
Using Access Control

for Secure Information Flow

in a Java-like Language

Anindya Banerjee and David A. Naumann

� � � � � � � � � � � 	 
 � � � � � 
 � � � � � � � � � 	 � 	 � � � � 	 � � � 	 
 �

Kansas State University and Stevens Institute of Technology

� � � � � � � � � � � � 	 
 � �
� � � ,

� � � � � � � � � 	 � 	 � � � � 	 � � � 	 
 � �
� � � � 
 � � �

� � � � � � � � � �



Problem
� Goal: Modular, static checking of security policies, e.g.,

confidentiality, for extensible software: no information flow
from High input channels to Low output channels (including
some covert channels)

� � � � � � � � � �



Problem
� Goal: Modular, static checking of security policies, e.g.,

confidentiality, for extensible software: no information flow
from High input channels to Low output channels (including
some covert channels)

� Focus: implementations (not protocol designs) involving
mobile code, subclassing, pointers —constrained by types,
scope, and runtime access control

� Observation: extensible software implemented in Java
associate permissions(“rights”) with code to prevent run-time
security errors.

� � � � � � � � � � � �



Problem
� Goal: Modular, static checking of security policies, e.g.,

confidentiality, for extensible software: no information flow
from High input channels to Low output channels (including
some covert channels)

� Focus: implementations (not protocol designs) involving
mobile code, subclassing, pointers —constrained by types,
scope, and runtime access control

� Observation: extensible software implemented in Java
associate permissions(“rights”) with code to prevent run-time
security errors.

� Question: How to connect access control mechanism (used
widely) and information flow analysis (often restrictive)?

� � � � � � � � � � � �



Access control by “stack inspection”

Local policy assigns static permissions to classes (based on code
origin: local disk, signed download, etc).

When untrusted code calls trusted code, latter must execute with
“right” permissions – dependent on permissions of untrusted code.

Run-time permissions computed/checked using run-time stack.

� � � � � � � � � �



Access control by “stack inspection”

Local policy assigns static permissions to classes (based on code
origin: local disk, signed download, etc).

When untrusted code calls trusted code, latter must execute with
“right” permissions – dependent on permissions of untrusted code.

Run-time permissions computed/checked using run-time stack.

test � then � � else � � executes � � only if the class for “each
frame on stack” has � in its static permissions.

� � � � � � � � � � � �



Access control by “stack inspection”

Local policy assigns static permissions to classes (based on code
origin: local disk, signed download, etc).

When untrusted code calls trusted code, latter must execute with
“right” permissions – dependent on permissions of untrusted code.

Run-time permissions computed/checked using run-time stack.

test � then � � else � � executes � � only if the class for “each
frame on stack” has � in its static permissions.

enable � in � limits test to stack frames up to one that explicitly

enabled � .

� � � � � � � � � � � �



Access control by “stack inspection”

Local policy assigns static permissions to classes (based on code
origin: local disk, signed download, etc).

When untrusted code calls trusted code, latter must execute with
“right” permissions – dependent on permissions of untrusted code.

Run-time permissions computed/checked using run-time stack.

test � then � � else � � executes � � only if the class for “each
frame on stack” has � in its static permissions.

enable � in � limits test to stack frames up to one that explicitly

enabled � .

Eager semantics: security context parameter, the set of enabled

and granted permissions (updated by enable and call).

� � � � � � � � � � � �



Example: Permissions

class Sys

�

// static permissions chpass,wpass
unit writepass(string x)

�

test wpass // access guard to protect integrity
then nativeWrite(x,”passfile”) else abort

�

unit passwd(string x)

�

test chpass then enable wpass in writepass(x)
else abort
� �

� � � � � � � � � �



Example: Permissions

class Sys

�

// static permissions chpass,wpass
unit writepass(string x)

�

test wpass // access guard to protect integrity
then nativeWrite(x,”passfile”) else abort

�

unit passwd(string x)

�

test chpass then enable wpass in writepass(x)
else abort
� �

class User

�

// static permission chpass (but not wpass)
Sys s:= . . . ;
unit use()

�

enable chpass in s.passwd(”mypass”)

�

// ok
unit try()

�

enable wpass in s.writepass(”mypass”)

� �

// aborts

� � � � � � � � � � � �



Info release vs. Info flow

class Sys
�

// static permissions rdkey
int readKey()

�

// policy: confidential key
test rdkey then result:= nativeReadKey() else abort

�

int trojanHorse()
�

enable rdkey in int x:= readKey();
if (x mod 2) � 0 then result := 0 else result := 1

� �

class PlugIn

�

// no static permissions
Sys s:= . . . ;
int output; // policy: untrusted
unit tryToSteal()

�

output:= s.readKey()

�

// aborts
unit steal()

