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Abstract

Declassification is a vital ingredient for practical use of
secure systems. Strong noninterference as a security pol-
icy does not account for declassification but is attractive
as a baseline security policy because it provides an end-to-
end account of security. Several recent efforts to formulate
an end-to-end policy for declassification seem inconclusive
and have focused on apparently different aspects, e.g., what
values are involved, where in the code declassification oc-
curs, when declassification happens and who (which princi-
pal) releases information. We argue that key security goals
addressed by the proposed notions can be expressed using
assertions with predicates and auxiliary state such as event
history. The development is carried out in a modest exten-
sion of a recently developed Hoare-like logic for noninter-
ference that provides for local reasoning about the heap.

1 Introduction

This paper is concerned with the specification and en-
forcement of secure information flow policies for impera-
tive and sequential object-oriented programs. In its sim-
plest form, a confidentiality policy labels certain variables
as being secret, with the interpretation that the final value of
a non-secret variable is not influenced by the initial values
of any secrets. This has a precise semantic interpretation
via non-interference: a program satisfies the policy if ev-
ery pair of computations, from a pair of initial states differ-
ing only in secrets, leads to final states with identical non-
secrets. Noninterference generalizes to a lattice of security
levels and dualizes to integrity, i.e., that trusted outputs are
not influenced by untrusted inputs. Such a policy is use-
ful to the extent that the labeling is consistent with the ac-
tual deployment of the program—i.e., attackers are indeed
prevented from directly reading secret variables. The prop-
erty is not directly observable—it involves two runs of the
program—but can potentially be enforced by using static
analyses proved to ensure noninterference. Such enforce-
ment is useful to the extent that a program is only executed
if it is accepted by the analysis, e.g., an attacker may offer a
Java applet but a user may insist on bytecode verification.

Enforcement by program analysis is useful for prevent-

ing Trojan horses and bugs; it does not address covert chan-
nels such as power consumption, which may or may not be
a threat, depending on the system context. A more ubiq-
uitous shortcoming is that, in practice, security policies are
more subtle than noninterference owing to the need for de-
classification of secrets.

This paper argues for the use of program logic to spec-
ify security policies involving declassification as well as to
verify compliance. The technical treatment is tailored to se-
quential programs in a language like Java but it should be
evident that the ideas are pertinent to concurrent programs
and other programming languages.

A number of works provide techniques for enforcement
of noninterference for imperative and object-oriented pro-
grams. One approach treats security labels as non-standard
types [33, 22, 28, 2, 24, 3, 5, 25]. By typing variable h as
secret and l as low security, an evident rule disallows direct
assignment of l : = h and additional constraints prevent im-
plicit flows as in if h then l : = true. Typechecking can
be adapted to allow different level assignments at different
points in the code but the flow-insensitivity which makes
checking so fast also makes it reject many secure programs.

An alternative enforcement approach is to formulate se-
curity as a verification problem and use program logic [11,
9, 10]. Noninterference can be described by viewing one of
the paired computations as acting on a renamed copy, say
h ′, l ′, of the variables. For the two variables h, l , the equa-
tion l = l ′ can be used as precondition and postcondition
over state space h, h ′, l , l ′ to express the noninterference
property as a pre-post specification {l = l ′} {l = l ′} in-
terpreted with respect to two runs. This idea can be realized
in terms of a “relational Hoare logic” [6, 34, 1] or by embed-
ding in standard program logic by composing the program
with a renamed copy of itself [4, 32, 13]. (The latter tech-
nique was developed for reasoning about data abstraction
in the 1970’s [12, 26, 21, 16] and recently extended to heap
structure [23].) In this paper we build on the work of Amtoft
et al. [1] which addresses the key challenge for reasoning
about object oriented programs—mutable data structure in
the heap. Their logic appears much like conventional Hoare
logic, but a triple {ϕ}S{ψ} is interpreted with respect to
state pairs and two executions of S . Assertions can include
independences of the form ln which basically means l = l ′.
Independences can also involve region expressions which



abstract the heap.
A number of proposals have been made to extend en-

forcement techniques, especially type-based ones, to en-
compass declassification. Unfortunately, no compelling
semantic property has emerged to provide an end-to-end
meaning for policies with declassification. Extant proposals
seem fragmented and offer complicated analyses for limited
and sometimes obscure properties [30]. Several proposals
which address the more difficult forms of declassification
boil down to a “resetting” semantics in which an intran-
sitive noninterference condition connects the initial state
to the point where a declassification takes place, and then
again imposes noninterference between that point and the
final state (or next declassification). Some proposals offer
policies that say declassification happens only under certain
conditions or under the control of certain agents. Yet, for
lack of cogent semantics of declassification, the very well
executed attempt by Sabelfeld and Sands [30] to make sense
of the literature is only partly able to ground its informal
principles in precise terms.

In this paper we borrow intuitions from existing propos-
als but formalize them as pre-post specifications in a rela-
tional Hoare logic. Without aiming to be exhaustive, we sur-
vey declassification examples from the recent literature and
argue for decomposing the program, rather than the com-
putations, and for specifying the components using inde-
pendences together with state predicates. The approach ad-
dresses several dimensions of declassification [30] includ-
ing what information is released, where in the code it can
occur, when can it occur and under whose authority.

We extend the logic of Amtoft et al. [1] with richer as-
sertions involving both state predicates and independences.
We also revise the assertion language and proof rules, in
particular making region disjointness and containment ex-
plicit in the assertion language, so that specifications are
more transparent. (The presentation in [1] is tailored to
serve as the specification of a flow-sensitive static analysis,
rather than for direct use as a proof system.) We envision
several applications of the logic. One is for proving secu-
rity of programs; to this end it is attractive that the logic
provides heap-local reasoning and a frame rule similar to
that in Separation Logic [27], though using region predi-
cates rather than separating conjunction. Another kind of
application would be as basis for more specialized analyses:
a type system could be proved sound by translating typing
derivations to proofs in the logic, or the soundness could be
embodied on a per-program basis for use in proof-carrying
code.

Many of the recent proposals embed the security speci-
fication as part of the program, e.g., via a special declassi-
fication construct. In our approach, policy is expressed by
pre-post specifications; for policies tied to specific program
points, the tie is made by attaching specifications to des-

ignated subprograms. Triples in Hoare logic are intended
to compose into proofs of complete programs; by contrast,
our specifications for policy indicate an exemption from the
baseline security policy (but can also impose ordinary 1-
state preconditions under which the exempt code is allowed
to execute).

This approach encompasses a wide range of policies in
straightforward way and with clear semantics. Perhaps the
main contribution is to do so while avoiding a number of
anomalies found in previous proposals [30]. Whereas a
number of works on declassification only pertain to a sim-
ple model of state, our logic encompasses the heap, which is
relevant both as an information channel and as site of con-
ditions on which declassification policy may depend.

Outline. Section 2 considers a range of declassification
scenarios and describes how pre-post specifications can be
deployed to express policies. The following sections for-
malize the logic and soundness. Section 7 puts our work in
perspective.

2 Examples

Password checking. Here there are two principals, User
and System with the latter password protected. Access is
granted if User ’s keyboard entry matches the password and
denied otherwise. In either case, the result of comparison
of the guess and password is revealed. Password check-
ing must guarantee absence of laundering: no other infor-
mation held secret by System can be divulged. There are
two policies of interest. The first is absence of laundering
before declassification. Using secret , pwd and guess as
variables with the obvious meanings, and with the intention
that secret must not be laundered, the pre-post specification
{guessn∧pwdn} {guessn∧pwdn} applies to the code
that obtains the user’s guess. It says that for any two runs, if
the initial values of guess and pwd are identical then their
final values are also identical. This is exactly the noninter-
ference property associated with the labeling secret :High ,
pwd :Low , and guess :Low , as explained in Section 1.

The following code snippet, due to Chong and Myers [8]
satisfies the specification:

secret : = ‘A0uv ′; pwd : = ‘v0Y 7Xa ′; guess : = getInput();

whereas guess : = secret does not.
The second policy pertains to the code that checks guess

and reveals the result, which should reveal the value of the
comparison but nothing more. For any two runs, if the value
of guess = pwd is the same initially resultn should hold
finally. This policy is expressed by

{(guess = pwd)n} {resultn}

The code result : = (guess = pwd) satisfies the above
specification. On the other hand, result : = secret does
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not. The code result : = secret ; result : = (guess = pwd),
which would be rejected by most type systems, can also be
proved to meet the specification.

In the terminology of [30], the partial release of
(guess = pwd) but not pwd is a “what” policy. We
are also expressing a policy about “where” in the code a
release is permitted, by expressing our policy for the se-
qential code getWithoutLaunder ; compareAndRelease as
two specifications, {ϕ1} getWithoutLaunder {ϕ2} and
{ϕ3} compareAndRelease {ϕ4}, that do not compose (i.e.,
our ϕ2 does not imply ϕ3).

The individual triples have a conventional, extensional
meaning, and our proof system resembles Hoare logic. But
this use of two triples to specify an intransitive noninterfer-
ence policy should not be confused with ordinary interme-
diate assertions to express proof outlines.

Electronic Wallet. Consider the following, due to
Sabelfeld and Myers [29], where h is the only secret.

if h ≥ k then h : = h − k ; l : = l + k else skip;

The declassification policy is again partial release: it is ok
to reveal h ≥ k , but nothing more about h must be revealed.
Our specification is

{(h ≥ k)n ∧ ln ∧ kn} {ln ∧ kn}(1)

For the code above, this is easy to verify: k is not modified,
so since kn holds before, it holds after; and ln is estab-
lished because it holds in the precondition along with kn.

Sabelfeld and Myers [29] propose explicit declassify ex-
pressions in code to serve as “escape hatches”, marking the
expressions whose (initial) values are to be released. For
example, the code above would contain declassify(h ≥ k).

Consider now a variation of the code, also due to
Sabelfeld and Myers, where the secret variable h is an n-
bit integer. Assume n is public as are l and k .

l : = 0;
while n > 0 do

k : = 2n−1;
if h ≥ k then h : = h − k ; l : = l + k else skip;
n : = n − 1

The code does not satisfy the specification (1), even if nn
is added to the precondition.

Suppose we decide to release the least significant 2 bits
of h in addition to the information h ≥ k . That is, the
specification is

{(h ≥ k)n ∧ (h%4)n ∧ nn ∧ ln ∧ kn} {ln}

The code above does not meet this specification. But it
can be proved to satisfy the specification with 0 ≤ n ≤ 2

added to the precondition. This kind of reasoning goes be-
yond reasoning in most type systems including [29]. The
type system also rejects the following secure program: h : =
h%2; l : = declassify(h%2). The reason is that the pro-
gram falls afoul of the restriction that variables used under
declassification may not be updated prior to declassifica-
tion. Our logic, on the other hand, can prove it satisfies
{h%2n} {ln} using some arithmetic reasoning.

Sealed auctions. Consider two principals Alice and Bob
taking part in an auction. The protocol is as follows: Alice
and Bob place their bids; the system determines the higher
bid and reveals the value of the high bid and the identity of
the high bidder. The first policy says that neither bid influ-
ences the other. The second policy says that only the high
bid and bidder are made public. For instance, if Alice is
the winner, the value of Bob’s bid remains secret. Note that
the two policies address two separate concerns: the first, ab-
sence of cheating, is up to the point just before the outcome
is determined. The second concern, absence of laundering,
applies from that point through the action of publicizing the
result. Surely these are clearly identifiable code fragments.

The first concern is addressed by conjoining two specifi-
cations. The code for placing bids must satisfy the conjunc-
tion of the specifications {bBidn} {bBidn} (guarding
Alice’s bid) and {aBidn} {aBidn} (guarding Bob’s
bid), where bBid and aBid are the bids placed by Bob
(resp. Alice). 1

The code aBid : = 100; bBid : = 150 satisfies the first
specification, whereas the code aBid : = 100; bBid : =
aBid + 1 does not: Bob has placed his bid after getting
information about Alice’s.

The next stage of the auction determines the winning bid
and the winner and reveals both pieces of information. Here
is our specification:2

{(max (aBid , bBid))n ∧ (aBid ≥ bBid)n} {resultn}

The code result : = (max (aBid , bBid), (aBid ≥ bBid))
satisfies the above specification. Here is one way in which
malicious code could try to release a losing bid, in this case,
Bob’s.

winBid : = max (aBid , bBid);
aliceWins : = aBid ≥ bBid ;
if aliceWins then winBid : = bBid else winBid : = aBid ;
result : = (winBid , aliceWins)

1Apropos security type systems, this is akin to type checking assum-
ing aBid :H , bBib :L and then type checking again with assumption
aBid :L, bBib :H ; the underlying security lattice is the 4-point diamond
lattice with Alice and Bob incomparable. Note how just one typing could
be used with incomparable types, whereas in the logic-based approach sep-
arate policies must be verified for each principal.

2It allows a leak to aBid or bBid , which could be disallowed by a
“modifies” clause or explicit postconditions.
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Now resultn can no longer be established as postcondition,
because winBidn cannot.

Intermezzo. It is possible for partial release to be
conditional [29], using conditional expressions, e.g.,
to release a secret only if adequate payment is made.
This can also be done in a specification, using pre-
condition (if pay > thresh then secret else 0)n
and postcondition resultn. The meaning of
(if pay > thresh then secret else 0)n is that for
any two runs of a program the value of the conditional is
the same. Note that it is possible that different branches
of the conditional get executed in the two runs and yet
yield the same value, provided secret = 0. An alter-
native specification uses disjunction in the precondition
pay ≤ thresh

.
∨ secretn. This is satisfied in a pair of

initial states if either pay < thresh is false in both or
the value of secret is the same in both. So the resulting
specification differs in meaning from the one using the
conditional expression only when secret = 0.

Sabelfeld and Myers also suggest that conditional release
can be extended to disjunctive policies, but do not propose a
syntax. Our conjecture is that this is because their syntax is
too closely tied to the program (the policy is determined by
the conjunction of all the declassify statements). It is per-
haps better to spell out the policy in specifications, which
are sets of Hoare triples (interpreted conjunctively). A dis-
junctive policy is easily expressed: to allow either h1 or h2

but not both to be released, the precondition is h1n
.
∨ h2n

and the postcondition resultn.
As an example of disjunctive policies, consider a card

game in which the player reveals one card from her hand
in which all cards are initially held secret; the policy is that
in a single round of the game, the player chooses to reveal
either the first card, or the second card, etc.

A pre-post specification imposes no constraint on com-
putations from states falsifying the precondition. Our use
of specifications is not for composition into proof outlines,
where a precondition imposes an obligation on the environ-
ment, it does make sense to include preconditions on one
copy of the state that does play that role. For example, a
declassifier method may require to be invoked in a process
with some specific authority.

Access control for information flow. Stack inspection is
an access control mechanism present in Java [15] and the
.NET CLR. Each class C has a set of permissions stati-
cally granted to it by the virtual machine, often based on
code origin, but initially not enabled. We assume there
is a ghost variable Q , in terms of which we reason using
the “eager” description of the mechanism [15, 31]. So Q
is the set of currently enabled permissions. The command
enable p in S checks whether permission p is statically

authorized for the class implementing the method in exe-
cution, and if so p is added to Q for the duration of S .
The boolean expression check p checks whether p is in
Q . In [2], the authors study the pattern wherein high secu-
rity information is released by a certain method only when
the caller has permission, in this case permission stat .

class Kern extends Object{//static perms: stat , sys
String Hinfo;String Linfo;
String getHinfo(){

if check sys then result : = Hinfo else abort}
String getStatus(){

if check stat
then enable sys in result : = self .getHinfo()
else result : = Linfo}}

When getStatus is called, permission stat is checked. If
it is in Q then sys gets enabled and Hinfo is obtained via a
call to getHinfo. On the other hand, if stat is not in Q then
Linfo is released. The policy for getStatus , that Hinfo is
only released to callers with permission stat , is expressed
in [2] by giving getStatus two types. It can be expressed
by a single specification, in which we also need to deal with
the heap.

{stat 6∈ Q ∧ self  L∧ selfn∧L.Linfon} {resultn}

Assume that the heap is divided into several (possibly over-
lapping) regions and the actual object, say o, bound to self
appears in region L of the heap. This is written as the asser-
tion, self  L. Roughly, we use the notation L.Linfo to
denote all objects, o.Linfo where o ∈ L.

The fields Linfo and Hinfo could be model fields [17]
defined by a representation function based on some heap
objects.

Release in multiple steps. Chong and Myers [8] use
types to express declassifications that can happen only after
several conditions have been true in succession. They do
not give an example with multiple steps so we sketch our
own. The pattern is similar to that of password checking,
except that there are three phases in succession.

Consider a patient record that includes medical informa-
tion that only doctors and the patient are permitted to ac-
cess (according to the baseline policy), say their HIV status.
There is also a doctor’s log and a nurse’s log. A doctor is
allowed to release the HIV status to nurses (say, assign it
to a field labeled with the “nurse” level), provided a log en-
try is made with authenticating evidence for the doctor. A
nurse is allowed to release the HIV status (perhaps in san-
itized form—a partial release) to insurance representatives,
provided a doctor has already logged a release to nurses and
moreover the nurse makes a log entry with authentication of
the nurse and insurance rep. These actions will correspond
to clear segments of code (e.g., a certain method that does
the action and is invoked in a GUI listener). The policies
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T : : = int | C where C ∈ ClassName
CL : : = class C { T f ;M } where f ∈ FieldName
M : : = T m(U u) {S} method declaration
S : : = x : = E | x .f : = y

| x : = new C | x : = y .f
| x : = y .m(z ) | S ;S
| if x then S else S | while x do S

E : : = x | c | null | E op E | k(E )

Figure 1. BNF of language

can be formulated as two specifications that can both be im-
posed on any methods that fail a type-check for the baseline
policy. The logs need not be present as such; ghost vari-
ables could be used to record the relevant event history in
preconditions.

3 Language

The technical contribution of this paper is a logic, for an
object-oriented programming language, that is sound and
sufficiently expressive to specify and verify policies like
those in the preceding section—and more practical exam-
ples where declassification is governed by nontrivial predi-
cates on program state. This section sketches the language
and its semantics, which is taken from [1].

The language is essentially sequential Java, omitting ex-
ceptions. The grammar is in Figure 1. As in separation
logic, programs are desugared so that expressions do not
depend on the heap; this is why there are several forms of
assignment including x : = y .f . To save space we omit con-
sideration of method calls in the rest of this extended ab-
stract; their semantics, specifications, and proof rules can
be treated as in [1]. This lets us focus entirely at the level of
commands in the rest of the paper.

A state consists of a store assigning current values to lo-
cal variables (including parameters of the method body in
which the command occurs, among which is the target ob-
ject self ) together with a heap. A heap is a mapping, de-
fined on a finite set of currently-allocated object references
(drawn from a countable set Ref ); it maps each such refer-
ence to a record of the object’s current field values. So h o f
is the value of field f of object o. We use the term reference
for addresses, to emphasize that they are an abstract type—
no pointer arithmetic. The term “location” is used later, to
mean assignment target in modifies specifications.

Commands are given a relational, partial-correctness se-
mantics [1], in which (s, h)[[S ]](s ′, h ′) means that from the
initial state with store s and heap h , command S can termi-
nate in state (s ′, h ′). Note that the domain of s ′ is the same
as that of s , that is, the local variables. The semantics does
not model garbage collection, so dom(h) is always a subset

of dom(h ′). Without formalization, we assume S is well
typed.

By contrast with the language, the logic presented in sub-
sequent sections is significantly changed from [1]. The ab-
stract domain of regions (called locations in [1]) has been
dropped and the assertion language augmented with region
identifiers and atomic predicates for disjointness and inclu-
sion of regions. Hoare triples are augmented with a context
for region invariants and the proof rules are revised accord-
ingly. Creation effects and second level disjunction have
been added but these also appear in the technical report [1].
An atomic predicate is added for field access (since expres-
sions E do not depend on the heap) and this is used to
strengthen the rules for assignment.

4 Assertions

Two kinds of formulas are used in assertions. Ordinary
first order formulae over program variables, ranged over by
θ in the grammar below, are called 1-predicates. Formulas
involving independences, ranged over by ϕ, are called 2-
predicates. The latter are given a two-state semantics and
this is our main interest. The embedding of 1-predicates as
2-predicates is interpreted as follows: θ is true in a pair of
states if it is true in both of them.

The grammar of 1-predicates is as follows. Just as x
ranges over a countable set (elements of which are called
variables), we let L range over a countable set, elements
of which are called regions, more properly: region identi-
fiers. (The L is mnemonic for “abstract locations”, the term
used in [1]). In the semantics, regions are interpreted as sets
of references. In addition to regions we add pseudo-region
⊥, which is always mapped to the singleton of null, and
pseudo-region int which is mapped to the set of integers
(this facilitates a uniform treatment of fields and variables
of primitive or pointer type).

LI : : = L | int | ⊥ regions and psuedo regions
θ : : = E = E | x = y .f | . . . atomic predicates

| θ ∧ θ | θ ∨ θ | ¬θ
| x  LI | L.f  LI | LI � LI | LI ≤ LI

The atomic predicate x  L means that the current value of
x is a reference abstracted by L; L1 � L2 means that these
two regions represent disjoint sets of references; L1 ≤ L2

means that the references abstracted by L1 are also ab-
stracted by L2. Since expressions E do not depend on the
heap, we need an atomic formula x = y .f to access fields
(cf. the points-to predicate in separation logic).

For brevity in this extended abstract we omit quanti-
fiers; quantification over heap references requires a little
care since for practical use there needs to be a way to re-
strict to allocated references [17].
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The grammar of 2-predicates is as follows.

ϕ : : = θ | En | L.f n | ϕ ∧ ϕ | ϕ
.
∨ ϕ

The meaning of an is that the two current states in question,
say (s, h) and (s1, h1), agree on the value of a . Logical
connectives are available at both levels, and in our concrete
syntax it is ambiguous whether θ1 ∧ θ2 is a conjunction at
the level of 1-predicates that is embedded as a 2-predicate,
or is a conjunction of 2-predicates which happen both to be
2-predicates. The ambiguity is harmless since the meaning
is the same in each case. Disjunction is slightly trickier, as
hinted by the pay > thresh example in Section 2. If we
embed the 1-predicate θ1 ∨ θ2 then the interpretation is that
θ1∨θ2 must be true in both of the two states—which allows
that θ1 is true in one and θ2 in the other. If instead we em-
bed θ1 and θ2 separately, their disjunction as 2-predicates is
written θ1

.
∨ θ2 and has a different interpretation in a pair

of states: either θ1 is true in both states or θ2 is.
For use in the proof rule for conditionals, we need

to extract the independence content, if you will, from 2-
predicates. For any ϕ, obtain I(ϕ) from ϕ by replacing
each subformula θ (i.e., a 1-predicate) by true.

Semantics of 1-predicates. To give a precise meaning to
1-predicates, we use extraction relations η between values
and regions. An extraction relation must satisfy

• v η⊥ iff v = nil

• v η int iff v is an integer

• v η L implies v is a reference (neither nil nor an integer)

We say that η is over h if o η L implies o ∈ dom(h) for all
references o.

The semantics of a 1-predicate θ is given as a satisfac-
tion relation, written (s, h) |=η θ and defined for all (s, h)
and all extraction relations η over h . The definition is in
Figure 2.

A 1-predicate θ is called valid just if for any (s, h) and
any η over h we have (s, h) |=η θ. We refrain from giving
proof rules but note that the semantics validates classical
logic. Here are some valid predicates:
x = y .f ⇒ ¬(y  ⊥)
L � ⊥ and L � int
L � L1 ⇒ L � L1 ∧ L1 � L
L � L1 ⇐⇒ L1 � L
x  ⊥ ∨ x  int ⇒ ¬(x  L)
x  L ⇒ ¬(x  ⊥) ∧ ¬(x  int)
x  L ∧ L ≤ L1 ⇒ x  L1

L � L1 ∧ L2 ≤ L1 ⇒ L � L2

and similarly for L.f  . . ..

Semantics of 2-predicates. To cater for renaming of ref-
erences and differing allocation behavior under high guards,

formalization of noninterference for heaps involves manip-
ulation of bijections as explained in [2]. Let β range over
bijections from a subset of Ref to a subset of Ref . That is, if
o β o1 and o β o2 then o1 = o2, but for some o there might
not be any o1 such that o β o1; and symmetrically. Every β
is silently lifted to a relation on all values, by taking it to be
the identity on nil and on integers.

We say that β is over h&h1 if o β o1 implies o ∈
dom(h) and o1 ∈ dom(h1) (Throughout the paper, o and
o1 range over references only.) For extraction relations η
over h and η1 over h1 we say η, η1 are compatible with β
just if o β o1 implies (o η L iff o1 η1 L). That is, references
o and o1 related by β are abstracted to the same region.

The two-state semantics of assertion ϕ is written
(s, h)&(s1, h1) |=β,η,η1 ϕ and defined for any β over
h&h1 and η, η1 compatible with β. The definition is in
Figure 3. Validity is defined in the usual way. Here are
some valid implications:
x = c ⇒ xn where c is an integer literal
x = y ∧ yn ⇒ xn
x = k(y) ∧ yn ⇒ xn where k is an arithmetic function
z1n ∧ . . . ∧ znn ⇒ En where FV (E ) ⊆ {z1 . . . zn}

We refrain from giving a proof system for 2-predicates.

5 Program judgements

Judgements in the program logic have the form

∆ ` {ϕ} S {ϕ′} [X ]

Here X is a set of locations λ which include program vari-
ables and fields of regions, which are susceptible to update,
and also regions to which newly created objects may be
added: λ : : = x | L.f | L. The idea is that if y can be
updated by S then y is in X ; if o.f can be updated then o is
abstracted by some L.f in X ; and if o can be created then
it is abstracted in the final state by some L in X . We call
X the effect set; it is like the standard “modifies clause” but
with the addition of creation effects.

The region context ∆ ranges over sets of disjointness and
containment invariants of the form L � L1 and L ≤ L1.
The disjointnesses, in particular, are used to discharge an
antecedent of the same form in the frame rule, as we will
explain in due course. That rule also involves the effect set
X . We begin by laying the groundwork for its semantics.

Recall that 2-predicates are interpreted in contexts of
the form (s, h) & (s1, h1) |=β,η,η1 . . . where η is over h ,
η1 over h1, etc. We need a notion of extension, for such
contexts, to the final state, which has heaps h ′, h ′1 with
dom(h ′) ⊇ dom(h) and dom(h ′1) ⊇ dom(h1). In this situ-
ation, we say η′ over h ′ extends η iff for all o ∈ dom(h) and
all L we have o η L iff o η′ L. That is, η′ does not change
the region of a pre-existing location. For β′ over h ′&h ′1 we
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(s, h) |=η E = E1 iff [[E ]]s = [[E1]]s
(s, h) |=η x = y .f iff s(y) ∈ dom(h) and s(x ) = h (s(y)) f
(s, h) |=η x  LI iff s(x ) η LI
(s, h) |=η L.f  LI iff ∀o · o η L ⇒ (hof ) η LI
(s, h) |=η LI 1 � LI 2 iff {o | o η LI 1} ∩ {o | o η LI 2} = ∅
(s, h) |=η LI1 ≤ LI2 iff ∀o · o η LI1 ⇒ o η LI2
(s, h) |=η ¬θ iff not (s, h) |=η θ
(s, h) |=η θ1 ∧ θ2 iff (s, h) |=η θ1 and (s, h) |=η θ2
(s, h) |=η θ1 ∨ θ2 iff (s, h) |=η θ1 or (s, h) |=η θ2

Figure 2. Semantics of selected 1-predicates.

(s, h) & (s1, h1) |=β,η,η1 θ iff (s, h) |=η θ and (s1, h1) |=η1 θ

(s, h) & (s1, h1) |=β,η,η1 En iff ([[E ]]s)β ([[E ]]s1)
(s, h) & (s1, h1) |=β,η,η1 L.f n iff o β o1 and o η L imply (h o f )β (h1 o1 f ) for all o, o1

(s, h) & (s1, h1) |=β,η,η1 ϕ1 ∧ ϕ2 iff (s, h) & (s1, h1) |=β,η,η1 ϕ1 and (s, h) & (s1, h1) |=β,η,η1 ϕ2

(s, h) & (s1, h1) |=β,η,η1 ϕ1

.
∨ ϕ2 iff (s, h) & (s1, h1) |=β,η,η1 ϕ1 or (s, h) & (s1, h1) |=β,η,η1 ϕ2

Figure 3. Semantics of 2-predicates.

say β′ extends β iff

β = {(o, o1) | (o, o1) ∈ β′∧(o ∈ dom(h)∨o1 ∈ dom(h1))}

This is stronger than β′ ⊇ β. It says that if oβ′o1 and o
is in the initial heap h then o1 is in the initial heap h1 (and
symmetrically).

To express that effect X is an over-approximation of the
variables and object fields modified in an execution, we in-
troduce some notation. Suppose h ′ extends h in the sense
that dom(h ′) ⊇ dom(h). For η over h ′ we define

(s, h) → (s ′, h ′) |=η X

iff (a) for every y ∈ dom(s) we have s(y) = s ′(y) or y ∈
X ; (b) for every f and every o ∈ dom(h), if h o f 6= h ′ o f
then there is some L.f in X such that oηL; and (c) for every
o in dom(h ′) but not in dom(h) there is some L in X with
oηL.

Disjointness and a frame property. We define several
judgements involving disjointness consequences of a region
context ∆. First, we write ∆ ` L � L1 just if L � L1 is a
valid consequence of ∆ and the same for L ≤ L1. Now
∆ ` λ � X is defined as follows:

• ∆ ` L.f � X iff ∆ ` L � L1 for all L1.f in X

• ∆ ` y � X iff y 6∈ X

• ∆ ` L � X iff L 6∈ X

This in turn is used to define disjointness for 2-predicates,
which is used in the frame rule. Define ∆ ` ϕ � X by
structural induction on ϕ. Here are the cases for atomic
formulas. Note: y  LI � X is parsed as (y  LI ) � X .

∆ ` y � X
∆ ` y  LI � X

∆ ` L.f � X
∆ ` L.f  LI � X

∆ ` y � X
∆ ` yn � X

∆ ` L.f � X
∆ ` L.f n � X

∆ ` y � X ∆ ` y1 � X
∆ ` (y = y1) � X

The last case is representative for other primitive condi-
tions; each free variable must be disjoint from X . The rules
for compound formulas just distribute, for example:

∆ ` ϕ � X ∆ ` ϕ1 � X
∆ ` (ϕ ∧ ϕ1) � X

The key lemma says that if ϕ � X then ϕ is not falsified by
updates to locations in X . This underlies the frame rule.

For disjointness formulas L � L1, the satisfaction relation
(s, h) |=η L � L1 depends only on η, not the state. So we
define η |= ∆ iff for each L � L1 in ∆ there is some (s, h)
with (s, h) |=η L � L1.

Semantics of program judgements. We define
∆ |= {ϕ} S {ϕ′} [X ] iff the following holds for all
s, h, s1, h1, s ′, . . . , η, η1, β over h&h1. If
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• (s, h)&(s1, h1) |=β,η,η1 ϕ

• (s, h)[[S ]](s ′, h ′) and (s1, h1)[[S ]](s ′1, h
′
1)

• η |= ∆ and η1 |= ∆

then there exist β′, η′, η′1 such that

• (s ′, h ′)&(s ′1, h
′
1) |=β′,η′,η′

1
ϕ′

• β′, η′, η′1 extend β, η, η1
• (s, h) → (s ′, h ′) |=η′ X and (s1, h1) → (s ′1, h

′
1) |=η′

1
X

• η′ |= ∆ and η′1 |= ∆

6 Proof Rules

We begin with the small rules for primitive commands.
These are “small” in the sense of mentioning only the rel-
evant regions and also using a minimal region context. We
abuse notation and omit the braces when writing enumer-
ated effect sets. For assignment of a pure integer expression,
one rule is

∅ ` {En ∧ θ[E/x ]} x := E {x  int ∧ xn ∧ θ} [x ]

There is a second rule: just omit the independences from
both precondition and postcondition. For assignments
x := null and x := z the rules are similar. Here is the
first of two rules for field access, the second being obtained
by omitting the independences:

∅ ` {y  L ∧ L.f  LI ∧ yn ∧ L.f n}
x := y .f
{x  LI ∧ xn ∧ x = y .f } [x ]

The first of two for field update:

∅ ` {x  L ∧ y  LI ∧ L.f  LI ∧ xn ∧ yn ∧ L.f n}
x .f := y
{L.f  LI ∧ L.f n ∧ y = x .f } [L.f ]

The first of two for New:

∅ ` {true} x := new C {x  L ∧ xn ∧ z = x .f } [x ,L]

Note that the region L chosen for the postcondition is also
in the effect set. Postcondition z = x .f can be instantiated
with any z and any field of the type of x (though we omit
typing issues in this extended abstract); it expresses that x
is allocated.

Compound commands. A single rule for sequence:

∆ ` {ϕ0} S1 {ϕ1} [X1] ∆ ` {ϕ1} S2 {ϕ} [X2]
∆ ` {ϕ0} S1 ;S2 {ϕ} [X1 ∪X2]

For If there are two rules. The first is for “low guard” [28]:

∆ ` {ϕ0 ∧ x > 0} S1 {ϕ} [X ]
∆ ` {ϕ0 ∧ x ≤ 0} S2 {ϕ} [X ] ∆ |= ϕ0 ⇒ xn

∆ ` {ϕ0} if x then S1 else S2 {ϕ} [X ]

The second is more elaborate, to achieve the effect of not
writing low under a high guard (see [1] for explanation):

∆ ` {ϕ0 ∧ x > 0} S1 {ϕ} [X ]
∆ ` {ϕ0 ∧ x ≤ 0} S2 {ϕ} [X ] ϕ contains no

.
∨

∆ ` I(ϕ) � X ∆ |= ϕ0 ⇒ I(ϕ)
∆ ` {ϕ0} if x then S1 else S2 {ϕ} [X ]

Structural rules. First we introduce a form of implica-
tion for effect sets. Say that ∆ ` X I X ′ iff (s, h) →
(s ′, h ′) |=η X and η |= ∆ imply (s, h) → (s ′, h ′) |=η X ′

for all s, s ′, h, h ′, η. Here is a sufficient condition, ex-
pressed syntactically: If

• x ∈ X implies x ∈ X ′

• L ∈ X implies there exists L′ ∈ X ′ with ∆ ` L ≤ L′

• L.f ∈ X implies there exists L′ such that L′.f ∈ X ′ and
∆ ` L ≤ L′

then ∆ ` X I X ′. In particular, if X ⊆ X ′ then X I X ′.
The rule of consequence uses valid implications as well

as the implication for effect sets.

∆ ` {ϕ} S {ϕ′} [X ]
∆ |= ϕ1 ⇒ ϕ ∆ |= ϕ′ ⇒ ϕ′1 ∆ ` X I X1

∆ ` {ϕ1} S {ϕ′1} [X1]

The frame rule uses the disjointness judgement.

∆ ` {ϕ} S {ϕ′} [X ] ∆ ` ϕ1 � X
∆ ` {ϕ ∧ ϕ1} S {ϕ′ ∧ ϕ1} [X ]

There are two rules of disjunction which look like Hoare’s
rules, one for ∨ and one for

.
∨ . Hoare’s rule of conjunc-

tion, however, is unsound for the reasons discussed in [1].
The small rules together with frame and consequence ap-
pear to suffice for reasoning where one might expect to use
conjunction.

The remaining rules manipulate the region context. First,
new disjointnesses can be introduced. A side condition is
needed since ∆ plays a role as both pre- and post-condition.

∆ ` {ϕ} S {ϕ′} [X ] (either L /∈ X or L1 /∈ X )
∆,L � L1 ` {ϕ} S {ϕ′} [X ]

Region invariants can be moved to specifications: letting
RI stand for either L � L1 or L ≤ L1, the rule is

∆,RI ` {ϕ} S {ϕ′} [X ]
∆ ` {RI ∧ ϕ} S {RI ∧ ϕ′} [X ]
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Soundness and completeness. Amtoft et al. [1] prove
soundness of their logic. In large part our adaptations make
explicit in the region context the disjointness assumptions
embodied in the fixed lattice and disjointness operator used
in their work. So much of the soundness argument can be
adapted to our setting. We are convinced of the following
result but have not completed a rigorous proof.

Theorem 6.1 (soundness) If ∆ ` {ϕ} S {ϕ′} [X ] then
∆ |= {ϕ} S {ϕ′} [X ].

A natural formulation of completeness would be relative
to completeness of the proof system for assertions, indeed,
we have built that in to the program logic by referring to
validity in the rule of consequence and elsewhere. From a
practical point of view, our logic inherits some inexpres-
siveness; it lacks quantifiers and inductive definitions or
reachability. These should be straightforward to add. But
few completeness results are known for object-oriented pro-
grams and at this stage it is probably more fruitful to explore
practical utility.

Semantic consistency Sabelfeld and Sands [30] define
the principle of semantic consistency: “The (in)security of
a program is invariant under semantics-preserving transfor-
mations of declassification-free subprograms.” This holds
in our approach, owing to the use of program specifications
with extensional semantics.

Lemma 6.2 If [[S ]] = [[S1]] and ∆ |= {ϕ} S {ϕ′} [X ] then
∆ |= {ϕ} S1 {ϕ′} [X ].

7 Discussion

In recent language-based work on declassification, pol-
icy is expressed in part by labeling variables and fields with
security types. One approach uses security levels for the
security types, with the usual interpretation, together with
some special program construct to designate where and/or
how the default policy is overridden [29, 20]. Another ap-
proach uses richer security types that designate, e.g., what
may be released [18] or conditions under which release is
allowed [8].

Our approach is to begin by labeling the program’s in-
terfaces using lattice levels as usual. Many methods in a
program are likely to satisfy noninterference with respect
to these levels and even to be accepted by a security type
checker. For variables3 subject to a policy allowing declas-
sification, this policy is expressed by specifications for the
method bodies that can access the variables. Instead of type-
checking them, their specification is proved.

3And fields. Object references, like other values, are not directly as-
signed a security level; their security is in terms of the variables from which
they can be reached and the levels of their fields [2].

For policies concerning what is released, what is needed
is a precondition En where E is an expression for the value
to be released. Such a policy may typically be imposed as
a pre-post specification for a method. (Note that this avoids
the problem that, if the declassification policy is written as
an annotation on E as it occurs in code, there is a potential
discrepancy between the value of E at time of release and
its initial value to which the policy refers [29].)

For policies concerning where in the code—in particu-
lar, via which channels—downgrading occurs, we impose
specifications on the relevant subprograms, e.g., of the form
{ϕ1} getBids {ϕ2} and {ϕ3} announceWinner {ϕ4}.4

Though the notation is different, it does not seem so dif-
ferent in practical terms from what appears in specialized
calculi such as [20, 29, 19]. Practical use of our approach
would involve marking the code segments subject to declas-
sification specifications and including preconditions to be
imposed in the ordinary way on callers/context.

In some sense, the proposal closest to ours is that of
Chong and Myers [8] who address “where” and “when”
policies by labeling variables with security types that re-
fer to a sequence of conditions and levels through which
downgrading is allowed to pass.5 This seems more general
than what we have described, in that it is not coupled to the
implementation. But one could imagine requiring that any
code with access to the variable in question is subject to one
or more pre-post specifications. Note also that Chong and
Myers propose to enforce their policies using a type system
augmented with some means to reason about “conditions”.
The means most well understood and supported by tools is
assertion-based verification. Typical conditions might re-
fer to log entries or other data already present in the pro-
gram state. To refer to event occurrences, history variables
would be used. Use of such ghost variables/fields depends
on properly annotating the program with ghost updates of
course, e.g., to correctly track what events have occurred,
but this is standard verification methodology.

The “who” dimension of policies is also important, e.g.,
an official may be authorized to release confidential records
in a financial database to law enforcement officials exhibit-
ing a subpoena [19]. The fact that authentication checks
have been made is likely to be encoded in the program state
and if necessary it too can be modeled with ghost variables.
There is some similarity with Chong and Myers’ password
example where release depends on a condition that means

4Though these subprograms occur as a sequence
getBids; announceWinner in the auction program, our particular
ϕ2 does not imply ϕ3 and thus these specifications do not compose to
prove {ϕ1} getBids; announceWinner {ϕ4}. Indeed, the latter triple
is neither valid nor a desired property of the auction.

5It is not clear to the authors the extent to which declassification lev-
els per se are an artifice in treatments of declassification. The real-world
policies seem to involve declassification being controlled by suitable au-
thorities and via specific channels and operations, rather than intrinsically
meaningful security levels.
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“only trusted code is running”. The stack inspection mech-
anism is also intended to be used to check for such condi-
tions. As in many such examples, the idea is that certain
programs have been validated by various means, with re-
spect to policies that are not formalized as part of the de-
classification policy per se.

One shortcoming of logic-based approaches is that there
does not seem to be a direct way to handle incomparable
levels in a security lattice. In the auction example, instead
of having incomparable levels for Alice’s and Bob’s bids,
thereby specifying absence of flow in either direction, we
need two Hoare triples. (We refrain from formalizing con-
junction of triples; the straightforward generalization can
be found in many places [26, 17].) But it is not difficult to
imagine syntactic sugar; indeed, one use of our approach is
as a unifying foundation for lightweight type-oriented nota-
tions.

An advantage of logic-based approaches is that in some
cases, verification can be fully automated, e.g., if the spec-
ification consists only of independences and regions [1].
One can fall back on interactive verification, or at least
programmer-supplied invariants etc, in the harder cases.

Other related work The survey of Sabelfeld and My-
ers [28] is slightly dated but still an excellent survey of
language based information flow. For declassification, the
analysis by Sabelfeld and Sands [30] touches on many as-
pects of and works on declassification beyond what we
mentioned in earlier sections. They identify a number of in-
formal principles for declassification. Our approach seems
to live up to them all. For example, their principle of se-
mantic consistency was discussed at the end of Section 6.
On may freely transform getBids or announceWinner ,
though the sequence getBids; announceWinner can’t be
transformed in a way that loses the semicolon to which pol-
icy is attached.

An interesting recent proposal uses security types of the
form σ ⇒ k where k is a security level and σ is a list
of “flow locks” [7]. Essentially, a flow lock is a boolean
ghost variable and lists are interpreted conjunctively. The
two program constructs, open and close, used to manipu-
late locks are essentially assignments of true and false to
the lock. If x is labeled with k and σ ⇒ k ′ then x is treated
as having level k but also level k ′ just when lock σ is true.
The paper sketches how “where”, “when”, and “who” poli-
cies can be expressed, much in the way we use assertions
like ¬θ

.
∨ xn. The semantics, which is only sketched in

the paper, is a form of resetting. Thus the use of locks for
these policies is very much in accord with our proposal. It
seems attractive to have a simple notion of type associated
with ghosts, but in practice one would want to specify the
connection between locks and other events, evidence, etc,
and this would likely appear similar to specifications in our

style. The restricted use of ghosts together with types offers
the potential for automated checking. On the other hand, as
the paper shows through a number of examples, the mech-
anism interacts with features of the language (an ML-like
language with references) in ways that seem inscrutable.

The Jif tool offers, for sequential Java, rich information
policies including declassification and much more [22].

Benton [6] gives a relational Hoare logic, that is, a logic
similar to ours but in which runs of two different programs
are compared. The logic is shown to encompass noninter-
ference as a special case, although the main focus is on rea-
soning about program transformations based on static anal-
yses. Only simple imperative programs are considered, with
no heap. Yang [34] adapts separation logic to a similar logic
for imperative programs acting on the heap. Giacobazzi and
Mastroeni [14] use abstract interpretation techniques to pro-
vide a setting for noninterference that encompasses declas-
sification. The connection between their work and our logic
remains to be explored.

Acknowledgements: To Isabella Mastroeni, Alejandro
Russo and Andrei Sabelfeld for early stage discussions.
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