P(J Γ K × J Γ′ K) ∪ { } defined by

J Γ |Γ′ ⊢ 𝐶𝐶 K𝜑 (𝜎 |𝜎 ′) =̂ {(𝜏 |𝜏 ′) | ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩}
∪ ({ } if ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗  else ∅)

Given a pre-model 𝜑 , biprogram𝐶𝐶 , and relational formula R, and method name𝑚 not called in

𝐶𝐶 and not in dom (𝜑), one can extend the bi-model 𝜑2 by

¤𝜑2 (𝑚) (𝜎 |𝜎 ′) =̂ ({ } if ¬∃𝜋. 𝜎 |𝜎 ′ |=𝜋 R else J𝐶𝐶 K𝜑 (𝜎 |𝜎 ′)) (54)

To be precise, if precondition R has spec-only variables 𝑠, 𝑠′ on left and right, the condition should

say there are no values for these that satisfy: ¬∃𝜋, 𝑣, 𝑣 ′ . 𝜎 |𝜎 ′ |=𝜋 R𝑠,𝑠
′

𝑣,𝑣′
.

Lemma C.11 (denoted relational model). (i) Suppose 𝜑 is a relational pre-model that includes

all the methods in context calls in𝐶𝐶 , and suppose𝑚 is not in 𝜑 . Suppose R ⇒ ⟨[𝑅⟨] ∧ [⟩𝑅′]⟩ is valid.
Let ¤𝜑 extend 𝜑 with ¤𝜑2 (𝑚) given by (54), ¤𝜑0 (𝑚) given by Equation (42) for

↼−
𝐶𝐶, 𝑅, and ¤𝜑1 (𝑚) given

by (42) for
−⇀
𝐶𝐶, 𝑅′. Then ( ¤𝜑0, ¤𝜑1, ¤𝜑2) is a pre-model.

(ii) Suppose, in addition , that Φ |= 𝐶𝐶 : R ≈> S [𝜂 |𝜂′]. Suppose ¤Φ extends Φ with ¤Φ0 (𝑚) = 𝑅 {
𝑆 [𝜂], ¤Φ1 (𝑚) = 𝑅′ { 𝑆 ′ [𝜂′], and ¤Φ2 (𝑚) = R ≈> S [𝜂 |𝜂′] such that ¤Φ is wf. If ¤𝜑0 (𝑚) and ¤𝜑1 (𝑚) are
models for 𝑅 { 𝑆 [𝜂] and 𝑅′ { 𝑆 ′ [𝜂′] respectively, then ¤𝜑 is a ¤Φ-model.

Proof. (i) To show ¤𝜑2 (𝑚) is a pre-model (Def. 7.4), the fault, state, and divergence determinacy

conditions follow from quasi-determinacy Lemma C.8 (cf. remark following projection Lemma 7.8).

Next we show unary compatibility, i.e., 𝜏 |𝜏 ′ ∈ ¤𝜑2 (𝑚) (𝜎 |𝜎 ′) implies 𝜏 ∈ ¤𝜑0 (𝑚) (𝜎). and 𝜏 ′ ∈
¤𝜑1 (𝑚) (𝜎 ′). Now 𝜏 |𝜏 ′ ∈ ¤𝜑2 (𝑚) (𝜎 |𝜎 ′) iff ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩

𝜑Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩ and by projection

Lemma 7.8 that implies ⟨↼−𝐶𝐶, 𝜎, _⟩ 𝜑0↦−→∗ ⟨skip, 𝜏, _⟩ whence 𝜏 ∈ ¤𝜑0 (𝑚) (𝜎) provided that 𝜎 |= 𝑅
(mut. mut. for the right side). Since 𝜏 |𝜏 ′ ∈ ¤𝜑2 (𝑚) (𝜎 |𝜎 ′), there is some 𝜋 for which (𝜎 |𝜎 ′) satisfies
R, and by validity of R ⇒ ⟨[𝑅⟨] ∧ [⟩𝑅′]⟩ this implies 𝜎 |= 𝑅. Similarly for the right side.

For fault compatibility, suppose  ∈ ¤𝜑0 (𝑚) (𝜎) or  ∈ ¤𝜑1 (𝑚) (𝜎 ′). Then either 𝜎 ̸ |= 𝑅 or 𝜎 ′ ̸ |= 𝑅′,
by definitions, whence 𝜎 |𝜎 ′ ̸ |= R owing to validity of R ⇒ ⟨[𝑅⟨] ∧ [⟩𝑅′]⟩. So  ∈ ¤𝜑2 (𝑚) (𝜎 |𝜎 ′) as
required.

To show relational compatibility, suppose 𝜏 ∈ ¤𝜑0 (𝑚) (𝜎) and 𝜏 ′ ∈ ¤𝜑1 (𝑚) (𝜎 ′). We need ¤𝜑2 (𝑚)
to contain either  or (𝜏 |𝜏 ′). If there is no 𝜋 with 𝜎 |𝜎 ′ |=𝜋 R then ¤𝜑2 (𝑚) is { } and we are done.

Otherwise, from 𝜏 ∈ ¤𝜑0 (𝑚) (𝜎) and 𝜏 ′ ∈ ¤𝜑1 (𝑚) (𝜎 ′) we have traces ⟨𝐶, 𝜎, _⟩ 𝜑0↦−→∗ ⟨skip, 𝜏, _⟩ and
⟨𝐶′, 𝜎 ′, _⟩ 𝜑1↦−→∗ ⟨skip, 𝜏 ′, _⟩. By embedding Lemma C.9, we get that either ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗
⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩ or else ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩ faults due to alignment conditions. Either way we are

done showing that ( ¤𝜑0, ¤𝜑1, ¤𝜑2) is a pre-model.

(ii) Suppose that Φ |= 𝐶𝐶 : R ≈> S [𝜂 |𝜂′]. The conditions of Def. 7.9 for ¤𝜑2 (𝑚) with respect to

R ≈> S [𝜂] are direct consequences of Φ |= 𝐶𝐶 : R ≈> S [𝜂 |𝜂′] and (54). □

Theorem 7.11 (adeqacy). Consider a valid judgment Φ |=
𝑀
𝐶𝐶 : P ≈> Q [𝜀 |𝜀′]. Consider any

Φ-model 𝜑 and any 𝜎, 𝜎 ′, 𝜋 with 𝜎 |𝜎 ′ |=𝜋 P. If ⟨↼−𝐶𝐶, 𝜎, _⟩ 𝜑0↦−→∗ ⟨skip, 𝜏, _⟩ and ⟨−⇀𝐶𝐶, 𝜎 ′, _⟩ 𝜑1↦−→∗
⟨skip, 𝜏 ′, _⟩ then 𝜏 |𝜏 ′ |=𝜋 Q. Moreover, all executions from ⟨↼−𝐶𝐶, 𝜎, _⟩ and from ⟨−⇀𝐶𝐶, 𝜎 ′, _⟩ satisfy
Safety, Write, R-safe, and Encap in Def. 5.10.

Proof. Let𝑈 ,𝑉 be the traces and let 𝑇 be the biprogram trace given by embedding Lemma C.9.

The judgment for 𝐶𝐶 is applicable to 𝑇 , so cases (b), (c), and (d) in the Lemma are ruled out—𝑇

cannot fault. The remaining case is (a), that is, 𝑇 covers every step of 𝑈 and 𝑉 . If 𝑈 and 𝑉 are
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rEmbS

Φ0 ⊢ 𝐴 : 𝑃 { 𝑄 [𝜀 ] Φ1 ⊢ 𝐴 : 𝑃 ′ { 𝑄 ′ [𝜀′ ]
Φ ⊢ ⌊𝐴⌋ : ⟨[𝑃 ⟨] ∧ [⟩𝑃 ′]⟩ ≈> ⟨[𝑄 ⟨] ∧ [⟩𝑄 ′]⟩ [𝜀 |𝜀′ ]

rSeq

Φ ⊢ 𝐶𝐶1 : P ≈> P1 [𝜀1 |𝜀′1 ] Φ ⊢ 𝐶𝐶2 : P1 ≈> Q [𝜀2 |𝜀′2 ] 𝜀2 is
↼−P /𝜀1-immune 𝜀′

2
is
−⇀
𝑃 /𝜀′

1
-immune

Φ ⊢ 𝐶𝐶1 ;𝐶𝐶2 : P ≈> Q [𝜀1, 𝜀2 |𝜀′1, 𝜀′2 ]

rIf

Φ ⊢𝑀 𝐶𝐶 : P ∧ ⟨[𝐸⟨] ∧ [⟩𝐸′]⟩ ≈> Q [𝜀 |𝜀′ ] Φ ⊢𝑀 𝐷𝐷 : P ∧ ⟨[¬𝐸⟨] ∧ [⟩¬𝐸′]⟩ ≈> Q [𝜀 |𝜀′ ]
P ⇒ 𝐸 ¥= 𝐸′ 𝛿 = (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 ) ) 𝛿 ·/. r2w (ftpt (𝐸 ) ) 𝛿 ·/. r2w (ftpt (𝐸′ ) )

Φ ⊢𝑀 if 𝐸 |𝐸′ then𝐶𝐶 else 𝐷𝐷 : P ≈> Q [𝜀, ftpt (𝐸 ) |𝜀′, ftpt (𝐸′ ) ]

rWhile

Φ ⊢ 𝐶𝐶 : Q ∧ ¬P ∧ ¬P′ ∧ ⟨[𝐸⟨] ∧ [⟩𝐸′]⟩ ≈> Q [𝜀 |𝜀′ ]
Φ ⊢ (↼−𝐶𝐶 |skip) : Q ∧ P ∧ ⟨[𝐸⟨] ≈> Q [𝜀 |•] Φ ⊢ (skip |−⇀𝐶𝐶 ) : Q ∧ P′ ∧ [⟩𝐸′]⟩ ≈> Q [• |𝜀′ ]
(+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 ) ) ·/. r2w (ftpt (𝐸 ) ) (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 ) ) ·/. r2w (ftpt (𝐸′ ) )
Q ⇒ 𝐸 ¥= 𝐸′ ∨ (P ∧ ⟨[𝐸⟨] ) ∨ (P′ ∧ [⟩𝐸′]⟩) 𝜀 is

↼−Q /𝜀-immune 𝜀′ is
−⇀Q /𝜀′-immune

Φ ⊢ while 𝐸 |𝐸′ · P |P′ do𝐶𝐶 : Q ≈> Q ∧ ⟨[¬𝐸⟨] ∧ [⟩¬𝐸′]⟩ [𝜀, ftpt (𝐸 ) |𝜀′, ftpt (𝐸′ ) ]

rIf4

Φ ⊢𝑀 (𝐶 |𝐶
′ ) : P ∧ ⟨[𝐸⟨] ∧ [⟩𝐸′]⟩ ≈> Q [𝜀 |𝜀′ ] Φ ⊢𝑀 (𝐶 |𝐷

′ ) : P ∧ ⟨[𝐸⟨] ∧ [⟩¬𝐸′]⟩ ≈> Q [𝜀 |𝜀′ ]
Φ ⊢𝑀 (𝐷 |𝐶

′ ) : P ∧ ⟨[¬𝐸⟨] ∧ [⟩𝐸′]⟩ ≈> Q [𝜀 |𝜀′ ] Φ ⊢𝑀 (𝐷 |𝐷
′ ) : P ∧ ⟨[¬𝐸⟨] ∧ [⟩¬𝐸′]⟩ ≈> Q [𝜀 |𝜀′ ]

𝛿 = (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 ) ) 𝛿 ·/. r2w (ftpt (𝐸 ) ) 𝛿 ·/. r2w (ftpt (𝐸′ ) )
Φ ⊢𝑀 (if 𝐸 then𝐶 else 𝐷 | if 𝐸′ then𝐶′ else 𝐷 ′ ) : P ≈> Q [𝜀, ftpt (𝐸 ) |𝜀′, ftpt (𝐸′ ) ]

rVar

Φ ⊢Γ,𝑥 :𝑇 |Γ′,𝑥 ′ :𝑇 ′ 𝐶𝐶 : P ≈> Q [𝜀 |𝜀′ ]

Φ ⊢Γ |Γ′ var 𝑥 :𝑇 |𝑥 ′:𝑇 ′ in𝐶𝐶 : P ∧ ⟨[𝑥 = default (𝑇 ) ⟨] ∧ [⟩𝑥 ′ = default (𝑇 ′ )]⟩ ≈> Q [𝜀 |𝜀′ ]

Fig. 38. Relational proof rules omitted from Fig. 30.

terminated then so is𝑇 , whence the postcondition holds, and the Write condition holds, by validity

of the judgment. Regardless of termination, we also get the unary Safety and Encap conditions for

𝑈 and 𝑉 , by definitions since every step is covered by 𝑇 . □

D APPENDIX: RELATIONAL LOGIC AND ITS SOUNDNESS (RE SECTION 8)

Theorem 8.1 (soundness of relational logic). All the relational proof rules are sound (Figure 30

and appendix Figure 38).

Section D.1 presents relational proof rules omitted from the body of the article. Section D.2

proves the crucial lockstep alignment lemma. The soundness proofs comprise subsections D.3–D.11;

these are largely independent and need not be read in any particular order.

D.1 Additional rules

Figure 38 presents the proof rules omitted in the body of the article.

Rule rIf is typical of relational Hoare logics, with the addition of side conditions to ensure

encapsulation. Similarly, rules rSeq and rWhile have the same immunity conditions as their unary

counterparts. Rules rWhile and rSeq are slightly simplified from the general rules, for clarity.

The general rules should include an initial snapshot 𝑟 = alloc, and region 𝐻 and field list 𝑓 , with

conditions to ensure that 𝐻 contains only freshly allocated objects so writes of 𝐻 ‘𝑓 can be omitted

from the frame condition. This caters for writes to locations allocated in the first command of

a sequence, or previous iterations of a loop, just as it is done in the unary Seq and While rules

(Fig. 35). (The details are justified in RLI, though in RLI the rules are slightly more succinct owing

to use of freshness effect notation.)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2022.



A Relational Program Logic with Data Abstraction and Dynamic Framing [version with index] 1:109

Remark 10. As in the unaryWhile, the frame condition in rWhile needs to include the footprint

of the loop tests (ftpt (𝐸), ftpt (𝐸′)) as the behavior depends on them. Given that the alignment

guards P and P′ influence the bi-while transitions, one may expect that their footprints should

also be included. But the dependency of r-respect (Encap) is about execution on one side. The value

of 𝐸 (resp. 𝐸′) determines the control state (i.e., unfold the loop body or terminate) at the unary

level. By contrast, the value of P (resp. P′) determines the biprogram control state. This is reflected

in the unary control state, but during a one-sided iteration the other side stutters; and stuttering

transitions are removed (by projection, see Lemma 7.8) according to the definition of Encap in

Def. 7.10. □

Remark 11. Rule rWhile can be slightly strengthened to take into account that in our semantics,

to ensure quasi-determinacy, a right iteration only happens when the left guard or test is false.

We prefer the more symmetric phrasing of the rule: what matters is that one-sided executions

under their designated alignment guard maintain the invariant. The deterministic scheduling is a

technical artifact, just like the specific details of the dovetailed execution of the bi-com construct

are not important for reasoning. □

D.2 Proof of lockstep alignment lemma

Lemma 8.3. If 𝜏 |= snap(𝜀) and 𝜏→𝜐 |= 𝜀 then wlocs(𝜏, 𝜀)\rlocs(𝜐, 𝛿⊕) = rlocs(𝜐,Asnap(𝜀)\𝛿).

Proof. Assume 𝜏 |= snap(𝜀) and 𝜏→𝜐 |= 𝜀. The equality wlocs(𝜏, 𝜀)\rlocs(𝜐, 𝛿⊕) =

rlocs(𝜐,Asnap(𝜀)\𝛿) is between sets of locations, i.e., variables and heap locations. We consider the

two kinds of location in turn.

