
A Logic for Information Flow in Object-Oriented Programs ∗

Torben Amtoft † Sruthi Bandhakavi

Anindya Banerjee ‡

Department of Computing and Information Sciences

Kansas State University, Manhattan KS 66506, USA

{tamtoft,sruthi,ab}@cis.ksu.edu

November 15, 2005

Abstract

This paper specifies, via a Hoare-like logic, an interprocedural and flow sensitive (but termination
insensitive) information flow analysis for object-oriented programs.

Pointer aliasing is ubiquitous in such programs, and can potentially leak confidential information.
Thus the logic employs agreement assertions to describe the noninterference property that formalizes
confidentiality, and employs points-to assertions to describe possible aliasing. Programmer assertions, in
the style of JML, are allowed, thereby permitting a more fine-grained specification of information flow
analysis.

The logic supports local reasoning about state in the style of Separation Logic. Small specifications
are used; they mention only the variables and addresses relevant to a command. Specifications are
combined using a frame rule. An algorithm for the computation of postconditions is described: under
certain assumptions, there exists a strongest postcondition which the algorithm computes.

1 Introduction

An information flow policy, concerned with protecting confidentiality of data, must ensure that during
program execution, data does not flow to a channel unauthorized to receive the data [9]. The typical
setting for checking confidentiality of data involves channels with different clearance levels1, e.g., High for
sensitive/private channels and Low for public channels, and a program that manipulates data arriving at
input channels (with different clearance levels) and produces results that may flow into output channels
(with different clearance levels). In this setting, confidentiality of data can be assured provided that, during
program execution, data meant for High output channels do not flow into Low output channels. Cohen [13]
advanced an equivalent, deductive formulation for assuring confidentiality: from the text of the program,
and by observing only the data in Low output channels (hereafter called Low outputs) an attacker cannot
deduce any information about the data in High input channels (hereafter called High inputs). In other words,
for confidentiality to hold, Low outputs must not depend on High inputs in any way. It is this notion of
independence that is explored in this paper in the context of object-oriented programs.

∗This paper is technical report KSU CIS-TR-2005-1. A few modifications, like replacing the terms “independence asser-
tion” and “region assertion” by “agreement assertion” and “points-to assertion”, were made in August 2006. Section 7, on
implementing the logic, is in a quite rough state, and will soon be superseded by a paper devoted to the automatic inference of
assertions.

†Supported in part by NSF grant CCR-0296182.
‡Supported in part by NSF grants CCR-0209205, ITR-0326577, and CCR-0296182.
1In general, these levels form a security lattice, with Low ≤ High.

1

Here are some simple examples that illustrate whether or not a program satisfies confidentiality. In
each example, the variable l is a Low output and the variable h is a High input. First, the assign-
ment l := h violates confidentiality directly due to the data flow from h to l . Second, the conditional
if h > 0 then l := 1 else l := 0 violates confidentiality indirectly due to control flow: while neither assign-
ment by itself violates confidentiality, information as to whether or not h > 0 is revealed by whether or not
l is 1 after the execution. In contrast, the command l := h ; l := 0 satisfies confidentiality although it has a
subpart that does not: no deductions can be made about the input value of h from the output value of l ,
since the latter is always 0.

Information flow analysis has been used to statically certify[14] that confidentiality holds in all possible
execution paths of a program. Typical information flow analyses, surveyed by Sabelfeld and Myers [23], are
often specified using security type systems [25, 18, 21, 5, 17]. The security guarantee provided by a well-
typed program is this: no High inputs will flow to Low outputs either directly, via data flow, or indirectly,
via control flow, during program execution. The type systems mentioned above, except for the recent [17],
are flow insensitive, and this is a source of imprecision. Indeed, such type systems reject all the example
programs above, including the benign one, for they require every subprogram be well-typed whether or not
it contributes to the final answer. The subprogram, l := h, in the benign example, fails to type.

Extant security type systems for object-oriented programs [5, 18] have yet another source of imprecision
that arises due to the way aliasing is handled. In object-oriented programs, fields of a class – in addition to
program variables – are annotated with security levels. However, if an object is assigned to a High variable,
then the Low fields of the object cannot be updated [5, 18]. Thus the field update, z .info := 42, is rejected
by the security type system in case info has level Low and z has level High. The reasoning is as follows:
consider two Low variables, p and q, which are assigned objects o1 and o2 respectively. Now consider the
command if h > 7 then z := p else z := q which appears secure since a High variable is updated under
a High guard. However, depending on h, either z and p are aliases of o1, or z and q are aliases of o2. A
subsequent update of z ’s info field will reveal information about h: if q.info is not 42 after the field update,
we know that h > 7 holds. A similar reasoning requires a method call like x .m(y) to update only High fields
in the body of method m, in case the receiver x is High. Such reasoning, while sound, is imprecise: aliasing
may not be present at all, in which case, both the field update and the method call is benign.

Our challenges are twofold. First, we prefer a flow sensitive specification of information flow analysis.
We also want to handle pointer aliasing in a manner that is more precise than extant approaches which do
not perform any alias analysis.

The second challenge is to obtain a modular specification for an interprocedural information flow analysis.
(Ideally, this would allow us to obtain a static checker for information flow). To be specific, we want our
analysis to be compositional in the state.2 We want local reasoning about the heap where aliasing happens;
this means that when we analyze a command, we are only allowed to consider the footprint of the command on
the state, i.e., we can only consider the variables and parts of the heap that are used by the command [20, 22]
– nothing else.

Contributions. The primary contribution of this paper is to meet both of the above challenges by specify-
ing an interprocedural information flow analysis using a Hoare-like logic. Assertions in the logic are stateful
and describe aliasing properties – points-to assertions – as well as information flow properties – agreement
assertions. To reason about outgoing method calls in method bodies, we require method summaries to
provide a contract about assertions that must be met before a call and assertions that must hold after a call.

Importantly, the logic uses fundamental ideas from separation logic [20, 22] to provide local reasoning
about state. As we clarify in the sequel, specifications in the logic are small or local : the intuition is that these
specifications convey the “bare essence” of reasoning about a command. The reasoning can be elaborated in
different contexts, and larger specifications may be obtained by way of a frame rule. Indeed, with points-to
and agreement assertions, our specification yields an interprocedural static checker for information flow.

2It is not compositional reasoning per se we are interested in, since it is “perfectly possible to be compositional and global
(in the state) at the same time, as was the case in early denotational models of imperative languages” [20].

2

Our second contribution is to extend the logic with programmer assertions so that a more fine-grained
specification of information flow policy can be obtained. Programmer assertions can take the form “x
is a constant”, or “variables x and y are equal”, or “x = k(y)”, where k is a mathematical function:
such assertions are also allowed, e.g., in JML [11]. In contrast to points-to and agreement assertions,
however, programmer assertions may require runtime checking or verification by a theorem prover. We show
examples of the use of programmer assertions in concert with points-to and agreement assertions for verifying
observational purity [6] and for demonstrating selective dependency [13]. Nevertheless, we do not have an
automatic checker in the presence of programmer assertions. At some points in the checking process, “logical
implications” need to be decided. We do not know whether there exists a useful proof system to decide the
logical implications. But we provide a few simple heuristics to ease the burden of checking.

A minor contribution of the paper is concerned with completeness issues for the logic with assertions
restricted to points-to and agreement assertions only. For this sub-logic, we give an algorithm that computes
postconditions from preconditions and show that, under certain extra assumptions, the sub-logic is complete:
there exists a strongest postcondition that the algorithm computes3. Alas, the algorithm is non-modular.
The main difficulty lies with interprocedural analysis, for which the procedure summaries must be discovered
and updated on the fly. We leave this issue for a future paper.

2 Examples

Local Reasoning about Aliasing. Recall that local reasoning about a command entails reasoning only
about the footprint of the command. In the command, z .info := 42, for example, reasoning is permitted
only with variable z , the location in the heap that z denotes, and the contents of the info field – nothing
else. Since we are interested in static checking, we need to abstract the concrete heap location denoted by z .

Abstract locations (as in, e.g., [19]) are used to abstract sets of concrete heap locations. A points-to
assertion x L, read “x at L”, asserts that L abstracts the concrete location denoted by x .

Suppose two abstract locations L1 and L2 are disjoint, i.e., they abstract two disjoint sets of concrete
locations. Then, if x L1 and y L2 hold, we infer that x , y must not alias a concrete location. (In
contrast, if L1,L2 are not disjoint, then x , y may alias).

Points-to assertions may also take the form L1.f L2, so as to deal with aliasing caused by heap-
allocated values, e.g, x .f . The intuition is that for any concrete location `1 that is abstracted by L1, if field
f of `1 contains concrete location `2, then `2 is abstracted by L2.

We now show two examples in which points-to assertions are used to reason locally about aliasing.
Consider a method getNode which, given the head of a linked list and an integer i , returns the node at
position i in the list. Each node has two fields: data denoting the value in the node, and next denoting the
next node in the list. We consider two implementations of getNode: in the first, a pointer to the ith node is
returned, creating an alias; in the second, a copy of the ith node is returned – this does not create an alias.
The bodies of getNode for the two implementations are shown below; the distinguished variable, result , holds
the return result of a method.

n := head ; j := 0;
while (n 6= null) && (j < i) do

{n := n.next ; j := j + 1; }
result := n

3By “strongest” postcondition we mean the strongest among the assertions accepted by our logic, rather than the strongest
among the assertions which are “semantically correct” (a larger set).

3

Example 1: Node i is aliased

n := head ; j := 0;
while (n 6= null) && (j < i) do

{n := n.next ; j := j + 1; }
if n 6= null then

{newNode := new Node;
newNode.data := n.data; newNode.next := null;
result := newNode; }

else {result := null}

Example 2: Node i is not aliased

Consider the first two commands of Example 1, where we assume that L is the abstract location in which
the list is allocated. Because head points to the first node in the list, head L is part of the precondition of
the program, which also contains the assertion L.next L. For the command n := head , we get the small
specification:

{head L} n := head {n L}

The specification says that from precondition head L, the postcondition n L can be asserted. Note
how the points-to assertions in the specification mention facts about head and n, nothing else. Next, for the
command j := 0, we get the small specification4 {true} j := 0 {j int} . To combine the specifications
for the two commands above, we use, in a manner similar to separation logic, a frame rule (also see [10]):
because n is not modified by j := 0, the frame rule allows us to add n L as conjunct to both its pre- and
postconditions. To wit:

{n L} j := 0 {j int,n L}

Now the two specifications can be combined to obtain the following specification for the sequential compo-
sition, n := head ; j := 0.

{head L} n := head ; j := 0 {j int, n L}

The invariant for the while loop is {n L,L.next L}, which we may write in abbreviated form as
{(n,L.next) L}. To show that the preamble establishes this invariant from the program’s precondition,
we may apply the frame rule once more on the above specification, adding L.next L to both pre- and
postcondition; this is valid since no next field is modified by the preamble. Thus:

{(head ,L.next) L} n := head ; j := 0 {(n,L.next) L}

To show that the invariant is maintained by the while loop, we show the stronger property that each
assignment in the loop body maintains the invariant. For n := n.next the small specification is {(n,L.next)
L} n := n.next {n L} . Now the frame rule (applicable since no next field is modified) gives us

{(n,L.next) L} n := n.next {(n,L.next) L}

In a similar (but simpler) way, we can show {(n,L.next) L} j := j + 1 {(n,L.next) L} . Finally, for
result := n, the small specification is

{n L} result := n {result L}

By a few more applications of the frame rule, we obtain the following specification for the body, B1, of
getNode.

{(head ,L.next) L} B1 {(n,L.next , result) L}

4 The assertion j int, expressing that j has an integer value, is strictly speaking redundant, since we shall assume that
we are dealing with “well-typed” programs where a variable/field may contain an integer iff it has been assigned the type int.
Therefore such assertions may be omitted.

4

As expected, n and result may alias the same location in the heap.
In Example 2, the precondition for the entire method body, B2, of getNode is the same as that of B1,

namely, (head ,L.next) L. The crucial difference is the occurrence of the command newNode := new Node
where we may choose an arbitrary abstract location to abstract the concrete location being created. Choosing
L1, we get the small specification

{true} newNode := new Node {newNode L1} .

Applying the frame rule repeatedly, we can derive postcondition5

{(n,L.next) L, (result ,newNode) L1,L1.next ⊥}

for B2. The key observation is that provided L and L1 are disjoint, n and result must not alias the same
location in the heap.

Information Flow Analysis and Independences. A baseline correctness property for information flow
analysis is noninterference [16] (the negation of Cohen’s notion of dependency [13]) which is formalized via an
“indistinguishability” relation on states. Two states are indistinguishable if they agree on values of their Low

variables (but may differ on values of High variables). Noninterference holds if any two runs of a program
starting in two initially indistinguishable states, yield two final states that are also indistinguishable. In
other words, a program is noninterfering, if for any pair of runs, changes to its High input variables are
unobservable via its Low output variables; hence, reverting to a point made in the introduction, Low outputs
are independent of High inputs.

The small specifications of our analysis are designed to answer the following question, encompassing
noninterference as a special case6: given two runs which initially agree on variables x1 . . . xn , will they at the
end agree on variables y1 . . . ym? Accordingly, we introduce agreement assertions of the form xn, such that
a positive answer to the above question amounts to the specification {x1n, . . . , xnn} {y1n, . . . , ymn} . In
general, we shall consider assertions of the form an, where a is an abstract address : either a variable, or a
field access of the form L.f .

Leveraging the above reading of noninterference, Amtoft and Banerjee specified, as a Hoare-like logic,
a termination insensitive information flow analysis for simple imperative programs [1] (later extended to
a termination sensitive analysis [2]). This paper extends that logic to handle programs written in a core,
Java-like, object-oriented language. Also, unlike [1, 2], this paper employs a standard style semantics.

Aliasing, Independences and Local Reasoning. We consider the following example adapted from
Askarov’s master’s thesis [3].

class X {
int q ;
int getQ(){result := self .q};
unit setQ(int n){self .q := n}}

What can we say about the body of getQ? First, we consider points-to assertions. Suppose assertions
self ρ1 and ρ1.q int hold for the precondition of getQ . Then we can assert that result int holds in
the postcondition of getQ . Think about ρ1 as a metavariable which will be instantiated by abstract locations
at the point of call. For instance, if the receiver in the call to getQ is at abstract location L, then ρ1 will be
substituted by L.

Next, we consider agreement assertions. Given that self ρ1 holds for the precondition of getQ , we
want to check whether the postcondition contains resultn. That is, under which conditions will two runs
agree on the final value of result? For that to be the case, the runs must agree on the initial value of self .q,

5The abstract location ⊥ abstracts null pointers only.
6As can be seen by letting x1 . . . xn , and y1 . . . ym , be the Low variables.

5

a sufficient condition for which is that ρ1.qn holds in the precondition; also (since self .q depends on self),
the runs must agree on self . A convenient method summary for getQ is thus the following

{self ρ1, self n, ρ1.qn} getQ {resultn} .

On the other hand, if the agreement assertions in the precondition do not hold at the point of call, we are
unable to conclude resultn in the postcondition.

In a similar manner, we can compute the following method summary for setQ :

{self ρ1, self n,nn, ρ1.qn} setQ {ρ1.qn}

This says that in order for two runs to agree on the final value of the q fields of “corresponding” (as formalized
in Sec. 4) objects abstracted by ρ1, they must agree on the initial value of n, and on the initial value of self
(as otherwise, the two runs would update non-corresponding objects). Also, because there may be other
objects abstracted by ρ1 than the one which self points to (and these objects did not have their q field
updated), the runs must agree on the initial value of all q fields; this requirement can be omitted in the case
where ρ1 abstracts one concrete location only, i.e., in the case of “strong update”.

Now consider the program
X x1; X x2 := new X ;
x1 := x2; //alias created
x1.setQ(secret);
z := x2.getQ()

where, because x1 and x2 are aliases, the value of secret is leaked to z . Let us see how checking independences
might help detect the leak. We recall what noninterference means: two runs that initially agree on all
variables except for secret , must agree on the final value of z . A proof of noninterference, in our framework,
would thus amount to establishing a specification where zn is in the postcondition, without having to assume
that secretn is in the precondition. Below, we argue that this is impossible.

First assume that the location allocated by new is abstracted by L2; then we have x2 L2 and x1 L2.
With the aim of proving that zn holds after the call to getQ , we consult the method summary for getQ
where we substitute self by x2, and result by z , and ρ1 by L2. Looking at the resulting precondition, we
see that we must show that x2n and L2.qn holds before the call to getQ , that is, after the call to setQ . We
therefore consult the summary for setQ where we substitute self by x1, n by secret , and ρ1 by L2. Looking
at the resulting precondition, we see that we must at least show that secretn holds. But this yields the
desired contradiction.

Suppose the aliasing were removed in a slight modification of the above program, where z is once again
the output variable:

X x1 := new X ; X x2 := new X ; //no alias
x1.setQ(secret); z := x2.getQ()

Now x1 and x2 do not alias the same heap location. The postcondition for the first assignment asserts
{x1 L1, x1n}, and that for the second asserts {x2 L2, x2n}, where L1 and L2 are assumed disjoint to
reflect the absence of aliasing. As before, to establish that zn holds after the call to getQ , we must show
that x2n and L2.qn holds after the call to setQ . But since locations abstracted by L2 are not modified by
the call to setQ , this follows from the frame rule (since we may assume that L2.qn holds before the call).
In summary, because of the absence of aliasing, the assertion zn does hold finally, even if secretn does not
hold initially. This is in contrast to the previous example.

It is instructive to see how an existing type-based information flow analysis system, like Jif [18], handles
the above programs. Assume that the variables secret and x1 are typed High, and x2 and field q are typed
Low. Since q is Low, the method setQ has a begin label of Low, which says that the method can only be
called if the program counter of the caller is no more restrictive than Low. But the level of the receiver (x1)
is High. This is one reason why Jif rejects this program. In general, the above check ensures that if there
are any low aliases of x1 in the future – e.g., x2 in the first program – they should not be able to read the
value of q assigned by setQ . In the second example there is no aliasing. Yet, Jif rejects this example also,
because the call to setQ is untypable.

6

Programmer assertions. As noted earlier, apart from points-to assertions and agreement assertions, we
also allow programmer assertions in code. For the trivial program if x > 0 then w := 7 else w := 7, e.g.,
clearly wn holds (two runs will always agree on the final value of w), although a näıve analysis cannot
prove the assertion. However, armed with the programmer assertion that w is a specific constant after the
conditional, the following reasoning is sound in our framework: w being constant “logically implies” (defined
in Sec. 4) that wn holds.

We show two more examples of programmer assertions. The first concerns observational purity [6].
Assume we repeatedly need to apply a function expensive(z), the computation of which is very expensive.
To save time, we decide to memoize the most recent call7. For that purpose, we introduce a class M , with
fields marg and res obeying the invariant

(marg 6= 0) ⇒ (res = expensive(marg))

and with a method
int cexp(int z){

if z = self .marg

then result := self .res
else //compute expensive(z) and store the value in result

result := expensive(z); self .marg := z ; self .res := result

assert (result = expensive(z))}

Obviously, the last assertion should not be checked at runtime (this would defy the purpose of memoization),
but might instead be verified by a theorem prover, using the above-mentioned invariant.

