
WhyRel: An Auto-active Relational Verifier

Ramana Nagasamudram1, Anindya Banerjee2,
David. A. Naumann1

1Stevens Institute of Technology, Hoboken, USA.
2IMDEA Software Institute, Madrid, Spain.

Contributing authors: rnagasam@stevens.edu;
anindya.banerjee@imdea.org; dnaumann@stevens.edu;

Abstract
Verifying relations between programs arises as a task in various verification con-
texts such as optimizing transformations, relating new versions of programs with
older versions (regression verification), and noninterference. However, relational
verification for programs acting on dynamically allocated mutable state is not
well supported by existing tools, which provide a high level of automation at
the cost of restricting the programs considered. Auto-active tools, on the other
hand, require more user interaction but enable verification of a broader class of
programs. This article presents WhyRel, a tool for the auto-active verification of
relational properties of pointer programs based on relational region logic. WhyRel
is evaluated through verification case studies, relying on SMT solvers orchestrated
by the Why3 platform on which it builds. Case studies include establishing repre-
sentation independence of ADTs, showing noninterference, and challenge problems
from recent literature.

Keywords: local reasoning, relational verification, auto-active verification, data
abstraction.

1 Introduction
Relational properties encompass conditional equivalence of programs (as in regres-
sion verification [1]), noninterference (in which a program is related to itself via a
low-indistinguishability relation), and other requirements such as sensitivity [2]. The

1



problem we address concerns tooling for the modular verification of relational prop-
erties of heap-manipulating programs, including programs that act on differing data
representations involving dynamically allocated pointer structures.

Modular reasoning about pointer programs is enabled through local reasoning
using frame conditions, procedural abstraction (i.e., reasoning under hypotheses about
procedures a program invokes), and data abstraction, requiring state-based encap-
sulation. For establishing properties of ADTs such as representation independence,
encapsulation plays a crucial role, permitting implementations to rely on invariants
about private state hidden from clients. Relational verification also involves a kind of
compositionality, the alignment of intermediate execution steps, which enables use of
simpler relational invariants and specs (see e.g. [3–5]).

We aim for auto-active verification [6], accessible to developers, as promoted by
tools such as Dafny and Why3. Users are expected to provide specifications, annotations
such as loop invariants and assertions, and, for relational verification, alignment hints.
The idea is to minimize or eliminate the need for users to manually invoke tactics for
proof search.

Automated inference of specs, loop invariants, or program alignments facilitates
automated verification, and is implemented in some tools. But in the current state of
the art these techniques are restricted to specs and invariants of limited forms (e.g.,
only linear arithmetic) and have little or no support dynamically allocated objects. So
inference is beyond the scope of this article.

What is in scope is use of strong encapsulation, to hide information in the sense
that method specs used by clients do not expose internal representation details, and to
enable verification of modular correctness of a client, in the sense that its behavior is
independent from internal representations. Achieving strong encapsulation for pointer
programs, without undue restriction on data and control structure, is technically
challenging. Auto-active tools rely on extensive axiomatization for the generation of
verification conditions (VCs); for high assurance the VCs should be justified with respect
to a definitional operational semantics of programs and specs including encapsulation.

In this article, we describe WhyRel, a prototype for auto-active verification of rela-
tional properties of pointer programs. Source programs are written in an imperative
language with support for shared mutable objects (but no subtyping), dynamic alloca-
tion, and encapsulation. WhyRel’s assertion language is first-order and, for expressing
relational properties, includes constructs that relate values of variables and pointer
structures between two programs. WhyRel is based on relational region logic [7], a rela-
tional extension of region logic [8, 9]. Region logic provides a flexible approach to local
reasoning through the use of dynamic frame conditions [10] which capture footprints of
commands acting on the heap. Verification involves reasoning explicitly about regions
of memory and changes to them as computation proceeds; flexibility comes from being
able to express notions such as parthood and separation in the same first-order setting.

Encapsulation is specified using a kind of dynamic frame, called a dynamic boundary :
a footprint that captures a module’s internal locations. Enforcing encapsulation is
then a matter of ensuring that clients don’t directly modify or update locations in a
module’s boundary. There are detailed soundness proofs for the relational logic [7], of
which our prototype is a faithful implementation.

2



WhyRel is built on top of the Why3 platform1 for deductive program verification
which provides infrastructure for verifying programs written in WhyML, a subset
of ML [11] with support for ghost code and nondeterministic choice. The assertion
language is a first-order logic extended with algebraic data types, polymorphism,
recursive definitions, and inductive predicates [12]. Why3 generates VCs for WhyML
which can then be discharged using a wide array of theorem provers, from interactive
proof assistants such as Coq and Isabelle, to first-order theorem provers and SMT
solvers such as Vampire, Alt-Ergo and Z3.