For variables, we have 𝑥 ∈ wlocs(𝜏, 𝜀)\rlocs(𝜐, 𝛿⊕) iff wr𝑥 is in 𝜀 and rd𝑥 is not in 𝛿⊕ , by
definitions. On the other hand, by definition of Asnap, we have 𝑥 ∈ rlocs(𝜐,Asnap(𝜀)\𝛿) iff rd𝑥 is

not in 𝛿 and wr𝑥 is in 𝜀 and 𝑥 . alloc. The conditions are equivalent.

For a heap locations, w.l.o.g. we assume 𝜀 and 𝛿 are in normal form and have exactly one read

and one write effect for each field. We are only concerned with writes in 𝜀 and reads in 𝛿 . Consider

any field name 𝑓 and suppose 𝜀 contains wr𝐺 ‘𝑓 and 𝛿 contains rd𝐻 ‘𝑓 for some 𝐺,𝐻 . Now for

location 𝑜.𝑓 we have

𝑜.𝑓 ∈ wlocs(𝜏, 𝜀)\rlocs(𝜐, 𝛿⊕)
⇐⇒ 𝑜 ∈ 𝜏 (𝐺)\𝜐 (𝐻 ) by defs wlocs, rlocs and normal form

⇐⇒ 𝑜 ∈ 𝜏 (𝑠𝐺,𝑓 )\𝜐 (𝐻 ) by 𝜏 |= snap(𝜀) we have 𝜏 (𝑠𝐺,𝑓 ) = 𝜏 (𝐺)
⇐⇒ 𝑜 ∈ 𝜐 (𝑠𝐺,𝑓 )\𝜐 (𝐻 ) by 𝜏→𝜐 |= 𝜀 and wr 𝑠𝐺,𝑓 ∉ 𝜀 have 𝜏 (𝑠𝐺,𝑓 ) = 𝜐 (𝑠𝐺,𝑓 )
⇐⇒ 𝑜 ∈ 𝜐 (𝑠𝐺,𝑓 \𝐻 ) by semantics of subtraction

On the other hand,

𝑜.𝑓 ∈ rlocs(𝜐,Asnap(𝜀)\𝛿)
⇐⇒ 𝑜.𝑓 ∈ rlocs(𝜐, (rd 𝑠𝐺,𝑓 ‘𝑓 \rd𝐻 ‘𝑓 )) by def Asnap and assumption about 𝐺,𝐻

⇐⇒ 𝑜.𝑓 ∈ rlocs(𝜐, rd (𝑠𝐺,𝑓 \𝐻 )‘𝑓 ) by effect subtraction

⇐⇒ 𝑜 ∈ 𝜐 (𝑠𝐺,𝑓 \𝐻 ) by def rlocs

The conditions are equivalent. □

Lemma 8.9 (lockstep alignment). Suppose

(i) Φ ⇛ LocEq𝛿 (Ψ) and 𝜑 is a Φ-model, where 𝛿 = (+𝑁 ∈ Ψ, 𝑁 ≠ 𝑀. bnd (𝑁 )).
(ii) 𝜎 |𝜎 ′ |=𝜋 𝑝𝑟𝑒 (locEq𝛿 (𝑃 { 𝑄 [𝜀])).
(iii) 𝑇 is a trace ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ and 𝐶 is let-free.

(iv) Let 𝑈 ,𝑉 be the projections of 𝑇 . Then 𝑈 (resp. 𝑉 ) is r-safe for (Φ0, 𝜀, 𝜎) (resp. for (Φ1, 𝜀, 𝜎
′))

and respects (Φ0, 𝑀, 𝜑0, 𝜀, 𝜎) (resp. (Φ1, 𝑀, 𝜑1, 𝜀, 𝜎
′)).
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Then there are 𝐵, 𝜌 with

(v) 𝐵𝐵 ≡ T𝐵U, 𝜌 ⊇ 𝜋 , and 𝜇 = 𝜇′,
(vi) Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎, 𝜏))\rlocs(𝜏, 𝛿⊕)), and
(vii) Lagree(𝜏 ′, 𝜏, 𝜌−1, (freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀) ∪ wrttn(𝜎 ′, 𝜏 ′))\rlocs(𝜏 ′, 𝛿⊕)).

Proof. As usual write �̂�, �̂� ′ for the extensions of 𝜎, 𝜎 ′ for the spec only variables of the precon-

dition, as per (ii).

We show that the conditions (v–vii) hold at every step within 𝑇 , by induction on steps.
47
One

might expect that the lemma could be simplified to simply say the conditions hold at every reachable

step, without mentioning traces, but we are assuming rather than proving that the r-safety and

r-respect conditions hold, so the present formulation seems more clear.

Base Case. For initial configuration ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩, we have freshL(𝜎, 𝜎) = ∅ = freshL(𝜎 ′, 𝜎 ′)
and wrttn(𝜎, 𝜎) = ∅ = wrttn(𝜎 ′, 𝜎 ′). From hypothesis (ii) of the Lemma, and the semantics of

the agreement formulas in the precondition, we get Agree(𝜎, 𝜎 ′, 𝜋, 𝜀←
𝛿
) and Agree(𝜎 ′, 𝜎, 𝜋−1, 𝜀←

𝛿
).

Unfolding definitions, we have proved the claim with 𝜌, 𝜏, 𝜏 ′ := 𝜋, 𝜎, 𝜎 ′.

Induction case. Suppose ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ 𝜑Z=⇒ ⟨𝐷𝐷, 𝜐 |𝜐′, 𝜈 |𝜈 ′⟩ as a prefix
of 𝑇 . By induction hypothesis we have 𝜇 = 𝜇′, 𝐵𝐵 = T𝐵U for some 𝐵 and for some 𝜌 ⊇ 𝜋 we have

Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎, 𝜏))\rlocs(𝜏, 𝛿⊕))
Lagree(𝜏 ′, 𝜏, 𝜌−1, (freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀) ∪ wrttn(𝜎 ′, 𝜏 ′))\rlocs(𝜏 ′, 𝛿⊕)) (55)

Without loss of generality, we assume that T𝐵U ≡ T𝐵0U;T𝐵1U, where Active(𝐵) ≡ 𝐵0. (Recall by

Lemma C.7 that ActiveT𝐵U = TActive𝐵U.)
To find 𝐷 and an extension of 𝜌 , such that the agreements for 𝜐 |𝜐′ and other conditions hold for

the step ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ 𝜑Z=⇒ ⟨𝐷𝐷, 𝜐 |𝜐′, 𝜈 |𝜈 ′⟩, we go by cases on the possible transition rules. The

fault rules are not relevant.

Cases bComL, bComR, bComR0, bWhL, and bWhR are not applicable to T𝐵U.
Case bSync. So 𝐵0 is an atomic command other than a method call and there are unary transitions

⟨𝐵0, 𝜏, 𝜇⟩ 𝜑0↦−→ ⟨skip, 𝜐, 𝜇⟩ and ⟨𝐵0, 𝜏
′, 𝜇′⟩ 𝜑1↦−→ ⟨skip, 𝜐′, 𝜇′⟩. The successor configuration has

𝐷𝐷 ≡ T𝐵1U and 𝜈 = 𝜇 = 𝜇′ = 𝜈 ′. Because the step is not a method call, the same transitions can be

taken via the other models, i.e., we have ⟨𝐵0, 𝜏, 𝜇⟩ 𝜑1↦−→ ⟨skip, 𝜐, 𝜇⟩ and ⟨𝐵0, 𝜏
′, 𝜇′⟩ 𝜑0↦−→ ⟨skip, 𝜐′, 𝜇′⟩.

Moreover, owing to the agreements, we can instantiate the left and right trace’s respect condition

(hypothesis (iv) of this Lemma). As we are considering a non-call command, the collective boundary

for r-respect is
¤𝛿 = (+𝑁 ∈ (Ψ, 𝜇), 𝑁 ≠ topm(𝐵,𝑀) . bnd (𝑁 )). By hypothesis (iii) of the Lemma,

𝐶 is let-free. So 𝜇 is empty. Moreover, there is no ecall in 𝐵, there being no environment calls

(and as always the starting command has no end markers), so topm(𝐵,𝑀) = 𝑀 . So the collective

boundary for r-respect is the 𝛿 assumed in the Lemma, i.e., 𝛿 = (+𝑁 ∈ Ψ, 𝑁 ≠ 𝑀. bnd (𝑁 )). Both
steps satisfy w-respect, i.e., do not write inside the boundary, owing to hypothesis (iv) of the

Lemma. Instantiating r-respect twice (with 𝜏, 𝜏 ′, 𝜑0, 𝜌 and with 𝜏 ′, 𝜏, 𝜑1, 𝜌
−1
), we have the allowed

dependences 𝜏, 𝜏 ′
𝜌
⇒𝜐,𝜐′ |=𝜎

𝛿
𝜀 and 𝜏 ′, 𝜏

𝜌−1

⇒𝜐′, 𝜐 |=𝜎 ′
𝛿
𝜀. Even more, r-respects applied to (55) gives

some ¤𝜌 and ¤𝜌 ′ with ¤𝜌 ⊇ 𝜌 and ¤𝜌 ′ ⊇ 𝜌−1
and the following four conditions:

Lagree(𝜐,𝜐′, ¤𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐))\rlocs(𝜐, 𝛿⊕))
¤𝜌 (freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿)) ⊆ freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿)
Lagree(𝜐′, 𝜐, ¤𝜌 ′, (freshL(𝜏 ′, 𝜐′) ∪ wrttn(𝜏 ′, 𝜐′))\rlocs(𝜐′, 𝛿⊕))
¤𝜌 ′ (freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿)) ⊆ freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿)

(56)

47
We are glossing over the local variables introduced by local blocks. To be precise, the initial states are both for Γ and

have no extra variables. The Lemma should have additional conclusion that Vars (𝜏 ) = Vars (𝜏 ′ ) , which becomes part of the

induction hypothesis, to account for possible addition of locals, which will be in freshL.
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By balanced symmetry Lemma A.3, we get

Lagree(𝜐′, 𝜐, ¤𝜌−1, (freshL(𝜏 ′, 𝜐′) ∪ wrttn(𝜏 ′, 𝜐′))\rlocs(𝜐′, 𝛿⊕))
¤𝜌 (freshL(𝜏,𝜐)\rlocs(𝜐, 𝛿)) = freshL(𝜏 ′, 𝜐′)\rlocs(𝜐′, 𝛿)

We can use preservation Lemma A.4 for these three sets of locations (which are subsets

of locations(𝜏)): rlocs(𝜎, 𝜀)\rlocs(𝜏, 𝛿⊕), wrttn(𝜎, 𝜏)\rlocs(𝜏, 𝛿⊕), and freshL(𝜎, 𝜏)\rlocs(𝜏, 𝛿⊕). By
Lemma A.4 we get

Lagree(𝜐,𝜐′, ¤𝜌, ((freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎, 𝜏))\rlocs(𝜏, 𝛿⊕))\rlocs(𝜐, 𝛿⊕))
So by the boundary monotonicity condition of Encap we have rlocs(𝜏, 𝛿⊕) ⊆ rlocs(𝜐, 𝛿⊕). Now
from this and (56), using freshL(𝜎,𝜐) = freshL(𝜎, 𝜏) ∪ freshL(𝜏,𝜐) and wrttn(𝜎,𝜐) ⊆ wrttn(𝜎, 𝜏) ∪
wrttn(𝜏,𝜐), we can combine the agreements together to get

Lagree(𝜐,𝜐′, ¤𝜌, (freshL(𝜎,𝜐) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎,𝜐))\rlocs(𝜐, 𝛿⊕))
With a similar argument we obtain the symmetric condition

Lagree(𝜐′, 𝜐, ¤𝜌−1, (freshL(𝜎 ′, 𝜐′) ∪ rlocs(𝜎 ′, 𝜀) ∪ wrttn(𝜎 ′, 𝜐′))\rlocs(𝜐′, 𝛿⊕))
which finishes this case for the induction step.

Case bCallS. So 𝐵0 is𝑚() for some𝑚, and (𝜐 |𝜐′) ∈ 𝜑2 (𝑚) (𝜏 |𝜏 ′). The successor configuration
has 𝐷𝐷 ≡ T𝐵1U and 𝜈 = 𝜇 = 𝜇′ = 𝜈 ′. Suppose Ψ(𝑚) is 𝑅 { 𝑆 [𝜂]. By the assumed r-safe condition

(hypothesis (iv) of the Lemma), we have rlocs(𝜏, 𝜂) ⊆ freshL(𝜎, 𝜏)∪rlocs(𝜎, 𝜀). Since𝜑2 (𝑚) (𝜏 |𝜏 ′) ≠  ,
there must be values for the spec-only variables 𝑡 of𝑚’s spec for which 𝜏 |𝜏 ′ satisfy the method’s

precondition, which by hypothesis (i) of the lemma implies the precondition of locEq𝛿 (Ψ(𝑚)). That
is, there are 𝑢 and 𝑢′ such that 𝜏 |𝜏 ′ |=𝜌 B𝑅 ∧ A(rds(𝜂)\𝛿⊕) ∧ B(𝑠𝑚

alloc
= alloc ∧ snap𝑚 (𝜂)), where

𝜏 = [𝜏+𝑡 :𝑢] and 𝜏 ′ = [𝜏 ′+𝑡 :𝑢′]. (Apropos the identifier 𝑠𝑚
alloc

see Footnote 38.) Since 𝜑 |= Φ and

(𝜐 |𝜐′) ∈ 𝜑2 (𝑚) (𝜏 |𝜏 ′), we get the postcondition of Φ(𝑚), which implies that of locEq𝛿 (Ψ(𝑚)). Hence
𝜐 |𝜐′ |=𝜌 ^(B𝑄 ∧ A𝜂→𝛿 ), where 𝜐 = [𝜐+𝑡 :𝑢], 𝜐′ = [𝜐′+𝑡 :𝑢′], and

𝜂→
𝛿
≡ (rd (alloc\𝑠𝑚

alloc
)‘any,Asnap𝑚 (𝜂))\𝛿 (57)

So by semantics of^ andA there is ¤𝜌 ⊇ 𝜌 withAgree(𝜐,𝜐′, ¤𝜌, 𝜂→
𝛿
) andAgree(𝜐′, 𝜐, ¤𝜌−1, 𝜂→

𝛿
). We have

freshL(𝜏,𝜐) = rlocs(𝜐, rd (alloc\𝑠𝑚
alloc
)‘any) and freshL(𝜏 ′, 𝜐′) = rlocs(𝜐′, rd (alloc\𝑠𝑚

alloc
)‘any). We

also have wrttn(𝜏,𝜐) ⊆ wlocs(𝜏, 𝜂) and wrttn(𝜏 ′, 𝜐′) ⊆ wlocs(𝜏 ′, 𝜂), from 𝜏→𝜐 |= 𝜂 and 𝜏 ′→𝜐′ |= 𝜂.
Furthermore, by Lemma 8.3, we have

wlocs(𝜏, 𝜂)\rlocs(𝜐, 𝛿⊕) = rlocs(𝜐,Asnap𝑚 (𝜂)\𝛿) ⊆ rlocs(𝜐, 𝜂→
𝛿
)

wlocs(𝜏 ′, 𝜂)\rlocs(𝜐′, 𝛿⊕) = rlocs(𝜐′,Asnap𝑚 (𝜂)\𝛿) ⊆ rlocs(𝜐′, 𝜂→
𝛿
)

So we have

Lagree(𝜐,𝜐′, ¤𝜌, (freshL(𝜏,𝜐) ∪ wrttn(𝜏,𝜐))\rlocs(𝜐, 𝛿⊕)) (58)

Lagree(𝜐′, 𝜐, ¤𝜌−1, (freshL(𝜏 ′, 𝜐′) ∪ wrttn(𝜏 ′, 𝜐′))\rlocs(𝜐′, 𝛿⊕)) (59)

Thus we have 𝜏, 𝜏 ′
𝜌
⇒𝜐,𝜐′ |=𝜎

𝛿
𝜂 and 𝜏 ′, 𝜏

𝜌−1

⇒𝜐′, 𝜐 |=𝜎 ′
𝛿
𝜂. Since rlocs(𝜎, 𝜀)\rlocs(𝜏, 𝛿⊕),

wrttn(𝜎, 𝜏)\rlocs(𝜏, 𝛿⊕) and freshL(𝜎, 𝜏)\rlocs(𝜏, 𝛿⊕) are subsets of locations(𝜏), using Lemma A.4,

from (55) we get

Lagree(𝜐,𝜐′, ¤𝜌, ((freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎, 𝜏))\rlocs(𝜏, 𝛿⊕))\rlocs(𝜐, 𝛿⊕))
By hypothesis (iv) of the Lemma, the steps satisfy boundary monotonicity, i.e., rlocs(𝜏, 𝛿) ⊆
rlocs(𝜐, 𝛿), which implies rlocs(𝜏, 𝛿⊕) ⊆ rlocs(𝜐, 𝛿⊕). Combining this with the agreements of (58),

we get

Lagree(𝜐,𝜐′, ¤𝜌, (freshL(𝜎,𝜐) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎,𝜐))\rlocs(𝜐, 𝛿⊕))
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With a similar argument using (59), we get the symmetric condition

Lagree(𝜐′, 𝜐, ¤𝜌−1, (freshL(𝜎 ′, 𝜐′) ∪ rlocs(𝜎 ′, 𝜀) ∪ wrttn(𝜎 ′, 𝜐′))\rlocs(𝜐′, 𝛿⊕))

which completes this case.