Suppose we know that for cexp: (a) its result depends only on z , not on memo data (marg or res) and
(b) its computation affects only an abstract location L1. If L1 is not used elsewhere, we can consider calls
to cexp “observationally pure” [6]; this notion of purity is under consideration for extending JML [11] which
currently disallows effectful method calls in assertions.

It remains to show (a) and (b). Indeed, in Sec. 4.3, we will see that from zn and the programmer
assertion, result = expensive(z), we can derive resultn. Hence it is easy to see that if self L1 and zn
are preconditions for cexp, then resultn is a valid postcondition for cexp. We also observe that L1.marg
and L1.res are the only abstract addresses that may be modified by cexp. This information appears in the
following method summary for cexp:

{self L1, zn} {resultn} [L1.marg,L1.res].

Our second example with programmer assertions deals with selective dependency and we consider an
example due to Cohen [13]: the command b := x + a mod 4 where, clearly, b is not independent of a.
However, only the lower order two bits of a are revealed to b; nothing else is revealed. Suppose we fix the
lower order two bits of a to 3, i.e., a mod 4 = 3. Then we can prove that the “rest of a is protected from b”,
by means of the derivation8

{xn}
assert a mod 4 = 3;

{a mod 4 = 3, xn}
{(a mod 4)n, xn} (by logical implication)

b := x + a mod 4;
{bn}

That is, bn is in the postcondition, under the assumption that xn is in the precondition, but without
assuming that an is too.

7The generalization to full memoization appears in Sec. 6.
8The technical development in this paper does not allow assertions En with E an expression, but it is straightforward to

add them.

7

T ::= int | C data type

CL::= class C { T f ;M } class declaration

M ::= T m(U u) {S} method declaration

S ::= x := E | x .f := y assign to variable, to field

| x := new C | x := y.f object construction, field access

| x := y.m(z) | S ;S method call, sequence

| if x then S else S | while x do S conditional, while

| assert θ programmer assertion

E ::= x | c | null | E op E | k(E)

variable, constants, arith. operations, arith. functions

θ ::= x = c | x = y | x = k(E) | . . . primitive assertions

| x = y.f | . . . assertions involving fields

| θ ∧ θ | θ ∨ θ

Figure 1: BNF of language

The Rest of the Paper

Sec. 3 formalizes the language. Sec. 4 gives the syntax and semantics of assertions. Sec. 5 specifies the logic.
The full memoization example, illustrating reasoning in the logic, appears in Sec. 6. Sec. 7 is about the
computing of assertions and strongest postcondition. Sec. 8 concludes.

3 Language: syntax and semantics

Syntax. Our core language (Figure 1) is a class-based object-oriented language with recursive classes,
methods and field update. We shall consider subclassing and dynamic dispatch; it should be straightforward
to add cast and type test, but we have not done that yet. The grammar is based on given sets of class names
(with typical element C), expressions (E), constants ranging over integers (c), field names (f), and method
names (m). The names x , y, z ,w are used for program variables, and k is used for mathematical functions
(e.g., mod).

The BNF is self-explanatory. One difference from usual security-typed languages is that programmer
assertions are allowed via the command assert θ. Conjunctions and disjunctions of programmer assertions
are also allowed. A type is either a base type int, or a “class type”, i.e., a class name C ; like Java, we have
nominal (by name) typing. We assume a function, type, that assigns a type to all program variables and to
all fields. We also assume the existence of a class table, CT , that maps a class name to the corresponding
class declaration. A class declaration consists of a class name, e.g., C , together with a list of public field
declarations, e.g., T f , and a list of method declarations, e.g., M . Consider a method m declared as
T m(U u) {S} in class C ; such a method has return type T , and formal parameter type U , and body S
where S is a command. To simplify the presentation, we shall assume that if class C has a declaration of
method m then also any subclass of C has an explicit declaration of m (with the same formal parameter);
this is no restriction since it amounts to stating that each subclass should either override, or copy, the
methods of its parent. We employ a distinguished variable result such that the effect of an explicit return
expression, return E , can be achieved by letting the last assignment of S be result := E .

Semantics. We specify the semantics in relational style; such a semantics fits well with a Hoare-style
partial correctness specification and eases the proofs, especially since our analysis is termination insensitive.
After a brief description of the semantic domains involved, we define the semantics of commands and finally
the semantics of well formed class tables.

8

[Assert]
(s0, h0) [[[assert θ]]µ] (s, h) ⇐⇒

[[θ]](s0, h0) ∧ s = s0 ∧ h = h0

[Assign]
(s0, h0) [[[x := E]]µ] (s, h) ⇐⇒

(∃v · v = [[E]]s0 ∧ s = [s0 | x 7→v]) ∧ h = h0

[FieldAcc]

(s0, h0) [[[x := y .f]]µ] (s, h) ⇐⇒
∃` ∈ Loc · (s0(y) = `

∧ s = [s0 | x 7→h0 ` f])
∧ h = h0

[FieldUpd]
(s0, h0) [[[x .f := y]]µ] (s, h) ⇐⇒

s = s0 ∧ ∃` ∈ Loc · (s0(x) = `
∧ h = [h0 | `.f 7→s0(y)])

[New]

(s0, h0) [[[x := new C]]µ] (s, h) ⇐⇒
∃` · (type ` = C ∧ ` 6∈ rng(s0) ∧

` 6∈ dom(h0) ∧ ` 6∈ rng(h0) ∧
s = [s0 | x 7→`] ∧
h = [h0 | ` 7→defaults])

[MethodCall]

(s0, h0) [[[x := y .m(z)]]µ] (s, h) ⇐⇒
(s ′0, h0)µ(C ,m) (v , h) ∧ s = [s0 | x 7→v]

where ` = s0(y) and C = type `
and s ′0 = [pars(m,C) 7→ s0(z), self 7→ `]

[Seq]
(s0, h0) [[[S1 ;S2]]µ] (s, h) ⇐⇒

∃(s1, h1) · ((s0, h0) [[[S1]]µ] (s1, h1)
∧ (s1, h1) [[[S2]]µ] (s, h))

[If]
(s0, h0) [[[if x then S1 else S2]]µ] (s, h) ⇐⇒

(s0(x) ∈ True ∧ (s0, h0) [[[S1]]µ] (s, h)) ∨
(s0(x) ∈ False ∧ (s0, h0) [[[S2]]µ] (s, h))

[While]

(s0, h0) [[[while x do S]]µ] (s, h) ⇐⇒ ∃n · (s0, h0)Rn (s, h)
where Rn is given inductively by

∀s, h : (s, h)Rn (s, h) if s(x) ∈ False

∀s, h, s ′, h ′ : (s, h)Rn (s ′, h ′) if s(x) ∈ True and (n > 0) and
∃(s ′′, h ′′) · ((s, h) [[[S]]µ] (s ′′, h ′′) ∧ (s ′′, h ′′)Rn−1 (s ′, h ′))

Table 1: Semantics of commands

The state of a method in execution comprises a store, s , and a heap, h. A store s (in semantic domain
Store) assigns values to local variables and parameters, where values are integer constants or locations or
the distinguished entity nil (which is not a location). We use v to range over values, and assume that Val ,
the set of all values, is partitioned into two disjoint parts, True and False, where all locations belong to True.
For locations, we assume given a countable set Loc ranged over by `. We assume each location ` has a class
C associated with it, and write type ` = C . For all constants c we write type c = int. For each type, we
define a default value of that type: default(int) = 0 and default(C) = nil .

A heap h (in semantic domain Heap) is a finite partial function from locations to object states, where an
object state is a total mapping from field names to values. With abuse of notation, we say that location ` is
in the range of heap h if there exists location `0 in dom(h) and a field f such that ` = h `0 f . We will work
with self-contained states: say that state (s , h) is self-contained iff (a) for all ` in the range of s , ` is in the
domain of h; and (b) for all ` in the range of h (c.f. above), ` is in the domain of h.

We shall consider only well-typed programs. In particular, we shall assume that if s(x) = ` (h `0 f = `)
then type ` is a subclass of type x (type f), and if s(x) (h `0 f) is a constant c then type x = int (type f = int).

The meaning, [[E]], of an expression, E , is a function from Store to Val ; its definition is standard and
thus elided. Pointer arithmetic is disallowed: in an expression E = E1 op E2, each [[Ei]]s has to evaluate to
an integer and [[E]]s must be an integer; similarly for an expression k(E). The meaning of an assertion θ is
a predicate on states: [[θ]] ∈ Store × Heap → Bool .

The semantics of a class table is a method environment µ which provides a relational meaning, µ(C ,m),
for each method m declared in class C . The method environment µ is computed using a fixpoint construction.
For each class C and method name m, µ(C ,m) ⊆ (Store × Heap) × (Val × Heap).

Because a command S may contain method calls as constituents, the meaning of S is with respect to
a method environment µ. More precisely, [[S]]µ is a relation on input and output states: [[S]]µ ⊆ (Store ×
Heap) × (Store × Heap). The relational semantics of commands appears in Table 1. We explain the cases
[FieldUpd], [New] and [MethodCall] below.

9

In field update, x .f := y, the heap h0 is updated with the value of y at field f of location `, where ` is
the meaning of x . (We use the notation [h0 | `.f 7→v] to denote the update of the object state h0 ` at field f
by v).

In object allocation, x := new C , a fresh location ` of type C is allocated in the heap; the resulting
store maps x to `. The resulting heap, h, is the old heap, h0, with its domain extended with `. Each field
f of C in the object state h ` is initialized to the default value of type(f); this is captured by the notation
[h0 | ` 7→defaults].

For a method call, x := y.m(z), suppose that y denotes a location ` with type ` = C , where class C
contains a method m with formal parameter u (written pars(m,C) = u). Let the initial state be (s0, h0),
and suppose that the meaning of the method m is looked up in method environment µ, using a state whose
heap component is h0 but whose store component is a “local store”, s ′0, that binds self to ` and u to s0(z).
Let the method meaning relate (s ′0, h0) to (v , h), where v is the return result of the method, and h the
updated heap. Upon return, local store s ′0 is discarded, and the resulting state is heap h together with the
initial store, s0, with x updated to v .

Observe that for some (s0, h0) there may be no (s , h) with (s0, h0) [[[S]]µ] (s , h). This will be the case in the
event of an infinite computation, a run-time error (like dereferencing a null pointer), or a failed programmer
assertion.

We are now ready for the semantics of a class table, CT . The semantics makes explicit the fixpoint
computation alluded to earlier.

Definition 3.1 (Semantics of class table, CT) [[CT]] is the least upper bound (wrt. subset inclusion) of
the ascending chain µn (n ∈ Nats) of method environments, defined as follows (where class C contains
method m with body S):

µ0(C ,m) = ∅
(s0, h0) (µn+1(C ,m)) (v , h) ⇐⇒

∃s · (s0, h0) [[[S]]µn] (s , h) ∧ (v = s(result))

We now have the following technical results on the semantics of a class table, CT , where we let µ = [[CT]].

Fact 3.2 If (s0, h0) (µ(C ,m)) (v , h) then there exists n0 such that for all n ≥ n0, (s0, h0) (µn(C ,m)) (v , h).

Lemma 3.3 If (s0, h0) [[[S]]µ] (s , h) then there exists n0 such that for all n ≥ n0, (s0, h0) [[[S]]µn] (s , h).

Proof: By induction in the derivation of (s0, h0) [[[S]]µ] (s , h), using Fact 3.2.

Lemma 3.4 Assume that (s0, h0) [[[S]]]µ (s , h).

(a) If (s0, h0) is self-contained then so is (s , h).

(b) dom(s0) ⊆ dom(s)

(c) dom(h0) ⊆ dom(h)

Proof: By Lemma 3.3, it is sufficient if for all n we can show that (s0, h0) [[[S]]µn] (s , h) implies (a), (b),
(c) above. We proceed by induction on n, with an inner induction on the derivation of (s0, h0) [[[S]]µn] (s , h).
An interesting case is for the [MethodCall] rule, where by the outer induction hypothesis we infer that if
(s0, h0) (µn(C ,m)) (v , h) with (s0, h0) self-contained, then the state ([result 7→ v], h) is self-contained and
that dom(h0) ⊆ dom(h).

In the future, we shall implicitly assume that all states (s , h) in question are self-contained.

10

Creation and modification of state. Sec. 2 presented several examples of local reasoning that were
justified by the frame rule. Such reasoning is sound because a side condition holds for the frame rule: when
the small specification of a command is extended with other assertions, the abstract addresses mentioned
in the assertions are disjoint from the corresponding abstract addresses modified by the command. Both
notions are made precise in Sec. 4. But first Definition 3.5 states precisely what it means to modify concrete
locations occurring in heaps and stores.

Definition 3.5 For a location ` of type C , and for a field f of C , say that `.f is modified from heap h to
heap h′ if ` ∈ dom(h′) and either of the following conditions hold: (a) ` ∈ dom(h), and h′`f 6= h`f ; (b)
` 6∈ dom(h), and h′`f 6= default(type f).

Variable x is modified from store s to store s ′ if x ∈ dom(s ′) and either of the following conditions hold:
(a) x ∈ dom(s), and s(x) 6= s ′(x); (b) x 6∈ dom(s).

Say that location ` is created from heap h to heap h′ provided ` ∈ dom(h′) but ` 6∈ dom(h).

Lemma 3.6 Given s , s ′, s ′′ with dom(s) ⊆ dom(s ′′) ⊆ dom(s ′), and h, h′, h′′ with dom(h) ⊆ dom(h′′) ⊆
dom(h′).

Assume that ` is created from h to h′. Then either ` is created from h to h′′, or ` is created from h′′ to
h′.

Assume that x is modified from s to s ′. Then either x is modified from s to s ′′, or x is modified from s ′′

to s ′.
Assume that `.f is modified from h to h′. Then either `.f is modified from h to h′′, or `.f is modified

from h′′ to h′.

Proof: First assume that ` is created from h to h′. Then ` ∈ dom(h′) but ` 6∈ dom(h). If ` ∈ dom(h′′),
then ` is created from h to h′′; otherwise, ` is created from h′′ to h′.

Next, assume that x is modified from s to s ′. Then x ∈ dom(s ′), and either:

1. x ∈ dom(s), and s ′(x) 6= s(x). Then x ∈ dom(s ′′), and either s ′′(x) 6= s(x) or s ′′(x) 6= s ′(x), yielding
the claim.

2. x 6∈ dom(s). If x ∈ dom(s ′′), then x is modified from s to s ′′; if x 6∈ dom(s ′′), then x is modified from
s ′′ to s ′.

Finally, assume that `.f is modified from h to h′. Then ` ∈ dom(h′), and either:

1. ` ∈ dom(h), with h′ ` f 6= h ` f . Then ` ∈ dom(h′′). If h′ ` f 6= h′′ ` f then `.f is modified from h′′ to
h′. Otherwise, h′′ ` f 6= h ` f , so `.f is modified from h to h′′.

2. ` 6∈ dom(h), and h′ ` f 6= dv with dv = default(type f). Then there are two possibilities:

• ` 6∈ dom(h′′), or ` ∈ dom(h′′) with h′′ ` f = dv . But then `.f is modified from h′′ to h′.

• ` ∈ dom(h′′) with h′′ ` f 6= dv . But then `.f is modified from h to h′′.

4 Assertions

This section formalizes abstract locations, and provides the syntax and semantics of assertions. It also makes
precise the two main ingredients of the frame rule alluded to in Sec. 2, namely, the modification of abstract
addresses, and disjointness. The frame rule can only be applied when an assertion is disjoint from the set of
abstract addresses that may be modified by a command.

11

Abstract Locations. We let L range over the set of abstract locations, AbsLoc. Think of L as a token
that stands for a set of concrete heap locations. We will consider the following relations on AbsLoc: a partial
ordering relation, L1 � L2, conveys that L2 contains at least those concrete heap locations that L1 contains.
We also need a symmetric relation, L1 � L2, pronounced “L1 is disjoint from L2”, to convey that L1 and L2

have no concrete heap locations in common. We add a special element ⊥ to AbsLoc so that for all L ∈ AbsLoc
we have ⊥ � L and ⊥ � L. One can think of ⊥ as the counterpart of the concrete value nil .

We assume that if L1 � L2 and L � L2 then also L � L1, and that if L 6= ⊥ then L � L does not hold. We
let LI range over AbsLoc ∪ {int}. An abstract entity is either an abstract address, x or L.f , or9 an abstract
location, L. We let X range over sets of abstract entities.

Syntax of assertions As noted in Sec. 2, we have three kinds of primitive assertions, namely, points-to
assertions, agreement assertions, and programmer assertion. The BNF of assertions is this:

φ ::= θ | x LI | L.f LI | xn | L.f n | true | φ ∧ φ
| L abs i (i = 0, 1)
| φ uor φ | φ ior φ

An assertion is now formed by conjunction and/or disjunction of primitive assertions, Recall from Sec. 2
that we shall often use the set notation to denote conjunctions of assertions.

Roughly, the meaning of x L in a state (s , h) is that the concrete heap location denoted by x is
abstracted by L. The meaning of an is that the two current states in question, say (s , h) and (s1, h1), agree
on the value of a; agreement implies that there is no leak of information via a. This intuition leads to the
one-state and two-state semantics for assertions in the sequel. The points-to assertion L abs i states that L
contains at most i concrete heap locations. We employ two kinds of disjunction10: the assertion φ1 ior φ2

states that either the two states in question jointly satisfy φ1, or the two states in question jointly satisfy
φ2; the assertion φ1 uor φ2 states that each of the two states in question should satisfy either φ1 or φ2. We
define functions I and U on assertions, with I factoring out the assertions related to information flow, and
U factoring out the assertions unrelated to information flow.

U(θ) = θ
U(x LI) = x LI
U(L.f LI) = L.f LI
U(xn) = U(L.f n) = true
U(true) = true
U(φ1 ∧ φ2) = U(φ1) ∧ U(φ2)
U(L abs i) = L abs i
U(φ1 uor φ2) = U(φ1) uor U(φ2)
U(φ1 ior φ2) = U(φ1) ior U(φ2)

I(θ) = true
I(xn) = xn
I(L.f n) = L.f n
I(true) = true
I(φ1 ∧ φ2) = I(φ1) ∧ I (φ2)
I(x LI) = true
I(L.f LI) = true
I(L abs i) = true
I(φ1 uor φ2) = true
I(φ1 ior φ2) = I(φ1) ior I(φ2)

9In order to accommodate assertions L abs i , enabling “strong update” but omitted in the short version of this paper.
10For practical applications, it might suffice to have only one, and one might perhaps even dispense with disjunction altogether.

12

One-state Semantics of Assertions. To give a precise meaning to assertions, we need to assume the
existence of an extraction relation, η, (similar to the extraction functions described in [19, p.235]) that relates
locations to abstract locations. We require that η satisfies the following properties:

• For all L2, ` η L2 holds iff there exists L1 such that L1 � L2 and ` η L1.

