
Under consideration for publication in Math. Struct. in Comp. Science

Modular Control-Flow Analysis with Rank 2
Intersection Types

Anindya Banerjee1† and Thomas Jensen2‡

1 Department of Computing and Information Sciences
Kansas State University
Manhattan KS 66506, U.S.A.
e-mail: ab@cis.ksu.edu
2 IRISA/CNRS
Campus de Beaulieu
F-35042 Rennes, France
e-mail:jensen@irisa.fr

Received 26 December 2001

We show how the principal typing property of the rank 2 intersection type system

enables the specification of a modular and polyvariant control-flow analysis.

1. Introduction

The performance of optimising compilers crucially depends on the availability of control-
flow information at compile time. For any first-order imperative program, such infor-
mation is available via a flowchart constructed from the program text. Consequently,
traditional dataflow analyses can be used to perform a series of compile-time program
optimisations (Aho et al. 1986). For higher-order programs, however, a control-flow graph
is often not evident from the program text. In these programs, even simple control struc-
tures like while loops are implemented using functions and computation is hidden under
a single operation: function application. Hence, a number of control-flow analyses have
been proposed (Jones 1981; Sestoft 1988; Shivers 1991; Jagannathan and Weeks 1995) for
higher-order programs, all of which seek to answer the fundamental question: given a pro-
gram point, what functions can be the result of evaluation at the program point? Given
this information, the call-graph of a program can be constructed and a suite of compiler
optimisations e.g., closure conversion (Steckler and Wand 1997; Dimock et al. 2001),
useless variable elimination (Wand and Siveroni 1999), constant propagation, induction
variable elimination (Shivers 1991) etc. can be enabled.

† Partially supported by postdoctoral fellowships at the Laboratoire d’Informatique, École Polytech-
nique, Palaiseau, France (thanks to Radhia Cousot) and at DAIMI, University of Aarhus, Denmark

(thanks to Flemming Nielson); and by NSF grant EIA-9806835.
‡ Partially supported by the European IST Future and Emerging Technologies scheme (project IST-

1999-29075 “Secsafe”)

A. Banerjee and T. Jensen 2

The classical technique for control-flow analysis is abstract interpretation (Cousot and
Cousot 1977) of either the denotational semantics of the underlying language (Shivers
1991) or of its operational semantics (Nielson and Nielson 1997). An equivalent technique
uses a system of constraints to specify control-flow analysis so that flow information is ob-
tained as the minimal solution of the constraint system (Palsberg 1995). Both techniques
require whole-program analysis. For control-flow analysis of program fragments contain-
ing free variables, the above techniques usually assume an environment that associates
a property with each free variable or assume that only trivial properties hold of the free
variables. Neither assumption is satisfactory: the former requires re-analysis whenever
the environment changes; the latter leads to poor analysis results and the rejection of
program fragments that require functions as inputs.

We describe an algorithm for modular and polyvariant control-flow analysis of simply-
typed program fragments. The result of analysing a program fragment P , is a pair
containing a property and an environment: the pair describes a relation between the
properties of the free variables of P and the property of the entire program fragment P .
The environment provides a summary of the minimum set of constraints that must be
satisfied by any other program fragment that may link to P . Our algorithm computes a
“principal solution”: the environment and property of any other program fragment that
links to P can be obtained as an instance of the environment and property computed for
P (see Theorem 6.4 for the precise statement). Thus no re-analysis of P is required.

Recently, there has been much interest in using annotated type systems for program
analysis. The intuition is that types and expressions can be annotated with the prop-
erties of interest, e.g., control-flows (Tang 1994; Heintze 1995; Banerjee 1997), binding
times (Nielson and Nielson 1992; Hatcliff and Danvy 1997; Nielson and Nielson 1998),
strictness (Kuo and Mishra 1989; Jensen 1991; Benton 1992; Jensen 1998) effects (Talpin
and Jouvelot 1994), regions (Tofte and Talpin 1994; Tofte and Talpin 1997), concurrent
behaviours (Amtoft et al. 1997), dead-code (Damiani 1996; Damiani and Prost 1996;
Coppo et al. 1998; Kobayashi 2000) etc., so that if an expression, e, has the annotated
type τ , then evaluation of the expression exhibits the properties described by the anno-
tation of τ . Static analysis of the expression e is then synonymous with the calculation,
via an annotated-type inference algorithm, of its property annotations. For control-flow
analysis, we annotate every function in an expression with a label, and associate a set of
function labels, ϕ, with every function type, τ . The intuition is that if e evaluates to a
closure, then the text of the closure is a function whose label is in ϕ. The static deter-
mination of the set of function labels that e can possibly evaluate to is thus synonymous
with the calculation, via an inference algorithm, of its flow annotations.

An advantage of the type-based approach is that it provides a method for performing
compositional and modular program analysis. “Compositional” means that the analysis
of an expression is derived through the composition of the analyses of its proper subparts.
We say that an analysis is “modular” if it can analyse program fragments containing free
variables in isolation, and if the linking of fragments does not require their re-analysis. A
modular program analysis thus seems indispensable for separate compilation; however,
the extent to which modular analyses can be used in practice for efficient separate compi-
lation, remains to be seen. The effective use of the information obtained from a modular

Modular Control-Flow Analysis 3

analysis depends on link-time optimisations; but such optimisations are rarely done in
industrial-strength compilers at the present point of time.

1.1. Goals and methods

The goal of this article is to provide an algorithm for modular control-flow analysis of
simply-typed functional programs. For precision, we also demand that our analysis be
polyvariant, i.e., it must annotate a function with different properties at its different
application sites.

How can we achieve a modular analysis? We make the following observation due to
Damas (Damas 1985, Chapter 1): the simply-typed lambda calculus satisfies the principal
typing property. This means, given a typable program fragment, e, possibly containing
free variables, there is a pair, 〈Γ, τ〉, such that Γ ` e : τ represents all valid typings (i.e.,
type-derivation trees) of e. Furthermore, there is an algorithm that calculates such a pair
for e. The significance is, first, the user does not have to supply the types of the free
variables of e – they can be inferred automatically; this means, one can type all uses of
a free variable independently of its definitions – a feature crucial for analysing program
fragments. Second, when fragments are linked, the typing of e might possibly change
– but principality guarantees that the new typing is always a substitution instance of
Γ ` e : τ . Thus we can avoid a re-inference of e upon linking. Principal typing is thus a
simple way of achieving a modular analysis. In the rest of the paper, we apply this idea
to obtain a modular closure analysis.

How can we achieve a polyvariant analysis? Since a function may be applied to differ-
ent arguments and may return different results at each of its application sites, we can
represent the different behaviours as an intersection type (Sallé 1978; Coppo et al. 1980a;
Coppo et al. 1980b). This idea has been used in other contexts, e.g., strictness analysis. In
such analyses, the ability to form intersections of types have proven essential since they
allow expressing several properties of a function in one formula. (Jensen 1991; Jensen
1995) proved that by adding intersections to a language of strictness types, we obtain
an analysis in the style of intersection types which is equivalent in power to the abstract
interpretation-based strictness analysis of (Burn et al. 1986).

The intersection types we will consider are the “rank 2 intersection types”. Intuitively,
the rank of a type describes the nesting of functions in argument position. The notion of
rank has been used to identify restricted versions of intersection type systems for which
type inference is decidable. In particular, type inference in the rank 2 intersection type
system yields principal typings (Jim 1996). Thus, we can achieve our goal of providing
a modular and polyvariant analysis. Further, the rank 2 intersection type system types
significantly more terms than core ML, and moreover, can assign more general princi-
pal types to some core ML terms than the ML type system (van Bakel 1993). While
recent results by Kfoury and Wells indicate the existence of principal typings and show
decidability of type inference in systems of finite-rank intersection types (Kfoury and
Wells 1999), we have not pursued this direction. Rather, we restrict ourselves to rank 2
intersection types because the constraints resulting from an analysis based on such types
are simple to solve. In technical terms, we avoid having to solve constraints of the form

A. Banerjee and T. Jensen 4

ϕ1 ∧ ϕ2 ≤ ψ over function domains; this is also the reason why we have not considered
the full intersection type discipline.

The inference algorithm that implements the control-flow analysis deals with the sub-
typing that naturally arises from the fact that one program property implies other prop-
erties. We follow the standard approach to type inference in the presence of subtyping
by letting the result of typing a term e be a triple, (Γ, ϕ, C), where ϕ is a property of e,
Γ is a set of assumptions on the free variables of e and C is a set of constraints. Property
variables are used to describe the dependencies between the property ϕ and the prop-
erties in the environment. The constraint set C limits the way in which the property
variables in Γ and ϕ can be instantiated.

1.2. A small typed functional language

We choose a language with simple types as our base language. The language, called
vPCF (Riecke 1991), is essentially call-by-value PCF (Plotkin 1977) with recursion, con-
ditionals and basic arithmetic. The types and terms of the language are given by following
grammar, where op abbreviates either the succ or the pred operations.

σ, τ ::= int | σ → σ

v ::= n | λxσ. e | fun fσ→τ (xσ) = e

e ::= v | x | e1e2 | op e | if e then e1 else e2

Values, v, in vPCF are integers, lambda abstractions and recursive function definitions.
Since we have anonymous functions in the language via lambda abstractions, we insist
that in a recursive function declaration, fun fσ→τ (xσ) = e, the function name, f , and
the parameter, x, both appear in e. The type system for vPCF is the standard one and
is omitted save the rule for recursion.

Γ⊕ {f : σ → τ} ⊕ {x : σ} ` e : τ

Γ ` fun fσ→τ (xσ) = e : σ → τ

Γ denotes the type environment, in which identifiers are associated with simple types.
The notation Γ ⊕ {x : σ} means “extend the environment Γ with the binding {x : σ},
where x 6∈ Dom(Γ)”.

1.3. Organisation

The rest of the article is structured as follows. A brief review of control-flow analysis is
given in Section 2 by means of an example. Section 3 introduces the language of prop-
erties, defines the rank 2 intersection properties and shows how to define a “generic”
control-flow property for each type. Section 4 introduces the language `PCF and speci-
fies, via inference rules, a property system for polyvariant control-flow analysis for `PCF.
Orderings on ranked properties, needed in the inference rules, are introduced and sev-
eral properties of the ranked types and of the inference rules are shown in this section.

Modular Control-Flow Analysis 5

Section 5 provides the small-step operational semantics and type soundness results for
`PCF. Section 6 provides the type inference algorithm for inferring control-flow informa-
tion, and proves soundness (Section 6.2) and completeness (Section 6.3) of the algorithm.
The soundness of the inference algorithm, in conjunction with type soundness, shows
correctness of the analysis: this is explained at the end of Section 6.2. Section 7 surveys
related work and Section 8 concludes with a discussion.

This article grew out of two papers. (Banerjee 1997) developed a modular and poly-
variant control-flow analysis for untyped programs that infers control flow information
and types at the same time. (Jensen 1998) proposed a modular strictness analysis for
typed programs based on intersection types and parametric polymorphism. Working with
a typed language means that the analysis can use powerful induction principles (akin to
polymorphic recursion) and still guarantee that the analysis terminates. In this article,
we show how a control-flow analysis for a typed, higher-order functional language can be
designed based on the techniques developed in these previous works.

2. Control-flow analysis

Consider an expression in vPCF such that all lambda abstractions and recursive function
definitions in this expression are labelled uniquely. Let λ` and fun`

′
refer to the lambda

abstraction labelled ` and the recursive function labelled `′. A node in the abstract
syntax tree of an expression is called a “program point”. Then, given a closed expression,
control-flow analysis (CFA) seeks to answer the following question:

What set of function labels (that is, labelled lambda abstractions or recursive function defini-

tions) can each program point possibly evaluate to?

In particular, if the program point is an application site, the question is the same as:

What set of function labels (that is, labelled lambda abstractions or recursive function defini-

tions) can be called from the application site?

We give an example of CFA below. For exact details of the usual abstract interpretation-
based analysis, we refer the reader to the works (Sestoft 1991) and (Shivers 1991) who pro-
vide two distinct control-flow analyses using abstract interpretation; see (Mossin 1997b)
for a comparison of the two analyses.

Example: The term

T = (λ1g(int→int)→(int→int). g (g (λ2vint. v))) (λ3x(int→int). λ4yint. y)

with type int→ int, will serve as a running example throughout the article. Control-flow
analysis of T yields the following results:

1 The function part of the application, λ1g. g(g(λ2v. v)), yields {1}.
The variable g yields {3}.
λ2v. v yields {2}.
The application, g(λ2v. v), yields {4}.
The application, g(g(λ2v. v)), yields {4}.

A. Banerjee and T. Jensen 6

2 The argument part of the application, λ3x. λ4y. y, yields {3}.
y yields ∅.
λ4y. y, yields {4}.

3 The entire expression T yields {4}.
The interesting case is that of the function, λ3: it once gets applied to λ2 and again to
the result of this application, i.e., to λ4. Shivers’s abstract interpretation-based 0CFA
analysis would report that at each of its application sites, λ3 is possibly applied to the
set, {2, 4}. For a polyvariant analysis, however, we expect the analysis to report: at the
application site g(λ2v. v), λ3 is applied to λ2, and at the application site g(g(. . .)), λ3 is
applied to λ4. In the sequel, we will capture this polyvariance using intersection types.

3. A property system for polyvariant control-flow analysis

Here and in the following sections, we are motivated by the general framework for type
inference in the presence of subtypes as defined by (Mitchell 1991) and extended to
control-flow analysis by (Heintze 1995) and to behaviour analysis by (Amtoft et al. 1997;
Amtoft et al. 1999). We show that the rank 2 fragment of the intersection type discipline
can be instrumented to perform a polyvariant control-flow analysis. We first define the
instrumented rank 2 intersection types (called rank 2 control-flow properties). The def-
inition follows that of Jim (Jim 1995; Jim 1996), who builds on earlier works (Leivant
1983; van Bakel 1993; van Bakel 1996).