Case bCall0. So 𝐵0 is a context call𝑚() that stutters because the𝜑2 (𝑚) is empty. The agreements

are maintained, as nothing changes.

Case bVar. This relies on the additional condition that Vars(𝜏) = Vars(𝜏 ′), which can be included

in the induction hypothesis but is omitted for readability. We have that 𝐵0 is var 𝑥 :𝑇 in 𝐵2 for some

𝑥,𝑇 , 𝐵2, so T𝐵0U ≡ var 𝑥 :𝑇 |𝑥 :𝑇 in T𝐵2U. Because Vars(𝜏) = Vars(𝜏 ′), and using the assumption that

FreshVar depends only on Vars() of the state (Eqn. (39)), we have some𝑤 with𝑤 = FreshVar (𝜏) =
FreshVar (𝜏 ′). This ensures Vars(𝜐) = Vars(𝜐′), justifying the omitted induction hypothesis; the only

other change to variables is by dropping them, by bSync transition for ⌊evar(𝑤)⌋. The step from

var 𝑥 :𝑇 |𝑥 :𝑇 in T𝐵2U goes to ⟨T𝐵2U𝑥,𝑥𝑤,𝑤 ; ⌊evar(𝑤)⌋; T𝐵1U, 𝜐 |𝜐′, 𝜇 |𝜇′⟩ where 𝜐 = [𝜏+𝑤 : default (𝑇 )]
and 𝜐′ = [𝜏 ′+𝑤 ′: default (𝑇 ′)]. We get the agreements because nothing changes except the addition

of𝑤 with default value. We get the code alignment because T𝐵2U𝑥,𝑥𝑤,𝑤 ≡ T𝐵2

𝑥,𝑥
𝑤,𝑤U by definitions.

Cases bIfTT and bIfFF. So 𝐵0 has the form if 𝐸 then 𝐵2 else 𝐵3 and the successor configura-

tion has the form either T𝐵2U;T𝐵1U or T𝐵3U; T𝐵1U. Nothing else changes so the agreements are

maintained.

Cases bWhTT and bWhFF. So 𝐵0 has the formwhile 𝐸 do 𝐵2 and the successor configuration has

the form either T𝐵2U; T𝐵0U; T𝐵1U (for bWhTT) or T𝐵1U. Nothing else changes so the agreements

are maintained.

Case bCallE does not occur, because 𝐶 is let-free.

Case bLet does not occur, because 𝐶 is let-free. □

D.3 Soundness of rLocEq

rLocEq

Φ ⊢𝑀 𝐶 : 𝑃 { 𝑄 [𝜀]
𝑃 |= w2r (𝜀) ≤ rds(𝜀) 𝛿 = (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) 𝐶 is let-free

LocEq𝛿 (Φ) ⊢𝑀 T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀])
Let 𝜀←

𝛿
=̂ rds(𝜀)\𝛿⊕ as in Def. 8.4 of locEq𝛿 (𝑃 { 𝑄 [𝜀]). Let 𝜑 be a LocEq𝛿 (Φ)-model, i.e., 𝜑0

and 𝜑1 are Φ-models and 𝜑2 satisfies Φ2 which is given by applying the locEq𝛿 construction to each

spec in Φ as per Def. 8.4. In symbols: (𝜑0, 𝜑1, 𝜑2) |= (Φ,Φ, locEq𝛿 (Φ)). Suppose 𝑠 are the spec-only
variables of 𝑃 { 𝑄 [𝜀], and suppose 𝜎, 𝜎 ′ satisfy the precondition, for the unique snapshot values

𝑣 and 𝑣 ′ of 𝑠 on left and right (cf. Lemma C.1). That is,

�̂� |�̂� ′ |=𝜋 B𝑃 ∧ A𝜀←𝛿 ∧ B(𝑟 = alloc ∧ snap(𝜀)) where �̂� = [𝜎+𝑠: 𝑣] and �̂� ′ = [𝜎 ′+𝑠: 𝑣 ′] (60)

Notice that these assumptions entail hypotheses (i) and (ii) of Lemma 8.9, to which we will appeal

repeatedly. We instantiate Φ in the Lemma by LocEq𝛿 (Φ), and the initial states 𝜎 |𝜎 ′ satisfy the

requisite precondition.

Encap. Consider any trace𝑇 from ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩. Recall that (LocEq𝛿 (Φ))0 = Φ and (LocEq𝛿 (Φ))1 =
Φ. So according to Def. 7.10, we must prove that the projections 𝑈 (resp. 𝑉 ) of 𝑇 (by projec-

tion Lemma 7.8) satisfy r-safe for (Φ, 𝜀, 𝜎) (resp. (Φ, 𝜀, 𝜎 ′)), and respect for (Φ, 𝑀, 𝜑0, 𝜀, 𝜎) (resp.
(Φ, 𝑀, 𝜑1, 𝜀, 𝜎

′)). These are both traces of 𝐶 from 𝑃-states, and 𝜑0, 𝜑1 are Φ-models, so we get r-safe

and respect by two instantiations of the premise.

Write. A terminated trace via 𝜑 provides terminated unary traces via 𝜑0 and 𝜑1 The initial

states satisfy the precondition 𝑃 of the premise, and we get the Write property directly from two

instantiations of the premise.
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Safety. Suppose ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ 𝜑Z=⇒  . We can apply Lemma 8.9 to the

trace ending in 𝐵𝐵. The lemma requires the trace to satisfy exactly the r-safe and respects conditions

that are established above for Encap. By Lemma 8.9 there are 𝐵, 𝜌 with 𝐵𝐵 ≡ T𝐵U, 𝜌 ⊇ 𝜋 , 𝜇 = 𝜇′,

Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎, 𝜏))\rlocs(𝜏, 𝛿⊕))
Lagree(𝜏 ′, 𝜏, 𝜌−1, (freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀) ∪ wrttn(𝜎 ′, 𝜏 ′))\rlocs(𝜏 ′, 𝛿⊕)) (61)

We show that ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ does not fault, by contradiction, going by cases on the possible

transition rules that yield fault.

• bSyncX would give a unary fault via 𝜑0 or 𝜑1, contrary to the premise.

• bCallX applies if  is returned by 𝜑2 (𝑚), and because 𝜑2 is a context model, that means 𝜏 |𝜏 ′
falsifies the precondition for𝑚. Suppose that Φ(𝑚) = 𝑅 { 𝑆 [𝜂]. The precondition includes

B(𝑠𝑚
alloc

= alloc ∧ snap𝑚 (𝜂)), which uses spec-only variables that do not occur in 𝑅, 𝛿 , or 𝜂,

and which can be satisfied by values determined by 𝜏 |𝜏 ′. So for the precondition to be false

there must be no 𝜌,𝑢,𝑢′ such that 𝜌 ⊇ 𝜋 and 𝜏 |𝜏 ′ |=𝜌 B𝑅 ∧ Ards(𝜂)\𝛿⊕ where 𝜏 = [𝜏+𝑡 :𝑢]
and 𝜏 ′ = [𝜏 ′+𝑡 :𝑢′]. From fault and relational compatibility (Def. 7.4) we have

 ∈ 𝜑0 (𝑚) (𝜏) ∨  ∈ 𝜑1 (𝑚) (𝜏 ′) ∨ (𝜐 ∈ 𝜑0 (𝑚) (𝜏) ∧ 𝜐′ ∈ 𝜑1 (𝑚) (𝜏 ′))

From the premise, it is not the case that  ∈ 𝜑0 (𝑚) (𝜏) or  ∈ 𝜑1 (𝑚) (𝜏 ′), so there must

be 𝑢 and 𝑢′ such that 𝜏 |= 𝑅 ∧ 𝜏 ′ |= 𝑅 (with 𝜏, 𝜏, as above). (Note that 𝑢,𝑢′ are uniquely

determined, by Lemma 5.1.) Thus there is no 𝜌 ⊇ 𝜋 with 𝜏 |𝜏 ′ |=𝜌 Ards(𝜂)\𝛿⊕ . But from
R-safe condition of the premise we know that rlocs(𝜏, 𝜂) ⊆ freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀) and
rlocs(𝜏 ′, 𝜂) ⊆ freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀). So (61) implies Agree(𝜏, 𝜏 ′, 𝜌, 𝜂\(𝛿, rd alloc)) and
Agree(𝜏 ′, 𝜏, 𝜌−1, 𝜂\(𝛿, rd alloc)) which is a contradiction.

• In case bIfX, 𝐵 has the form (if 𝐸 then 𝐷0 else 𝐷1);𝐷2 for some 𝐷0, 𝐷1, 𝐷2.

To show that bIfX does not apply, we show that 𝜏 (𝐸) ≠ 𝜏 ′ (𝐸) cannot happen, by contradiction.
Suppose 𝜏 (𝐸) = true and 𝜏 ′ (𝐸) = false (a symmetric argument handles the case 𝜏 (𝐸) =
false and 𝜏 ′ (𝐸) = true). By unary semantics we have ⟨if 𝐸 then 𝐷0 else 𝐷1;𝐷2, 𝜏, 𝜇⟩ 𝜑0↦−→
⟨𝐷0;𝐷2, 𝜏, 𝜇⟩ and ⟨if 𝐸 then 𝐷0 else 𝐷1;𝐷2, 𝜏

′, 𝜇⟩ 𝜑1↦−→ ⟨𝐷1;𝐷2, 𝜏
′, 𝜇⟩. The latter step can

also be taken via 𝜑0 as it is not a call. By (61) we have

Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀←
𝛿
))\rlocs(𝜏, 𝛿⊕))

The r-respects condition for the left step is for the collective boundary (+𝑁 ∈ (Φ, 𝜇), 𝑁 ≠

topm(𝐵,𝑀). bnd (𝑁 )), but because 𝐶 is let-free, 𝜇 is empty and topm(𝐵,𝑀) is 𝑀 , so this

simplifies to 𝛿 . So we have the agreement in the antecedent for r-respects, and the other

antecedent is Agree(𝜏 ′, 𝜏 ′, 𝛿) which holds. So by r-respect from the premise, and instantiating

the alternate step as the one from 𝜏 ′, we can obtain 𝐷0;𝐷2 ≡ 𝐷1;𝐷2. This is false, because we

assume all subcommands are uniquely labeled and thus the label on 𝐷0 is distinct from the

one on 𝐷1. (See footnote 19 in Def. 3.3.)

• For bWhX, 𝐵 has the form while 𝐸 do 𝐷0;𝐷1 so T𝐵U is while 𝐸 |𝐸 · false|false do 𝐷0;T𝐷1U.
As the alignment guards are false, rule bWhX applies just if 𝜏 (𝐸) ≠ 𝜏 ′ (𝐸). We can show this

contradicts the premise for the same reasons as in the argument above for bIfX in the case

𝐷0 . 𝐷1 i.e. the conditional branches differ. We do not have to consider the situation where

the branches go different ways but the code is the same: if 𝜏 (𝐸) = true and 𝜏 ′ (𝐸) = false then

⟨while 𝐸 do 𝐷0;𝐷1, 𝜏, 𝜇⟩ 𝜑0↦−→ ⟨𝐷0;while 𝐸 do 𝐷0;𝐷1, 𝜏, 𝜇⟩ and ⟨while 𝐸 do 𝐷0;𝐷1, 𝜏
′, 𝜇⟩ 𝜑1↦−→

⟨𝐷1, 𝜏
′, 𝜇⟩ —the code is different, as needed to contradict r-respects in the premise.
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Post. Consider terminated trace ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩, for states 𝜏, 𝜏 ′. We must

prove 𝜏, 𝜏 ′ |=𝜋 ^(B𝑄 ∧ A𝜀→𝛿 ), where 𝜀
→
𝛿

=̂ (rd (alloc\𝑟 )‘any,Asnap(𝜀))\𝛿 with 𝜏 = [𝜏+𝑠: 𝑣] and
𝜏 ′ = [𝜏 ′+𝑠: 𝑣 ′] (with 𝑣, 𝑣 ′ as defined following (60)).

Recall that we have �̂� |�̂� ′ |=𝜋 B𝑃 ∧A𝜀←𝛿 ∧B(𝑠alloc = alloc∧ snap(𝜀)), where 𝜀←
𝛿

=̂ rds(𝜀)\𝛿⊕ (see
(60)). From (61) we get allowed dependences

𝜎, 𝜎 ′
𝜋⇒𝜏, 𝜏 ′ |=𝜎

𝛿
𝜀 and 𝜎 ′, 𝜎

𝜋−1

⇒𝜏 ′, 𝜏 |=𝜎 ′
𝛿
𝜀 (62)

Also, from Lemma 7.8 (projection lemma), we get two terminated traces of the premise. Thus we have

𝜏 |= 𝑄 and 𝜏 ′ |= 𝑄 . From �̂� |�̂� ′ |=𝜋 A𝜀←𝛿 and �̂� |�̂� ′ |=𝜋 B𝑃 and side condition 𝑃 |= w2r (𝜀) ≤ rds(𝜀)
we get �̂� |�̂� ′ |=𝜋 Aw2r (𝜀)\𝛿⊕ . This means, by semantics of A and definitions (noting that spec-only

variables are not among the agreeing locations) that

Lagree(𝜎, 𝜎 ′, 𝜋,wlocs(𝜎, 𝜀)\rlocs(𝜎, 𝛿⊕))
Lagree(𝜎 ′, 𝜎, 𝜋−1,wlocs(𝜎 ′, 𝜀)\rlocs(𝜎 ′, 𝛿⊕))

Now using (62), by preservation Lemma A.4, we get

Lagree(𝜏, 𝜏 ′, 𝜌,wlocs(𝜎, 𝜀)\rlocs(𝜎, 𝛿⊕)\rlocs(𝜏, 𝛿⊕))
Lagree(𝜏 ′, 𝜏, 𝜌−1,wlocs(𝜎 ′, 𝜀)\rlocs(𝜎 ′, 𝛿⊕)\rlocs(𝜏 ′, 𝛿⊕))

From Encap boundary monotonicity condition of the premise we get rlocs(𝜎, 𝛿) ⊆ rlocs(𝜏, 𝛿) and
rlocs(𝜎 ′, 𝛿) ⊆ rlocs(𝜏 ′, 𝛿). Thus the preceding agreements simplify to

Lagree(𝜏, 𝜏 ′, 𝜌,wlocs(𝜎, 𝜀)\rlocs(𝜏, 𝛿⊕))
Lagree(𝜏 ′, 𝜏, 𝜌−1,wlocs(𝜎 ′, 𝜀)\rlocs(𝜏 ′, 𝛿⊕))

Furthermore, by Lemma 8.3, we have wlocs(𝜎, 𝜀)\rlocs(𝜏, 𝛿⊕) = rlocs(𝜏,Asnap(𝜀)\𝛿) and also

wlocs(𝜎 ′, 𝜀)\rlocs(𝜏 ′, 𝛿⊕) = rlocs(𝜏 ′,Asnap(𝜀)\𝛿). Thus we get
Lagree(𝜏, 𝜏 ′, 𝜌, rlocs(𝜏,Asnap(𝜀)\𝛿))
Lagree(𝜏 ′, 𝜏, 𝜌−1, rlocs(𝜏 ′,Asnap(𝜀)\𝛿))

This means 𝜏 |𝜏 ′ |=𝜌 AAsnap(𝜀)\𝛿 .
Since freshL(𝜏,𝜐) = rlocs(𝜐, rd (alloc\𝑟 )‘any) and freshL(𝜏 ′, 𝜐′) = rlocs(𝜐′, rd (alloc\𝑟 )‘any), we

can use the agreements on fresh locations given by (62) to get 𝜏 |𝜏 ′ |=𝜌 A(rd (alloc\𝑟 )‘any)\𝛿 .
Combining what is proved above and using 𝜌 as witness of the existential in the semantics of ^,

we conclude the proof of Post: 𝜏 |𝜏 ′ |=𝜋 ^(B𝑄 ∧ A(rd (alloc\𝑟 )‘any,Asnap(𝜀)\𝛿)).
R-safe. By projection Lemma 7.8(c) there are unary executions that take the same unary steps.