• If L1 � L2 then for no ` we have ` η L1 and ` η L2.

• ` η⊥ holds for no `.

For convenience, we extend η to Val , so that c η int and nil η⊥ – thus nil η L holds for all L. But c η L holds
for no L, and ` η int holds for no `, and nil η int does not hold.

We say that η is over h if ` η L implies ` ∈ dom(h). For η over h, we are now in a position to define the
semantics of an assertion φ in state (s , h), written, (s , h) |=η φ.

(s , h) |=η θ ⇐⇒ [[θ]](s , h)
(s , h) |=η x LI ⇐⇒ s(x) η LI
(s , h) |=η L.f LI ⇐⇒ ∀` ∈ dom(h) · ` η L ⇒ (h`f) η (LI)
(s , h) |=η xn ⇐⇒ true
(s , h) |=η L.f n ⇐⇒ true
(s , h) |=η true ⇐⇒ true
(s , h) |=η φ1 ∧ φ2 ⇐⇒ (s , h) |=η φ1 and (s , h) |=η φ2

(s , h) |=η L abs i ⇐⇒ i ≥ card({` ∈ dom(h) | ` η L})
(s , h) |=η φ1 uor φ2 ⇐⇒ (s , h) |=η φ1 or (s , h) |=η φ2

(s , h) |=η φ1 ior φ2 ⇐⇒ (s , h) |=η φ1 or (s , h) |=η φ2

A simple induction gives

Fact 4.1 (s , h) |=η φ iff (s , h) |=η U(φ).

Two-state Semantics of Assertions. Consider, e.g., the assertion xn and consider two states (s , h)
and (s ′, h′) for which we want the values of x to agree. If x denotes a location then, because of different
allocation behavior in h and h′, we cannot expect s(x) and s ′(x) to be equal. Rather we expect the former
to yield location ` and the latter to yield location `′, so that the agreement can be enforced by a bijection β
that relates ` and `′. On the other hand, not all locations need to be related to some other location, similar
to what is the case for type-based information flow analysis [5]. There, the indistinguishability relation on
states (s , h) and (s ′, h′) is formalized using a bijection between those locations in dom(h) and dom(h′) that
are visible to a “low observer”.

We formalize the above intuition. Let β range over bijections from a subset of Loc to a subset of Loc.
That is, if ` β `1 and ` β `2 then `1 = `2, but for some `0 there might not be any `′ such that `0 β `

′; and if
`1 β ` and `2 β ` then `1 = `2, but for some `0 there might not be any `′ such that `′ β `0. In addition, with
abuse of notation, for all integer constants c we shall assume that c β c, and also assume that nil β nil . Note
that if v β v1 then v ∈ True iff v1 ∈ True (since all locations belong to True). We say that β is over h&h1 if
` β `1 implies ` ∈ dom(h) and `1 ∈ dom(h1).

We can now define the two-state semantics of assertion φ, written (s , h)&(s1, h1) |=β,η,η1
φ. Here β is

over h&h1, and η is over h, and η1 is over h1; further, if ` β `1 then type ` = type `1, and ` η L iff `1 η1 L. The
last condition simply says that concrete locations ` and `1 related by β are abstracted to the same abstract

13

location L by both η and η1.

(s , h)& (s1, h1) |=β,η,η1
xn ⇐⇒ (s x)β (s1 x)

(s , h)& (s1, h1) |=β,η,η1
L.f n ⇐⇒

∀` ∈ dom(h), `1 ∈ dom(h1) ·
` β `1 ∧ ` η L ⇒ (h ` f)β (h1 `1 f)

(s , h)& (s1, h1) |=β,η,η1
φ ⇐⇒

(s , h) |=η φ and (s1, h1) |=η1
φ, (φ is x L,L.f LI , θ, true,L abs i , φ1 uor φ2)

(s , h)& (s1, h1) |=β,η,η1
φ1 ∧ φ2 ⇐⇒

(s , h)& (s1, h1) |=β,η,η1
φ1 and (s , h)& (s1, h1) |=β,η,η1

φ2

(s , h)& (s1, h1) |=β,η,η1
φ1 ior φ2 ⇐⇒

(s , h)& (s1, h1) |=β,η,η1
φ1 or (s , h)& (s1, h1) |=β,η,η1

φ2

4.1 Properties of Assertions

Lemma 4.2 Assume that with x1, . . . , xn the only program variables in φ, φ′ is given by in φ replacing
x1, . . . xn by y1, . . . , yn . Assume that s , s1, s

′, s ′1 are such that for all i = 1 . . .n, s(xi) = s ′(yi) and s1(xi) =
s ′1(yi). Then (s , h)& (s1, h1) |=β,η,η1

φ iff (s ′, h)& (s ′1, h1) |=β,η,η1
φ′.

Proof: An easy induction in φ, using a similar result for |=η.

Lemma 4.3 If (s , h) |=η φ, then, with β the identity on dom(h), we have (s , h)& (s , h) |=β,η,η φ.

Proof: Go by structural induction on φ.

φ = xn. Because (s , h) is self-contained, if s(x) is a location then s(x) ∈ dom(h), so in all cases we have the
desired relation (s x)β (s x).

φ = L.f n. Consider `, `1 ∈ dom(h) with ` β `1. Then ` = `1, so h`f = h`1f , and thus (again since (s , h) is
self-contained), (h`f)β (h`1f).

φ = x LI or φ = L.f LI or φ = θ or φ = true or φ = L abs i or φ = φ1 uor φ2. All follow by definition.

φ = φ1 ∧ φ2. Follows easily using induction hypothesis.

φ = φ1 ior φ2. Wlog, we can assume (s , h) |=η φ1. Inductively, (s , h)& (s , h) |=β,η,η φ1 and therefore also
(s , h)& (s , h) |=β,η,η φ.

Lemma 4.4 Assume (s , h)& (s1, h1) |=β,η,η1
φ.

Then (s , h)& (s1, h1) |=β,η,η1
I(φ) and (s , h) |=η U(φ) and (s1, h1) |=η1

U(φ).

Note that by Fact 4.1, the conclusion entails (s , h) |=η φ and (s1, h1) |=η1
φ.

Proof: Go by structural induction on φ.

φ = xn or L.f n. Then I(φ) = φ and U(φ) = true, so the claim is trivial.

φ = x L or φ = L.f LI or or φ = θ or φ = true or φ = L abs i . Then I(φ) = true and U(φ) = φ, and
the claim follows by the definition of (s , h)& (s1, h1) |=β,η,η1

φ.

φ = φ1 ∧ φ2. We have (s , h)& (s1, h1) |=β,η,η1
φ1 and (s , h)& (s1, h1) |=β,η,η1

φ2. So inductively:
(s , h)& (s1, h1) |=β,η,η1

I(φ1) and (s , h) |=η U(φ1) and (s1, h1) |=η1
U(φ1) and (s , h)& (s1, h1) |=β,η,η1

I(φ2) and (s , h) |=η U(φ2) and (s1, h1) |=η1
U(φ2). Thus (by reordering), (s , h)& (s1, h1) |=β,η,η1

I(φ) and
(s , h) |=η U(φ) and (s1, h1) |=η1

U(φ).

14

φ = φ1 ior φ2. Wlog, we can assume that (s , h)& (s1, h1) |=β,η,η1
φ1. Inductively, (s , h)& (s1, h1) |=β,η,η1

I(φ1) and (s , h) |=η U(φ1) and (s1, h1) |=η1
U(φ1) implying (s , h)& (s1, h1) |=β,η,η1

I(φ1) ior I(φ2) and
(s , h) |=η U(φ1) ior U(φ2) and (s1, h1) |=η1

U(φ1) ior U(φ2) which amounts to the desired relation.

φ = φ1 uor φ2. Then (s , h) |=η φ1 uor φ2 and (s1, h1) |=η1
φ1 uor φ2 and by Fact 4.1, therefore (s , h) |=η

U(φ1 uor φ2) and (s1, h1) |=η1
U(φ1 uor φ2). This is as desired, since I(φ1 uor φ2) = true.

The converse of Lemma 4.4 does not hold if φ contains ior: to see that, let φ = x L ior x L1 and
s(x) = ` and s1(x) = `1, with ` η L and with `1 η L1 but not ` η L1 and not `1 η L. Then I(φ) = true ior true
and U(φ) = x L ior x L1. So (s , h)& (s1, h1) |=β,η,η I(φ) and (s , h) |=η U(φ) and (s1, h1) |=η U(φ)
but (s , h)& (s1, h1) |=β,η,η φ does not hold since we have neither (s , h)& (s1, h1) |=β,η,η x L (as s1(x) η L
does not hold) nor (s , h)& (s1, h1) |=β,η,η x L1.

Lemma 4.5 Assume that φ does not contain ior.
If (s , h)& (s1, h1) |=β,η,η1

I(φ) and (s , h) |=η U(φ) and (s1, h1) |=η1
U(φ) then (s , h)& (s1, h1) |=β,η,η1

φ.

Proof: Go by structural induction on φ.

φ = xn or L.f n. Then I(φ) = φ, so the claim is trivial.

φ = x L or φ = L.f LI or φ = θ or φ = true or φ = L abs i . Then U(φ) = φ, and the claim follows by
the definition of (s , h)& (s1, h1) |=β,η,η1

φ.

φ = φ1 ∧ φ2. Assume (s , h)& (s1, h1) |=β,η,η1
I(φ) and (s , h) |=η U(φ) and (s1, h1) |=η1

U(φ).
Then (s , h)& (s1, h1) |=β,η,η1

I(φ1) and (s , h)& (s1, h1) |=β,η,η1
I(φ2) and (s , h) |=η U(φ1) and (s , h) |=η

U(φ2) and (s1, h1) |=η1
U(φ1) and (s1, h1) |=η1

U(φ2). So inductively we have (s , h)& (s1, h1) |=β,η,η1
φ1

and (s , h)& (s1, h1) |=β,η,η1
φ2 and therefore the desired (s , h)& (s1, h1) |=β,η,η1

φ.

φ = φ1 uor φ2. Assume (s , h) |=η U(φ) and (s1, h1) |=η1
U(φ). By Fact 4.1, (s , h) |=η φ and (s1, h1) |=η1

φ
and therefore the desired (s , h)& (s1, h1) |=β,η,η1

φ.

4.2 Dynamic Properties of Assertions

We now specify the conditions under which a set of abstract entities X are created/modified from state (s , h)
to state (s ′, h′) under extraction relation η over heap h′. This is written, (s , h) → (s ′, h′) |=η X . The set
of abstract entities in X overapproximates the set of concrete locations that may be created/modified from
(s , h) to (s ′, h′).

Definition 4.6 (Creating/Modifying an abstract entity)
Say that (s , h) → (s ′, h′) |=η X iff

(a) for all y modified from s to s ′, y ∈ X .

(b) for all `.f modified from h to h′, there exists L with ` η L such that L.f ∈ X .

(c) for all ` created from h to h′, there exists L ∈ X with ` η L.

Disjointness. Recall that L1 � L2 denotes that L1 and L2 are disjoint. We extend disjointness in two
stages. In the first stage, we lift � to a relation between an abstract entity and a set of abstract entities as
follows: (a) x � X iff x 6∈ X ; (b) L.f � X iff for all L1.f ∈ X , we have L � L1; (c) L � X iff for all L1 ∈ X ,
we have L � L1

11.
Second, we define what it means for an assertion φ to be disjoint from a set of abstract entities, X . This

relation, written φ � X , holds provided a � X for all abstract addresses a occurring on “the left hand side”
of assertions in φ, and L � X for all L abs i in φ:

11Note that it is possible for L � X to hold even if X contains L.f .

15

Definition 4.7 We write φ � X when all of the following holds:

• For all x LI occurring in φ, x � X .

• For all L.f LI occurring in φ, L.f � X .

• For all L abs i occurring in φ, L � X .

• For all xn occurring in φ, x � X .

• For all L.f n occurring in φ, L.f � X .

• For all θ occurring in φ: if x occurs in θ then x 6∈ X ; if x .f occurs in θ then12 no L.f occurs in X.

As we shall see later (Sec. 5), φ � X is exactly the form of the side condition of the frame rule.
The main result of this section is an invariance result, intuitively stating that an assertion which is

valid before executing a command, also remains valid after, provided it is disjoint from any abstract entity
modified/created by the command.

To precisely state this result, we need the following notion of “extension” of η and β: Say that η′ over h′

extends η over h, if dom(h) ⊆ dom(h′) and for all ` ∈ dom(h), for all L: ` η L iff ` η′ L.

Let dom(h) ⊆ dom(h′) and dom(h1) ⊆ dom(h′

1). Say that β′ over h′&h′

1 extends β over h&h1 if β =
{(`, `1) ∈ β′ | (` ∈ dom(h))∨ (`1 ∈ dom(h1))}. (Therefore, if ` β′ `1 and ` ∈ dom(h) then `1 ∈ dom(h1), and
vice versa).

Lemma 4.8 Assume that η′ over h′ extends η′′ over h′′, and that η′′ over h′′ extends η over h. Then η′

over h′ extends η over h.

Proof: For all ` ∈ dom(h), all L: ` η L iff ` η′′ L iff ` η′ L.

Lemma 4.9 Assume that β′ over h′&h′

1 extends β′′ over h′′&h′′

1 , and that β′′ over h′′&h′′

1 extends β over
h&h1. Then β′ over h′&h′

1 extends β over h&h1.

Proof: We must show that β = {(`, `1) ∈ β′ | ` ∈ dom(h) or `1 ∈ dom(h1)}. So first consider (`, `1) ∈ β.
Our assumptions entail first (`, `1) ∈ β′′ and then (`, `1) ∈ β′. Conversely, given (`, `1) ∈ β′ with ` ∈ dom(h)
or `1 ∈ dom(h1). Then also ` ∈ dom(h′′) or `1 ∈ dom(h′′

1) which since β′ extends β′′ implies that (`, `1) ∈ β′′.
But since β′′ extends β, this implies the desired (`, `1) ∈ β.

Lemma 4.10 Assume that (s , h) → (s ′′, h′′) |=η′′ X1 and (s ′′, h′′) → (s ′, h′) |=η′ X2 where η′ over h′

extends η′′ over h′′. Then also (s , h) → (s ′, h′) |=η′ X1 ∪ X2.

Proof: First assume that x is modified from s to s ′. By Lemma 3.6, either x is modified from s to s ′′ or x
is modified from s ′′ to s ′; our assumptions then imply that x ∈ X1 or x ∈ X2.

Next, assume that ` is created from h to h′. By Lemma 3.6, there are two cases: (a) ` is created from h
to h′′: By our assumption, there exists L with ` η′′ L such that L ∈ X1 and thus ` η′ L with L ∈ X1 ∪X2. (b)
` is created from h′′ to h′: By our assumption, there exists L with ` η′ L such that L ∈ X2, and thus ` η′ L
with L ∈ X1 ∪ X2.

Finally, assume that `.f is modified from h to h′. By Lemma 3.6, we have two cases: (a) `.f is modified
from h to h′′: By our assumption, there exists L with ` η′′ L such that L.f ∈ X1, and thus ` η′ L with
L.f ∈ X1 ∪ X2. (b) `.f is modified from h′′ to h′. By our assumption, there exists L with ` η′ L such that
L.f ∈ X2, and thus ` η′ L with L.f ∈ X1 ∪ X2.

Lemma 4.11 (Invariance) Suppose φ � X . Further, suppose (s , h) → (s ′, h′) |=η′ X , and (s1, h1) →
(s ′1, h

′

1) |=η′

1
X , where η′ over h′ extends η over h, and η′1 over h′

1 extends η1 over h1. Also, let β′ over
h′&h′

1 extend β over h&h1. Suppose (s , h)& (s1, h1) |=β,η,η1
φ. Then

12This is a very crude requirement; we might be able to settle for something more precise like: no L.f occurs in X where φ
“associates” x with L.

16

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ.

Proof: Go by structural induction on φ. The inductive case for ∧ is trivial. Similarly, the inductive case
for ior is trivial.

For the case where φ = φ1 uor φ2, our assumptions entail that

(s , h) |=η φ (1)

(s1, h1) |=η1
φ (2)

From (1), we can assume wlog. that (s , h) |=η φ1. By Lemma 4.3 with ι the identity on dom(h),
(s , h)& (s , h) |=ι,η,η φ1. We can conclude inductively that (s ′, h′)& (s ′, h′) |=ι′,η′,η′ φ1, with ι′ the identity
on dom(h′), and by Lemma 4.4 therefore (s ′, h′) |=η′ φ1 from which we conclude (s ′, h′) |=η′ φ. Similarly,
from (2) we can conclude (s ′1, h

′

1) |=η′

1
φ. But this shows the desired (s ′, h′)& (s ′1, h

′

1) |=β′,η′,η′

1
φ.

Next consider the base cases, where φ = true is trivial. For the base cases y LI and L.f LI and
L abs i and θ, for reasons of symmetry it suffices to prove (s ′, h′) |=η′ φ; for that purpose we can assume
that (s , h) |=η φ.

φ is of the form θ. So [[θ]](s , h) holds. From φ � θ we know that for all x occurring free in θ we have x 6∈ X ,
so s ′(x) = s(x). Now assume that also x .f occurs in θ, with s(x) = s ′(x) = ` where ` ∈ dom(h) and
` ∈ dom(h′). We must prove that h`f = h′`f . Assume otherwise: then `.f is modified from h to h′ so by
our assumption, there exists L with ` η′ L such that L.f ∈ X . But by definition of φ � X , no L.f belongs to
X , yielding the desired contradiction. By collecting the pieces, we get the desired [[θ]](s ′, h′).

φ is of the form L abs i . So i ≥ card({` ∈ dom(h) | ` η L}). We must prove that i ≥ card({` ∈ dom(h′) |
` η′ L}) which can be done by establishing that

{` ∈ dom(h) | ` η L} = {` ∈ dom(h′) | ` η′ L}.

Here, ⊆ is obvious. To prove ⊇, assume that ` ∈ dom(h′) with ` η′ L. If ` ∈ dom(h), then ` η L follows (since
η′ extends η). If ` 6∈ dom(h), then ` is created from h to h′, so there exists L1 ∈ X with ` η′ L1. But then
we do not have L � L1, contradicting φ � X .

φ is of the form y LI . So s(y) η LI . From φ � X , we infer that y 6∈ X . But then s ′(y) = s(y), so we have
the desired s ′(y) η′ LI .

φ is of the form L.f LI . We are given ` ∈ dom(h′) with ` η′ L, and must prove that (h′`f) η′ LI . We
observe that `.f is not modified from h to h′. For assume otherwise: then ` η′ L1 with L1.f ∈ X , so from
φ � X we infer that L � L1, contradicting ` η′ L and ` η′ L1. We consider two cases: (a) ` ∈ dom(h): then
h`f = h′`f . Also, ` η L, so from (s , h) |=η φ we infer that (h`f) η LI . But then also (h′`f) η′ LI , as desired.
(b) ` 6∈ dom(h): then the value of h′`f is the default value for the type of f . If type f is int, then LI = int
so the claim follows since 0 η′ int. Otherwise, LI 6= int and the claim follows since then nil η′ LI .