Let L be a countably infinite set of labels. For each type σ, we have an infinite set of
label variables ranged over by ξ. The BNF of labels at a given type, σ, is specified below.

Labels(σ) 3 κ ::= ξ | L | κ1 ∪ κ2.

For each type σ, define the properties at σ, Prop(σ), to be the smallest set satisfying:

tint ∈ Prop(int)
ϕi ∈ Prop(σ) i ∈ I∧

i∈I ϕi ∈ Prop(σ)

ϕ1 ∈ Prop(σ) ϕ2 ∈ Prop(τ) κ ∈ Labels(σ → τ)
(ϕ1 → ϕ2, κ) ∈ Prop(σ → τ)

For each type σ, we also have ranked properties at σ, denoted by Propk(σ). A property
has rank k, provided all intersection constructors are to the left of at most k − 1 arrow
constructors. A property at rank 0 has no intersection constructors. In this paper, we
will only be interested in properties at ranks 0, 1, 2. Such properties are amenable
to automatic inference and are defined in Table 1. Furthermore, we assume that the
intersection operator, ∧, is associative, commutative and idempotent. We can define a
“generic” property for a given type σ, written σ∗, by decorating the type with fresh
property variables. Formally, the translation (.)∗ from types to properties is defined by
induction on the structure of types as shown below.

• int∗ = tint • (σ → τ)∗ = (σ∗ → τ∗, ξ), ξ is fresh and ξ ∈ Labels(σ → τ)

Clearly, σ∗ ∈ Prop0(σ), and labels, if any, in σ∗ are all label variables. The translation
extends to environments in the obvious manner. Note how the shape of σ∗ is the same

Modular Control-Flow Analysis 7

Table 1. Rank 2 properties

• tint ∈ Prop0(int) •
ϕ1 ∈ Prop0(σ) ϕ2 ∈ Prop0(τ) κ ∈ Labels(σ → τ)

(ϕ1 → ϕ2, κ) ∈ Prop0(σ → τ)

•
ϕ ∈ Prop0(σ)

ϕ ∈ Prop1(σ)
•

ϕi ∈ Prop0(σ), i ∈ I∧
i∈I ϕi ∈ Prop1(σ)

•
ϕ ∈ Prop0(σ)

ϕ ∈ Prop2(σ)
•

ϕ1 ∈ Prop1(σ) ϕ2 ∈ Prop2(τ), κ ∈ Labels(σ → τ)

(ϕ1 → ϕ2, κ) ∈ Prop2(σ → τ)

as that of σ: if σ has n arrows, so has σ∗. We will exploit this property in the inference
algorithm in Section 6 when generating fresh properties for variables.

Example: The control flow properties of the term λ3x(int→int). λ4yint. y are described by
the property

((tint → tint, ξ)→ (tint → tint, {4}), {3}).
which states that the value of the expression is the lambda abstraction labelled 3 and
that no matter what function it receives as argument it will return the lambda expression
labelled 4 as result.

4. Inference rules for control flow

4.1. `PCF

The language of study, `PCF, called “labelled call-by-value PCF”, is an instrumented
version of vPCF, with lambda abstractions and recursive functions annotated by labels.
Such labelled functions are the control-flow properties of interest. Values in `PCF are
integers and labelled functions.

v ::= n | λ`xσ. e | fun` fσ→τ (xσ) = e

e ::= v | x | e1e2 | op e | if e then e1 else e2

We will assume that labels in the expression to be analysed are disjoint from the set
of variables. Also we assume the variable convention of (Barendregt 1984) i.e., for any
expression, the set of its free variables is disjoint from the set of its bound variables.

Just as an ordinary environment, Γ, in the specification of vPCF maps variables to
types, a property environment maps variables to properties. The sum of two property
environments, π1 and π2, denoted by π1 + π2, is defined to be the property environment
π, where: Dom(π) = Dom(π1) ∪Dom(π2), and:

π(x) =


π1(x) ∧ π2(x), if x ∈ Dom(π1) ∩Dom(π2)
π1(x), if if x ∈ Dom(π1) and x 6∈ Dom(π2)
π2(x), if x ∈ Dom(π2) and x 6∈ Dom(π1)

The disjoint sum of two property environments, π1 and π2, denoted by π1⊕π2, is defined

A. Banerjee and T. Jensen 8

provided Dom(π1) and Dom(π2) are disjoint, in which case it is π1 + π2 (with the first
case absent since Dom(π1) and Dom(π2) are disjoint).

Before giving the inference rules for polyvariant control-flow analysis, we give an ax-
iomatisation of an inclusion relation between properties. Intuitively, the inclusion relation
expresses when one control flow property is more approximate than another. The situ-
ation arises, e.g., in a conditional expression, where the analysis for each branch of the
conditional may yield different sets of functions, but each set must be coerced to a com-
mon superset. A similar situation arises in applications.

4.2. Property orderings

Formally, we axiomatise propositions of the form, ϕ1 ≤ ϕ2, where ϕ1 and ϕ2 are control
flow properties.

Ordering on properties

• ϕ ≤ ϕ • ϕ1 ≤ ϕ2 ϕ2 ≤ ϕ3

ϕ1 ≤ ϕ3
• ψ1 ≤ ϕ1 ϕ2 ≤ ψ2 κ1 ⊆ κ2

(ϕ1 → ϕ2, κ1) ≤ (ψ1 → ψ2, κ2)

•
∀ϕ ∈ {ϕj | j ∈ J}. ∃ψ ∈ {ψi | i ∈ I}. ψ ≤ ϕ

(
∧
i∈I ψi) ≤ (

∧
j∈J ϕj)

ϕj ∈ Prop0(σ), ψi ∈ Prop0(σ)

Note that the following can be easily derived from the above ordering on properties:

• ϕ1 ∧ ϕ2 ≤ ϕ1 • ϕ1 ∧ ϕ2 ≤ ϕ2 • ϕ ≤ ϕi i ∈ I
ϕ ≤

∧
i∈I ϕi

We now show several properties of the ≤ ordering. First, we define the notion of substi-
tution germane to this paper.

Definition 4.1 A substitution is a map from label variables to finite sets of labels.

We write [] for the empty substitution. A substitution S is lifted to properties as follows:
S(tint) = tint; and, for any property ϕ in which all occurrences of labels are label variables,
S(ϕ) is defined in the obvious manner. We say that property ϕ is ground if it does not
contain any occurrences of property variables. A property environment π is ground if
π(x) is ground for all x ∈ Dom(π). The next three propositions relate ground properties,
ϕ, at rank i for i = 0, 1, 2 to their underlying types.

Proposition 4.2 Let ϕ ∈ Prop0(σ). Then there exists substitution S with S(σ∗) = ϕ.

Proof. By induction on structure of properties at rank 0.
• Case of tint: Need substitution S such that S(int∗) = tint. Choose S to be [].
• Case of (ϕ1 → ϕ2, κ): Then, ϕ1 ∈ Prop0(σ) and ϕ2 ∈ Prop0(τ) and κ ∈ Labels(σ →
τ). Therefore, by the induction hypothesis on ϕ1 and on ϕ2, there exist substitutions,
S1 and S2, such that S1(σ∗) = ϕ1 and S2(τ∗) = ϕ2. Need substitution S such that
S(σ → τ)∗ = (ϕ1 → ϕ2, κ). That is, S(σ∗ → τ∗, ξ) = (ϕ1 → ϕ2, κ), where ξ is the label
variable, chosen fresh for (σ → τ)∗. Let S3 be the substitution, [ξ 7→ κ]. Then choose the
required substitution S to be S3 ◦ S2 ◦ S1.

Modular Control-Flow Analysis 9

Proposition 4.3 Let ϕ ∈ Prop1(σ). Then there exists substitution S with ϕ ≤ S(σ∗).

Proof. There are two cases: If ϕ ∈ Prop0(σ), then by Proposition 4.2 there exists
substitution S such that S(σ∗) = ϕ, hence ϕ ≤ S(σ∗). Otherwise, ϕ = (

∧
i∈I ϕi). Now, for

every i ∈ I, ϕi ∈ Prop0(σ). Hence, for any i, by Proposition 4.2 there exists substitution
S such that S(σ∗) = ϕi; thus for any i, we have ϕi ≤ S(σ∗), hence by the ordering on
properties, (

∧
i∈I ϕi) ≤ S(σ∗).

Proposition 4.4 Let ϕ ∈ Prop2(σ). Then there exists substitution S with S(σ∗) ≤ ϕ.

Proof. There are two cases: If ϕ ∈ Prop0(σ), then by Proposition 4.2, there exists
substitution S such that S(σ∗) = ϕ, hence S(σ∗) ≤ ϕ. Otherwise, ϕ = (ϕ1 → ϕ2, κ),
where ϕ1 ∈ Prop1(σ), ϕ2 ∈ Prop2(τ) and κ ∈ Labels(σ → τ). By Proposition 4.3,
there exists substitution S1 such that ϕ1 ≤ S1(σ∗). By the induction hypothesis on ϕ2,
there exists substitution S2 such that S2(τ∗) ≤ ϕ2. Let S3 be the substitution [ξ 7→ κ].
Choose the required substitution S = S3 ◦ S2 ◦ S1. Then by ordering on properties,
S(σ∗ → τ∗, ξ) ≤ (ϕ1 → ϕ2, κ).

Ordering on environments
The ordering on properties is extended to environments in a pointwise manner.

Definition 4.5
Let π, η be rank 1 property environments. Then, say that η ≤ π, provided for all x ∈
Dom(π), it is the case that x ∈ Dom(η) and η(x) ≤ π(x).

Definition 4.6
Let π, η be rank 1 property environments and ϕ,ψ be rank 2 properties. Then, say that
〈π, ϕ〉 ≤ 〈η, ψ〉 provided η ≤ π, and ϕ ≤ ψ.

Proposition 4.7
Let η, π1, π2 be rank 1 property environments. Suppose η ≤ πi, for i = 1, 2. Then,
η ≤ π1 + π2.

Proof. Suppose x ∈ Dom(π1 + π2). Then clearly x ∈ Dom(η). We need to show
η(x) ≤ (π1 + π2)(x), given η(x) ≤ π1(x) and η(x) ≤ π2(x). Suppose π1(x) = ϕ1 and
π2(x) = ϕ2. Then η(x) ≤ ϕ1 ∧ ϕ2 follows by ordering on properties.

4.3. A property system for polyvariant closure analysis

Now we are in a position to explain the property system for polyvariant control-flow
analysis, given in Table 2. Judgements in the system have the form, π ` eσ : ϕ, i.e., in
rank 1 property environment π, expression e of type σ has rank 2 property ϕ. An invariant
that the property system must satisfy is that the erasure of the property annotations from
π and ϕ must yield a judgement typable in the underlying type system; in particular,
the erasure of ϕ must yield σ. This can be easily formalised, but we choose not to
do so in this paper. Rule Var is applied at the leaves of the derivation tree. Since
property environments are rank 1, i.e., the property associated with each variable in the

A. Banerjee and T. Jensen 10

Table 2. Property System for Polyvariant Control-Flow Analysis.

Var π ⊕ {x :
∧
i∈I

ϕi} ` xσ : ϕj j ∈ I

Int π ` nint : tint

Lam

π ⊕ {x :
∧
i∈I ϕi} ` eτ : ϕ ` ∈ L

π ` λ`xσ . eτ : ((
∧
i∈I ϕi)→ ϕ,L)

App

π ` eσ→τ1 : ((
∧
i∈I ϕi)→ ϕ, κ) ∀i ∈ I : π ` eσ2 : ϕ′i ∀i ∈ I : ϕ′i ≤ ϕi

π ` eσ→τ1 eσ2 : ϕ

If

π ` eint
1 : tint π ` eσ2 : ϕ2 π ` eσ3 : ϕ3 ϕ2 ≤ ϕ ϕ3 ≤ ϕ

π ` if eint
1 then eσ2 else eσ3 : ϕ

Fun

π ⊕ {f :
∧
i∈I(ϕi → ϕ′i, Li), x :

∧
j∈J θj} ` eτ : θ ∀i ∈ I : ((

∧
j∈J θj)→ θ, L) ≤ (ϕi → ϕ′i, Li) ` ∈ L

π ` fun` fσ→τ (xσ) = eτ : ((
∧
j∈J θj)→ θ, L)

Op

π ` eint : tint

π ` op eint : tint

environment is a conjunction of rank 0 properties, we can (non-deterministically) choose
an appropriate conjunct as property of the variable. In rule Lam, the bound variable,
x, may have multiple occurrences in the body, e, of the lambda abstraction labelled
`. Since we are interested in polyvariance, therefore, to represent all the hypotheses
made on x, we choose to give it an intersection property. In particular, if there is no
occurrence of x in the body, then x can be given any property as long as the erasure
of x’s property annotation yields its underlying type, σ. Note that ` must be contained
in the set of possible functions that the lambda abstraction can evaluate to. In rule
App, if the function part returns a rank 2 type of the form ((

∧
i∈I ϕi)→ ϕ, κ), then the

argument part must have properties ϕ′i for each i ∈ I, such that ϕ′i is a “sub-property”
of ϕi, according to the ordering on properties in Section 4. In rule If, the branches
of the conditional may yield different properties, ϕ2, ϕ3. But since we are interested
in specifying a static analysis, both ϕ2 and ϕ3 must be a sub-property of a common
property ϕ according to the ordering on properties. In Rule Fun, each recursive function
invocation can assign different properties to a recursive function f with label `. Hence
f is given the intersection type

∧
i∈I(ϕi → ϕ′i, Li) in the antecedent. As in rule Lam,

Modular Control-Flow Analysis 11

we require that ` be contained in the set of possible functions the recursive function can
evaluate to (and also in each Li).