�

output:= s.trojanHorse()
� �

// leak

� � � � � � � � � �



Security types specify/check policy

class Sys
�

// static permissions rdkey
int readKey()

�

// policy annotation:� � �

test rdkey then result:= nativeReadKey() else abort

�

int trojanHorse()
�

// policy annotation:� � �

enable rdkey in int x:= readKey();
if (x mod 2) � 0 then result := 0 else result := 1

� �

class PlugIn

�

// no static permissions
Sys s:= . . . ;
int output; // policy annotation: �

unit tryToSteal()

�

output:= s.readKey()

�

// aborts
unit steal()

�

output:= s.trojanHorse()
� �

// illegal flow � to �

� � � � � � � � � �



Checking information flow by typing

Data types: � � � � unit � bool � � Levels: � � � � � � �

Expression types: � � � � � means that value is 	 �

Commands: � 
 � � � � � � � � assigns to vars 
 � � , to fields 
 � �

Typings (in context � ): � � � � � � � � � � � � � � 
 � � � � � � � �

� � � � � � � � � �



Checking information flow by typing

Data types: � � � � unit � bool � � Levels: � � � � � � �

Expression types: � � � � � means that value is 	 �

Commands: � 
 � � � � � � � � assigns to vars 
 � � , to fields 
 � �

Typings (in context � ): � � � � � � � � � � � � � � 
 � � � � � � � �

Assignment rule: if � � � � � � � � � � � � � � � � �

and � � 	 � � then � � � � � � � � � � � � � � � 
 � � � � � � �

� � � � � � � � � � � �



Checking information flow by typing

Data types: � � � � unit � bool � � Levels: � � � � � � �

Expression types: � � � � � means that value is 	 �

Commands: � 
 � � � � � � � � assigns to vars 
 � � , to fields 
 � �

Typings (in context � ): � � � � � � � � � � � � � � 
 � � � � � � � �

Assignment rule: if � � � � � � � � � � � � � � � � �

and � � 	 � � then � � � � � � � � � � � � � � � 
 � � � � � � �

Conditional rule: if � � � � � bool � � � � and

� � �
�

� � 
 � � � � � � � � and � � 	 � � then

� � if � then � � else � � � � 
 � � � � � � � �
Noninterference theorem (“Rules enforce policy”): typability
implies that � ow outputs do not depend on � igh inputs

� � � � � � � � � � � �



Examples of security typing

class PlugIn

�

// no static permissions
int output; // policy annotation: �

unit steal()
�

output:= s.trojanHorse()

�

Assignment rule requires trojanHorse:� � � .

� � � � � � � � � �



Examples of security typing

class PlugIn

�

// no static permissions
int output; // policy annotation: �

unit steal()
�

output:= s.trojanHorse()

�

Assignment rule requires trojanHorse:� � � .

class Sys

�

// static permissions rdkey
int trojanHorse()

�

enable rdkey in int x:= readKey();
if (x mod 2) � 0 then result := 0 else result := 1

� �

Conditional rule requires result: � , hence trojanHorse:

� � � .

� � � � � � � � � � � �



Selective release for trusted clients

class Kern � // static permissions stat,sys

private string infoH; // policy�

private string infoL; // policy �

string getHinfo() � // type� � �

test sys then result:= self.infoH else abort �

string getStatus() � // type � � � � �

/* trusted, untrusted callers may both use getStatus */

test stat // selective release of info

then enable sys in result:= self.getHinfo()

else result:= self.infoL � . . . �

Usual info. flow analysis restrictive – getStatus:� � � .
Want: no stat then getStatus:� � � , o.w., getStatus:� � � .

� � � � � � � � � �



class Vend1

�

// untrusted: static permission other
Kern k:=. . . ;
private string v; // policy �

string status()

�

// policy� � �

result:= self.v ++ k.getStatus()

�

// gets infoL

� � � � � � � � � � �



class Vend1

�

// untrusted: static permission other
Kern k:=. . . ;
private string v; // policy �

string status()

�

// policy� � �

result:= self.v ++ k.getStatus()

�

// gets infoL

string status2()
�

//� � �
enable stat in result:= self.v ++ k.getStatus()

�

// gets infoL

� � � � � � � � � � � � �



class Vend1

�

// untrusted: static permission other
Kern k:=. . . ;
private string v; // policy �

string status()

�

// policy� � �

result:= self.v ++ k.getStatus()

�

// gets infoL

string status2()
�

//� � �
enable stat in result:= self.v ++ k.getStatus()

�

// gets infoL

class Vend2

�

// partially trusted: static permissions stat,other
Kern k:=. . . ;
string statusH()

�

//� � �

enable stat in result:= k.getStatus()
� �

// gets infoH

� � � � � � � � � � � � �



Our approach

Security type �
�
� � � � for method means: when called with

argument with level 	 � , type of result 	 � � provided caller
does not have permissions in set � .