The R-safe condition from the premise applies on both sides and yields R-safety for the conclusion.

D.4 Soundness of rSOF

rSOF

LocEq𝛿 (Φ,Θ) ⊢𝑀 T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀])
|= bnd (𝑁 ) |bnd (𝑁 ) frm N N ⇒ □N 𝑁 ≠ 𝑀

𝑁 ∈ Θ ∀𝑚 ∈ Φ. mdl(𝑚) ̸⪯ 𝑁 𝛿 = (+𝐿 ∈ (Φ,Θ), 𝐿 ≠ 𝑀. bnd (𝐿)) 𝐶 is let-free

LocEq𝛿 (Φ), LocEq𝛿 (Θ) ?N ⊢𝑀 T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀]) ?N
Before studying the following, readers are advised to be familiar with Sections D.2 and D.3.

To show soundness of rSOF, suppose the side conditions hold and the premise of the rule is

valid:

LocEq𝛿 (Φ,Θ) |=𝑀 T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀]) (63)

We must prove validity of the conclusion:

LocEq𝛿 (Φ), (LocEq𝛿 (Θ) ?N) |=𝑀 T𝐶U : locEq𝛿 (𝑃 { 𝑄 [𝜀]) ?N (64)
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To that end, consider an arbitrary model 𝜑+ of the relational context LocEq𝛿 (Φ), LocEq𝛿 (Θ) ?N .

To make use of the premise we define a model, 𝜑− , of LocEq𝛿 (Φ,Θ).
For𝑚 in Φ, the definition is unchanged: 𝜑−𝑖 (𝑚) = 𝜑+𝑖 (𝑚) for 𝑖 ∈ {0, 1, 2}. For methods𝑚 of Θ,

we first define 𝜑−
2
(𝑚). For that, we need some notation. Suppose Θ(𝑚) = 𝑅 { 𝑆 [𝜂]. Let R be the

local equivalence precondition

R =̂ B𝑅 ∧ Ards(𝜂)\𝛿⊕ ∧ B(𝑠𝑚
alloc

= alloc ∧ snap𝑚 (𝜂)) (65)

Let 𝑡 be the spec-only variables, including 𝑠𝑚
alloc

and the snap
𝑚
ones. Note that N depends on no

spec-only variables, by the side condition that it is framed by dynamic boundary bnd (𝑁 ). For any
states 𝜏 and 𝜏 ′, define

𝜑−
2
(𝑚) (𝜏 |𝜏 ′) =̂


{ } ∀𝜋,𝑢,𝑢′ . 𝜏 |𝜏 ′ |=𝜋 ¬R𝑡 |𝑡𝑢 |𝑢′
∅ (∃𝜋,𝑢,𝑢′ . 𝜏 |𝜏 ′ |=𝜋 R𝑡 |𝑡𝑢 |𝑢′ ) ∧ (∀𝜋,𝑢,𝑢

′ . 𝜏 |𝜏 ′ |=𝜋 R𝑡 |𝑡𝑢 |𝑢′ ⇒ 𝜏 |𝜏 ′ ̸ |=𝜋 N)
𝜑+

2
(𝑚) (𝜏 |𝜏 ′) ∃𝜋,𝑢,𝑢′ . 𝜏 |𝜏 ′ |=𝜋 R𝑡 |𝑡𝑢 |𝑢′ ∧ N

One might hope that (𝜑+
0
, 𝜑+

1
, 𝜑−

2
) is a model for LocEq𝛿 (Φ,Θ) but this may fail for 𝑚 in Φ if

𝜑+
0
(𝑚) (𝜏) or 𝜑+

1
(𝑚) (𝜏 ′) is non-empty for 𝜏 |𝜏 ′ that satisfy R but notN—because then the relational

compatibility condition for pre-model fails (Definition 7.4, which is a pre-requisite for Definition 7.9).

To solve this problem, we define 𝜑−
0
(𝑚) and 𝜑−

1
(𝑚) like 𝜑+

0
(𝑚) and 𝜑+

1
(𝑚) but yielding empty

outcome sets for such 𝜏, 𝜏 ′. To see why this works we make the following observations about

the definitions of pre-model and model for unary specs. For any pre-model 𝜑 (𝑚) and states 𝜏, 𝜎 ,

if 𝜏 ∈ 𝜑 (𝑚) (𝜎) and 𝜑 ′ (𝑚) is defined identically to 𝜑 (𝑚) except that 𝜑 ′ (𝑚) (𝜎) = (𝜑 (𝑚) (𝜎))\{𝜏},
then 𝜑 ′ is a pre-model. Moreover, if 𝜑 (𝑚) is a context model for some spec and 𝜎 satisfies the

precondition, then 𝜑 ′ is a context model. Now, for any 𝜏 , define 𝜑−
0
(𝑚) (𝜏) =̂ ∅ if there is 𝜏 ′ such

that the conditions of the second case for 𝜑−
2
hold for 𝜏 |𝜏 ′, that is:

(∃𝜋,𝑢,𝑢′ . 𝜏 |𝜏 ′ |=𝜋 R𝑡 |𝑡𝑢 |𝑢′ ) and (∀𝜋,𝑢,𝑢
′ . 𝜏 |𝜏 ′ |=𝜋 R𝑡 |𝑡𝑢 |𝑢′ ⇒ 𝜏 |𝜏 ′ ̸ |=𝜋 N)

Otherwise define 𝜑−
0
(𝑚) (𝜏) =̂ 𝜑0 (𝑚) (𝜏). The displayed condition implies that 𝜏 satisfies the unary

precondition 𝑅, so 𝜑−
0
(𝑚) is a model for Θ(𝑚) as observed above. Define 𝜑−

1
(𝑚) the same way but

existentially quantifying the left state:𝜑−
1
(𝑚) (𝜏) =̂ ∅ if there is 𝜏 such that (∃𝜋,𝑢,𝑢′ .𝜏 |𝜏 ′ |=𝜋 R𝑡 |𝑡𝑢 |𝑢′ )

and (∀𝜋,𝑢,𝑢′ . 𝜏 |𝜏 ′ |=𝜋 R𝑡 |𝑡𝑢 |𝑢′ ⇒ 𝜏 |𝜏 ′ ̸ |=𝜋 N); otherwise define 𝜑−1 (𝑚) (𝜏) =̂ 𝜑1 (𝑚) (𝜏). We leave it

to the reader to check that (𝜑−
0
, 𝜑−

1
, 𝜑−

2
) satisfies all the conditions to be a relational pre-model and

to be a context model of LocEq𝛿 (Φ,Θ). The latter means 𝜑−
0
and 𝜑−

1
are (Φ,Θ)-models, and 𝜑−

2
(𝑚)

models locEq𝛿 (Φ,Θ) (𝑚) for all𝑚.

Now we return to the proof of validity of the conclusion, (64). Having fixed an arbitrary context

model 𝜑+ we now consider any 𝜎, 𝜎 ′, 𝜋 that satisfy the precondition of the conclusion, i.e., the

precondition of locEq𝛿 (𝑃 { 𝑄 [𝜀]) ?N . That is, we assume

�̂� |�̂� ′ |=𝜋 B𝑃 ∧ Ards(𝜀)\𝛿⊕ ∧ B(𝑠alloc = alloc ∧ snap(𝜀)) ∧ N (66)

where 𝑠 are the spec-only variables (which are the same on both sides of these specs), �̂� = [𝜎+𝑠: 𝑣],
�̂� ′ = [𝜎 ′+𝑠: 𝑣 ′] for some 𝑣, 𝑣 ′. (Recall that 𝑣, 𝑣 ′ are uniquely determined, by Lemma C.1.)

To finish the soundness proof, we need the following claim involving 𝜎, 𝜎 ′, 𝜋 and the context

model 𝜑− derived from 𝜑+.

Claim. If ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑+Z=⇒∗ ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ then there are 𝐵 and 𝜌 such that

(a) ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑−Z=⇒∗ ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩
(b) 𝜏 |𝜏 ′ |=𝜌 N
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(c) 𝜌 ⊇ 𝜋 and 𝐵𝐵 ≡ T𝐵U and 𝜇 = 𝜇′

(d) Lagree(𝜏, 𝜏 ′, 𝜌, (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀) ∪ wrttn(𝜎, 𝜏))\rlocs(𝜏, 𝛿⊕)), and
(e) Lagree(𝜏 ′, 𝜏, 𝜌−1, (freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀) ∪ wrttn(𝜎 ′, 𝜏 ′))\rlocs(𝜏 ′, 𝛿⊕)).

Item (a) says a trace via the conclusion’s 𝜑+ can be taken via the premise’s 𝜑− . Item (b) says N
holds at every step (outside context calls). Items (c), (d), and (e) are the same as the conclusions (v),

(vi), and (vii) of the lockstep alignment Lemma 8.9, for refperm 𝜌 that additionally truthifies N
according to item (b).

We do not directly apply Lemma 8.9 in the following argument,

because it gives us no good way to establish 𝜏 |𝜏 ′ |=𝜌 N . However, we will establish (c)–(e) by

similar arguments to the proof (Section D.2) of Lemma 8.9, in which the conclusions (v)–(vii) are

proved by induction on a given trace. In short, we will apply the induction step of that proof.

Whereas the lemma connects an initial 𝜋 with a refperm 𝜌 ⊇ 𝜋 for a given reachable configuration,

the proof of the induction step of the lemma does exactly what we need: Given a current 𝜌 with

𝜌 ⊇ 𝜋 , it yields a ¤𝜌 with ¤𝜌 ⊇ 𝜌 , for the next step of the trace. We can reason the same way, for

(c)–(e), but also add that ¤𝜌 satisfies N .

One could factor out the induction step of the lemma as a separate result, and then apply it

directly here. We refrain from spelling that out explicitly, but we do need to be clear how we are

instantiating the assumptions of Lemma 8.9. For the unary spec Ψ in the Lemma we take (Φ,Θ).
For the relational spec Φ in the Lemma we take (LocEq𝛿 (Φ), LocEq𝛿 (Θ)), which is the same as

LocEq𝛿 (Φ,Θ). For the context model 𝜑 we take 𝜑− . So we have assumption (i) of the Lemma. We

also have (ii), as direct consequence of (66). For (iii), we will consider a trace via 𝜑− given by (a) in

the Claim. For (iv), i.e., r-safety and respect for that trace, we will appeal to the premise (63).

Proof of Claim, by induction on steps.

Base Case. For initial configuration ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩, take 𝜌 := 𝜋 . We have 𝜎 |𝜎 ′ |=𝜋 N by

assumption (66); the rest follows.

Induction Case. Suppose

⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑+Z=⇒∗ ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ 𝜑+Z=⇒ ⟨𝐷𝐷, 𝜐 |𝜐′, 𝜈 |𝜈 ′⟩ (67)

By induction hypothesis there is 𝜌 such that the conditions (a)–(e) of the Claim hold for the

configuration with 𝜏, 𝜏 ′ —including 𝜌 ⊇ 𝜋 , 𝜏 |𝜏 ′ |=𝜌 N , 𝐵𝐵 has the form T𝐵U for some 𝐵, and

⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑−Z=⇒∗ ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩. We must show there is ¤𝜌 such that ¤𝜌 ⊇ 𝜋 , 𝜐 |𝜐′ |= ¤𝜌 N ,

⟨T𝐵U, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ 𝜑−Z=⇒ ⟨𝐷𝐷, 𝜐 |𝜐′, 𝜈 |𝜈 ′⟩, and the other conditions of the Claim for ¤𝜌,𝜐,𝜐′. We write

(ȧ), (
˙
b) etc. to indicate those conditions instantiated for ¤𝜌,𝜐,𝜐′.

To find ¤𝜌 and show the conditions of the Claim for 𝜐,𝜐′ we distinguish three cases:

Case Active(𝐵) is not a context call. Because the step is not a call, it is independent of model, so

we have

⟨T𝐵U, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩ 𝜑−Z=⇒ ⟨𝐷𝐷, 𝜐 |𝜐′, 𝜈 |𝜈 ′⟩ (68)

which takes care of part (ȧ) of the Claim. Moreover, this together with (66) lets us instantiate the

premise (63) so (by Encap) we have that the left and right projections of the whole trace (67) satisfy

respect for ((Φ,Θ), 𝑀, 𝜑−
0
, 𝜀, 𝜎) and ((Φ,Θ), 𝑀, 𝜑−

1
, 𝜀, 𝜎 ′) respectively. Thus we have the assumption

(iv) of Lemma 8.9 applied to the trace (67). By direct application of the Lemma we get that 𝜈 = 𝜈 ′

and there is some 𝐷 with 𝐷𝐷 ≡ T𝐷U. Direct application would also yield agreements for some

¤𝜌 ⊇ 𝜋 , but that is not enough. Instead we apply the induction step of the Lemma’s proof, which

yields ¤𝜌 such that ¤𝜌 ⊇ 𝜌 and (
˙
d) and (ė) hold. Finally, from the Encap condition of premise of

the rule, we also know that unary steps on left and right of (68) w-respect bnd (𝑁 ), so we get

Agree(𝜏,𝜐, bnd (𝑁 )) and Agree(𝜏 ′, 𝜐′, bnd (𝑁 )). So from side condition |= bnd (𝑁 ) |bnd (𝑁 ) frm N ,
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by Def. 7.1 of the relational framing judgment, using (b), we get 𝜐 |𝜐′ |=𝜌 N . By ¤𝜌 ⊇ 𝜌 and the side

condition N ⇒ □N of rSOF, we get 𝜐 |𝜐′ |= ¤𝜌 N , proving (
˙
b) and concluding the induction step for

this case.

Note that the induction step in the proof of Lemma 8.9 goes by cases on transition rules. The

preceding paragraph covered all the transition rules except for context call.

Case Active(𝐵) is a context call to some𝑚 in Φ. The step can be taken via 𝜑− because 𝜑−
2
(𝑚) is

defined to be 𝜑+
2
(𝑚), so we have (ȧ). As in the preceding case, we can apply the induction step of

Lemma 8.9 to get ¤𝜌 ⊇ 𝜌 with (ċ)–(ė). As in the preceding case, we appeal to w-respect for premise

(63), and |= bnd (𝑁 ) |bnd (𝑁 ) frm N , to get (
˙
b).

In our appeal to the proof of Lemma 8.9, we are here using the cases of transition rules bCallS

and bCall0.