φ is of the form yn. So (sy)β (s1y). Here, y 6∈ X (since φ � X). Therefore, s ′(y) = s(y) and s ′1(y) = s1(y).
But this implies the desired (s ′y)β′ (s ′1y).

φ is of the form L.f n. Let ` ∈ dom(h′) and `1 ∈ dom(h′

1) with ` β′ `1 and ` η′ L (thus also `1 η
′

1 L). We must
prove that (h′`f)β′ (h′

1`1f). From φ � X we infer, as in a previous case, that `.f is not modified from h to h′,
nor is `.f modified from h1 to h′

1. Since β′ extends β, there are two possibilities: (a) ` ∈ dom(h), `1 ∈ dom(h1).
Then ` β `1, ` η L, `1 η1 L, h`f = h′`f , h1`1f = h′

1`1f . We infer from our assumptions that (h`f)β (h1`1f)
and thus (h′`f)β (h′

1`1f) implying the desired (h′`f)β′ (h′

1`1f). (b) ` 6∈ dom(h) and `1 6∈ dom(h1). Then the
value of h′`f is the default for the type of f , and similarly for h′

1`1f . Then (h′`f)β′ (h′

1`1f) trivially holds.

17

4.3 Logical implication

The purpose of this section is to define a notion of implication of assertions; this permits the deduction of
more agreement assertions than can be obtained by tracking data and control flow only.

Definition 4.12 (Logically implies) Say that φ0 logically implies φ, written φ0 I φ, iff (s , h)& (s1, h1) |=β,η,η1

φ0 implies (s , h)& (s1, h1) |=β,η,η1
φ .

Note that if L1 � L2 then we have the following logical implications:

• x L1 logically implies x L2.

• L.f L1 logically implies L.f L2.

• L2.f LI logically implies L1.f LI .

• L2 abs i logically implies L1 abs i .

• L2.f n logically implies L1.f n.

The above definition allows us to show that the following logical implications are valid.

• Let θ be the programmer assertion x = c. Then θ I xn.

For assume that (s , h)& (s1, h1) |=β,η,η1
θ. Then by semantics of agreement assertions, (s , h) |=η θ

and (s1, h1) |=η1
θ. That is, s(x) = c and s1(x) = c. But then (s x)β (s1 x).

• Let θ be the assertion (x = y). Then (θ ∧ yn) I xn. For assume that (s , h)& (s1, h1) |=β,η,η1
θ ∧ yn.

Then by semantics of agreement assertions, (s , h) |=η θ and (s1, h1) |=η1
θ and (s y)β (s1 y). Thus we

get s(x) = s(y) and s1(x) = s1(y), implying (s x)β (s1 x). Hence (s , h)& (s1, h1) |=β,η,η1
xn.

• Let θ be the assertion x = k(y), with k an arithmetic function. Then (θ ∧ yn) I xn. For assume that
(s , h)& (s1, h1) |=β,η,η1

θ ∧ yn. Then (s y)β (s1 y), and since s y and s1 y are integers this amounts to
s y = s1 y and therefore k(s y) = k(s1 y). From (s , h) |=η θ we infer s(x) = k(s y); similarly we infer
s1(x) = k(s1 y). We conclude s(x) = s1(x) which amounts to the desired (s x)β (s1 x).

Several other such logical implications are possible. For applications, recall Sec. 2, and see Sec. 6.
We can define I on sets of abstract entities in a manner similar to Def. 4.12. Say that X I X ′ iff

(s , h) → (s ′, h′) |=η X implies (s , h) → (s ′, h′) |=η X ′.

Fact 4.13 If

• x ∈ X implies x ∈ X ′

• L ∈ X implies there exists L′ ∈ X ′ with L � L′

• L.f ∈ X implies there exists L′ with L � L′ such that L′.f ∈ X ′

then X I X ′. In particular, if X ⊆ X ′ then X I X ′.

5 Statically Checking Assertions via a Logic

To statically check assertions we define, in Table 2, a Hoare-like logic whose judgements take the form

Π ` {φ0} S {φ} [X].

18

In the judgement, X is a set of abstract entities that overapproximates the abstract entities modified/created
by S , φ0 are the assertions that hold before execution of S , and φ are the assertions that hold after execution
of S . Π is a summary environment for methods, such that Π(C ,m) is a (set of) summaries of the form
{ψ0} {ψ} [X ′], where the only program variables mentioned in ψ0 are self and the formal parameter of m,
where the only program variable mentioned in ψ is result , and where X ′ does not contain program variables.
The reason for having a set of summaries is polyvariance: at different call sites of the same method, different
pre-and postconditions may hold. (This is similar to intersection type systems, where, given that variable
x has an intersection type, a particular use of x selects the appropriate conjunct.) We will often omit Π in
rules other than the rule for method call. Each judgement in Table 2 is a small specification.

Before discussing the small specifications in more detail, we shall define, for a judgement {φ0} S {φ} [X],
its intended meaning, of which our logic will be a sound (but necessarily not complete) approximation.

5.1 Semantics of Judgements

Definition 5.1 We say that µ |= {φ0} S {φ} [X] iff the following holds for all s, h, s ′, h′, s1, h1, s
′

1, h
′

1, β, η, η1.
Assume

(s , h) [[[S]]µ] (s ′, h′) and (s1, h1) [[[S]]µ] (s ′1, h
′

1) and
(s , h)& (s1, h1) |=β,η,η1

φ0.

Then there exists η′ over h′ extending η, there exists η′1 over h′

1 extending η1, and there exists β′ over h′&h′

1

extending β over h&h1, such that

(1a) (s , h) → (s ′, h′) |=η′ X

(1b) (s1, h1) → (s ′1, h
′

1) |=η′

1
X

(2) (s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

Conditions (1a) and (1b) say that X is a sound overapproximation of the abstract entities modified/created
in S when its execution changes the state from (s , h) to (s ′, h′), or from (s1, h1) to (s ′1, h

′

1). Condition (2)
says, under the assumption that precondition φ0 holds for the initial pair of states (s , h) and (s1, h1), that the
postcondition φ holds for the modified states (s ′, h′) and (s ′1, h

′

1). Note that these conditions hold vacuously
in case of non-termination, or run-time error (since then, states (s ′, h′) and (s ′1, h

′

1) would not exist).

Conjunction Rule not Sound in Semantic Model. It may be the case that µ |= {φ0} S {φ1} [X] and
µ |= {φ0} S {φ2} [X] hold separately, but µ |= {φ0} S {φ1 ∧ φ2} [X] does not hold. For a concrete example,
consider the following program S :

if z then x := new C ; y := x else x := new C ; y := new C

Using Def. 5.1, we can semantically establish xn and yn separately, but not xn∧ yn. To see this, consider
the initial states (s , h) and (s1, h1), evolving into states (s ′, h′) and (s ′1, h

′

1). Our goal is to find β′ extending
β such that (s ′ x)β(s ′1 x) and (s ′ y)β(s ′1 y); this is trivial if s(z) and s1(z) assume the same truth value, so
assume that s(z) ∈ True but s1(z) ∈ False. Then there exists fresh location ` such that s ′(x) = s ′(y) = `,
and there exists fresh locations `x 6= `y such that s ′1(x) = `x and s ′1(y) = `y . To establish xn, we define β′

such that ` β′ `x ; similarly, to establish yn, we define β′ such that ` β′ `y . But to establish both xn and yn,
we would need ` β′ `x and ` β′ `y , which conflicts with β′ being a bijection.

5.2 Syntax-directed Rules

Table 2 gives the details of some small specifications. First note that ordinary assignment, x := E , is split
into three cases – pure assignment, where E is an arithmetic expression; pointer assignment, where E is a
variable z denoting a location; and null assignment, where E is null.

19

Next note that for a given small specification, its points-to assertions are always relevant, in that those
occurring in the precondition must be established by the context, whereas the agreement assertions may or
may not be relevant, depending on whether those occurring in the precondition are established by the context.
Therefore certain specifications should be read as two specifications (for space reasons, we do not show both),
with the “optional” agreement assertions being listed right of a semicolon. For example, [PointerAssign] should
be read as the two rules: {z ρ} x := z {x ρ} [{x}] and {z ρ, zn} x := z {x ρ, xn} [{x}].

Due to the presence of the points-to assertion L abs i , there are also two versions of [New] and of
[FieldUpd]; the latter can be written as one rule using the disjunction operator, whereas for the former we
shall write both versions explicitly.

Many of the rules in Table 2 have already been motivated by means of examples in Sec. 2, so below we
shall discuss only a few, and also give the rule for method calls.

The postcondition of [New] asserts that x will be at some abstract location L with L 6= ⊥; furthermore,
xn always holds and x is modified and L is created. The rule mirrors the concrete semantics of new, where
a fresh location is allocated in the heap, except that we do not require freshness of L. On the other hand, if
L was not used before, i.e., the precondition contains the assertion L abs 0, we can assert that L contains a
unique location afterwards, i.e., the postcondition contains the assertion L abs 1.

In the rule [FieldUpd], we are able to handle “strong update”: if we can statically infer (L abs 1) that L
contains only a single concrete heap location, then the assertions L.f n and L.f LI are not needed in the
precondition.

Also note that in the absence of L abs 1, the postcondition can never contain an assertion L.f L′ unless
the precondition contains an assertion of the form L.f L′′ (where L′′ � L′); this is unlike the situation
for x L′ which may be introduced by the logic “ex nihilo” (using, e.g., [PointerAssign]). Therefore, the
precondition for the whole program may have to explicitly contain assertions like L.f ⊥.

Next we discuss [If], which is similar to the rule for conditionals in Hoare logic, except that in the presence
of agreement assertions, some side conditions may be needed. Two cases:

(a) If φ0 logically implies xn, then we know that in states (s , h) and (s1, h1), both s(x) and s1(x) will have
the same (integer) value, so the same branch of the conditional will be taken during evaluation. Hence,
there is no indirect control flow, and thus no need for any side conditions. (In the context of security,
this case amounts to the guard of the conditional being “low”).

(b) Alternatively, in states (s , h) and (s1, h1), s(x) and s1(x) may differ, causing different branches of the
conditional to be taken. In this case, in order to assert wn at the end of the conditional, it does not
suffice to assert wn at the end of each branch, since this merely says that two runs choosing the same
branch will agree on the value of w . What we need is that:

1. w is not modified in any branch. (In the context of security, this amounts to “no write down”
under a “high guard” [7]).

2. the two runs agree on the value of w before the conditional.

The first demand can be encoded as I(φ) � X ; the second, as φ0 I I(φ).

In addition to (1) and (2), we must demand that φ does not contain ior. For otherwise, let S be
if h then S1 else S2 with S1 = x := y and S2 = x := z . We can deduce (using [Conseq])

{y L, z L1} S1 {x L ior x L1} [{x}] and

{y L, z L1} S2 {x L ior x L1} [{x}].

From this we could deduce, using an [If] without this extra side condition, that

{y L, z L1} S {x L ior x L1} [{x}]

which if L � L1 does not hold semantically, as can be seen by considering two initial states that select
different branches.

20

[Assert] {true} assert θ {θ} [∅] [PureAssign]
{z1, . . . , zn} = free(E)

{true ; z1n, . . . , znn} x := E {x int; xn} [{x}]

[NullAssign] {true} x := null {x ⊥, xn} [{x}] [PointerAssign] {z ρ; zn} x := z {x ρ; xn} [{x}]

[FieldAcc]

{y ρ, ρ.f %; yn, ρ.f n}
x := y .f

{x %; xn}
[{x}]

[FieldUpd]

{x ρ, y %, (ρ abs 1) ior (ρ.f %);
xn, yn, (ρ abs 1) ior (ρ.f n)}

x .f := y

{ρ.f %; ρ.f n}
[{ρ.f }]

[New] {true} x := new C {x ρ, xn} [{x , ρ}] where ρ 6= ⊥

[New] {ρ abs 0} x := new C {x ρ, ρ abs 1, xn} [{x , ρ}] where ρ 6= ⊥

[Seq]
{φ0} S1 {φ1} [X1] {φ1} S2 {φ} [X2]

{φ0} S1 ;S2 {φ} [X1 ∪ X2]
[If]

{φ0} S1 {φ} [X] {φ0} S2 {φ} [X]

{φ0} if x then S1 else S2 {φ} [X]

where φ0 I xn
or φ contains no ior and

I(φ) � X and
φ0 I I(φ)

[While]
{φ} S {φ} [X]

{φ} while x do S {φ} [X]

where φ I xn
or φ contains no ior and

I(φ) � X

Table 2: Small specifications. A ρ (a %) is a metavariable to be instantiated by an L (an LI).

Concerning the specification of a method call, x := y.m(z), assume that type y = C and that Π(C ,m)
contains the summary {ψ0} {ψ} [X]. Then, with φ0 = ψ0[y/self , z/pars(m,C)] and φ = ψ[x/result],13 we
have

[MethodCall] Π ` {φ0} x := y.m(z) {φ} [X ∪ {x}]
where φ0 I yn
or φ contains no ior and

I(φ) � (X ∪ {x}) and
φ0 I I(φ)

The side condition is similar to the one found in [If], and is needed to accommodate dynamic dispatch: if
yn does not hold, then the two runs in question may execute different method bodies.

5.3 Structural Rules

There are four structural14 rules: the rule of consequence which is similar to the corresponding rule in Hoare
logic, a rule for each of the disjunction operators, and then the frame rule.

[Conseq]
{φ1} S {φ2} [X]

{φ′1} S {φ′2} [X ′]

if φ′1 I φ1

and φ2 I φ′2
and X I X ′

[Ior]
{φ1} S {φ′1} [X] {φ2} S {φ′2} [X]

{φ1 ior φ2} S {φ′1 ior φ′2} [X]

13The notation, e.g., ψ[x/result] denotes substitution of x for result in ψ.
14I.e., not syntax-directed.

21

[Uor]
{φ1} S {φ′1} [X] {φ2} S {φ′2} [X]

{φ1 uor φ2} S {φ′1 uor φ′2} [X]

[Frame]
{φ1} S {φ2} [X]

{φ1 ∧ φ} S {φ2 ∧ φ} [X]
if φ � X .

The frame rule is used to reason with small specifications in a larger context. For example, for a command
S1 ;S2, rule [Seq] requires the postcondition of S1 to be the same as the precondition of S2. As the examples
in Sec. 2 depict, such a match may not always be achievable by small specifications themselves: extra
assertions must be added by invoking [Frame]. This is sound provided the added assertions are disjoint from
the modified abstract addresses.

As suggested by the semantic considerations in Sec. 5.1, we do not have a rule of conjunction like the one
in Hoare logic (without heaps), i.e., we cannot derive {φ0∧φ

′

0} S {φ∧φ′} [X ∪X ′] from {φ0} S {φ} [X] and
{φ′0} S {φ′} [X ′]. To see why this would be unsound (at least in our semantic model), let S be the command
x := new C . Then, for all L1 and L2, we would have {true} S {x L1} [{x}] and {true} S {x L2} [{x}]
and by the proposed conjunction rule therefore {true} S {x L1 ∧ x L2} [{x}]. But this is clearly a
semantic impossibility if L1 � L2. Referring back to Def. 5.1, the issue is that with `′ the location created
by S we can extend η into an η′ with `′ η′ L1, and also into an η′ with `′ η′ L2, but we cannot find an η′ with
`′ η′ L1 and `′ η′ L2.

Remarks.

• One may think that the small specifications lose information and may not be precise. For example,
in [PointerAssign], why did zn disappear in the postcondition? But that agreement assertion can be
recovered by [Frame], since z is not modified.

• Similarly, thanks to [Conseq], the rule for field update does not lose precision. To see this, assume that
y L1 and L.f L2, and that L3 is an upper bound of L1 and L2 with respect to �. Then, with
x L, we have, by [FieldUpd]

{x L,L.f L3, y L3} x .f := y {L.f L3} [{L.f }]

and by [Conseq] therefore

{x L,L.f L2, y L1} x .f := y {L.f L3} [{L.f }]

and by [Frame] therefore, since x , y are not modified, and since ∧ is idempotent,

{x L,L.f L2, y L1}
x .f := y

{L.f L3, y L1, x L} [{L.f }]

So y is not polluted: we still have y L1 after the field update.

5.4 Soundness

Definition 5.2 (Consistent summary environment) Say that summary environment Π is consistent
wrt. class table CT if whenever Π(C ,m) contains the summary {ψ0} {ψ} [X], and S is the body of a
declaration of m in C , or in any subclass of C , then Π ` {ψ0} S {ψ} [X ′] where X = {L.f | L.f ∈ X ′}∪{L |
L ∈ X ′}.

The idea is that even if a local variable is modified by S and hence occurs in X ′, it should not occur in X
since it is not visible outside m. On the other hand, all field updates15 are globally visible.

15Since we are handling only public fields. In future work, we hope to explore issues involving information hiding through
private fields.

22

Theorem 5.3 (Soundness) Let Π be a summary environment consistent wrt. class table CT. For a com-
mand S, suppose Π ` {φ0} S {φ} [X]. Then [[CT]] |= {φ0} S {φ} [X].

The proof will follow shortly. As a special case of the theorem, the following result shows that “the points-to
analysis part is sound”.

Corollary 5.4 Let Π be a summary environment consistent wrt. class table CT. Also, let Π ` {φ0} S {φ} [X].
Assume that with µ = [[CT]], we have (s , h) [[[S]]µ] (s ′, h′) and that (s , h) |=η φ0.
Then there exists η′ over h′ extending η over h such that (s , h) → (s ′, h′) |=η′ X and (s ′, h′) |=η′ φ.

Proof: We know from Lemma 4.3 that with β the identity relation on dom(h), we have (s , h)& (s , h) |=β,η,η

φ0. The soundness theorem now gives us η′ over h′ extending η, η′1, β
′ such that (s , h) → (s ′, h′) |=η′ X

and (s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ. The claim now follows from Lemma 4.4.

We now address the proof of Theorem 5.3. Due to Lemma 3.3, it is clearly sufficient to prove the following
lemma:

Lemma 5.5 Given Π is consistent wrt. CT. Assume that, with µn as in Definition 3.1, that

(a) Π ` {φ0} S {φ} [X]

(b) (s , h) [[[S]]µn] (s ′, h′) and (s1, h1) [[[S]]µn] (s ′1, h
′

1)

(c) (s , h)& (s1, h1) |=β,η,η1
φ0.

Then there exists η′ over h′ extending η over h, η′1 over h′

1 extending η1 over h1, and β′ over h′&h′

1 extending
β over h&h1, such that

(1a) (s , h) → (s ′, h′) |=η′ X

(1b) (s1, h1) → (s ′1, h
′

1) |=η′

1
X

(2) (s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

Proof: We shall prove this by an outer induction on n; for each n we shall do an inner induction on the
derivation D = Π ` {φ0} S {φ} [X], and do a case analysis on the last rule applied in that derivation.

Case of Rule [Conseq].
Our assumptions are

(a) D = {φ0} S {φ} [X] because D ′ = {φ′0} S {φ′} [X ′] where φ0 I φ
′

0 and φ′ I φ and X ′
I X .

(b) (s , h) [[[S]]µn] (s ′, h′) and (s1, h1) [[[S]]µn] (s ′1, h
′

1)

(c) (s , h)& (s1, h1) |=β,η,η1
φ0.

From (c) we infer, since φ0 I φ
′

0, that

(s , h)& (s1, h1) |=β,η,η1
φ′0

We can now apply the induction hypothesis on D ′, and find η′ over h′ extending η over h, η′1 over h′

1 extending
η1 over h1, and β′ over h′&h′

1 extending β over h&h1, such that

23

(s , h) → (s ′, h′) |=η′ X ′

(s1, h1) → (s ′1, h
′

1) |=η′

1
X ′

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ′

Since φ′ I φ, and X ′
I X , we infer the desired

(s , h) → (s ′, h′) |=η′ X , (s1, h1) → (s ′1, h
′

1) |=η′

1
X , (s ′, h′)& (s ′1, h

′

1) |=β′,η′,η′

1
φ

Case of Rule [Frame].
Our assumptions are:

(a) {φ0 ∧ φ1} S {φ ∧ φ1} [X] because with φ1 � X we have D1 = {φ0} S {φ} [X]

(b) (s , h) [[[S]]µn] (s ′, h′) and (s1, h1) [[[S]]µn] (s ′1, h
′

1)

(c) (s , h)& (s1, h1) |=β,η,η1
φ0 ∧ φ1

From (c), we infer

(s , h)& (s1, h1) |=β,η,η1
φ0 (1)

(s , h)& (s1, h1) |=β,η,η1
φ1 (2)

Due to (1), we can apply the induction hypothesis on D1 and find η′ over h′ extending η over h, η′1 over h′

1

extending η1 over h1, and β′ over h′&h′

1 extending β over h&h1, such that

(s , h) → (s ′, h′) |=η′ X (3)

(s1, h1) → (s ′1, h
′

1) |=η′

1
X (4)

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

From (2) we now infer by Lemma 4.11

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ1

and thus

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ ∧ φ1

which together with (3) and (4) yields the desired conclusion.

Case of Rule [Ior].
Our assumptions are

(a) D = {φ0} S {φ} [X] because with φ0 = φ′0 ior φ′′0 and φ = φ′ ior φ′′ we have D1 = {φ′0} S {φ′} [X]
and D2 = {φ′′0} S {φ′′} [X]

(b) (s , h) [[[S]]µn] (s ′, h′) and (s1, h1) [[[S]]µn] (s ′1, h
′

1)

(c) (s , h)& (s1, h1) |=β,η,η1
φ0

Wlog., we can assume that

(s , h)& (s1, h1) |=β,η,η1
φ′0

By applying the induction hypothesis on D1, we find η′ over h′ extending η over h, η′1 over h′

1 extending η1
over h1, and β′ over h′&h′

1 extending β over h&h1, such that

24

(s , h) → (s ′, h′) |=η′ X (5)

(s1, h1) → (s ′1, h
′

1) |=η′

1
X (6)

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ′

But then also

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

which together with (5) and (6) yields the desired conclusion.

Case of Rule [Uor].
Our assumptions are

(a) D = {φ0} S {φ} [X] because with φ0 = φ′0 uor φ′′0 and φ = φ′ uor φ′′ we have D1 = {φ′0} S {φ′} [X]
and D2 = {φ′′0} S {φ′′} [X]

(b) (s , h) [[[S]]µn] (s ′, h′) and (s1, h1) [[[S]]µn] (s ′1, h
′

1)

(c) (s , h)& (s1, h1) |=β,η,η1
φ0

We infer, by Lemma 4.4, that (s , h) |=η φ0. Wlog., we can assume that (s , h) |=η φ′0. By Lemma 4.3, with
id the identity on dom(h), we therefore have

(s , h)& (s , h) |=id,η,η φ′0

We can now apply the induction hypothesis on D1, and we find η′ over h′ extending η over h such that

(s , h) → (s ′, h′) |=η′ X and (7)
(s ′, h′)& (s ′, h′) |= ,η′, φ′

and by Lemma 4.4 therefore (s ′, h′) |=η′ φ′ and thus

(s ′, h′) |=η′ φ. (8)

Similarly, we infer that there exists η′1 over h′

1 extending η1 such that

(s1, h1) → (s ′1, h
′

1) |=η′

1
X and (9)

(s ′1, h
′

1) |=η′

1
φ. (10)

From (8) and (10) we get

(s ′, h′)& (s ′1, h
′

1) |=β,η′,η′

1
φ

which together with (7) and (9) yields the desired conclusion.

Case of Rule [Seq].
Our assumptions are

(a) {φ0} S1 ;S2 {φ} [X] because with X = X1 ∪X2, D1 = {φ0} S1 {φ1} [X1] and D2 = {φ1} S2 {φ} [X2]

(b1) (s , h) [[[S1 ;S2]]µn] (s ′, h′) because (s , h) [[[S1]]µn] (s ′′, h′′) and (s ′′, h′′) [[[S2]]µn] (s ′, h′)

(b2) (s1, h1) [[[S1 ;S2]]µn] (s ′1, h
′

1) because (s1, h1) [[[S1]]µn] (s ′′1 , h
′′

1) and (s ′′1 , h
′′

1) [[[S2]]µn] (s ′1, h
′

1)

(c) (s , h)& (s1, h1) |=β,η,η1
φ0

We can apply the induction hypothesis on D1, and find η′′ over h′′ extending η over h, η′′1 over h′′

1 extending
η1 over h1, and β′′ over h′′&h′′

1 extending β over h&h1, such that

25

(s , h) → (s ′′, h′′) |=η′′ X1 and (s1, h1) → (s ′′1 , h
′′

1) |=η′′

1
X1 (11)

(s ′′, h′′)& (s ′′1 , h
′′

1) |=β′′,η′′,η′′

1
φ1 (12)

Using (12), we can now apply the induction hypothesis on D2, and find η′ over h′ extending η′′ over h′′, η′1
over h′

1 extending η′′1 over h′′

1 , and β′ over h′&h′

1 extending β′′ over h′′&h′′

1 , such that

(s ′′, h′′) → (s ′, h′) |=η′ X2 and
(s ′′1 , h

′′

1) → (s ′1, h
′

1) |=η′

1
X2 (13)

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ (14)

Lemmas 4.8 and 4.9 show that η′ over h′ extends η over h, that η′1 over h′

1 extends η1 over h1, and that β′

over h′&h′

1 extends β over h&h1. And Lemma 4.10 shows (using (11) and (13)) that we do indeed have

(s , h) → (s ′, h′) |=η′ X and (s1, h1) → (s ′1, h
′

1) |=η′

1
X

which together with (14) is what we want.

Case of Rule [If].
Our assumptions are

(a) {φ0} if x then S1 else S2 {φ} [X] because D1 = {φ0} S1 {φ} [X] and D2 = {φ0} S2 {φ} [X] and where
either φ0 I xn or

φ does not contain ior

and I(φ) � X
and φ0 I I(φ)

(b1) (s , h) [[[if x then S1 else S2]]µn] (s ′, h′)

(b2) (s1, h1) [[[if x then S1 else S2]]µn] (s ′1, h
′

1)

(c) (s , h)& (s1, h1) |=β,η,η1
φ0

Concerning (b1), wlog. we may assume that s(x) ∈ True. Thus (s , h) [[[S1]]µn] (s ′, h′).
There are now two subcases:

Subcase s1(x) ∈ True. Thus (s1, h1) [[[S1]]µn] (s ′1, h
′

1). Then we can apply the induction hypothesis on
D1, and find η′ over h′ extending η over h, η′1 over h′

1 extending η1 over h1, and β′ over h′&h′

1 extending β
over h&h1, such that

(s , h) → (s ′, h′) |=η′ X
(s1, h1) → (s ′1, h

′

1) |=η′

1
X

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

which amounts to the desired result.

Subcase s1(x) ∈ False. Thus (s1, h1) [[[S2]]µn] (s ′1, h
′

1). By Lemma 4.4, our assumption (c) entails

(s , h) |=η φ0

so by Lemma 4.3, with id the identity on dom(h), we infer that

(s , h)& (s , h) |=id,η,η φ0.

Applying the induction hypothesis on D1, we therefore get η′ over h′ extending η over h such that

(s , h) → (s ′, h′) |=η′ X (15)

(s ′, h′)& (s ′, h′) |= ,η′, φ

26

where the latter by Lemma 4.4 implies

(s ′, h′) |=η′ φ. (16)

Similarly, by applying the induction hypothesis on D2, we get η′1 over h′

1 extending η1 over h1 such that

(s1, h1) → (s ′1, h
′

1) |=η′

1
X (17)

(s ′1, h
′

1) |=η′

1
φ (18)

Finally, define β′ = β.
Observe that it cannot be the case that φ0 I xn, for then by (c) we would have (s , h)& (s1, h1) |=β,η,η1

xn and hence (s x)β (s1 x) which contradicts s(x) ∈ True and s1(x) ∈ False. By (a), we infer that

φ does not contain ior (19)

I(φ) � X (20)

φ0 I I(φ) (21)

From our assumption (c) we infer, using (21), that

(s , h)& (s1, h1) |=β,η,η1
I(φ).

Then by Lemma 4.11, using (15) and (17) and (20), we get

(s ′, h′)& (s ′1, h
′

1) |=β,η′,η′

1
I(φ)

which by Lemma 4.5 (and Fact 4.1), using (16) and (18) and (19), gives

(s ′, h′)& (s ′1, h
′

1) |=β,η′,η′

1
φ

which together with (15) and (17) yields the desired conclusion.

Case of Rule [While].
Our assumptions are

(a) {φ} while x do S {φ} [X] because D1 = {φ} S {φ} [X] where either φ I xn or

φ does not contain ior and
I(φ) � X

(b) (s , h) [[[while x do S]]µn] (s ′, h′) and
(s1, h1) [[[while x do S]]µn] (s ′1, h

′

1)

(c) (s , h)& (s1, h1) |=β,η,η1
φ

By the semantics of while, using that clearly Ri ⊆ Ri+1 holds for all i , there exists n such that

(s , h)Rn (s ′, h′) and
(s1, h1)Rn (s ′1, h

′

1)

It is thus sufficient to prove the following claim for all s , h, s1, h1, β, η, η1: if

(s , h)& (s1, h1) |=β,η,η1
φ and (22)

(s , h)Rn (s ′, h′) and
(s1, h1)Rn (s ′1, h

′

1)

then there exists η′ over h′ extending η over h, there exists η′1 over h′

1 extending η1 over h1, and there exists
β′ over h′&h′

1 extending β over h&h1, such that

(1a) (s , h) → (s ′, h′) |=η′ X

27

(1b) (s1, h1) → (s ′1, h
′

1) |=η′

1
X

(2) (s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

We shall now prove the claim by induction on n. For reasons of symmetry, it suffices to consider three
subcases.

Subcase s(x) ∈ False, s1(x) ∈ False. Then s ′ = s , h′ = h, s ′1 = s1, h
′

1 = h1. The claim now trivially
follows by choosing η′ = η, η′1 = η1, and β′ = β.

Subcase s(x) ∈ True, s1(x) ∈ True. Then n > 0, and there exist s ′′, h′′, s ′′1 , h
′′

1 such that

(s , h) [[[S]]µn] (s ′′, h′′)
(s ′′, h′′)Rn−1 (s ′, h′)
(s1, h1) [[[S]]µn] (s ′′1 , h

′′

1)
(s ′′1 , h

′′

1)Rn−1 (s ′1, h
′

1)

By applying the overall induction hypothesis on D1, we find η′′ over h′′ extending η over h, η′′1 over h′′

1

extending η1 over h1, and β′′ over h′′&h′′

1 extending β over h&h1, such that

(s , h) → (s ′′, h′′) |=η′′ X
(s1, h1) → (s ′′1 , h

′′

1) |=η′′

1
X (23)

and also

(s ′′, h′′)& (s ′′1 , h
′′

1) |=β′′,η′′,η′′

1
φ

We can now apply the most recent induction hypothesis, and find η′ over h′ extending η′′ over h′′, η′1 over
h′

1 extending η′′1 over h′′

1 , and β′ over h′&h′

1 extending β′′ over h′′&h′′

1 , such that

(s ′′, h′′) → (s ′, h′) |=η′ X and
(s ′′1 , h

′′

1) → (s ′1, h
′

1) |=η′

1
X (24)

and also

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

Lemmas 4.8 and 4.9 show that η′ over h′ extends η over h, that η′1 over h′

1 extends η1 over h1, and that β′

over h′&h′

1 extends β over h&h1. And Lemma 4.10 shows (using (23) and (24)) that we do indeed have the
remaining obligations:

(s , h) → (s ′, h′) |=η′ X and (s1, h1) → (s ′1, h
′

1) |=η′

1
X .

Subcase s(x) ∈ True, s1(x) ∈ False. Then s ′1 = s1, h′

1 = h1, and there exists s ′′, h′′ such that

(s , h) [[[S]]µn] (s ′′, h′′) and
(s ′′, h′′)Rn−1 (s ′, h′)

From (22), and Lemma 4.4, we get (s , h) |=η φ which by Lemma 4.3 implies (with id the identity on dom(h))

(s , h)& (s , h) |=id,η,η φ (25)

We also get (still from Lemma 4.4)

(s , h)& (s1, h1) |=β,η,η1
I(φ) (26)

(s1, h1) |=η1
φ (27)

Applying the overall induction hypothesis on D1, using (25), we therefore get η′′ over h′′ extending η over h
such that

28

(s , h) → (s ′′, h′′) |=η′′ X and
(s ′′, h′′)& (s ′′, h′′) |= ,η′′, φ

and by applying the most recent induction hypothesis on the latter judgment we get η′ over h′ extending η′′

over h′′ such that

(s ′′, h′′) → (s ′, h′) |=η′ X and
(s ′, h′)& (s ′, h′) |= ,η′, φ

and thus by Lemma 4.4

(s ′, h′) |=η′ φ (28)

Lemma 4.8 shows that η′ over h′ extends η over h. And Lemma 4.10 shows that

(s , h) → (s ′, h′) |=η′ X (29)

Define β′ = β, and η′1 = η1. Clearly,

(s1, h1) → (s ′1, h
′

1) |=η′

1
X (30)

Observe that it cannot be the case that φ I xn, for then by (22) we would have (s , h)& (s1, h1) |=β,η,η1
xn

and hence (s x)β (s1 x) which contradicts s(x) ∈ True and s1(x) ∈ False. Therefore, by assumption (a),

φ does not contain ior (31)
I(φ) � X (32)

Lemma 4.11 applied to (26), (29), (30), (32) gives

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
I(φ)

Together with (27) and (28), Lemma 4.5 (applicable due to (31)) now shows

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

which with (29) and (30) amounts to the desired conclusion.

Case of Rule [Assert].
Our assumptions are

(a) {true} assert θ {θ} [∅]

(b) (s , h) [[[assert θ]]µn] (s ′, h′) and (s1, h1) [[[assert θ]]µn] (s ′1, h
′

1)

Here s ′ = s , h′ = h, s ′1 = s1, h
′

1 = h1. Also, we have [[θ]](s , h) and [[θ]](s1, h1).
Choose η′ = η, η′1 = η1, and β′ = β. Trivially,

(s , h) → (s ′, h′) |=η′ [∅] and
(s1, h1) → (s ′1, h

′

1) |=η′

1
[∅]

We are left with proving

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
θ

that is (s , h)& (s1, h1) |=β,η,η1
θ, which amounts to our assumptions [[θ]](s , h) and [[θ]](s1, h1).

Case of Rule [PureAssign].
We are given the derivation

{true; z1n, . . . , znn} x := E {x int; xn} [{x}]
where z1, . . . , zn are the free variables in E

29

Also, we assume

(s , h) [[[x := E]]µn] (s ′, h′) and
(s1, h1) [[[x := E]]µn] (s ′1, h

′

1)

where h′ = h and h′

1 = h1. And, there exists c such that [[E]]s = c and s ′ = [s | x 7→c]; and, there exists c1

such that [[E]]s1 = c1 and s ′1 = [s1 | x 7→c1].
Choose η′ = η, η′1 = η1, and β′ = β. Trivially,

(s , h) → (s ′, h′) |=η′ [{x}] and
(s1, h1) → (s ′1, h

′

1) |=η′

1
[{x}] and

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
x int

In the case where there are no agreement assertions, we are done. Otherwise, our assumptions entail that
for all z in free(E) we have

(s , h)& (s1, h1) |=β,η,η1
zn

and we must prove

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
xn

But for all z in free(E), we have (s z)β (s1 z) and thus (since z has integer type) s(z) = s1(z). Therefore,
since [[E]] is deterministic, c = c1. So s ′(x) = s ′1(x), and thus (s ′x)β (s ′1x) as desired.

Case of Rule [PointerAssign].
We are given the derivation

{z L; zn} x := z {x L; xn} [{x}]

Also, we assume

(s , h) [[[x := z]]µn] (s ′, h′) and
(s1, h1) [[[x := z]]µn] (s ′1, h

′

1)

where s ′ = [s | x 7→s(z)] and s ′1 = [s1 | x 7→s1(z)], and h′ = h and h′

1 = h1.
Our assumption entails

(s , h) |=η z L

from which we infer (sz) η L. Similarly, we have (s1z) η1 L.
Choose η′ = η, η′1 = η1, and β′ = β. Obviously,

(s , h) → (s ′, h′) |=η′ {x} and
(s1, h1) → (s ′1, h

′

1) |=η′

1
{x}.

To prove

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
x L

for reasons of symmetry it is sufficient to show

(s ′, h′) |=η′ x L

This follows since s ′(x) = s(z) and (sz) η L.
In the case where there are no agreement assertions, we are done. Otherwise, our assumptions entail

(s , h)& (s1, h1) |=β,η,η′ zn

implying (sz)β (s1z), and we must prove

30

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
xn

But this follows since s ′(x) = s(z) and s1(z) = s ′1(x).

Case of Rule [NullAssign]. We are given the derivation

{true} x := null {x ⊥; xn} [{x}]

Also, we assume

(s , h) [[[x := null]]µn] (s ′, h′) and
(s1, h1) [[[x := null]]µn] (s ′1, h

′

1)

where s ′ = [s | x 7→nil] and s ′1 = [s1 | x 7→nil], and where h′ = h and h′

1 = h1.
Choose η′ = η, η′1 = η1, and β′ = β. Obviously,

(s , h) → (s ′, h′) |=η′ {x} and
(s1, h1) → (s ′1, h

′

1) |=η′

1
{x}

To prove

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
x ⊥

for reasons of symmetry it is sufficient to show

(s ′, h′) |=η′ x ⊥

This follows since s ′(x) = nil and nil η⊥.
To prove

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
xn

we must show that (s ′x)β (s ′1x). But this follows since nil β nil .

Case of Rule [FieldAcc]. We are given the derivation

{z L,L.f LI ; zn,L.f n}
x := z .f

{x LI ; xn}
[{x}]

Also, we assume

(s , h) [[[x := z .f]]µn] (s ′, h′) and
(s1, h1) [[[x := z .f]]µn] (s ′1, h

′

1)

where h′ = h, h′

1 = h1, and there exists ` ∈ Loc such that

s(z) = ` and
s ′ = [s | x 7→h`f]

and there exists `1 ∈ Loc such that

s1(z) = `1 and
s ′1 = [s1 | x 7→h1`1f]

Our assumption entails

(s , h) |=η z L and
(s , h) |=η L.f LI

31

from which we infer ` η L and subsequently (h `f) η LI . Similarly, we have `1 η1 L and (h1`1f) η1 LI .
Choose η′ = η, η′1 = η1, and β′ = β. Trivially,

(s , h) → (s ′, h′) |=η′ {x} and
(s1, h1) → (s ′1, h

′

1) |=η′

1
{x}.

To prove

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
x LI

for reasons of symmetry it is sufficient to show

(s ′, h′) |=η′ x LI

This follows since s ′(x) = h `f and (h `f) η LI .
In the case where there are no agreement assertions, we are done. Otherwise, our assumptions entail

(s , h)& (s1, h1) |=β,η,η′ zn (33)
(s , h)& (s1, h1) |=β,η,η′ L.f n (34)

and we must prove

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
xn

From (33) we get (sz)β (s1z), that is ` β `1. Since ` η L and `1 η1 L, from (34) we infer that

(h`f)β (h1`1f)

which amounts to the desired (s ′x)β (s ′1x).

Case of Rule [New].
We are given the derivation

{true} x := new C {x L0, xn} [{x ,L0}]

with L0 6= ⊥. Also, we assume

(s , h) [[[x := new C]]µn] (s ′, h′) and
(s1, h1) [[[x := new C]]µn] (s ′1, h

′

1)

That is, there exists `′ with type `′ = C such that

s ′ = [s | x 7→`′] and
h′ = [h | `′ 7→defaults]

and there exists `′1 with type `′1 = C such that

s ′1 = [s1 | x 7→`′1] and
h′

1 = [h1 | `′1 7→defaults]

where defaults maps f to default(type f). Also, `′ does not occur in s or in h, and `′1 does not occur in s1 or
in h1.

Choose η′ = η ∪ {(`′,L) | L0 � L}, and η′1 = η1 ∪ {(`′1,L) | L0 � L}. To see that η′ is a valid extraction
function, we shall rule out three scenarios:

• There exists `, and L � L1, such that ` η′ L but not ` η′ L1. Since η is a valid extraction function, we
infer that ` = `′, in which case we from ` η′ L deduce L0 � L. But then also L0 � L1, showing that
` η′ L1, contradicting our assumption.

32

• With L1 � L2, there exists ` such that ` η′ L1 and ` η′ L2. Since η is a valid extraction function, we
infer that ` = `′, so L0 � L1 and L0 � L2 from which we infer (by our assumptions about abstract
locations) first L0 � L2 and next L0 � L0, yielding a contradiction since L0 6= ⊥.

• There exists ` with ` η′⊥. Since η is a valid extraction function, we infer that ` = `′. But then L0 � ⊥,
which contradicts L0 6= ⊥.

Similarly, we can show that η′1 is a valid extraction function. To see that η′ extends η, note that for
` ∈ dom(h) we have `′ 6= ` and therefore ` η L iff ` η′ L. Similarly, we infer that η′1 extends η1.

Also, we define β′ = β ∪ {(`′, `′1)}. Note that, since `′ 6∈ dom(h) and `′1 6∈ dom(h1), it holds that

β = {(`, `1) ∈ β′ | ` ∈ dom(h) or `1 ∈ dom(h1)}

and hence β′ extends β. Also, if ` β′ `1 then for all L we have ` η′ L iff `1 η
′

1 L.
Due to our definition (Def. 3.5) of “modified”, no `.f is modified from h to h′, and no `.f is modified

from h1 to h′

1. Since only `′ is created from h to h′, and only `′1 is created from h1 to h′

1, this shows

(s , h) → (s ′, h′) |=η′ [{x ,L0}] and
(s1, h1) → (s ′1, h

′

1) |=η′

1
[{x ,L0}]

where we have used `′ η′ L0 and `′1 η
′

1 L0 which also implies

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
x L0

We are left with proving

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
xn

But this follows since s ′(x) = `′ and `′ β `′1 and `′1 = s ′1(x).
The case when in addition, L0 abs 0 is updated to L0 abs 1, is an easy modification of the above: we

know that

(s , h)& (s1, h1) |=β,η,η1
L0 abs 0

from which we infer that ` η L0 holds for no ` ∈ dom(h), and that `1 η1 L0 holds for no `1 ∈ dom(h1).
Therefore, ` η′ L0 implies that ` = `′; similarly, `1 η

′

1 L0 implies that `1 = `′1 (with `′ and `′1 as defined in the
main case). We conclude the desired extra postcondition:

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
L0 abs 1

Case of Rule [FieldUpd].
We are given the derivation

{x L, z LI ,L abs 1 ior L.f LI ;
xn, zn,L abs 1 ior L.f n}

x .f := z
{L.f LI ; L.f n}
[{L.f }]

Also, we assume

(s , h) [[[x .f := z]]µn] (s ′, h′) and
(s1, h1) [[[x .f := z]]µn] (s ′1, h

′

1)

Let `′ = s(x), and let `′1 = s1(x). Thus, s = s ′, dom(h) = dom(h′), s1 = s ′1, dom(h1) = dom(h′

1), and

h′ = [h | `′.f 7→s(z)]
h′

1 = [h1 | `′1.f 7→s1(z)]

33

Our assumption entails

(s , h) |=η x L (35)

(s , h) |=η z LI (36)

(s , h) |=η L.f LI or (s , h) |=η L abs 1 (37)

From (35) we infer `′ η L; similarly we infer `′1 η1 L. Choose η′ = η, η′1 = η1, and β′ = β. It is easy to see
that

(s , h) → (s ′, h′) |=η′ {L.f } and
(s1, h1) → (s ′1, h

′

1) |=η′

1
{L.f }.

To prove

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
L.f LI

for reasons of symmetry it is sufficient to show

(s ′, h′) |=η′ L.f LI

So consider ` ∈ dom(h′) with ` η L; we must show (h′`f) η LI . We have two subcases:

Subcase ` = `′. Then h′`f = s(z), and the claim follows from (36).

Subcase ` 6= `′. Then h′`f = h`f . Observe that (s , h) |=η L abs 1 does not hold, so from (37) we infer
that

(s , h) |=η L.f LI

from which the claim follows.
In the case where there are no agreement assertions, we are done. Otherwise, our assumptions entail

(s , h)& (s1, h1) |=β,η,η1
xn (38)

(s , h)& (s1, h1) |=β,η,η1
zn (39)

(s , h)& (s1, h1) |=β,η,η1
L abs 1 ior L.f n (40)

and we must prove

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
L.f n

So consider ` ∈ dom(h′) and `1 ∈ dom(h′

1) with ` β `1 and ` η L (thus also `1 η1 L). We must show that
(h′`f)β (h′

1`1f). From (38) we infer that (sx)β (s1x), that is, `′ β `′1. We have two subcases:

Subcase ` = `′. Since β is a bijection, `1 = `′1; the claim is thus that (sz)β (s1z), but this follows from
(39).

Subcase ` 6= `′. Since β is a bijection, `1 6= `′1; the claim is thus that (h`f)β (h1`1f). This follows from
(40), using that L abs 1 cannot hold (since ` η L and `′ η L).

Case of Rule [MethodCall].
We are given the derivation

Π ` {φ0} x := y.m(w) {φ} [X ∪ {x}]

because with C0 = type y it holds that Π(C0,m) contains the summary

{ψ0} {ψ} [X]

34

Here φ0 = ψ0[y/self ,w/z] and φ = ψ[x/result], where z = pars(m,C0).
We also assume that

(s , h) [[[x := y.m(w)]]µn] (s ′, h′) and
(s1, h1) [[[x := y.m(w)]]µn] (s ′1, h

′

1)

Let s(y) = ` with type ` = C , and let s1(y) = `1 with type `1 = C1. Since we assume our program is
well-typed, we know that C and C1 are subclasses of C0. From the semantics of method calls, there exists
v , v1 such that

s ′ = [s | x 7→v] and s ′1 = [s1 | x 7→v1]

and with

s ′′ = [z 7→ s(w), self 7→ `] and s ′′1 = [z 7→ s1(w), self 7→ `1]

we have

(s ′′, h)µn (C ,m) (v , h′) (41)

(s ′′1 , h1)µn(C1,m) (v1, h
′

1) (42)

With S the body of the declaration of m in C , and with S1 the body of the declaration of m in C1, we
deduce from Π being consistent that there exists X ′, X ′

1 with

X = {L.f | L.f ∈ X ′} ∪ {L | L ∈ X ′}
X = {L.f | L.f ∈ X ′

1} ∪ {L | L ∈ X ′

1}

such that

Π ` {ψ0} S {ψ} [X ′] (43)

Π ` {ψ0} S1 {ψ} [X ′

1]

From (41) and (42), and the definition of µn , we infer that there exists s ′′′ with v = s ′′′(result) and s ′′′1 with
v1 = s ′′′1 (result) such that

(s ′′, h) [[[S]]µn−1] (s
′′′, h′) (44)

(s ′′1 , h1) [[[S1]]µn−1] (s
′′′

1 , h
′

1) (45)

Finally, we assume that

(s , h)& (s1, h1) |=β,η,η1
φ0 (46)

from which we infer by Lemma 4.2 that

(s ′′, h)& (s ′′1 , h1) |=β,η,η1
ψ0 (47)

There are now two subcases.

The case where φ0 I yn. Then we infer from (46) that (s y)β (s1 y) and hence C = C1, implying
S = S1. Therefore we can apply the outermost induction hypothesis on (43), (44), (45), (47), giving us η′

over h′ extending η over h, η′1 over h′

1 extending η1 over h1, and β′ over h′&h′

1 extending β over h&h1, such
that

(s ′′, h) → (s ′′′, h′) |=η′ X ′ (48)
(s ′′1 , h1) → (s ′′′1 , h

′

1) |=η′

1
X ′

(s ′′′, h′)& (s ′′′1 , h
′

1) |=β′,η′,η′

1
ψ

Since s ′′′(result) = s ′(x), and s ′′′1 (result) = s ′1(x), Lemma 4.2 tells us that

35

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

which is part of the desired conclusion. We are left with showing that

(s , h) → (s ′, h′) |=η′ X ∪ {x}

(and its symmetric counterpart). So first consider y modified from s to s ′; we infer y = x so y ∈ X ∪ {x}.
Next consider `.f modified from h to h′ (the case where ` is created from h to h′ is similar); from (48) we
infer that there exists L with ` η′ L such that L.f ∈ X ′. But then also L.f ∈ X ∪ {x}, as desired.

The case where φ0 I yn does not hold. Then the side conditions of [MethodCall] tell us that

φ contains no ior (49)

I(φ) � (X ∪ {x}) (50)

φ0 I I(φ) (51)

From (47) we infer, using Lemmas 4.4 and 4.3, that with id the identity on dom(h) it holds that

(s ′′, h)& (s ′′, h) |=id,η,η ψ0.

Applying the outermost induction hypothesis on (44) and (43), we therefore get η′ over h′ extending η over
h such that

(s ′′, h) → (s ′′′, h′) |=η′ X ′ (52)

(s ′′′, h′)& (s ′′′, h′) |= ,η′, ψ

where the latter by Lemma 4.2 implies

(s ′, h′)& (s ′, h′) |= ,η′, φ

and by Lemma 4.4 further

(s ′, h′) |=η′ φ. (53)

Similarly, we get η′1 over h′

1 extending η1 over h1 such that

(s ′′1 , h1) → (s ′′′1 , h
′

1) |=η′

1
X ′

1

(s ′1, h
′

1) |=η′

1
φ. (54)

Finally, define β′ = β.
We shall now show

(s , h) → (s ′, h′) |=η′ X ∪ {x} (55)

(s1, h1) → (s ′1, h
′

1) |=η′

1
X ∪ {x} (56)

where for reasons of symmetry it suffices to prove (55). So first consider y modified from s to s ′; we infer
y = x so y ∈ X ∪ {x}. Next consider `.f modified from h to h′ (the case where ` is created from h to h′ is
similar); from (52) we infer that there exists L with ` η′ L such that L.f ∈ X ′. But then also L.f ∈ X ∪ {x},
as desired.

From (46) and (51) we infer that

(s , h)& (s1, h1) |=β,η,η1
I (φ) (57)

Lemma 4.11 applied to (57), (55), (56), (50) now gives

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
I(φ)

Together with (53) and (54), Lemma 4.5 (applicable due to (49)) now shows

(s ′, h′)& (s ′1, h
′

1) |=β′,η′,η′

1
φ

which with (55) and (56) amounts to the desired conclusion.

36

6 A Larger Example

We consider the following example due to Barnett et al. [6].

class C{
1. private Hashtable ht := new Hashtable; //cache

2. public U m(T x){
3. Hashtable t := self .ht ;
4. bool present := t .contains(x);
5. if (!present){
6. U y := costly(x);
7. t .put(x , y); }
8. U res := (U)t .get(x);
9. assert (res = costly(x));
10. result := res ; } }

The method m is an efficient implementation of the method costly, employing memoization: argument-result
pairs are cached in a hash table t , with the argument as key. A call to m with some argument, x , first checks
if a value exists for key x in t (lines 4, 5); if not, it is computed (line 6) and stored in t (line 7). At that
point, we know that the result can be retrieved from the hash table (line 8) and returned (line 10).

We shall now argue that m is observationally pure (and hence can be used in specifications). As in Sec. 2
(for cexp), this involves showing (i) that result depends on x only; (ii) that m modifies only locations not
visible to the caller.

For (i), we must show that two runs which agree on the initial value of x also agree on the final value of
result . So let xn be in the precondition, then – due to the frame rule, as x is not modified along the way –
xn holds after line (9), where by [Assert] we also have res = costly(x). By [Conseq], this entails that resn
holds before line (10). By [PointerAssign], this entails that resultn is in the postcondition, as desired.

For (ii), assume that Hashtable has two fields, key and val , and that it is in abstract location L0. The
only abstract addresses modified by m are L0.key and L0.val (as well as certain local variables which are not
visible to the caller, cf. Definition 5.2). The desired invisibility can then be obtained by assuming that L0 is
disjoint from all abstract locations used outside of m.

For the above to work out formally, we need method summaries such as the ones below:

{self ρ0, {self ρ0,
ρ0.key ρ1, x ρ1, ρ0.key ρ1, x ρ1,
ρ0.val ρ2, y ρ2} ρ0.val ρ2}

put get
{} {result ρ2}

[ρ0.key, ρ0.val] [∅]
Note that we do not need the summaries to contain agreement assertions. It is interesting, however, to

consider how such assertions could be added in the summary for, e.g., the method get . Näıvely, we would
expect (c.f. the method getQ described in Sec. 2) that if the precondition ψ0 contains the assertions xn,
self n, ρ0.keyn, and ρ0.valn, then the postcondition ψ1 will contain the assertion resultn. But in general,
get cannot be implemented so as to satisfy this summary. To see this we assume, in order to arrive at a
contradiction, that Sg is the body of such an implementation. By Theorem 5.3 (and Definition 5.2), we have
µ |= {ψ0} Sg {ψ1} . Now consider two states, (s , h) and (s1, h1), where the key s(x) (which due to xn equals
s1(x)) is mapped by the hash table to different integer values. With β chosen such that β relates s(self) to
s1(self) but relates no other locations, we have (s , h)& (s1, h1) |=β,η,η1

ψ0 (since, e.g., ρ0.keyn vacuously
holds). But with Sg transforming (s , h) into (s ′, h′) and (s1, h1) into (s ′1, h

′

1), it is not possible (since the
integers s ′(result) and s ′1(result) are different) to define β′ such that (s ′, h′)& (s ′1, h

′

1) |=β′,η′,η′

1
resultn. This

yields the desired contradiction.
To fix the above situation, we need to be more concrete about how the (hash) table is implemented.

Suppose that it is a linked list, with each record containing not only a key and a val field (both integers),

37

but also a next field. Then, we can implement get such that resultn is in the postcondition, provided we
include ρ0.nextn in the precondition ψ0. To see this, consider as above two states, (s , h) and (s1, h1), with
(s , h)& (s1, h1) |=β,η,η1

ψ0. Since ψ0 contains xn, there exists an integer k such that s(x) = s1(x) = k .
Wlog., we can assume that in the first state, k occurs as the third key in the list. That is, there exists
locations `, `1, and `2 such that s(self) = `, h ` next = `1, h `1 next = `2, and h `2 key = k . Since ψ0

contains self n, with s1(self) = `′ we have ` β `′. This entails, since ψ0 contains ρ0.nextn and we can assume
` η ρ0, that with h1 `

′ next = `′1 we have `1 β `
′

1; similarly we then infer that `2 β `
′

2 with h1 `
′

1 next = `′2.
Since ψ0 contains ρ0.keyn and ρ0.valn, we now infer that h1 `

′

2 key = h `2 key = k , and that there exists
v such that h1 `

′

2 val = h `2 val = v . With (s ′, h′) and (s ′1, h
′

1) the final states, this shows the desired
s ′1(result) = v = s ′(result).

7 Computing Postconditions

THIS SECTION, IN PARTICULAR THE LATER PARTS, IS IN A PRETTY ROUGH STATE.

IT WILL SOON BE SUPERSEDED BY A PAPER DEVOTED TO INFERRING ASSERTIONS

It is time to address how to decide, and implement, our logic. For that purpose, we shall along the way
introduce several simplifying assumptions, some of which we state already now.

Assumption 7.1 All disjunctions in assertions occur only within programmer assertions θ. That is, we do
not use the constructs φ1 ior φ2 and φ1 uor φ2.

Thus, we can view an assertion φ as a set (implicitly a conjunction) of primitive assertions α.

Assumption 7.2 There are no assertions of the form L abs i.

As a consequence of that assumption, we do not need to record which locations have been created, so we
can assume that an abstract entity is just an abstract address.

Assumption 7.3 Abstract locations form a finite complete lattice, with ⊥ the least element and > the
greatest element, where t “corresponds to” set union and u “corresponds to” set intersection. That is, we
require that

• if L = L1 t L2 then ` η L iff ` η L1 or ` η L2

• if L = L1 u L2 then ` η L iff ` η L1 and ` η L2.

Accordingly, we also require that if L = L1 t L2 then for all L′: L′ � L iff L′ � L1 and L′ � L2.

(Recall from Sec. 4 that ⊥ approximates nil but no concrete heap locations; on the other hand, > approxi-
mates all concrete locations.) Thus, if L = L1 t L2, then any information about L.f can be deduced from
information about L1.f and L2.f . This motivates the next assumption:

Assumption 7.4 Among the abstract locations are some “irreducible” elements (we write irr(L) for irre-
ducible L) such that

• if L1 6= L2 are irreducible then L1 � L2;

• for each abstract location L, there are unique irreducible elements L1, . . . ,Ln (n ≥ 0) such that L =
L1 t . . . t Ln .

Assumption 7.5 There are no assertions of the form x int or L.f int, as these are redundant (cf.
footnote 4); neither are there assertions of the form x > or L.f >.

38

Normalization. It is convenient to work with assertions where all abstract locations (on the “left hand
side”) are irreducible and occur at most once:

Definition 7.6 Say that φ is normalized iff (a) if L.f L′ ∈ φ then L is irreducible; (b) if L.f n ∈ φ then
L is irreducible; (c) if L.f L1 ∈ φ and L.f L2 ∈ φ then L1 = L2; (d) if x L1 ∈ φ and x L2 ∈ φ
then L1 = L2; (e) φ contains exactly one programmer assertion.

It is possible to write a function norm that converts an assertion φ into a normalized assertion norm(φ)
which is logically equivalent. We define norm(φ) by stipulating

x L′ ∈ norm(φ) iff L′ 6= > ∧ L′ = u{L | x L ∈ φ}
L0.f L′ ∈ norm(φ) iff L′ 6= > ∧ irr(L0) ∧ L′ = u{L | ∃L′

0 : (L0 � L′

0 ∧ L′

0.f L ∈ φ)}
xn ∈ norm(φ) iff xn ∈ φ

L0.f n ∈ norm(φ) iff irr(L0) ∧ ∃L′

0 : (L0 � L′

0 ∧ L′

0.f n ∈ φ)
θ ∈ norm(φ) iff θ =

∨
{θ′ | θ′ ∈ φ}

Similarly, we can normalize sets of abstract addresses:

Definition 7.7 We say that a set X of abstract addresses is normalized if for all L.f ∈ X it holds that L is
irreducible.

We write a function norm that converts a set of abstract addresses into an equivalent normalized set:

norm(X) = {x | x ∈ X }

∪ {L.f | irr(L) ∧ ∃L′.f ∈ X · L � L′}

Fact 7.8 norm(X1 ∪ X2) = norm(X1) ∪ norm(X2).

Applying norm gives a logically equivalent result:

Fact 7.9 For all X , X I norm(X) and norm(X) I X .

Fact 7.10 For all φ, φ I norm(φ) and norm(φ) I φ.

And applying norm preserves disjointness:

Fact 7.11 φ � X iff norm(φ) � X .

Fact 7.12 φ � X iff φ � norm(X).

Proof: For “only if”, we exploit that if L � L2 and L1 � L2 then L � L1. For “if”, we exploit that by
Assumption 7.4 we can write any L0 as L1t . . .t . . .Ln with each L1 . . .Ln irreducible, so if L � L1 . . .L � Ln

then by (the last part of) Assumption 7.3 also L � L0.

7.1 Checking Logical Implication

In Sec. 4.3, we gave a semantic definition (4.12) of logical implication. We shall show that that definition
is equivalent to a syntactic characterization which is readily implementable, at least in the case where the
only programmer assertion in φ is true, in which case we shall sloppily write that φ is “without programmer
assertions”.

Definition 7.13 For normalized ψ and ψ′, we write ψ ≤ ψ′ iff the following holds:

(a) if x L′ ∈ ψ′ there exists L with L � L′ such that x L ∈ ψ

(b) if L1.f L′ ∈ ψ′ there exists L with L � L′ such that L1.f L ∈ ψ

39

(c) xn ∈ ψ′ implies xn ∈ ψ

(d) L.f n ∈ ψ′ implies L.f n ∈ ψ;

(e) θ′ ∈ ψ′ implies that there exists θ ∈ ψ such that θ I θ′.

For arbitrary φ and φ′, we shall – with abuse of notation – write φ ≤ φ′ iff norm(φ) ≤ norm(φ′).

Now consider the case with no programmer assertions. Then clause (e) above is trivially true, as θ′ = θ =
true, so it is easy to decide ≤. As shown by the results below, this amounts to deciding I.

Definition 7.14 For normalized ψ1 and ψ2, we define ψ = ψ1 t ψ2 as follows:

• x L ∈ ψ iff there exists L1 and L2 with L = L1 t L2 6= > such that x L1 ∈ ψ1 and x L2 ∈ ψ2

• L0.f L ∈ ψ iff there exists L1 and L2 with L = L1 t L2 6= > such that L0.f L1 ∈ ψ1 and
L0.f L2 ∈ ψ2

• xn ∈ ψ iff xn ∈ ψ1 and xn ∈ ψ2

• L.f n ∈ ψ iff L.f n ∈ ψ1 and L.f n ∈ ψ2

• θ ∈ ψ iff there exists θ1 ∈ ψ1, θ2 ∈ ψ2 such that θ = θ1 ∨ θ2.

For arbitrary φ1 and φ2, we shall – with abuse of notation – write φ1 t φ2 for norm(φ1) t norm(φ2).

Fact 7.15 For all φ1 and φ2, φ1 t φ2 is normalized.

Fact 7.16 Given φ1 and φ2, φ1 t φ2 is their least upper bound wrt. ≤.

Lemma 7.17 If φ ≤ φ′ then φ I φ′.

Proof: By Fact 7.10, it is sufficient to prove the result for normalized φ and φ′; this can be done by a
straightforward case analysis on Definition 7.13.

Lemma 7.18 Assume there are no programmer assertions. Then φ I φ′ implies φ ≤ φ′.

To see why we need to assume the absence of programmer assertions, observe that x = c logically implies
xn whereas (x = c) � xn does not hold. For that assumption to be removed, we would need a much
stronger version of norm that finds all instances of logical implication hidden in programmer assertions.

*** THE BELOW PROOF DOES APPEAR QUITE SHAKY, BUT THE RESULT STILL SEEMS
VERY PLAUSIBLE

For the proof of Lemma 7.18, due to Fact 7.10, it suffices to consider the case where φ and φ′ are both
normalized. We first show the following auxiliary result:

Proposition 7.19 Assume φ is normalized, and contains no programmer assertions. Then there exists
s , h, s1, h1, β, η, η1 such that

(s , h)&(s1, h1) |=β,η,η1
φ.

Proof: First we define some locations:

• For each x (of pointer type) occurring in φ, define a location `x

• For each irreducible L0 such that L0.f (with f of pointer type) occurs in φ, define a location `L0.f .

• For each irreducible L0 occurring in φ, define a location `L0
.

Next we define s and h in the following manner.

40

• For each x (of pointer type) occurring in φ, let s(x) = `x ; if x is of integer type, let s(x) = 0.

• For h, we define dom(h) to be all locations of the form `x , `L0
and `L0.f such that:

h(`L0
).f = `L0.f when f is of pointer type

h(`L0
).f = 0 when f is of integer type

h(`x).f = default(type f).

Next, we build up η over h.

• For each x , if there exists L such that x L ∈ φ, then for all L′, (`x) η L′ iff L � L′. In particular,
note that for any x if there exists L such that x L ∈ φ, then (`x) η L.

For each x , if there is no L such that x L ∈ φ, then (`x) η L′ iff L′ = >.

• For all irreducible locations L0, for all L′, (`L0
) η L′ iff L0 � L′. In particular, note that for any

irreducible L0, then (`L0
) η L0.

• For each L0.f , if there exists L such that L0.f L ∈ φ, then for all L′, (`L0.f) η L′ iff L � L′. In
particular, note that for any L0.f , if there exists L such that L0.f L ∈ φ, then (`L0.f) η L.

For each L0.f , if there is no L such that L0.f L ∈ φ, then (`L0.f) η L′ iff L′ = >.

Next, we build up β over h&h.

• For each xn ∈ φ, let `x β `x .

• For each irreducible L0, we let (`L0
)β (`L0

).

• For each L0.f n ∈ φ, let (`L0.f)β (`L0.f).

Finally, to finish the proof, choose s1 = s and h1 = h and η1 = η. It is not difficult to see that the by the
construction above,

(s , h)&(s1, h1) |=β,η,η1
φ.

We now return to the proof of Lemma 7.18.

Proof: Assume that φ ≤ φ′ does not hold; we shall argue that φ does not logically imply φ′. To see this,
use Proposition 7.19 to find s , h, s1, h1, β, η, η1 such that

(s , h)&(s1, h1) |=β,η,η1
φ.

We shall argue that

(s , h)&(s1, h1) |=β,η,η1
φ′

does not hold. We do a case analysis on the reason why φ ≤ φ′ does not hold. Thus we consider the negation
of Definition 7.13.

• We have x L′ ∈ φ′ and L′ 6= >; also for all L, x L ∈ φ implies L � L′. We first assume that
x L ∈ φ so that L � L′. By construction, s(x) = `x and (`x) η L. Because L � L′ does not hold,
(`x) η L′ does not hold.

Next, assume that x is such that for no L, x L ∈ φ. By construction, s(x) = `x and (`x) η>. To
show (`x) η L′, we need L′ = > but this contradicts our assumptions. So (`x) η L′ does not hold.

• We have L0.f L′ ∈ φ′ and L′ 6= >; also for all L, L0.f L ∈ φ implies L � L′. We first assume that
L0.f L ∈ φ, so that L � L′. From

41

L0.f L ∈ φ and
(s , h) |=η L0.f L and
(`L0

) η L0,

we get (h(`L0
).f) η L, i.e., (`L0.f) η L. Because L � L′ does not hold, (`L0.f) η L′ does not hold. Thus

although `L0
η L0 holds, (h(`0).f) η L′ does not hold; hence (s , h) |=η L0.f L′ does not hold.

Next, assume that L0.f is such that for no L, L0.f L ∈ φ. Then (`L0.f) η>. To show (`L0.f) η L′, we
require that L′ = >. But this contradicts our assumptions. Hence (`L0.f) η L′ does not hold.

• xn ∈ φ′ but xn 6∈ φ. Then, by construction, `x β `x does not hold.

• L0.f n ∈ φ′ but L0.f n 6∈ φ. Then (`L0
) η L0 and (`L0

)β(`L0
) and h(`L0

).f = `L0.f , so if (s , h)&(s1, h1) |=β,η,η1

L0.f n, then (`L0.f)β (`L0.f), which by construction of β, does not hold.

By combining Lemmas 7.17 and 7.18, we get:

Theorem 7.20 If φ and φ′ contains no programmer assertions, then φ I φ′ is equivalent to φ ≤ φ′.

Concerning how to decide X I X ′, we have a similar (but simpler) result.

Fact 7.21 If X I X ′ then norm(X) ⊆ norm(X ′).

Proof: Let L.f ∈ norm(X) (the other case is similar). We can find s , h, s ′, h′ such that `.f is modified from
h to h′ and with ` η L we thus have

(s , h) → (s , h′) |=η norm(X)

which by Fact 7.9 amounts to

(s , h) → (s , h′) |=η X

which, since X I X ′, implies

(s , h) → (s , h′) |=η X ′

which by Fact 7.9 amounts to

(s , h) → (s , h′) |=η norm(X ′)

so there exists L′ with ` η L′ such that L′.f ∈ norm(X ′). By assumption, L and L’ are irreducible. But L � L′

does not hold, so by assumption, we infer L = L′. Thus, L.f ∈ norm(X ′), as desired.

Lemma 7.22 X I X ′ iff norm(X) ⊆ norm(X ′).

Proof: The “only if” direction was provided by Fact 7.21. For the “if” direction, Fact 4.13 tells us that
norm(X) I norm(X ′); and by Fact 7.9 therefore X I X ′.

Lemma 7.23 If X1 I X and X2 I X then X1 ∪X2 I X .

Proof: from previous results we have

norm(X1 ∪ X2) = norm(X1) ∪ norm(X2)
⊆ norm(X) ∪ norm(X)
= norm(X)

and the claim now follows from Lemma 7.22.

42

Lemma 7.24 If X I X ′ and a � X ′ then a � X .

Proof: Assume, to get a contradiction, that a � X does not hold. There are two cases.

a is a variable x . Then x ∈ X . It is clearly possible to find s , h, s ′, h′ such that x is modified from s to s ′,
but no other concrete address is modified from h to h′ or from s to s ′. Thus (s , h) → (s ′, h′) |=η X . So
since X logically implies X ′, (s , h) → (s ′, h′) |=η X ′. Therefore x ∈ X ′, contradicting a � X ′.

a is of the form L.f . Then there exists L1.f ∈ X such that L � L1 does not hold. Then it is possible to define
η such that ` η L and ` η L1. It is also possible to find s , h, s ′, h′ such that `.f is modified from h to h′, but
no other concrete address is modified from h to h′ or from s to s ′. Thus (s , h) → (s ′, h′) |=η X . So since
X logically implies X ′, (s , h) → (s ′, h′) |=η X ′ holds also. That is, there exists L2.f ∈ X ′ with ` η L2. But
then L � L2 does not hold, and therefore a � X ′ does not hold, yielding the desired contradiction.

Using Lemma 7.24, we easily get:

Lemma 7.25 if X I X ′ and φ � X ′ then φ � X .

7.2 A Sound Algorithm

We shall define, inductively on S , a function sp(S , φ0) that given a command S and a precondition φ0 (which
could be “global”) computes a pair (φ,X); here we want φ to be a postcondition of S , and X to be the
abstract addresses that may be modified by S . With

Assumption 7.26 We assume that a consistent summary environment Π is given in advance

we can show soundness of sp wrt. to the logic:

Theorem 7.27 If sp(S , φ0) = (φ,X) then Π ` {φ0} S {φ} [X].

Below we shall present sp, proving its soundness along the way.

Case of sequential composition. Define

sp(S1 ;S2, φ0) =
let (φ1,X1) = sp(S1, φ0) in

let (φ,X2) = sp(S2, φ1) in

(φ,X1 ∪ X2)

Proof of soundness: Inductively, we have

{φ0} S1 {φ1} [X1] and
{φ1} S2 {φ} [X2]

and therefore the desired

{φ0} S1 ;S2 {φ} [X1 ∪X2]

Case of conditionals.
We call sp recursively on the two branches and then combine, via the least upper bound operator, the

resulting assertions. Let φ12 be the least upper bound of the analyses of the branches. Looking at the side
conditions for [If] in the logic, we see that if φ0 logically implies xn (with x the test), we can just return φ12.
Otherwise, in order to satisfy the second side condition, we must remove from φ12 all agreement assertions
which either are not in the precondition, or whose abstract addresses have been modified in S1 or in S2. The
resulting code is

43

sp(if x then S1 else S2, φ0) =
let (φ1,X1) = sp(S1, φ0) in

let (φ2,X2) = sp(S2, φ0) in

let X = norm(X1 ∪ X2) in

let φ12 = φ1 t φ2 in

let φ =if φ0 ≤ xn
then φ12

else φ12 \ (C1 ∪C2)
where C1 = {yn | (y ∈ X) ∨ (yn 6∈ norm(φ0))}
and C2 = {L.f n | (L.f ∈ X) ∨ (L.f 6∈ norm(φ0))}

in (φ,X)

Proof of soundness: Inductively, we have

{φ0} S1 {φ1} [X1]
{φ0} S2 {φ2} [X2]

and by [Conseq] then

{φ0} S1 {φ} [X]
{φ0} S2 {φ} [X]

which implies the desired judgement

{φ0} if x then S1 else S2 {φ} [X]

since if φ0 I xn does not hold then (by Lemma 7.17) neither does φ0 ≤ xn so by construction of φ:

I(φ) � X and
φ0 I I(φ)

Case for while.

*** TO BE WRITTEN ***

Involves fixed point iteration

Case for assertions.

sp(assert θ, φ0) = (θ ∧ φ0, ∅)

Proof of soundness: By logic,

{true} assert θ {θ} [∅]

and by the frame rule therefore (since clearly φ0 � ∅)

{φ0} assert θ {θ ∧ φ0} [∅]

Case of assignments.
Assume that S is an assignment A which is not a method call, i.e., A is either a pure assignment, a

pointer assignment, a null assignment, a field access, a field update, or an object creation. Assume that we
have a nondeterministic function Choose(A, φ0) which returns a triple (ψ0, ψ,X) such that {ψ0} A {ψ} [X]
is an instance of a rule for A in the logic where φ0 ≤ ψ0 (and hence φ0 I ψ0). Then define

sp(S , φ0) =
let (ψ0, ψ,X) = Choose(A, φ0) in

let φ = ψ ∧ disj (φ0,X) in (φ,X)

44

Here, the function disj extracts the parts of an assertion not modified by the assignment, thus incorporating
the frame rule. It is defined by disj (φ,X) = {α ∈ norm(φ) | α � X }.

So far, the above definition is very non-deterministic; it will be concretized in the next section when we
consider strongest postconditions.

Proof of soundness: By the definition of Choose , there is a rule in the logic with instance

{ψ0} A {ψ} [X]

from which we by [Frame] infer

{ψ0 ∧ disj (φ0,X)} A {ψ ∧ disj (φ0,X)} [X]

and by [Conseq] the desired judgement

{φ0} A {φ} [X].

Case for method calls.
Assume that S is a method call x := y.m(w), with type y = C where C contains the method m with

formal parameter z . Assume that we have a non-deterministic function16 Choose(m,C , φ0) which returns a
triple (ψ0, ψ,X) such that {ψ0} {ψ} [X] ∈ Π(C ,m) where φ0 ≤ ψ0[y/self ,w/z]. Then:

sp(S , φ0) =
let (ψ0, ψ,X) = Choose(m,C , φ0) in

let φX = disj (φ0,X ∪ {x}) in

let φ = ψ[x/result] ∪ φX in (φ,X ∪ {x})

Proof of soundness: By the definition of Choose , an application of [MethodCall] enables us to infer

{ψ0[y/self ,w/z]} x := y.m(w) {ψ[x/result]} [X ∪ {x}]

from which we by [Frame] infer

{ψ0[y/self ,w/z] ∧ φX }
x := y.m(w)

{ψ[x/result]∧ φX } [X ∪ {x}]

and by [Conseq] the desired judgement

{φ0} x := y.m(w) {φ} [X ∪ {x}].

Construction of method summaries. In an actual implementation, the summary environment Π may
be built incrementally, by using sp to analyze a new method in the context of the current Π (see, e.g., [24]).
For recursive methods, however, the user might be required to provide the summaries, as in ESC/Java [15].

7.3 Strongest Postcondition

We shall now look at conditions for when sp, as defined in the previous section, is indeed the strongest
postcondition. For that purpose, we need to control the nondeterminism in the selection of abstract locations
in rule [New].

Assumption 7.28 Each occurrence of “new” is associated with a specific irreducible abstract location L0

such that the only rule applicable for that occurrence is

{true} x := new C {x L0; xn} [{x}].

16Required because we have a set of summaries for different calling contexts, so we need to select the appropriate one.

45

Choose(x := new C , φ0) =
let L0 be the designated abstract location

for this occurrence of “new” in

{x L0, xn}, {x})

Choose(x := E , φ0) =
let z1, . . . , zn = free(E) in

if φ0 ≤ z1n, . . . , znn
then ({z1n, . . . , znn}, {xn}, {x})
else ({}, {}, {x})

Choose(x := z , φ0) =
let L = φ0(z) in

if φ0 ≤ zn
then ({z L, zn}, {x L, xn}, {x})
else ({z L}, {x L}, {x})

Choose(x := null, φ0) = ({}, {x ⊥, xn}, {x})

Choose(x := y .f , φ0) =
let L = φ0(y) = L1 t ... t Lk in

let LI = tj∈1...kφ0(Lj .f) in

if φ0 ≤ yn,L.f n
then ({y L,L.f LI , yn,L.f n}, {x LI , xn}, {x})
else ({y L,L.f LI}, {x LI}, {x})

Choose(x .f := y , φ0) =
let L = φ0(x) in

let LI ′ = φ0(y) in

let L = L1 t ... t Lk in (irreducible)
let LI = tj∈{1...k}φ0(Lj .f) t LI ′ in

if φ0 ≤ xn, yn,L.f n
then ({x L, y LI ,L.f LI , xn, yn,L.f n},

{L.f LI ,L.f n}, {L.f })
else ({x L, y LI ,L.f LI}, {L.f LI }, {L.f })

Table 3: The function Choose , given normalized φ0.

Then we can concretize, as done in Table 3, the function Choose for assignments. Thanks to Assumption 7.28,
we can show that Choose computes the “strongest applicable version”.

Definition 7.29 (Strongest Applicable Version) Given rule schema (j ∈ J), {ψj } S {ψ′

j } [Xj]. For
given φ0, we say that j0 is the strongest applicable version if

• φ0 ≤ ψj0

• For all j such that φ0 ≤ ψj , it holds that ψ′

j0
≤ ψ′

j and Xj0 I Xj .

Lemma 7.30 For all kinds of assignments, Choose as given in Table 3 computes the strongest applicable
version.

Proof: Rather straightforward, and relatively easy, except for the case for field update which is somewhat
tedious.

Assumption 7.31 The method summaries have been constructed such that there exists a strongest applicable
version for method calls.

Before embarking on the completeness theorem and its proof, we must be able to control the application
of non-structural rules.

7.3.1 Normalized derivations

Fact 7.32 If from {ψ0} S {ψ} [X0] we can arrive at {φ0} S {φ} [X] by first applying [Conseq] and next
[Frame], we could alternatively arrive at the same conclusion by first applying [Frame] and then [Conseq].

46

Proof: Our assumptions are
{ψ0} S {ψ} [X0]

{φ′0} S {φ′} [X0]
[Conseq]

and
{φ′0} S {φ′} [X0]

{φ0} S {φ} [X]
[Frame]

where there exists φ1 with φ1 � X0 such that

φ0 = φ′0 ∧ φ1,
φ = φ′ ∧ φ1

and where φ′0 logically implies ψ0 and ψ logically implies φ′ and X0 logically implies X .
But then, since φ1 � X0 holds by Lemma 7.25, we also have the derivation

{ψ0} S {ψ} [X0]

{ψ0 ∧ φ1} S {ψ ∧ φ1} [X0]
[Frame]

and
{ψ0 ∧ φ1} S {ψ ∧ φ1} [X0]

{φ0} S {φ} [X]
[Conseq]

Fact 7.33 If from {ψ0} S {ψ} [X0] we can arrive at {φ0} S {φ} [X] by zero or more application of [Frame],
we could alternatively arrive at the same conclusion by applying the frame rule exactly once.

Proof: Trivial.

Fact 7.34 If from {ψ0} S {ψ} [X0] we can arrive at {φ0} S {φ} [X] by zero or more application of [Conseq],
we could alternatively arrive at the same conclusion by applying [Conseq] exactly once.

Proof: Trivial.

From the previous facts, we clearly have:

Lemma 7.35 Assume that we in our logic can derive {φ0} S {φ} [X] Then we can construct a derivation
of the form

D1

D2

syntax-directed rule for S

D2

D3

[Frame]

D3

{φ0} S {φ} [X]
[Conseq]

Lemma 7.36 Assume that in our logic we can derive

{φ0} S1 ;S2 {φ} [X]

Then there exists φ1,X1,X2 such that

{φ0} S1 {φ1} [X1] and
{φ1} S2 {φ} [X2] and
X = X1 ∪ X2.

47

Proof: We know from Lemma 7.35 that there exists a derivation

{ψ0} S1 {ψ1} [X1] {ψ1} S2 {ψ} [X2]

{ψ0} S1 ;S2 {ψ} [X ′]
[Seq]

{ψ0} S1 ;S2 {ψ} [X ′]

{φ′0} S1 ;S2 {φ′} [X ′]
[Frame]

{φ′0} S1 ;S2 {φ′} [X ′]

{φ0} S1 ;S2 {φ} [X]
[Conseq]

where X ′ = X1 ∪ X2 and where there exists φ′1 such that

φ′0 = ψ0 ∧ φ′1,
φ′ = ψ ∧ φ′1
φ′1 � X ′

and where

φ0 logically implies φ′0
φ′ logically implies φ and
X ′ logically implies X

Clearly, φ′1 � X1 and φ′1 � X2, so we can construct derivations

{ψ0 ∧ φ′1} S1 {ψ1 ∧ φ′1} [X1]
{ψ1 ∧ φ′1} S2 {ψ ∧ φ′1} [X2]

But since

φ0 logically implies ψ0 ∧ φ′1
ψ ∧ φ′1 logically implies φ
X1 logically implies X
X2 logically implies X
φ1 = ψ1 ∧ φ

′

1

we have derivations of the desired form

{φ0} S1 {φ1} [X] and
{φ1} S2 {φ} [X]

7.3.2 Proof of completeness

Theorem 7.37 If sp(S , φ0) = (φ,X) and {φ0} S {φ′} X ′ then φ I φ′ and X I X ′.

Proof: Go by induction on S, using that ≤ equals I.

Case of assignments.
Let S be an assignment A. Remember that sp is defined by

sp(A, φ0) =
let (ψ0, ψ,X) = Choose(A, φ0) in

let φ = ψ ∧ disj (φ0,X) in

(φ,X)

where disj (φ0,X) = {α ∈ norm(φ0) | α � X }.

48

Now assume that {φ0} A {φ′} [X ′] with a derivation which (due to Lemma 7.35) is of the form

. . .

{ψ′

0} A {ψ′} [X ′′]
(structural rule for A)

{ψ′

0} A {ψ′} [X ′′]

{ψ′

0 ∧ φ1} A {ψ′ ∧ φ1} [X ′′]
[Frame]

{ψ′

0 ∧ φ1} A {ψ′ ∧ φ1} [X ′′]

{φ0} A {φ′} [X ′]
[Conseq]

where

φ0 logically implies ψ′

0 ∧ φ1

ψ′ ∧ φ1 logically implies φ′

X ′′ logically implies X ′

φ1 � X ′′

Since, by Lemma 7.30, Choose computes the Strongest Applicable version, and since φ0 logically implies
ψ′

0, we can conclude that

ψ logically implies ψ′

X logically implies X ′′

and thus X logically implies X ′.
We are done if we can prove

disj (φ0,X) ≤ φ1 (1)

for then we have the desired relation

φ = ψ ∧ disj (φ0,X) ≤ ψ′ ∧ φ1 ≤ φ′.

So let us embark on proving (1), where we wlog. can assume that φ1 is normalized. Looking at Definition 7.13,
we consider the case (the others are similar) where L.f L1 ∈ φ1. Since φ1 � X ′′, we know that L.f � X ′′,
and from X I X ′′ we can infer L.f � X . Since φ0 I φ1 and hence φ0 ≤ φ1, we know that there exists L0

with L0 � L1 such that L.f L0 ∈ norm(φ0). Thus L.f L0 ∈ {α ∈ norm(φ0) | α � X } = disj (φ0,X),
establishing (1).

Case of sequential composition.
Here sp is given by

sp(S1 ;S2, φ0) =
let (φ1,X1) = sp(S1, φ0) in

let (φ,X2) = sp(S2, φ1) in

(φ,X1 ∪ X2)

Assume that {φ0} S1 ;S2 {φ′} [X ′]. By Lemma 7.36, there exists φ′1,X
′

1,X
′

2 with X ′ = X ′

1 ∪X ′

2 such that

{φ0} S1 {φ′1} [X ′

1] and
{φ′1} S2 {φ′} [X ′

2]

Inductively on S1, we have

φ1 logically implies φ′1 and
X1 logically implies X ′

1

49

implying that we have the judgement

{φ1} S2 {φ′} [X ′

2].

Inductively on S2, we now have

φ logically implies φ′ and
X2 logically implies X ′

2.

The result now follows from Lemma 7.22, observing that

norm(X1 ∪ X2) = norm(X1) ∪ norm(X2)
⊆ norm(X ′

1) ∪ norm(X ′

2)
= norm(X ′)

and therefore X1 ∪X2 logically implies X ′.

Case of conditionals.
Here sp is defined by

sp(if x then S1 else S2, φ0) =
let (φ1,X1) = sp(S1, φ0) in

let (φ2,X2) = sp(S2, φ0) in

let X = norm(X1 ∪ X2) in

let φ12 = φ1 t φ2 in

let φ =
if φ0 logically implies xn
then φ12

else φ12 − (C1 ∪ C2)
where C1 = {yn | (y ∈ X) ∨ (yn 6∈ norm(φ0))}
and C2 = {L.f n | (L.f ∈ X) ∨ (L.f 6∈ norm(φ0))}

in (φ,X)

Now assume that {φ0} if x then S1 else S2 {φ′} [X ′] and by Lemma 7.35 we can assume that we have a
derivation

{ψ0} S1 {ψ′} [X ′′] {ψ0} S2 {ψ′} [X ′′]

{ψ0} if x then S1 else S2 {ψ′} [X ′′]
[If]

{ψ0} if . . . {ψ′} [X ′′]

{ψ0 ∧ ψ} if . . . {ψ′ ∧ ψ} [X ′′]
[Frame]

{ψ0 ∧ ψ} if . . . {ψ′ ∧ ψ} [X ′′]

{φ0} if . . . {φ′} [X ′]
[Conseq]

where

φ0 ≤ (ψ0 ∧ ψ)
(ψ′ ∧ ψ) ≤ φ′

X ′′ logically implies X ′

ψ � X ′′

and if ψ0 ≤ xn does not hold then I(ψ′) � X ′′ and ψ0 ≤ I(ψ′). By applying the frame rule and the
subsumption rule we get

50

{φ0} S1 {ψ′ ∧ ψ} [X ′′]
{φ0} S2 {ψ′ ∧ ψ} [X ′′]

so by the induction hypothesis we have

φ1 ≤ (ψ′ ∧ ψ)
φ2 ≤ (ψ′ ∧ ψ)
X1 logically implies X ′′

X2 logically implies X ′′

from which we infer

φ12 ≤ (ψ′ ∧ ψ)

and thus φ12 ≤ φ′.
Also, by Lemma 7.22 we see that X logically implies X ′′ and thus X logically implies X ′.
If φ0 logically implies xn, then φ = φ12, so φ ≤ φ′ follows and we are done.
So now assume that φ0 does not logically imply xn. But then ψ0 does not logically imply xn, so it holds

that

ψ0 ≤ I(ψ′) and
I(ψ′) � X ′′

Our task is to prove that

φ ≤ (ψ′ ∧ ψ)

so let α ∈ norm(ψ′ ∧ ψ).
From φ12 ≤ (ψ′ ∧ ψ) we deduce that

norm(φ12) ≤ α, that is,
φ12 ≤ α.

This will imply also φ ≤ α, except for the case where α takes the form an (and thus α ∈ φ12).
So let us consider the case where α is of the form yn (the case α = L.f n is similar). From yn ∈

norm(ψ′ ∧ ψ) we deduce, using that norm does not have other rules than listed that

yn ∈ norm(I(ψ′) ∧ ψ)) (2)

Observe that, since X logically implies X ′′, by Lemma 7.25 we have

I(ψ′) � X and
ψ � X

From Fact 7.11 we thus have

norm(I(ψ′) ∧ ψ) � X

showing that

y 6∈ X (3)

From the above we also see that φ0 logically implies ψ0 ∧ ψ which logically implies I(ψ′) ∧ ψ, that is
φ0 ≤ (I(ψ′) ∧ ψ). So from (2) we infer that

yn ∈ norm(φ0) (4)

51

But from (3) and (4), and yn ∈ φ12, we infer that yn ∈ φ, as desired.

Case of assertions.
Here sp is defined by

sp(assert (θ), φ0) = (θ ∧ φ0, ∅)

Now assume that {φ0} assert θ {φ′} [X ′] because of a derivation which by Lemma 7.35 is of form

{true} assert θ {θ} [∅]

{φ1} assert θ {θ ∧ φ1} [∅]
[Frame]

{φ1} assert θ {θ ∧ φ1} [∅]

{φ0} assert θ {φ′} [X ′′]
[Conseq]

where φ0 logically implies φ1, and θ ∧ φ1 logically implies φ′. But then θ ∧ φ0 logically implies φ′, as
desired.

Case of method calls. This is very similar to the case for assignments, using Assumption 7.31 rather than
Lemma 7.30.

8 Discussion

We have specified, via a Hoare-style logic, an interprocedural and flow-sensitive information flow analysis
for object-oriented programs. (The analysis is insensitive to termination, but we expect that adding asser-
tions of the form ⊥n, c.f. [2], would make it sensitive to termination). Because aliasing can compromise
confidentiality, the logic uses points-to assertions to describe aliasing that may arise between variables and
between heap values. Agreement assertions describe the absence of leaks due to data and control flow in a
program. Together with the knowledge that particular abstract addresses are disjoint, i.e., they must not
alias, the logic can be employed to specify a more precise information flow analysis than extant type-based
approaches. We also permit JML style programmer assertions in code. Such assertions allow more programs
to be deemed secure than would be permitted by points-to and agreement assertions alone, albeit at the cost
of a fully automatic checker.

Local reasoning about state is supported in our logic and we show a number of examples. While ordinary
Hoare logic without aliasing is compositional by nature, aliasing makes it challenging to reason locally about
the heap. By drawing upon fundamental ideas from separation logic, we achieve local reasoning: we use
small specifications for each command and combine specifications via a frame rule. The small specifications
only mention abstract addresses relevant to a command and semantically correspond to the footprint of the
command in the global state [20]. The frame rule permits a move from local to non-local specifications.

As we mentioned in Sec. 5, Table 2 specifies two sets of rules. The reader might have noted that the rules
that mention points-to assertions only specify a points-to analysis similar to well-known ones, e.g., [12, 8].
Data flow facts used in typical points-to analyses can be viewed as assertions. Nevertheless, we have not
found in the literature an explicit Hoare-style specification of interprocedural points-to analysis that is based
on local reasoning via small specifications and the frame rule. On top of such a points-to analysis, a host of
other analyses (rather than just information flow analysis) could be specified.

There is much work that remains. We wish to experimentally validate whether local reasoning with
the frame rule indeed provides scalability. Towards this goal, we plan to extend ESC/Java217 and its
assertion language, JML [11], to handle points-to and agreement assertions. This would provide a verification
framework for information flow properties. For checking benchmarks (e.g.,[4]) that use declassification, we
conjecture that agreement assertions might help in statically predicting program points where declassification
may be used.

17http://secure.ucd.ie/products/opensource/ESCJava2

52

A significantly harder problem is obtaining a modular interprocedural analysis. This requires devising
a modular algorithm for computing strongest postconditions, one that discovers and updates procedure
summaries on the fly. We plan to explore how local reasoning might be employed in this process.

Although our logic does not have separation logic’s spatial conjunction (?) operator, we conjecture that
the semantics of assertions could be alternatively given as follows: the meaning of e.g., x L in state
(s , h) under η, could consider a partition of h into disjoint subheaps h1, h2 such that dom(h1) = {s(x)} with
(s(x)) η L.

Our hope is that local reasoning will be used in the specification of program analyses and — in the
security context — used as a foundation for checking security policies for practical systems composed of
components.

Acknowledgments. To Dave Naumann, John Reynolds, Tamara Rezk, Andrei Sabelfeld, Dave Sands,
Dave Schmidt, Lyn Turbak for discussions, comments and encouragement.

References

[1] T. Amtoft and A. Banerjee. Information flow analysis in logical form. In SAS, LNCS 3148, pages 100–115.
Springer-Verlag, 2004.

[2] T. Amtoft and A. Banerjee. A logic for information flow analysis with an application to forward slicing
of simple imperative programs. Science of Computer Programming, special issue of SAS 2004. To appear.

[3] A. Askarov. Secure Implementation of cryptographic protocols: A case study of mutual distrust. Master’s
dissertation, Chalmers University of Technology, April 2005.

[4] A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic protocols:
A case study. In ESORICS, LNCS 3679, pages 197–221. Springer-Verlag, 2005.

[5] A. Banerjee and D. A. Naumann. Stack-based access control and secure information flow. JFP 15(2):131–
177, Mar. 2005.

[6] M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44% pure: Useful abstractions in specifications.
In ECOOP workshop on Formal Techniques for Java-like Programs (FTfJP), 2004.

[7] D. Bell and L. LaPadula. Secure computer systems: Mathematical foundations. Technical Report MTR-
2547, MITRE Corp., 1973.

[8] M. Berndl, O. Lhoták, F. Qian, L. J. Hendren, and N. Umanee. Points-to analysis using BDDs. In PLDI,
pages 103–114, 2003.

[9] M. Bishop. Computer Security: Art and Science. Addison-Wesley, 2003.

[10] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure specifications. IEEE
Transactions on Software Engineering 21(10):785–798, 1995.

[11] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An overview of JML tools and applications. Electr. Notes Theor. Comput. Sci., 80, 2003.

[12] D. R. Chase, M. N. Wegman, and F. K. Zadeck. Analysis of pointers and structures (with retrospective).
In Best of PLDI, pages 343–359, 1990.

[13] E. S. Cohen. Information transmission in sequential programs. In Foundations of Secure Computation,
pages 297–335. Academic Press, 1978.

[14] D. Denning and P. Denning. Certification of programs for secure information flow. CACM 20(7):504–513,
1977.

53

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In PLDI, pages 234–245, 2002.

[16] J. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symp. on Security
and Privacy, pages 11–20, 1982.

[17] S. Hunt and D. Sands. On flow-sensitive security types. In POPL, pages 79–90, 2006.

[18] A. C. Myers. JFlow: Practical mostly-static information flow control. In POPL, pages 228–241, 1999.

[19] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-Verlag, 1999.

[20] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter data structures. In
CSL, LNCS 2142, pages 1–19. Springer-Verlag, 2001.

[21] F. Pottier and V. Simonet. Information flow inference for ML. TOPLAS 25(1):117–158, Jan. 2003.

[22] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In LICS, pages 55–74.
2002.

[23] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE J. Selected Areas in
Communications, 21(1):5–19, Jan. 2003.

[24] Q. Sun, A. Banerjee, and D. A. Naumann. Modular and constraint-based information flow inference for
an object-oriented language. In SAS, LNCS 3148, pages 84–99. Springer-Verlag, 2004.

[25] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal of Computer
Security, 4(2/3):167–188, 1996.

54