Note how the property system is syntax-directed; there is no explicit rule for subsump-
tion – instead subsumption is inlined in the rules it can occur, namely, rules App, If and
Fun. This is done for technical convenience, namely, to facilitate proofs by structural
induction. One can show the following propositions for the property system.

Proposition 4.8 (Weakening)
Let π ` e : ϕ be derivable. Then for any property environment π′, it is the case that
π + π′ ` e : ϕ.

Proposition 4.9 (Subproperty)
Let π ` e : ϕ be derivable. Then π′ ` e : ϕ′ is derivable provided π′ ≤ π and ϕ ≤ ϕ′.

The proofs for both propositions are easy inductions on the height of the derivation tree
of e.

Example: Consider our running example from Section 2:

T = (λ1g(int→int)→(int→int). g (g (λ2vint. v))) (λ3x(int→int). λ4yint. y)

Let

ϕ = ((tint → tint, {4})→ (tint → tint, {4}), {3})
and

ϕ′ = ((tint → tint, {2})→ (tint → tint, {4}), {3})
We first show a typing derivation of the function part, λ1g(int→int)→(int→int). g (g (λ2vint. v)),
in stages.

(A)
{g : ϕ ∧ ϕ′} ` g : ϕ′ {g:ϕ∧ϕ′,v:tint}`v:tint

{g:ϕ∧ϕ′}`λ2v. v:(tint→tint,{2})

{g : ϕ ∧ ϕ′} ` g(λ2v. v) : (tint → tint, {4})
From (A) using rule App,

(B)
{g : ϕ ∧ ϕ′} ` g : ϕ {g : ϕ ∧ ϕ′} ` g(λ2v. v) : (tint → tint, {4})

{g : ϕ ∧ ϕ′} ` g(g(λ2v. v)) : (tint → tint, {4})

From (B) using rule Lam,

(C)
{g : ϕ ∧ ϕ′} ` g(g(λ2v. v)) : (tint → tint, {4})

∅ ` λ1g(g(λ2v. v)). : (ϕ ∧ ϕ′ → (tint → tint, {4}), {1})

For the argument part, λ3x. λ4y. y, note that using rule Lam,

(D)
{x : (tint → tint, {2})} ` λ4y. y : (tint → tint, {4})

∅ ` λ3x. λ4y. y : ϕ′

and

(E)
{x : (tint → tint, {4})} ` λ4y. y : (tint → tint, {4})

∅ ` λ3x. λ4y. y : ϕ

A. Banerjee and T. Jensen 12

Hence from (D), (E) and (C), using rule App,

∅ ` T : (tint → tint, {4})

5. Operational semantics and correctness

Table 3 gives the small-step operational semantics of our language. In the operational
semantics, the notation e[x 7→ v] denotes the capture-avoiding substitution of all free
occurrences of the variable x by the value v in expression e. The operational semantics
show reductions of simple redexes. They lift to arbitrary terms via

e→ e′

E[e]→ E[e′]

where E denotes evaluation contexts (Wright and Felleisen 1991) specified by the BNF:

E ::= [] | (E e) | (v E) | if E then e1 else e2 | succ E | pred E

Using the operational semantics, we can show type soundness. This requires proving a

Table 3. Small-step operational semantics

(λ`x. e) v → e[x 7→ v]

(fun` f (x) = e) v → e[f 7→ (fun` f (x) = e)][x 7→ v]

(succ n) → (n+ 1)
(pred 0) → 0
(pred (n+ 1)) → n

(if 0 then e else e′) → e
(if (n+ 1) then e else e′) → e′

substitution lemma.

5.1. Substitution lemma

Lemma 5.1
Suppose that π⊕{x :

∧
i∈I ϕi} ` e : ϕ and for all i ∈ I, π ` v : ϕ′i where ϕ′i ≤ ϕi. Then,

there exists ϕ′ such that π ` e[x 7→ v] : ϕ′ and ϕ′ ≤ ϕ.

Proof. We go by induction on the height of the derivation tree of e and by case analysis
on the final step. The following are the interesting cases, the rest being routine. In fact,
the case for recursive functions mirrors the case for lambda abstraction.

• Case of π ⊕ {x :
∧
i∈I ϕi} ` x′ : ϕ: We have two cases: Case(a): x′ = x. Then

π ⊕ {x :
∧
i∈I ϕi} ` x : ϕj , where j ∈ I. Assume that for all i ∈ I, π ` v : ϕ′i, where

ϕ′i ≤ ϕi. In particular, since j ∈ I, we obtain π ` v : ϕ′j , where ϕ′j ≤ ϕj . That is,
π ` x[x 7→ v] : ϕ′j and ϕ′j ≤ ϕj . Case(b): x′ 6= x. Then x′ ∈ Dom(π) and π ` x′ : ϕ.
Thus, π ` x′[x 7→ v] : ϕ and ϕ ≤ ϕ.

• Case of π ⊕ {x :
∧
i∈I ϕi} ` λ`x′. e : ((

∧
j∈J ϕ

′
j) → ϕ′, L): Assume that x′ 6= x. (If

Modular Control-Flow Analysis 13

x′ = x, rename the bound variable x′ to x′′). For all i ∈ I, let π ` v : ϕ′i such that
ϕ′i ≤ ϕi. We must show that there exists θ such that π ` (λ`x′. e)[x 7→ v] : θ and
θ ≤ ((

∧
j∈J ϕ

′
j)→ ϕ′, L). From the derivation tree of λ`x′. e, it must be the case that:

(i) π ⊕ {x :
∧
i∈I

ϕi} ⊕ {x′ :
∧
j∈J

ϕ′j} ` e : ϕ′ and ` ∈ L.

By the induction hypothesis on the derivation tree for e, there exists θ′ such that:

(ii) π ⊕ {x′ :
∧
j∈J

ϕ′j} ` e[x 7→ v] : θ′ and (iii) θ′ ≤ ϕ′.

Hence, from (ii), using the fact that ` ∈ L, π ` λ`x′. e[x 7→ v] : ((
∧
j ϕ
′
j) → θ′, L), i.e.,

π ` (λ`x′. e)[x 7→ v] : ((
∧
j ϕ
′
j) → θ′, L). Now choose θ = ((

∧
j ϕ
′
j) → θ′, L). Clearly,

using (iii), θ ≤ ((
∧
j ϕ
′
j)→ ϕ′, L).

• Case of π⊕{x :
∧
i∈I ϕi} ` e1e2 : ϕ′: Assume for all i ∈ I, π ` v : ϕ′i where ϕ′i ≤ ϕi. We

must show there exists θ′ such that π ` (e1e2)[x 7→ v] : θ′ and θ′ ≤ ϕ′. From the derivation
tree of e1e2, it must be the case that: (i) π ⊕ {x :

∧
i∈I ϕi} ` e1 : ((

∧
j∈J ϕ

′
j)→ ϕ′, κ)

(ii) π ⊕ {x :
∧
i∈I

ϕi} ` e2 : ϕ′′j , for each j ∈ J (iii) ϕ′′j ≤ ϕ′j , for each j ∈ J

By the induction hypothesis on derivation tree of e1, there exists θ with shape ((
∧
k∈K θ

′
k)→

θ′, µ), such that:

(iv) π ` e1[x 7→ v] : ((
∧
k∈K

θ′k)→ θ′, µ) with

(v) ((
∧
k∈K

θ′k)→ θ′, µ) ≤ ((
∧
j∈J

ϕ′j)→ ϕ′, κ).

From (v), by contravariance, (
∧
j∈J ϕ

′
j) ≤ (

∧
k∈K θ

′
k). Hence, by the ordering on proper-

ties, for all k ∈ K, there exists jk ∈ J , such that (vi) ϕ′jk ≤ θ
′
k. From (v), by covariance,

(vii) θ′ ≤ ϕ′. By the induction hypothesis on derivation tree of e2, for all j ∈ J ,

(viii) π ` e2[x 7→ v] : θ′′j , such that (ix) θ′′j ≤ ϕ′′j .

To show the result, we need to demonstrate using (iv) and (viii) that for all k ∈ K, θ′′jk ≤
θ′k. Accordingly, consider any pair (k, jk) as in (vi) where k ∈ K. Then using (ix), (iii)
and (vi) we have, θ′′jk ≤ ϕ′′jk ≤ ϕ′jk ≤ θ′k. Hence by the ordering on properties, (x)
θ′′jk ≤ θ′k for all k ∈ K. Now using (iv), (viii) and (x) and using the idempotence of ∧
we have, π ` e1[x 7→ v]e2[x 7→ v] : θ′, i.e., π ` (e1e2)[x 7→ v] : θ′. Now the lemma holds
by appealing to (vii).

5.2. Type soundness

To prove type soundness, we proceed in two steps: first we prove a type soundness result
for simple redexes defined by the operational semantics in Table 3. Next, we lift this
result to arbitrary terms.

A. Banerjee and T. Jensen 14

Lemma 5.2 Let π ` e1 : ϕ and e1 → e2, where e1 and e2 are the left-hand sides and
right-hand sides respectively of the operational semantics in Table 3. Then there exists
ϕ′ such that π ` e2 : ϕ′ and ϕ′ ≤ ϕ.

Proof. We go by cases on the reduction e1 → e2 in Table 3. The interesting cases are
the ones for application – the other cases being routine.

• Case of (λ`x. e)v → e[x 7→ v]: Then the derivation is π ` (λ`x. e)v : ϕ. Hence:

(i) π ` λ`x. e : ((
∧
i∈I

ϕi)→ ϕ,L) (ii) π ` v : ϕ′i, for each i ∈ I

(iii) ϕ′i ≤ ϕi, for each i ∈ I
From (i), it must be the case that (iv) π ⊕ {x :

∧
i∈I ϕi} ` e : ϕ. Hence from (iv), (ii)

and (iii), using Lemma 5.1, there exists ϕ′ such that π ` e[x 7→ v] : ϕ′ and ϕ′ ≤ ϕ.

• Case of (fun` f (x) = e)v → e[f 7→ (fun` f (x) = e)][x 7→ v]: Then the derivation is
π ` (fun` f (x) = e)v : ϕ. Hence

(i) π ` fun` f (x) = e : ((
∧
j∈J

θj)→ ϕ,L) (ii) π ` v : θ′j , for each j ∈ J

(iii) θ′j ≤ θj , for each j ∈ J
From (i), it must be the case that

(iv) π ⊕ {f :
∧
i∈I

(ϕi → ϕ′i, Li), x : (
∧
j∈J

θj)} ` e : ϕ and

(v) ((
∧
j∈J

θj)→ ϕ,L) ≤ (ϕi → ϕ′i, Li), for each i ∈ I

Hence from (iv), (i) and (v), applying Lemma 5.1, there exists ϕ′ such that

(vi) π ⊕ {x : (
∧
j∈J

θj)} ` e[f 7→ fun` f (x) = e] : ϕ′ and (vii) ϕ′ ≤ ϕ.

Now from (vi), (ii) and (iii), applying Lemma 5.1 again, there exists ϕ′′ such that
(viii) π ` e[f 7→ fun` f (x) = e][x 7→ v] : ϕ′′, and (ix) ϕ′′ ≤ ϕ′. Hence from (ix) and
(vii), ϕ′′ ≤ ϕ.

Theorem 5.3 (Type Soundness Theorem)
Let π ` e : ϕ and e→ e′. Then there exists ϕ′ such that π ` e′ : ϕ′ and ϕ′ ≤ ϕ.

Proof. By a simple induction on the structure of evaluation contexts, e = E[e1], where
e1 → e2 via one of the rules in Table 3, and e′ = E[e2]. Now an induction on the structure
of evaluation contexts using Lemma 5.2 completes the proof.

6. An inference algorithm based on ranked properties

In this section we present an inference algorithm for the property system in Table 2. For
an expression eσ, algorithm I computes a triple 〈π, ϕ, C〉, where π is the inferred rank

Modular Control-Flow Analysis 15

1 property environment for the free variables of eσ, ϕ is the inferred rank 2 property,
and C is a set of constraints where each constraint in C has the form, ξ ⊆ ξ′ or L ⊆ ξ

for some label variables ξ, ξ′ and label set L. The algorithm I is specified in Table 4 in a
bottom-up manner, reminiscent of Damas’s Algorithm T (Damas 1985). We explain the
cases for variables, lambda abstractions and applications below.

Table 4. The inference algorithm, I

Variables ξ, ξi used in the inference algorithm are required to be fresh.

I(xσ) = let ϕ = σ∗ in 〈{xσ : ϕ}, ϕ, ∅〉

I(nint) =
〈
∅, tint, ∅

〉
I(λ`xσ . eτ) = let 〈π, ϕ, C〉 = I(eτ) in〈

π′, ((
∧
i∈I ϕi)→ ϕ, ξ), C ∪ {{`} ⊆ ξ}

〉
if π = π′ ⊕ {xσ :

∧
i∈I ϕi}

〈π, (ψ → ϕ, ξ), C ∪ {{`} ⊆ ξ}〉 if ψ = σ∗ and xσ 6∈ Dom(π)

I(eσ→τ1 eσ2) = let 〈π1, ϕ1, C1〉 = I(eσ→τ1)

〈π2, ϕ2, C2〉 = I(eσ2)
in case ϕ1 of

((
∧
i∈I

ϕ1i)→ ϕ12, ξ) :

let
〈
π̃i, ϕ̃i, C̃i

〉
= Rename(π2, ϕ2, C2)

{ϕ̃i ≤ ϕ1i | i ∈ I}
+
; C′

C = C1 ∪ (
⋃
i∈I C̃i) ∪ C′

in
〈
π1 +

∑
i∈I π̃i, ϕ12, C

〉
I(if eint

1 then eσ2 else eσ3) = let 〈
π1, tint, C1

〉
= I(eint

1)

〈π2, ϕ2, C2〉 = I(eσ2)
〈π3, ϕ3, C3〉 = I(eσ3)

ϕ = σ∗

{ϕ2 ≤ ϕ, ϕ3 ≤ ϕ}
+
; C4

C = C1 ∪ C2 ∪ C3 ∪ C4

in 〈π1 + π2 + π3, ϕ, C〉

I(fun` fσ→τ (xσ) = eτ) =



if x 6∈ FV (e) then
let〈
π ⊕ {f :

∧
i∈I(ϕi → ϕ′i, ξi)}, δ, C

〉
= I(eτ)

{(σ∗ → δ, ξ) ≤
∧
i∈I(ϕi → ϕ′i, ξi)}

+
; C1

in 〈π, (σ∗ → δ, ξ), C ∪ C1 ∪ {{`} ⊆ ξ}〉
else let〈
π ⊕ {f :

∧
i∈I(ϕi → ϕ′i, ξi), x : (

∧
j∈J δj)}, δ, C

〉
= I(eτ)

{((
∧
j∈J δj)→ δ, ξ) ≤

∧
i∈I(ϕi → ϕ′i, ξi)}

+
; C1

in
〈
π, ((

∧
j∈J δj)→ δ, ξ), C ∪ C1 ∪ {{`} ⊆ ξ}

〉
I(op eint) = I(eint)

For a variable, xσ, the algorithm returns a property ϕ = σ∗, since the flow must have
the same shape as the type σ. For example, if σ is the type int→ int, then we know that

A. Banerjee and T. Jensen 16

x can only be bound to functions of type int → int. Therefore, x’s property must have
the shape (tint → tint, ξ) where fresh ξ is the placeholder for the set of possible functions
that can be bound to x.

For a lambda abstraction, λ`xσ. eτ , the algorithm first analyses the body e. Suppose
the inferred property for e is ϕ. Let FV (e) denote the set of free variables in e. If
x ∈ FV (e), then the property ϕi of each occurrence is collected together in the inferred
property environment π, so that π(x) =

∧
i∈I ϕi. Moreover, each ϕi = σ∗. The property

inferred for the entire lambda abstraction is ((
∧
i∈I ϕi) → ϕ, ξ) where ξ is fresh and

{`} ⊆ ξ. If x 6∈ FV (e), then x 6∈ Dom(π). Then the inferred property for the entire
lambda abstraction is (ψ → ϕ, ξ), where ξ is fresh and ψ = σ∗ and {`} ⊆ ξ.

For the application eσ→τ1 eσ2 , the algorithm first analyses e1. Suppose the inferred envi-
ronment is π1. The inferred property for e1 must have the shape ((

∧
i∈I ϕ1i) → ϕ12, ξ).

Next e2 is analysed. Suppose the inferred environment is π2 and the inferred property is
ϕ2. From the inference rule for application in Table 2, we need to make i copies of ϕ2

and, for every i ∈ I, “satisfy the ordering” ϕ̃i ≤ ϕ1i, where ϕ̃i is the i-th copy of ϕ2.
Once the ordering is satisfied, the algorithm returns the environment π1 + Σi∈Iπi and
the property ϕ12 for the entire application.

Consider properties ϕ,ϕ′ in which all labels (if any) are label variables; then we say that
substitution S satisfies ϕ ≤ ϕ′ provided applying the substitution to ϕ,ϕ′ maintains the
ordering; i.e., S(ϕ) ≤ S(ϕ′). (This is lifted to a set of orderings in the obvious manner).
How can we satisfy ϕ̃i ≤ ϕ1i, for every i ∈ I? By inspection of the inference algorithm,
first note that if I(eσ→τ) = 〈π, ϕ, C〉, then ϕ ∈ Prop2(σ → τ) and all labels in ϕ are
label variables. Note too the shapes of orderings on properties: these can only be

• tint ≤ tint • ϕ ≤
∧
i∈I ϕi • (ϕ1 → ϕ2, ξ1) ≤ (ϕ3 → ϕ4, ξ2).

Now the specification of ≤ in Section 4 gives an algorithm for satisfying the set {ϕ̃i ≤
ϕ1i | i ∈ I}: we just “run the rules backwards”. We formalise this using the ; relation
below; the main idea is to decompose the set, K, of ordering on properties, into a set,
C, of constraints between label variables, i.e., 〈K,C〉 +

; 〈K ′, C ′〉.〈
{tint ≤ tint} ∪K,C

〉
; 〈K,C〉〈

{ϕ ≤ (
∧
i∈I ϕi)} ∪K,C

〉
; 〈{ϕ ≤ ϕi | i ∈ I} ∪K,C〉

〈{(ϕ1 → ϕ2, ξ1) ≤ (ϕ3 → ϕ4, ξ2)} ∪K,C〉 ; 〈{ϕ3 ≤ ϕ1, ϕ2 ≤ ϕ4} ∪K,C ∪ {ξ1 ⊆ ξ2}〉

Note that the ; relation as defined above is indeed an algorithm, since at every rewrite
step either the number of arrows, or the number of intersections, or the size of the
constraint set on the left hand side decreases. More formally, we can prove the termination
of rewriting by a lexicographic induction on (a, i, s), where a is the number of arrows in
K, i is the number of intersections in K, and s is the size of K. Upon termination, we
obtain a set of constraints, where each constraint has form ξ ⊆ ξ′.

We say that a substitution S is a solution of a constraint κ ⊆ κ′, if S(κ) ⊆ S(κ′) holds.
(This is lifted to a set of constraints in the obvious manner).

Lemma 6.1 Let 〈K,C〉 ; 〈K ′, C ′〉. For any substitution S, S satisfies K and S is a
solution to C iff S satisfies K ′ and S is a solution to C ′.

Modular Control-Flow Analysis 17

Proof. By cases on the reduction 〈K,C〉; 〈K ′, C ′〉.
—
〈
{tint ≤ tint} ∪K,C

〉
; 〈K,C〉: Let S satisfy {tint ≤ tint}∪K and let S be a solution

to C. Then S satisfies K.
Conversely, let S satisfy K and let S be a solution to C. Then S satisfies {tint ≤
tint} ∪K.

—
〈
{ϕ ≤ (

∧
i∈I ϕi)} ∪K,C

〉
; 〈{ϕ ≤ ϕi | i ∈ I} ∪K,C〉: Let S satisfy {ϕ ≤ (

∧
i∈I ϕi)}∪

K and let S be a solution to C. Then S(ϕ) ≤ S(
∧
i∈I ϕi) holds. Hence, by order-

ing on properties it must be that S(ϕ) ≤ S(ϕi), for every i ∈ I. Hence S satisfies
{ϕ ≤ (

∧
i∈I ϕi)} ∪K.

Conversely, let S satisfy {ϕ ≤ ϕi | i ∈ I} ∪ K and let S be a solution to C.
That is, S satisfies K, and S(ϕ) ≤ S(ϕi) for every i ∈ I. But then by ordering
on properties, S(ϕ) ≤ (

∧
i∈I S(ϕi)), i.e., S(ϕ) ≤ S(

∧
i∈I(ϕi)). Hence S satisfies

{ϕ ≤ (
∧
i∈I(ϕi))} ∪K.

— 〈{(ϕ1 → ϕ2, ξ1) ≤ (ϕ3 → ϕ4, ξ2)} ∪K,C〉; 〈{ϕ3 ≤ ϕ1, ϕ2 ≤ ϕ4} ∪K,C ∪ {ξ1 ⊆ ξ2}〉:
Let S satisfy {(ϕ1 → ϕ2, ξ1) ≤ (ϕ3 → ϕ4, ξ2)} ∪ K and let S be a solution to
C. Then S(ϕ1 → ϕ2, ξ1) ≤ S(ϕ3 → ϕ4, ξ2). Hence by ordering on properties it
must be that S(ϕ3) ≤ S(ϕ1), S(ϕ2) ≤ S(ϕ4) and S(ξ1) ⊆ S(ξ2). Hence S satisfies
{ϕ3 ≤ ϕ1, ϕ2 ≤ ϕ4} ∪K and S is a solution to C ∪ {ξ1 ⊆ ξ2}.
Conversely, let S satisfy {ϕ3 ≤ ϕ1, ϕ2 ≤ ϕ4} ∪ K and let S be a solution to
C∪{ξ1 ⊆ ξ2}. That is, S satisfiesK and S(ϕ3) ≤ S(ϕ1) and S(ϕ2) ≤ S(ϕ4). Moreover,
S(ξ1) ⊆ S(ξ2). Hence by ordering on properties, S(ϕ1 → ϕ2, ξ1) ≤ S(ϕ3 → ϕ4, ξ2),
i.e., S satisfies {(ϕ1 → ϕ2, ξ1) ≤ (ϕ3 → ϕ4, ξ2)} ∪K and S is a solution to C.

A consequence of Lemma 6.1 is that it holds when ; is replaced by +
;, where +

; denotes
repeated rewriting using ;. More specifically, an initial set, K, of orderings on properties
can be rewritten to a set of constraints, C, on label variables; substitution S satisfies K
iff S is a solution to C.

Lemma 6.2 Let 〈K,∅〉 +
; 〈∅, C〉. Then S satisfies K iff S is a solution to C.

Proof. Directly from Lemma 6.1, noting that any S that satisfies K is a solution to
the empty set of constraints and satisfies the empty set of orderings between properties.

In the sequel we will abbreviate 〈K,∅〉 +
; 〈∅, C〉 as K +

; C. Note that by inspection of
algorithm I, for any expression e, if I(e) = 〈π, ϕ, C〉, then all constraints in C have
the form κ ⊆ ξ. Such a set of constraints always admits a solution computed by the usual
transitive closure algorithm.

6.1. Example

Consider our example from Section 2:

T = (λ1g(int→int)→(int→int). g (g (λ2vint. v))) (λ3x(int→int). λ4yint. y)

A. Banerjee and T. Jensen 18

We show the result of the inference algorithm of Table 4 applied to T . First, consider the
argument part, λ3x(int→int). λ4yint. y. We have:

I(y) =
〈
{y : tint}, tint, ∅

〉
I(λ4y. y) =

〈
∅, (tint → tint, ξ1), {{4} ⊆ ξ1}

〉
I(λ3x. λ4y. y) =

〈
∅, ((tint → tint, ξ2)→ (tint → tint, ξ1), ξ3), {{3} ⊆ ξ3, {4} ⊆ ξ1}

〉
where (int→ int)∗ = (tint → tint, ξ2)

Next, consider the function part, λ1g(int→int)→(int→int). g (g (λ2vint. v)). We have:

I(v) =
〈
{v : tint}, tint, ∅

〉
I(λ2v. v) =

〈
∅, (tint → tint, ξ4), {{2} ⊆ ξ4}

〉
I(g) = 〈{g : ϕ′}, ϕ′, ∅〉where

ϕ′ = ((int→ int)→ (int→ int))∗

= ((tint → tint, ξ5)→ (tint → tint, ξ6), ξ7)
I(g (λ2v. v)) =

〈
g : ϕ′, (tint → tint, ξ6), {{2} ⊆ ξ4, ξ4 ⊆ ξ5}

〉
since

{(tint → tint, ξ4) ≤ (tint → tint, ξ5)}; {ξ4 ⊆ ξ5}
I(g) = 〈{g : ϕ}, ϕ, ∅〉where

ϕ = ((int→ int)→ (int→ int))∗

= ((tint → tint, ξ8)→ (tint → tint, ξ9), ξ10)
I(g (g (λ2v. v))) =

〈
g : (ϕ ∧ ϕ′), (tint → tint, ξ9), {{2} ⊆ ξ4, ξ4 ⊆ ξ5, ξ6 ⊆ ξ8}

〉
since

{(tint → tint, ξ6) ≤ (tint → tint, ξ8)}; {ξ6 ⊆ ξ8}

Hence:

I(λ1g. g (g (λ2v. v))) =
〈
∅, ((ϕ ∧ ϕ′)→ (tint → tint, ξ9), ξ11), C1

〉
where C1 = {{2} ⊆ ξ4, ξ4 ⊆ ξ5, ξ6 ⊆ ξ8, {1} ⊆ ξ11}.

Now to obtain the result for the entire expression T , we first rename the flow variables
in the flow property for the argument twice (once for ϕ and once for ϕ′) and obtain:

{((tint → tint, ξ′2)→ (tint → tint, ξ′1), ξ′3) ≤ ((tint → tint, ξ8)→ (tint → tint, ξ9), ξ10)}; C2

and

{((tint → tint, ξ′′2)→ (tint → tint, ξ′′1), ξ′′3) ≤ ((tint → tint, ξ5)→ (tint → tint, ξ6), ξ7)}; C3

where

C2 = {ξ8 ⊆ ξ′2, ξ′1 ⊆ ξ9, ξ′3 ⊆ ξ10} and C3 = {ξ5 ⊆ ξ′′2 , ξ′′1 ⊆ ξ6, ξ′3 ⊆ ξ7}

Finally:

I(T) =
〈
∅, (tint → tint, ξ9), C

〉
where C = {{3} ⊆ ξ′3, {4} ⊆ ξ′1, {3} ⊆ ξ′′3 , {4} ⊆ ξ′′1 }∪C1∪C2∪C3. The minimal solution
for C, obtained by the transitive closure algorithm, is given by

[(ξ10, ξ
′
3) 7→ {3}, (ξ′′2 , ξ5, ξ4) 7→ {2}, (ξ′1, ξ9) 7→ {4}, (ξ′2, ξ8, ξ6, ξ

′′
1) 7→ {4}, (ξ7, ξ′′3) 7→ {3}],

where [(ξ, ξ′) 7→ L] abbreviates [ξ 7→ L, ξ′ 7→ L].
We can therefore conclude that the entire expression evaluates to λ4 as we expect.

Modular Control-Flow Analysis 19

Moreover, note that the type of g in the body of λ1 is ϕ ∧ ϕ′, where

ϕ = ((tint → tint, {4})→ (tint → tint, {4}), {3})

and

ϕ′ = ((tint → tint, {2})→ (tint → tint, {4}), {3})
Thus λ1 is applied to λ3 and λ3 exhibits the following behaviours: at one application site
it obtains λ2 as argument, yielding λ4 as result. At another application site it obtains λ4

as argument, yielding λ4 as result. This conforms to our expectations in Section 2.

6.2. Soundness of the inference algorithm

Theorem 6.3 (Soundness)
Let I(eσ) = 〈π, ϕ, C〉. If S is a solution to C then S(π) ` e : S(ϕ) is derivable in the

property system.

Proof. By induction on the structure of eσ.
• Case of xσ: Let ϕ = σ∗. Then I(xσ) = 〈{x : ϕ}, ϕ, ∅〉. Let S be any solution chosen
for ∅. By rule Var in Table 2, {x : S(ϕ)} ` x : S(ϕ).

• Case of nint: Then I(nint) =
〈
∅, tint, ∅

〉
. Let S be any solution chosen for ∅. By

rule Int in Table 2, and since S(tint) = tint for any S, we have, ∅ ` nint : tint.

• Case of λ`xσ. eτ : We have two cases: Case (a) x ∈ Dom(π): Then I(λ`xσ. eτ) =〈
π′, ((

∧
i∈I ϕi)→ ϕ, ξ), C ∪ {{`} ⊆ ξ}

〉
, where I(eτ) = 〈π, ϕ, C〉, and π = π′ ⊕ {x :∧

i∈I ϕi}. Let S be a solution to C ∪ {{`} ⊆ ξ}. Then S is a solution to C, and,
` ∈ S(ξ); hence, by the induction hypothesis on eτ , we have, S(π) ` e : S(ϕ). Thus
S(π′) ⊕ {x :

∧
i∈I S(ϕi)} ` eτ : S(ϕ). Therefore, by rule Lam in Table 2, S(π′) `

λ`xσ. eτ : S((
∧
i∈I ϕi)→ ϕ, ξ). Case (b) x 6∈ Dom(π): Then I(λ`xσ. eτ) =

〈π, (ψ → ϕ, ξ), C ∪ {{`} ⊆ ξ}〉, where ψ = σ∗ and I(eτ) = 〈π, ϕ, C〉. Let S be a so-
lution to C∪{{`} ⊆ ξ}. Then S is a solution to C, and, ` ∈ S(ξ); hence, by the induction
hypothesis on eτ , we have, S(π) ` eτ : S(ϕ); by weakening the property environment
π, we have by Proposition 4.8, S(π) ⊕ {x : ψ} ` eτ : S(ϕ). Therefore, by rule Lam in
Table 2, S(π) ` λ`xσ. eτ : (ψ → S(ϕ), S(ξ)). Now since Dom(S) is disjoint from set of
label variables occurring in ψ, we get, S(π) ` λ`xσ. eτ : S(ψ → ϕ, ξ).

• Case of eσ→τ1 eσ2 : Then I(eσ→τ1 eσ2) =
〈
π +

∑
i∈I π̃i, ϕ12, C

〉
, where C = C1 ∪

(
⋃
i∈I C̃i) ∪ C ′. Let S be a solution to C. Then S is a solution to C1, to C̃i, for i ∈ I

and to C ′. Since I(eσ→τ1) = 〈π1, ϕ1, C1〉, therefore, by the induction hypothesis on
eσ→τ1 , S(π1) ` eσ→τ1 : ((

∧
i∈I S(ϕ1i)) → S(ϕ12), S(κ)). Furthermore, since I(eσ2) =

〈π2, ϕ2, C2〉, therefore, by the induction hypothesis on eσ2 , S(π2) ` eσ2 : S(ϕ2), and, re-
naming for each i ∈ I yields i disjoint triples

〈
π̃i, ϕ̃i, C̃i

〉
such that S(π̃i) ` eσ2 : S(ϕ̃i).

Now since {ϕ̃i ≤ ϕ1i | i ∈ I}
+
; C ′, and since S is a solution to C ′, therefore, by Lemma

6.2, S(ϕ̃i) ≤ S(ϕ1i) for i ∈ I. By weakening of property environment S(π1), we obtain,
S(π1) +

∑
i∈I S(π̃i) ` eσ→τ1 : ((

∧
i∈I S(ϕ1i))→ S(ϕ12), S(κ)). Similarly, by weakening of

property environment S(π̃i), for each i ∈ I, we obtain, S(π1) +
∑
i∈I S(π̃i) ` eσ2 : S(ϕ̃i).

A. Banerjee and T. Jensen 20

Hence by rule App in Table 2, we obtain, S(π1 +
∑
i∈I π̃i) ` eσ→τ1 eσ2 : S(ϕ12).

• Case of if eint
1 then eσ2 else eσ3 : Then I(if eint

1 then eσ2 else eσ3) = 〈π1 + π2 + π3, ϕ, C〉,
where C = C1 ∪ C2 ∪ C3 ∪ C4. Let S be a solution to C. Then S is a solution to
C1, C2, C3 and C4. Since I(eint

1) =
〈
π1, tint, C1

〉
, therefore, by the induction hypothe-

sis on eint
1 , S(π1) ` eint

1 : tint. Since I(eσ2) = 〈π2, ϕ2, C2〉, therefore, by the induction
hypothesis on eσ2 , S(π2) ` eσ2 : S(ϕ2). Finally, since I(eσ3) = 〈π3, ϕ3, C3〉, there-
fore, by the induction hypothesis on eσ3 , S(π3) ` eσ3 : S(ϕ3). Let σ∗ = ϕ. Since S is
a solution to C4, and {ϕ2 ≤ ϕ,ϕ3 ≤ ϕ} +

; C4, by Lemma 6.2, S(ϕ2) ≤ S(ϕ) and
S(ϕ3) ≤ S(ϕ). Thus, by weakening of property environments and rule If in Table 2,
S(π1 + π2 + π3) ` if eint

1 then eσ2 else eσ3 : S(ϕ).

• Case of fun` fσ→τ (xσ) = eτ : Case(a): x 6∈ FV (e): Then I(fun` fσ→τ (xσ) = eτ) =
〈π, (σ∗ → δ, ξ), C ∪ C1 ∪ {{`} ⊆ ξ}〉. Let S be a solution to C ∪ C1 ∪ {{`} ⊆ ξ}. Then
S is a solution to C, C1, and ` ∈ S(ξ). Let {(σ∗ → δ, ξ) ≤

∧
i∈I(ϕi → ϕ′i, ξi)}

+
; C1.

Since S is a solution to C1, by Lemma 6.2, S(σ∗ → δ, ξ) ≤
∧
i∈I S(ϕi → ϕ′i, ξi). Since

I(eτ) =
〈
π ⊕ {f :

∧
i∈I(ϕi → ϕ′i, ξi)}, δ, C

〉
, therefore, by the induction hypothesis on

eτ , S(π) ⊕ {f :
∧
i∈I S(ϕi → ϕ′i, ξi)} ` eτ : S(δ). By weakening, (Proposition 4.8), we

obtain, S(π) ⊕ {f :
∧
i∈I S(ϕi → ϕ′i, ξi), x : S(σ∗)} ` eτ : S(δ). Hence by rule Fun

in Table 2, S(π) ` fun` fσ→τ (xσ) = eτ : S((
∧
j∈J δj) → δ, ξ). Case(b): x ∈ FV (e):

Then I(fun` fσ→τ (xσ) = eτ) =
〈
π, ((

∧
j∈J δj)→ δ, ξ), C ∪ C1 ∪ {{`} ⊆ ξ}

〉
. Let S be

a solution to C ∪ C1 ∪ {{`} ⊆ ξ}. Then S is a solution to C, C1 and ` ∈ S(ξ). Since
I(eτ) =

〈
π ⊕ {f :

∧
i∈I(ϕi → ϕ′i, ξi), x :

∧
j∈J δj}, δ, C

〉
, therefore, by the induction

hypothesis on eτ , S(π) ⊕ {f :
∧
i∈I S(ϕi → ϕ′i, ξi), x :

∧
j∈J S(δj)} ` eτ : S(δ). Let

{((
∧
j∈J δj) → δ, ξ) ≤

∧
i∈I(ϕi → ϕ′i, ξi)}

+
; C1. Since S is a solution to C1, by

Lemma 6.2, S((
∧
j∈J δj) → δ, ξ) ≤

∧
i∈I S(ϕi → ϕ′i, ξi). Hence by rule Fun in Table 2,

S(π) ` fun` fσ→τ (xσ) = eτ : S((
∧
j∈J δj)→ δ, ξ).

• Case of op eint: Then I(op eint) =
〈
π, tint, C

〉
. Let S be a solution to C. Therefore,

by the induction hypothesis on eint, S(π) ` eint : tint. Thus using rule Op in Table 2,
S(π) ` op eint : tint.

Now we can revisit the type soundness theorem, Theorem 5.3. The main import of the
theorem is in conjunction with the soundness theorem for I: suppose S(π) ` e : S(ϕ) as in
Theorem 6.3. Let e→ e′ as in Theorem 5.3. Then there exists ϕ′, such that S(π) ` e′ : ϕ′

and ϕ′ ≤ S(ϕ). In particular, if e is of function type, by the ordering on properties, the
outermost set of labels associated with ϕ′ will be contained in the outermost set of labels
associated with S(ϕ). That is, the evaluation of e yields a function which is predicted by
the analysis. Hence the analysis is sound.

6.3. Completeness of the inference algorithm

The inference algorithm I defined in Table 4 is complete. This means that for any
expression e, if I(e) = 〈π, ϕ, C〉 then π ` e : ϕ is a principal typing for e. Any

Modular Control-Flow Analysis 21

other typing for e can be obtained as an instance of the above typing. This is formalised
in the following completeness theorem.

Theorem 6.4 (Completeness)
Let I(e) = 〈π, ϕ, C〉. Suppose η ` eσ : ψ is derivable and that η is a rank 1 property

environment, ψ is a rank 2 property and η, ψ are ground. Then there exists a substitution
S, such that:

(i) S is a solution to C.
(ii) S〈π, ϕ〉 ≤ 〈η, ψ〉, i.e., η ≤ S(π) and S(ϕ) ≤ ψ.

Proof. • Case of xσ: The derivation is: η⊕{x :
∧
i∈I ψi} ` xσ : ψj , where j ∈ I. By the

inference algorithm, I(xσ) = 〈{x : ϕ}, ϕ, ∅〉, where ϕ = σ∗. We need a substitution,
S, such that, S is a solution to ∅ (holds trivially for any S) and S(〈{x : ϕ}, ϕ〉) ≤〈
η ⊕ {x :

∧
i∈I ψi}, ψj

〉
. That is:

(Ai) η ⊕ {x :
∧
i∈I ψi} ≤ S({x : ϕ}) (Aii) S(ϕ) ≤ ψj .

To prove (Aii), note that ψj ∈ Prop0(σ). Hence, by Proposition 4.2, there exists a
substitution, S′, such that S′(σ∗) = ψj . But ϕ = σ∗. Therefore, choose S to be S′, so
that S′(ϕ) = S′(σ∗) = ψj . Thus S′(ϕ) ≤ ψj .
To prove (Ai), we need only show that for all x ∈ Dom({x : ϕ}), it is the case that
x ∈ Dom(η ⊕ {x :

∧
i∈I ψi}), and

∧
i∈I ψi ≤ S′(ϕ), i.e.,

∧
i∈I ψi ≤ ψj . But this holds by

the ordering on properties (Section 4) since j ∈ I.

• Case of nint: The derivation is: η ` nint : tint. By the inference algorithm, I(nint) =〈
∅, tint, ∅

〉
. Case (i) of the theorem holds trivially for any substitution S. For case

(ii), we need a substitution, S, such that S(tint) ≤ tint. Choose S to be empty, i.e., [].

• Case of λ`xσ. eτ : The derivation is:

η′ ⊕ {x :
∧
j∈J ψj} ` eτ : ψ ` ∈ L

η′ ` λ`xσ. eτ : ((
∧
j∈J ψj)→ ψ,L)

η = η′ ⊕ {x :
∧
j∈J

ψj}

By the inference algorithm, we have two cases. Case(a): I(λ`xσ. eτ) =
let 〈π, ϕ, C〉 = I(eτ) in

〈
π′, ((

∧
i∈I ϕi)→ ϕ, ξ), C ∪ {{`} ⊆ ξ}

〉
where π = π′ ⊕

{xσ :
∧
i∈I ϕi}. By the induction hypothesis on eτ , there exists a substitution, S, such

that:

(Ai) S is a solution for C (Aii) η ≤ S(π) (Aiii) S(ϕ) ≤ ψ

From A(ii), we obtain, in particular:

(Bi)
∧
j∈J(ψj) ≤

∧
i∈I S(ϕi) (Bii) η′ ≤ S(π′)

To prove the theorem, we need a substitution, S′, such that, (Ci) S′ is a solution for
C ∪ {{`} ⊆ ξ},

(Cii) η′ ≤ S′(π′) (Ciii) S′((
∧
i∈I ϕi)→ ϕ, ξ) ≤ ((

∧
j∈J ψj)→ ψ,L).

A. Banerjee and T. Jensen 22

Since fresh ξ, and S is a solution for C, and ` ∈ L, therefore, choose the solution for (Ci)
as S′ = [ξ 7→ {`}] ◦ S. Then (Cii) follows from (Bii), and, (Ciii) follows from (Bi),
(Aiii) and ` ∈ L.
Case(b): I(λ`xσ. eτ) = let 〈π, ϕ, C〉 = I(eτ) in 〈π, (ϕ′ → ϕ, ξ), C ∪ {{`} ⊆ ξ}〉
where ϕ′ = σ∗ and x 6∈ Dom(π). By the induction hypothesis on eτ , there exists a
substitution, S, such that:

(Ai) S is a solution for C (Aii) η ≤ S(π) (Aiii) S(ϕ) ≤ ψ

To prove the theorem, we need a substitution, S′, such that, (Ci) S′ is a solution for
(C ∪ {{`} ⊆ ξ}),

(Cii) η′ ≤ S′(π′), (Ciii) S′(ϕ′ → ϕ, ξ) ≤ ((
∧
j∈J ψj)→ ψ,L).

From (Ciii), this means we need S′ such that:

(Civ)
∧
j∈J

(ψj) ≤ S′(ϕ′) (Cv) S′(ϕ) ≤ ψ (Cvi) S′(ξ) ⊆ L

To prove C(iv), note that each ψj ∈ Prop0(σ). Since ϕ′ = σ∗, there exists ĵ ∈ J and
substitution Ŝ such that, by Proposition 4.2, Ŝ(σ∗) = ψĵ . Thus, Ŝ(ϕ′) = ψĵ . Therefore,

by the ordering on properties,
∧
j∈J(ψj) ≤ Ŝ(ϕ′). Since fresh ξ and S is a solution to C,

therefore, choose the solution to (Ci) as S′ = [ξ 7→ {`}] ◦ Ŝ ◦ S. Then it is easy to see
that (Cii) follows from (Aii), (Cv) follows from (Aiii), and (Cvi) follows since ` ∈ L.

• Case of eσ→τ1 eσ2 : The derivation is:

η ` eσ→τ1 : ((
∧
i∈I ψi)→ ψ, κ) ∀i ∈ I : η ` eσ2 : ψ′i ∀i ∈ I : ψ′i ≤ ψi

η ` eσ→τ1 eσ2 : ψ

By the inference algorithm, we have,

I(eσ→τ1 eσ2) = let 〈π1, ϕ1, C1〉 = I(eσ→τ1)
〈π2, ϕ2, C2〉 = I(eσ2)

in case ϕ1 of
((
∧
j∈J

ϕ1j)→ ϕ12, µ) :

let
〈
π̃j , ϕ̃j , C̃j

〉
= Rename(π2, ϕ2, C2)

{ϕ̃j ≤ ϕ1j | j ∈ J}
+
; Ĉ

C ′ = C1 ∪ (
⋃
j∈J C̃j) ∪ Ĉ

in
〈
π1 +

∑
j∈J π̃j , ϕ12, C ′

〉
By the induction hypothesis on eσ→τ1 , there exists substitution, S1, such that (Ai) S1

is a solution for C1,

(Aii) η ≤ S1(π1) (Aiii) S1((
∧
j∈J

ϕ1j)→ ϕ12, µ) ≤ ((
∧
i∈I

ψi)→ ψ, κ)

Modular Control-Flow Analysis 23

From (Aiii), we know that:

(Aiv)
∧
i∈I(ψi) ≤

∧
j∈J S1(ϕ1j) (Av) S1(ϕ12) ≤ ψ (Avi) S1(µ) ⊆ κ.

From (Aiv), it must be the case that, for all j ∈ J , there exists ij ∈ I, such that:

(Avii) ψij ≤ S1(ϕ1j)

By the induction hypothesis on eσ2 , for all j ∈ J , there exists substitution, S̃j and there
exists i ∈ I such that:

(Bi) Sj is a solution for C̃j (Bii) η ≤ S̃j(π̃j) (Biii) S̃j(ϕ̃j) ≤ ψ′ij .

To prove the theorem, we need a substitution S′, such that:

(Ci) S′ is a solution for C ′ (Cii) η ≤ S′(π1 +
∑
j∈J π̃j) (Ciii) S′(ϕ12) ≤ ψ.

Choose S′ = S1 ◦ ©j∈J S̃j . Then (Cii) holds by (Aii), (Bii) and Proposition 4.7, and,
(Ciii) holds by (Av). To show (Ci), we need to establish that S′ is a solution for Ĉ; for
this, the crucial bit is to show that S′(ϕ̃j) ≤ S′(ϕ1j), for every j ∈ J ; this we obtain as
follows:

S′(ϕ̃j) ≤ ψ′ij (by Biii); ψ′ij ≤ ψij (by hypothesis in derivation);
ψij ≤ S′(ϕ1j) (by Avii)

Therefore, S′(ϕ̃j) ≤ S′(ϕ1j) for every j ∈ J ; hence S′ is a solution for Ĉ by Lemma 6.2.
By (Ai), S′ is a solution for C1, and by (Bi), S′ is a solution for C̃j , for all j ∈ J .

• Case of if eint
1 then eσ2 else eσ3 : The derivation is:

η ` eint
1 : tint η ` eσ2 : ψ2 η ` eσ3 : ψ3 ψ2 ≤ ψ ψ3 ≤ ψ

η ` if eint
1 then eσ2 else eσ3 : ψ

By the inference algorithm,

I(if eint
1 then eσ2 else eσ3) =

let
〈
π1, tint, C1

〉
= I(eint

1)
〈π2, ϕ2, C2〉 = I(eσ2)
〈π3, ϕ3, C3〉 = I(eσ3)
ϕ = σ∗

{ϕ2 ≤ ϕ,ϕ3 ≤ ϕ}
+
; C4

C = C1 ∪ C2 ∪ C3 ∪ C4

in 〈π1 + π2 + π3, ϕ, C〉

By the induction hypothesis on eint
1 , eσ2 , e

σ
3 , there exist substitutions S1, S2, S3, such

that

(Ai) S1 is a solution for C1 (Aii) η ≤ S1(π1) (Aiii) S1(tint) ≤ tint

(Bi) S2 is a solution for C2 (Bii) η ≤ S2(π2) (Biii) S2(ϕ2) ≤ ψ2

(Ci) S3 is a solution for C3 (Cii) η ≤ S3(π3) (Ciii) S3(ϕ3) ≤ ψ3

A. Banerjee and T. Jensen 24

Let π = π1 + π2 + π3. To prove the theorem, we need substitution S, such that

(Di) S is a solution for C (Dii) η ≤ S(π) (Diii) S(ϕ) ≤ ψ

By Proposition 4.4, there exists a substitution, S4, such that S4(σ∗) ≤ ψ. Since ϕ = σ∗,
we obtain, S4(ϕ) ≤ ψ. Now choose the substitution, S, to be S4◦S3◦S2◦S1. Hence (Diii)
holds. Clearly, (Di) holds by (Ai), (Bi), (Ci) and (Dii) holds by (Aii), (Bii), (Cii)
and Proposition 4.7.

• Case of fun` fσ→τ (xσ) = eτ : The derivation is:

η ⊕ {f :
∧
i∈I(ψi → ψ′i, Li), x :

∧
j∈J θj} ` eτ : θ

∀i ∈ I : ((
∧
j∈J θj)→ θ, L) ≤ (ψi → ψ′i, Li)

` ∈ L

η ` fun` fσ→τ (xσ) = eτ : ((
∧
j∈J θj)→ θ, L)

By the inference algorithm, we have two cases, of which we will just prove the case when
x ∈ FV (e). The other case is similar. Let η′ = η ⊕ {f :

∧
i∈I(ψi → ψ′i, Li), x :

∧
j∈J θj}.

I(fun` fσ→τ (xσ) = eτ) = let
〈π′, δ, C〉 = I(eτ)
{((
∧
m∈M δm)→ δ, ξ) ≤

∧
k∈K(ϕk → ϕ′k, ξk)} +

; C1

in
〈
π, ((

∧
m∈M δm)→ δ, ξ), C ∪ C1 ∪ {{`} ⊆ ξ}

〉
where π′ = π ⊕ {f :

∧
k∈K(ϕk → ϕ′k, ξk), x :

∧
m∈M δm}. By the induction hypothesis on

eτ , there exists substitution, S, such that

(Ai) S is a solution for C (Aii) η′ ≤ S(π′) (Aiii) S(δ) ≤ θ

From (Aii) we obtain: (Bi) η ≤ S(π),

(Bii)
∧
i∈I(ψi → ψ′i, Li) ≤

∧
k∈K S(ϕk → ϕ′k, ξk) (Biii)

∧
j∈J θj ≤ S(

∧
m∈M δm)

From (Bii), for all k ∈ K, there exists ik ∈ I, such that, (Biv) (ψik → ψ′ik , Lik) ≤
S(ϕk → ϕ′k, ξk). From (Biv), we obtain, for all k ∈ K and ik ∈ I,

(Bv) S(ϕk) ≤ ψik (Bvi) ψ′ik ≤ S(ϕ′k) (Bvii) Lik ⊆ S(ξk)

To prove the theorem, we need substitution, S′, such that: (Ci) S′ is a solution for
C ∪ C1 ∪ {{`} ⊆ ξ}),

(Cii) η ≤ S′(π) (Ciii) S′((
∧
m∈M δm)→ δ, ξ) ≤ ((

∧
j∈J θj)→ θ, L)

Note that ξ is fresh and choose substitution S′ = [ξ 7→ {`}] ◦ S. (Hence ξ 6∈ Dom(S)).
Now (Cii) holds by (Bi). To show (Ciii), we need to show:

(Di)
∧
j∈J θj ≤ S′(

∧
m∈M δm) (Dii) S′(δ) ≤ θ (Diii) S′(ξ) ⊆ L

But now, (Di) follows from (Biii), (Dii) follows from (Aiii), and, (Diii) follows since
` ∈ L.

Modular Control-Flow Analysis 25

To show (Ci), the crucial bit is to show that S′ is a solution for C1 since (Ai) shows
that S′ is a solution for C and since S′(ξ) = {`} ⊆ L by the derivation. It is enough to
show, for all k ∈ K, that S′ satisfies ((

∧
m∈M δm) → δ, ξ) ≤ (ϕk → ϕ′k, ξk), then by

Lemma 6.2, assert that S′ is a solution to C1. Thus we need to show, for all k ∈ K,

(Ei) S′(ϕk) ≤
∧
m∈M S′(δm) (Eii) S′(δ) ≤ S′(ϕ′k) (Eiii) S′(ξ) ⊆ S′(ξk)

To show (Ei), first note that by (Bv), S′(ϕk) ≤ ψik . By the derivation, we know, for all
i ∈ I, that ((

∧
j∈J θj)→ θ, L) ≤ (ψi → ψ′i, Li). That is, by contravariance, ψik ≤

∧
j∈J θj .

But, by (Di),
∧
j∈J θj ≤

∧
m∈M S′(δm). Hence, it follows that S′(ϕk) ≤

∧
m∈M S′(δm).

To show (Eii), note that by (Aiii), S′(δ) ≤ θ. By the derivation, we know, for all
i ∈ I, that ((

∧
j∈J θj)→ θ, L) ≤ (ψi → ψ′i, Li). That is, by covariance, θ ≤ ψ′ik . But, by

(Bvi), ψ′ik ≤ S
′(ϕ′k). Hence, it follows that S′(δ) ≤ S′(ϕ′k).

To show (Eiii), we know by the derivation that for all i ∈ I : ((
∧
j∈J θj) → θ, L) ≤

(ψi → ψ′i, Li). Hence for all i ∈ I : L ⊆ Li, so in particular, L ⊆ Lik . Now by (Bviii),
L ⊆ S′(ξk). But S′(ξ) = ` ∈ L, therefore, {`} ⊆ S′(ξk).

• Case of op eint: Easy and omitted.

7. Related work

(Jim 1995; Jim 1996) advocates the use of rank 2 intersection types for typing the lambda
calculus with a recursion operator, building on earlier work on intersection type systems
by among others (Leivant 1983; van Bakel 1992; Coppo and Giannini 1992). Rank 2
intersection types only allow conjunctions to appear to the left of a single arrow in a
functional type (e.g. ((σ1 ∧ σ2) → τ) → ρ is rejected). The restriction to rank 2 makes
type inference in the system decidable (which is not the case with general intersection
types) while retaining the property of principal typing: given a typable term e there exists
a pair (A, τ) such that A ` e : τ is derivable and any other pair (A′, τ ′) constituting a
typing of e is a substitution instance of (A, τ). The language considered by Jim does not
include arithmetic or logical operations and a main feature of his inference algorithm is
that all inequalities can be reduced to equalities solvable by unification. This is not the
case for the constraints generated by our control flow analysis.

7.1. Type-based program analysis

(Kuo and Mishra 1989) propose a type inference for strictness analysis without con-
junctions. This is extended to conjunctions by (Benton 1992) and (Jensen 1991) and to
conjunctive and disjunctive strictness types by (Jensen 1997). None of them propose in-
ference algorithms for the systems. (Hankin and Le Métayer 1994; Hankin and Le Métayer
1995) present a framework for implementing conjunctive program analyses by deriving
an abstract machine for proof search from the logics, following the work of (Hannan and
Miller 1992). For a given term e and property ϕ, this abstract machine will search for
a proof of `∧ e : ϕ. It is thus a method for checking that a program has a particular
property rather than a method that infers a property for the program.

A. Banerjee and T. Jensen 26

(Jensen 1998) has proposed a strictness analysis for higher-order functional languages
based on intersection types and parametric polymorphism. This combination allows to
write certain strictness types in a very compact way. For example, a binary function that
is strict in each argument (e.g., addition) is given the type

∀α1, α2 . α1 → α2 → α1 ∧ α2.

By instantiating the α’s appropriately, all strictness properties of such a function can
be obtained. These types are used to define a modular inference algorithm in the style
of this paper. For each expression, the algorithm infers a property and an environment
of hypotheses on the free variables. The inference algorithm follows the same structure
as in this paper. However, the constraints that result from inference are over a different
set of properties that are axiomatised differently and hence requires another constraint
resolution technique.

(Henglein and Mossin 1994) and (Dussart et al. 1995) present a polymorphic binding-
time analysis for an extension of the simply-typed lambda calculus. They do not include
conjunctions or conditional types but introduce instead “qualified types” of the form
b1 ≤ b2 ⇒ b where b1 ≤ b2 is a constraint that applies to b. Judgments in their logic are
of the form

C,A ` e : ∀α.b
where A is a set of conjunctions and C is a set of constraints that must be satisfied
for the deduction to be valid. Polymorphic recursion is used to analyse fixed points and
mutually recursive definitions are handled by applying an improvement of Mycroft’s iter-
ative calculation of fixed points in a lattice of type schemes. The absence of conjunctions
seems to be of less importance in binding-time analysis than it would be for strictness
analysis since there are less “bi-static” functions than bi-strict ones. For example, e1 +e2

is undefined as soon as one of e1 and e2 is undefined whereas it is static only if both e1

and e2 are static.

7.2. Type-based control flow analysis

Control flow analysis for higher-order functional languages (also called closure analy-
sis) originated with the work by (Jones 1981; Jones 1987), (Sestoft 1988; Sestoft
1991) and (Shivers 1991). Several authors have extended this work to frameworks for
control-flow analysis that can be instantiated to yield different mono- or polyvariant
whole-program analyses (Jagannathan and Weeks 1995; Schmidt 1995; Jagannathan et
al. 1997; Nielson and Nielson 1997; Amtoft and Turbak 2000; Palsberg and Pavloupoulou
2001; Schmidt 1995). These frameworks are derived from an operational semantics of the
language and thus provide the semantic foundations for control flow analysis but they
do not address the problem of modularising the analysis.

The algorithmic aspects of control flow analysis is addressed by (Palsberg 1995) who
shows how a control flow analysis can be reduced to solving set constraints. Palsberg and
O’Keefe show that Amadio and Cardelli’s type system for the untyped lambda calculus
with recursive types and subtyping (Amadio and Cardelli 1993) is equivalent to safety

Modular Control-Flow Analysis 27

analysis (Palsberg and O’Keefe 1995; Palsberg and Schwartzbach 1995). Safety analysis
for the untyped lambda calculus is a global program analysis that detects run-time er-
rors due to illegal use of operators,e.g., when a constant is applied to a function. The
equivalence says that a term is declared safe by the analysis if and only if it is typable
in Amadio and Cardelli’s type system. (Heintze 1995) shows that given a variety of type
systems instrumented by control-flow information there exist corresponding control-flow
analysis augmented by type information such that each type system is equivalent to its
corresponding control-flow analysis. Equivalence here means that each system calculates
the same flow and type information. Both of the above papers use type systems for
control-flow analysis, but their methods of computation of flow information differ: in
Palsberg and O’Keefe’s work, the information is indirectly obtained via a safety anal-
ysis, while for an expression in Heintze’s system, it is obtained by enumerating all of
the possible control-flow types of the expression, and then systematically removing the
(structural) type information. The upshot is that both methods lead to global analyses of
expressions, in a (type-based) setting where most analyses usually rely on compositional
inference algorithms to calculate program properties.

In her Phd thesis, Tang provides a type and effect discipline for a call-tracking analysis
of the simply-typed lambda calculus with a recursion operator (Tang 1994). The anal-
ysis computes what functions may be called at a program point. Types are annotated
with control-flow effects that statically approximate the set of functions called during the
evaluation of an expression. Subtyping is used to obtain better precision for this analysis,
by disambiguating call contexts. Tang’s framework is attractive because it is local : given
an expression e and an annotated-type environment Γ containing the annotations of the
free variables in e, the (ML-style) type inference algorithm can locally analyse proper
subexpressions of e, independently of the rest of the program; subsequently, it can com-
pose the local analyses to obtain an analysis for the entire expression. Tang’s analysis is
modular: though she only proves that the analysis has principal types, it is easy to show
that it also has principal typings.

This article extends the results of an earlier paper (Banerjee 1997) that developed a
modular and polyvariant control-flow analysis for untyped programs. In that paper, the
properties inferred were rank 2 intersection properties and type inference and control-
flow analysis were done in a single pass. The paper did not address control-flow analysis
for recursive function definitions which the current paper does. The control-flow analysis
proposed by Banerjee in the earlier paper has been used extensively by the Church
Project (Church project) in the implementation of a flow-based compiler for Standard
ML of New Jersey (Dimock et al. 1997; Dimock et al. 2001).

The control flow analysis most closely related to ours is that of (Mossin 1997a),(Mossin
1997b, Chapter 6) who presents an intersection type-based control-flow analysis. A re-
duced version of Mossin’s analysis (product types are not considered) is shown in Table 5.
Mossin is mainly interested in the theoretical aspects and proves that the analysis is “ex-
act” in the sense that if it calculates the control flow under all reduction strategies (and
not just e.g. innermost or outermost reduction). He does not consider the algorithmic
aspects of implementing the analysis but mentions in passing that the problem it solves
is non-elementary recursive. The difference between our system and that of Mossin is

A. Banerjee and T. Jensen 28

Properties: For each type σ define the set of properties LCF (σ) as follows. Here, Labels(σ) denotes
the set of labels of terms of type σ.

M ⊆ Labels(Bool)

BoolM ∈ LCF (Bool)

ϕ1 ∈ LCF (σ1) ϕ2 ∈ LCF (σ2) M ⊆ Labels(σ1 → σ2)

ϕ1
M→ ϕ2 ∈ LCF (σ1 → σ2)

ϕi ∈ LCF (σ) i ∈ I∧
i∈I ϕi ∈ LCF (σ)

Axiomatisation: (I denotes a finite, non-empty set).

•
ϕ ≤ ψi, i ∈ I
ϕ ≤

∧
i∈I ψi

•
∧
i∈I

ϕi ≤ ϕi, ∀i ∈ I

•
ψ1 ≤ ϕ1, ϕ2 ≤ ψ2 M ⊆ N

ϕ1
M−→ ϕ2 ≤ ψ1

N−→ ψ2

• ϕ
M−→ ψ1 ∧ ϕ

M−→ ψ2 = ϕ
M−→ ψ1 ∧ ψ2

Inference rules:
Var ∆[x 7→ ϕ] `CF x : ϕ

Const
cl ∈ {true, false}
∆ `CF c : Bool{l}

Abs
∆[x 7→ ϕ] `CF e : ψ

∆ `CF λxl.e : ϕ
{l}→ ψ

Fix
∀i ∈ I.∆[x : ψ] `CF e : ψi

∧
i∈I ψi ≤ ψ

∆ `CF (fixlx.e) : ψj
for any j ∈ I

App
∆ `CF e1 : (ϕ1

M→ ϕ2) ∀i ∈ I.∆ `CF e2 : ψi
∧
i∈I ψi ≤ ϕ1

∆ `CF e1e2 : ϕ2

If
∆ `CF b : BoolM ∆ `CF e1 : ϕ1 ∆ `CF e2 : ϕ2 ϕ1 ≤ ϕ ϕ2 ≤ ϕ

∆ `CF if b then e1 else e2 : ϕ

Table 5. Mossin’s control-flow logic (without products)

that we have imposed a restriction that the function properties appearing in the infer-
ence rules must be of rank 2. This is done in order that the constraints in the inference
algorithm have a simple form.

Finally, as discussed by (Amtoft and Turbak 2000; Palsberg and Pavloupoulou 2001),
a more general system of polyvariant control-flow analysis may include both intersection
and union types.

Modular Control-Flow Analysis 29

8. Discussion

We have developed a modular and polyvariant control-flow analysis for simply-typed pro-
gram fragments. The inherent polymorphism of intersection types is exploited to provide
a polyvariant analysis. The analysis is performed by a sound and complete inference algo-
rithm that infers rank 2 intersection properties. The algorithm is compositional and works
in a bottom-up manner inferring property environments as well as control-flow proper-
ties of program fragments. The completeness result shows that the algorithm computes
principal typings: this facilitates linking of program fragments without reanalysis.

The inference algorithm for the application, e1e2, in Table 4, reveals that the merging
of the type environments in the result does not unify the possibly different types of a
free variable occurring both in e1 and in e2: rather the variable is given an intersection
type. This is of crucial importance in providing polyvariance.

The assumption of a simply-typed base language is exploited in the inference algorithm
in computing properties of variables. If a variable has type σ, its control-flow property
must have the same shape. For instance if σ = int→ int, then any function that flows to
x must have the property σ∗ = (tint → tint, ξ), where ξ is a placeholder for the set that
contains the function. We need not have restricted the base language to be simply-typed:
we could have chosen a rank 2 intersection type system instead. For instance, given the
term M = (λf : σ. (λx : int. fI)(f0))I (from (Palsberg and O’Keefe 1995)) where I is the
identity combinator and σ = (int → int) → (int → int) ∧ (int → int), we can show that
M has the rank 2 intersection type σ → (int → int). Let us annotate the term in `PCF
(writing out the identity combinator), as follows: (λ1f. (λ2x. (f(λ3u. u))(f0)))(λ4v. v).
Then executing the inference algorithm I and solving the set of flow constraints, shows
that the property of M is (tint → tint, {3}). This means that M evaluates to λ3. The type
of the function part of M is (ϕ→ (tint → tint, {3}), {1}), where ϕ = ((tint → tint, {3})→
(tint → tint, {3}), {4})∧ (tint → tint, {4}). This shows the expected polyvariance: the two
uses of f expect the identity λ4; at one application site λ4 calls λ3 and returns λ3; at the
other application site it expects an integer and returns an integer.

By focusing on what set of functions every program point can possibly evaluate to, our
analysis automatically performs Tang and Jouvelot’s call-tracking analysis (Tang 1995):
suppose an expression has the property ((tint → tint, {2}) → (tint → tint, {4}), {1}),
then, the property signifies that it evaluates to the function labelled 1. This function
when applied, may call the function labelled 2 and may yield the function labelled 4 as
result. Moreover, functions labelled 2 and 4 never call any functions and are applied to
integer values.

Several issues of fundamental nature have not been treated in this article and merit
further investigations:

— The expressiveness of ranked intersection types for control-flow analysis needs a pre-
cise characterisation, especialy with respect to properties in the style of parametric
polymorphism. The works by Mossin on Exact Flow Analysis mentioned in Section 7.2
and by Kfoury and Wells on finite-rank intersection type inference mentioned in the
Introduction seem to be good starting points for such an investigation.

— The complexity (both theoretical and practical) of the analysis should be further

A. Banerjee and T. Jensen 30

investigated, notably with respect to the size of the constraint sets produced by the
analysis. Because of the rewriting relation +

; (Section 6) on function properties, it
is possible that the number of constraints generated due to the corresponding step
in the application, conditional and recursive function cases in algorithm I will be
exponential in the rank of function properties. However, we have not investigated
optimizations, e.g., on-line cycle elimination (Fähndrich et al. 1998), to cut down the
size of the constraint set generated. This is a topic of future research.

— While there has been much work on control-flow analysis for functional programs in
the past decade, not much attention has been paid to the use of control-flow analysis
for transformations of functional programs and, more importantly, for proofs of cor-
rectness of the transformations. The main work in the area is due to Wand and his co-
authors (Steckler and Wand 1997; Wand and Siveroni 1999) who have formalised the
use of control-flow analysis for implementing program transformations like lightweight
closure conversion, useless variable elimination, destructive array updates. Cejtin et
al. have also used flow-directed closure conversion (Tolmach and Oliva 1998; Dimock
et al. 2001) the Mlton compiler (Cejtin et al. 2000). In recent work, Banerjee et al.
have considered a uniform method for proving the correctness of control-flow analysis-
based program transformations in functional languages (Banerjee et al. 2001). The
method relies upon “defunctionalisation,” a mapping from a higher-order language
to a first-order language. They give methods for proving defunctionalisation cor-
rect. Using this proof and common semantic techniques, they show how two pro-
gram transformations—flow-based inlining and lightweight defunctionalisation—can
be proven correct. However, all the techniques developed above have been for whole-
program transformations. It remains a challenge to provide and formalise techniques
for program transformations for program fragments and for program transformations
at link time.

Acknowledgements: Thanks to the members of the Church Project, especially, Torben
Amtoft, Allyn Dimock, Bob Muller, Franklyn Turbak and Joe Wells for discussions.
Thanks to the anonymous referees for their suggestions and to Jens Palsberg for his
interest. A special thanks to Franklyn Turbak for copious comments on the paper in a
short time.

References

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman (1986). Compilers: Principles, Techniques

and Tools. Addison-Wesley, 1986.

Roberto Amadio and Luca Cardelli (1993). Subtyping recursive types. ACM Transactions on

Programming Languages and Systems, 15(4):575–631, 1993.

Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson (1997). Type and behaviour re-

construction for higher-order concurrent programs. Journal of Functional Programming,

7(3):321–347, May 1997.

Torben Amtoft, Flemming Nielson, and Hanne Riis Nielson (1999). Type and Effect Systems:

Behaviours for Concurrency. Imperial College Press, 1999.

Modular Control-Flow Analysis 31

Torben Amtoft and Franklyn Turbak (2000). Faithful translations between polyvariant flows

and polymorphic types. In G. Smolka, editor, Proc. of European Symp. on Programming

(ESOP 2000), Lecture Notes in Computer Science vol. 1782. Springer, 2000.

Anindya Banerjee (1997). A modular, polyvariant and type-based closure analysis. In Proceed-

ings of International Conference on Functional Programming (ICFP’97), pages 1–10, Ams-

terdam, The Netherlands, 1997. ACM Press.

Anindya Banerjee, Nevin Heintze, and Jon G. Riecke (2001). Design and correctness of program

transformations based on control-flow analysis. In Proceedings of International Symposium

on Theoretical Aspects of Computer Software (TACS’01), number 2215 in Lecture Notes in

Computer Science, Springer-Verlag, 2001.

Henk Barendregt (1984). The Lambda Calculus: its Syntax and Semantics. North-Holland, 1984.

Nick Benton (1992). Strictness logic and polymorphic invariance. In Proceedings of the Second

International Symposium on Logical Foundations of Computer Science, number 620 in Lecture

Notes in Computer Science. Springer-Verlag, 1992.

Geoff Burn, Chris Hankin, and Samson Abramsky (1986). Strictness analysis for higher-order

functions. Science of Computer Programming, 7:249–278, 1986.

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks (2000). Flow-directed closure conversion

for typed languages. In G. Smolka, editor, Proc. of European Symp. on Programming (ESOP

2000), Lecture Notes in Computer Science vol. 1782. Springer, 2000.

Mario Coppo, Mariangiola Dezani–Ciancaglini, and Betti Venneri (1980a). Functional characters

of solvable terms. Zeitschrifft f. Mathematische Logik, 27:45–58, 1980.

Mario Coppo, Mariangiola Dezani–Ciancaglini, and Betti Venneri (1980b). Principal type

schemes and lambda calculus semantics. In J.P. Seldin and J.R. Hindley, editors, To

H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 535–560.

Academic Press, 1980.

Mario Coppo and Paula Giannini (1992). A complete type inference algorithm for simple in-

tersection types. In Jean-Claude Raoult, editor, Proceedings of 17th Colloquium on Trees in

Algebra and Programming (CAAP ’92), number 581 in Lecture Notes in Computer Science,

pages 102–123. Springer-Verlag, 1992.

Mario Coppo and Ferruccio Damiani and Paula Giannini (1998). Inference based analysis of

functional programs: dead-code and strictness. In MSI-Memoir Volume 2, “Theories of Types

and Proofs”, pages 143–176, Mathematical Society of Japan, 1998.

Patrick Cousot and Radhia Cousot (1977). Abstract interpretation: a unified lattice model for

static analysis of programs by construction or approximation of fix-points. In Proceedings of

the Fourth Annual ACM Symposium on Principles of Programming Languages (POPL ’77),

January 1977.

Luis Manuel Martins Damas (1985). Type assignment in programming languages. PhD thesis,

University of Edinburgh, Edinburgh, Scotland, April 1985.

Ferruccio Damiani (1996). Refinement types for program analysis. In R. Cousot and D. Schmidt,

editors, Proceedings of 3rd International Static Analysis Symposium (SAS’96), number 1145

in Lecture Notes in Computer Science, pages 285–300. Springer-Verlag, 1996.

Ferruccio Damiani and Frédéric Prost (1996). Detecting and removing dead code using rank

2 intersection types. In Proceedings of TYPES’96 Selected Papers, number 1512 in Lecture

Notes in Computer Science, pages 66–87. Springer-Verlag, 1998.

Allyn Dimock, Robert Muller, Franklyn Turbak, and Joseph B. Wells (1997). Strongly typed

flow-directed representation transformations. In Proceedings of International Conference on

Functional Programming (ICFP’97), pages 11–24, Amsterdam, The Netherlands, 1997. ACM

Press.

A. Banerjee and T. Jensen 32

Allyn Dimock, Ian Westmacott, Robert Muller, Franklyn Turbak, Joe Wells, and Jeffrey Con-

sidine (2000). Program representation size in an intermediate language with intersection and

union types. In Proceedings of the third workshop on Types in Compilation, (TIC ’00), number

2071 in Lecture Notes in Computer Science, editor Robert Harper. Springer-Verlag, 2001.

Allyn Dimock, Ian Westmacott, Robert Muller, Franklyn Turbak, and Joe Wells (2001). Func-

tioning without closure: type-safe customized function representations for Standard ML. In

Proceedings of the International Conference on Functional Programming (ICFP ’01). ACM

Press.

Dirk Dussart, Fritz Henglein, and Christian Mossin (1995). Polymorphic recursion and subtype

qualifications: Polymorphic binding-time analysis in polynomial time. In A. Mycroft, editor,

Proceedings of the Static Analysis Symposium (SAS ’95), number 983 in Lecture Notes in

Computer Science. Springer-Verlag, 1995.

Manuel Fähndrich and Jeffrey S. Foster and Zhendong Su and Alexander Aiken (1998). Par-

tial online cycle elimination in inclusion constraint graphs. In Proceedings of the SIGPLAN

Conference on Programming Language Design and Implementation (PLDI ’98), pages 85–96.

ACM Press, 1998.

Chris Hankin and Daniel Le Métayer (1994). Deriving algorithms from type inference sys-

tems: Applications to strictness analysis. In Proceedings of Twentyfirst ACM Symposium on

Principles of Programming Languages (POPL’94), pages 202–212. ACM Press, 1994.

Chris Hankin and Daniel Le Métayer (1995). Lazy type inference and program analysis. Science

of Computer Programming, 25:219–249, 1995.

John Hannan and Dale Miller (1992). From operational semantics to abstract machines. Math-

ematical Structures in Computer Science, 2(4):415–459, 1992.

John Hatcliff and Olivier Danvy (1997). A computational formalization for partial evaluation.

Mathematical Structures in Computer Science, 7:507–541, 1997. Special issue containing se-

lected papers presented at the 1995 Workshop on Logic, Domains, and Programming Lan-

guages, Darmstadt, Germany.

Nevin Heintze (1995). Control-flow analysis and type systems. In Alan Mycroft, editor, Pro-

ceedings of Static Analysis Symposium, number 983 in Lecture Notes in Computer Science,

pages 189–206. Springer-Verlag, 1995.

Fritz Henglein and Christian Mossin (1994). Polymorphic binding-time analysis. In Proceedings

of the Fifth European Symposium on Programming (ESOP ’94), Lecture Notes in Computer

Science. Springer-Verlag, 1994.

Suresh Jagannathan and Stephen Weeks (1995). A unified treatment of flow analysis in higher-

order languages. In Proceedings of the Twentysecond Annual ACM Symposium on Principles

of Programming Languages (POPL ’95), San Francisco, California, January 1995.

Suresh Jagannathan, Stephen Weeks, and Andrew Wright (1997). Type-directed flow analysis for

typed intermediate languages. In P. v. Hentenryck, editor, Proceedings of the Static Analysis

Symposium (SAS’97), number 1302 in Lecture Notes in Computer Science, pages 232–249.

Springer-Verlag, 1997.

Thomas Jensen. Strictness analysis in logical form (1991). In J. Hughes, editor, Proceedings

of 5th ACM Conference on Functional Programming Languages and Computer Architecture,

number 523 in Lecture Notes in Computer Science, pages 352–366. Springer Verlag, 1991.

Thomas Jensen (1995). Conjunctive type systems and abstract interpretation of higher-order

functional programs. Journal of Logic and Computation, 5(4):397–421, 1995.

Thomas Jensen (1997). Disjunctive program analysis for algebraic data types. ACM Transac-

tions on Programming Languages and Systems, 19(5):752–804, 1997.

Modular Control-Flow Analysis 33

Thomas Jensen (1998). Inference of polymorphic and conditional strictness properties. In Proc.

of 25th ACM Symposium on Principles of Programming Languages, pages 209–221. ACM

Press, 1998.

Trevor Jim (1995). Rank 2 type systems and recursive definitions. Technical Memorandum

MIT/LCS/TM-531, Laboratory for Computer Science, Massachussetts Institute of Technol-

ogy, November 1995.

Trevor Jim (1996). What are principal typings and what are they good for? In Proceedings of

the Twentythird Annual ACM Symposium on Principles of Programming Languages (POPL

’96), St. Petersburg, Florida, January 1996.

Neil D. Jones (1981). Flow analysis of lambda expressions. In Proceedings of Eighth Colloquium

on Automata, Languages, and Programming, number 115 in Lecture Notes in Computer Sci-

ence. Springer-Verlag, 1981.

Neil D. Jones (1987). Flow analysis of lazy, higher order functional programs. In S. Abramsky

and C. Hankin, editors, Abstract Interpretation of Declarative Languages. Ellis Horwood, 1987.

Assaf J. Kfoury and Joseph B. Wells (1999). Principality and decidable type inference for

finite-rank intersection types. In Proceedings of the Twentysixth Annual ACM Symposium on

Principles of Programming Languages (POPL ’99), San Antonio, Texas, January 1999.

Naoki Kobayashi (2000). Type-based useless variable elimination. In Julia L. Lawall, editor,

Workshop on Partial Evaluation and Semantics-Based Program Manipulation, pages 84–93,

Boston, Massachusetts, January 2000. ACM, ACM Press.

Tsung-Min Kuo and Prateek Mishra (1989). Strictness analysis : A new perspective based on

type inference. In Proceedings of 4th. International Conference on Functional Programming

and Computer Architecture. ACM Press, 1989.

Daniel Leivant (1983). Polymorphic type inference. In Proceedings of the Tenth Annual ACM

Symposium on Principles of Programming Languages (POPL ’83), pages 88–98, January 1983.

John C. Mitchell (1991). Type inference with simple subtypes. Journal of Functional Program-

ming, 1(3):245–285, 1991.

Christian Mossin (1997a). Exact flow analysis. In Proceedings of the Fourth International Static

Analysis Symposium, Paris, France, September 1997.

Christian Mossin (1997b). Flow analysis of typed higher-order programs. PhD thesis, DIKU,

University of Copenhagen, January 1997.

Flemming Nielson and Hanne Riis Nielson (1992). Two-Level Functional Languages, volume 34

of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1992.

Flemming Nielson and Hanne Riis Nielson (1997). Infinitary control flow analysis: a collecting

semantics for closure analysis. In Proceedings of the Twentyfourth Annual ACM Symposium

on Principles of Programming Languages (POPL ’97), Paris, France, January 1997.

Hanne Riis Nielson and Flemming Nielson (1998). Automatic binding time analysis for a typed

λ-calculus. In Proceedings of the Fifteenth Annual ACM Symposium on Principles of Pro-

gramming Languages (POPL ’88), pages 98–106, January 1988.

Jens Palsberg (1995). Closure analysis in constraint form. ACM Transactions on Programming

Languages and Systems, 17(1):47–62, January 1995.

Jens Palsberg and Patrick O’Keefe (1995). A type system equivalent to flow analysis. ACM

Transactions on Programming Languages and Systems, 17(4):576–599, July 1995.

Jens Palsberg and Christina Pavlopoulou (1998). From polyvariant flow information to inter-

section and union types. Journal of Functional Programming, 11(3):263–317, May 2001.

Jens Palsberg and Michael Schwartzbach (1995). Safety analysis versus type inference. Infor-

mation and Computation, 118(1):128–141, 1995.

A. Banerjee and T. Jensen 34

Gordon D. Plotkin (1977). LCF considered as a programming language. Theoretical Computer

Science, 5:223–255, 1977.

The Church project. http://types.bu.edu/comp-flow-types.html.

Jon G. Riecke (1991). The Logic and Expressibility of Simply-Typed Call-by-Value and Lazy

Languages. PhD thesis, Massachusetts Institute of Technology, 1991. Available as technical

report MIT/LCS/TR-523 (MIT Laboratory for Computer Science).

Patrick Sallé (1978). Une extension de la théorie des types en λ-calcul. In G. Ausiello and

C. Böhm, editors, Fifth International Conference on Automata, Languages and Programming,

pages 398–410. Springer-Verlag, 1978.

David A. Schmidt (1995). Natural semantics-based abstract interpretation. In Alan Mycroft, ed-

itor, Proceedings of the Static Analysis Symposium, number 983 in Lecture Notes in Computer

Science, pages 1–18. Springer-Verlag, 1995.

Peter Sestoft (1988). Replacing function parameters by global variables. Master’s thesis, Uni-

versity of Copenhagen, 1988.

Peter Sestoft (1991). Analysis and Efficient Implementation of Functional Programs. PhD thesis,

DIKU, Copenhagen, Denmark, October 1991. Rapport Nr. 92/6.

Olin Shivers (1991). Control-Flow Analysis of Higher-Order Languages or Taming Lambda. PhD

thesis, Carnegie-Mellon University, Pittsburgh, Pennsylvania, May 1991. Technical Report

CMU-CS-91-145.

Paul A. Steckler and Mitchell Wand (1997). Lightweight closure conversion. ACM Transactions

on Programming Languages and Systems, 19(1):48–86, 1997.

Jean-Pierre Talpin and Pierre Jouvelot (1994). The type and effect discipline. Information and

Computation, 2(111):245–296, 1994.

Yan-Mei Tang (1994). Systèmes d’effet et interprétation abstraite pour l’analyse de flot de

contrôle. PhD thesis, Ecole Nationale Supérieure des Mines de Paris, March 1994. Rapport

A/258/CRI.

Yan-Mei Tang and Pierre Jouvelot (1995). Effect systems with subtyping. In William L. Scherlis,

editor, Symposium on Partial Evaluation and Semantics-Based Program Manipulation, La

Jolla, California, June 1995. ACM SIGPLAN, ACM Press.

Mads Tofte and Jean-Pierre Talpin (1994). Implementation of the typed call-by-value λ-calculus

using a stack of regions. In Proc. of 21st Symposium on Principles of Programming Languages

(POPL’94). ACM Press, 1994.

Mads Tofte and Jean-Pierre Talpin (1997). Region-based memory management. Information

and Computation, 132(2):109–176, 1997.

Andrew Tolmach and Dino Oliva (1998). From ML to Ada: strongly-typed language interoper-

ability via source translation. Journal of Functional Programming, 8(4):367–412, 1998.

Steffen van Bakel (1992). Complete restrictions of the intersection type discipline. Theoretical

Computer Science, 102:135–163, 1992.

Steffen van Bakel (1993). Intersection type disciplines in lambda calculus and applicative term

rewriting systems. PhD thesis, Mathematisch Centrum, Amsterdam, 1993.

Steffen van Bakel (1996). Rank 2 intersection type assignment in term rewriting systems.

Fundamenta Informaticae, 26(2), 1996.

Mitchell Wand and Igor Siveroni (1999). Constraint systems for useless variable elimination.

In Proceedings of the Twentysixth Annual ACM Symposium on Principles of Programming

Languages, pages 291–302, January 1999.

Andrew Wright and Matthias Felleisen (1991). A syntactic approach to type soundness. Infor-

mation and Computation, 3(2):181–210, 1991.