Case Active(𝐵) is a context call to some𝑚 in Θ. So 𝐵 has the form 𝐵 ≡𝑚();𝐵2 for some 𝐵2. The

transition can go by either bCall0 or bCallS. In the case of bCall0, we get the Claim directly

from the induction hypothesis: taking ¤𝜌 := 𝜌 we get (ȧ)–(ė) from (a)–(e).

Now consider the case of bCallS. Suppose Θ(𝑚) = 𝑅 { 𝑆 [𝜂] and 𝑡 is spec-only variables of 𝑅

and of the snapshot variables of locEq𝛿 (𝑅 { 𝑆 [𝜂]) tagged for𝑚. Since we are in the case bCallS,

the precondition of𝑚 for 𝜑+ holds, for some refperm; 𝜑− (𝑚) is defined the same way (last case in

its definition) and the transition can be taken via 𝜑− , so we have (ȧ). It remains to find some ¤𝜌 ⊇ 𝜋
satisfying (

˙
b)–(ė) for 𝜐,𝜐′. For (ċ), by bCallS the method environments are unchanged and 𝐷𝐷 has

the form T𝐵2U.
Let us spell out what it means that the precondition of 𝑚 for 𝜑+ (i.e., the precondition of

locEq𝛿 (𝑅 { 𝑆 [𝜂])) holds for some 𝜌1: we have

𝜏 |𝜏 ′ |=𝜌1
(B𝑅 ∧ A𝜂←

𝛿
∧ B(𝑠𝑚

alloc
= alloc ∧ snap𝑚 (𝜂)))𝑡 |𝑡

𝑢 |𝑢′ ∧ N (69)

where 𝜏 =̂ [𝜏+𝑠: 𝑣] and 𝜏 ′ =̂ [𝜏+𝑠: 𝑣 ′] where 𝑣, 𝑣 ′ are the unique values for the spec-only variables

𝑠 defined in connection with (66), and 𝑢,𝑢′ are the unique values for the spec-only variables 𝑡 for

Θ(𝑚). We can write N outside the substitutions, because it has no spec-only variables, but this is

not important. What is important is that 𝑣, 𝑣 ′, 𝑢,𝑢′ are uniquely determined, independent of the

refperm, by Lemma C.1. Let 𝜏 =̂ [𝜏+𝑡 :𝑢] and 𝜏 ′ =̂ [𝜏+𝑡 :𝑢′]. So (69) can be written

𝜏 |𝜏 ′ |=𝜌1
B𝑅 ∧ A𝜂←

𝛿
∧ B(𝑠𝑚

alloc
= alloc ∧ snap𝑚 (𝜂)) ∧ N (70)

Now, B𝑅 ∧ B(𝑠𝑚
alloc

= alloc ∧ snap
𝑚 (𝜂)) is refperm independent. So using induction hypothesis

(b) we have 𝜏 |𝜏 ′ |=𝜌 B𝑅 ∧ B(𝑠𝑚
alloc

= alloc ∧ snap
𝑚 (𝜂)) ∧ N . We can we get 𝜏 |𝜏 ′ |=𝜌 A𝜂←𝛿 from

induction hypothesis (d) and (e), as follows. First, we have Encap and r-safety for the trace up to

𝜏, 𝜏 ′, by induction hypothesis (a) and the premise. Now 𝜂←
𝛿

is rds(𝜂)\𝛿⊕ , i.e., rds(𝜂)\(𝛿, rd alloc).
By r-safety we have rlocs(𝜏, 𝜂←

𝛿
) ⊆ (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀))\rlocs(𝜏, 𝛿⊕)) and rlocs(𝜏 ′, 𝜂←

𝛿
) ⊆

(freshL(𝜎 ′, 𝜏 ′) ∪ rlocs(𝜎 ′, 𝜀))\rlocs(𝜏 ′, 𝛿⊕)). So by semantics of A𝜂←
𝛿

and induction hypothesis (d)

and (e) we get 𝜏 |𝜏 ′ |=𝜌 A𝜂←𝛿 .

Having established that the precondition (70) holds for 𝜌1 := 𝜌 , we can instantiate the spec of𝑚

with 𝜌 and obtain the postcondition (in accord with Def. 7.9 of relational context model):

�̂� |̂𝜐′ |=𝜌 ^(B𝑆 ∧ A𝜂→𝛿 ∧ N)

By semantics, this implies there is ¤𝜌 ⊇ 𝜌 with 𝜐 |𝜐′ |= ¤𝜌 B𝑆 ∧ A𝜂→𝛿 ∧ N . So we have (
˙
b) and (ċ).

Finally, ¤𝜌 satisfies the agreements of (
˙
d) and (ė); this follows from 𝜐 |𝜐′ |= ¤𝜌 A𝜂→𝛿 for reasons that are

spelled out in detail in proving the induction step of Lemma 8.9 in the case of bCallS, starting

around the displayed formula (57).

Having proved the Claim, we prove validity of the conclusion (64) of rSOF.
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Safety. Suppose ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑+Z=⇒∗ ⟨𝐵𝐵, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩. We show by contradiction the latter

configuration cannot fault.

Case: fault by a non-call step. Then the faulting step can also be taken via 𝜑− , and it is reached

via 𝜑− owing to the Claim (a), but a faulting trace via 𝜑− contradicts the premise (63).

Case: fault by a context call to some𝑚 in Φ. Then the step can also be taken via 𝜑− , again con-

tradicting the premise.

Case: fault by a context call to some𝑚 in Θ. Let the spec of𝑚 be 𝑅 { 𝑆 [𝜂], so the relational

precondition is R ∧ N where R is given by (65). Because 𝜑+ is a context model, the call only

faults if there are no ¤𝜌,𝑢,𝑢′ such that 𝜏 |𝜏 ′ |= ¤𝜌 R𝑡 |𝑡𝑢 |𝑢′ ∧ N (see transition rule bCallX). By the

snapshot uniqueness Lemma C.1, values 𝑢,𝑢′ exist and are uniquely determined by 𝜏, 𝜏 ′. So the

call only faults if there is no ¤𝜌 such that 𝜏 |𝜏 ′ |= ¤𝜌 R ∧ N where 𝜏, 𝜏 ′ are the states extended

with 𝑢,𝑢′ for the snapshot variables. But we have 𝜌 and can show 𝜏 |𝜏 ′ |=𝜌 R ∧ N as follows.

We have 𝜏 |𝜏 ′ |=𝜌 N by Claim (b). We have 𝜏 |𝜏 ′ |=𝜌 B(𝑠𝑚
alloc

= alloc ∧ snap
𝑚 (𝜂)) in accord with

our choice of the correct snapshot values. To show the conjunct 𝜏 |𝜏 ′ |=𝜌 B𝑅, we can apply the

premise, in particular Safety: there must be some refperm for which 𝜏 |𝜏 ′ satisfy B𝑅, because
otherwise the call would fault via 𝜑− , contrary to the premise (63). Now we get 𝜏 |𝜏 ′ |=𝜌 B𝑅
because B𝑅 is refperm independent. It remains to show the conjunct 𝜏 |𝜏 ′ |=𝜌 A𝜂←𝛿 , that is, 𝜏 |𝜏 ′ |=𝜌
Ards(𝜂)\𝛿⊕ . We have r-safety for the trace up to 𝜏, 𝜏 ′, by Claim (a) and the premise. By r-safety we

have rlocs(𝜏, 𝜂←
𝛿
) ⊆ (freshL(𝜎, 𝜏) ∪ rlocs(𝜎, 𝜀))\rlocs(𝜏, 𝛿⊕)) and rlocs(𝜏 ′, 𝜂←

𝛿
) ⊆ (freshL(𝜎 ′, 𝜏 ′) ∪

rlocs(𝜎 ′, 𝜀))\rlocs(𝜏 ′, 𝛿⊕)). So by Claim (d) and (e) we get 𝜏 |𝜏 ′ |=𝜌 A𝜂←𝛿 .

Post. For all 𝜏, 𝜏 ′ such that ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑+Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩, we must show 𝜏 |𝜏 ′ |=𝜋
^(B𝑄 ∧ A𝜀→

𝛿
∧N). Applying the Claim to this trace we obtain 𝜌 such that conditions (a)–(e) hold

for 𝜏, 𝜏 ′. We will show 𝜏 |𝜏 ′ |=𝜌 B𝑄 ∧ A𝜀→𝛿 ∧ N ; our obligation then follows by semantics of ^,
using 𝜌 ⊇ 𝜋 from (b).

We have 𝜏 |𝜏 ′ |=𝜌 N by (b). By (a) we can instantiate the premise (63) which yields 𝜏 |𝜏 ′ |=𝜋
^(B𝑄 ∧ A𝜀→

𝛿
). This implies 𝜏 |𝜏 ′ |=𝜌 B𝑄 because B𝑄 is refperm independent. Finally, we get

𝜏 |𝜏 ′ |=𝜌 A𝜀→𝛿 as a consequence of (d) and (e) by essentially the same argument as the one spelled

out in the proof of Post for rule rLocEq (Section D.3).

Write, R-safe, and Encap. These are obtained directly from the premise, using the Claim. Note that

Φ,Θ?N has the same methods, and thus the same modules, as Φ,Θ has, so the Encap conditions

have exactly the same meaning for the conclusion of the rule as for the premise.

D.5 Soundness of rPoss, rDisj, and rConj

For rPoss, assume validity of the premise: Φ |=
𝑀
𝐶𝐶 : P ≈> Q [𝜀 |𝜀′]. To prove validity of the

conclusion Φ |=
𝑀
𝐶𝐶 : ^P ≈> ^Q [𝜀 |𝜀′], consider any Φ-model 𝜑 . Consider any 𝜎, 𝜎 ′, 𝜋 such

that 𝜎 |𝜎 ′ |=𝜋 ^P. By formula semantics, there is 𝜌 ⊇ 𝜋 such that 𝜎 |𝜎 ′ |=𝜌 P. The Safety, Write,

and Encap conditions now follow by instantiating the premise with 𝜑 and 𝜌 . For Post, the premise

yields that for terminal state pair 𝜏 |𝜏 ′ we have 𝜏 |𝜏 ′ |=𝜌 Q. This implies 𝜏 |𝜏 ′ |=𝜋 ^Q since 𝜌 ⊇ 𝜋 .
For rDisj, suppose 𝜑 is a Φ-model and suppose 𝜎 |𝜎 ′ |=𝜋 P0∨P1. By semantics of formulas, either

𝜎 |𝜎 ′ |=𝜋 P0 or 𝜎 |𝜎 ′ |=𝜋 P1, so we can instantiate one of the premises using 𝜑 . It is straightforward

to check that the conditions of Def. 7.10 for the conclusion follow directly from the premise. Note

that the propositional connectives have classical semantics in relational formulas, as they do in

unary formulas.

For rConj the argument is similar.
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D.6 Soundness of rFrame

All conditions except Post are easy consequences of the premise. For Post, suppose 𝜎 |𝜎 ′ |=𝜋 P ∧ R
and ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩. By Write we have 𝜎→𝜏 |= 𝜀 and 𝜎 ′→𝜏 ′ |= 𝜀′ (as well
as 𝜎 ↩→ 𝜏 and 𝜎 ′ ↩→ 𝜏 ′ of course). By the rule’s condition P ∧ R ⇒ ⟨[𝜂 ·/. 𝜀 ⟨] ∧ [⟩𝜂′ ·/. 𝜀′]⟩, we can
use fact (29) to get Agree(𝜎, 𝜏, 𝜂) and Agree(𝜎 ′, 𝜏 ′, 𝜂′). So by P |= 𝜂 |𝜂′ frm R and semantics of this

judgment we get 𝜏 |𝜏 ′ |=𝜋 R. We have 𝜏 |𝜏 ′ |=𝜋 Q by Post for the premise.

D.7 Soundness of rEmb and rEmbS

We prove rEmb (Fig. 30). The argument for rEmbS (Fig. 38) is similar.

Suppose Φ0 |=𝑀 𝐶 : 𝑃 { 𝑄 [𝜀] and Φ1 |=𝑀 𝐶′ : 𝑃 ′ { 𝑄 ′ [𝜀′]. To show validity of the conclusion,

Φ |=
𝑀
(𝐶 |𝐶′) : ⟨[𝑃 ⟨] ∧ [⟩𝑃 ′]⟩ ≈> ⟨[𝑄 ⟨] ∧ [⟩𝑄 ′]⟩ [𝜀 |𝜀′], consider any Φ-model 𝜑 and any 𝜎, 𝜎 ′, 𝜋 such

that 𝜎 |𝜎 ′ |=𝜋 ⟨[𝑃𝑠𝑣 ⟨] ∧ [⟩𝑃 ′𝑠
′

𝑣′ ]⟩. By biprogram semantics, (𝐶 |𝐶′) goes by dovetailed steps of 𝐶 via 𝜑0

(rule bComL) and steps of 𝐶′ via 𝜑1 (rules bComR and bComR0). All reached configurations are

in the bi-com form. For Safety, observe that if fault is reached it is by bComLX or bComRX, so

by projection we obtain a faulting trace either of 𝐶 or of 𝐶′, contrary to the premises. For Post

and Write, suppose ⟨(𝐶 |𝐶′), 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩. Then by projection we obtain

terminated traces (via 𝜑0 and 𝜑1 respectively) to which the premises apply. This yields 𝜎→𝜏 |= 𝜀
and 𝜎 ′→𝜏 ′ |= 𝜀′ (proving Write) and 𝜏 |= 𝑄𝑠𝑣 and 𝜏 ′ |= 𝑄 ′𝑠

′

𝑣′ so that 𝜏 |𝜏 ′ |=𝜋 ⟨[𝑄𝑠𝑣 ⟨] ∧ [⟩𝑄 ′𝑠
′

𝑣′ ]⟩ (proving
Post). For every trace from ⟨(𝐶 |𝐶′), 𝜎 |𝜎 ′, _|_⟩ consider its projections which are unary traces from

⟨𝐶, 𝜎, _⟩ via 𝜑0 and ⟨𝐶′, 𝜎 ′, _⟩ via 𝜑1. Then both R-safe and Encap follow using R-safe and Encap

for the unary traces to which the premises apply.

D.8 Soundness of rCall

rCall

Φ0 ⊢𝑚() : Φ0 (𝑚) Φ1 ⊢𝑚() : Φ1 (𝑚)
Φ ⊢ ⌊𝑚()⌋ : Φ2 (𝑚)

Let the current module be 𝑁 in all three judgments.

Suppose Φ2 (𝑚) is𝑚 : P ≈> Q [𝜀]. Let 𝜑 be a Φ-model and suppose 𝜎, 𝜎 ′ |=𝜋 P. Because 𝜑 is a Φ-
model (Def. 7.9),𝜑2 (𝑚) (𝜎 |𝜎 ′) does not contain  . Moreover, execution from ⟨⌊𝑚()⌋, 𝜎 |𝜎 ′, _|_⟩ either
goes by bCallS to a terminated state, or by bCall0 repeating the configuration ⟨⌊𝑚()⌋, 𝜎 |𝜎 ′, _|_⟩
unboundedly. So Safety holds. We also get Post and Write by definition of context model. R-safety

requires rlocs(𝜎, 𝜂) ⊆ rlocs(𝜎, 𝜂) and rlocs(𝜎 ′, 𝜂′) ⊆ rlocs(𝜎 ′, 𝜂′) which hold.

Encap is more interesting, as it is not a direct consequence of 𝜑 being a context model. Encap

imposes conditions on the unary projections of every trace from ⟨⌊𝑚()⌋, 𝜎 |𝜎 ′, _|_⟩. By projection

Lemma 7.8, or indeed by unary compatibility of the context model, the premises of rCall apply to

these traces—and yield all the Encap conditions.

