
A Logic for Information Flow Analysis with

an Application to Forward Slicing of

Simple Imperative Programs

Torben Amtoft 1, Anindya Banerjee 2

Department of Computing and Information Sciences
Kansas State University, Manhattan KS 66506, USA

Abstract

We specify an information flow analysis for a simple imperative language, using a
Hoare-like logic. The logic facilitates static checking of a larger class of programs
than can be checked by extant type-based approaches in which a program is deemed
insecure when it contains an insecure subprogram. The logic is based on an abstract
interpretation of a “prelude” semantics which makes independence between program
variables explicit. Unlike other, more precise, approaches based on Hoare logics, our
approach does not require a theorem prover to generate invariants. We demonstrate
the modularity of our approach by showing that a frame rule holds in our logic.
Finally, we show how our logic can be applied to a program transformation, namely,
forward slicing: given a derivation of a program in the logic, with the information
that variable l is independent of variable h, the slicing transformation systematically
creates the forward l-slice of the program: the slice contains all the commands
independent of h. We show that the slicing transformation is semantics preserving.

Key words: Abstract interpretation, denotational semantics, frame rule, Hoare
logic, information flow analysis, program slicing, strongest postcondition.

1 Introduction

This article specifies an information flow analysis using a Hoare-like logic and
considers an application of the logic to forward slicing in simple imperative

Email addresses: tamtoft@cis.ksu.edu (Torben Amtoft), ab@cis.ksu.edu
(Anindya Banerjee).
1 Supported by NSF grants CCR-0296182 and CCR-0209205
2 Supported by NSF grants CCR-0296182 and CCR-0209205 and ITR-0326577

Preprint submitted to Elsevier Science 6 September 2007

programs.

Given a system with high, or secret (H), and low, or public (L) inputs and
outputs, where L ≤ H is a security lattice, a classic security problem is how
to enforce the following end-to-end confidentiality policy: protect secret data,
i.e., prevent leaks of secrets at public output channels. An information flow
analysis checks if a program satisfies the policy. Denning and Denning (1977)
were the first to formulate an information flow analysis for confidentiality. Sub-
sequent advances have been comprehensively summarized in the recent survey
by Sabelfeld and Myers (2003). An oft-used approach for specifying static
analyses for information flow is security type systems (Ørbæk and Palsberg,
1997; Volpano and Smith, 1997; Volpano et al., 1996). Security types can be
assigned to program variables and expressions annotated with security levels.
Security typing rules prevent leaks of secret information to public channels.
For example, the security typing rule for assignment prevents H data from
being assigned to a L variable. A well-typed program “protects secrets”, i.e.,
no information flows from H to L during program execution.

In the security literature, “protects secrets” is formalized as noninterference
(Goguen and Meseguer, 1982) and is described in terms of an “indistinguisha-
bility” relation on states. Two program states are indistinguishable for L if
they agree on values of L variables. The noninterference property says that
any two runs of a program starting from two initial states that are indistin-
guishable for L, yield two final states that are indistinguishable for L. The two
initial states may differ on values of H variables but not on values of L vari-
ables; the two final states must agree on the current values of L variables. One
reading of the noninterference property is as a form of independence (Cohen,
1978): L output is independent of H inputs. It is this notion of independence
that is made explicit in the information flow analysis specified in this article.

A shortcoming of usual type-based approaches for information flow (Banerjee
and Naumann, 2005; Heintze and Riecke, 1998; Pottier and Simonet, 2003;
Volpano and Smith, 1997) is that a type system can be too imprecise. Consider
the sequential program l := h ; l := 0, where l has type L and h has type
H. Although a programmer would never write such a program, it may arise
naturally as a result of program transformation. The program is rejected by
a security type system on account of the first assignment. But the program
obviously satisfies noninterference – final states of any two runs of the program
will always have the same value, 0, for l and are thus indistinguishable for L.
Similarly, the program h := l ; l := h is secure, yet is rejected by a security
type system.

How can we admit such programs? Our inspiration comes from abstract in-
terpretation (Cousot and Cousot, 1977a), which can be viewed as a method
for statically computing approximations of program invariants (Cousot and

2

Cousot, 1977b). A benefit of this view is that the static abstraction of a pro-
gram invariant can be used to annotate a program with pre- and postcondi-
tions and the annotated program can be checked against a Hoare-like logic. In
information flow analysis, the invariant of interest is independence, for which
we use the notation [x n w] to denote that x is independent of variable w.
The intuition is this: a command denotes a prelude transformer (formalized in
Section 2) that transforms a pre-prelude (i.e., a prelude before execution of the
command) to a post-prelude (i.e., a prelude after execution of the command).
A prelude, in turn, is a store transformer, that transforms an initial store to
either a current store or ⊥ where ⊥ denotes nontermination. If x is a variable,
then [x n w] holds for a prelude T provided for any two initial stores that
differ only on the value of w, if T transforms them into current stores that
are non-⊥ then the current stores agree on the value of x. Alternatively, if x

is ⊥, then [⊥ n w] holds for T provided for any two initial stores that differ
only on the value of w, if T transforms them into two current stores then the
one store is ⊥ if and only if the other store is. The intuition above is just a
convenient restatement of noninterference but we tie it to the static notion of
independence.

Our approach statically computes finite abstractions of the concrete preludes
before and after the execution of a command. The notation T# will be used to
describe an abstraction of a concrete prelude T . This is formalized in Section 3.
We formulate (in Section 4) a Hoare-like logic for checking independences and
show (Section 5) that a checked program satisfies noninterference. The asser-
tion language of the logic is decidable since it is just the language of finite
sets of independences with subset inclusion. Specifications in the logic have
the form {T

#
0 } C {T#}. Given precondition T#, we show in Section 7 how to

compute strongest postconditions; for programs with loops, this necessitates
a fixpoint computation3. The logic deems the program l := h; l := 0 secure
(Example 4.1); the strongest postcondition of the program contains the inde-
pendence [l n h].

Our approach falls in between type-based analysis and full verification. In the
latter, verification conditions for loops depend on loop invariants generated by
a theorem prover, typically using a fixpoint computation. Also in our setting,
a fixpoint computation is employed to approximate loop invariants; these are
lightweight in the sense that they do not put any constraints on the actual
values of the program variables. Our approach is modular and we show that
our logic satisfies a frame rule (Section 8). The frame rule permits local rea-
soning about a program: the relevant independences for a program are only
those [x n w] where x occurs in the program. Moreover, in a larger context,
the frame rule allows the following inference (in analogy with (O’Hearn et al.,

3 The set of independences is a finite lattice, hence the fixpoint computation will
terminate.

3

2001)): start with a specification {T
#
0 } C {T#} describing independences before

and after store modifications; then, {T
#
0 ∪ T

#
1 } C {T# ∪ T

#
1 } holds provided

C does not modify any variable y where [y n w] appears in T
#
1 . The ini-

tial specification {T
#
0 } C {T#}, can reason with only the slice of store that C

touches.

Contributions. To summarize, this article makes three contributions. First
and foremost, we formulate information flow analysis in a logical form via
a Hoare-like logic. The approach deems more programs secure than extant
type-based approaches. In Section 9, we show how our logic conservatively
extends the security type system of Smith and Volpano (1997), by showing
that any well-typed program in their system satisfies the invariant [l n h].
Secondly, we describe the relationship between information flow and program
dependence, explored in (Abadi et al., 1999; Hunt and Sands, 1991), in a
more direct manner by computing independences between program variables.
The independences themselves are static descriptions of the noninterference
property. The development in this article considers nontermination sensitive
noninterference: we assume that an attacker can observe nontermination. Fi-
nally, in Section 6, we show an application of our logic to forward slicing.
Given a derivation of a program in the logic, with the information that vari-
able l is independent of variable h, the slicing transformation systematically
creates the forward l-slice of the program: the slice contains all the commands
independent of h. We show that the slicing transformation is semantics pre-
serving.

2 Language: Syntax, Preludes, Semantics

This section gives the syntax of a simple imperative language, formalizes the
notion of preludes, and gives the semantics of the language in terms of preludes.

Syntax. We consider a simple imperative language with assignment, se-
quencing, conditionals and loops as formalized by the following BNF. Com-
mands C ∈ Cmd are given by the syntax

C ::= x := E | C1 ; C2 | if E then C1 else C2 | while E do C

where Var is an infinite set of variables, x, y, z, w ∈ Var range over variables,
and where E ∈ Exp ranges over expressions. Expressions are left unspecified
but we shall assume the existence of a function fv(E) that computes the free
variables of expression E. For commands, fv(C) is defined in the obvious way.

4

For partial correctness – i.e., when we do not care about nontermination – we
define, for x 6= ⊥:

s1
x
= s2 ⇐⇒ ((s1 6= ⊥∧ s2 6= ⊥) ⇒ s1 x = s2 x)

For total correctness – i.e., when we are interested in nontermination – we
additionally define, for x = ⊥:

s1
x
= s2 ⇐⇒ (s1 = ⊥ ⇐⇒ s2 = ⊥)

Fig. 1. When are two stores equal on x?

We also define a function modified : Cmd → P(Var) that given a command,
returns the set of variables potentially assigned to by the command.

modified(x := E)= {x}

modified(C1 ; C2)= modified(C1) ∪modified(C2)

modified(if E then C1 else C2)= modified(C1) ∪modified(C2)

modified(while E do C)= modified(C)

In our examples, we shall often use a skip command; the formal treatment of
that command (wrt. the semantics and the logic) should be obvious and we
shall not bother to write down the rules explicitly.

Stores. A store, s ∈ Sto, associates each variable with its current value;
here values v ∈ Val are yet unspecified but we assume that there exists a
predicate true? on Val. (For instance, we could have Val as the set of integers
and let true?(v) be defined as v 6= 0). The following notation is used to denote
a store update:

• [s | y 7→ v] returns a store s ′ with the property: for all x ∈ Var, if x 6= y

then s ′ x = s x; but s ′(y) = v.

Stores s1, s2 ∈ Sto⊥ agree on x ∈ Var ∪ {⊥}, written, s1
x
= s2, when either of

the following conditions hold: (a) s1, s2, x are all non-⊥ and then s1 x = s2 x;
(b) x 6= ⊥ and either s1 = ⊥ or s2 = ⊥ (or both); (c) x = ⊥ and then s1 = ⊥
if and only if s2 = ⊥. This is made precise in Fig. 1 and motivated shortly
in Section 3. Note that for s1, s2 ∈ Sto and x ∈ Var, s1

x
= s2 amounts to

s1 x = s2 x.

5

We write s1 =
w

s2, where s1, s2 ∈ Sto and w ∈ Var, to denote that for all
variables y 6= w, s1 y = s2 y holds. That is, the values of all variables, except
of w, are equal in stores s1 and s2.

Preludes. A prelude4, T ∈ Prelude, maps an initial store to either a current
store or ⊥, where ⊥ denotes nontermination. Thus Prelude = Sto → Sto⊥.
Note that Sto⊥ is a complete partial order (CPO) with the ordering v defined
as: s1 v s2 iff either s1 = ⊥ or s1 equals s2. Thus Prelude is a CPO, under
the pointwise ordering: T1 v T2 iff for all s ∈ Sto, T1 s v T2 s.

Semantics. For expressions, we assume there exists a semantic function
[[E]] : Sto → Val which satisfies the following property:

Property 2.1 If for all x ∈ fv(E) we have s1 x = s2 x, with s1, s2 ∈ Sto,
then [[E]]s1 = [[E]]s2.

The definition of [[E]] would contain the clause [[x]]s = s x. The semantics
of a command has functionality [[C]] : Prelude → Prelude, and is defined
in Fig. 2. To streamline the treatment of ⊥, the metalanguage expression
“let α = β in . . .” denotes ⊥ if β is ⊥.

Observe that since Prelude is a CPO also Prelude → Prelude is a CPO,
with the following pointwise ordering: f1 v f2 iff f1(T) v f2(T) for all T ∈
Prelude. Let C be of the form while E do C0, and let F be the corresponding
function (called the functor of the while command) as defined in Fig. 2. The
following calculation shows that F is continuous on Prelude → Prelude.