string getStatus()
�

// both� � stat �� � � and� �
� � �

test stat
then enable sys in result:= self.getHinfo()
else result:= self.infoL

�

� � � � � � � � � � �



Our approach

Security type �
�
� � � � for method means: when called with

argument with level 	 � , type of result 	 � � provided caller
does not have permissions in set � .

string getStatus()
�

// both� � stat �� � � and� �
� � �

test stat
then enable sys in result:= self.getHinfo()
else result:= self.infoL

�

class Vend1

�

// static permission other

. . . result:= k.getStatus() // ok, using Kern.getStatus:� � stat �

� � �

. . . enable stat in result:= k.getStatus() // ok, using� � stat �� � �

� � � � � � � � � � � � �



string getStatus()

�

// both� � stat �� � � and� �
� � �

test stat
then enable sys in result:= self.getHinfo()
else result:= self.infoL

�

class Vend2

�

// static permissions stat,other

string statusH()
�

//� �
� � �

enable stat in result:= k.getStatus()

� �

Ok using getStatus:� �
� � � , but not using getStatus:� � stat �� � � .

� � � � � � � � � � �



Technical details

Typing Judgements:
�
�

� � � � � � � � � // � security type context

�
�

� � � � 
 � �
In security context � , expression � has type � � � � � when
permissions disjoint from � are enabled, i.e., � is upper
bound of excluded permissions.

Notation � � for � with security annotations erased.

� � � � � � � � � � �



Checking method declarations

Recap: Security type �
�
� � � � means that if args 	 � and

caller permissions disjoint from � then result 	 � � . Method
may have multiple security types (c.f., getStatus).

To check

� � � � � � � � � � � � � //mtype � � � � � � � � �

we must check, for all � �
�
� � � � � � smtypes � � � � � , that

�
� � � � � � � � 	 
 � � 
 � � � � � � � � � 
 � �

where � � � � � � � � � � � � � � � � � � � � � � 
 � � 
 � � � � � � � � �

� � � � � � � � � � �



Checking getStatus

string getStatus()

�

// both� � stat �� � � and� �
� � �

test stat
then enable sys in result:= self.getHinfo()
else result:= self.infoL

�
For� �

� � � : 
 � � 
 � � � �
�
� � test stat then � � �

(N.B.� � � � � � 	 
 � � 
 � � � � � 
 � � � � )

� � � � � � � � � � �



Checking getStatus

string getStatus()

�

// both� � stat �� � � and� �
� � �

test stat
then enable sys in result:= self.getHinfo()
else result:= self.infoL

�
For� �

� � � : 
 � � 
 � � � �
�
� � test stat then � � �

(N.B.� � � � � � 	 
 � � 
 � � � � � 
 � � � � )

For� � stat �� � � : 
 � � 
 � � � �
� � stat � � test stat then � � �

(N.B. � stat � � � � � � 	 
 � � 
 � � � � � 
 � � � � stat � )

� � � � � � � � � � � � �



Subclass of Kern: overriding getStatus

class Kern

�

// static permissions stat,sys
string getHinfo()

�

test sys then result:= self.infoH else abort

�

...

�

class SubKern extends Kern

�

// no static permissions
string getStatus()

�
// override

enable sys // no effect
in result:= self.getHinfo()

�

smtypes � getStatus, SubKern � � smtypes � getStatus, Kern �

For� � stat �

� � � : 
 � � 
 � � � �
�
� � test stat then � � �

(N.B. � stat � � � � � � 	 
 � � 
 � � � � 
 � � � 
 � � � � )

� � � � � � � � � � �



Checking access control operations

If �
� � � � � �
�

� � � � � 	 
 � � 
 � � � � � � � � � � � � � � � 
 � �

then �
�

� � enable �
� in � � 
 � �

� � � � � � � � � � �



Checking access control operations

If �
� � � � � �
�

� � � � � 	 
 � � 
 � � � � � � � � � � � � � � � 
 � �

then �
�

� � enable �
� in � � 
 � �

Simple test rule:

If �
�

� � � � (so test may succeed)
and �

�

� � � � � 
 � � and �
�

� � � � � 
 � � then

�
�

� � test �
� then � � else � � � 
 � �

� � � � � � � � � � � � �



Checking access control operations

If �
� � � � � �
�

� � � � � 	 
 � � 
 � � � � � � � � � � � � � � � 
 � �

then �
�

� � enable �
� in � � 
 � �

Simple test rule:

If �
�

� � � � (so test may succeed)
and �

�

� � � � � 
 � � and �
�

� � � � � 
 � � then

�
�

� � test �
� then � � else � � � 
 � �

Key rule - tests that must fail:

If �
�

� � �
� � and �

�

� � � � � 
 � �

then �
�

� � test �
� then � � else � � � 
 � �

� � � � � � � � � � � � �



Checking getStatus in Kern

string getStatus()

�

// both� � stat �� � � and� �
� � �

test stat
then enable sys in result:= self.getHinfo()
else result:= self.infoL

�
For� �

� � � : 
 � � 
 � � � �
�
� � test stat then � � �

� stat � � � � � , so analyze both branches of test .