D.9 Soundness of rIf

rIf

Φ ⊢𝑀 𝐶𝐶 : P ∧ ⟨[𝐸⟨] ∧ [⟩𝐸′]⟩ ≈> Q [𝜀 |𝜀′]
Φ ⊢𝑀 𝐷𝐷 : P ∧ ⟨[¬𝐸⟨] ∧ [⟩¬𝐸′]⟩ ≈> Q [𝜀 |𝜀′] P ⇒ 𝐸 ¥= 𝐸′

𝛿 = (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) 𝛿 ·/. r2w(ftpt (𝐸)) 𝛿 ·/. r2w(ftpt (𝐸′))
Φ ⊢𝑀 if 𝐸 |𝐸′ then 𝐶𝐶 else 𝐷𝐷 : P ≈> Q [𝜀, ftpt (𝐸) |𝜀′, ftpt (𝐸′)]

As in the unary rule If, the separator (+𝑁 ∈ Φ, 𝑁 ≠ 𝑀. bnd (𝑁 )) ·/. r2w(ftpt (𝐸)) and its

counterpart simplify to true or false. In virtue of condition P ⇒ 𝐸 ¥= 𝐸′, every biprogram trace

from states satisfying P begins with a step going to 𝐶𝐶 via bIfT or a step going to 𝐷𝐷 via bIfF; it

cannot fault via bIfX which is for tests that disagree. Subsequent steps satisfy all the conditions

Safety, Post, Write, R-safe because these are the same as the conditions for the premises 𝐶𝐶 and
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𝐷𝐷 . Encap for the conclusion is almost the same condition as for the premise, the only difference

being that the frame condition 𝜀 |𝜂′ for the premise is a subeffect of the one for the conclusion. So

Encap for the conclusion follows from the premises by an argument like that for soundness of rule

rConseq.

The first step clearly satisfies Safety, Post, Write, and R-safe. To show the first step satisfies

Encap, boundary monotonicity and w-respect are immediate because the step does not change the

state. For r-respect, we need that alternate executions follow the same control path—and this is

ensured by separator conditions, for reasons spelled out in detail in the proof of If.

D.10 Soundness of rLink

rLink

Φ,Θ ⊢• T𝐶U : P ≈> Q [𝜀]
Φ,Θ ⊢mdl (𝑚) (𝐵 |𝐵′) : Θ2 (𝑚) Φ0,Θ0 ⊢mdl (𝑚) 𝐵 : Θ0 (𝑚) Φ1,Θ1 ⊢mdl (𝑚) 𝐵

′
: Θ1 (𝑚)

𝛿 = (+𝐿 ∈ (Φ,Θ). bnd (𝐿)) (Φ,Θ) ⇛ LocEq𝛿 ( ¤Φ, ¤Θ) P ⇒ 𝑝𝑟𝑒 (locEq𝛿 (𝑃 { 𝑄 [𝜀]))
∀𝑁 ∈ Φ, 𝐿 ∈ Θ. 𝑁 ̸⪯ 𝐿 ∀𝑁, 𝐿. 𝑁 ∈ Θ ∧ 𝑁 ≺ 𝐿 ⇒ 𝐿 ∈ (Φ,Θ) 𝐶 is let-free

Φ ⊢• let𝑚 = (𝐵 |𝐵′) in T𝐶U : P ≈> Q [𝜀]
The rule caters for different specs on left and right, subject to the constraints of Def. 4.1. For

rMLink, we instantiate Θ2 (𝑚) to something of the form 𝑙𝑜𝑐𝐸𝑞(...) ?M, for coupling relationM,

and the operation ?M conjoins

↼−M and

−⇀M to the unary specs. Some unary ingredients appear in

the premises and side conditions but are not directly used in the conclusion: 𝑃 , 𝑄 , and ¤Φ and ¤Θ.
These ensure that the specs are strengthenings of a local equivalence spec.

Remark 12. This version of the rule includes unary premises for 𝐵 and 𝐵′. These are used only

to obtain unary models (of Θ0 (𝑚) and Θ1 (𝑚)), which are formally required in order to define a

full context model of Θ (using Lemma C.11). As the proof shows, execution of T𝐶U remains fully

aligned (except during environment calls to𝑚) and all calls are sync’d, so the unary models have

no influence on the traces used in the proof. In future work we expect to eliminate these unary

premises by revisiting the definitions of compatibility for context models (Def. 7.4), and adjusting the

well-formedness conditions for contexts (Def 4.1) and definition of covariant implication (Def. 8.5)

for a better fit with compatibility. □

In the following proof of rLink we assume there are no recursive calls in 𝐵 or 𝐵′. To allow

recursion, one should use a fixpoint construction for the denotational semantics (as in proof of

linking for impure methods in RLIII) and an extra induction on calling depth (as in the linking

proofs in RLII and RLIII). This adds complication but does not shed light; and there are plenty other

complications that do deserve to be spelled out carefully.

As in the unary semantics, we say a biprogram trace is𝑚-truncated iff the last configuration

does not contain ecall(𝑚). In general, there may be unary environment calls and ecall(𝑚) may

occur inside a bi-com, as in (skip|𝐵; ecall(𝑚);𝐶);𝐷𝐷 .
Consider any Φ-model 𝜑 . Let 𝜃0 (𝑚) and 𝜃1 (𝑚) be the models of Θ0 (𝑚) and Θ1 (𝑚) from the

denotations of 𝐵 and 𝐵′, by Lemma A.8, using the unary premises for 𝐵 and 𝐵′, and side conditions

about imports. Let 𝜃 be the bi-model of𝑚 given by Lemma C.11(i) for the denotation of (𝐵 |𝐵′) in
𝜑 , for which we use that each method’s relational precondition implies its unary preconditions

(which holds because Φ is wf, see Def. 4.1). Owing to validity of Φ,Θ ⊢𝑁 (𝐵 |𝐵′) : Θ2 (𝑚), we have
that (𝜑, 𝜃 ) is a (Φ,Θ)-model by Lemma C.11(ii).

In the rest of the proof, no further use is made of the unary premises for 𝐵 and 𝐵′.
To introduce identifiers for the relational spec of𝑚, suppose Φ2 (𝑚) is R ≈> S [𝜂 |𝜂′]. For clarity

we follow a convention also used the in proof of unary Link: environments that contain𝑚 have

dotted names like ¤𝜇 and the corresponding environment without𝑚 has the same name without dot.
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Claim: Let 𝜎, 𝜎 ′, 𝜋 be such that �̂� |�̂� ′ |=𝜋 P, where �̂� is [𝜎+𝑠: 𝑣] and �̂� ′ is [𝜎+𝑠′: 𝑣 ′] for the unique
values 𝑣, 𝑣 ′ determined by 𝜎, 𝜎 ′ for the spec-only variables 𝑠, 𝑠′ of P. Suppose

⟨T𝐶U, 𝜎 |𝜎 ′, [𝑚:𝐵] | [𝑚:𝐵′]⟩ 𝜑Z=⇒∗ ⟨𝐷𝐷, 𝜏 |𝜏 ′, ¤𝜇 | ¤𝜇′⟩

is𝑚-truncated (for some𝐷𝐷, 𝜏, 𝜏 ′, ¤𝜇, ¤𝜇′). Then ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑𝜃Z=⇒∗ ⟨𝐷𝐷, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩, where 𝜇 = ¤𝜇↾𝑚
and 𝜇′ = ¤𝜇′↾𝑚, and 𝐷𝐷 = T𝐷U for some 𝐷 . Moreover, if 𝐷 ≡𝑚();𝐷0 for some 𝐷0 then there is 𝜌

such that 𝜏 |𝜏 ′ |=𝜌 R.
Proof of Claim: by induction on the number of completed top-level calls of𝑚. (Since we are not

considering recursion, all calls are top level.) The steps taken in code of T𝐶U can be taken via

𝜑𝜃Z=⇒
because the two transition relations are identical except for calls to𝑚. By induction hypothesis,

any call is in sync’d form, and a completed call from ⌊𝑚()⌋ amounts to a terminated execution of

(𝐵 |𝐵′). Thus a completed call gives rise to a single step via (𝜑, 𝜃 ) with the same outcome, because

𝜃2 (𝑚) is defined to be the denotation of (𝐵 |𝐵′), which is defined directly in terms of executions

of (𝐵 |𝐵′)—provided that the precondition R of𝑚 holds. The premise for T𝐶U is applicable to the

trace via 𝜑, 𝜃 , so the precondition R must hold—because otherwise that trace could fault, contrary

to the premise for T𝐶U. It remains to show that at 𝐷𝐷 is T𝐷U for some 𝐷 . For this we appeal to

lockstep alignment Lemma 8.9. Let𝑈 and𝑉 be the unary projections of this trace. By validity of the

premise for T𝐶Uwe get that𝑈 (resp.𝑉 ) satisfies r-safe for ((Φ0,Θ0), 𝜀, 𝜎) (resp. ((Φ1,Θ1), 𝜀, 𝜎 ′)) and
respect for ((Φ0,Θ0), •, (𝜑0, 𝜃0), 𝜀, 𝜎) (resp. ((Φ1,Θ1), •, (𝜑1, 𝜃1), 𝜀, 𝜎 ′)). By side condition of rLink,

𝐶 is let-free. Thus the assumptions are satisfied for the instantiation Φ =̂ (Φ,Θ) of Lemma 8.9,

which yields that 𝐷𝐷 is T𝐷U for some 𝐷 . The Claim is proved.

Post. Consider any 𝜑, 𝜎, 𝜎 ′, 𝜋 with �̂� |�̂� ′ |=𝜋 P (where �̂� is [𝜎+𝑠: 𝑣] and �̂� ′ is [𝜎+𝑠′: 𝑣 ′] for the
unique values 𝑣, 𝑣 ′ determined by 𝜎, 𝜎 ′ for the spec-only variables 𝑠, 𝑠′ of P). A terminated trace of

the linked program has the form

⟨let𝑚 = (𝐵 |𝐵′) in T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑Z=⇒ ⟨T𝐶U; ⌊elet(𝑚)⌋, 𝜎 |𝜎 ′, [𝑚:𝐵] | [𝑚:𝐵′]⟩
𝜑Z=⇒∗ ⟨⌊elet(𝑚)⌋, 𝜏 |𝜏 ′, [𝑚:𝐵] | [𝑚:𝐵′]⟩
𝜑Z=⇒ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩

By semantics we obtain ⟨T𝐶U, 𝜎 |𝜎 ′, [𝑚:𝐵] | [𝑚:𝐵′]⟩ 𝜑Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, [𝑚:𝐵] | [𝑚:𝐵′]⟩. This is𝑚-

truncated. By the Claim, we have ⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑𝜃Z=⇒∗ ⟨⌊skip⌋, 𝜏 |𝜏 ′, _|_⟩. By the premise for T𝐶U
we get 𝜏 |𝜏 ′ |=𝜋 Q where 𝜏, 𝜏 ′ are the extensions using 𝑣, 𝑣 ′.

Write. Very similar to the argument for Post.

Safety. As the steps for let and elet do not fault, a faulting execution gives one of the form

⟨T𝐶U, 𝜎 |𝜎 ′, [𝑚:𝐵] | [𝑚:𝐵′]⟩ 𝜑Z=⇒∗ ⟨𝐷𝐷, 𝜏 |𝜏 ′, ¤𝜇 | ¤𝜇′⟩ 𝜑Z=⇒  

We show this contradicts the premises, by cases on whether the trace up to 𝐷𝐷 is𝑚-truncated.

Case m-truncated. The active command of 𝐷 (equivalently, of T𝐷U) is not a call to𝑚 because

an environment call does not fault on its first step; it goes by rule bCallE. By the Claim, we have

⟨T𝐶U, 𝜎 |𝜎 ′, _|_⟩ 𝜑𝜃Z=⇒∗ ⟨𝐷𝐷, 𝜏 |𝜏 ′, 𝜇 |𝜇′⟩. Because the active command is not a call to𝑚, the step

⟨𝐷𝐷, 𝜏 |𝜏 ′, ¤𝜇 | ¤𝜇′⟩ 𝜑Z=⇒  can also be taken via

𝜑𝜃Z=⇒. But then we have a faulting trace that contradicts

the premise for T𝐶U.
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Case not m-truncated. A trace with an incomplete call of𝑚 has the following form. (Here we

rely on the Claim to write parts in fully aligned form.)

⟨T𝐶U, 𝜎 |𝜎 ′, [𝑚:𝐵] | [𝑚:𝐵′]⟩ 𝜑Z=⇒∗ ⟨⌊𝑚()⌋;T𝐷0U, 𝜏0 |𝜏 ′0, ¤𝜇 | ¤𝜇′⟩
𝜑Z=⇒ ⟨(𝐵 |𝐵′); T𝐷0U, 𝜏0 |𝜏 ′0, ¤𝜇0 | ¤𝜇′0⟩

𝜑Z=⇒∗ ⟨𝐵𝐵0; T𝐷0U, 𝜏 |𝜏 ′, ¤𝜇 | ¤𝜇′⟩
𝜑Z=⇒  

with 𝐵𝐵0 . ⌊skip⌋. Applying the Claim to the𝑚-truncated prefix we get 𝜏0 |𝜏 ′0 |=𝜌 R for some 𝜌 . By

semantics we get ⟨(𝐵 |𝐵′), 𝜏0 |𝜏 ′0, ¤𝜇0 | ¤𝜇′0⟩
𝜑Z=⇒∗ ⟨𝐵𝐵0, 𝜏 |𝜏 ′, ¤𝜇 | ¤𝜇′⟩

𝜑Z=⇒  . Now, (𝐵 |𝐵′) has no calls to

𝑚—because we are proving soundness assuming there is no recursion. So the same transitions can

be taken via
𝜑𝜃↦−→. But then we get a faulting trace that contradicts the premise for (𝐵 |𝐵′).

R-safety. For any trace𝑇 of let𝑚 = (𝐵 |𝐵′) in T𝐶U from 𝜎, 𝜎 ′ satisfying P, we must show that the

left projection𝑈 and right projection 𝑉 is r-safe for (Φ0, 𝜀, 𝜎) and (Φ1, 𝜀, 𝜎
′) respectively. Observe

that the premises for T𝐶U and for (𝐵 |𝐵′) give r-safety of their left projections, for ((Φ0,Θ0), 𝜀, 𝜎),
and r-safety of their right projection for ((Φ1,Θ1), 𝜀, 𝜎 ′)). For methods of Φ, by definition of r-safety,

these are the same conditions as r-safety for (Φ0, 𝜀, 𝜎) and for (Φ1, 𝜀, 𝜎
′). Let us consider𝑈 , as the

argument for 𝑉 is symmetric. We must show the r-safety condition for any configuration, say𝑈𝑖 .

Let ¤𝑇 the prefix of 𝑇 such that𝑈𝑖 is aligned (by projection Lemma) with the last configuration of ¤𝑇 .
Now go by cases on whether ¤𝑇 is𝑚-truncated.

case ¤𝑇 is𝑚-truncated. If the last configuration is calling𝑚 there is nothing to prove. Otherwise,

that configuration is not within a call of𝑚, so by the Claim we get from ¤𝑇 a trace ¥𝑇 of T𝐶U via

𝜑Z=⇒
that ends with the same configuration. Now can appeal to r-safety from the premise for T𝐶U and

we are done. (The claim does not address the first step of let𝑚 = (𝐵 |𝐵′) in T𝐶U, but that satisfies
r-safety by definition.)

case ¤𝑇 is not𝑚-truncated. So a suffix of ¤𝑇 is an incomplete environment call of𝑚, say at position

𝑗 . By the Claim, the call is sync’d (and𝑚’s relational precondition holds), so the code of ¤𝑇𝑗 has the
form ⌊𝑚()⌋;𝐷𝐷 for some continuation code 𝐷𝐷 , and the following steps execute starting from

(𝐵 |𝐵′);𝐷𝐷 (by transition rule bCallE). By dropping “;𝐷𝐷” from each configuration we obtain a

trace of (𝐵 |𝐵′) that includes configuration ¤𝑇𝑗 . Now we can appeal to r-safety from the premise for

(𝐵 |𝐵′) and we are done.

Encap. For any trace of let𝑚 = (𝐵 |𝐵′) in T𝐶U from 𝜎, 𝜎 ′ satisfying P, we must show that the

left projection respects (Φ0, •, 𝜑0, 𝜀, 𝜎) and the right respects (Φ1, •, 𝜑1, 𝜀, 𝜎
′). The proof is structured

similarly to the proof of R-safe, though it is a bit more intricate.

Observe that the premises yield respect of ((Φ0,Θ0), •, (𝜑0, 𝜃0), 𝜀, 𝜎) and ((Φ1,Θ1), •, (𝜑1, 𝜃1), 𝜀, 𝜎 ′).
By contrast with the argument above for r-safety, where the meaning of the condition for the

conclusion is very close to its meaning for the premises, for respect there are two significant

differences. First, the respect condition depends on the current module •, and the judgment for

(𝐵 |𝐵′) is for a possibly different module. Second, respect depends on the modules in context, and by

side conditions of the rule the modules of Φ are not the same as those of (Φ,Θ). Fortunately, these
differences are exactly the same in the setting of rule Link. The proof Encap for Link (Section B.10)

shows in detail how respect, for traces of let𝑚 = 𝐵 in 𝐶 , follows from respect for traces of 𝐵 and

for traces of 𝐶 in which calls to𝑚 are context calls.

Now we proceed to prove Encap. For any trace𝑇 of let𝑚 = (𝐵 |𝐵′) in T𝐶U from 𝜎, 𝜎 ′ satisfying P,
consider its left projection𝑈 (the right having a symmetric proof), which is a trace of let𝑚 =𝐵 in𝐶 .

Consider any step in𝑈 , say𝑈𝑖−1 to𝑈𝑖 .

If the step is an environment call to𝑚, i.e., the call is the active command of 𝑈𝑖−1, it satisfies

respect of (Φ0, •, 𝜑0, 𝜀, 𝜎) by definitions and semantics. If the active command is ecall(𝑚) then again
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we get respect by definitions and semantics. Otherwise, let ¤𝑇 be the prefix of 𝑇 such that the last

configuration corresponds with𝑈𝑖 , and go by cases on whether ¤𝑇 is𝑚-truncated.

case ¤𝑇 is𝑚-truncated. So the step is not within a call of𝑚, and is present in the trace ¥𝑇 given by

the Claim. So we can appeal to the premise for T𝐶U. We get that the step respects (Φ0, •, 𝜑0, 𝜀, 𝜎),
using the arguments in the Link proof to connect with respect of ((Φ0,Θ0), •, (𝜑0, 𝜃0), 𝜀, 𝜎) in accord

with the premise for T𝐶U.
case ¤𝑇 is not𝑚-truncated. As in the r-safety argument, we obtain a trace of (𝐵 |𝐵′) that includes

the step in question, and it respects (Φ0, •, 𝜑0, 𝜀, 𝜎), using the arguments in the Link proof to connect

with respect of ((Φ0,Θ0),mdl(𝑚), (𝜑0, 𝜃0), 𝜀, 𝜎) in accord with the premise for (𝐵 |𝐵′).

D.11 Soundness of rWeave

rWeave

Φ ⊢ 𝐷𝐷 : P ≈> Q [𝜀 |𝜀′] 𝐶𝐶 ↬∗ 𝐷𝐷

Φ ⊢ 𝐶𝐶 : P ≈> Q [𝜀 |𝜀′]

Remark 13. In general Φ |= 𝐷𝐷 : P ≈> Q [𝜀] and 𝐷𝐷 ↬ 𝐶𝐶 do not imply Φ |= 𝐶𝐶 : P ≈> Q [𝜀],
for one reason: 𝐶𝐶 may assert additional test agreements that do not hold. □

The crux of the soundness proof for rule rWeave is soundness for a single weaving step,

𝐶𝐶 ↬ 𝐷𝐷 , which is Lemma D.4 below. Using the lemma, we can prove soundness of rWeave by

induction on the number of weaving steps 𝐶𝐶 ↬∗ 𝐷𝐷 . In case of zero steps, 𝐶𝐶 ≡ 𝐷𝐷 and the

result is immediate. In case of more than one steps, apply Lemma D.4 and the induction hypothesis.

Before proving Lemma D.4 we prove preliminary results.

Lemma D.1 (weave and project). If 𝐶𝐶 ↬ 𝐷𝐷 then
↼−
𝐶𝐶 ≡↼−−

𝐷𝐷 and
−⇀
𝐶𝐶 ≡ −−⇀𝐷𝐷 .

Proof. By induction on the rules for↬ (Fig. 18), making straightforward use of the definitions

of the syntactic projections. As an example, for the if-else axiom we have

↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(if 𝐸 then 𝐶 else 𝐷 | if 𝐸′ then 𝐶′ else 𝐷 ′) ≡ if 𝐸 then 𝐶 else 𝐷 ≡ if 𝐸 then

↼−−−−−(𝐶 |𝐶′) else ↼−−−−−(𝐷 |𝐷 ′) ≡
↼−−−−−−−−−−−−−−−−−−−−−−−−−−−−
if 𝐸 |𝐸′ then (𝐶 |𝐶′) else (𝐷 |𝐷 ′). As an example inductive case, for the rule from 𝐵𝐵 ↬ 𝐶𝐶 infer

𝐵𝐵;𝐷𝐷 ↬ 𝐶𝐶;𝐷𝐷 , we have
↼−−−−−−
𝐵𝐵;𝐷𝐷 ≡ ↼−

𝐵𝐵;
↼−−
𝐷𝐷 ≡ ↼−

𝐶𝐶;
↼−−
𝐷𝐷 ≡ ↼−−−−−−

𝐶𝐶;𝐷𝐷 where the middle step is by

induction hypothesis. □

Lemma D.2 (trace coverage). Suppose Φ |= 𝐷𝐷 : P ≈> Q [𝜀] and let 𝜑 be a Φ-model. Consider

any 𝜋 and any 𝜎, 𝜎 ′ such that 𝜎 |𝜎 ′ |=𝜋 P. Let𝑈 and 𝑉 be traces from ⟨↼−−𝐷𝐷, 𝜎, _⟩ and ⟨−−⇀𝐷𝐷, 𝜎 ′, _⟩
respectively. Then there is a trace 𝑇 from ⟨𝐷𝐷, 𝜎 |𝜎 ′, _|_⟩, with projections𝑊,𝑋 such that𝑈 ≤𝑊
and 𝑉 ≤ 𝑋 .

Proof. Apply embedding Lemma C.9 to 𝑈 ,𝑉 to obtain 𝑇,𝑊 ,𝑋 satisfying one of the conditions

(a), (b), (c), or (d) in that Lemma. Conditions (b), (c), and (d) contradict the premise, specifically

Safety for 𝐷𝐷 . That leaves condition (a) which completes the proof. □

Lemma D.3 (weave and trace). Suppose Φ |= 𝐷𝐷 : P ≈> Q [𝜀] and 𝐶𝐶 ↬ 𝐷𝐷 or 𝐷𝐷 ↬ 𝐶𝐶 .

Consider any Φ-model 𝜑 . Consider any 𝜋 and any 𝜎, 𝜎 ′ such that 𝜎 |𝜎 ′ |=𝜋 P. Consider any trace 𝑆

from ⟨𝐶𝐶, 𝜎 |𝜎 ′, _|_⟩ and let 𝑈 ,𝑉 be the projections of 𝑆 according to the projection Lemma 7.8.

Then there is a trace 𝑇 from ⟨𝐷𝐷, 𝜎 |𝜎 ′, _|_⟩, with projections𝑊,𝑋 such that𝑈 ≤𝑊 and 𝑉 ≤ 𝑋 .

Proof. Using 𝐶𝐶 ↬ 𝐷𝐷 or 𝐷𝐷 ↬ 𝐶𝐶 , by Lemma D.1 we have

↼−−−−−−−−−−−−−−⟨𝐷𝐷, 𝜎 |𝜎 ′, _|_⟩ = ⟨↼−𝐶𝐶, 𝜎, _⟩
and

−−−−−−−−−−−−−−⇀⟨𝐷𝐷, 𝜎 |𝜎 ′, _|_⟩ = ⟨−⇀𝐶𝐶, 𝜎, _⟩ so we get the result by Lemma D.2.

□
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Finally, we proceed to prove soundness for a single weaving step. The hard case is Safety, for

reasons explained in the proof.

Lemma D.4 (one weave soundness). Suppose Φ |= 𝐷𝐷 : P ≈> Q [𝜀] and 𝐶𝐶 ↬ 𝐷𝐷 . Then

Φ |= 𝐶𝐶 : P ≈> Q [𝜀].

Proof. Suppose Φ |= 𝐷𝐷 : P ≈> Q [𝜀] and 𝐶𝐶 ↬ 𝐷𝐷 . To show the conclusion Φ |= 𝐶𝐶 : P ≈>
Q [𝜀], consider any Φ-model 𝜑 . Consider any 𝜋 and any 𝜎, 𝜎 ′ such that 𝜎 |𝜎 ′ |=𝜋 P.
R-safe. Consider any trace 𝑆 of 𝐶𝐶 from 𝜎, 𝜎 ′. By Lemma D.3, there is a trace 𝑇 of 𝐷𝐷 such that

every unary step in 𝑆 is covered by a step in 𝑇 . So r-safety follows from r-safety of the premise.

Encap. Similar to R-safe.

Write and Post By Lemma D.3, a terminated trace of 𝐶𝐶 gives rise to one of 𝐷𝐷 with the same

final states, to which the premise applies.

Safety. This requires additional definitions and results. Faults by 𝐶𝐶 may be alignment faults

(rules bCallX, bIfX, bWhX) or due to unary faults (bSyncX, bComLX, bComRX). The latter can be

ruled out by reasoning similar to the above, but alignment faults pose a challenge, because weaving

rearranges the alignment of execution steps. We proceed to develop some technical notions about

alignment faults, and use them to prove Safety.

In most of this article, we only need to consider traces from initial configurations ⟨𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩
where the environments are empty (written _) and the code has no endmarkers. In the following

definitions, we need to consider non-empty initial environments, and 𝐶𝐶 may be an extended bi-

program; in particular, 𝐶𝐶 may include endmarkers. (It turns out that we will not have occasion to

consider an initial biprogram𝐶𝐶 that contains a right-bi-com.) This is needed because, in the proof

of Lemma D.5 below, specifically the case of weaving the body of a bi-let, we apply the induction

hypothesis to a trace in which the initial environments are non-empty. The initial configuration of

a trace must still be well formed: free variables in𝐶𝐶 should be in the states, and methods called in

𝐶𝐶 must be in either the context or the environment and not in both.

Define a sync point in a biprogram trace 𝑇 to be a position 𝑖 , 0 ≤ 𝑖 < 𝑙𝑒𝑛(𝑇 ), such that one of

the following holds:

• 𝑖 = 0 (i.e., 𝑇𝑖 is the initial configuration)

• The configuration 𝑇𝑖 is terminal, i.e., has code ⌊skip⌋
• Active(𝑇𝑖 ) is not a bi-com, i.e., neither (−|−) nor (−|⊲−). Thus Active(𝑇𝑖 ) may be ⌊−⌋, bi-if,
bi-while, bi-let, or bi-var. (By definition, the active biprogram is not a sequence.)

• 𝑖 > 0 and the step from 𝑇𝑖−1 to 𝑇𝑖 completed the first part of a biprogram sequence. That is,

the code in 𝑇𝑖−1 has the form 𝐶𝐶 ;𝐷𝐷 with 𝐶𝐶 the active command, and the code in 𝑇𝑖 is 𝐷𝐷 .

Such a transition is a transition from 𝐶𝐶 to ⌊skip⌋ that is lifted to 𝐶𝐶;𝐷𝐷 by rule bSeq.
48

Later we refer to this kind of step as a “semi-colon removal”.

A segment of a biprogram trace is just a list of configurations that occur contiguously in the

trace. A segmentation of trace 𝑇 is a list 𝐿 of nonempty segments, the catenation of which is

𝑇 . Thus, indexing the list 𝐿 from 0, the configuration (𝐿𝑖 ) 𝑗 is 𝑇𝑛+𝑗 where 𝑛 = Σ0≤𝑘<𝑖𝑙𝑒𝑛(𝐿𝑘 ). An
alignment segmentation of𝑇 is a segmentation 𝐿 such that each segment in 𝐿 begins with a sync

point of 𝑇 .

For an example, using abbreviations 𝐴0 =̂ 𝑥 := 0, 𝐴1 =̂ 𝑥 := 1, 𝐴2 =̂ 𝑥 := 2 and omitting

states/environments from the configurations, here is a trace with one of its alignment segmentations

48
One could make this more explicit by dropping the identification of ⌊skip⌋;𝐷𝐷 with 𝐷𝐷 and instead having a separate

transition from ⌊skip⌋;𝐷𝐷 to 𝐷𝐷 , but this would make extra cases in other proofs.
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depicted by boxes:

⟨(𝐴0|𝐴0); if 𝑥 > 0|𝑥 > 0 then (𝐴1|𝐴1) else (𝐴2|𝐴2)⟩
⟨(skip|⊲𝐴0); if 𝑥 > 0|𝑥 > 0 then (𝐴1|𝐴1) else (𝐴2|𝐴2)⟩

⟨if 𝑥 > 0|𝑥 > 0 then (𝐴1|𝐴1) else (𝐴2|𝐴2)⟩
⟨(𝐴2|𝐴2)⟩
⟨(skip|⊲𝐴2)⟩
⟨⌊skip⌋⟩

Every trace has a minimal-length alignment segmentation consisting of the trace itself—a single

segment—and also a maximal-length alignment segmentation (which has a segment for each sync

point). (Keep in mind that we define traces to be finite.) The above example, with three segments,

is maximal.

As another example, here is a trace that faults next (because 𝑥 > 0 is false on the left but true on

the right), with its maximal alignment segmentation.

⟨(𝑥 := 0|𝑥 := 1); if 𝑥 > 0|𝑥 > 0 then ⌊𝐴1⌋ else ⌊𝐴2⌋⟩
⟨(skip|⊲𝑥 := 1); if 𝑥 > 0|𝑥 > 0 then ⌊𝐴1⌋ else ⌊𝐴2⌋⟩
⟨if 𝑥 > 0|𝑥 > 0 then ⌊𝐴1⌋ else ⌊𝐴2⌋⟩

Note that a segment can begin with a configuration that contains end-markers whose beginning

was in a previous segment. For example,

⟨var 𝑥 : 𝑇 |𝑥 ′ : 𝑇 ′ in (𝑎 |𝑏); (𝑐 |𝑑)⟩
⟨(𝑎 |𝑏); (𝑐 |𝑑); (evar(𝑥) |evar(𝑥 ′))⟩
⟨(skip|⊲𝑏); (𝑐 |𝑑); (evar(𝑥) |evar(𝑥 ′))⟩

⟨(𝑐 |𝑑); (evar(𝑥) |evar(𝑥 ′))⟩
⟨(skip|⊲𝑑); (evar(𝑥) |evar(𝑥 ′))⟩
⟨(evar(𝑥) |evar(𝑥 ′))⟩
⟨(skip|⊲evar(𝑥 ′))⟩
⟨⌊skip⌋⟩

In the following we sometimes refer to the left and right sides of a weaving as lhs and rhs. A

weaving 𝑙ℎ𝑠 ↬ 𝑟ℎ𝑠 introduces sync points in the biprogram’s traces, but it does not remove sync

points of 𝑙ℎ𝑠 . Moreover, though it rearranges the order in which the underlying unary steps are

taken, it does not change the states that appear at sync points. This is made precise in the following

lemma which gives a sense in which weaving is directed (i.e., not commutative).

Lemma D.5 (weaving preserves sync points). Consider any pre-model 𝜑 . Consider any bipro-

grams 𝐶𝐶 and 𝐷𝐷 such that 𝐶𝐶 ↬ 𝐷𝐷 . Let 𝑆 be a trace (via 𝜑) of 𝐶𝐶 from some initial states and

environments. (No assumption is made about the initial states, and non-empty method environ-

ments are allowed.) Let 𝐿 be the maximal alignment segmentation of 𝑆 . Then there is a trace 𝑇 of

𝐷𝐷 from the same states and environments, such that either

(i) the last configuration of 𝑇 can fault next, by alignment fault; or

(ii) there is an alignment segmentation 𝑀 of 𝑇 such that 𝑀 has the same length as 𝐿 and for

all 𝑖 , segment𝑀𝑖 and segment 𝐿𝑖 begin with the same states, same environments, and same

underlying unary programs, that is:

↼−−−(𝐿𝑖 )0 =
↼−−−−(𝑀𝑖 )0 and

−−−⇀(𝐿𝑖 )0 =
−−−−⇀(𝑀𝑖 )0 (71)
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Note that𝑀 in LemmaD.5 need not be themaximal segmentation. Typically𝑇 will have additional

sync points, but these are not relevant to the conclusion of the lemma. What matters is that 𝑇

covers the sync points of 𝑆 . (Note that 𝑇 need not cover all the steps of 𝑆 .) As an example of the

lemma, consider a biprogram of the form ⟨(𝐴0|𝐴0); if 𝑥 > 0|𝑥 > 0 then (𝐴1|𝐴1) else (𝐴2|𝐴2)⟩. It
relates by↬ to ⟨(𝐴0|𝐴0); if 𝑥 > 0|𝑥 > 0 then (𝐴1|𝐴1) else ⌊𝐴2⌋⟩ (by an axiom and the congruence

rules for sequence and conditional). From the same initial states (and empty environments), the

latter biprogram has a shorter trace (owing to sync’d execution of 𝐴2) but that trace can still be

segmented in accord with the lemma. Its second segment has three configurations:

⟨if 𝑥 > 0|𝑥 > 0 then (𝐴1|𝐴1) else ⌊𝐴2⌋⟩⟨⌊𝐴2⌋⟩⟨⌊skip⌋⟩

We defer the proof of Lemma D.5 and use it to finish the proof of Lemma D.4 by completing the

proof of Safety. As before, we assume Φ |= 𝐷𝐷 : P ≈> Q [𝜀] and 𝐶𝐶 ↬ 𝐷𝐷 . To show the Safety

condition for Φ |= 𝐶𝐶 : P ≈> Q [𝜀], consider any Φ-model 𝜑 . Consider any 𝜋 and any 𝜎, 𝜎 ′ such
that 𝜎 |𝜎 ′ |=𝜋 P. Suppose 𝐶𝐶 has a trace 𝑆 from 𝜎, 𝜎 ′ (and empty environments). If 𝑆 faults next by

a unary fault, let its unary projections be 𝑈 ,𝑉 (one of which faults next). Then by Lemma D.3 the

trace 𝑇 from𝑈 ,𝑉 must also fault next—and this contradicts the assumed judgment for 𝐷𝐷 .

Finally, suppose 𝑆 faults next by alignment fault. Consider the maximal alignment segmentation

of 𝑆 and let 𝑇 be the trace from 𝐷𝐷 given by Lemma D.3. By Lemma D.5 there is a segmentation of

𝑇 that covers each sync point of 𝑆 , including the last configuration of 𝑆 which faults. But then 𝑇

faults next, contrary to the premise for 𝐷𝐷 .

This concludes the proof of Lemma D.4 and thus soundness of rWeave. □

Proof. (Of Lemma D.5.) By induction on the derivation of the weaving relation 𝐶𝐶 ↬ 𝐷𝐷 , and

by cases on the definition of↬ starting with the axioms (Fig. 18).

Case weaving axiom (𝐴|𝐴) ↬ ⌊𝐴⌋. For most atomic commands 𝐴, a trace 𝑆 of the lhs consists

of an initial configuration ⟨(𝐴|𝐴), 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩, possibly a second one with code (skip|⊲𝐴), and
possibly a third one that is terminated (i.e., has code ⌊skip⌋). However, because the lemma allows

non-empty environments, there is also the case that 𝐴 is an environment call to some𝑚 in the

domain of 𝜇 and of 𝜇′. In that case, if 𝜇 (𝑚) = 𝐵 and 𝜇′ (𝑚) = 𝐵′, then there are traces of the

form ⟨(𝑚() |𝑚())⟩⟨(𝐵; ecall(𝑚) |⊲𝑚())⟩⟨(𝐵; ecall(𝑚) |𝐵′; ecall(𝑚))⟩ . . .. Traces of the ⌊𝑚()⌋ can have

the form ⟨⌊𝑚()⌋⟩⟨(𝐵 |𝐵′)⟩ . . . but also, if 𝐵′ ≡ 𝐵, the form ⟨⌊𝑚()⌋⟩⟨T𝐵U⟩ . . . (see rule bCallE and

Fig. 20). The latter is susceptible to alignment faults.

In any case, the only sync points in 𝑆 are the initial configuration and, if present, the terminated

one. If 𝑆 is not terminated then it has only the initial sync point, so 𝐿 has only a single segment.

This can be matched by the trace 𝑇 consisting of the one configuration ⟨⌊𝐴⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ which
also serves as the single segment for 𝑇 . (The lemma does not require 𝑇 to cover all steps of 𝑆 , only

the sync points of 𝑆 .)

If 𝑆 terminated, then by projection and then embedding Lemma C.9, ⟨⌊𝐴⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ has a trace
𝑇 that either terminates, covering the steps of 𝑆 , or faults. It cannot have a unary fault because 𝑆

did not. If it has an alignment fault, which would be via context call transition bCallX or by some

step of an environment call executing T𝐵U, we are done. Otherwise 𝑇 can be segmented to match

the segmentation 𝐿: One segment including all of 𝑇 except the last configuration, followed by that

configuration as a segment.

Case weaving axiom (𝐶;𝐷 | 𝐶′;𝐷 ′) ↬ (𝐶 |𝐶′); (𝐷 |𝐷 ′). A trace 𝑆 of the lhs may make several

steps, and may eventually terminate. If terminated, it has two sync points, initial and final; other-

wise only the initial configuration is a sync point. If not terminated, the initial configuration for

(𝐶 |𝐶′); (𝐷 |𝐷 ′) provides the trace 𝑇 and its single segment. If 𝑆 terminated, then by projection and
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embedding we obtain a trace 𝑇 that either terminates in the same states or has an alignment fault.

So we either get a matching segmentation of 𝑇 or an alignment fault.

Cases the other weaving axioms. The argument is the same as above, in all cases. The rhs of

weaving has additional sync points which are of no consequence except that they can give rise to

alignment faults. Like the preceding cases, bi-if and bi-while introduce the possibility of alignment

fault; bi-let and bi-var weavings do not.

Having dispensed with the base cases, we turn to the inductive cases which each have as premise

that 𝐵𝐵 ↬ 𝐶𝐶 (Fig. 18). The induction hypothesis is that for any trace 𝑆 of 𝐵𝐵 and any alignment

segmentation 𝐿 of 𝑆 , there is a trace𝑇 of𝐶𝐶 such that either its last configuration can alignment-fault

or there is a segmentation𝑀 of 𝑇 that covers the segmentation of 𝑆 .

Case 𝐵𝐵;𝐷𝐷 ↬ 𝐶𝐶;𝐷𝐷 .

A trace 𝑆 of 𝐵𝐵;𝐷𝐷 may include only execution of 𝐵𝐵 or may continue to execute 𝐷𝐷 .

• In case 𝑆 never starts 𝐷𝐷 , the trace 𝑆 determines a trace 𝑆+ of 𝐵𝐵 by removing the trailing

“;𝐷𝐷” from every configuration. (In the special case that 𝐶𝐶 is run to completion in 𝑆 , i.e.,

its last configuration has exactly the code 𝐷𝐷 , then the last configuration of 𝑆+ has ⌊skip⌋.)
(Note that 𝑆 may have sync points besides the initial one, as 𝐵𝐵 is an arbitrary biprogram.)

By induction we obtain trace 𝑇 of 𝐶𝐶 and either alignment fault or segmentation of 𝑇 that

covers the segmentation of 𝑆 . Adding ;𝐷𝐷 to every configuration of 𝑇 yields the requisite

segmentation of 𝑆 .

• Now consider the other case: 𝑆 includes at least one step of 𝐷𝐷 , so there is some 𝑖 > 0 such

that 𝑆𝑖−1 has code 𝐵𝐵
′
;𝐷𝐷 for some 𝐵𝐵′ that steps to ⌊skip⌋, and 𝑆𝑖 has code 𝐷𝐷 . Because 𝐿

is the maximal segmentation of 𝑆 , it includes a segment that starts with the configuration

𝑆𝑖 . Now we can proceed as in the first bullet, to obtain trace 𝑇 of 𝐶𝐶 and either alignment

fault or segmentation for the part of 𝑆 up to but not including position 𝑖 . Catenating this

segmentation with the one for the trace of 𝐷𝐷 from 𝑖 yields the result.

Case 𝐷𝐷 ;𝐵𝐵 ↬ 𝐷𝐷 ;𝐶𝐶 . For a trace 𝑆 that never reaches 𝐵𝐵, the result is immediate by taking

𝑇 := 𝑆 and 𝑀 := 𝐿. Otherwise, the given trace 𝑆 can be segmented into an execution of 𝐷𝐷 that

terminates, followed by a terminating execution of 𝐵𝐵. By maximality, the segmentation breaks at

the semicolon, and we obtain the result using the induction hypothesis similarly to the preceding

case.

Case if 𝐸 |𝐸′ then 𝐵𝐵 else 𝐷𝐷 ↬ if 𝐸 |𝐸′ then 𝐶𝐶 else 𝐷𝐷 . If the given trace 𝑆 has length one,

we immediately obtain a length-one trace and segmentation that satisfies the same-projection

condition (71).

If 𝑙𝑒𝑛(𝑆) > 1 then the first step does not fault, i.e., the tests agree. Let 𝑆+ be the trace starting
at position 1, which is a trace of 𝐵𝐵 or of 𝐷𝐷 depending on whether the tests are initially true

or false. If the tests are false then catenating the initial configuration for if 𝐸 |𝐸′ then 𝐶𝐶 else 𝐷𝐷

with 𝑆+ provides the requisite 𝑇 , and also its segmentation. If the tests are true, then apply the

induction hypothesis to obtain a trace 𝑇 for 𝐶𝐶 , and segmentation (if not alignment fault); and

again, prefixing the initial configuration to 𝑇 and to its first segment yields the result.

Case if 𝐸 |𝐸′ then 𝐷𝐷 else 𝐵𝐵 ↬ if 𝐸 |𝐸′ then 𝐷𝐷 else 𝐶𝐶 . Symmetric to the preceding case.

Case while 𝐸 |𝐸′ · P |P′ do 𝐵𝐵 ↬ while 𝐸 |𝐸′ · P |P′ do𝐶𝐶 . A trace 𝑆 of lhs can be factored into a

series of zero or more iterations possibly followed by an incomplete iteration of left/right/both. Note

that a completed iteration ends with a “semi-colon removal” step (the left-, right-, or both-sides

loop body finishes and was followed by the bi-loop). Because the segmentation 𝐿 is maximal, it has

a separate segment for each iteration.

Now the argument goes by induction on the number of iterations. The inner induction hypothesis

yields segmentation for rhs up to the last iteration, which in turn ensures that lhs and rhs agree on
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whether the last iteration is left-only, right-only, or both-sides. In the one-sided cases there are no

sync points. In the both-sides case, the main induction hypothesis for 𝐵𝐵 ↬ 𝐶𝐶 can be used in a

way similar to the argument for sequence weaving above.

Case let 𝑚 = (𝐵 |𝐵′) in 𝐵𝐵 ↬ let 𝑚 = (𝐵 |𝐵′) in 𝐶𝐶 . Suppose 𝑆 is a trace from ⟨let 𝑚 =

(𝐵 |𝐵′) in 𝐵𝐵, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩, with segmentation 𝐿. If 𝑆 has length one the rest is easy. Otherwise,

𝑆 takes at least one step, to ⟨𝐵𝐵; ⌊elet(𝑚)⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ where 𝜇 and 𝜇′ extend 𝜇, 𝜇′ with𝑚:𝐵 and

𝑚:𝐵′ respectively. We obtain trace 𝑆+ of ⟨𝐵𝐵; ⌊elet(𝑚)⌋, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ by omitting the first configura-

tion of 𝑆—and here we use a trace where the initial environments are non-empty. Applying the

induction hypothesis, we obtain trace 𝑇 + for 𝑆+, and either alignment fault or matching segmenta-

tion𝑀+. Prefixing the configuration ⟨let𝑚 = (𝐵 |𝐵′) in𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ yields the requisite trace𝑇 . If
there is alignment fault, we are done. Otherwise, if 𝐵𝐵 begins with an aligning bi-program, i.e., if 𝑆1

is a sync point in 𝑆 , then let segmentation𝑀 consist of the singleton ⟨let𝑚= (𝐵 |𝐵′) in𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩
followed by the elements of 𝑀+. Finally, if 𝑆1 is not a sync point in 𝑆 , we obtain 𝑀 by prefixing

⟨let𝑚 = (𝐵 |𝐵′) in 𝐶𝐶, 𝜎 |𝜎 ′, 𝜇 |𝜇′⟩ to the first segment in𝑀+.
Case var 𝑥 :𝑇 |𝑥 ′:𝑇 ′ in 𝐵𝐵 ↬ var 𝑥 :𝑇 |𝑥 ′:𝑇 ′ in 𝐶𝐶 . By semantics and induction hypothesis, similar

to the preceding case for bi-let. □

E APPENDIX: GUIDE TO IDENTIFIERS AND NOTATIONS

The prime symbol, like 𝜎 ′, is consistently used for right side in a pair of commands, states, etc.

Other decorations, like ¤𝜎 and ¥𝜏 , are used for fresh identifiers in general.

𝐴 atomic command Fig. 5

𝐵,𝐶, 𝐷 command Fig. 5

𝐵𝐵,𝐶𝐶,𝐷𝐷 biprogram Fig. 5

𝐸 program expression Fig. 5

𝐺,𝐻 region expression Fig. 5

𝐹 either program or region expression Fig. 5

𝑓 , 𝑔 field name Fig. 5, Eqn. (6)

𝐾 reference type Fig. 5

𝑀,𝑁, 𝐿 module name

𝑇 data type Fig. 5

𝑇,𝑈 ,𝑉 ,𝑊 trace (unary or biprogram)

𝑃,𝑄, 𝑅 formula Fig. 9

P, Q, R,M,N relation formula Fig. 14

𝑥, 𝑦, 𝑧, 𝑟, 𝑠 program variable

𝜀, 𝜂, 𝛿 effect expression Eqn. (6)

Γ typing context

Φ,Θ,Ψ, unary or relational hypothesis context Sections 3.4 and 4.3

𝜑, 𝜃,𝜓 unary or relational context model Sections 5.4 and 7.4

Φ0,Φ1,Φ2 components of relational context see preceding Def. 4.2

𝜎, 𝜏,𝜐 state Section 5.1

�̂� state with spec-only vars

𝜋, 𝜌 refperm Section 5.2

Table 1. Use of identifiers
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Active, 43
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Γ-state, 42
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pre, 29
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wrs, 19

𝑚-truncated, 94, 120

wrttn, 44

active biprogram, 57

active command, 43

agree on 𝜀 modulo 𝜋 , 44

agreement compatible, 65
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alignment fault, 35, 56
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allows change, 44

allows dependence from 𝜏, 𝜏 ′ to 𝜐,𝜐′ for 𝜎, 𝛿, 𝜋 , 79

bi-com, 26

bi-model, 53
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context introduction, 51

context model, 41, 46, 57

correctness judgment, 20
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current module, 20

default module, 19
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effect, 17

effect expressions, 17

effect subtraction, 19
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environment calls, 20
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fault, 41

fault compatibility, 54

fault determinacy, 45, 53
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hat convention, 43
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r-bi-com, 54

r-respects 𝛿 for (𝜑, 𝜀, 𝜎 ) , 47
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