F(tifi)= λT.λs.let s ′ = T s in (if true?([[E]]s ′) then (tifi)([[C0]]T)s else s ′)

= λT.λs.let s ′ = T s in (if true?([[E]]s ′) then ti (fi([[C0]]T)s) else s ′)

=ti(λT.λs.let s ′ = T s in (if true?([[E]]s ′) then fi([[C0]]T)s else s ′)

=ti(F(fi))

Hence the least fixpoint of F is indeed well-defined, and

[[C]] = lfp(F) =
⊔

i∈N
fi

where fi (called an iterand of the while command) is defined by:

4 We have learned from Dave Schmidt that the nomenclature is due to Bob Tennent.

6

[[x := E]] = λT.λs.let s ′ = T s in [s ′ | x 7→ [[E]]s ′]

[[C1 ; C2]] = λT.[[C2]]([[C1]]T)

[[if E then C1 else C2]] = λT.λs.let s ′ = T s in

if true?([[E]]s ′) then [[C1]]T s else [[C2]]T s

[[while E do C0]] = lfp(F) where

F :
(Prelude → Prelude)→
(Prelude → Prelude)

is given by

F(f) = λT.λs.let s ′ = T s in

if true?([[E]]s ′) then f([[C0]]T)s else s ′

Fig. 2. The Prelude Semantics.

f0 = λT.λs.⊥
fi+1 =F(fi)

Fact 2.2 Let C be a while command, with {fi} the iterands of C. Then for
all T ∈ Prelude and s ∈ Sto there exists j0 such that for all j ≥ j0 we have
fj T s = [[C]]T s.

The intuition behind having a prelude semantics is as follows: Independences,
as to be defined in Section 3, are with respect to the initial state of the
whole computation. So to provide the meaning of a program fragment, we
want to consider how a prelude (i.e., a function that describes how the state
before execution of a command is reached from an initial state) is mapped to
another (i.e., a function that describes how the state after execution of the
command is reached from the initial state). For a concrete example, consider
the computation of the program x := x + y ; y := x + 1 in an initial state that
maps x to 0 and y to 2.

• Under a standard semantics, after execution of x := x + y, the new state
maps x to 2 and leaves y unchanged. After execution of y := x + 1, the new
state maps y to 3 and leaves x unchanged.

• In the prelude semantics, we have the following situation. Suppose the effect
of executing x := x + y is the prelude that maps the initial state [x = 0, y =

2] to the state [x = 2, y = 2]. Then the effect of executing y := x + 1 under
this prelude is a new prelude that maps the initial state [x = 0, y = 2] to
the state [x = 2, y = 3].

7

Next some technical results about the semantic functions.

Definition 2.3 We say that a function f ∈ Prelude → Prelude is fully
strict if for all T ∈ Prelude and s ∈ Sto, T s = ⊥ implies f T s = ⊥.

We say that a fully strict function f preserves z ∈ Var if whenever f T s 6= ⊥
(and thus T s 6= ⊥) then f T s z = T s z.

Fact 2.4 For all commands C, the function [[C]] is monotone and fully strict.
Also, all iterands fi of while commands are monotone and fully strict.

PROOF. We go by structural induction on C. For while, we show that F
maps monotone functions into monotone functions and fully strict functions
into fully strict functions; the result then follows (as f0 is clearly monotone
and fully strict) since the limit of monotone functions is itself monotone, and
the limit of fully strict functions is itself fully strict.

Lemma 2.5 For all commands C, and all z ∈ Var with z /∈ modified(C),

• [[C]] preserves z;
• if C is a while command then all its iterands fi preserve z.

PROOF. Structural induction in C, with a case analysis. In all cases we are
given T and s, and assume that [[C]]T s 6= ⊥ (and by Fact 2.4 thus T s 6= ⊥);
we must show that [[C]]T s z = T s z.

C = x := E. From z /∈ modified(C) we infer that z 6= x, and the claim is trivial.

C = C1 ; C2. Since z /∈ modified(C2), we infer inductively that [[C2]]([[C1]]T) s z =

[[C1]]T s z. Since z /∈ modified(C1), we infer inductively that [[C1]]T s z = T s z.
We thus get [[C]]T s z = [[C2]]([[C1]]T) s z = T s z, as desired.

C = if E then C1 else C2. Wlog. we can assume that true?([[E]](T s)), in
which case [[C]]T s z = [[C1]]T s z. Since z /∈ modified(C1), we infer induc-
tively that [[C1]]T s z = T s z. This yields the claim.

C = while E do C0. Let fi be the iterands of C; our first task is to prove by
induction in i that each fi preserves z. For i = 0, the claim follows vacuously
since fi T s = ⊥. For the inductive case, we split into two cases, in both cases
assuming fi+1 T s 6= ⊥ (and by Fact 2.4 thus T s 6= ⊥):

• if true?([[E]](T s)) then

fi+1 T s z = fi([[C0]]T) s z = [[C0]]T s z = T s z

8

where the second equality follows from the induction hypothesis on fi, and
the third equality follows from the overall induction hypothesis on C0 (ap-
plicable since z /∈ modified(C0)).

• if true?([[E]](T s)) does not hold, then fi+1 T s z = T s z follows directly.

We are left with showing that also [[C]], given as the least upper bound of
the iterands, preserves z. But since [[C]]T s 6= ⊥, we infer from Fact 2.2 that
there exists a natural number j such that [[C]]T s = fj T s, yielding the desired
[[C]]T s z = fj T s z = T s z.

3 Independences

The prelude semantics says that the meaning of a command is a prelude
transformer: it transforms initial preludes into current preludes. In this section
we will be interested in a finite abstraction of the preludes relevant to the
execution of a command. The abstract preludes are termed independences : an
independence T# ∈ Independ = P((Var∪ {⊥})×Var) is a set of pairs of the
form [x n w]. If x is a variable, then [x n w] denotes that the current value
of x is independent of the initial value of w. If x is ⊥, then nontermination,
i.e., whether control reaches the current program point, is independent of w.
This is formalized by the following definition which states the condition under
which an independence correctly describes a concrete prelude.

Definition 3.1 For all T ∈ Prelude, for all x ∈ Var∪ {⊥}, for all w ∈ Var,
T |= [x n w] holds iff for all s1, s2 ∈ Sto: s1 =

w
s2 implies T s1

x
= T s2.

T |= T# holds iff for all [x n w] ∈ T# it holds that T |= [x n w].

In the definition of T |= [x n w], note that s1, s2 are the “initial” stores and
the antecedent of the implication asserts that these stores are equal except for
w. The “current” stores are obtained via T s1 and T s2 and the consequent
of the implication demands that the current stores be equal on x. Because x

can be ⊥, and because of the way [⊥ n w] is defined, an analysis based on
Definition 3.1 is nontermination sensitive. In particular, observe the following
result:

Fact 3.2 Assume that T |= {[x n w], [⊥ n w]}. Then for all s1, s2 ∈ Sto,
s1 =

w
s2 implies that either T s1 = T s2 = ⊥, or T s1 6= ⊥ and T s2 6= ⊥ with

T s1 x = T s2 x.

Definition 3.3 The ordering T
#
1 � T

#
2 holds iff T

#
2 ⊆ T

#
1 .

9

The intuition behind the definition is that in T
#
1 � T

#
2 , T

#
1 is more precise

than T
#
2 because T

#
1 deems more variables independent than T

#
2 . A motivation

for the definition is the desire for a subtyping rule, stating that if T
#
1 � T

#
2

then T
#
1 can be replaced by T

#
2 (c.f. Fact 3.4). The subtyping rule is sound

provided T
#
2 is a subset of T

#
1 and therefore obtainable from T

#
1 by removing

information.

Clearly, Independ forms a complete lattice wrt. the ordering �; let uiT
#

i

denote the greatest lower bound (which is the set union). The greatest element
is the empty set of independences and the least element is Independ; the least
element is obtained when all variables have constant values. We have some
expected properties, where Fact 3.4 is used in the proof of the correctness
theorem (Section 5), and where Fact 3.5 follows since if [x n w] belongs to
uiT

#
i then it also belongs to some T

#
i .

Fact 3.4 If T |= T
#
1 and T

#
1 � T

#
2 then T |= T

#
2 .

Fact 3.5 If for all i ∈ I it holds that T |= T
#
i , then T |= ui∈IT

#
i .

We have the following fact about the identity prelude.

Fact 3.6 For all x ∈ Var∪{⊥}, for all y ∈ Var, if x 6= y then λs.s |= [x n y].

An Abstract Interpretation. Facts 3.4 and 3.5 lead us to explore the
connection of our framework with abstract interpretation (Cousot and Cousot,
1977a). We can write a function γ : Independ → P(Prelude):

γ(T#) = {T ∈ Prelude | T |= T#}

and demonstrate that γ is completely multiplicative. We calculate:

T ∈ γ(uiT
#

i)⇔∀[x n y] ∈ uiT
#

i • T |= [x n y]⇔∀i • ∀[x n y] ∈ T
#
i • T |= [x n y]⇔∀i • T ∈ γ(T#

i)⇔ T ∈
⋂
i

γ(T#
i)

Therefore, γ can be considered a concretization function so that, by properties
of Galois Connections, e.g., (Nielson et al., 1999, Lemma 4.23), there exists
an abstraction function α : P(Prelude) → Independ:

α(U) =
⋃

{T# | U ⊆ γ(T#)}

10

such that (P(Prelude), α, γ, Independ) is a Galois connection.

Equivalently, Facts 3.4 and 3.5 state that relation |= is U-closed (upwards
closed) and G-closed (greatest lower bound closed) respectively. Therefore,
(see, e.g., (Schmidt, 2002)) |= defines a Galois connection. It follows that by
defining γ(T#) as above, we have the properties:

• γ is a monotone function.
• For all T# ∈ Independ, for all U ∈ P(Prelude), U ⊆ γ(T#) iff α(U) � T#.

The second item above is the definition of a Galois connection and in this
sense, |= “is” a Galois connection.

4 Static Checking of Independences

To statically check independences we define, in Fig. 3, a Hoare-like logic where
judgements are of the form

G ` {T
#
0 } C {T#}

The judgement is interpreted as saying that if the independences in T
#
0 hold

before execution of C then the independences in T# will hold after execution
of C. The context G ∈ Context = P(Var) is a control dependence, denoting
(a superset of) the variables that at least one test surrounding C depends on.
For example, in if x then y := 0 else z := 1, the static checking of y := 0

takes place in the context that contains all variables that x is dependent on.
This is crucial, especially since x may depend on a high variable.

We now explain a few of the rules in Fig. 3. Checking an assignment, x := E,
in context G, involves checking any [y n w] in the postcondition T#. There
are two cases. If x 6= y, then [y n w] must also appear in the precondition
T

#
0 . Likewise, if [⊥ n w] appears in the postcondition T#, then it must also

appear in the precondition T
#
0 . Otherwise, if x = y then [x n w] appears

in the postcondition provided all variables referenced in E are independent
of w; moreover, w must not appear in G, as otherwise, x would be control
dependent on w.

Checking a conditional, if E then C1 else C2, involves checking C1 and C2 in
a context G0 that includes not only the “old” context G but also the variables
that E depends on (as variables modified in C1 or C2 will be control dependent
on the variables that E depends on.) Equivalently, if w is not in G0, then all
free variables x in E must be independent of w, that is, [x n w] must appear
in the precondition T

#
0 .

11

[Assign] G ` {T
#
0 } x := E {T#}

if ∀[y n w] ∈ T#•
(x 6= y ∨ y = ⊥) ⇒ [y n w] ∈ T

#
0

x = y ⇒ (w /∈ G ∧ ∀z ∈ fv(E) • [z n w] ∈ T
#
0)

[Seq]
G ` {T

#
0 } C1 {T

#
1 } G ` {T

#
1 } C2 {T

#
2 }

G ` {T
#
0 } C1 ; C2 {T

#
2 }

[If]
G0 ` {T

#
0 } C1 {T#} G0 ` {T

#
0 } C2 {T#}

G ` {T
#
0 } if E then C1 else C2 {T#}

if G ⊆ G0 ∧

(w /∈ G0 ⇒
∀x ∈ fv(E) • [x n w] ∈ T

#
0)

[While]
G0 ` {T#} C {T#}

G ` {T#} while E do C {T#}

if G ⊆ G0 ∧

(w /∈ G0 ⇒
∀x ∈ fv(E) • [x n w] ∈ T#) ∧

([⊥ n w] ∈ T# ⇒ w 6∈ G0)

[Sub]
G1 ` {T

#
1 } C {T

#
2 }

G0 ` {T
#
0 } C {T

#
3 }

if (T#
0 � T

#
1) ∧ (T#

2 � T
#
3) ∧ (G0 ⊆ G1)

Fig. 3. The Logic.

Checking a while loop is similar to checking a conditional. The only differ-
ence is that it requires guessing an “invariant” T# that is both the precon-
dition and the postcondition of the loop and its body. With respect to non-
termination, note that if w ∈ G0 then w may influence the termination of
the program: either directly, as in while w > 7 do w := w + 1 (where the
side condition for [While] forces w to be added to G0); or indirectly, as in
if w > 7 then skip else while true do skip (where the side condition for [If]
has already added w to G). Therefore we demand that if [⊥ n w] ∈ T# then
w must not be in G0.

In Section 7, when we define strongest postcondition, we will select G0 =

G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T
#
0 } for the conditional and the while loop.

Instead of guessing the invariant, we will show how to compute it using fix-
points.

Example 4.1 (Illustrating “recovery” of independences.) We have the deriva-
tions

∅ ` {{[l n h], [h n l]}} l := h {{[h n l], [l n l]}} and
∅ ` {{[h n l], [l n l]}} l := 0 {{[h n l], [l n l], [l n h]}}

12

and therefore also

∅ ` {{[l n h], [h n l]}} l := h ; l := 0 {{[h n l], [l n l], [l n h]}}.

With the intuition that l stands for “low” or “public” and h stands for “high”
or “sensitive”, the derivation asserts that if l is independent of h before exe-
cution, then l is independent of h after execution. Thus [l n h] is an invariant
of the computation. By Definition 3.1, any prelude of the program applied to
initial stores that differ only in the value for h, creates new stores that agree
on the current value for l. Thus the program is secure, although it contains
an insecure sub-program: the independence [l n h] is lost after l := h, but
recovered after l := 0.

Example 4.2 (Illustrating control dependence.) The reader may check that
the following informally annotated program gives rise to a derivation in our
logic. Initially, G is empty, and all variables are pairwise independent; we write
[x n y, z] to abbreviate [x n y], [x n z].

{[l n h, x], [h n l, x], [x n l, h]}

x := h {[l n h, x], [h n l, x], [x n l, x]}

if x > 0 (G is now {h})

then l := 7 {[l n x, l], [h n l, x], [x n l, x]}

else x := 0 {[l n h, x], [h n l, x], [x n l, x]}

end of if {[l n x], [h n l, x], [x n l, x]}

A few remarks:

• in the preamble, only x is assigned, so the independences for l and h are
carried through, but [x n l, x] holds afterwards, as [h n l, x] holds before-
hand;

• the free variable in the guard is independent of l and x but not of h, implying
that h has to be in G.

Example 4.3 (Illustrating how the logic works with nontermination.)

With P = while l 6= 0 do h := 7 and T# = {[⊥ n h], [l n h]} we have the
judgement ∅ ` {T#} P {T#} (since {l} ` {T#} h := 7 {T#}) showing that P is
deemed secure by our logic; an observer able to observe even nontermination
cannot detect the initial value of h. (The reason why [h n l] and [⊥ n l] are
not in T# is that h clearly depends on l and nontermination depends on l.)

However, with P = while h 6= 0 do h := 7 and T# = {[⊥ n h], [l n h], [h n l]}

we do not have a derivation, even though T# is an invariant for h := 7. But be-

13

cause the derivation requires h ∈ G0, [⊥n h] can no longer be in T#. This sug-
gests that P is insecure when nontermination is observable: indeed, an observer
able to observe nontermination can detect whether h was initially 0 or not.
Interestingly, if nontermination is not observable, then T# = {[l n h], [h n l]}

remains invariant, as expected. In particular, the current value of l is inde-
pendent of the initial value of h. Similarly, we do not have a derivation for
P = if h 6= 0 then skip else while true do skip with T# containing [⊥ n h].

A couple of simple results can be proven about the logic in Fig. 3:

Fact 4.4 Assume G ` {T
#
0 } C {T#}. If [⊥ n w] ∈ T# then [⊥ n w] ∈ T

#
0 .

The proof is an easy induction on a derivation of G ` {T
#
0 } C {T#}.

Lemma 4.5 Assume G ` {T
#
0 } C {T#} with [⊥ n w] ∈ T# and w ∈ G. Then

T s 6= ⊥ implies [[C]]T s 6= ⊥.

PROOF. An easy induction in the derivation, where for [Seq] we use Fact 4.4;
for [While] the result follows vacuously since having both [⊥ n w] ∈ T# and
w ∈ G violates the side conditions of that rule.

To restate Fact 4.4, if [⊥ n w] 6∈ T
#
0 , then [⊥ n w] cannot be recovered in T#.

This is in contrast to Example 4.1, which shows that although [l n h] does
not appear in the precondition of l := 0, it could nonetheless be recovered
in the postcondition of l := 0. In other words, once it is established that
nontermination may depend on w, it continues to depend on w. This is what
we should expect, as otherwise, with w interpreted “high”, nontermination
can be used to leak the high value.

In a judgement G ` {T
#
0 } C {T#}, suppose w ∈ G. This means that any as-

signment in C is control dependent on w. Suppose now that y is a variable
and is independent of w in the postcondition T#. This implies that y cannot
be assigned to in C — otherwise, it would be dependent on w. If y is not
assigned to in C, then y must be independent of w in the precondition too.
These intuitions are collected together in Lemma 4.6 below. Note that with
y interpreted as “low” and w as “high”, the lemma essentially says that low
variables may not be written to under a high guard. Thus the lemma is the
counterpart of the “no write down” rule that underlies information flow con-
trol; the term “*-property” (Bell and LaPadula, 1973) is also used. The value
of low variables remains the same after execution of C.

Lemma 4.6 (Write Confinement) Assume that G ` {T
#
0 } C {T#}. Then

the following holds:

14

If [y n w] ∈ T# and y ∈ Var and w ∈ G

then y /∈ modified(C) and [y n w] ∈ T
#
0 .

PROOF. We perform induction in the derivation of G ` {T
#
0 } C {T#}, and

do a case analysis on the last rule applied:

[Assign], with C = x := E. If x = y, then w /∈ G, contradicting our assump-

tions. If x 6= y, then y /∈ modified(C) and [y n w] ∈ T
#
0 .

[Seq], with C = C1 ; C2. Assume that G ` {T
#
0 } C1 {T

#
1 } and G ` {T

#
1 } C2 {T#}

and also assume that w ∈ G. By applying the induction hypothesis to the
latter judgement, we see that y /∈ modified(C2) and that [y n w] ∈ T

#
1 . By

then applying the induction hypothesis to the former judgement, we see that
y /∈ modified(C1) and that [y n w] ∈ T

#
0 . Therefore y /∈ modified(C), as

desired.

[If], with C = if E then C1 else C2. Assume that

G0 ` {T
#
0 } C1 {T#} and G0 ` {T

#
0 } C2 {T#}

where G ⊆ G0. Let [y n w] ∈ T# with w ∈ G, then w ∈ G0 so by applying
the induction hypothesis we get y /∈ modified(C1) and y /∈ modified(C2) and
[y n w] ∈ T

#
0 . This implies y /∈ modified(C), and thereby the desired result.

[While], with C = while E do C0. Our assumptions are that G ` {T#} C {T#}

because with G ⊆ G0 we have G0 ` {T#} C0 {T#}. Let [y n w] ∈ T# with
w ∈ G, then w ∈ G0 so by applying the induction hypothesis we get y /∈
modified(C0) (and trivially [y n w] ∈ T#) which is as desired.

[Sub]. Assume that G ` {T
#
0 } C {T#} because with G ⊆ G0 and T

#
0 � T

#
1

and T
#
2 � T# we have G0 ` {T

#
1 } C {T

#
2 }. Also assume that [y n w] ∈ T#

and that w ∈ G. Then [y n w] ∈ T
#
2 and w ∈ G0, so inductively we obtain

y /∈ modified(C) and [y n w] ∈ T
#
1 . Then also [y n w] ∈ T

#
0 , as desired.

5 Correctness

We are now in a position to prove the correctness of the logic with respect to
the prelude semantics.

Theorem 5.1 Assume that

15

G ` {T
#
0 } C {T#} where for all [x n y] ∈ T

#
0 it is the case that x 6= y.

Then [[C]](λs.s) |= T#.

That is, T# correctly describes the concrete prelude obtained by executing
command C on λs.s, the initial prelude.

The correctness theorem can be seen as the noninterference theorem for in-
formation flow. Indeed, consider the prelude, T , obtained from executing the
command C with the initial prelude, λs.s. With l and h interpreted as “low”
and “high” respectively, suppose [l n h] appears in T#. Then for any two
stores s1, s2 that differ only on h, the stores T s1 and T s2 must agree on the
value of l, meaning that if both T s1 and T s2 terminate then they must not
give different values for l. On the other hand, it is possible for either T s1 or
T s2 or both to be ⊥, as in the example

if h then h := 7 else (while true do skip).

which has [l n h] as an invariant.

Moreover, the correctness theorem says that if [⊥ n h] appears in T#, then
T s1 = ⊥ iff T s2 = ⊥: thus noninterference is preserved under nontermination.

To prove Theorem 5.1, we need the following main lemma. Then the theorem
follows by substituting T by λs.s, and then using Fact 3.6.

Lemma 5.2 If G ` {T
#
0 } C {T#} and T |= T

#
0 , then [[C]]T |= T#.

PROOF. We perform induction on a derivation of G ` {T
#
0 } C {T#}, and do

a case analysis on the last rule applied.

[Assign], with C = x := E. We are given [z n w] ∈ T#, and we consider s1, s2 ∈
Sto such that s1 =

w
s2. With T ′ = [[C]]T , we must show that T ′ s1

z
= T ′ s2.

If z = ⊥, then [z n w] ∈ T
#
0 , so T s1

⊥
= T s2. Since for all s, T ′ s = ⊥ iff

T s = ⊥, this shows that also T ′ s1
⊥
= T ′ s2, as desired.

So now consider z ∈ Var. If either T s1 = ⊥ or T s2 = ⊥, also T ′ s1 = ⊥
or T ′ s2 = ⊥, and the claim is trivial. We thus assume that T s1 6= ⊥ and
T s2 6= ⊥. We have two subcases:

(1) z 6= x: Then [z n w] ∈ T
#
0 , so T s1

z
= T s2, that is, T s1 z = T s2 z. Since

for all s we have T ′ s z = T s z, this shows that also T ′ s1 z = T ′ s2 z, as
desired.

16

(2) z = x: Then for all y ∈ fv(E), we have [y n w] ∈ T
#
0 and therefore

T s1 y = T s2 y. By Property 2.1 then [[E]](T s1) = [[E]](T s2), showing
that T ′ s1 x = T ′ s2 x, as desired.

[Seq], with C = C1 ; C2. Assume that

G ` {T
#
0 } C1 {T

#
1 } and that G ` {T

#
1 } C2 {T

#
2 }.

By applying the induction hypothesis to the first judgement, we get

[[C1]](T) |= T
#
1 .

We then apply the induction hypothesis to the second judgement and get the
desired result:

[[C2]]([[C1]](T)) |= T#.

[If], with C = if E then C1 else C2. Assume that

G0 ` {T
#
0 } C1 {T#} and G0 ` {T

#
0 } C2 {T#}

where w /∈ G0 implies that ∀x ∈ fv(E) • [x n w] ∈ T
#
0 . Inductively, we can

assume that [[C1]]T |= T# and [[C2]]T |= T#. We are given [z n w] ∈ T#

(where z might be ⊥), and we consider s1, s2 ∈ Sto such that s1 =
w

s2. With

T ′ = [[C]]T , we must show that T ′ s1
z
= T ′ s2.

First assume that at least one of T s1 or T s2 is ⊥. By Fact 2.4, at least as
many of T ′ s1 and T ′ s2 will be ⊥. So if z ∈ Var, then trivially T ′ s1

z
= T ′ s2. If

z = ⊥, then by Fact 4.4 we know that [⊥ n w] ∈ T
#
0 , so from T |= T

#
0 we get

T s1
⊥
= T s2 and therefore T s1 = T s2 = ⊥. But then also T ′ s1 = T ′ s2 = ⊥,

showing T ′ s1
⊥
= T ′ s2.

We can thus assume that there exists stores s ′1, s
′
2 6= ⊥ such that s ′1 = T s1

and s ′2 = T s2. Apart from symmetry, there are two cases:

true?([[E]]s ′1) and true?([[E]]s ′2). Then T ′ s1 = [[C1]]T s1 and T ′ s2 = [[C1]]T s2.
From [[C1]]T |= T# and [z n w] ∈ T# we infer that [[C1]]T s1

z
= [[C1]]T s2, which

amounts to the desired T ′ s1
z
= T ′ s2.

true?([[E]]s ′1) but not true?([[E]]s ′2). We claim

w ∈ G0

and prove the claim by contradiction: suppose w 6∈ G0. Then by the logic, for
all x ∈ fv(E), [x n w] ∈ T

#
0 implying T s1

x
= T s2, that is s ′1(x) = s ′2(x). By

17

Property 2.1 this implies [[E]]s ′1 = [[E]]s ′2 – a contradiction.

Having established w ∈ G0, consider two cases. First assume z = ⊥. Then (by
Lemma 4.5 applied to the sub-derivations) we infer that [[C1]]T s1 6= ⊥ and
[[C2]]T s2 6= ⊥, and thus T ′ s1 6= ⊥ and T ′ s2 6= ⊥. But this yields the desired

relation T ′ s1
⊥
= T ′ s2.

Now assume that z ∈ Var. By Lemma 4.6 applied to the sub-derivations, we
infer that

[z n w] ∈ T
#
0 and z 6∈ modified(C1) and z 6∈ modified(C2).

Since T |= T
#
0 , this shows T s1

z
= T s2, that is, T s1 z = T s2 z. We know that

T ′ s1 = [[C1]]T s1 and T ′ s2 = [[C2]]T s2. If either is ⊥, the claim vacuously
holds; so assume neither is ⊥. By Lemma 2.5, T s1 z = [[C1]]T s1 z and T s2 z =

[[C2]]T s2 z. This shows the desired T ′ s1 z = T s1 z = T s2 z = T ′ s2 z.

[While], with C = while E do C0. Our assumptions are that

G ` {T#} C {T#}

because with G0 such that w /∈ G0 implies that ∀x ∈ fv(E) • [x n w] ∈ T#,
and such that [⊥ n w] ∈ T# implies w /∈ G0, we have

G0 ` {T#} C0 {T#}.

We define an auxiliary predicate P :

P(f) ⇔ ∀T • (T |= T# ⇒ f T |= T#)

We shall establish

∀i ≥ 0 • P(fi) (1)

and do so by induction in i. For the base case, note that f0(T) = λs.⊥, and
that λs.⊥ |= T# always holds because no matter whether z = ⊥ or not,
⊥ z

= ⊥.

For the inductive case, we assume that T |= T# and must prove F f T |= T#,
with f an iterand. So let [z n w] ∈ T# and s1 =

w
s2; we know that T s1

z
= T s2

and must prove F f T s1
z
= F f T s2.

First assume that at least one of T s1 or T s2 is ⊥. By Fact 2.4, at least
as many of F f T s1 and F f T s2 will be ⊥. So if z ∈ Var, then trivially
F f T s1

z
= F f T s2. If z = ⊥, then from [⊥ n w] ∈ T# and T |= T# we

get T s1
⊥
= T s2 and therefore T s1 = T s2 = ⊥. But then also F f T s1 =

18

F f t s2 = ⊥, showing F f T s1
⊥
= F f T s2.

We can thus assume that there exists stores s ′1, s
′
2 6= ⊥ such that s ′1 = T s1

and s ′2 = T s2. Apart from symmetry, there are three cases:

true?([[E]]s ′1) and true?([[E]]s ′2). Then F f T s1 = f([[C0]]T)s1 and F f T s2 =

f([[C0]]T)s2. By applying the overall induction hypothesis on G0 ` {T#} C0 {T#},
we get [[C0]]T |= T#; by applying the innermost induction hypothesis, we then
get f[[C0]]T |= T#, so that f([[C0]]T)s1

z
= f([[C0]]T)s2 which amounts to the

desired F f T s1
z
= F f T s2.

not true?([[E]]s ′1) and not true?([[E]]s ′2). Then F f T s1 = T s1 and
F f T s2 = T s2, and the claim is trivial.

true?([[E]]s ′1) but not true?([[E]]s ′2). If w 6∈ G0, then by the logic, for all
x ∈ fv(E), [x n w] ∈ T# implying T s1

x
= T s2, that is s ′1(x) = s ′2(x). By

Property 2.1 this implies [[E]]s ′1 = [[E]]s ′2 – a contradiction. Thus w ∈ G0. Since
[z n w] ∈ T#, we infer from the logic that z 6= ⊥. Thus, z is a variable.

By Lemma 4.6 (applied to the sub-derivation), we infer that z 6∈ modified(C0).
We know that F f T s1 = f([[C0]]T)s1 and F f T s2 = T s2. We can assume
that F f T s1 6= ⊥, as otherwise the claim vacuously holds. By Lemma 2.5,
[[C0]]T s1 z = T s1 z, and, by the same lemma, f([[C0]]T) s1 z = [[C0]]T s1 z. So
we have the desired relation:

F f T s1 z = f([[C0]]T)s1 z = T s1 z = T s2 z = F f T s2 z.

We have proved (1). We must now prove P([[C]]), that is P(tifi). So assume
that T |= T# and that [z n w] ∈ T# and that s1 =

w
s2; we must prove that

[[C]]T s1
z
= [[C]]T s2. By Fact 2.2, there exists j such that [[C]]T s1 = fj T s1 and

[[C]]T s2 = fj T s2. The claim now follows from (1).

[Sub]. Assume that

G ` {T
#
0 } C {T#}

because with G ⊆ G0 and T
#
0 � T

#
1 and T

#
2 � T# we have

G0 ` {T
#
1 } C {T

#
2 }.

From our assumption T |= T
#
0 we infer by Fact 3.4 that T |= T

#
1 , so inductively

we can assume that [[C]]T |= T
#
2 . One more application of Fact 3.4 then yields

the desired result.

19

6 An Application of the Logic: Forward Slicing

In this section we shall see how to compute the “low” forward slice of a program
P. That is, we focus on one particular “high” variable h, and eliminate all
commands in P that may depend on h, yielding a “slice” P ′. With l1 . . . ln the
variables not depending on h in P (and thus considered “low”), our aim is that
P ′ should be equivalent to P on l1 . . . ln. Then a user, wanting to compute the
low variables but (for security reasons) not given clearance to view h, could
be given P ′ to run, rather than P.

The slicing function S is defined in Fig. 4, inductively on derivations in the
logic (Fig. 3.) The idea is to replace by skip (i) assignments to variables that
may depend on h; (ii) conditionals and loops whose test may depend on h.

With s1, s2 ∈ Sto⊥, we write s1
T#

= s2 to denote that s1
z
= s2 holds for all

z ∈ Var ∪ {⊥} such that [z n h] ∈ T#. We can now formulate correctness of
slicing:

Theorem 6.1 Let D be a derivation for the judgement G ` {T
#
0 } C {T#}, and

let S(D) = C ′. Then [[C]]T s
T#

= [[C ′]]T s.

In particular, if T# = {[l n h], [⊥ n h]} we can infer that either [[C]]T s and
[[C ′]]T s are both ⊥, or they are both 6= ⊥ and agree on l.

On the other hand, if T# contains only [l n h] we can infer only partial
correctness; it may happen that [[C]]T s = ⊥ but [[C ′]]T s 6= ⊥. For an example
of that, consider the program while h > 0 do skip; it can be given a derivation

{h} ` {{[l n h], [h n l]}} skip {{[l n h], [h n l]}}

∅ ` {{[l n h], [h n l]}} while h > 0 do skip {{[l n h], [h n l]}}

which by S is transformed into skip.

Theorem 6.1 follows immediately from the following main lemma, facilitating
a proof by induction.

Lemma 6.2 Let D be a derivation for the judgement G ` {T
#
0 } C {T#}, and

let S(D) = C ′.

If T1 s
T#

0= T2 s then [[C]]T1 s
T#

= [[C ′]]T2 s.

PROOF. Induction in the derivation, where in all cases, we can assume that

T1 s 6= ⊥ and T2 s 6= ⊥.

20

[Assign] G ` {T
#
0 } x := E {T#} ⇒ x := E, if [x n h] ∈ T#

skip, if [x n h] 6∈ T#

[Seq]

D1︷ ︸︸ ︷
G ` {T

#
0 } C1 {T

#
1 }

D2︷ ︸︸ ︷
G ` {T

#
1 } C2 {T

#
2 }

G ` {T
#
0 } C1 ; C2 {T

#
2 }

⇒ S(D1) ;S(D2)

[If]

D1︷ ︸︸ ︷
G0 ` {T

#
0 } C1 {T#}

D2︷ ︸︸ ︷
G0 ` {T

#
0 } C2 {T#}

G ` {T
#
0 } if E then C1 else C2 {T#}

⇒ if E then S(D1) else S(D2), if h 6∈ G0

skip, if h ∈ G0

[While]

D0︷ ︸︸ ︷
G0 ` {T#} C {T#}

G ` {T#} while E do C {T#}
⇒while E do S(D0), if h 6∈ G0

skip, if h ∈ G0

[Sub]

D0︷ ︸︸ ︷
G1 ` {T

#
1 } C {T

#
2 }

G0 ` {T
#
0 } C {T

#
3 }

⇒ S(D0)

Fig. 4. Forward Slicing: the slicing function S.

For if that is not the case, then (by Fact 2.4) we have [[C]]T1 s = ⊥ or [[C ′]]T2 s =

⊥. We would therefore have the desired relation [[C]]T1 s
z
= [[C ′]]T2 s for all

z ∈ Var, but must still consider the case [⊥ n h] ∈ T#. Then by Fact 4.4 we

infer that [⊥ n h] ∈ T
#
0 and therefore T1 s

⊥
= T2 s implying T1 s = T2 s = ⊥;

by Fact 2.4 this implies [[C]]T1 s = [[C ′]]T2 s = ⊥ and therefore the desired

relation [[C]]T1 s
⊥
= [[C ′]]T2 s.

We now embark on a case analysis.

21

[Assign]. Given [z n h] ∈ T#, we must show

[[C]]T1 s
z
= [[C ′]]T2 s.

If z = ⊥, the claim is trivial, since [[C]]T1 s 6= ⊥ and [[C ′]]T2 s 6= ⊥. So assume
that z 6= ⊥.

If z 6= x, then [z n h] ∈ T
#
0 , implying T1 s z = T2 s z. So no matter whether

C ′ is x := E or skip, we have the desired equality

[[C]]T1 s z = T1 s z = T2 s z = [[C ′]]T2 s z.

Now assume that z = x, in which case Fig. 4 tells us that C ′ = C, and where
the side conditions from Fig. 3 tell us that for all y ∈ fv(E), [y n h] ∈ T

#
0 and

thus T1 s y = T2 s y. Therefore, using Property 2.1, [[E]](T1 s) = [[E]](T2 s).
Again we therefore get the desired equality

[[C]]T1 s z = [[E]](T1 s) = [[E]](T2 s) = [[C ′]]T2 s z.

[Seq]. Assume that with C of the form C1 ; C2, the derivation D of G `
{T

#
0 } C {T#} has two children: a derivation D1 of a judgement G ` {T

#
0 } C1 {T

#
1 },

and a derivation D2 of a judgement G ` {T
#
1 } C2 {T#}. With C ′

1 = S(D1) and
C ′

2 = S(D2), we have C ′ = S(D) = C ′
1 ; C ′

2.

Inductively on D1, we from T1 s
T#

0= T2 s infer [[C1]]T1 s
T#

1= [[C ′
1]]T2 s; inductively

on D2, we further infer [[C2]]([[C1]]T1) s
T#

= [[C ′
2]]([[C

′
1]]T2) s which amounts to

the desired equality [[C]]T1 s
T#

= [[C ′]]T2 s.

[Sub]. Assume that the derivation D of G ` {T
#
0 } C {T#} has as child a deriva-

tion D0 of a judgment G0 ` {T
#
1 } C {T

#
2 }, where G ⊆ G0 and T

#
0 � T

#
1

and T
#
2 � T#. Here C ′ = S(D) = S(D0). Our assumption T1 s

T#
0= T2 s

clearly implies T1 s
T#

1= T2 s (as T
#
1 ⊆ T

#
0); inductively on D0 we can thus in-

fer that [[C]]T1 s
T#

2= [[C ′]]T2 s which (as T# ⊆ T
#
2) implies the desired equality

[[C]]T1 s
T#

= [[C ′]]T2 s.

[If]. Assume that with C of the form if E then C1 else C2, the derivation

D of G ` {T
#
0 } C {T#} has two children: a derivation D1 of a judgement

G0 ` {T
#
0 } C1 {T#}, and a derivation D2 of a judgement G0 ` {T

#
0 } C2 {T#}.

Let C ′
1 = S(D1), and C ′

2 = S(D2). Looking at Fig. 4, we see that there are
two subcases:

C ′ = if E then C ′
1 else C ′

2, with h /∈ G0. The side condition in Fig. 3 tells

22

us that for all x ∈ fv(E) it holds that [x n h] ∈ T
#
0 and thus T1 s x = T2 s x.

Therefore, using Property 2.1, [[E]](T1 s) = [[E]](T2 s); we can assume wlog. that
this value satisfies true?. Thus [[C]]T1 s = [[C1]]T1 s and [[C ′]]T2 s = [[C ′

1]]T2 s;

this amounts to the desired equality [[C]]T1 s
T#

= [[C ′]]T2 s since inductively on

D1 we infer that [[C1]]T1 s
T#

= [[C ′
1]]T2 s.

C ′ = skip, with h ∈ G0. Let [z n h] ∈ T# be given; we must show that

[[C]]T1 s
z
= [[C ′]]T2 s.

If z = ⊥, Lemma 4.5 (applied to D1 and D2) tells us that [[C1]]T1 s 6= ⊥
and [[C2]]T1 s 6= ⊥; thus [[C]]T1 s 6= ⊥, yielding the claim (since trivially,
[[C ′]]T2 s 6= ⊥).

We thus now assume that z ∈ Var; from Lemma 4.6 (applied to D1 and D2)
we then infer that

• z /∈ modified(C1) and z /∈ modified(C2), and therefore z /∈ modified(C)

which by Lemma 2.5 implies that [[C]] preserves z;
• [z n h] ∈ T

#
0 , implying that T1 s z = T2 s z.

If [[C]]T1 s = ⊥, the claim is trivial; otherwise we from the above infer the
desired equality:

[[C]]T1 s z = T1 s z = T2 s z = [[C ′]]T2 s z.

[While]. Assume that with C of the form while E do C0, and with T
#
0 = T#,

the derivation D of G ` {T
#
0 } C {T#} has one child: a derivation D0 of a

judgement G0 ` {T#} C0 {T#}. Let C ′
0 = S(D0). Looking at Fig. 4, we see that

there are two subcases:

C ′ = while E do C ′
0, with h /∈ G0. Let F be the functor of C, let F ′ be the

functor of C ′, let fi (i ≥ 0) be the iterands of C, and let f ′i (i ≥ 0) be the
iterands of C ′. We shall prove by induction in i that

for all T1, T2, s: T1 s
T#

= T2 s implies fi T1 s
T#

= f ′i T2 s. (1)

In all cases, we can assume that T1 s 6= ⊥ and T2 s 6= ⊥. For if that is not
the case, then (by Fact 2.4) we have fi T1 s = ⊥ or f ′i T2 s = ⊥, which would
imply the desired judgement, except if [⊥ n h] ∈ T# in which case we must
show that fi T1 s = f ′i T2 s = ⊥ which (by Fact 2.4) can be done by showing

T1 s = T2 s = ⊥. But this follows from T1 s
⊥
= T2 s.

For i = 0, the claim is obvious, since ⊥ T#

= ⊥ always holds. Now consider

23

the inductive step, where we must prove that T1 s
T#

= T2 s implies F fi T1 s
T#

=

F ′ f ′i T2 s. Since h /∈ G0, the side condition in Fig. 3 tells us that for all
x ∈ fv(E) it holds that [x n h] ∈ T# and thus T1 s x = T2 s x. Therefore,
using Property 2.1, [[E]](T1 s) = [[E]](T2 s).

If this value does not satisfy true?, then F fi T1 s = T1 s and F ′ f ′i T2 s = T2 s,
trivially implying the claim. Otherwise, our task is to prove that

fi ([[C0]]T1) s
T#

= f ′i ([[C ′
0]]T2) s.

By applying the overall induction hypothesis on D0, we infer that [[C0]]T1 s
T#

=

[[C ′
0]]T2 s; the claim then follows by applying the innermost induction hypoth-

esis.

We can now return to our main task, proving that [[C]]T1 s
T#

= [[C ′]]T2 s (where

we are given that T1 s
T#

0= T2 s). But by Fact 2.2 there exists j such that
[[C]]T1 s = fj T1 s and [[C ′]]T2 s = f ′j T2 s; therefore (1) yields the claim.

C ′ = skip, with h ∈ G0. Let [z n h] ∈ T# be given; we must show that

[[C]]T1 s
z
= [[C ′]]T2 s.

The side condition in Fig. 3 tells us that z ∈ Var; from Lemma 4.6 (applied to
D0) we then infer that z /∈ modified(C0) = modified(C) which by Lemma 2.5
implies that [[C]] preserves z. If [[C]]T1 s = ⊥, the claim is trivial; otherwise,
the desired equality follows from the calculation

[[C]]T1 s z = T1 s z = T2 s z = [[C ′]]T2 s z

where the second equality follows from [z n h] ∈ T#.

Example 6.3 (Illustrating forward slicing.) For the program l := h ; l := 0,
the forward slice is skip ; l := 0, because we lose the independence [l n h]

after l := h. For the program h := l ; l := h, the forward slice is h := l ; l := h

itself, since we retain the independence [l n h] after each of the commands
in the sequence, and since the first command establishes the independence
[h n h].

7 Computing Independences

In Fig. 5 we define a function

sp : Context×Cmd× Independ → Independ

24

with the intuition (formalized below) that given a control dependence G, a
command C and a precondition T#, sp(G, C, T#) computes a postcondition
T

#
1 such that G ` {T#} C {T

#
1 } holds, and T

#
1 is the “largest” set (wrt. the sub-

set ordering) that makes the judgement hold. Thus we compute the “strongest
provable postcondition”, which might differ5 from the strongest semantic post-
condition, that is, the largest set T

#
1 such that for all T , if T |= T# then

[[C]](T) |= T
#
1 .

In a companion technical report (Amtoft and Banerjee, 2004a, Appendix A),
we show how to also compute “weakest precondition”; we conjecture that
the development in Sect. 8 could alternatively be carried out using weakest
precondition instead of strongest postcondition.

We now explain two of the cases in Fig. 5. In an assignment, x := E, the
postcondition carries over all independences [y n w] in the precondition if
y 6= x; these independences are unaffected by the assignment to x. Suppose
that w does not occur in context G. Then x is not control dependent on w.
Moreover, if all variables referenced in E are independent of w, then [x n w]

will be in the postcondition of the assignment.

The case for while is best explained by means of an example.

Example 7.1 Consider the program

C = n := 0 ;while y > n do l := x ; x := y ; y := h ; n := n + 1.

Let T
#
0 . . . T

#
12 be given by the following table, where V denotes the set

{h, l, n, x, y}. For reasons of space, we will represent a non-empty set as the
concatenation of its elements in the table – thus {h, l, n, x} is represented as
hlnx. For example, the entry in the column for T

#
6 and in the row for x shows

5 For example, let C = l := h − h and T# = {[l n h]}. Then [l n h] is in the
strongest semantic postcondition, since for all T and all s1, s2 we have [[C]]T s1

l
=

[[C]]T s2 and therefore [[C]]T |= [l n h], but not in the strongest provable postcon-
dition.

25

that [x n h] ∈ T
#
6 and [x n l] ∈ T

#
6 and [x n n] ∈ T

#
6 .

T
#
0 T

#
1 T

#
2 T

#
3 T

#
4 T

#
5 T

#
6 T

#
7 T

#
8 T

#
9 T

#
10 T

#
11 T

#
12

h n lnxy lnxy lnxy lnxy lnxy lnxy lnxy lnxy lnxy lnxy lnxy lnxy lnxy

n n hlxy V V V V hlnx hlnx hlnx hlnx lnx lnx lnx lnx

l n hnxy hnxy hln hln hln hln hn ln ln ln n ln ln

x n hlny hlny hlny hlnx hlnx hlnx hln hln lnx lnx ln ln lnx

y n hlnx hlnx hlnx hlnx lnx lnx lnx lnx lnx lnx lnx lnx lnx

⊥ n V V V V V V hlnx hlnx hlnx hlnx lnx lnx lnx

Our goal is to compute sp(∅, C, T
#
0) and doing so involves the fixpoint com-

putation sketched below.

Iteration

first second third

while y > n do T
#
1 T

#
6 T

#
10

G0 : {y} {h, y} {h, y}

l := x T
#
2 T

#
7 T

#
11

x := y T
#
3 T

#
8 T

#
12

y := h T
#
4 T

#
8 T

#
12

n := n + 1 T
#
5 T

#
9 T

#
12

∩ T
#
1 \ [⊥ n G0] T

#
6 T

#
10 T

#
10

For example, the entry T
#
9 in the column marked “second” and in the row

marked “n := n + 1”, denotes that sp({h, y}, n := n + 1, T
#
8) = T

#
9 .

Note that at the end of the first iteration, the independence set is T
#
6 and

[l n h] is still present; it takes a second iteration – the independence set is
then T

#
10 – to filter [l n h] out and thus detect insecurity. The third iteration

affirms that T
#
10 is indeed a fixpoint (of the functional HT#

1 ,∅
while defined in Fig. 5).

Theorem 7.3 states the correctness of the function sp, that it indeed computes
a postcondition. Then, Theorem 7.4 states that the postcondition computed

26

sp(G, x := E, T
#
0) =

{[y n w] | (y 6= x ∨ y = ⊥) ∧ [y n w] ∈ T
#
0 }

∪ {[x n w] | w /∈ G ∧ ∀y ∈ fv(E) • [y n w] ∈ T
#
0 }

sp(G, C1 ; C2, T
#
0) = sp(G, C2, sp(G, C1, T

#
0))

sp(G, if E then C1 else C2, T
#
0) =

let G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T
#
0 }

T
#
1 = sp(G0, C1, T

#
0)

T
#
2 = sp(G0, C2, T

#
0)

in T
#
1 ∩ T

#
2

sp(G,while E do C0, T
#
0) =

let HT#
0 ,G

C : Independ → Independ be given by (C = while E do C0)

HT#
0 ,G

C (T#) =

let G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T#}

in (sp(G0, C0, T
#) ∩ T

#
0) \ {[⊥ n w] | w ∈ G0}

in lfp(HT#
0 ,G

C)

Fig. 5. Strongest Postcondition.

by sp is the strongest postcondition. We shall rely on the following property:

Lemma 7.2 (Monotonicity) For all commands C, the following holds (for
all G,G1,T

#,T#
1):

(1) sp(G, C, T#) is well-defined;
(2) HT#,G

C (when C is a while loop) is a monotone function;
(3) if G ⊆ G1 then sp(G, C, T#) � sp(G1, C, T#);
(4) if T# � T

#
1 then sp(G, C, T#) � sp(G, C, T

#
1).

PROOF. Induction in C, where the four parts of the lemma are proved si-
multaneously. We do a case analysis on C; the only non-trivial case is where
C is of the form while E do C0.

Using the induction hypothesis on C0, we infer that for all T
#
0 , G it holds

that HT#
0 ,G

C is a monotone function on the complete lattice Independ. Hence

lfp(HT#
0 ,G

C), and thus sp(G, C, T
#
0), is indeed well-defined.

Next assume that T# � T
#
1 and that G ⊆ G1. Then clearly HT#,G

C � HT#
1 ,G1

C

(by the pointwise ordering) and therefore lfp(HT#,G
C) � lfp(HT#

1 ,G1

C) which
amounts to the desired relation sp(G, C, T#) � sp(G1, C, T

#
1).

27

Theorem 7.3 For all C, G, T
#
0 , it holds that G ` {T

#
0 } C {sp(G, C, T

#
0)}.

PROOF. Go by structural induction on C; we perform a case analysis.

C = x := E. Let T# = sp(G, C, T
#
0), and assume [z n w] ∈ T#. There are two

cases:

• if z 6= x then [z n w] ∈ T
#
0 .

• if z = x then w /∈ G, and ∀y ∈ fv(E) • [y n w] ∈ T
#
0 .

This establishes G ` {T
#
0 } C {T#}.

C = C1 ; C2. Assume that sp(G, C1 ; C2, T
#
0) = T# because T# = sp(G, C2, T

#
1)

where T
#
1 = sp(G, C1, T

#
0). By the induction hypothesis on C1 and on C2, we

have

G ` {T
#
0 } C1 {T

#
1 } and G ` {T

#
1 } C2 {T#}

from which we infer the desired relation G ` {T
#
0 } C1 ; C2 {T#}.

C = if E then C1 else C2. Assume that sp(G, if E then C1 else C2, T
#
0) =

T# because G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T
#
0 }, T

#
1 = sp(G0, C1, T

#
0)

and T
#
2 = sp(G0, C2, T

#
0) and T# = T

#
1 ∩ T

#
2 . Inductively, we have

G0 ` {T
#
0 } C1 {T

#
1 } and G0 ` {T

#
0 } C2 {T

#
2 }.

As T# ⊆ T
#
1 and T# ⊆ T

#
2 we have T

#
1 � T# and T

#
2 � T#; by [Sub], this

implies

G0 ` {T
#
0 } C1 {T#} and G0 ` {T

#
0 } C2 {T#}.

This establishes the desired G ` {T
#
0 } if E then C1 else C2 {T#}, since G ⊆

G0 and w /∈ G0 implies ∀x ∈ fv(E) • [x n w] ∈ T
#
0 .

C = while E do C0. Assume that sp(G, C, T
#
0) = T# so we want to prove

G ` {T
#
0 } C {T#}. We have T# = lfp(HT#

0 ,G

C). By definition of a fixpoint,

T# = HT#
0 ,G

C (T#). Thus

T# = (sp(G0, C0, T
#) ∩ T

#
0) \ {[⊥ n w] | w ∈ G0}

where G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T#}. Hence sp(G0, C0, T
#) � T#

and T
#
0 � T#. We claim G ` {T#} C {T#}, which by [Sub] implies the desired

G ` {T
#
0 } C {T#}.

28

It remains to prove the claim, G ` {T#} C {T#}. By the induction hypothesis
on C0 we have G0 ` {T#} C0 {sp(G0, C0, T

#)} and by [Sub] therefore

G0 ` {T#} C0 {T#}.

Now we get G ` {T#} C {T#} by an application of [While] because G ⊆ G0,
because w /∈ G0 implies ∀x ∈ fv(E) • [x n w] ∈ T#, and because if w ∈ G0

then [⊥ n w] /∈ T#.

Theorem 7.4 For all judgements G ` {T
#
0 } C {T#}, sp(G, C, T

#
0) � T#.

PROOF. We perform induction in the derivation of G ` {T
#
0 } C {T#}, and

do a case analysis on the last rule applied:

[Sub]. Assume that G ` {T
#
0 } C {T#} because with G ⊆ G1 and T

#
0 � T

#
2 and

T
#
3 � T# we have G1 ` {T

#
2 } C {T

#
3 }. Applying the induction hypothesis on

that derivation, we get

sp(G1, C, T
#
2) � T

#
3

and by Lemma 7.2 we get sp(G, C, T
#
0) � sp(G1, C, T

#
2). This yields the desired

relation

sp(G, C, T
#
0) � T

#
3 � T#.

[Assign], with C = x := E. Assume that G ` {T
#
0 } C {T#}, and let T

#
1 =

sp(G, C, T
#
0). We want T

#
1 � T#. Accordingly, assume [y n w] ∈ T# to show

[y n w] ∈ T
#
1 . We have two cases:

• x 6= y. Then [y n w] ∈ T
#
0 ; hence [y n w] ∈ T

#
1 by the definition of sp.

• x = y. Then w /∈ G and ∀z ∈ fv(E) • [z n w] ∈ T
#
0 ; hence [y n w] ∈ T

#
1

by the definition of sp.

[Seq], with C = C1 ; C2. Assume G ` {T
#
0 } C {T#} because G ` {T

#
0 } C1 {T

#
2 }

and G ` {T
#
2 } C2 {T#}. By the induction hypothesis on these derivations,

sp(G, C1, T
#
0) � T

#
2 and sp(G, C2, T

#
2) � T#

which by Lemma 7.2 enables us to infer that

sp(G, C2, sp(G, C1, T
#
0)) � T#.

This is as desired, since sp(G, C1 ; C2, T
#
0) = sp(G, C2, sp(G, C1, T

#
0)).

29

[If], with C = if E then C1 else C2. Assume that G ` {T
#
0 } C {T#} because

G1 ` {T
#
0 } C1 {T#} and G1 ` {T

#
0 } C2 {T#} where G ⊆ G1 and where w /∈ G1

implies that ∀x ∈ fv(E) • [x n w] ∈ T
#
0 . Inductively, via the judgements for

C1 and C2, we obtain

sp(G1, C1, T
#
0) � T# and sp(G1, C2, T

#
0) � T#.

Let G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T
#
0 }. Note that G0 ⊆ G1. Thus by

Lemma 7.2 we get

sp(G0, C1, T
#
0) � T# and sp(G0, C2, T

#
0) � T#.

This yields the claim since sp(G, C, T
#
0) = sp(G0, C1, T

#
0) ∩ sp(G0, C2, T

#
0).

[While], with C = while E do C0. Assume that G ` {T#} C {T#} because G1 `
{T#} C0 {T#} where G ⊆ G1, and where w /∈ G1 implies that ∀x ∈ fv(E) •
[x n w] ∈ T#, and where [⊥ n w] ∈ T# implies w /∈ G1. Assume T

#
1 =

sp(G, C, T#) to show T
#
1 � T#. By the definition of sp, T

#
1 = lfp(HT#,G

C). Let
G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T#}; then

HT#,G
C (T#) = (sp(G0, C0, T

#) ∩ T#) \ {[⊥ n w] | w ∈ G0}

⊇ (sp(G1, C0, T
#) ∩ T#) \ {[⊥ n w] | w ∈ G1} = T#

Here the set inclusion follows from the observation that G0 ⊆ G1 and an
application of Lemma 7.2; the last equality follows since w ∈ G1 implies [⊥ n
w] /∈ T#, and since the induction hypothesis tells us that sp(G1, C0, T

#) � T#.

This shows that HT#,G
C is reductive at T#, that is HT#,G

C (T#) � T#, so by
Tarski’s theorem we infer the desired relation T

#
1 = lfp(HT#,G

C) � T#.

The following result, where we clearly cannot allow y = ⊥, is useful for the
developments in Sections 8:

Lemma 7.5 Given C, and y ∈ Var with y /∈ modified(C). Then for all T
#
0 ,

G, w:

[y n w] ∈ T
#
0 implies [y n w] ∈ sp(G, C, T

#
0).

PROOF. Go by structural induction on C; we perform a case analysis. In
each case, our assumption is that y /∈ modified(C) and that [y n w] ∈ T

#
0 ;

we must show [y n w] ∈ sp(G, C, T
#
0).

C = x := E. Our assumptions imply that y 6= x, from which the result trivially
follows.

30

C = C1 ; C2. Since y /∈ modified(C1) we can apply the induction hypoth-

esis on C1, giving us [y n w] ∈ sp(G, C1, T
#
0). Since y /∈ modified(C2)

we can then apply the induction hypothesis on C2, giving us [y n w] ∈
sp(G, C2, sp(G, C1, T

#
0)). This yields the claim.

C = if E then C1 else C2. Since y /∈ modified(C1) and y /∈ modified(C2), we
can apply the induction hypothesis twice, yielding (using the terminology in
Fig. 5)

[y n w] ∈ T
#
1 and [y n w] ∈ T

#
2 .

Since sp(G, C, T
#
0) = T

#
1 ∩ T

#
2 , this yields the claim.

C = while E do C0. Let T# = sp(G, C, T
#
0), then T# = lfp(HT#

0 ,G

C). Define

T
#
1 = T# ∪ {[y n w]}

and let G0 be as in Fig. 5. By applying the induction hypothesis on C0 (possible
since y /∈ modified(C0)) we get [y n w] ∈ sp(G0, C0, T

#
1); since [y n w] ∈ T

#
0

and y 6= ⊥ this implies

[y n w] ∈ HT#
0 ,G

C (T#
1). (1)

Since HT#
0 ,G

C is a monotone function (by Lemma 7.2), we from T
#
1 � T# infer

that HT#
0 ,G

C (T#
1) � HT#

0 ,G

C (T#) = T# and thus

T# ⊆ HT#
0 ,G

C (T#
1). (2)

Combining (1) and (2), we infer T
#
1 ⊆ HT#

0 ,G

C (T#
1), that is HT#

0 ,G

C (T#
1) � T

#
1 .

This shows that HT#
0 ,G

C is reductive at T
#
1 , so by Tarski’s theorem we infer

T# = lfp(HT#
0 ,G

C) � T
#
1 , that is T

#
1 ⊆ T#. This demonstrates that [y n w] ∈

T#, as desired.

8 Modular Reasoning and the Frame Rule

Although we have not emphasized it in this article, it is possible to state the
logic in Fig. 3 in a way such that the judgements for a particular command
mention only the variables relevant to the command. In this manner, one may
obtain “small specifications” (O’Hearn et al., 2001) for every command. For
instance, the rule for assignment could be rewritten as:

31

[Assign] G ` {T
#
0 } x := E {T#}

if ∀[y n w] ∈ T# • (y = x ∧

w /∈ G ∧ ∀z ∈ fv(E) • [z n w] ∈ T
#
0)

An independence [y n w] with y 6= x is invariant with respect to x := E, since
y is not modified, and hence there is no need to mention it. If it is required in a
larger context, as in a sequential composition, it can be retrieved using a frame
rule, as in separation logic (Ishtiaq and O’Hearn, 2001; Reynolds, 2002). The
frame rule is motivated by the desire for local reasoning: if C1 and C2 modify
disjoint regions of a heap, reasoning about C1 can be performed independently
of the reasoning about C2. In our setting, with lhs(T#) = {y | [y n w] ∈ T#},
we can state the frame rule as

[Frame]
G ` {T

#
0 } C {T#}

G ` {T
#
0 ∪ T

#
1 } C {T# ∪ T

#
1 }

if modified(C) ∩ lhs(T#
1) = ∅

and ⊥ /∈ lhs(T#
1)

In the rest of this section, we will show results about modular reasoning in
the context of the calculation of strongest postconditions; this entails (Corol-
lary 8.3) that [Frame] as stated above is indeed admissible. For a development
where the frame rule plays a key rôle, we refer the interested reader to our
more recent work (Amtoft et al., 2006).

Theorem 8.1 (Frame rule (I)) Given T
#
0 and C. Then for all T#, G:

(1) If lhs(T#
0) ⊆ Var and lhs(T#

0) ∩modified(C) = ∅
then sp(G, C, T# ∪ T

#
0) ⊇ sp(G, C, T#) ∪ T

#
0 .

(2) If lhs(T#
0) ⊆ Var and lhs(T#

0) ∩ fv(C) = ∅
then sp(G, C, T# ∪ T

#
0) = sp(G, C, T#) ∪ T

#
0 .

Note that the weaker premise in 1 does not imply the stronger consequence
in 2, since (with [z n w] playing the role of T

#
0)

sp(∅, x := y + z, {[y n w]} ∪ {[z n w]})= {[y n w], [z n w], [x n w]}

sp(∅, x := y + z, {[y n w]}) ∪ {[z n w]} = {[y n w], [z n w]}.

Theorem 8.1 is proved by observing that part (1) follows from Lemmas 7.5
and 7.2; then part (2) follows using the following result:

Lemma 8.2 Let T
#
0 and C be given, with lhs(T#

0) ⊆ Var and lhs(T#
0) ∩

fv(C) = ∅. Then for all T# and G, sp(G, C, T# ∪ T
#
0) ⊆ sp(G, C, T#) ∪ T

#
0 .

PROOF. Go by structural induction on C; we perform a case analysis.

32

C = x := E. The claim follows from the following calculation, using that lhs(T#
0)∩

fv(E) = ∅ and that x /∈ lhs(T#
0).

sp(G, C, T# ∪ T
#
0)

= {[y n w] | y 6= x ∧ [y n w] ∈ T# ∪ T
#
0 } ∪

{[x n w] | w /∈ G ∧ ∀y ∈ fv(E) • [y n w] ∈ T# ∪ T
#
0 }

= {[y n w] | y 6= x ∧ [y n w] ∈ T# ∪ T
#
0 } ∪

{[x n w] | w /∈ G ∧ ∀y ∈ fv(E) • [y n w] ∈ T#}

= T
#
0 ∪ {[y n w] | y 6= x ∧ [y n w] ∈ T#} ∪

{[x n w] | w /∈ G ∧ ∀y ∈ fv(E) • [y n w] ∈ T#}

= T
#
0 ∪ sp(G, C, T#)

C = C1 ; C2. Using our induction hypothesis and Lemma 7.2, we get

sp(G, C, T# ∪ T
#
0) = sp(G, C2, sp(G, C1, T

∪ T
#
0))

⊆ sp(G, C2, sp(G, C1, T
#) ∪ T

#
0) ⊆ sp(G, C2, sp(G, C1, T

#)) ∪ T
#
0

= sp(G, C, T#) ∪ T
#
0

C = if E then C1 else C2. Let

G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T# ∪ T
#
0 }

where our assumptions imply that lhs(T#
0) ∩ fv(E) = ∅ and therefore also

G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T#}.

Using the induction hypothesis, we now get

sp(G, C, T# ∪ T
#
0) = sp(G0, C1, T

∪ T
#
0) ∩ sp(G0, C2, T

∪ T
#
0)

⊆ (sp(G0, C1, T
#) ∪ T

#
0) ∩ (sp(G0, C2, T

#) ∪ T
#
0)

= (sp(G0, C1, T
#) ∩ sp(G0, C2, T

#)) ∪ T
#
0

= sp(G, C, T#) ∪ T
#
0

33

C = while E do C0. Let H = HT#,G
C and let H0 = HT#∪T#

0 ,G

C , we must show

that lfp(H0) ⊆ lfp(H) ∪ T
#
0 . Define T

#
1 = lfp(H0), and let

G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T
#
1 \ T

#
0 }

where our assumptions imply that lhs(T#
0) ∩ fv(E) = ∅ and therefore also

G0 = G ∪ {w | ∃x ∈ fv(E) • [x n w] /∈ T
#
1 }.

Using Lemma 7.2 and our induction hypothesis on C0 we get (where T
#
⊥ de-

notes {[⊥ n w] | w ∈ G0})

T
#
1 \ T

#
0 = H0(T

#
1) \ T

#
0

= ((sp(G0, C0, T
#
1) ∩ (T# ∪ T

#
0)) \ T

#
⊥) \ T

#
0

= (sp(G0, C0, T
#
1) ∩ T#) \ T

#
0 \ T

#
⊥

⊆ (sp(G0, C0, (T
#
1 \ T

#
0) ∪ T

#
0) ∩ T#) \ T

#
0 \ T

#
⊥

⊆ ((sp(G0, C0, (T
#
1 \ T

#
0)) ∪ T

#
0) ∩ T#) \ T

#
0 \ T

#
⊥

⊆ (sp(G0, C0, (T
#
1 \ T

#
0)) ∩ T#) \ T

#
⊥

= H(T#
1 \ T

#
0)

We have proved H(T#
1 \ T

#
0) � T

#
1 \ T

#
0 . This shows that H is reductive at

T
#
1 \ T

#
0 , so by Tarski’s theorem we infer lfp(H) � T

#
1 \ T

#
0 . This implies the

desired relation

lfp(H0) = T
#
1 ⊆ (T#

1 \ T
#
0) ∪ T

#
0 ⊆ lfp(H) ∪ T

#
0 .

As a consequence of Theorem 8.1, we get the following result:

Corollary 8.3 (Frame rule (II)) Assume that G ` {T
#
1 } C {T

#
2 } and that

lhs(T#
0) ∩ (modified(C) ∪ {⊥}) = ∅. Then G ` {T

#
1 ∪ T

#
0 } C {T

#
2 ∪ T

#
0 }.

PROOF. Using Theorems 8.1 and 7.4 we get

sp(G, C, T
#
1 ∪ T

#
0) ⊇ sp(G, C, T

#
1) ∪ T

#
0 ⊇ T

#
2 ∪ T

#
0 .

Since by Theorem 7.3 we have G ` {T
#
1 ∪ T

#
0 } C {sp(G, C, T

#
1 ∪ T

#
0)}, the result

follows by [Sub].

Example 8.4 Assume that

G ` {T
#
1 } C1 {T

#
3 } and G ` {T

#
2 } C2 {T

#
4 }.

34

Γ, x : (T, κ) ` E : (T, κ)

Γ, x : (T, κ) ` x := E : (com κ)

Γ ` E : (int, κ) Γ ` C1 : (com κ) Γ ` C2 : (com κ)

Γ ` if E then C1 else C2 : (com κ)

Γ ` C1 : (com κ) Γ ` C2 : (com κ)

Γ ` C1 ; C2 : (com κ)

Γ ` E : (int, κ) Γ ` C : (com κ)

Γ ` while E do C : (com κ)

Γ ` C : (com κ1) κ ≤ κ1

Γ ` C : (com κ)

Fig. 6. The Smith-Volpano Type System: Rules for Commands

Further assume that lhs(T#
2) ∩ (modified(C1) ∪ {⊥}) = ∅ and that lhs(T#

3) ∩
(modified(C2) ∪ {⊥}) = ∅. Then Corollary 8.3 yields

G ` {T
#
1 ∪ T

#
2 } C1 {T

#
3 ∪ T

#
2 } and G ` {T

#
3 ∪ T

#
2 } C2 {T

#
3 ∪ T

#
4 }

and therefore G ` {T
#
1 ∪ T

#
2 } C1 ; C2 {T

#
3 ∪ T

#
4 }.

A traditional view of modularity in the security literature is the “hook-up
property” (McCullough, 1987): if two programs are secure then their compo-
sition is secure as well. Our logic satisfies the hook-up property for sequential
composition; in our context, a secure program is one which has [l n h] as an
invariant (if [l n h] is in the precondition, it is also in the strongest postcondi-
tion). With this interpretation, Sabelfeld and Sands’s hook-up theorem holds
(Sabelfeld and Sands, 2001, Theorem 5).

9 The Smith-Volpano Security Type System

In the Smith-Volpano type system (Volpano and Smith, 1997), variables are
labeled by security types; for example, x : (T, κ) means that x has type T and
security level κ. The security typing rules are given in Fig. 6. To handle implicit
flows due to conditionals, the technical development requires commands to
be typed (comκ) with the intention that all variables assigned to in such
commands have level at least κ. The judgement Γ ` C : (com κ) says that in
the security type context Γ that binds free variables in C to security types,
command C has type (com κ).

35

We now show a conservative extension: if a program is well-typed in the Smith-
Volpano system, then for any two preludes, the current values of low variables
are independent of the initial values of high variables. For simplicity, we con-
sider a program with only two variables, h with level H and l with level L.

Theorem 9.1 Assume that C can be given a security type wrt. the environ-
ment h : (, H), l : (, L). Then for all T#, if [l n h] ∈ T# then [l n h] ∈
sp(∅, C, T#).

The upshot of the theorem is that a well-typed program has [l n h] as in-
variant : if [l n h] appears in the precondition, then it also appears in the
strongest postcondition.

The theorem is a straightforward consequence of the following lemma which
facilitates a proof by induction. For L commands, the assumption h 6∈ G in
the lemma says that L commands cannot be control dependent on H guards.

Lemma 9.2 (1) Suppose h : (, H), l : (, L) ` C : (com H). Then for all
G, T#, if [l n h] ∈ T# then [l n h] ∈ sp(G, C, T#).

(2) Suppose h : (, H), l : (, L) ` C : (com L). Then for all G, T#, if [l n h] ∈
T# and h 6∈ G then [l n h] ∈ sp(G, C, T#).

PROOF. We prove the two parts of the lemma in turn. In both cases we go
by induction on the derivation of C (in the system of Fig. 6), with cases on
the last rule used.

(Part 1.)

C = z := E. Clearly, z 6= l as otherwise the assignment cannot be typed. By
definition,

sp(G, z := E, T#) ⊇ {[u n w] | u 6= z ∧ [u n w] ∈ T#} 3 [l n h].

C = C1 ; C2. We have h : (, H), l : (, L) ` C1 : (com H) and h : (, H), l :

(, L) ` C2 : (com H). Inductively, we get

[l n h] ∈ sp(G, C1, T
#) and then [l n h] ∈ sp(G, C2, sp(G, C1, T

#)).

Thus [l n h] ∈ sp(G, C1 ; C2, T
#).

C = if E then C1 else C2. Then h : (, H), l : (, L) ` C1 : (com H) and
h : (, H), l : (, L) ` C2 : (com H). Assume [l n h] ∈ T#. Inductively,

[l n h] ∈ sp(G0, C1, T
#) and [l n h] ∈ sp(G0, C2, T

#)

36

where G0 = G∪{w | ∃x ∈ fv(E)•[x n w] /∈ T#}. Thus [l n h] ∈ sp(G0, C1, T
#)∩

sp(G0, C2, T
#), and we are done.

C = while E do C0. Then h : (, H), l : (, L) ` C0 : (com H). Let T
#
0 =

sp(G, C, T#). Then T
#
0 = lfp(HT#,G

C). Hence T
#
0 = HT#,G

C (T#
0).

Let T
#
1 = T

#
0 ∪ [l n h]. Now

HT#,G
C (T#

1) = (sp(G0, C0, T
#
1) ∩ T#) \ {[⊥ n w] | w ∈ G0}

where G0 = G∪ {w | ∃x ∈ fv(E)• [x n w] /∈ T
#
1 }. Inductively, as [l n h] ∈ T

#
1 ,

we get [l n h] ∈ sp(G0, C0, T
#
1). Thus,

[l n h] ∈ HT#,G
C (T#

1). (1)

Because HT#,G
C is a monotone function, from T

#
1 � T

#
0 we get HT#,G

C (T#
1) �

HT#,G
C (T#

0) = T
#
0 . Thus

T
#
0 ⊆ HT#,G

C (T#
1). (2)

Combining (1) and (2), we get T
#
1 ⊆ HT#,G

C (T#
1), i.e., HT#,G

C (T#
1) � T

#
1 .

This shows that HT#,G
C is reductive at T

#
1 , so by Tarski’s theorem, T

#
0 =

lfp(HT#,G
C) � T

#
1 , that is, T

#
1 ⊆ T

#
0 . Hence [l n h] ∈ T

#
0 .

Subtyping. For the subtyping rule, the result trivially follows by induction on
the smaller derivation tree for C.

This completes Part 1 of the proof.

(Part 2.)

Subtyping. Assume [l n h] ∈ T# and h 6∈ G. By the typing rule, h : (, H), l :

(, L) ` C : (com L) follows because h : (, H), l : (, L) ` C : (com κ1) for
some κ1. If κ1 = L, the result follows inductively. If κ1 = H, then we can apply
Part 1 of the theorem to conclude that [l n h] ∈ sp(G, C, T#) holds for any
G; in particular, it must therefore hold for the G where h 6∈ G.

C = z := E. Assume [l n h] ∈ T# and h 6∈ G. By typing, z : (, L) and
h 6∈ fv(E), as otherwise the assignment cannot be typed. Hence z = l. By
definition6,

6 In case there are several low variables, we would use the argument:

sp(G, z := E, T#) ⊇ {[u n w] | u 6= z ∧ [u n w] ∈ T#} 3 [l n h]

to deal with low variables not assigned to.

37

sp(G, z := E, T#)⊇ {[z n w] | w /∈ G ∧ ∀u ∈ fv(E) • [u n w] ∈ T#}

3 [l n h].

C = C1 ; C2. Easy induction.

C = if E then C1 else C2. By typing, h : (, H), l : (, L) ` E : (int, L).
Hence h 6∈ fv(E) and thus h 6∈ G0, where G0 = G ∪ {w | ∃x ∈ fv(E) •
[x n w] /∈ T#}. Then inductively, we obtain [l n h] ∈ sp(G0, C1, T

#) and
[l n h] ∈ sp(G0, C2, T

#). Hence [l n h] ∈ sp(G0, C1, T
#) ∩ sp(G0, C2, T

#) =

sp(G, C, T#).

C = while E do C0. By typing, h : (, H), l : (, L) ` E : (int, L). Hence
h 6∈ fv(E). Now the proof proceeds similarly to the corresponding case in Part
1 and is omitted, except that we note that to use the induction hypothesis
on the derivation of C0, we need to show h 6∈ G0, where G0 = G ∪ {w | ∃x ∈
fv(E)•[x n w] /∈ T

#
1 }. Since h /∈ G, it is sufficient to show that for all x ∈ fv(E)

it holds that [x n h] ∈ T
#
1 . But this follows since h /∈ fv(E) and [l n h] ∈ T

#
1 .

10 Discussion

Perspective. This article specifies an information flow analysis for confiden-
tiality using a Hoare-like logic and shows an application of the analysis to a
program transformation, namely, slicing. The concrete pre- and post-preludes
of a program are abstracted by independences. Independences can be statically
checked against the logic and can be statically computed using strongest post-
conditions. We also show how the notion of independences underlies a classic
type-based information flow analysis due to Smith and Volpano (1997).

Giacobazzi and Mastroeni (2004) consider attackers as abstract interpretations
and generalize the notion of noninterference by parameterizing it wrt. what an
attacker can analyze about the input/output information flow. For instance,
assume an attacker can only analyze the parity (odd/even) of values. Then

while h do l := l + 2 ; h := h − 1

is secure, although it contains an update of a low variable under a high guard.
We might try to model this approach in our framework by parameterizing
Definition 3.1 wrt. parity, but it is not clear how to alter the proof rules
accordingly. Instead, we envision our logic to be put on top of abstract in-
terpretations. In the parity example, the above program would be abstracted

38

to

while h do h := h − 1

which our logic already deems secure for an attacker not able to observe non-
termination.

Related Work. The most closely related work is that of Clark, Hankin,
and Hunt (2002), who consider a language similar to ours and then extend it
to Idealized Algol, requiring distinguishing between identifiers and locations.
The analysis for Idealized Algol is split in two stages: the first stage does a
control-flow analysis, specified using a flow logic (Nielson et al., 1999). The
second stage specifies what is an acceptable information flow analysis with
respect to the control-flow analysis. The precision of the control-flow analysis
influences the precision of the information flow analysis. Flow logics usually do
not come with a frame rule so it is unclear what modularity properties their
analysis satisfies. For each statement S in the program, they compute the set
of dependences introduced by S; a pair (x, y) is in that set if different values
for y prior to execution of S may result in different values for x after execution
of S. For a complete program, they thus, as expected, compute essentially the
same information as we do, but the information computed locally is different
from ours: we estimate if different initial values of y, i.e., values of y prior
to execution of the whole program, may result in different values for x after
execution of S.

Joshi and Leino (2000) provide an elegant semantic characterization of non-
interference that allows handling both termination-sensitive and termination-
insensitive noninterference. Their notion of security for a command C is equa-
tionally characterized by C ; HH = HH ; C ; HH, where HH means that an
arbitrary value is assigned to a high variable. They show how to express their
notion of security in Dijkstra’s weakest precondition calculus. Although they
do not consider synthesizing loop invariants, this can certainly be done via a
fixpoint computation with weakest preconditions. However, their work is not
concerned with computing dependences.

Darvas, Hähnle and Sands (2004) use dynamic logic to express secure infor-
mation flow in JavaCard. They discuss several ways that noninterference can
be expressed in a program logic, one of which is as follows: consider a program
with variables l and h. Consider another copy of the program with l, h rela-
beled to fresh variables l ′, h ′ respectively. Then, noninterference holds in the
following situation: running the original program and the copy sequentially
such that the initial state satisfies l = l ′ should yield a final state satisfying
l = l ′. They are also interested in showing insecurity, by exhibiting distinct ini-
tial values for high variables that give distinct current values of low variables;

39

to achieve this accuracy, they need the power of a general purpose theorem
prover, which is also helpful in that they can express declassification, as well
as treat exceptions (which most approaches based on static analysis cannot
easily be extended to deal with).

Barthe, D’Argenio and Rezk (2004) use the same idea of self-composition (i.e.,
composing a program with a copy of itself) as Darvas et alii and investigate
“abstract” noninterference (Giacobazzi and Mastroeni, 2004) for several lan-
guages. By parameterizing noninterference with a property, they are able to
handle more general information flow policies, including a form of declassifi-
cation known as delimited information release (Sabelfeld and Myers, 2004).
They show how self-composition can be formulated in logics describing these
languages, namely, Hoare logic, separation logic, linear temporal logic, etc.
They also discuss how to use their results for model checking programs with
finite state spaces to check satisfaction of their generalized definition of non-
interference.

The first work that used a Hoare-style semantics to reason about information
flow was by Andrews and Reitman (1980). Their assertions keep track of the
security level of variables, and are able to deal even with parallel programs.
However, no formal correctness result is stated.

Differences from the Conference Version. Apart from the removal of
some infelicities of notation, we have made three additional contributions not
present in the conference version of this article (Amtoft and Banerjee, 2004b).

• We consider nontermination sensitive noninterference here, compared to
nontermination insensitive noninterference in the conference version. For
that purpose, we needed to add a new kind of independence, which in turn
necessitated changes in the logic – specifically, in the rule for loops.

• To prove the resulting logic semantically correct, the semantics had to be
modified, since the one given in (Amtoft and Banerjee, 2004b) had no ex-
plicit notion of non-termination. As an extra benefit, the resulting denota-
tional semantics is significantly simpler than the previous one.

• We show an application of the logic to forward slicing. Although the connec-
tion between information flow analysis and slicing was explored by Abadi
et. al. (1999), that paper did not provide a means to compute forward slices,
which we present here.

On the other hand, the conference version of this article contained a section
on counterexample generation, which we have chosen to omit here. We feel
that the results might merit a separate paper after some strengthening.

40

Conclusion. The work reported in this article was inspired in part by pre-
sentations by Roberto Giacobazzi and Reiner Hähnle at the Dagstuhl Seminar
on Language-based Security (October 2003). The reported work is only the
first step in our goal to formulate more general definitions of noninterference
in terms of program independence, such that the definitions support modular
reasoning. We are in the process of extending the framework in this article to
handle a richer language, with methods, pointers, objects and dynamic mem-
ory allocation. An obvious goal is interprocedural reasoning about variable
and field independences, perhaps using a higher-order version of the frame
rule (O’Hearn et al., 2004). We would also like to explore, via abstract in-
terpretation and perhaps following Schmidt’s development (Schmidt, 2002),
whether our Hoare-like logic is the “best” possible one with respect to the
underlying abstract interpretation.

Note Added in Print. In work subsequent to this article (Amtoft et al.,
2006), we have extended the framework to handle modular reasoning about
information flow in an object-oriented language. Thus we have addressed one
of the future goals mentioned in the conclusion of this article. Also, in a forth-
coming paper, Hunt and Sands (2006) discuss a flow-sensitive security type
system for a simple imperative language. They show that their flow-sensitive
security type system is equivalent to the logic of independences discussed in
the conference version of this paper Amtoft and Banerjee (2004b).

Acknowledgments. We thank Reiner Hähnle, David Naumann, Peter
O’Hearn, Tamara Rezk, David Sands, and Hongseok Yang, as well as the
participants of the Open Software Quality meeting in Santa Cruz, May 2004,
and the anonymous reviewers of both Static Analysis Symposium (SAS) 2004
as well as this special issue, for useful comments on a draft of this article.
Thanks to Sruthi Bandhakavi for implementing the analysis reported in this
article and for her help with Example 7.1. Thanks to David Schmidt for many
discussions on abstract interpretation. Finally, thanks are due to Roberto Gi-
acobazzi for organizing a very stimulating SAS 2004, and to the city of Verona
for its warmth and its ice creams.

References

Abadi, M., Banerjee, A., Heintze, N., Riecke, J. G., 1999. A core calculus of
dependency. In: ACM Symposium on Principles of Programming Languages
(POPL). pp. 147–160.

41

Amtoft, T., Bandhakavi, S., Banerjee, A., 2006. A logic for information flow in
object-oriented programs. In: ACM Symposium on Principles of Program-
ming Languages (POPL). To appear.

Amtoft, T., Banerjee, A., Apr. 2004a. Information flow analysis in logical form.
Tech. Rep. CIS TR 2004-3, Kansas State University.
URL http://www.cis.ksu.edu/~ab/Publications/ifalftr.pdf

Amtoft, T., Banerjee, A., 2004b. Information flow analysis in logical form. In:
Static Analysis Symposium (SAS). Vol. 3148 of Lecture Notes in Computer
Science. Springer-Verlag, pp. 100–115.

Andrews, G. R., Reitman, R. P., Jan. 1980. An axiomatic approach to infor-
mation flow in programs. ACM Trans. Prog. Lang. Syst. 2 (1), 56–75.

Banerjee, A., Naumann, D. A., 2005. Stack-based access control and secure in-
formation flow. Journal of Functional Programming 15 (2), 131–177, Special
Issue on Language-based Security.

Barthe, G., D’Argenio, P. R., Rezk, T., 2004. Secure information flow by self-
composition. In: IEEE Computer Security Foundations Workshop (CSFW).
IEEE Computer Society Press, pp. 100–114.

Bell, D., LaPadula, L., 1973. Secure computer systems: Mathematical foun-
dations. Tech. Rep. MTR-2547, MITRE Corp.

Clark, D., Hankin, C., Hunt, S., 2002. Information flow for Algol-like lan-
guages. Computer Languages 28 (1), 3–28.

Cohen, E. S., 1978. Information transmission in sequential programs. In: De-
Millo, R. A., Dobkin, D. P., Jones, A. K., Lipton, R. J. (Eds.), Foundations
of Secure Computation. Academic Press, pp. 297–335.

Cousot, P., Cousot, R., 1977a. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints.
In: ACM Symposium on Principles of Programming Languages (POPL).
ACM Press, New York, NY, pp. 238–252.

Cousot, P., Cousot, R., Aug. 1977b. Automatic synthesis of optimal invariant
assertions: mathematical foundations. In: Proceedings of the ACM Sym-
posium on Artificial Intelligence and Programming Languages, SIGPLAN
Notices. Vol. 12. ACM Press, pp. 1–12.

Darvas, Á., Hähnle, R., Sands, D., 2004. A theorem proving approach to anal-
ysis of secure information flow. Tech. Rep. 2004-01, Department of Comput-
ing Science, Chalmers University of Technology and Göteborg University, a
fuller version of a paper appearing in Workshop on Issues in the Theory of
Security, 2003.

Denning, D., Denning, P., 1977. Certification of programs for secure informa-
tion flow. Communications of the ACM 20 (7), 504–513.

Giacobazzi, R., Mastroeni, I., 2004. Abstract non-interference: Parameteriz-
ing non-interference by abstract interpretation. In: ACM Symposium on
Principles of Programming Languages (POPL). pp. 186–197.

Goguen, J., Meseguer, J., 1982. Security policies and security models. In: Proc.
IEEE Symp. on Security and Privacy. pp. 11–20.

Heintze, N., Riecke, J. G., 1998. The SLam calculus: programming with se-

42

crecy and integrity. In: ACM Symposium on Principles of Programming
Languages (POPL). pp. 365–377.

Hunt, S., Sands, D., 1991. Binding time analysis: A new PERspective. In:
Partial Evaluation and Semantics-Based Program Manipulation (PEPM).
Vol. 26 (9) of SIGPLAN Notices. pp. 154–165.

Hunt, S., Sands, D., 2006. On flow-sensitive security types. In: ACM Sym-
posium on Principles of Programming Languages (POPL). ACM Press, to
appear.

Ishtiaq, S., O’Hearn, P. W., 2001. BI as an assertion language for mutable data
structures. In: ACM Symposium on Principles of Programming Languages
(POPL). pp. 14–26.

Joshi, R., Leino, K. R. M., 2000. A semantic approach to secure information
flow. Sci. Comput. Programming 37, 113–138.

McCullough, D., 1987. Specifications for multi-level security and a hook-up.
In: IEEE Symposium on Security and Privacy. pp. 161–166.

Nielson, F., Nielson, H. R., Hankin, C., 1999. Principles of Program Analysis.
Springer-Verlag, web page at
www.imm.dtu.dk/~riis/PPA/ppa.html.

O’Hearn, P., Reynolds, J., Yang, H., 2001. Local reasoning about programs
that alter data structures. In: Computer Science Logic. Vol. 2142 of Lecture
Notes in Computer Science. Springer-Verlag, pp. 1–19.

O’Hearn, P., Yang, H., Reynolds, J., 2004. Separation and information hiding.
In: ACM Symposium on Principles of Programming Languages (POPL).
pp. 268–280.

Ørbæk, P., Palsberg, J., Nov. 1997. Trust in the λ-calculus. Journal of Func-
tional Programming 7 (6), 557–591.

Pottier, F., Simonet, V., Jan. 2003. Information flow inference for ML. ACM
Trans. Prog. Lang. Syst. 25 (1), 117–158.

Reynolds, J. C., 2002. Separation logic: a logic for shared mutable data struc-
tures. In: IEEE Symposium on Logic in Computer Science (LICS). IEEE
Computer Society Press, pp. 55–74.

Sabelfeld, A., Myers, A., 2004. A model for delimited information release. In:
Proceedings of the International Symposium on Software Security (ISSS).
No. 3233 in Lecture Notes in Computer Science. Springer-Verlag, pp. 174–
191.

Sabelfeld, A., Myers, A. C., Jan. 2003. Language-based information-flow se-
curity. IEEE J. Selected Areas in Communications 21 (1), 5–19.

Sabelfeld, A., Sands, D., 2001. A Per model of secure information flow in
sequential programs. Higher-order and Symbolic Computation 14 (1), 59–
91.

Schmidt, D. A., 2002. Structure-preserving binary relations for program ab-
straction. In: The Essence of Computation: Complexity, Analysis, Transfor-
mation – Essays dedicated to Neil D. Jones. No. 2566 in Lecture Notes in
Computer Science. Springer-Verlag, pp. 245–265.

Volpano, D., Irvine, C., Smith, G., 1996. A sound type system for secure flow

43

analysis. Journal of Computer Security 4 (3), 167–188.
Volpano, D., Smith, G., 1997. A type-based approach to program security.

In: Proceedings of Theory and Practice of Software Development (TAP-
SOFT’97). No. 1214 in Lecture Notes in Computer Science. Springer-Verlag,
pp. 607–621.

44