� � � � � � � � � � �



Checking getStatus in Kern

string getStatus()

�

// both� � stat �� � � and� �
� � �

test stat
then enable sys in result:= self.getHinfo()
else result:= self.infoL

�
For� �

� � � : 
 � � 
 � � � �
�
� � test stat then � � �

� stat � � � � � , so analyze both branches of test .

For� � stat �� � � : 
 � � 
 � � � �
� � stat � � test stat then � � �

� stat � � � stat � � � stat � , so analyze else branch.
Thus only result:= self.infoL is relevant.

� � � � � � � � � � � � �



Noninterference theorem

Theorem: If a command (or complete class table) satisfies
the security typing rules then it is safe.

� � � � � � � � � � �



Noninterference theorem

Theorem: If a command (or complete class table) satisfies
the security typing rules then it is safe.

Safe command: Suppose �
�

� � � � 
 � � .

Let heaps � � �
� and stores � � �
� be indistinguishable by �

(written � � �
� and �

�
�
� ) and suppose � � � � � .

Let � � � � � � � � � � � � � � � � � � � � � � and � �
�

� � �
�

� � � � � � � � � � � � �
�

� �
�

� � .

Then � � �
�
�

� and � � � �
�

� .

� � � � � � � � � � � � �



Noninterference theorem

Theorem: If a command (or complete class table) satisfies
the security typing rules then it is safe.

Safe command: Suppose �
�

� � � � 
 � � .

Let heaps � � �
� and stores � � �
� be indistinguishable by �

(written � � �
� and �

�
�
� ) and suppose � � � � � .

Let � � � � � � � � � � � � � � � � � � � � � � and � �
�

� � �
�

� � � � � � � � � � � � �
�

� �
�

� � .

Then � � �
�
�

� and � � � �
�

� .

Sequential language with pointers, mutable state, private
fields, class-based visibility, dynamic binding & inheritance,
recursive classes, casts & type tests, access control.

� � � � � � � � � � � � �



Related work: Stack Inspection
� Li Gong (1999): documents stack inspection for Java and how

method call follows the principle of least privilege.

� Wallach, Appel, Felten (2000): describe stack inspection in
terms of ABLP logic for access control.

� Pottier, Skalka, Smith (2000 –): Static analysis for access
checks that never fail. Basis for program optimizations.

� Fournet, Gordon (2002): Comprehensive study of stack
inspection and program optimizations permitted by stack
inspection.

� Abadi, Fournet (2003): Protection of trusted callers calling
untrusted code.

� � � � � � � � � � �



Related work: Information Flow
� Noninterference: Goguen-Meseguer, Denning-Denning

� Type-based analyses for information flow:

1996– Smith, Volpano (Simple Imperative Language)

1999– Abadi et al. (DCC – Info. flow as dependence analysis)

1999– Sabelfeld, Sands (Threads, Poss. NI, Prob. NI)

1999 Myers (Java – but NI open)

2000– Pottier, Simonet, Conchon (Core ML)

2002– Banerjee and Naumann (fragment of Java)

2003– Sabelfeld and Myers (survey)

� � � � � � � � � � �



Related work: Access Control and Information
Flow

� Rushby: Access control� assigning levels to variables. Proof

and mechanical checking of noninterference.

� Heintze and Riecke (SLam); Pottier and Conchon (Core ML):

Static access control – access labels have no run-time

significance.

� Stoughton (1981): Dynamic access control and information

flow together in a simple imperative language with

semaphores. However, no formal results are proven.

� � � � � � � � � � �



Conclusion

✔ static enforcement of noninterference (Smith& Volpano)

✔ account for runtime access control (Hennessy&Riely for
async pi calculus)

✔ handles pointers, subclassing & dynamic bind (Myers)

✔ suggests permission-aware API specs

✘ not all covert channels

✘ no declassification (Myers&Zdancewic)

✘ protection of caller (Abadi, Fournet)

� need more examples of security-aware programs

� � � � � � � � � � �



Future work
� case studies in extensible applications for ad hoc nets

(dance performance, physical therapy, sports training):
attacks on Bluetooth authentication via applications with
minimal security requirements

� inference (ongoing); polymorphism & threads

� optimizing transformations (cf. Fournet&Gordon)

� connections with parametricity; with dependent types;
with declassification

� machine checking our proofs

� � � � � � � � � � �


