
Journal Of Automated Reasoning manuscript No.

(will be inserted by the editor)

On Automation in the Verification of Software Barriers:

Experience Report

Alexander Malkis · Anindya Banerjee

23 August 2013

Abstract We present an experience report on automating the verification of the software

barrier synchronization primitive. The informal specification of the primitive is: when a

thread calls the software barrier function, the thread halts until all other threads call their

instances of the software barrier function. A successful software barrier call ensures that

each thread has finished its portion of work before the threads start exchanging the results

of these portions of work. While software barriers are widely used in parallel versions of

major numerical algorithms and are indispensable in scientific computing, software barrier

algorithms and their implementations scarcely have been verified. We improve the state of

the art in proving the correctness of the major software barrier algorithms with off-the-

shelf automatic verification systems such as Jahob, VCC, Boogie, Spin and Checkfence. We

verify a central barrier, a C implementation of a barrier, a static tree barrier, a combining tree

barrier, a dissemination barrier, a tournament barrier, a barrier with its client and a barrier

on a weak memory model. In the process, we introduce a novel theorem proving method

for proving validity of formulas containing cardinalities of comprehensions and improve the

capabilities of one of the verification systems. Based on our experience, we propose new

challenges in the verification of software barriers.

Keywords barrier · verification · invariant · safety · verifier · automation

CR Subject Classification D.2.4 · F.3.1 · D.4.1

Alexander Malkis

Institut für Informatik (I4)

Technische Universität München

Boltzmannstr. 3

85748 Garching bei München, Germany

Tel.: (+49) 89 289 17337

Fax: (+49) 89 289 17307

E-mail: malkis@in.tum.de

Anindya Banerjee

IMDEA Software Institute

Edificio IMDEA Software

Campus Montegancedo UPM

28223-Pozuelo de Alarcón, Madrid, Spain

E-mail: Anindya.Banerjee@imdea.org

2 Alexander Malkis, Anindya Banerjee

1 Introduction

We verify implementations of the software barrier, which is a standard concurrency primitive

that enables threads to synchronize in the following manner. Namely, if a thread calls the

software barrier function, the barrier function starts waiting until all other threads call their

instances of the barrier function. After all other threads have called the barrier function, the

waiting stops, and all the threads are allowed to proceed with the instruction following the

call to the barrier function.

Software barriers are available in most libraries, including PThreads, OpenMP, MPI,

CUDA, java.util.concurrent and .NET. The barrier algorithms range from rich-feature ones

to high-performance ones. The barrier primitive is routinely used in shared-memory pro-

grams. We will examine the spread of the barriers later in Section 9, for now demonstrating

a typical usage of the barrier by the following code snippet:

Initially c=0;

// One thread. // Another thread.

c++; // Atomic increment. c++; // Atomic increment.

barrier(); barrier();

... // Here rely on c=2. ... // Here rely on c=2.

How do we know whether the used barrier implementations are really correct? After all,

errors in concurrent algorithms are common even after reviewed publications. We are the

first, to the best of our knowledge, to systematically expound the proofs of correctness of the

major software barriers in off-the-shelf automatic verification tools. Our contribution is not

only to prove the correctness of the barriers, but also to improve one of the verification tools,

Jahob [29]. The tool improvements concern theorem proving: now Jahob can handle more

and larger formulas than it could handle before, implying that now Jahob is able to prove

stronger properties of programs. In particular, we have implemented a new theorem proving

method, called free comprehension-cardinality instantiation. This and other improvements

are going to be described during exposition; they are also incorporated into the development

trunk of Jahob.

The barrier property we would like to verify is: if one thread passes the barrier, all the

other threads have already arrived at it. Our key contribution is proving just this fact for the

major barrier algorithms.

Our priority in this exposition is to handle a large number of different barriers: to keep

the presentation simple, for most algorithms we prove the barrier property just for the first

call of each thread. Other issues like handling a large number of control flow locations are

inherent also to sequential programs and can be dealt with by appropriate methods [17].

For most of the barriers, we follow a standard verification process [35] in which a pro-

gram is annotated with an inductive invariant up front. Different algorithms admit a different

amount of proof automation in this respect, reflecting the state of the art:

– Some will just need support in proving that a user-given invariant is indeed inductive.

– Some will require only an inductive invariant, the inductiveness proof is fully automatic.

– Some will be fully automatic, not requiring even an inductive invariant for proving the

barrier property.

We verify most of the algorithms assuming sequentially consistent memory and un-

bounded integers, revealing a gap between real hardware and available verification tools. If

a program is verified against sequential consistency and unbounded integers, without spe-

cial precautions the program would in general not run correctly on extant hardware. But

verification against the ideal computation model is still of great use: almost every industri-

ally relevant application, including the software barriers, can be potentially adapted to real

On Automation in the Verification of Software Barriers: Experience Report 3

hardware, e.g. by inserting overflow checks and instructions that flush hardware caches. In

addition to the verification against sequential consistency, we have advanced one step fur-

ther by verifying one barrier algorithm against a weak memory model. Integer overflows are

not a problem for us: in all cases but one, the used integer interval is [0,number of threads],
and in the exceptional case there is a time counting variable that, even in the worst scenario,

would not overflow within 64 years, thus being practically benign.

All the experiments are fully reproducible. Our online material [34] provides the entire

code as well as the instructions for reproducing verification.

Our contributions are:

– discovery of inductive invariants of major barrier algorithms for sequential consistency,

– verification of major barrier algorithms for sequential consistency in automatic verifiers,

– verification of the central barrier algorithm for weak memory in an automatic verifier,

– a new proof method for formulas exhibiting cardinalities of comprehensions,

– identifying a sufficient toolbox of reasoning techniques for barriers,

– significant improvements to the Jahob verification system,

– bug reporting or bug fixing in the other verification tools Z3, VCC, Checkfence,

– identification of future challenges in the area of barrier verification.

2 Overview

This section outlines the organization of the barrier proofs.

For sequentially consistent memory, we will consider several barrier algorithms, a bar-

rier implementation in multithreaded C and a barrier with a client; for a weak memory model

we will look at a central software barrier. We will describe each of these benchmarks in the

following 6 stages.

I. Algorithm.

We examine a barrier algorithm at hand. Usually it is given by pseudocode or by code

in a multithreaded version of some imperative programming language. In some cases we

remove or rewrite parts of the code which are only weakly related to the aforementioned

barrier property and at the same time make verification intractable (e.g. features such as

using the barrier more than once, running external code, error processing, adding/removing

participants, etc. are less relevant). In any case we retain the parts of the code that are central

to the barrier property.

II. Required reasoning.

After settling on the algorithm we determine what kind of reasoning is required to prove the

barrier property. Various algorithms require reasoning about integers, sets with cardinalities,

two-dimensional arrays, maps or trees. Determining the required reasoning influences the

later choice of the tool to verify the algorithm.

III. High-level proof.

If the reasoning requires an inductive invariant, we either manually produce an inductive

invariant that implies the barrier property or say how the invariant is automatically derived.

If the required reasoning does not involve an inductive invariant, we describe the underlying

proof structure instead.

4 Alexander Malkis, Anindya Banerjee

IV. Encoded proof.

After obtaining a program and the inductive property we encode them into the tool that

has the best support for the required reasoning principles. The Boogie tool [31] can reason

very well about arrays, the Jahob tool [29] has good decision procedures for trees and sets;

verification of real C implementations is best handled in VCC [43], programs on bounded

integers can be handed over to the finite-state model checker Spin [24], and programs on

weak memory can be handled by Checkfence [9].

V. Using the tool.

The use of a verifier resembles the use of a command-line compiler: if the first attempt

fails, we repair the input to the verifier (in some cases we repair the verifier) and restart the

verifier. After some iterations verification succeeds; in the presentation the results of the last

successful attempts will be shown.

A verification attempt might fail for different reasons, e.g. the tool should prove the

absence of null-pointer dereferences but cannot prove that. Then we improve either the pro-

gram (e.g. insert a null-pointer check into the code) or the inductive property to be proven

(e.g. insert a conjunct stating that a particular pointer is never null) or the capabilities of

the tool (e.g. if the tool fails in calling a theorem prover that would prove the absence of

null-pointer dereferences, we repair the tool).

VI. Beyond the frontier.

Finally, we show a slight change in the barrier algorithm or in the property to be shown

that still prevents automatic verification with the latest technology. Such changed versions

provide future challenges in verification of concurrent programs.

3 Caveats

Our experience in the verification of software barriers exposed certain deficiencies and lim-

itations of modern verification technology which we would like to state up front.

First, some programs can be verified for an unbounded number of threads, some oth-

ers cannot, while still others do not have a meaningful parameterized description. In certain

cases the verification process will require a bounded number of threads, while other quanti-

ties may still stay unbounded.

Next, for most programs we verify the barrier property just for the first call. This simple

property certainly builds a basis for stronger and more elaborate properties. In most cases,

an extension to more than one call would be theoretically easy: usually it would require

just a larger program and a more complicated property to prove, and the reasoning com-

plexity would increase only moderately. However, practically, even slightly larger programs

or properties possibly expressed in the same logic would immediately cross the automa-

tion frontier: at the time the research was conducted, virtually all the used tool chains had

problems with the relatively small formulas and relatively small state spaces arising from

verification of one-time barriers.

Moreover, existing automatic verification tool chains do not admit compositional ver-

ification of both the barrier and its clients in the same framework in the following sense.

Ideally, one would first verify a property of the given barrier implementation. Second, one

would automatically use this property in proving high-level properties of the code of the

clients without reexamining the barrier implementation. However, in this paper, we seam-

lessly verify one implementation of a barrier with its client.

On Automation in the Verification of Software Barriers: Experience Report 5

Furthermore, the used research tool chains do not implement all of the mechanization

that would be required to verify a barrier with a single push of a button. For example, auto-

matic syntactic translation from a multithreaded program into a nondeterministic sequential

one for Jahob and Boogie is missing. Such well understood, but so far absent features can

be implemented on need.

Finally, one researcher on barriers surmised that “a full formal correctness proof for

these codes would be a lengthy and boring exercise” [33]. We show, to the contrary, that it

is possible to delegate the long and boring part of theorem proving to automatic verification

tools.

4 Central barriers

This section describes verification of the central barrier. We will start with the simplest

algorithm, then proceed with an implementation in C and finish with a comparison of the

two. As we will see, even on the simplest example of a barrier, the key challenge emerges

immediately: how to reason about cardinalities of comprehensions over program locations.

We will discuss how to solve this problem.

4.1 The simplest central barrier

I. Algorithm.

A trivial implementation of the barrier involves a counter. The counter is initially the number

of (participating) threads and gets decreased when a thread enters the barrier. Only when

the counter is zero, all threads are allowed to proceed (in the sequel, all the code will be

displayed in small letters):

shared int count; // initially the number of participating threads

// The function to be called by each thread:

void barrier() {
// Decrement the number of threads that have not yet called the barrier:

count−−; // the current thread has called the barrier.

while(count!=0); // the current thread waits until all threads have joined.

}

After the counter reaches zero, it is never reset – this barrier is for one-time use only.

The program which we analyze is the parallel composition of the threads that execute the

function body; i.e., each thread executes the following code:

A : count−−; B : while(count 6=0); C :

II. Required reasoning.

First we will delineate the problem that arises when trying to reason about the program; then

we will suggest a few solutions to this problem.

II.(i) Problem description.

We want to show the barrier property: when one thread has arrived at location C, all the

others are no longer at location A. To show the property, we need the ability to express

that at any time point in the execution of the program, the value of the program variable

count is at least the number of threads at location A. (When a variable identifier acts as

a program variable, we write it as code, i.e. in small letters; when the identifier acts as

a logical variable, we write it in normal font.) We also need the ability to say that if

6 Alexander Malkis, Anindya Banerjee

some thread is at location C, then count = 0. The number of threads at location A is the

cardinality of {t ∈Tid | pct =A}, where Tid is the set of thread identifiers and pct is the

program counter of thread t. The formula

J = (count≥ |{t ∈ Tid | pct = A}| ∧ ∀ t ∈ Tid : (pct = C⇒ count= 0))

is an inductive invariant which implies the barrier property: if some thread t satisfies

pct =C, then the first conjunct yields 0 ≥ |{t∈Tid | pct =A}|, so there is no thread t with

pct =A.

To prove inductiveness of J, it suffices to show two facts.

Initial condition: J holds initially, i.e. when all the threads are at location A and count is

the number of all threads,

Stability: J implies the weakest precondition of J with respect to each of the two tran-

sitions A→B and B→C of an arbitrary thread.

Each of the proof obligations is an implication where J (in case we check the initial

condition) or its weakest precondition (in case we check stability) is in the consequent.

Since J is a conjunction and weakest precondition distributes over conjunctions, each

occurring consequent is a conjunction. Each proof obligation is proven by splitting the

consequent into two conjuncts and proving each of the conjuncts separately, which re-

sults in two checks for the initial condition and four checks for the stability, a total

of six checks. The resulting formulas, whose validity has to be shown, exhibit several

complications at the same time: unbounded integers (count), quantifiers (∀ t), finite sets

(Tid), comprehensions ({. . .}) and cardinalities (|. . .|). As of spring of 2012, no usable

general-purpose automatic theorem prover can reason about such formulas. (We have

even tried an interactive theorem prover, Isabelle—the smallest proof of the hardest for-

mula requires a manually typed three-lines-long lemma.)

II.(ii) Solution: using counter abstraction.

One known way to circumvent these difficulties is to use counter abstraction, i.e. in-

troduce an auxiliary variable for each control flow location that counts the number of

threads at that location. We obtain, e.g. a variable no of threads at location A, for which

the invariant no of threads at location A = |{t ∈Tid | pct = A}| holds by construction

and the invariant no of threads at location A = count holds, since both variables in the

equality are decremented simultaneously. In experiments with counter abstraction the

program can be automatically verified within a second.

The method of counter abstraction is easy for toy programs like this one. Unfortu-

nately, it also breaks easily when the comprehension under the cardinality is syntacti-

cally different from “the number of threads at a single fixed location”. Prior syntactic

transformations, e.g. rewriting a multithreaded program into a nondeterministic sequen-

tial one, usually render counter abstraction useless. Also, real-life central barriers as in

Section 7 require slightly different comprehensions in the invariant (e.g. “the number

of threads t in an interval of locations such that a local Boolean flag of t is raised”)—

which also makes counter abstraction useless, at least in the strict way it is defined.

The question arises whether counter abstraction can be made more flexible, and whether

such flexibility could be reached automatically. As we will see, our approach, in a broad

sense, will subsume such flexible extensions. We now demonstrate two new methods

that relax or even completely get rid of the restriction of auxiliary integer variables with

a fixed meaning (e.g. the meaning of a variable like no of threads at location A does not

depend on what the original program is doing).

II.(iii) Solution: using BAPA directly.

On Automation in the Verification of Software Barriers: Experience Report 7

In the first method, we convert the program and the invariant such that the proof obliga-

tions lie in BAPA, the logic of Boolean Algebra and Presburger Arithmetic with cardi-

nality constraints.

In short, BAPA allows us to express sets, their unions and intersections, their cardi-

nalities and basic arithmetic over them, but does not allow to reason about the member-

ship relation “∈”. More concretely, one can use set variables A, B, C, . . . , expressions

like |(A∩B)∪C|, but the syntax phrase {t ∈ Tid | pct = A}, appearing in J, cannot be

expressed in BAPA. However, we could give this phrase a name, say, A and treat it as

an object without internal structure. Similarly, we use B for {t ∈Tid | pct = B} and C

for {t ∈Tid | pct =C}. We rewrite the multithreaded program such that it operates with

A, B, C to reflect the change of the program counter. Additionally, the variable Tid will

represent the set of all threads in the system. (We will see the details of the rewritten

code later on page 10.) One can view the variable no of threads at location A from the

counter abstraction method, roughly speaking, as an abstraction of the set variable A.

In this new method, we obtain the ability to express the notion of different threads and

reason about them in addition to reasoning about just their numbers. Thus, our method

has a wider applicability in comparison to the counter abstraction.

II.(iv) Solution: using AUFLIA and BAPA.

In the second method, we leave the program and the proof obligation as they are, nei-

ther adding any auxiliary variables nor applying any abstraction, thus without incurring

upfront costs or an upfront loss of precision. Instead, we discharge the resulting higher-

order verification conditions by transforming them into a first-order logic, thus delaying

the loss of precision until the semantics of the program gets visible in proof obligations.

Preparing to show the transformation, we start with a simple logical result.

Proposition 1 Let ψ and θ be higher-order-logic terms of Boolean type. Let σ be a

type-preserving substitution of variables by terms. Assume that

(1) σ(ψ)∨σ(θ) is valid and

(2) ψ ∨¬θ is valid.

Then σ(ψ) is valid.

Proof. For an arbitrary type-correct valuation of variables we have σ(ψ) ⇔ σ(ψ ∨
false) ⇔ σ(ψ ∨ (θ ∧¬θ)) ⇔ σ((ψ ∨ θ)∧ (ψ ∨¬θ)) = (σ(ψ)∨σ(θ))∧σ(ψ ∨¬θ)
⇔ true∧σ(true) ⇔ true. ⊓⊔

To show the transformation, assume that we have to discharge a verification condition,

which is a formula, say, φ , in higher-order logic. The free variables of φ correspond to

the program variables and the data structures in the following states.

– An initial state, namely when checking that the initial condition implies the induc-

tive invariant or when checking the input-output relation.

– The state before some transition, namely when checking that an inductive invariant

is stable under the transition.

– The state after this transition; but if the transition is at most boundedly nonde-

terministic, logical variables corresponding to the state after the transition can be

eliminated.

The formula φ shall be proven valid.

The following simplified example of such a formula states that the first conjunct of

J holds after an arbitrary thread, say, t1, takes a step from A to B:

φ =

((
|{t | t∈Tid ∧ pct=A}| ≤ count ∧ t1∈Tid ∧ pct1

=A ∧ other conjuncts
)

⇒ |{t | t∈Tid ∧ (pc[t1 7→B])t = A}| ≤ count−1

)
.

8 Alexander Malkis, Anindya Banerjee

Henceforth, “other conjuncts” will contain irrelevant formulas not influencing the sub-

sequent treatment. (Here, for instance, “other conjuncts” contain the second conjunct of

J.) Also notice that the logical variables specifying the values of count and pc after the

transition have already been substituted by count−1 and pc[t1 7→B], respectively.

We wish to prove validity of φ , but cardinalities of comprehensions (whose seman-

tics is in this case necessary to establish the validity) cannot be directly treated by current

theorem provers. Our remedy is constructing formulas ψ and θ as well as a substitution

σ such that

– the preconditions of Prop. 1 are met,

– φ = σ(ψ), and

– the formulas σ(ψ)∨σ(θ) and ψ ∨¬θ have fewer cardinalities of comprehensions

than φ and are provably valid.

To construct ψ , we introduce fresh logical variables for the comprehensions under

cardinalities. To illustrate this point, if p̄t , p̂t and p̌t are the formulas describing the pro-

gram counter of a thread t in the initial state, before the transition and after the transition,

then the formulas |{t | t∈Tid∧ p̄t=A}|, |{t | t∈Tid∧ p̂t=A}| and |{t | t∈Tid∧ p̌t=A}| get

substituted by cardinalities of fresh variables, say, |Ā|, |Â| and |Ǎ|. Syntactically equal

comprehensions get substituted by equal variables. The inverse substitution, which maps

these fresh variables to the corresponding comprehensions, will be σ . In all our ver-

ification conditions only unbounded comprehensions occur. Such comprehensions are

outside variable binders, i.e. outside quantifiers, lambda abstractions, other comprehen-

sions. Were a comprehension to occur under a binder, we would leave it unabstracted

at this stage. This substitution process produces a formula ψ whose validity implies the

validity of φ .

For our running example,

ψ =
((
|Â| ≤ count ∧ t1∈Tid ∧ pct1

=A ∧ other conjuncts
)
⇒ |Ǎ| ≤ count−1

)
.

Though ψ lies in first-order logic for all our verification conditions, ψ is not yet useful

by itself because it is too strong to be valid.

Now we construct a first-order-logic formula θ , which will be a conjunction of sev-

eral atomic formulas, by checking

– membership relations between already present free variables and introduced fresh

variables (e.g. whether t1∈ Â or t1 6∈ Â) and

– subset relations between introduced fresh variables (e.g. whether Â⊆ Ā or Â 6⊆ Ā)

under the assumption ¬φ (i.e. assuming ¬σ(ψ)). While checking such an auxiliary

membership or subset relation we have full access to the definitions of set compre-

hensions, and such a check can be executed by any suitable theorem prover. In all our

examples the check does not rely on cardinalities of comprehensions, so we use an

SMTLIB solver for AUFLIA, the logic of Arrays, Uninterpreted Functions and Linear

Integer Arithmetic. Thus, if φ ∨ (t1 ∈Tid∧ p̂t1 =A) is valid, we make t1 ∈ Â a conjunct

of θ ; if φ ∨ (t1∈Tid∧ p̂t1 =A∧ p̌t1 6=A) is valid, we make Â 6⊆Ǎ a conjunct of θ . We call

this systematic process free comprehension-cardinality instantiation, since such checks

instantiate the comprehensions (under cardinalities) by free variables occurring in φ .

For our running example, we would like to determine what membership and subset

relations hold under

¬φ =

(
|{t | t∈Tid∧pct =A}| ≤ count ∧ t1∈Tid ∧ pct1

=A ∧
other conjuncts ∧ |{t∈Tid | (pc[t1 7→B])t = A}|> count−1

)
.

Since this assumption is still not in AUFLIA, we weaken the assumption:

true ∧ t1∈Tid ∧ pct1
=A ∧ other conjuncts ∧ true .

On Automation in the Verification of Software Barriers: Experience Report 9

Under this weaker assumption we derive membership and subset relations; for instance

we check the validity of the following three formulas:

(t1∈Tid ∧ pct1
=A ∧ other conjuncts) ⇒ t1∈{t | t∈Tid∧pct =A} ,

(t1∈Tid ∧ pct1
=A ∧ other conjuncts) ⇒ t1 6∈{t | t∈Tid∧ (pc[t1 7→B])t =A} ,

(t1∈Tid ∧ pct1
=A ∧ other conjuncts) ⇒ ∀t:

(
(t∈Tid∧ (pc[t1 7→B])t =A)
⇒ (t∈Tid∧pct =A)

)
.

These checks succeed, so we obtain t1∈Â, t1 6∈Ǎ and Ǎ⊆Â as additional assumptions.

Since the process systematically tries out all possibilities for (non-)membership and

(non-)inclusion, the process may also generate some formulas for which subsequent

validity checks fail. For instance, since

(t1∈Tid ∧ pct1
=A ∧ other conjuncts) ⇒ ∀t:

(
(t∈Tid∧pct =A)⇒
(t∈Tid∧ (pc[t1 7→B])t =A)

)

cannot be proven valid, Â⊆Ǎ will not be a conjunct of θ .

By construction, we have (¬σ(ψ)) ⇒ σ(θ). By Prop. 1, the validity of ψ∨¬θ
implies the validity of φ . In our running example θ = (Ǎ⊆ Â∧ t1 ∈ Â∧ t1 6∈ Ǎ∧ . . .) and

we check the validity of ψ∨¬θ , which is propositionally equivalent to
(
|Â|≤count∧ t1∈Tid ∧ pct1

=A∧ other conjuncts ∧ Ǎ⊆Â ∧ t1∈Â ∧ t1 6∈Ǎ
)

⇒ |Ǎ|≤count−1 .

Notice that ψ ∨¬θ is weaker than ψ and has no top-level cardinalities of comprehen-

sions. Thus, ψ∨¬θ is both valid with a higher chance (than ψ) and nearer to BAPA

(than φ). This formula is further converted towards BAPA by, for example, modeling

elements as singleton sets and substituting atomic formulas with remaining cardinalities

of comprehensions (under a binder) by true or false in a way that is sound for validity.

After conversion, we are left with a pure BAPA formula, which is then transformed into

the Presburger Arithmetic and fed to an off-the-shelf solver. In our running example the

formula ψ∨¬θ could be shown valid by the described tool chain.

The described steps are reminiscent of the theoretical result of Wies et al. [51].

Without going into details, their method, starting with φ , universally projects out the

non-BAPA variables using different decision procedures, builds a disjunction out of the

projections and then checks the disjunction for validity by a BAPA decision procedure.

Broadly speaking, one can view our method as a practical adaptation of the theoretical

ideas of Wies et al.

The process involving free comprehension-cardinality instantiation leads to success

for five out of six proof obligations (full listings are available [34]). Here is the remaining

obligation (that comes from checking the invariance of the second conjunct of J with

respect to the transition from A to B) in a simplified form:
(
|{t∈Tid | pct=A}| ≤ count ∧ (∀ t∈Tid : (pct=C⇒ count=0)) ∧
t1∈Tid ∧ pct1

=A ∧ t2∈Tid ∧ (pc[t1 7→B])t2=C ∧ other conjuncts

)
⇒ count−1 = 0 .

A human quickly sees that the antecedent is not satisfiable, so the implication is valid.

Its mechanical proof requires an interplay between heuristic quantifier instantiation, the

theory of uninterpreted functions and very basic facts about cardinalities:

1. a cardinality is always nonnegative and

2. the cardinality of a set is zero only if the set is empty.

10 Alexander Malkis, Anindya Banerjee

To cope with the last obligation, we translate finite sets of threads into arrays int→int

as follows. Threads are represented by an uninterpreted predicate IsAThread on integers

(the intended meaning is that the predicate is true for integers representing a thread and

false for all other integers). Sets of threads are represented by an uninterpreted predicate

IsASetOfThreads on arrays with the assumption IsASetOfThreads(a)⇒ (∀ i : (a(i)=0

∨ (a(i)= 1∧ IsAThread(i)))). The cardinality is a function on the arrays that satisfies

the two aforementioned axioms for arrays a for which IsASetOfThreads(a) holds. By

plainly rewriting the proof obligation into the AUFLIA syntax with the mentioned unin-

terpreted predicates and assumptions on them we were able to prove the obligation with

off-the-shelf SMTLIB solvers.

III. Inductive invariant.

For the first method, which involved translation of the barrier into a program running on

sets, we required the following formula

I = (A∪B∪C⊆Tid∧A∩B= /0∧A∩C= /0∧B∩C= /0∧ count≥|A| ∧ (C 6= /0 ⇒ count=0)) .

It encodes the following facts:

– A, B, C represent a partition of a set of threads;

– A contains at most count threads;

– If there are threads in C, then count= 0.

The formula lies completely in BAPA. We have proven that it is an inductive invariant man-

ually and, independently, in an automatic verifier, as we will describe below.

For the second method, the inductive invariant is just J.

IV. Encoded program and its invariant.

We will show the input to a verification tool for each of the two methods.

For the first method, the previously described transformations lead to the following input

for the Jahob verification system [29], which has an implemented decision procedure for

BAPA.

int count; // initially the number of participating threads

Element t; // the thread identifier

Set A=Tid, B=/0, C=/0; // modeling the threads at different locations

while(true) //: invariant I = ... (see above)

{
havoc t∈Thread; // give a nondeterministic value to t.

if(t∈A) {
count :=count−1;

A :=A\{t};

B :=B∪{t};

} else if(t∈B) {
if(count==0) {

B :=B\{t};

C :=C∪{t};

}
}

}

The command “havoc t” chooses an arbitrary thread, the case split chooses one of its two

instructions. The code is a sequential one: the threads have been replaced by nondetermin-

ism. This code can be obtained from the original one by a purely syntactic transformation.

The invariant I is attached as a loop invariant to the program above, i.e. on every loop

entrance I should hold.

On Automation in the Verification of Software Barriers: Experience Report 11

For the second method, the standard encoding of a multithreaded program as a nonde-

terministic one leads to the following input for Jahob (which also has backends to the SMT

solvers Z3 and CVC3).

int count; // initially the number of participating threads

Thread t; // the thread identifier

while(true) //: invariant J = ... (see above)

{
havoc t∈Thread;

if (t.pc == A) {
count :=count−1;

t.pc :=B;

} else if (t.pc == B) {
if (count == 0) t.pc :=C;

}
}

For the second method, we note that Z3 supports more than just SMTLIB, e.g. arrays

from an uninterpreted sort Thread into Booleans. If these extensions become standard in

SMTLIB, the verification process would get even cleaner by translating sets into arrays

Thread→ bool. Note that the second method reuses a well-understood BAPA logic in all cases

where it suffices and introduces cardinality axioms only in a very limited way; to compare,

SPASS+T [45] manages whole 12 axioms about counting in collections. We can keep the

trust base small by systematically using the free comprehension-cardinality instantiation for

BAPA for discharging almost all proof obligations.

V. Using the tool.

Now we describe how we have enhanced and used Jahob for the verification.

We have found and improved several issues in Jahob.

– BAPA allows reasoning about sets, but not about their elements. In BAPA, elements

have to be encoded as singleton sets, e.g.: (∀t: (t ∈A ⇒ . . .)) should be rewritten as

(∀T : ((|T |= 1∧T ⊆A)⇒ . . .)). We have found an error in the conversion and repaired

it.

– The decision procedure for BAPA required a single formula in prenex form, i.e. all

quantifiers have to precede all other operations, as in ∀A∃B : A⊆B. The verification

process in our case has started producing (internally) formulas not in prenex form, e.g.

(count≥|A|∧∀T : (|T |=1⇒ ...)). We have implemented the conversion to prenex form.

– Checking validity in BAPA is triply exponential in the number of quantifiers, so heuris-

tics are required to overcome time and space limitations of real machines. We have

implemented Boolean constant propagation, which reduces the number of quantifiers

in certain cases: e.g. φ ∧ (∀T : (. . . ⇒ true)) gets simplified to φ and ∃x : (. . .∧ false)
gets simplified to false. Such optimizations allow approximation of BAPA formulas by

sufficiently precise QFBAPA (quantifier-free BAPA) formulas. Validity in QFBAPA has

a much lower NP complexity.

After these improvements, Jahob was able to verify the program by the first method in

724 s on an Intel R© CoreTM i5-520M CPU clocked at 2.4 GHz with 8 GB RAM clocked at

1066 MHz.

We have completely implemented the free comprehension-cardinality instantiation in

Jahob. We are in the process of implementing the aforementioned automatic syntactic trans-

lation of proof obligations into SMTLIB 2.0 with axioms for sets and cardinalities. There

are several engineering difficulties in this translation, the main ones arise from the combina-

tion of higher-order logic with the potential presence of polymorphic operators like unions

12 Alexander Malkis, Anindya Banerjee

and intersections and with a potentially incomplete typing information (the type information

sometimes has to be dropped for the sake of saving memory). For example, the subformulas

of the formula |let x = ∪ in (x y1 y2 y3)| cannot be monomorphically typed, hence its con-

version to SMTLIB 2.0 is hard. At the same time, |let x =∪ in (x y1 y2 (y3 :: (Thread set)))|
can be translated as card of threadSet(let x = union of three threadSets in (x y1 y2 (y3 ::

(array int int)))), where union of three threadSets are card of threadSet are fresh vari-

ables that are unique for the whole proof obligation and that map three integer arrays to an

integer array and an integer array to an integer. These variables model the union of three

sets of threads and the cardinality of a set of threads, and axioms can furnish such variables

with appropriately sound and sufficiently complete semantics. We have found an acceptable

engineering solution and are proceeding further towards generating SMTLIB 2.0 scripts.

All the proof obligations from the second method except the last one are handled alto-

gether in about 87 s on an Intel R© CoreTM i5-520M CPU clocked at 2.4 GHz with 8 GB

RAM clocked at 1066 MHz. The manual translation of the last one is handled by Z3 in less

than a second.

VI. Beyond the frontier.

The following challenges remain for each of the two methods.

In the first method, a slight syntactic change of the invariant allows us to see the property

to be verified more directly: we state that if some thread t is as at location C, then count is

zero. The following property could not be verified: Ĩ =

A∪B∪C⊆Tid ∧ A∩B= /0 ∧ A∩C= /0 ∧ B∩C= /0 ∧ count≥ |A| ∧ (∀t: (t∈C ⇒ count=0)).

The additional quantifier in Ĩ leads to an out-of-space error in the tool chain. We recognize

a better decision procedure as the next improvement step [50].

The challenge for the second proof method is the full automation of the translation of

cardinalities of comprehensions into SMTLIB.

4.2 Central barrier coded in C

We continue with an actual implementation of the central barrier in multithreaded C. This

implementation is taken from sequent/barriers/central.c [39].

I. Code.

The considered executable implementation below can be called more than once in a run; in

the following, an episode is a single execution of the barrier synchronization code.

As in Section 4.1, the implementation is organized around the shared variable count that

counts the number of threads that have not yet synchronized. Additionally, the implemen-

tation contains a single shared Boolean variable sense and thread-private Boolean variables

local sense that track whether the number of executed episodes in an execution is even or odd.

When starting an episode, a thread first stores the parity of the new episode into a thread-

private variable, then decrements count and checks whether the decrement was from 1 to 0.

If it was so, the thread reinitializes count for the next episode, updates the shared parity of

the number of episodes (thus waking up the other threads) and finishes the current episode.

If the decrement was from a value greater than 1, the thread waits until the shared parity is

modified and only then finishes execution of the barrier code. The thread detects when sense

gets toggled by comparing it with a value of the private local sense.

On Automation in the Verification of Software Barriers: Experience Report 13

shared int count = num nodes; // num nodes is the number of threads.

shared bool sense = false; // the shared parity of the number of episodes.

local int local count; // temporary variable.

local bool local sense = false; // A wake-up is signaled by equaling the variables local sense and sense.

void barrier() {
local sensê= true; // setting the parity of the new episode locally.

// The number of threads that have not yet arrived at the barrier decreases:

local count = fetch and decrement(&count);
if(local count>1) goto busy wait; // if more threads will arrive, start waiting.

// Otherwise the current thread was the last to arrive.

count = num nodes; // reinitialize count.

sense = local sense; // signal wake-up.

return; // and exit.

busy wait: while(sense!=local sense); // wait for the wake-up.

}

This code is a little different from the one found in central.c, which is a mixture of

assembler and C specific to a particular compiler. We have slightly changed the code by

rewriting assembler into modern C and using fetch and decrement, which can be compiled

into a single machine instruction for some instruction sets like those of IA64. (Compare-

and-swap would work as well, except requiring a loop.)

II. Required reasoning.

The barrier property we verify is: when some thread finishes executing barrier(), all the

other threads have at least started executing their barrier() calls. We will show what kind of

reasoning is required for a proof in a verifier for C code.

VCC (Verifying C Compiler) is a verifier that supports ANSI C syntax with multi-

threaded semantics. It has been used to prove properties of Microsoft hypervisor [30], so

we consider VCC mature enough for our purpose. To verify that a certain invariant of a

program holds, VCC internally generates Boogie code, which then gets verified by calls to

a first-order automatic theorem prover Z3. However, the default tool chain VCC-Boogie-

Z3 cannot directly handle the cardinality constraints needed for the straightforward proof

similar to one in Section 4.1.

An aside should be made. Quantifier-free cardinality constraints can be handled in a

plugin for Z3 [50]. However, this plugin is (at least as of Spring 2012) not publicly ac-

cessible. Even if it were, both Boogie and VCC lack syntactic constructs for sets and their

cardinalities, let alone their semantic translation.

Though it is possible to represent a set of integers as a map int→bool, and it is possible

to express the cardinality of this set, namely as a recursive function computing the size of the

support of this map, it is hard to reason about this recursive function in an automatic way.

(Before summer 2012 it was completely impossible. In summer 2012 VCC started support-

ing termination proofs of recursive functions. However, the user would still have to define

the notion of cardinality and reason about it.) One should note that a non-automatic way ex-

isted in the past, namely a non-default translation from Boogie into the interactive theorem

prover Isabelle/HOL producing 600 Kb of Isabelle/HOL code which has to be verified in-

teractively. Our solution uses neither recursive functions nor Isabelle/HOL. Instead, we use

an approach (communicated to us by Ernie Cohen, the core ideas are due to Georg Cantor)

that turns the recursion in the definition of cardinality into the induction over the execution

length, since this induction is implicitly built into the proof rule for invariance properties.

When following this approach, we will augment the program with auxiliary variables in such

a way that the augmented program together with an augmented property lies inside the frag-

ment that the VCC-Boogie-Z3 tool chain can handle automatically. This tool chain works

central.c

14 Alexander Malkis, Anindya Banerjee

well for inductive invariants of the form ∀x : φ(x) where φ is a quantifier-free formula that

directly lies in or can be easily translated into the logic QF AUFLIA (the quantifier-free the-

ory of arrays, uninterpreted functions and linear integer arithmetic) and x is a finite vector

of variables. We will write an inductive invariant in such a form.

The auxiliary code does not influence the original control flow or the values of the orig-

inal variables; removing the auxiliary code results in the original barrier code. For a normal

C compiler, this auxiliary code is #defined as an empty string, so the auxiliary code has no

influence on compilation; for VCC, the auxiliary code has a proof-theoretic meaning.

III. Inductive invariant.

In this section, we will overcome the main difficulty: dealing with the cardinality of a set of

threads. For that, we will start with an informal notice, then describe our idea, illustrate it

on an example and finally show the high-level structure of the inductive invariant.

First notice that the only relevant set seen in the invariant of the previous Section 4.1,

namely the set A of all threads that have not yet executed the decrement, shrinks by one ele-

ment or stays the same during a transition of every thread t. Thus, the verification conditions

(which speak about either the initial state or the pre- and post-state of a single transition)

have to compare cardinalities of syntactically different sets A and Â where A and Â se-

mantically satisfy either A = Â or A = Â \ {t}. The cardinality of these sets either remains

unchanged or drops by one at any transition of an execution; this fact, informally, enables

reusing induction built into the definition of an execution.

Now we introduce the Cantor-Cohen approach. Briefly, the approach describes how a

bijection enables us to use the induction that is built into the definition of an execution—and

thus also built into inductive-invariant–based verification—to reason about the cardinalities

(of thread sets). (To the best of our knowledge, the idea of capturing set cardinality using

a bijection is due to Georg Cantor. Though this idea is necessary for infinite sets, we profit

from it also for finite sets. The application of the idea to multithreaded programs is due to

Ernie Cohen.)

Remember that a cardinality of a finite set is just a natural number (here, including

zero), and natural numbers are used to enumerate objects, for example, threads, by attaching

unique identifiers to them. We will enumerate threads in such a way that the proof obliga-

tions will just speak about thread identifiers instead of cardinalities of A and Â.

Here induction over execution length enters the game. Given an execution, we enumer-

ate the threads according to the order in which they pass the most important instruction

fetch and decrement. The enumeration will use consecutive natural numbers in descending

order: the last thread receives identifier 0, the last but one receives identifier 1, and so on,

while the earliest thread that passes the barrier gets identifier num nodes− 1. Remark the

following property: the identifier of a thread that has not yet decremented is below count.

However, the enumeration depends on the execution, which is unknown beforehand; thus

we construct the enumeration during execution. The construction is easy: right after the

decrement we make sure that the decrementing thread has identifier count by exchanging its

current identifier (which is less than or equal to count) with a thread whose current identifier

is count. As we will see, the exchange code can be made independent of the execution.

A worked out example using the Cantor-Cohen approach. Assume that three threads a, b,

c, are arbitrarily bound to the first three naturals, say, as in bijection s0 = [0 7→a,2 7→b,1 7→c]
and decrement in alphabetical order: first a, then b, then c. Note that initially all thread

identifiers are bound to naturals that stay below the current value of count, which is 3. Right

after thread a decrements, the identifier of a is swapped with that of s0(count) = s0(2)

On Automation in the Verification of Software Barriers: Experience Report 15

= b, which results in bijection s1 = [2 7→a,0 7→b,1 7→c]. Notice that in s1 the identifiers

of all threads that have not yet decremented (namely, b,c) are below the current value of

count, which is 2. Right after thread b decrements, the identifier of b is swapped with that

of s1(count) = s1(1) = c, which results in bijection s2 = [2 7→a,1 7→b,0 7→c]. Observe that

in s2 the identifier of the single thread that has not yet decremented (namely, c) is below the

current value of count, which is 1. At last, thread c decrements, which already has the right

identifier 0, so swapping does not change the bijection, and all the threads have decremented.

Adapting the enumeration to the schedule can be visualized as follows:

Thread identifiers: 0 1 2

Initially count= 3

Initial enumeration: a c b

a decrements, count= 2

Enumeration after a decrements: b c a

b decrements, count= 1

Enumeration after b decrements: c b a

c decrements, count= 0

Final enumeration: c b a

We maintain the bijection as two auxiliary variables states and states back that represent

mutually inverse maps, where states maps a thread identifier (a number from [0,num nodes))
to the pointer to the private state of the thread. (In the sequel, the auxiliary code and the

comments will be typeset in italics). This map allows obtaining the control flow location

of a thread from a thread identifier. We maintain the invariant that states is one-to-one

(∀x 6= y : states[x] 6= states[y]), and that states back is its right inverse. A direct claim that

states is onto would require an existential quantifier. Thus it would be problematic for Z3

to prove the validity of such a formula. If one would like to assert surjectivity instead of the

existence of the right inverse, one would additionally need either to correctly instantiate the

axiom of choice or to inductively construct the right inverse.

We reduce the number of control flow locations that have to be reasoned about by main-

taining abstract control flow locations instead of the real ones:

APL before writing local sense

BPL just before fetch and decrement

CPL just before checking local count> 1 and at busy wait,

WakeUpPL during reinit of sense and count and after busy wait,

ordered as APL < BPL < CPL < WakeUpPL.

The inductive invariant is a conjunction of three facts. The first two conjuncts say that

states is one-to-one and states back is its right inverse. The third part is a disjunction of two

formulas:

– The first disjunct elucidates the synchronization phase. It is a conjunction of several

facts about all thread identifiers t with states[t] 6= 0 (i.e. about all the threads). The most

important conjuncts are the following:

– states[t]→pc ≤ CPL, i.e. t is in the synchronization phase,

– states[t]→pc≤BPL ⇒ t < count, i.e. if a thread has not yet decremented, then its

identifier is below count.

– The second disjunct establishes that each thread is waiting or is waking up: ∀ t ∈Tid :

states[t] 6=0 ⇒ CPL≤ states[t]→pc, where Tid is the set of nonnegative integers (mod-

eling thread identifiers).

16 Alexander Malkis, Anindya Banerjee

IV. Encoded program and its invariant.

The input to VCC will consist of the declaration of the state including the auxiliary variables

and of the barrier function together with assignments to the auxiliary variables; all parts of

the input will be annotated with formulas. We will show and explain the input in chunks.

The difficulty is that VCC allows syntactically attaching invariants to:

– control flow locations. An annotation of a control flow location describes the state of a

thread at that given control flow location.

– C structures. An annotation of a C structure describes the values of its instances between

atomic transitions.

To distribute our inductive invariant to these places, we create appropriate structures.

The structure ThreadState below holds the thread-private state of a thread. It contains

auxiliary variables pc and local count, allowing the global invariant to speak about the ab-

stract control flow location of the thread and the value of the actual procedure-local variable

local count.

typedef enum PL {APL,BPL,CPL,WakeUpPL} PL; // type of abstract control flow locations.

typedef unsigned Tid; // thread identifiers.

// To reason about private state in a structure invariant, we have to pack this private state into a structure.

typedef struct ThreadState {
unsigned local sense; // modeling a Boolean in ANSI C.

PL pc; // abstract control flow location.

unsigned local count; // copy of the corresponding private variable.

} ∗PThreadState;

Booleans local sense and sense (below) get a C integral type.

The structure Instance below contains the variables count, sense, a constant denoting the

number of threads and the maps states and states back that associate thread identifiers with

pointers to private states. In the following code, a variable specified as volatile or volatile can

potentially be changed by more than one thread.

typedef struct Instance {
const unsigned num nodes; // the number of threads, initialized elsewhere.

volatile unsigned count; // threads that have not yet started.

volatile unsigned sense; // toggles from one episode to the next one.

volatile PThreadState states[Tid]; // maps thread identifiers to pointers to threads’ private states.

volatile Tid states back[PThreadState]; // maps pointers to threads’ private states to thread identifiers.

};

The fetch and decrement instruction is not a part of ANSI C, being unknown to VCC. We

make VCC aware of the semantics of fetch and decrement:

atomic inline // making VCC aware that the function is atomic.

unsigned fetch and decrement(volatile unsigned∗ address) {
return (∗address)−−; /∗ can be implemented atomically on Itanium x64 as

“fetchadd4.rel retval=address,−1” or by a compare-and-swap in a loop. ∗/

}

Now we will look at the instrumentation of the barrier function. In the code below,

the brackets 〈. . .〉 denote atomic transitions. Each such atomic transition contains at most

one physical instructions on shared variables and arbitrarily many instructions on auxiliary

variables.

The barrier procedure below will require some explanation. The procedure has three

procedure-local thread-private variables. The variable local count serves two purposes: first,

it stores the fetched value thread-privately, second, it is used as a temporary location to

On Automation in the Verification of Software Barriers: Experience Report 17

reinitialize count of the Instance structure. The flag still wait controls breaking or continuation

of the waiting loop, new local sense serves toggling local sense of a ThreadState structure.

VCC does not allow reasoning in structure invariants about procedure-local variables or

the control flow. Thus we keep track of the important procedure-local variable local count

and the abstract control flow in auxiliary fields local count and pc of the structure ThreadState.

VCC does allow reasoning about the fields of ThreadState (after some additional VCC-

specific annotations which we will skip in this presentation) in the invariant of the Instance

structure.

The barrier code starts by reading local sense of its ThreadState instance *pt and storing

the toggled value into the local variable new local sense. Then, the code updates local sense

from new local sense. The annotation tracks this fact by changing the abstract control flow

location from APL to BPL.

After that, the code fetches the current value of count into the procedure-local variable

local count and decrements count. The maps states and states back are updated according to

the Cantor-Cohen approach above: the update ensures that all the threads that have not yet

executed fetch and decrement have identifier below count, formally

∀ t∈Tid : ((states[t] 6=0 ∧ states[t]→pc ≤ BPL) ⇒ t<count) .

Suppose that this condition holds before fetch and decrement. The running thread establishes

this condition afterwards by

– exchanging the identifier of the running thread (this identifier will be stored in the vari-

able myId in the code) with count (which is the identifier of the thread whose private

state will be stored at targetOfLast in the code);

– updating the abstract control flow location to CPL.

If the exchange would not happen, the thread with private state *targetOfLast could start

violating the above condition. To see the counterexample, imagine that the thread with pri-

vate state *targetOfLast is different from the running thread and has not yet decremented.

The just mentioned operations (exchanging the thread identifier and updating the abstract

control flow location) reestablish the condition.

After that, the fetched value is tested. If it indicates that more threads are still going to

decrement, the current thread has to wait for the last thread in a loop at location busy wait.

Otherwise the fetched value is 1, so no more threads will arrive, and the current thread can

start waking up.

The wake-up proceeds by first updating the abstract control flow location to WakeUpPL.

Then the wake-up copies num nodes to count (which cannot happen atomically, since it re-

quires dereferencing the structure Instance) by using a procedure-local temporary variable,

for which we utilize local count. Finally, the wake-up updates sense, which cares for the

shared parity of the number of episodes, thereby waking up the other threads, and goes to

the final control flow location Last.

If a thread has to wait in the loop at busy wait, it constantly checks whether sense has

finally got the updated parity, which is now stored in new local sense. If so, the code updates

the abstract control flow location to WakeUpPL and sets still wait to false, which results in

jumping out of the loop. After quitting the loop, the thread proceeds to the final control flow

location Last.

At the final control flow location, the barrier property is asserted, i.e. for all valid thread

identifiers t (i.e. that have nonzero states[t]), the abstract control flow location is no longer

APL.

18 Alexander Malkis, Anindya Banerjee

void barrier(struct Instance ∗s, PThreadState pt)
requires pt→pc == APL // assuming that the abstract location variable has the value APL initially.

{
unsigned local count; // used for fetch-and-decrement.

unsigned char still wait=1; // used for the condition of the loop.

unsigned new local sense; // used for toggling local sense.

/∗ Toggling local sense in pt cannot be done atomically, since one has to

read pt too. A thread reads, toggles privately and writes in two steps. ∗/

〈 new local sense = (pt→local sense)ˆ1; 〉 // read local sense and toggle it.

〈 (pt→local sense)=new local sense; pt→pc=BPL 〉 // write the altered local sense back into *pt.

〈 myId = s→states back[pt]; // get the identifier of the thread.

// Fetch the count and decrement it afterwards—in one atomic step:

local count = fetch and decrement(&(s→count));
// The thread’s identifier is ≤ count, swap it with count as follows.

// Determine the private state of the thread with identifier count:

PThreadState targetOfLast = s→states[s→count];

// Update the maps states and states back:

s→states = swap(s→states, myId, s→count);
s→states back = swap(s→states back, targetOfLast, pt);
// Store the fetched value and update the abstract program counter:

pt→pc = CPL; pt→local count = local count; 〉
// Test the fetched value:

if(local count>1) { // If more threads decrement after this one:

goto busy wait; // proceed to a waiting location.

} else {〈 pt→pc = WakeUpPL; 〉} // otherwise reinit & wake up.

// Reinitialization is reading the number of threads and writing count.

// This is a non-atomic operation on shared state, use local count as temporary thread-private storage.

local count = s→num nodes; // reading s→num nodes.

s→count = local count; // writing s→count.

s→sense = new local sense; // writing the toggled sense.

goto Last; // reinitialization finished.

busy wait: // sleeping location, a thread waits for the wake-up here.

while(still wait) // Either waiting or waking up:

invariant still wait || (pt→pc == WakeUpPL)

{ // Wait until the last arriving thread toggles sense:

〈 if(s→sense == new local sense) {
still wait = 0; // if sense got toggled, jump out of the loop,

pt→pc=WakeUpPL; // waking up.

}
〉

}
Last: // The property we want to check:

assert (∀ t∈Tid : s→states[t] 6=0 ⇒ s→states[t]→pc6=APL)

}

The inductive invariant that was loosely introduced on page 15 can now be stated pre-

cisely (in this formula we use the C syntax, in which “==” means equality testing):

On Automation in the Verification of Software Barriers: Experience Report 19

I =




(∀ i, j∈Tid : (states[i] == states[j] 6= 0) ⇒ i == j) ∧
(∀ p∈PThreadState : states[states back[p]] == p) ∧








∀t∈Tid :




states[t]6=0 ⇒




states[t]→pc ≤ CPL

∧
(states[t]→pc ≥ BPL ⇔ states[t]→local sense≥ 1)
∧
(states[t]→pc<CPL ∨ states[t]→local count>count)
∧
(states[t]→pc ≤ BPL ⇒ t < count)
∧
(∀ t̂∈ [0,count) : states[t̂] 6=0)










∧ sense== 0




∨
(∀ t∈Tid : states[t] 6= 0 ⇒ CPL≤(states[t]→pc))







.

The invariant textually annotates the Instance structure.

The big last conjunct of the invariant implies that when some thread finishes, i.e. arrives

at the location WakeUpPL, all threads are in the wake-up phase; in particular, no thread is at

the initial control flow location APL.

V. Using the tool.

VCC verifies the inductive invariant in 2.92 s on an Intel R© CoreTM i5-520M CPU clocked

at 2.4 GHz with 8 GB RAM clocked at 1066 MHz and 3.427 s on an Intel R© CoreTM2 Duo

L7500 CPU clocked at 1.6 GHz with 1.5 GB RAM clocked at 533 MHz. Due to the constant

development of VCC, it is much more user-friendly than any other tool we used for barrier

verification.

VI. Beyond the frontier.

The encoding was constructed around the auxiliary variable states. Its purpose is, from a

high-level view, to replace recursion in the cardinality definition by induction over the

trace length, supported by more user-defined auxiliary variables. Simplifying the annota-

tion would require adding a direct decision procedure for reasoning about set cardinalities

into the VCC-Boogie-Z3 tool chain. We are ready to target this challenging goal in future

research.

4.3 Jahob+BAPA+AUFLIA versus VCC+Boogie+AUFLIA

In this subsection we evaluate our experiences in the approaches (two via Jahob and one via

VCC) to verify similar central barriers.

The first method of handling the simplest counter barrier in Jahob involved syntacti-

cally rewriting a multithreaded program into a program operating on sets. The verification

conditions were fully handled by a decision procedure for BAPA. This approach does not

require writing any additional axioms—the logic itself is powerful enough to handle suffi-

ciently complicated cardinality constraints. In this respect this approach is the cleanest one:

the trust base for verification is small because the user just has to believe in the correctness

of the implementation of the decision procedure with respect to the definition of the logic.

The price paid is that the user has to decide (in her own mind) on one bit of information

prior to verification: namely, whether the multithreaded program should be converted into

20 Alexander Malkis, Anindya Banerjee

one operating on sets. On the positive side, less program abstraction occurs in comparison

to the counter abstraction method.

The second method of handling the simplest counter barrier in Jahob involved just view-

ing the program as a nondeterministic one—without any other conversions at all. All but

one verification conditions were adapted to BAPA by a new systematic method: the free

comprehension-cardinality instantiation (an AUFLIA solver restored the information about

subset inclusion and membership between free variables of the corresponding types). Thus

weakened conditions were discharged by the BAPA decision procedure. The one remaining

verification condition could be handled by an AUFLIA solver directly under a tiny set of

axioms. It is a pleasant feature for a user to avoid deciding on whether a conversion of a

multithreaded program to sets should happen or not prior to verification. The price paid is

that the trust base for the verification is a bit larger: in addition to believing in the correct-

ness of the implementation, the user also has to believe that the two added axioms are sound

for validity. However, the set of added axioms is tiny—it fits into a couple of lines. (We

have indeed discovered errors in axioms written by experts in various contexts. A reader is

encouraged to take a look at the bugs, say, in the huge prelude of VCC that are mentioned in

the VCC [11] bug tracker!) Again, there is no loss of precision prior to the stage where the

semantics gets visible in the verification conditions.

The VCC way of handling a more complicated central barrier required getting rid of

higher-order cardinality operator via Cantor-Cohen approach. This approach can be gener-

alized: it has nothing special to a particular barrier implementation, just to the fact that we

need to express “in an execution, the number of threads at a particular set of locations is

decreasing” in AUFLIA. Instead of reasoning about inclusion of sets, about membership of

elements in sets and about cardinalities of sets, the Boogie-Z3 back-end had to reason, in its

hardest part, about a bijection between pointers to threads’ local states and thread identifiers,

which is expressible in AUFLIA. Due to a marvelous work of the VCC team, their verifier

is by far the easiest to use. The paid price is the mental effort the user has to invest to apply

the approach correctly to come up with a suitable invariant and auxiliary variables. On the

positive side, the tool chain accomplishes verification in astonishingly small time, making

the process very suitable for on-line debugging. Also, the VCC approach is able to verify an

implementation in C rather than just a pseudocode algorithm.

5 Tree-based barriers

The previously described shared-counter barriers are simple, but not the optimal ones. Name-

ly, a decrement of the single shared counter has to be visible to all threads to ensure correct-

ness, so the accesses to the counter should be executed sequentially. Thus, in the best case,

all the barriers terminate in at least linear time. In the worst case, contention on the single

location can lead to super-linear running time.

There are more complicated algorithms that have better, logarithmic best-case running

time. The so-called tree-based barriers employ a shared tree for communication. As we will

see, each memory location of the tree is shared only between a constant number of threads,

and the barriers have logarithmic best-case execution time. We will verify the most renowned

tree-based barriers, namely the static and the combining tree barriers, in Jahob.

On Automation in the Verification of Software Barriers: Experience Report 21

5.1 Static tree barrier

This section handles the verification in Jahob of the static tree barrier, described by Herlihy

and Shavit [22].

I. Algorithm.

In the static tree barrier threads operate on a single tree, in which each thread is statically

associated with a distinct tree node, e.g.:

Thread 3

Thread 1

Thread 0 Thread 2

Thread 5

Thread 4

We assume that threads use one shared tree in which each node has at most two children.

Each thread corresponds to a distinct tree node. The mapping of threads to nodes remains

constant, this is why the barrier is called static. The whole computation proceeds in two

phases. A thread (say, number 1) starts in the synchronization phase by waiting until its

children (0 and 2) have synchronized, then telling the parent (3) that the whole sub-tree (0,1

and 2) rooted at the thread has synchronized and then waiting for the wake-up command

from the parent (3). In the wake-up phase, once the parent (3) wakes up the thread (1),

the thread wakes up its children (0 and 2) and proceeds with the instructions following the

barrier call. The root (3) does not wait for a wake-up at the end of its synchronization phase;

the static barrier algorithm guarantees that the root starts waking up only if all the threads

have started computation.

A thread’s computation can be schematized as follows:

A F

B E

C D

wait for

the children

signal sync

to the parent if root: skip,

if non-root: wait for the wake-up

wake-up the

left child

wake-up the

right child

The gray dashed line is worth a minor comment. We present the static tree barrier as a

one-time barrier, i.e. without reinitialization, and we will analyze it as a one-time barrier.

However, one could easily turn it into a reusable barrier just by merging the initial and the

final control flow locations. This change is indicated by the gray dashed line.

The code of the static tree barrier is given below.

22 Alexander Malkis, Anindya Banerjee

// Each thread points to a distinct node:

local node ∗n; // The fields parent, left and right span the tree;

// the field sense, initialized to false, is used for signaling.

// Each thread executes the following function:

void barrier() {
A : // Wait for synchronization of descendants:

if(n has a left child) while(!(n→left→sense));

if(n has a right child) while(!(n→right→sense));

B : if(n has a parent) n→sense = true; // signal synchronization to the parent.

C : while(n→sense); // sleep, waiting for a signal from the parent.

D : // Signal wake-up to the left and right children:

if(n has a left child) n→left→sense = false;

E : if(n has a right child) n→right→sense = false;

F : }

For the purpose of presentation we consider each transition between consecutive locations

as atomic (otherwise we would just get a larger inductive invariant). The meaning of sense is

two-fold:

– in the synchronization phase, n→ sense = true means “n and all its descendants” have

entered the barrier;

– and in the wake-up phase, n→ sense = false means “n and all its ancestors” are woken

up.

Notice that the thread at the root does not sleep at location C: the sense field of the root is

initially false and the transition B-C does not touch it, since the root has no parent. Thus,

at location C, the root still has the cleared sense flag and does not have to wait; the root

immediately starts the wake-up phase for its both sub-trees.

As before, we consider the multithreaded program in which each threads starts at location A,

executes the body of the barrier function above and does not proceed beyond location F.

II. Required reasoning.

The barrier property we verify is: if some thread arrives at location F, all threads are no

longer at location A. To prove this property we would like to reason about trees and un-

boundedly many threads, which would require an undecidable logic. However, we may use

the fact each thread is associated with a unique tree node and speak just about trees. We

make the program counter of a thread an explicit field pc of the node corresponding to the

thread, thus relieving the invariant from the obligation to speak about threads. The logic that

allows us to express the descendant relation in the trees and reason about the node contents is

WS2S, the second-order weak monadic logic of two successors. Let T be the set of non-null

addresses of tree nodes (from now on, we will write 0 for the null pointer).

III. Inductive invariant.

First we show the most important subformula of the inductive invariant and then the whole

inductive invariant.

In the synchronization phase every node n enjoys the following crucial property. A de-

scendant m of n has arrived at location C if one of the two conditions hold: either (a) m is

different from n and n has finished waiting for its children (i.e. being at location B or later)

or (b) m coincides with n and n has a raised the sense flag. In (syntactically sugared) WS2S,

this property is

J =

(
∀m∈T :

(
(m,n) ∈ parent∗ ∧
((n→pc≥ B∧n 6=m) ∨ n→sense)

)
⇒ m→pc≥ C

)
,

On Automation in the Verification of Software Barriers: Experience Report 23

where parent∗ is the transitive-reflexive closure of the one-step parent relation, i.e. it contains

all (m,n) such that m is a descendant of n or n itself. Another important property of the

synchronization phase is that all threads are at or before location C.

The wake-up phase starts when all threads get behind location C, i.e. (∀n∈T : n→pc≥
C). The disjunction of the formulas describing the synchronization and the wake-up phases is

the inductive invariant I. To fully specify I, we need to know that during the synchronization

phase, a non-root thread that is at location C has a raised sense flag: ((n→ pc= C∧ n→
parent 6=0)⇒ (n→sense)). Then

I =

(
(∀n∈T : (J ∧ n→pc≤ C ∧ ((n→pc=C∧n→parent 6=0)⇒ (n→sense))))
∨ (∀n ∈ T : n→pc≥ C)

)
.

IV. Encoded program and its invariant.

Jahob is one of the best available tools to reason about trees in WS2S, so we have chosen

Jahob to verify the static tree barrier.

Jahob internally calls the decision procedure MONA to solve the underlying WS2S

queries. Jahob cannot deal with concurrency natively, but accepts sequential nondeterminis-

tic programs which can model concurrent programs. Our nondeterministic program assumes

that I holds, chooses an arbitrary tree node n, assumes that n→pc ∈ {A, . . . ,E}, constructs

the next state after the single thread transition and ensures that I holds after the transition.

Since the WS2S logic does not admit integer variables, we translate bounded integer vari-

ables such as pc to a fixed number of bit variables. The values A. . . F are represented bitwise

in fields pc bit 2, pc bit 1, pc bit 0.

The transformation of the code into Jahob input is a purely syntactic step. We provide

the transformed code in Java syntax below.

Each node (class Node) contains the following fields:

– the Boolean flag sense, described above;

– bits pc bit 2, pc bit 1, pc bit 0, which encode the control flow location of the thread at

the node as follows: A=000, B=001, . . . , F=101;

– pointers parent, left, right to the parent, left child or right child of the node. The parent

field of the root has value 0. If the left (resp. right) child of a node is missing, the

corresponding field has value 0.

In the code below, the outer loop while(true) makes the scheduler run forever. The instruction

havoc k∈T chooses a node (= thread) to execute the next instruction:

Node k;

while(true) /∗: invariant . . . I above . . . ∗/ {
havoc k∈T ; // choose a thread (= node) to execute the next instruction.

... // read the control flow location of the thread and execute the command starting at this location.

}

Branching statements (like if(k.pc bit 2) { if(!(k.pc bit 1)) { if(!(k.pc bit 0)) ... }}) are used

to read the control flow location of the chosen thread bitwise. The innermost statements

execute the actual instruction of the nondeterministic program, changing the control flow

location if necessary. For instance, consider the instruction

if(n has a right child) n→right→sense = false;

at location E with successor location F. The location E is represented by the bitstring 100, the

location F by the bitstring 101. Thus, the translation of this instruction is

if(k.right) k.right.sense = false;

k.pc bit 0 = true;

24 Alexander Malkis, Anindya Banerjee

Below we see the full body of the above loop.

if(k.pc bit 2) {
if(!(k.pc bit 1)) {

if(!(k.pc bit 0)) { // encoding transition E→ F

if(k.right) k.right.sense = false;

k.pc bit 0 = true; } }
} else { // ¬(k.pc bit 2)

if(k.pc bit 1) {
if(k.pc bit 0) { // encoding transition D→ E

if(k.left) k.left.sense = false;

k.pc bit 2=true; k.pc bit 1=(k.pc bit 0)=false; // goto E

} else { // ¬(k.pc bit 0), encoding transition C→ D

if(!(k.sense)) k.pc bit 0 = true; }
} else { // ¬(k.pc bit 1)

if(k.pc bit 0) { // encoding transition B→ C

if(k.parent) k.sense = true;

k.pc bit 1 = true; k.pc bit 0 = false;

} else { // ¬(k.pc bit 0), encoding transition A→ B

if(k.left) {
if(k.right) {

if((k.left.sense)&&(k.right.sense)) k.pc bit 0=true;

} else { if(k.left.sense) k.pc bit 0 = true; }
} else {

if(k.right) {
if(k.right.sense) k.pc bit 0 = true; } } } } }

The invariant textually annotates the head of the loop.

V. Using the tool.

Using the tool is straightforward. Its running time is 15 s on an Intel R© CoreTM2 Quad Q9550

CPU clocked at 2.83 GHz with 8 GB RAM clocked at 800 MHz. Notice that the static tree

algorithm was verified for all trees, i.e. for any number of participating threads.

VI. Beyond the frontier.

One nontrivial step was encoding the local state of the threads into the nodes of a single

barrier tree. However, if we need to reason about more than one barrier tree, then we would

need to make threads first-class citizens. Reasoning about such programs would be a chal-

lenge: extending WS2S with an unbounded number of threads makes the logic undecidable.

A bounded number of threads still admits straightforward encoding as we will see in Section

5.2.

5.2 Combining tree barrier

This section shows the verification in Jahob of the combining tree barrier, described by Scott

and Mellor-Crummey [48].

I. Algorithm.

In the combining tree barrier each thread is initially associated with a distinct leaf of a

common tree, e.g.:

Thread 0 Thread 1

Thread 2

On Automation in the Verification of Software Barriers: Experience Report 25

In the tree each node has at most two children. An execution of the whole barrier consists

of the synchronization phase and the wake-up phase. In the synchronization phase, threads

start walking from their leaves towards the root (made precise below) such that each thread

eventually begins waiting at a distinct node and such that at most one thread reaches the root.

It will be guaranteed that a thread reaches the root only if all the other threads have started

the computation. In the wake-up phase, the thread pointing to the root initiates a wake-up

process (made precise below) in which every thread stops waiting and walks towards a leaf

(which may be different from the leaf it has started with).

Each node of the tree carries the following information:

typedef struct node {
node∗ parent, left, right; // these fields span the tree.

int k; // constant, denotes the number of children.

int count; /∗ initially k, used in synchronization, denotes the

maximal number of threads that may still arrive at this node. ∗/

bool locksense; /∗ initially false, used for the wake-up, namely turns true when wake-up is signaled. ∗/

bool from left; /∗ initially false, used for synchronization, namely

turns true when a thread arrives from the left. ∗/

bool from right; /∗ initially false, used for synchronization, namely

turns true when a thread arrives from the right. ∗/

} node;

If a node has no parent, left or right child, the corresponding fields have value 0. Notice

that a node may have exactly one child, even long chains of one-child nodes are possible.

Each thread has, in addition to its program counter, two private variables:

local bool sense; // initially true, enables calling the barrier again.

local node∗ n; // initially a pointer to a distinct tree leaf.

An aside on sense should be made. We verify the first usage of the barrier right after

initialization. The variable sense is needed for the future calls of the barrier function. This

variable is still present for being as close to the original code as the current verification

technology allows.

Each thread executes the following function:

void barrier() { // The synchronization phase starts.

A: if(!(n→parent)) goto D; // if the current thread has already arrived at the root,

// it may immediately proceed to the wake-up phase.

B: // Otherwise there is a parent. Tell the parent whether the current thread

// is reaching it from left or from right and go to the parent:

if(n == (n→parent→left)) n→parent→from left = true; else n→parent→from right = true;

n = n→parent;
C: // Is this thread the first one to arrive at the node, or did some other thread arrive at the node earlier?

// If this thread is the first one, prepare for waiting at the node, otherwise prepare for going to the parent:

if((n→count)−− == 1) goto A; else goto F;

D: // Wake-up phase.

n→count = n→k; // reinitialize n→count to the number of children.

E: // Signal wake-up to a possible thread waiting at node n:

n→locksense = !(n→locksense); // also make the current thread skip waiting.

F: // Waiting location. As long as no thread coming from the parent

// signals wake-up, locksense remains false and sense remains true:

while(sense!=(n→locksense));

G: // If during the synchronization phase some thread came from the right, follow the right sub-tree.

// Otherwise, if some thread came from the left, follow the left sub-tree:

if(n→from right) { n→from right = false; n = n→right; goto D; }
else if(n→from left) { n→from left = false; n = n→left; goto D; }

H: sense = !sense; // arrived at a leaf; prepare sense for the next barrier call.

I: }

26 Alexander Malkis, Anindya Banerjee

The transitions at location C are crucial: they decrement the number of threads which

may potentially arrive at the node n. If the previous value was greater than one, then one

more thread has to arrive, and the current thread starts waiting for the wake-up. Otherwise

the previous value is one, which means that if any other thread could arrive at node n, it has

already done so; in this case all threads (except the thread executing the transition) coming

from descendant leaves of n are waiting.

In our small example, the common parent p of the leaves of threads 0 and 1 starts with

p→count = 2. When some thread arrives at p first, it decrements p→count to 1 and starts

waiting for the wake-up. The next thread that arrives at p diminishes p→count to 0 and,

noticing the fact that no more threads are going to arrive at p, proceeds to the parent of p.

Notice that in our picture, thread 2 decrements the counters of the nodes between the initial

leaf of thread 2 and the root (excluding both) from 1 to 0 without waiting.

We will consider the multithreaded program in which each thread starts at location A

and cannot proceed beyond location I. Moreover, the transitions between each pair of con-

secutive control flow locations are assumed to be atomic.

As we will see, automation of the verification will require bounding the number of

threads, but not any other quantity. Particularly, we assume that the synchronization tree

has a fixed number of leaves, but the tree can be arbitrarily deep. Arbitrarily deep trees

certainly subsume fixed-depth trees. In addition, they are useful for certain practical cases,

namely when all threads except a fixed number are turned off, the nonparticipating leaves

get removed from the tree together with the dead subtrees, but the remaining tree retains its

structure.

II. Required reasoning.

The barrier property we verify is: when some thread arrives at location I, all threads are no

more at location A. We will show what logic is needed to express an inductive invariant that

is strong enough to prove this property.

To ensure the barrier property, it suffices to show that in the synchronization phase, if

a thread arrives at the root, all other threads have started waiting. To make this property

inductive, we need to characterize all nodes (and not just the root). We will now give a

suitable characterization of the nodes in the synchronization phase. Let T be the set of non-

null addresses of nodes in the tree and Tid the set of threads. Let

J = (∀ m∈T : m→count≥ S1 +S2 +S3) ,

where the summands on the right hand side of the inequality are

S1 = |{t∈Tid | nt =m∧pct =C}| ,
S2 = |{m∈T | m→parent=m∧m→count>0}| ,
S3 = |{t∈Tid | nt→parent=m∧pct ∈{A,B}}| ,

where nt is the value of the private variable n of a thread t and pct is the control flow location

of t.

For all reachable states in the synchronization phase J holds (proven by the verifier).

In an initial state, for each node m we have: S1 = 0, S2 is the number of children that are

internal nodes, and S3 is the number of children that are leaves.

Now let us look at how the sum changes during transitions of the threads. If a thread

goes from location A to location B, for all nodes the summands stay the same. If a thread

goes from B to C, following a parent link, then for the child the summands stay the same,

while for the parent S1 increases by 1 and S3 drops by 1. If a thread goes from C to A, then

for the node to which the thread points S1 drops by one, other summands stay the same, and

the left hand side of the inequality drops by 1; for the parent of the node to which the thread

On Automation in the Verification of Software Barriers: Experience Report 27

points (if non-root) S2 drops by 1 and S3 increases by 1. The transition from A to D is not

considered: it quits the synchronization phase and enters the wake-up phase. If a thread goes

from C to F, then for the node to which the thread points S1 drops by one, other summands

stay the same, and the left hand side of the inequality drops by 1; for the parent of the node

to which the thread points (if non-root) all the summands stay the same, especially S2, since

count of the child drops from 2 to 1 > 0.

The property J can be written in a decidable logic by noticing that the presented algo-

rithm exhibits only runs in which 0 ≤ m→ count ≤ 2 (since each node has at most k≤ 2

children). So two bits suffice to represent count (the same holds for k). For readability, we do

not check these bounds, although this could be done, for instance, by using equality instead

of inequality in J and asserting that the bit-pattern for count is never 11. The inequality

m→count≥ S1 +S2 +S3 can be written as

(S1 = S2 = S3 = 0) ∨ (m→count 6= 0 ∧ S1 +S2 +S3 = 1) ∨

((m→count= 2 ∨ m→count= 3) ∧ S1 +S2 +S3 = 2) .

In turn, a formula of the form S1 + S2 + S3 = l can be expressed as a disjunction over all

partitions of the number l, e.g. S1 +S2 +S3 = 2 is equivalent to

(S1=2∧S2=S3=0) ∨ (S2=2∧S1=S3=0) ∨ (S3=2∧S1=S2=0)
∨ (S1=S2=1∧S3=0) ∨ (S1=S3=1∧S2=0) ∨ (S2=S3=1∧S1=0) .

Expressing that a set has exactly zero, one or two elements can be done by using quan-

tifiers. For instance, |{x | φ(x)}| = 2 is equivalent to ∃x1,x2 : (x1 6= x2 ∧ φ(x1)∧ φ(x2)∧
(∀y : (φ(y) ⇒ (y= x1 ∨ y= x2)))). For a fixed number of threads, quantifiers over threads

turn into finite conjunctions and disjunctions.

Thus, for a fixed number of threads, J requires just the reasoning about the child-parent

relationship in the trees and Boolean fields in the tree nodes. The logic that supports this

reasoning is WS2S, the second-order logic of two successors.

III. Inductive invariant.

First we will describe different subformulas of the inductive invariant and then show the

inductive invariant itself.

In the following, Ist will describe the local states of the threads in the synchronization

phase. The formula says that all the threads are pointing into the tree (and not elsewhere, say,

to 0) and are going up the tree or waiting. In addition, it says that no two different threads t,

t̄ can look at or use the parent pointer of the same node.

Ist =


∀t∈Tid :




pct ∈ {A,B,C,F} ∧ nt ∈ T

∧
(pct∈{A,B} ⇒ (nt→count= 0∧ (∀t∈Tid\{t}: (pct∈{A,B}⇒ nt 6=nt))))




 .

The formula Ism describes the tree in the synchronization phase. It states that J holds, that

the wake-up is not yet signaled, and that if from left (resp. from right) of a node is set, its left

(resp. right) child exists.

Ism =

(
J ∧ ∀m∈T :

(
¬(m→ locksense) ∧
(m→from left⇒ m→left 6= 0) ∧ (m→from right⇒ m→right 6= 0)

))
.

The formula Iwt describes the local states of the threads in the wake-up phase. The formula

says that all the threads are pointing into the tree and are going down the tree or waiting.

Iwt = (∀t∈Tid : pct ∈{D,E,F,G,H,I}∧nt∈T) .

28 Alexander Malkis, Anindya Banerjee

The formula Iwm describes the tree in the wake-up phase. The formula says that if from left

(resp. from right) of a node is set, its left (resp. right) child exists.

Iwm = (∀m∈T : ((m→ from left⇒ m→ left 6= 0)∧ (m→ from right⇒ m→ right 6= 0))) .

The inductive invariant is I = ((Ist ∧ Ism)∨ (Iwt ∧ Iwm)).

IV. Encoded program and its invariant.

We have chosen Jahob (with its back-end MONA for handling WS2S) to encode and verify

the combining tree barrier.

In the encoding (written in Java syntax) each node carries the following information:

class Node {
boolean count bit 1, count bit 0, k bit 1, k bit 0;

Node parent, left, right;
boolean locksense, from left, from right;

}

The program counter of each thread t is encoded by four bits pct bit 3, pct bit 2, pct bit 1,

pct bit 0 as follows: A=0000, B=0001, C=0010, D=0011, E=0100, F=0101, G=0110, H=0111,

I=1000. For each thread t there is a variable nt pointing into the tree (with initial value leaft)

and a Boolean senset.

We encode the multithreaded program in Jahob as a nondeterministic program:

// The scheduler loop:

while(true) /∗: invariant . . . see above . . . ∗/ {
if(nondeterministic choice) { // transitions of thread 1

...

} else if(nondeterministic choice) { // transitions of thread 2

...

} else { // transitions of thread 3

...

} // end of choosing the thread.

} // end of the scheduler loop.

Shortly we will show the transitions of the first thread. The transitions are organized into

structuring blocks {. . . } of the programming language syntax. A correct block in an execu-

tion is chosen by nested if-then-elses depending on the values of the quadruple of variables

(pc1 bit 3, pc1 bit 2, pc1 bit 1, pc1 bit 0). Inside a block, the transition at the control flow

location encoded by the quadruple is executed on the variables pc1 bit i (0 ≤ i ≤ 3), sense1

and the fields of n1. Each block itself is a direct translation of the corresponding original

transition from page 25 for thread 1. For example, consider the following command:

A: if(!(n→parent)) goto D;

B: ...

Since A is encoded as 0000, B as 0001 and D as 0011, the translation is

if(n1.parent==null) pc1 bit 1=true;

pc1 bit 0=true;

Other transitions of thread 1 are translated likewise. The full translation of thread 1 is

given in Fig. 1. Transitions of the other threads are encoded analogously.

V. Using the tool.

Jahob allowed verification for two and three threads. It is possible for an internal node to

have exactly one child, thus the tree might be arbitrarily deep. We will come to this point

On Automation in the Verification of Software Barriers: Experience Report 29

if(pc1 bit 3) { /∗ A thread starting from location I stays at I. ∗/ }
else {

if(pc1 bit 2) {
if(pc1 bit 1) {

if(pc1 bit 0) { // modeling transition H→I

sense1=!sense1; pc1 bit 3=true; pc1 bit 2=pc1 bit 1=pc1 bit 0=false;

} else { // !pc1 bit 0, modeling transitions G→D, G→H

if(n1.from right) { n1.from right=false; n1=n1.right; pc1 bit 2=false; /∗ goto D ∗/ }
else if(n1.from left) { n1.from left=false; n1=n1.left; pc1 bit 2=false; /∗ goto D ∗/ }
pc1 bit 0=true; // else goto H

}
} else { // !pc1 bit 1

if(pc1 bit 0) { // modeling transition F→G

if(sense1==n1.locksense) { pc1 bit 1=true; pc1 bit 0=false; }
} else { // modeling transition E→F

n1.locksense=!(n1.locksense); pc1 bit 0=true; // goto F

}
} // end of if(pc1 bit 1)-else

} else { // !pc1 bit 2

if(pc1 bit 1) {
if(pc1 bit 0) { // modeling transition D→E

n1.count bit 1=n1.k bit 1; n1.count bit 0=n1.k bit 0;

pc1 bit 2=true; pc1 bit 1=pc1 bit 0=false; // goto E

} else { // !pc1 bit 0, modeling transitions C→A, C→F

if(n1.count bit 0) n1.count bit 0=false;

else { n1.count bit 0=true; n1.count bit 1=!(n1.count bit 1); }
if(n1.count bit 0 || n1.count bit 1) { pc1 bit 2=pc1 bit 0=true; pc1 bit 1=false; /∗goto F∗/}
else pc1 bit 1=false; // goto A

}
} else { // !pc1 bit 1

if(pc1 bit 0) { // modeling transition B→C

if(n1==n1.parent.left) n1.parent.from left=true; else n1.parent.from right=true;

n1=n1.parent; pc1 bit 1=true; pc1 bit 0=false; // goto C

} else { // modeling transitions A→B, A→D

if(n1.parent==null) pc1 bit 1=true; // goto D else goto B

pc1 bit 0=true;

} // end of if(pc1 bit 0)-else

} // end of if(pc1 bit 1)-else

} // end of if(pc1 bit 2)-else

} // end of if(pc1 bit 3)-else

Fig. 1 Encoding of transitions of the first thread

later, noticing for now that for real software barriers such a situation can occur when a barrier

tree is designed and fixed for an arbitrary number of threads while only a bounded number

of threads participate in a barrier call, causing many tree branches to be cut.

We had to improve Jahob to verify the combining tree barrier:

– If MONA failed to prove that a formula in WS2S is valid, the reason why was not visible.

MONA could have failed to start, or it could have run out of space, or the formula could

just have been invalid. We have improved the interaction between Jahob and MONA so

that appropriate countermeasures could be taken in each case.

– The translation of the subformula J of the invariant into WS2S is large. That led to an

overflow during formula printing. We have repaired this issue.

– Thomas Wies has provided a shorter definition of the null pointer in WS2S for better

scalability and repaired the (previously broken) translation of negation into WS2S.

30 Alexander Malkis, Anindya Banerjee

– Previous splitting in Jahob was not sufficient. It was done only in the consequent of a

sequent: after splitting A⇒(C∧D) into A⇒C and A⇒D, MONA could run out of space

on, say, A⇒C, just because the input formula is large. Our improvement is to continue

splitting recursively on arbitrarily deep disjunctions inside the antecedent if MONA runs

out of space: (φ∧(A∨B)∧ψ)⇒C now can be split on need into (φ∧A∧ψ)⇒C and

(φ∧B∧ψ)⇒C. If more than the theorem prover MONA were necessary (say, if we had

required Z3 additionally), sub-goals could be handed over to different theorem provers.

Given the above improvements, two threads could be verified in 67 s, and three threads could

be verified in 1721 s on an Intel R© CoreTM i5-520M CPU clocked at 2.4 GHz with 8 GB

RAM clocked at 1066 MHz.

VI. Beyond the frontier.

An attempt to verify four threads failed: the input for MONA gets too large, even after all

potentially possible case splitting is done. To handle such cases theorem provers for WS2S

must be improved or a new decision procedure must be invented to directly encode the

formulas like J. These improvements are beyond the scope of the current paper.

An alternative line of work would be an encoding of the arbitrary-threaded barrier into

a program whose proof could be expressed in WS2S. Such an encoding (similar to that of

the carry-lookahead adder [3]) is indirect and would require verification itself.

5.3 Static tree barrier vs. Combining tree barrier

Now we evaluate our experience in the verification of tree barriers.

In both barriers each execution can be separated into the synchronization and wake-up

phases. The inductive invariant is Is ∨ Iw where Is is the invariant for the synchronization

phase and Iw is the invariant for the wake-up phase.

For both barriers Is can be written as a conjunction Ist ∧ Ism where Ist speaks about all

threads and Ism speaks about all tree nodes. For the static tree barrier, both Ist and Ism are of

the form (∀ t ∈T : . . .), since threads are associated with nodes. The combining tree barrier

enjoys a separate notion of threads, which makes Ist and Ism have the forms (∀ t ∈Tid : . . .)

and (∀n∈T : . . .), respectively.

For both barriers Iw can also be written as a conjunction Iwt ∧ Iwm where Iwt speaks

about all the threads and Iwm speaks about all the tree nodes. For the static tree barrier, Iwt

is of the form (∀ t ∈ T : . . .), since threads are associated with nodes, and Iwm = true. For

the combining tree barrier, Iwt is of the form (∀ t ∈ Tid : . . .) and Iwm is still of the form

(∀n ∈ T : . . .), but very weak.

In both barriers Is is relatively strong and Iw relatively weak compared to the strongest

inductive invariant for the corresponding phase.

For both barriers the inductive invariants with the code were fed into Jahob, converted

to WS2S and verified by MONA.

Based on these experiences, we expect that user-given variations of the tree-based bar-

riers can also be handled in Jahob similarly.

6 Array-based barriers

There are best-case-logarithmic barriers that do not resort to a link-based tree data structure.

Instead, threads distribute the information through a shared array such that each cell of

On Automation in the Verification of Software Barriers: Experience Report 31

the array is accessed by a constant number of threads. We will verify two most renowned

representatives of array-based barriers: the dissemination and the tournament barriers.

6.1 Dissemination barrier.

We begin with an algorithm for the dissemination barrier due to Hensgen et al. [21].

I. Algorithm.

First we informally describe the algorithm, then show its code and finally display an example

run of the algorithm.

Let n participating threads be identified by numbers from 0 till n− 1. In an execution

of the dissemination barrier a thread executes L=⌈log2 n⌉ synchronization rounds. In round

i, thread number t sends a signal to thread number (t + 2i)modn (where modn gives the

smallest nonnegative remainder after division by n) and starts waiting for a signal from any

thread. The thread that will send this signal is (t −2i)modn. It turns out that after L rounds,

each thread x has received a signal from every other thread y, either directly or transitively,

i.e. some thread z has received a signal (directly or transitively) from y and sent its signal to

x.

Signals are stored in an array A : ((thread identifier)×(round number))→bool.

shared bool A[n][L]; // the array entries are initially false.

// Each thread t executes the following function:

void barrier() {
for(int round=0; round<L; round++) {

A[(t+2ˆround)%n][round] = true; // send a signal to thread (t+2round) mod n.

// Wait for a signal from thread (t−2round) mod n:

await A[t][round]; // implemented, e.g. as a loop.

}
}

Powers of 2 can be constructed by a left shift or precomputed during initialization.

For example, 6 threads send signals and wait for them as follows:

0 1 2 3 4 5Thread numbers:

Sending:

Waiting:
Round 0

Sending:

Waiting:
Round 1

Sending:

Waiting:
Round 2

We will consider the multithreaded program in which each thread starts at the head of its for

loop with round= 0 and stops right after exiting its for loop.

II. Required reasoning.

We need to reason about two-dimensional arrays, since we want to express facts about A.

Also we need to reason about powers of two and arithmetic modulo n. Luckily, we do not

need all the properties of the power or of the remainder. With respect to the powers of

2, our experiments show that the proof of the barrier property just requires the property

32 Alexander Malkis, Anindya Banerjee

n ≤ 2L < 2n; it is possible to provide this fact to the theorem prover as an axiom. With

respect to the remainder after division by n, the proof relies on the exact values of remainder

only on a bounded interval [−3n,3n). We characterize the remainder as follows:

∀a ∈ Z :




(0 ≤ amodn < n)
∧ (−3n ≤ a <−2n ⇒ amodn = a+3n)
∧ (−2n ≤ a <−n ⇒ amodn = a+2n)

...

∧ (2n ≤ a < 3n ⇒ amodn = a−2n)




.

On Z\ [−3n,3n), our remainder abstraction is less restricted.

As a result, we just need to reason about two-dimensional arrays and linear integer

arithmetic. This fragment is still undecidable, but modern theorem provers employ heuristics

that allow proving validity of many formulas from this fragment in practice.

III. Inductive invariant.

For the algorithm above, the barrier property we verify is: if some thread exits the barrier

function, then any other thread is either not at the loop head or has a positive value of round

(or both). For expressing this, let roundt (resp. pct) be the value of the variable round (resp.

of the control flow location) of a thread t. Notice that for any reachable state of the barrier

and any thread t all of the following four facts hold (loosely formulated).

1. roundt ∈ [0,L];
2. Threads t̂ that have a number which is less than t by a certain amount (made precise

below) and that are not at the waiting location have transitively sent a signal to t and

thus have executed their loop at least once.

3. If A[t][l] is true for some l, then all the threads t̂ that have a number less than t by a certain

amount (made precise below) and that are not at the waiting location have transitively

sent a signal to t and thus have executed their loop at least once.

4. One of the following facts holds:

– t is at the head of the for loop, or

– t is at the waiting location, A[(t + 2roundt)modn][roundt] is true (since t has previ-

ously made it true) and the guard condition holds (roundt < L), or

– t has exited the loop and roundt ≥ L.

The invariant I is the conjunction of 1.-4. For the sake of completeness, we will now fully

specify the parts 2 and 3 (proved by the verifier):

A thread t̂ that is at the head of the loop or at the end of the barrier function satisfies roundt̂ >

0 if any of the following conditions 2. or 3. hold.

2. 0 < ((t − t̂)modn)< 2roundt , or

3. A[t][l] is true and ((t −2l − t̂)modn)< 2l for some l.

IV. Encoded program and its invariant.

We have chosen Boogie as the language to encode the dissemination barrier. Boogie does

not support concurrency, though it supports nondeterminism. We encode the multithreaded

program as a nondeterministic sequential one.

It turns out that the tool chain Boogie+Z3 runs out of space if the program is supplied as

a monolithic chunk as in Section 5 (the formulas that Z3 has to digest are too complex to be

proven). Thus, we partition the program’s transitions and let Boogie check them separately:

– Transitions APL→BPL for some thread t,

– Transitions BPL→APL for some thread t,

On Automation in the Verification of Software Barriers: Experience Report 33

– Transitions APL→CPL for some thread t.

Here, APL is the loop head, BPL is the waiting location and CPL is the location after the

loop. We encode each such block of transitions as a procedure that has the above inductive

invariant as a pre- and a post-condition. Procedures are checked separately: in our case,

Boogie does not run out of space on them. Let us consider, for example, the procedure for

transitions from BPL to APL:

procedure procBPL2APL()
requires Inv(...); // when a transition BPL→APL starts, assume that the invariant holds.
modifies pc, round; // modifies the control flow of some thread and a round number, but not A.
ensures Inv(...); // when the transition finishes, Boogie has to prove the invariant.
{ var t : int; // t is the thread that executes the transition.
var nextRound, nextPc; // local to this procedure.
// Assume that a thread t starts at BPL and that the signal is received:
assume 0≤t ∧ t<n ∧ pc[t]=BPL ∧ A[t][round[t]];
nextRound :=round[t 7→(round[t]+1)]; // construct the map containing the next round numbers.
nextPc :=pc[t 7→APL]; // construct the map containing the next control flow locations.
// Help Boogie in proving the four parts of the invariant (explained below):
call forall Lemma1(t,∗,nextPc,nextRound); // These Lemmas are
... // discharged in other
call forall Lemma4(t,∗,nextPc,nextRound); // procedures (shown online).
// Update the maps shared between procedures responsible for transitions APL→BPL, APL→CPL, BPL→APL:
round :=nextRound; pc :=nextPc;

}

In the above, the notation m[x 7→y] means a map which is identical to the map m for all

arguments expect the argument x for which it returns the value y.

The current state of the art of theorem proving still requires a little help from the user.

The help comes in form of procedures that concentrate the theorem prover on separately

proving parts of the invariant. The body of those procedures is empty, the precondition, say,

of Lemma1, contains only the information that is necessary to prove part 1 of the invariant,

the postcondition is part 1 itself. This scheme allows the theorem prover to prove part 1.

Without those procedures Z3 would have too many assumptions to choose from for proving

part 1 and would fail in choosing the right assumptions. Without going into details, the

statement “call forall Lemma1(t,*,nextPc,nextRound)” is equivalent to assuming the formula

∀ t ′ :

(
precondition of Lemma1(t, t ′,nextPc,nextRound) ⇒
postcondition of Lemma1(t, t ′,nextPc,nextRound)

)
,

while writing the body of Lemma1 ensures that this formula is proven valid. For further

description of the call forall statement we refer the interested reader to the manual of Boogie 2

[31].

V. Using the tool.

The supporting lemmas and the inductive invariant can be proven in altogether 1.03 s on an

Intel R© CoreTM i5-3320M CPU clocked at 2.6 GHz with 8 GB RAM clocked at 1600 MHz.

During experiments with Boogie, we have found that trying to prove a program property

which does not hold results in an almost immediate rejection, which is a pleasant help during

debugging.

VI. Beyond the frontier.

The current state of the art of theorem proving requires supporting lemmas. Due to undecid-

ability of the logic that Boogie syntactically accepts, we expect that the tool will also require

manual support in the future. Reducing the amount of manual support would be the next step

in increasing the automation of proving the correctness of the dissemination barrier.

34 Alexander Malkis, Anindya Banerjee

6.2 Tournament barrier

This subsection considers the verification of the tournament algorithm with tree-based wake-

up, given in Bfly1/tournament.c of [38] and explained by Scott and Mellor-Crummey [48]

and Hensgen et al. [21].

I. Algorithm.

First we informally describe the tournament algorithm, following which we show its code.

We support the presentation of both by a running example.

A computation of the tournament barrier is akin to a chess tournament: in each round,

threads are partitioned into couples, in each couple one of the threads wins and proceeds to

the next round, the other thread loses and starts waiting until the winner comes back and

wakes the thread up. If the number of threads is not a power of two, threads without oppo-

nents skip certain rounds. The difference to the real tournament is that the winner and the

loser, as well as the couplings, are statically determined by the bits of the thread identifiers

(a nonnegative integer represented by a bitstring). For example, six threads will synchronize

as follows:

000
=0

001
=1

010
=2

011
=3

100
=4

101
=5Thread number

binary:
decimal:

Sending:

Waiting:
Round 0

Sending:

Waiting:
Round 1

Sending:

Waiting:
Round 2

After the champion (here: 000) has arrived at the last round, it will wake up every thread

that has lost to the champion directly during the synchronization phase (here: 100, 010 and

001). Once a thread is awake, it will wake up all the threads that have lost to it directly.

The general win/lose rule is the following.

Each identifier is of the form x0 . . .0 with i≥ 0 zeros after the bitstring x. The thread

with such an identifier will win in each round j∈ [0, i) over the thread x0 . . .010 . . .0 where

the rightmost 1 is on the jth position from the right. If x0 . . .010 . . .0 does not correspond to

a thread, x0 . . .0︸ ︷︷ ︸
i zeros

will skip the jth round. Also, if a thread is of the form x10 . . .0︸ ︷︷ ︸
j zeros

for some

bitstring x and some j ≥ 0, then the thread will lose in round j to the thread x00 . . .0︸ ︷︷ ︸
j zeros

. Thread

0 . . .0 is the champion: it will win in each round.

When a thread is going to win in round i, it waits for the loser to reach that round before

proceeding. If a thread is going to lose in round i, it arrives there, sends a signal to the winner

and starts waiting for the wake-up signal. All the signals get stored in a two-dimensional

array A : ((thread identifier)×(round number))→bool.

In the following code of the tournament barrier, n≥ 2 is the number of threads and

L = ⌈log2 n⌉ the number of rounds.

shared bool A[n][L]; // all array entries are initially false.

local int tid; // unique thread identifier in [0,n).
// Each thread calls the following function:

void barrier() { // Start the synchronization phase.

Bfly1/tournament.c

On Automation in the Verification of Software Barriers: Experience Report 35

int round = 0; // the current round number.

// Participate in the tournament as long as the thread does not lose:

for(; round<L−1 && (tid%2round+1 == 0) ; round++)

// Win the round or skip the round:

if(tid+2round<n) await A[tid][round]; // if the opponent (loser) exists, wait for the loser.

if((tid%(2round+1)) 6= 0) { // the thread is losing this round.

A[tid−2round][round] = true; // inform the opponent (winner).

await A[tid][round]; // wait for the wake-up from the winner.

} else { // last round L−1, the thread is the champion.

await A[tid][round]; // wait for the loser.

A[tid+2round][round] = true; // wake up the loser.

} // end of if((tid%(2round+1)) 6= 0).

// Now the thread is awake. Either it is a loser of the current round and the winner has woken up the thread.

// Or it is the champion and it has woken up the loser. In any case, the opponent is awake.

// The thread should wake up the losers of the previous rounds.

for(; round>1 ; round−−) { // go through all rounds > 1

if(tid%(2round)==0 && tid+2round−1
<n) // if the thread was the winner of the round

// and if its opponent existed,

A[tid+2round−1][round−1] = true; // wake up the loser.

} // end for.

// Wake up the loser of the initial round, if necessary:

if(round==1 && (tid is even) && t+1<n) A[tid+1][0] = true;

}

For our six-thread example, thread 010 would start the 0th round by going into the body

of the first loop, where it waits for a signal (notice that only thread 011 may send it). After

getting the signal, it exits the first loop, goes into the if-part of the conditional statement

after the loop, sends the signal to 000 and starts waiting for the wake-up.

At this moment, round=1 for thread 010. When 010 gets awoken by the champion, it

skips the second for loop, raises A[011][0] to wake up the thread 011 and exits. (As we will

see, it is convenient to consider the last iteration of the loop separately, therefore we have

taken it out of the wake-up loop.)

The above code can be optimized, e.g. to avoid explicit computations of powers of two.

(But beware that optimizations increase the possibility of bugs—we have even found one

such bug in Bfly1/tournament.c of [38] and repaired it.)

We consider the multithreaded program in which each thread executes the body of the

barrier function.

II. Required reasoning.

We now explain why we require certain nontrivial features in a correctness proof and how

we deal with them.

Syntactically, the program contains two-dimensional arrays, powers of two and remain-

ders modulo a power of two. Such powers and remainders can be relatively simply carried

out on the bitwise representation of the numbers. To reason about a bitwise representation

of a number we need unbounded bit arrays.

Thus we handle thread identifiers as unbounded arrays of bits. More concretely, we

model the set of identifiers by a set T of bit arrays such that both of the following conditions

hold (from now on we view L as an ordinal, i.e. as the set of all smaller ordinals).

– The support of an array in T is a subset of L, i.e. if a bit in an array in T is raised, the

index of the bit is in L.

– If an array a in T represents a loser for some round i, then the identifiers of the transitive

winners over a are in T . (A transitive winner over a is either the direct winner over a or

a transitive winner over the direct winner.)

Bfly1/tournament.c

36 Alexander Malkis, Anindya Banerjee

The set {t ∈ L→{0,1} | ∑i<L t(i) · 2i < n} representing the integer interval [0,n), which is

used in the original tournament algorithm [21], satisfies the aforesaid conditions, but there

are more sets that satisfy these conditions, e.g. {000,001,010,100,101}. Thus we support

richer sets of thread identifiers and are able to handle more inputs. The overhead for handling

more inputs turned out to be negligible.

Due to substituting thread identifiers by bit arrays, A ∈ ((T×L)→bool) gets a second-

order map: its first index is a map itself.

Thus, we require a logic which can express integers, first-order maps and two-argument

second-order maps. This fragment is undecidable, but heuristics of modern theorem provers

allow proving validity of many formulas from this fragment in practice.

We also require maps as first-order objects, but theorem provers support only first-order

arrays. There are two differences.

– Theorem provers allow comparing elements, but forbid comparison of maps (for ref-

erence: maps are called functions by the theorem proving community). If f and g are

maps, f =g is an invalid piece of syntax. Theorem prover clients cannot syntactically

build a modified map f [x 7→ y] either. We can, however, take the value of a map for an

argument, as in f (x).
– Theorem provers allow syntactical comparison of arrays. If f and g are arrays, f =g is a

syntactically valid term. The value stored at an index x in an array f is “select f x”, and

a modified map f [x 7→y] is “store f x y”.

The known proof of the barrier property requires comparing and building modified thread

identifiers. Thus, our thread identifiers have to be represented as arrays for the theorem

prover. This capability is not present is Jahob, but it is present in Boogie.

We also overcame another difficulty pertaining to maps and arrays. By default, verifiers

are using a relatively weak logic for arrays for the sake of termination or speed. In partic-

ular, the logic ignores the extensionality axiom which states that arrays f and g are equal

if (∀x : f (x)= g(x)). The proof of the barrier property turns out to require a form of the

extensionality axiom, so we explicitly provide this axiom to the verifier.

III. Inductive invariant.

The barrier property we verify is: if some thread arrives at the final control flow location at

the end of the barrier function, all other threads are not at the head of the first for loop and

not before it. Now we will describe the high-level structure of an inductive invariant I that

is sufficient to prove the barrier property.

For a state of the program, let roundt denote the value of the variable round.

The invariant is a disjunction of two formulas: one for the synchronization phase and

the other for the wake-up phase. The formula describing the synchronization phase is a

conjunction of several facts similar to those from Section 6.1. We state two most important

facts:

– Every thread is either in the for loop or the if-then part immediately following it (i.e. it

is at the loop head, or has lost and is waiting for the wake-up, or has won not in the last

round and is waiting for the loser, or it is the champion and is waiting for its opponent

in the last round).

– If A[t][l] is true for some thread t and some l < L, then

– t wins or skips all the rounds till (and including) round l and

– any other thread t̂ that loses to t transitively till (and including) round l is waiting

for the wake-up. Here “transitively” means that t̂ loses to t directly or loses to some

other thread that loses to t transitively.

On Automation in the Verification of Software Barriers: Experience Report 37

In the above description, winning and losing refer to bits in thread identifiers as described

previously.

For example, if A[010][0] is true in the synchronization phase, then some thread raised

this bit when it was in the if-part after the synchronization loop. The identifier of this thread

is 011. After having raised that bit, 011 started waiting. It cannot be woken up in the synchro-

nization phase (otherwise it would be woken up by thread 100 in its 0th round, which con-

tradicts the if-condition 100%(2round100+1) 6= 0). Thus, in the synchronization phase, thread

011 continues waiting.

The formula describing the wake-up phase says that each thread is at a certain control

flow location, either waiting for the wake-up or proceeding after wake-up.

If a thread is at the last control flow location, the barrier cannot be in the synchronization

phase, so the whole barrier is in the wake-up phase, so no thread can be before or at the head

of its first for loop.

IV. Encoded program and its invariant.

The required reasoning is supported by the Boogie+Z3 tool chain; we will explicate the real

code and fully show the inductive invariant.

To stay on the positive side of the verifiability frontier, we produce a coarse-grained

program with four control flow locations per thread: A, B, C and D. A thread moves between

them as in the following diagram (details omitted):

A

thread wins: it waits for the

loser and goes to the next

round (code provided below)

B sleep location

thread loses:

it informs the winner

C

thread is the champion: it waits for

the loser, then it wakes up the loser
get woken up

wake up the loser of the

previous round, go to the

previous round

D

wake up the loser

from the 0th round

Now we will look, for example, at the transition A→B. The transition’s precondition for

a thread t is a conjunction of two conditions:

– the thread should have won or skipped its previous rounds, i.e. t(0) = . . .= t(roundt −1)
= 0, and

– the thread should lose the current round, i.e. t(roundt) = 1.

The effect of the transition is sending a signal to the opponent (winner t[roundt 7→ 0]) by

raising A[t[roundt 7→0]][roundt].
With respect to the example above, for the thread 010 in a state with roundt = 1 the

precondition is t(0) = 0∧ t(1) = 1 and the effect is A[000][1] := true.

Given the above thread structure, we first construct parts of the formula describing the

inductive invariant and then give the inductive invariant itself.

In the following formulas, an expression of the form t|(a,b) (resp. t|[a,b)) denotes the

restriction of the map t to the integer interval {x ∈ dom t | a < x < b} (resp. {x ∈ dom t | a ≤
x < b}).

The set of thread identifiers T which was sloppily described on p. 35 is formally char-

acterized by the following formula:

IT =
(
∀t̂∈T, t∈(L→bool) :

((
∃i<L:

(
t|(i,L)=t̂|(i,L)∧ t̂(i)∧ (∀ j≤i : ¬t(j))

))
⇒ t ∈ T

))
.

38 Alexander Malkis, Anindya Banerjee

In the synchronization phase, the round numbers should be bounded by the binary logarithm

of the number of threads:

Is1(t) = (0 ≤ roundt < L) .

Now we will mention control flow locations: for a state of the program, pct will be the

program counter of thread t.

In the synchronization phase, as we have already seen, if A[t][l] is true for some thread t

and some l < L, then

– t wins or skips all the rounds till (and including) round l and

– any other thread t̂ that loses to t transitively till (and including) round l is waiting at

location B.

Formally:

Is2(t) =
(
∀l∈[0,L) :

(
A[t][l]⇒

(
(∀i≤l: ¬t(i))∧

(
∀t̂∈T:

(
(t̂(l)∧ t̂|(l,L)=t|(l,L))⇒ pct̂=B

)))))
.

In the synchronization phase, if any two threads have the same win-lose behavior from the

current round number of one thread onwards, then the other thread is waiting for the wake-

up:

Is3(t) =
(
∀t̂∈T \{t} :

(
t̂|[roundt ,L)=t|[roundt ,L) ⇒ pct̂=B

))
.

In the synchronization phase a thread can be either at location A or at location B. If a thread

is at location A and has not received a signal for its current round, then it has been winning

the previous rounds, and if in addition it is going to lose its current round to an opponent,

then the opponent is still in the process of synchronization, i.e. at location A. If a thread is at

location B, then its wake-up signal is not yet raised, it has lost its current round but won all

previous rounds. So let

Is4(t) =





pct=A∧



A[t][roundt] ∨(
(∀i<roundt : ¬t(i)) ∧(
(t(roundt)∧ t[roundt 7→ 0]∈T)⇒ pct[roundt 7→0] = A

)
)






∨
(pct=B ∧ ¬A[t][roundt] ∧ t(roundt) ∧ (∀i<roundt : ¬t(i)))




.

The formula fully describing the synchronization phase declares that all the just described

formulas hold for an arbitrary thread:

Is = (∀t∈T : (Is1(t)∧ Is2(t)∧ Is3(t)∧ Is4(t))) .

The formula describing the wake-up phase just asserts that all threads have left the control

flow location A:

Iw = (∀t∈T : pct ∈{B,C,D}) .

The inductive invariant declares how the thread set looks like and that the threads are either

in the synchronization or in the wake-up phase:

I = (IT ∧ (Is ∨ Iw)) .

As in the case of the dissemination barrier, the whole multithreaded program is too big to be

verified monolithically. To overcome this limitation, we encode each transition in a separate

procedure. For example, let us look at the procedure corresponding to moves A→A of all the

threads.

On Automation in the Verification of Software Barriers: Experience Report 39

procedure A2A() // encoding the self-loop at A.
requires Inv(...); // assume that the invariant holds before the transition.
modifies round; // modifies just the round number. The variable “round” maps threads to their round numbers.
ensures Inv(...); // prove that the invariant holds after the transition.
{ var t : BitArray; // BitArray = int→bool, t is the thread that executes the transition.
var nextRound : [BitArray]int; // “nextRound” is the round map after the transition.
assume InT[t] // the identifier t should be valid, i.e. in the set T .
∧pc[t]=A // the program counter should be A.
∧ZeroPrefix(t,round[t]) // t[0]=...=t[roundt]=0, i.e. thread t wins or skips the rounds 0..roundt .
∧round[t]+1<L // the round is not the last one.
(InT[t[round[t] 7→true]] =⇒A[t][round[t]]) // if the opponent is valid, i.e. in T , then

// the opponent should have signaled its arrival by setting the mentioned element of A to true.
nextRound:=round[t 7→(round[t]+1)]; // construct the next round numbers for all the threads.
call forall Lemma...(t,∗,nextRound); // help in proving certain
call forall Lemma...(t,∗,nextRound); // parts of the invariant.
round :=nextRound; // update the current round numbers.

}

If the conjunction of the conditions in the assume statement is false, then the thread just

blocks, which it should.

In the above code, the call forall statements help proving the invariant as in Section 6.1;

we will not go into details here.

V. Using the tool.

Encoding the tournament barrier in Boogie requires reducing the operations and the reason-

ing about operations to concepts that the tool understands: Booleans, integers and arrays.

After such an encoding is done, we found out that certain parts of the invariant cannot be

proven fully automatically. After guiding the proof by the call forall statements, we were able

to make the Boogie tool prove the invariant in 711.8 s on an Intel R© CoreTM i7-3720QM CPU

clocked at 2.6 GHz with 8 GB RAM clocked at 1600 MHz.

VI. Beyond the frontiers.

During construction of the barrier we had to reduce the number of control flow locations per

thread and provide guidance to the theorem prover. Permitting more locations per thread or

removing the supporting lemmas would place the barrier on the other side of the verifiability

frontier. Addressing these next challenges is out of scope of the current paper.

7 A central barrier with a client

This section investigates a client of a barrier together with the barrier. We consider an im-

plementation of a barrier in .NET [41] and a variation of the publicly available MSDN

example [42] that uses the implementation.

I. Algorithm.

First we show the client and then expound on the used barrier implementation.

The following client code creates four threads, each thread calls the barrier function (in

.NET it is named SignalAndWait) four times and increments a shared variable between the

calls.

int count = 0; // the shared variable that will be incremented.

Barrier barrier = new Barrier(3); // create a barrier with three participants.

barrier.AddParticipants(2); // changed my mind, make it 5 participants.

barrier.RemoveParticipant(); // let us settle on 4 participants.

Action action = () => { // Defining the threads:

Interlocked.Increment(ref count); // equivalent to an atomic count++

40 Alexander Malkis, Anindya Banerjee

barrier.SignalAndWait(); // when all threads arrive here, count=4.

Interlocked.Increment(ref count);
barrier.SignalAndWait(); // when all threads arrive here, count=8.

Interlocked.Increment(ref count);
barrier.SignalAndWait(); // when all threads arrive here, count=12.

Interlocked.Increment(ref count);
barrier.SignalAndWait(); // when all threads arrive here, count=16.

assert(count==16);

};

Parallel.Invoke(action, action, action, action); // launch 4 participants.

barrier.Dispose(); // free the resources.

The barrier implementation is a variation of the central barrier. The implementation is

1741 lines long; it uses a 32-bit variable m currentTotalCount to store in its different bits the

following quantities:

– the lowest 15 bits are for the total number of participants,

– bit 15 is dummy,

– bits 16–30 store the number of participants that have already reached the barrier,

– bit 31 stores the sense flag that saves the parity of the number of episodes.

The variable m currentPhase stores number of episodes; the sense flag of m currentTotalCount

copies the lowest bit of m currentPhase. In each episode, m currentPhase gets incremented

and m currentTotalCount gets updated.

Since the update of m currentTotalCount is a complicated operation, it cannot be real-

ized atomically: first, m currentTotalCount is read into thread-private variables, then a newer

value is constructed, then m currentTotalCount is updated by a CAS (compare-and-swap, ex-

plained below in the code). A CAS atomically tests whether m currentTotalCount still has

the same value, and, if so, m currentTotalCount is set to a constructed value. Otherwise CAS

fails: another thread was faster and changed the value of m currentTotalCount after the cur-

rent thread had read m currentTotalCount but before the current thread could attempt chang-

ing the value of m currentTotalCount. In the failure case the process repeats: the variable

m currentTotalCount is read again. Schematically SignalAndWait executes as follows:

Start

Read shared m currentTotalCount into locals.

Is the

current thread

the last one

?

Construct the new value of

m currentTotalCount thread-locally.

Construct the new value of

m currentTotalCount thread-locally.

If the shared m currentTotalCount

is still the same, update it with

the locally constructed value.

If the shared m currentTotalCount

is still the same, update it with

the locally constructed value.

Wake up other threads. Wait for the wake-up.

End

Yes No

Fail Fail

Succeed Succeed

On Automation in the Verification of Software Barriers: Experience Report 41

The wake-up is realized with two instances of the .NET class ManualResetEventSlim: in an

even (resp. odd) episode all the threads except the last one wait for the raising of m evenEvent

(resp. m oddEvent). The last arriving thread reinitializes the opposite, i.e. odd (resp. even),

event and raises the even (resp. odd) event.

The algorithm behind the .NET implementation of SignalAndWait() is displayed below:

assert(!m disposed); // check whether the deallocator has been called.

bool sense;

int total, current, currentTotal;
while(true) {
currentTotal = m currentTotalCount; // atomically read the shared variable into a local one.

GetCurrentTotal(currentTotal, out current, out total, out sense); // extract bits of this number.

// current is the number of participants that have arrived at the barrier, total is the total number of

// participating threads, sense is true iff the episode is even.

// If total is 0, then the barrier was not meant to be used for any thread.

assert(total); // but the current thread tries to participate, which is an error.

// If sense6= (m currentPhase%2 == 0), another thread has already arrived at the barrier and updated

// m currentTotalCount, but has not yet signaled wake-up. If current=0, the current thread would start

// using the barrier on which everyone else is waiting. Depending on the scheduling of the current thread

// and the other thread, the current thread would later wait or continue (we won’t list such schedules here).

// Such a behavior were nondeterministic.

assert(current || sense == (m currentPhase % 2 == 0)); // forbid nondeterministic behavior.

if(current+1 == total) { // this thread is the last one to arrive.

// Try to prepare m currentTotalCount for the next episode, internally realized via CAS:

if(SetCurrentTotal(currentTotal, 0, total, !sense)) {
// No thread has changed m currentTotalCount since it was read above,

// right now it has been successfully reinitialized.

m currentPhase++; // the next episode number is set.

if(sense) { // the terminating episode is even.

// Nobody listens to the odd event now, in the next episode all participants will wait for the odd event:

m oddEvent.Reset(); // prepare the odd event for waiting.

m evenEvent.Set(); // Wake up the current participants which are waiting for this even event.

} else { // the terminating episode is odd.

// Nobody listens to the even event now,

// in the next episode all participants will wait for the even event:

m evenEvent.Reset(); // prepare the even event for waiting.

m oddEvent.Set(); // Wake up the current participants which are waiting for this odd event.

} // end of if(sense)-else-endif.

// The last thread has reinitialized the barrier and woken everyone else up.

return; // This thread is sure that the other threads have arrived at their barriers.

} // SetCurrentTotal(...) has failed, meaning that in the meantime some other thread

// has changed m currentTotalCount. Re-read it and restart the whole computation.

} else { // current+1 6=total, i.e., current+1 < total.

// More threads will arrive or are arriving at the barrier. Tell them that this thread has arrived by

// incrementing current via CAS inside SetCurrentTotal(). If no other thread has arrived since this thread

// read m currentTotalCount, the increment is successful and this thread should start waiting:

if(SetCurrentTotal(currentTotal, current+1, total, sense)) break;

// Otherwise some other thread has arrived since this thread read m currentTotalCount, so this thread

// should re-read it and restart the computation.

} // end of if(current+1 == total)-else-endif.

// Some other thread has intervened. Try to arrive at the barrier again.

} // end of the loop body.

// Wake-up phase. In even episodes wait for the evenEvent, in odd episodes wait for the oddEvent:

ManualResetEventSlim eventToWaitOn = sense ? m evenEvent : m oddEvent;
eventToWaitOn.Wait(); // wait for the signal from the last thread.

A small aside on m currentPhase should be made. It is the only variable that can overflow

in all the barrier algorithms we are looking at. The overflow does not affect our shortened

42 Alexander Malkis, Anindya Banerjee

representation of the .NET code as long as a machine with 2’s complement representation

of integers is used, since our representation checks only the parity of the variable.

II. Required reasoning.

We check

– that when a thread is about to terminate, count= 16,

– several assertions internal to the barrier implementation, e.g. that no use-after-dispose

befalls.

The barrier implementation is finite-state due to the finite bit width of the all the variables.

By code inspection we found that the executions of the client use only a small portion of

that bit width (since only four threads are executed), so exhaustive state enumeration should

succeed in proving the above properties. Certain calls to the libraries have to be modeled.

For instance, a Boolean suffices to model an instance of the class ManualResetEventSlim.

III. Inductive invariant.

There is no need for a user to spell out the inductive invariant, as exhaustive state enumera-

tion actually is a form of invariant generation.

IV. Encoded program.

We encoded the program in Promela, which is the input language of the Spin [24] bug

finder. Though Spin does not support sequential procedures, Spin is great for large chunks

of sequential code. So we inlined the sequentially called Barrier, AddParticipants, RemovePar-

ticipants, Increment, SignalAndWait and Dispose. The invoked action directly corresponds to a

concurrent procedure of which four copies are started.

V. Using the tool.

The standard method of storing states is insufficient: the number of reachable states exceeds

the available space. This is why Spin optionally employs a compression technique that re-

duces space consumption at the cost of increased runtime, namely a set of states is viewed

as a set of strings accepted by a regular automaton [25]. This technique reduces space con-

sumption of many practically interesting programs. Using automata compression, Spin was

able to verify the barrier with its client in 5720 s on an Intel R© CoreTM i5-520M CPU clocked

at 2.4 GHz with 8 GB RAM clocked at 1066 MHz.

VI. Beyond the frontier.

During modeling we needed to provide code of some library functions and abstract away

features which are not directly representable in Spin (e.g. lambda closures or exceptions).

Reducing the dependency on manual rewriting is the next challenge, which requires mod-

eling huge parts of the runtime environment, including libraries and the operating system.

8 A software barrier for weak memory

In this section we verify a software barrier algorithm for the weak memory model TSO (total

store order) in Checkfence. We describe verification in the following steps: the algorithm,

required reasoning, high-level proof structure, encoding of the proof and using the tool.

On Automation in the Verification of Software Barriers: Experience Report 43

I. Algorithm.

The algorithm is an adaptation of the one from Section 4.1. It is a one-time central barrier.

In a run of the barrier function, each thread decrements a shared counter and waits until it

gets zero. Each of n threads has a unique identifier tid between 0 and n−1.

The algorithm is given below:

shared int∗ count; // *count initially stores the number of threads.

// During a run (*count) = the number of threads that have not decremented yet.

shared bool started[n] = {false,. . .,false}; // n auxiliary variables, used only to specify the barrier property.

// Each thread calls the following function:

void barrier() {
started[tid] = true; // the current thread has started.

// Memory accesses inside the atomic portion are not interrupted by memory accesses of other threads.

atomic { // Specifying an atomic decrement.

x = ∗count; // read the shared counter into a local register.

x = x−1; // decrement the register.

∗count = x; // write the decremented value back into memory.

}
do { // await loop

x = ∗count; // read the shared counter into a local register.

spinforzero = (x 6=0); // spinforzero is true iff x is nonzero.

} while(spinforzero); // wait until the read value is zero.

assert(∀ threads t 6= tid : started[tid]); // check the barrier property.

}

The program which we analyze is the initialization code followed by the parallel com-

position of the function bodies.

II. Required reasoning.

Not surprisingly, we will not mention invariants here, since the concept of a transition system

is absent in the definition of most weak memory models. Instead, the semantics of TSO is

given axiomatically, restricting the executions of the whole system and the executions of

each thread. The barrier loops are soundly unrolled and the axioms are applied to length-

bounded executions. The existence of a certain execution is encoded as a formula; after

conversions into the Boolean form, applying a decision procedure for SAT suffices.

To describe sound loop unrolling, notice first that all iterations of each thread’s loop ex-

cept the last one are side-effect free: they change neither the shared state, nor the termination

condition, which is spinforzero here, nor the later used local state. Thus dropping any number

of loop iterations produces an equivalent execution as long as at least one iteration remains.

Then it suffices to distinguish two kinds of executions for each thread.

– In the first kind, the loop of the thread is executed finitely often. The tool considers an

equivalent execution in which all except the last iterations are elided, i.e. the loop is

replaced with its body followed by assuming the termination condition ¬spinforzero.

– In the second kind, the loop diverges. The tool considers an equivalent execution in

which the loop body executes exactly once after all the stores have happened.

III. High-level proof structure.

We now give a high-level description of the ingredients of the formula that encodes the

existence of an error trace.

The TSO memory model imposes a total order on loads, a total order on stores, as well as

a certain ordering of atomic load-and-stores executed by different processors. The semantics

makes these notions precise in terms of the global traces of the whole multithreaded program

and the traces of separate threads. The exact semantics is described in [9], while we are going

to pick up the interesting highlights informally.

44 Alexander Malkis, Anindya Banerjee

A local trace of a thread consists just of

– the instructions of the executing processor,

– the addresses and the values that these instructions use,

– the control flow order between these instructions,

– the information about what instructions belong to the same atomic load-store,

– the orderings resulting from data-to-data and data-to-control dependencies between in-

structions,

A global trace consists of the following components:

– the instructions of all the processors, equipped by the thread identifiers,

– the used addresses and values,

– the control flow order between the instructions,

– the mapping of loads to stores that provide the value,

– the information about what subinstructions form a part of the same atomic block,

– the orderings resulting from data-to-data and data-to-control dependencies between in-

structions,

– the execution status (is repeating a loop, is throwing an exception or is normally contin-

uing).

For verification, executions of the bounded version are checked against the user-given

assertions. The existence of an execution violating a user-given specification is equivalent

to the satisfiability of a particular formula

Ψ ∧ Θ ∧
∧

k<n

Πk ∧ S , (1)

where Ψ constrains on the global trace, Θ constrains the memory model, Πk constrain the

local traces (k < n) and S is the error condition. We are going to describe the structure of the

above formula next.

IV. Encoding of the proof.

This subsection provides major low-level details of the formula (1).

The free variables of the aforementioned formula are

– data variables representing the values used in a load or in a store instruction, one variable

per instruction,

– address variables used in a load or in a store instruction, one variable per instruction,

– Booleans marking whether an instruction is really executed or not (the code might con-

tain conditionals), one variable per instruction,

– the execution status with which a thread terminates, one variable per thread,

– Booleans reporting whether a load sees the value provided by a store, one variable per

each load-store pair,

– Booleans marking whether two instructions are ordered by the memory order, one vari-

able per pair of different instructions.

The conjunct Ψ stipulates that the above variables actually encode a global trace. For

example, whenever a load sees the value provided by a store, both instructions should be

executed and mention the same address and the same value.

The conjunct Θ restricts the global trace by the constraints of the memory model. One

such fact is, for instance, that the memory order is total on stores and total on loads.

The conjunct Πk restricts the local trace by local constraints, e.g. on the control flow

order of thread k (k < n). The values and addresses of the instructions, as well as the condi-

tions under which the threads terminate without error or loop bound overrun, are obtained

in two steps. First, the symbolic evaluation of the unrolled thread provides the terms (i.e.

mathematical functions), whose application to the loaded values would give the final values,

On Automation in the Verification of Software Barriers: Experience Report 45

addresses and Booleans. Second, these functions are used verbatim to construct the formula

Πk (k < n). Using the fact that the values, the addresses and the terms are bounded, one can

transform such Πk into pure Boolean formulas (k < n).

Finally, the quantifiers are replaced by conjunctions and disjunctions using the fact that

the trace is bounded.

V. Using the tool.

The tool Checkfence, written in C++ under Windows, was no longer compilable when we

started our research; we have revived it and ported it to Linux. Verifying the assertion for

the number of the threads varying between 1 and 8 took the following time on an Intel R©

CoreTM i5-520M CPU clocked at 2.4 GHz with 8 GB RAM clocked at 1066 MHz:

Threads 1 2 3 4 5 6 7 8

Time, s 0 0.01 0.03 0.11 0.32 2.06 11.19 189.45

VI. Beyond the frontier.

The Checkfence tool limits verification to 8 threads. At the time this research was con-

ducted, for weak memory there were no other tools for barrier verification that were suitable

(i.e. obtainable, usable and supported). Doubtless the Checkfence approach gives more con-

fidence in correctness than testing or manual code inspection; but it would be useful to verify

the algorithm for an unbounded number of threads. This next challenge is left for future re-

search.

9 Discussion

This section discusses the significance of the barriers in general, supports our choice of the

verification approaches, mentions the related work and presents future work.

The importance of software barriers. The software barrier primitive is indispensable in par-

allel programming. In parallel scientific computing, barriers are frequently used, for exam-

ple, in Gaussian elimination [13], matrix multiplication [7], random number generation [10],

LU factorization [4], Jacobi method [14], fluid simulation [5] and solving Navier-Stokes

equations [53], protein simulation and ray tracing [8], ocean circulation models [26] and in

many other applications. Barriers are heavily used in high-performance computing. Today,

the software barrier is a standard synchronization primitive in PThreads, OpenMP, CUDA

(all described in [19]), java.util.concurrent [18], .NET [44] and MPI [37].

In the formal methods community, barriers are also used, e.g. to model synchronous

execution in interleaving semantics [6] or as a part of an execution model [23].

There is significant variation in algorithms that implement software barriers. Herlihy

and Shavit’s textbook [22] describes the central barrier (which is simple but slow), the com-

bining tree barrier and the static tree barrier (which are faster but trickier to implement).

The dissemination barrier (which does not have a wake-up phase) and the tournament bar-

rier (which is the fastest on many shared-memory architectures) are given as exercises to be

worked out. The combining tree barrier uses a more general concept of the software com-

bining tree [52]; numerous variations thereof have been studied [33, 40]. The dissemination

barrier is an instance of a more general parallel prefix computation; the tournament barrier

has an exceptionally low communication overhead [21]. Simple counting barriers are eas-

ily extendible with features; e.g. the barrier of .NET [41, 42] allows adding and removing

46 Alexander Malkis, Anindya Banerjee

participating threads, wait cancellation, timeouts and is fuzzy: it permits a thread to execute

useful work while waiting for the other threads. Faster fuzzy barriers are tree-based [20,47].

Choice of the verification approach. A reader might wonder why we are not using other ver-

ifiers. Indeed, we had acquaintance with more verifiers but found that Boogie, Checkfence,

Jahob, VCC and SPIN are best suited for our experiments.

In the formal methods community it is generally believed that there is no single simple

verification approach that suits any verification task. We have demonstrated that even if we

wish to analyze a set of programs that all serve the same purpose—barrier synchronization

here—a juxtaposition of several reasoning techniques might be required to handle them all.

Thus our experience confirms the expectation of the community.

For instance, we found out that in certain cases Jahob suits best while in others Boogie

is a better match. Both tools are similar in that they require the user to provide the inductive

invariant, which is then translated into verification conditions to be discharged by theorem

provers. The tools are different in that they place their emphases on supporting different

logics: one should always use a tool with appropriate decision support for the logic required

for the inductiveness proof.

Related work. So far verification of barriers has been sporadic and unsystematic, usually in

the context of other projects or non-automatic [6,12,27,28,36,49]. Most barrier algorithms

have not been machine-verified at all to the best of our knowledge. The closest sequential

counterpart for the logarithmic barriers that has been verified is the composite pattern [2],

in which there is a bottom-up tree traversal from a node to a root. The composite pattern

is a challenge to AUFLIA solvers [32], which cannot reason about trees natively, and even

adding axioms describing the theory of trees requires nontrivial hacking of triggers.

Hobor and Gherghina [23] add a barrier statement to concurrent separation logic; how-

ever, no program verification takes place. Aiken and Gay [1] verify the synchronization

patterns of programs with barriers. All such results assume correctness of the barrier imple-

mentations. In contrast, we actually verify the implementations.

Future work. Throughout the paper we have provided several challenging verification tasks

that still lie beyond the automatic verification frontier. Based on our experiments, we expect

that more elaborate barrier algorithms (e.g. fuzzy and adaptive barriers [20, 47]) cannot be

verified automatically now, but are amenable to interactive verification and bug finding. By

plain inspection, we found a minor bug in the high-level description of such a barrier [47],

which, however, was repaired in the low-level code [38].

It would be also interesting to connect the verification of barriers with the verification of

clients via some interface, e.g. by using a variant of rely-guarantee reasoning or other logics

for concurrency.

Currently there is significant variation in the reasoning principles behind the correctness

proofs of the barriers. We are unaware of any verification tool that provides enough support

for all of them. However, it would be interesting and useful to have a verification system

with which all the barriers could be verified.

Still another line of future work touches liveness properties of barriers. The following

property, currently outside the scope of automatic verification, is useful: once all threads

have started, eventually all threads will successfully terminate.

On Automation in the Verification of Software Barriers: Experience Report 47

Conclusion. We have considered several software barrier algorithms, an implementation in

C, a barrier on weak memory and a barrier with its client. Most of these benchmarks have

previously been on the other side of the verifiability frontier, not amenable to automatic

methods. We have verified these benchmarks as automatically as the state of the art permits.

On one hand, verification has increased our certainty in the correctness of those benchmarks

by orders of magnitude. On the other hand, we have improved the Jahob tool, pushing the

verification frontiers even further. Our experiments are publicly available, reproducible and

documented. We have identified more complicated versions of the barriers that represent

future challenges.

Acknowledgments This work would be virtually impossible without valuable help of many researchers.

Jasmin Blanchette helped us improving the typesetting and the grammar of the paper. Sebastian Burckhardt

supplied us with the Checkfence tool and assisted us in creating usable inputs. Ernie Cohen showed the main

ingredients of the auxiliary variables that were needed to get rid of reasoning about cardinality constraints in

VCC. Viktor Kuncak provided us with insights on the internals of Jahob. Rustan Leino taught us the ultimate

way of debugging Boogie specifications. Michał Moskal described a way to express a global invariant using

VCC annotations and also fixed VCC bugs that we discovered. Leonardo de Moura produced the usable

versions of the SMT prover Z3, fixing the bugs that we have discovered in Z3. Peter Müller tried to repeat the

static tree barrier experiments in Dafny and drew our attention to supporting verification by axioms. Sriram

Rajamani gave valuable comments on an earlier draft. Thomas Wies provided comments on the internals of

Jahob and rescued us while improving and bugfixing Jahob. Finally, we thank the anonymous reviewers for

their helpful comments.

The work has been conducted at the IMDEA Software Institute and partially supported by Madrid Re-

gional Government MINECO Project TIN2009-14599-C03-02 Desafios, EU NoE Project 256980 Nessos

and Amarout Europe Project 291803. We acknowledge additional financial support of the German Aca-

demic Exchange Service and infrastructural support of the Chair for Foundations of Software Reliability and

Theoretical Computer Science at Technische Universität München.

References

1. A. Aiken and D. Gay. Barrier inference. In D. B. MacQueen and L. Cardelli, editors, ACM Symposium

on Principles of Programming Languages, pages 342–354. ACM, 1998.
2. J. Aldrich, M. Barnett, D. Giannakopoulou, G. T. Leavens, and N. Sharygina, editors. SAVCBS’08

workshop at SIGSOFT 2008/FSE 16, November 9-10, 2008, proceedings, Technical Report CS-TR-08-

07, 2008.
3. A. Ayari. System verification tools based on Monadic Logics. PhD thesis, University of Freiburg, 2003.
4. M. S. Benten and H. F. Jordan. Multiprogramming and the performance of parallel programs. In Ro-

drigue [46], pages 374–383.
5. C. Bienia. PARSEC—the Princeton application repository for shared memory computers, Aug. 2009.

http://parsec.cs.princeton.edu, version 2.1, retrieved on 5 January 2011.
6. P. Braun, H. Lötzbeyer, and O. Slotosch. Quest users guide. Technical report, Technische Universität

München, Mar. 2000.
7. E. D. Brooks III, T. S. Axelrod, and G. A. Darmohray. The Cerberus multiprocessor simulator. In

Rodrigue [46], pages 384–390.
8. J. M. Bull, R. A. Davey, R. Freeman, P. J. Graham, D. S. Henty, M. E. Kambites, J. Obdrzálek,

L. Pottage, L. A. Smith, S. D. Telford, and M. D. Westhead. The Java Grande benchmark

suite, 2001. http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/

index_1.html, accessed on 5 June 2013.
9. S. Burckhardt. Memory Model Sensitive Analysis of Concurrent Data Types. PhD thesis, University of

Pennsylvania, 2007.
10. W. Celmaster. Implementation of the acceptance-rejection method on parallel processors: A case study

in scheduling. In Rodrigue [46], pages 131–136.
11. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte, and S. Tobies.

VCC—the Verifying C Compiler, 2012. http://vcc.codeplex.com, accessed on 7 June 2013.
12. J. Cordina, S. Fenech, and G. J. Pace. Model checking concurrent assembly algorithms. Technical report,

Departments of Computer Science and AI, University of Malta, 2007.

http://parsec.cs.princeton.edu
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
http://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
http://vcc.codeplex.com

48 Alexander Malkis, Anindya Banerjee

13. G. A. Darmohray and E. D. Brooks III. Gaussian techniques on shared memory multiprocessor comput-

ers. In Rodrigue [46], pages 20–26.

14. J. E. Dennis Jr., J. M. Martı́nez, and X. Zhang. Parallel block triangular decompositions for solving

sparse nonlinear systems of equations. In Dongarra et al. [15], pages 168–173.

15. J. Dongarra, K. Kennedy, P. Messina, D. C. Sorensen, and R. G. Voigt, editors. Proceedings of the Fifth

SIAM Conference on Parallel Processing for Scientific Computing, Houston, Texas, USA, March 25-27,

1991. SIAM, 1992.

16. J. Dongarra, P. Messina, D. C. Sorensen, and R. G. Voigt, editors. Proceedings of the Fourth SIAM

Conference on Parallel Processing for Scientific Computing, Chicago, Illinois, USA, December 11-13,

1989. SIAM, 1990.

17. T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In Z. Shao and B. C. Pierce, editors,

ACM Symposium on Principles of Programming Languages, pages 2–15. ACM, 2009.

18. J. Friesen. Beginning Java 7. Apress, Nov. 2011. ISBN 978-1-4302-3909-3.

19. F. Gebali. Algorithms and parallel computing. John Wiley & Sons, Inc., Mar. 2011. ISBN 978-0-470-

90210-3.

20. R. Gupta. The fuzzy barrier: a mechanism for high speed synchronization of processors. In J. S. Emer,

editor, Intl. Conference on Architectural Support for Programming Languages and Operating Systems,

pages 54–63. ACM Press, 1989.

21. D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier synchronization. Int. J. Parallel

Program., 17:1–17, Feb. 1988.

22. M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann, 2008.

23. A. Hobor and C. Gherghina. Barriers in concurrent separation logic. In G. Barthe, editor, Program-

ming Languages and Systems, European Symposium on Programming, volume 6602 of Lecture Notes in

Computer Science, pages 276–296. Springer, 2011.

24. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.

http://www.spinroot.com, accessed on 7 June 2013.

25. G. J. Holzmann and A. Puri. A minimized automaton representation of reachable states. Intl. Journal on

Software Tools for Technology Transfer, 2(3):270–278, 1999.

26. H.-M. Hsu, J.-K. Peir, and D. B. Haidvogel. Performance of an ocean circulation model on LCAP. In

Rodrigue [46], page 285.

27. T. Q. Huynh and A. Roychoudhury. A memory model sensitive checker for C#. In J. Misra, T. Nipkow,

and E. Sekerinski, editors, Formal Methods, volume 4085 of Lecture Notes in Computer Science, pages

476–491. Springer, 2006.

28. B. Jacobs. Verified general barriers implementation, 2010. http://people.cs.kuleuven.be/

~bart.jacobs/verifast/examples/barrier.c.html, retrieved on 7 February 2013.

29. V. Kuncak, T. Wies, K. Zee, A. Malkis, C. Bouillaguet, H. H. Nguyen, and P. Schmitt. Jahob

verification system. The tool site is at http://lara.epfl.ch/w/jahob_system, the improved

source code is at http://www4.in.tum.de/~malkis/jahob.7z and http://software.imdea.

org/~alexmalkis/jahob.7z, accessed on 7 June 2013.

30. D. Leinenbach and T. Santen. Verifying the Microsoft Hyper-V hypervisor with VCC. In A. Cavalcanti

and D. Dams, editors, Formal Methods, volume 5850 of Lecture Notes in Computer Science, pages 806–

809. Springer, 2009.

31. K. R. M. Leino. This is Boogie 2. Technical Report KRML 178, Microsoft Research, June 2008.

32. K. R. M. Leino and M. Moskal. VACID-0: Verification of ample correctness of invariants of data-

structures, edition 0. In TOOLS & EXPERIMENTS Workshop, 2010.

33. B. D. Lubachevsky. Synchronization barrier and related tools for shared memory parallel programming.

International Journal of Parallel Programming, 19(3):225–250, 1990.

34. A. Malkis and A. Banerjee. Detailed input and comments on the verification tools applied to soft-

ware barriers, 2011. Available at http://www4.in.tum.de/~malkis/BarrierVerification and

http://software.imdea.org/~ab/BarrierVerification, accessed on 7 June 2013.

35. Z. Manna and A. Pnueli. Temporal verification of reactive systems: safety. Springer, 1995.

36. O. S. Matlin, E. L. Lusk, and W. McCune. SPINning parallel systems software. In D. Bosnacki and

S. Leue, editors, SPIN, volume 2318 of Lecture Notes in Computer Science, pages 213–220. Springer,

2002.

37. J. M. May. Parallel I/O for high-performace computing. Academic Press, 2001. ISBN 1-55860-664-5.

38. J. M. Mellor-Crummey and M. L. Scott. Barriers for the BBN Butterfly 1. ftp://ftp.

cs.rochester.edu/pub/packages/scalable_synch/locks_and_barriers/Bfly1.tar.Z, re-

trieved on 16 February 2013.

39. J. M. Mellor-Crummey and M. L. Scott. Barriers for the Sequent Symmetry. ftp://ftp.cs.

rochester.edu/pub/packages/scalable_synch/locks_and_barriers/Symmetry.tar.Z, re-

trieved on 16 February 2013.

http://www.spinroot.com
http://people.cs.kuleuven.be/~bart.jacobs/verifast/examples/barrier.c.html
http://people.cs.kuleuven.be/~bart.jacobs/verifast/examples/barrier.c.html
http://lara.epfl.ch/w/jahob_system
http://www4.in.tum.de/~malkis/jahob.7z
http://software.imdea.org/~alexmalkis/jahob.7z
http://software.imdea.org/~alexmalkis/jahob.7z
http://www4.in.tum.de/~malkis/BarrierVerification
http://software.imdea.org/~ab/BarrierVerification
ftp://ftp.cs.rochester.edu/pub/packages/scalable_synch/locks_and_barriers/Bfly1.tar.Z
ftp://ftp.cs.rochester.edu/pub/packages/scalable_synch/locks_and_barriers/Bfly1.tar.Z
ftp://ftp.cs.rochester.edu/pub/packages/scalable_synch/locks_and_barriers/Symmetry.tar.Z
ftp://ftp.cs.rochester.edu/pub/packages/scalable_synch/locks_and_barriers/Symmetry.tar.Z

On Automation in the Verification of Software Barriers: Experience Report 49

40. J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-memory

multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, 1991.

41. Microsoft Corp. .NET framework libraries, 2008. http://referencesource.microsoft.com/

netframework.aspx, version 4, file Barrier.cs, retrieved on 23 May 2011.

42. Microsoft Corp. MSDN barrier documentation, 2011. http://msdn.microsoft.com/en-us/

library/system.threading.barrier.aspx, sample C# code, retrieved on 5 July 2011.

43. M. Moskal, W. Schulte, E. Cohen, M. A. Hillebrand, and S. Tobies. Verifying C programs: A

VCC tutorial, 2012. Retrieved from http://www.codeplex.com/Download?ProjectName=VCC&

DownloadId=476507 on 23 July 2011.

44. C. Nagel, B. Evjen, J. Glynn, K. Watson, and M. Skinner. Professional C# 2012 and .NET 4.5. John

Wiley & Sons, Inc., Oct. 2012. ISBN 978-1-1183-1442-5.

45. V. Prevosto and U. Waldmann. SPASS+T. In G. Sutcliffe, R. Schmidt, and S. Schulz, editors, ESCoR:

FLoC’06 Workshop on Empirically Successful Computerized Reasoning, volume 192 of CEUR Work-

shop Proceedings, pages 18–33, Seattle, WA, USA, 2006.

46. G. H. Rodrigue, editor. Proceedings of the Third SIAM Conference on Parallel Processing for Scientific

Computing, Los Angeles, California, USA, December 1-4, 1987. SIAM, 1989.

47. M. L. Scott and J. M. Mellor-Crummey. Fast, contention-free combining tree barriers for shared-memory

multiprocessors. Int. J. Parallel Program., 22:449–481, Aug. 1994.

48. M. L. Scott and J. M. Mellor-Crummey. Pseudocode of scalable synchronization, 1994. http://www.

cs.rochester.edu/research/synchronization/pseudocode/ss.html, retrieved on 23 Febru-

ary 2013.

49. A. Smit. Verifying a barrier algorithm with a mechanical theorem prover, 2001. Master thesis, Faculty

of Mathematics and Natural Sciences, University of Groningen.

50. P. Suter, R. Steiger, and V. Kuncak. Sets with cardinality constraints in satisfiability modulo theories. In

R. Jhala and D. A. Schmidt, editors, Intl. Conf. on Verification, Model Checking, and Abstract Interpre-

tation, volume 6538 of Lecture Notes in Computer Science, pages 403–418. Springer, 2011.

51. T. Wies, R. Piskac, and V. Kuncak. Combining theories with shared set operations. In S. Ghilardi

and R. Sebastiani, editors, Frontiers of Combining Systems, volume 5749 of Lecture Notes in Computer

Science, pages 366–382. Springer, 2009.

52. P.-C. Yew, N.-F. Tzeng, and D. H. Lawrie. Distributing hot-spot addressing in large-scale multiproces-

sors. IEEE Trans. Computers, 36(4):388–395, 1987.

53. S. Yu and A. D. Kowalski. A study of parallel numerical algorithms for the solution of the Navier-Stokes

equation. In Dongarra et al. [16], pages 285–290.

http://referencesource.microsoft.com/netframework.aspx
http://referencesource.microsoft.com/netframework.aspx
http://msdn.microsoft.com/en-us/library/system.threading.barrier.aspx
http://msdn.microsoft.com/en-us/library/system.threading.barrier.aspx
http://www.codeplex.com/Download?ProjectName=VCC&DownloadId=476507
http://www.codeplex.com/Download?ProjectName=VCC&DownloadId=476507
http://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html
http://www.cs.rochester.edu/research/synchronization/pseudocode/ss.html

	Introduction
	Overview
	Caveats
	Central barriers
	Tree-based barriers
	Array-based barriers
	A central barrier with a client
	A software barrier for weak memory
	Discussion