WhyRel is used as a front-end to Why3. Users provide programs, specs, annotations,
and for relational verification, relational specs and alignment specified using a syntax
for product programs [13]. WhyRel translates source programs into WhyML, performing
significant encoding so as to faithfully capture the heap model and fine-grained framing
formalized in relational region logic. VCs pertinent to this logic are introduced as
intermediate assertions and lemmas for the user to establish. Verification is done using
facilities provided by Why3 and the primary mode of interaction is through an IDE
for viewing and discharging verification conditions.

Our approach is evaluated through a number of case studies performed in WhyRel,
for which we rely entirely on SMT solvers to discharge proof obligations. The primary
contribution is the development of a tool for relational verification of heap manipulating
programs which has been applied to challenging case studies. Examples demonstrate
the effectiveness of relational region logic for alignment, for expressing heap relations,
and for relational reasoning that exploits encapsulation.

Organization
Sec. 2 highlights aspects of specifying programs and relational properties in WhyRel
using a stack ADT example. Sec. 3 discusses examples of program alignment. Sec. 4
gives an overview of the design of WhyRel and Sec. 5 provides highlights on experience
using the tool. Sec. 6 discusses related work and Sec. 7 concludes.

This article extends a previous article on WhyRel [14]. Here, we describe new
examples, present an improved encoding, and provide additional implementation details.

2 A tour of WhyRel
Programs and specifications
WhyRel provides a lightweight module system to organize definitions, programs, and
specs. Developments are structured into interfaces and modules that implement inter-
faces. In addition, for relational verification, WhyRel introduces the notion of a bimodule,
described later, to relate method implementations between two (unary) modules.

We’ll walk through aspects of specification in WhyRel using the STACK interface
shown in Fig. 1, which describes a stack of boxed integers with push and pop operations.
The interface starts by declaring global variables, pool and capacity, and client-visible
fields of the Cell and Stack classes. Variable pool has type region (written rgn in
code), where a region is a set of references and is used to describe objects notionally
owned by modules implementing the stack interface. Variable capacity has type int

1The Why3 distribution can be found at: https://why3.lri.fr/.

3

https://why3.lri.fr/


interface STACK =
public pool: rgn /* rgn: a set of references */
public capacity: int

class Cell { val: int }
class Stack { rep: rgn; size: int; ghost abs: intList }

/* encapsulated locations */
boundary {capacity, pool, pool‘any, pool‘rep‘any}
public invariant stkPub = ∀ s: Stack ∈ pool. 0 ≤ s.size ≤ capacity

∧ (∀ t: Stack ∈ pool. s ̸= t ⇒ s.rep ∩ t.rep ⊆ {null}) ∧ ...

meth Cell (self: Cell) : unit ...
meth getVal (self: Cell) : int ...

meth Stack (self: Stack) : unit
ensures {self ∈ pool} ...

meth push (self: Stack, k: int) : unit
requires {self ∈ pool ∧ self.size < capacity}
ensures {self.abs = cons(k,old(self.abs)) ∧ ...}
/* allowed heap effects of implementations */
effects {rw {self}‘any, self.rep‘any, alloc; rd self,capacity}

meth pop (self: Stack) : Cell
requires {self ∈ pool ∧ self.size > 0}
ensures {self.size = old(self.size)-1}
ensures {result.val = hd(old(self.abs))}
ensures {self.abs = tl(old(self.abs))}
effects {rw {self}‘any, self.rep‘any, alloc; rd self}

Fig. 1: WhyRel interface for the Stack ADT.

and describes an upper bound on the size of a stack. The Cell class for boxed integers
is declared with a single field, val, storing an int. The Stack class is declared with
three fields: rep of type region keeps track of objects used to represent the stack, size
of type int stores the number of elements in the stack, and the ghost field abs of type
intList (list of mathematical integers) keeps track of an abstraction of the stack, used
in specs. Class definitions can be refined later by modules implementing the interface:
e.g., a module using a linked-list implementation might extend the Stack class with a
field head storing a reference to the list.

Heap encapsulation is supported at the granularity of modules through the use of
dynamic module boundaries which describe locations internal to a module. A location is
either a variable or a heap location o.f , where o is an object reference and f is the name
of one of its fields. In WhyRel, module boundaries are specified in interfaces and clients
are enforced to not directly read or write locations described by the boundary except
through the use of module methods. For our stack example, the dynamic boundary is
capacity, pool, pool‘any, pool‘rep‘any; expressed using image expressions and
the any datagroup. Given a region G and a field f of class type, the image expression
G‘f denotes the region containing the locations o.f of all non-null references o in G,

4



where f is a valid field of o. If f is of type region, G‘f is the union of the collection of
reference sets o.f for all o in G. For f of primitive type, such as int or intList, G‘f is
the empty region. The datagroup any is used to abstract from concrete field names: the
expression pool‘any is syntactic sugar for pool‘val,. . . ,pool‘abs. Intuitively, the
dynamic boundary in Fig. 1 says that clients may not directly read or write capacity,
pool, any fields of objects in pool, and any fields of objects in the rep of any Stack
in pool.

While encapsulation is specified at the level of modules, separation or locality at
finer granularities can be specified using module invariants. The stack interface defines
a public invariant stkPub which asserts that the rep fields of all Stack objects in
pool are disjoint. This idiom can be used to ensure that modifying one object has
no effect on any locations in the representation of another. Clients can rely on public
invariants during verification, but modules implementing the interface must ensure they
are preserved by module methods. Additionally, modules may define private invariants
that capture conditions on internal state; provided these refer only to encapsulated
locations, i.e., the designated boundary frames these invariants, clients are exempt
from reasoning about them [15].

Finally, the STACK interface defines specs for initializers (methods Cell and Stack)
and public specs for client-visible methods getVal, push, and pop. Notice that the stack
initializer ensures self is added to the boundary (through post self ∈ pool) and
stack operations require self to be part of the boundary (through pre self ∈ pool).
Specs for push and pop are standard, using “old” expressions to precisely capture field
updates. WhyRel’s assertion language is first-order and includes constructs such as the
points-to assertion x.f = e and operations on regions such as subset and membership.
In addition to pre- and post-conditions, each method is annotated with a frame
condition in an effects clause that serves to constrain heap effects of implementations.
Allowable effects are expressed using read/write (rw) or read (rd) of locations or
location sets, described by regions. For example, the effects clause for push says
that implementations may read/write any field of self and any field of any objects
in self.rep. The distinguished variable alloc is used to indicate that push may
dynamically allocate objects.

In our development, we build two modules that implement the interface in Fig. 1:
one using arrays, ArrayStack and another using linked-lists, ListStack. Both rely
on private invariants on encapsulated state that capture constraints on their pointer
representations and its relation to abs, the mathematical abstraction of stack objects.
The private invariant of ListStack, for example, says that Cell values in the linked-list
of any Stack in pool are in correspondence with values stored in abs.

Example client, equivalence spec, and verification
We now turn attention to an example client, prog, shown in Fig. 2a. This program
computes the sum Σn

i=0i, albeit in a roundabout fashion, using a stack. The frame
condition of prog mentions the boundary for STACK, but this is fine since the client
respects WhyRel’s encapsulation discipline, modifying encapsulated locations solely
through calls to methods declared in the STACK interface. For this client, our goal is to
establish equivalence when linked against either implementations of STACK. Let the

5



meth prog (n: int) : int
requires {0 ≤ n < capacity ∧ ...}
effects {rw alloc, pool, pool‘any, pool‘rep‘any; rd n, capacity}

= /* Note: locals are initialized to zero-equivalent values */
var i: int in var c: Cell in
var stk: Stack in stk := new Stack; Stack(stk);
while (i < n) do

push(stk,i); i:=i+1
done;
i := 0;
while (i < n) do

c:=pop(stk); result:=result+getVal(c); i:=i+1
done;

(a) Example client prog of the STACK interface.

meth prog (n: int|n: int) : (int|int)
requires { n =̈ n ∧ Both(0 ≤ n < capacity ∧ ... ) }
ensures { result =̈ result }

(b) Relational specification for prog expressing equivalence: the version of prog on the left is
linked against ArrayStack; the version on the right against ListStack.

Fig. 2: Example client for STACK and relational spec for equivalence.

left program be the client linked against ArrayStack, and the right the client linked
against ListStack. Equivalence is expressed using the relational spec shown in Fig. 2b.
For brevity, we omit frame conditions when describing relational specs.

This relational spec relates two versions of prog; the notation (n:int | n:int)
is used to declare that both versions expect n as argument. The pre-relation requires
equality of inputs: n =̈ n says that the value of n on the left is equal to the value of n on
the right. We use (=̈), instead of (=) to distinguish between values on the left and the
right2. The relational spec requires the two initial states to satisfy the unary precondition
for the client, as indicated by Both(...). The post-relation, result =̈ result, asserts
equality on returned values. In WhyRel, relational specs capture a 2-safety termination-
insensitive property: for any pair of terminating executions of the programs being
related, if the initial states are related by the pre-relation then the final states are related
by the post-relation.

WhyRel supports two approaches to verifying relational properties. The first reduces
to proving functional properties of the programs involved. For instance, equivalence of
the client when linked against the two stack implementations is immediate if we prove
that prog indeed computes the sum of the first n nonnegative integers.

However, this approach neither lends well to more complicated programs and
relational properties, nor does it allow us to exploit similarities between related programs
or reason modularly using relational specs. The alternative is to prove the relational

2Note in particular that x =̈ y is not the same as y =̈ x

6



meth prog (n: int | n: int) : (int | int)
= var i: int | i: int in var c: Cell | c: Cell in

var stk: Stack | stk: Stack in ⌊ stk := new Stack ⌋; ⌊ Stack(stk) ⌋;
while (i < n) | (i < n) do

⌊ push(stk,i) ⌋; ⌊ i:=i+1 ⌋
done;
⌊ i:=0 ⌋;
while (i < n) | (i < n) do

⌊ c:=pop(stk) ⌋; ⌊ result:=result+getVal(c) ⌋; ⌊ i:=i+1 ⌋
done;

Fig. 3: Alignment for example stack client.

property using a convenient alignment of the two programs. Alignments are represented
syntactically in WhyRel using biprograms which pair points of interest between two
programs so that their effects can be reasoned about in tandem. If the chosen alignment
is adequate in the sense of capturing all pairs of executions of the related programs,
relational properties of the alignment entail the corresponding relation between the
underlying programs.

The biprogram for prog is shown in Fig. 3. The alignment it captures is maximal:
every control point in one version of the client is paired with itself in the other version.
The construct (C|C ′) pairs a command C on the left with a command C ′ on the right,
and the sync form ⌊C⌋ is syntactic sugar for (C|C); e.g., the biprogram for prog aligns
the two allocations using ⌊stk := new Stack⌋. Further, this biprogram aligns both
loops in lockstep, indicated using the syntax while e|e’ do ... done. This alignment
pairs a loop iteration on the left with a loop iteration on the right and requires the
loop guards be in agreement: here, that i < n on the left is true just when i < n
on the right is. Calls to stack operations are aligned in the loop body using the sync
construct to facilitate modular verification of relational properties by indicating that
relational specs for push and pop, described later, are to be used.

To prove the spec (in Fig. 2b) about the biprogram in Fig. 3 we reason as fol-
lows: after allocation stk on both sides is initialized to be the empty stack. The
first lockstep aligned loop which pushes integers from 0, . . . , n maintains as invari-
ant equality on i and on the mathematical abstractions the two stacks represent,
i.e., i =̈ i ∧ stk.abs =̈ stk.abs. The second lockstep aligned loop which pops the
stacks and increments result maintains as invariant agreement on the stack abstrac-
tions and result, the key conjunct being result =̈ result. This is sufficient to
establish the desired post-relation. Importantly, the loop invariants are simple to prove—
they only contain equalities between variables—and we don’t have to reason about the
exact contents of the two stacks involved.

Relational specs for Stack and verification
The reasoning described above relies on knowing the method implementations in
ArrayStack and ListStack are equivalent. We need relational specs for push which
state that given related inputs, the contents represented by the two stacks are the

7



bimodule REL_STACK (ArrayStack | ListStack) =
coupling stackCoupling = ∀ s: Stack ∈ pool | s: Stack ∈ pool.

s =̈ s ⇒ s.abs =̈ s.abs ∧ ...

meth Stack(self: Stack | self: Stack) : (unit | unit)
ensures {self =̈ self ∧ ...} = /* biprogram for Stack */

meth push(self: Stack | self: Stack) : (unit | unit)
requires {self =̈ self ∧ ... }
ensures {self.abs =̈ self.abs ∧ ... } = /* biprogram for push */

meth pop(self:Stack | self:Stack) : (Cell | Cell)
requires {self =̈ self ∧ Both (self ∈ pool) }
requires {Both (self.size > 0) ∧ ...}
ensures {... ∧ result.val =̈ result.val} = /* biprogram for pop */

Fig. 4: Bimodule for Stack; excerpts.

same; and for pop, which state that given related inputs, the values of the returned
Cells are the same.

Fig. 4 shows a bimodule, REL_STACK, relating the two implementations of STACK.
It includes relational specs for the stack operations along with biprograms used for
verification. The bimodule maintains a coupling relation which relates data represen-
tations used by the two stack implementations. Concretely, the coupling here states
that related stacks in pool represent the same abstraction. Note that quantifiers in
relation formulas bind pairs of variables; and the equality s =̈ s in stackCoupling is
not strict pointer equality, but indicates correspondence. Strict pointer equality is too
strong as it would not allow for modeling allocation as a nondeterministic operation
or permit differing allocation patterns between programs being related. Behind the
scenes, WhyRel maintains a partial bijection π between allocated references in the two
states being related. The relation x =̈ y, where x and y are pointers, states that x in
the left state is in correspondence with y in the right state w.r.t π, i.e., π(x) = y.

The relational spec for the initializer Stack ensures self =̈ self, which is required
in the specs for push and pop. Like other invariants, coupling relations are meant to
be framed by the boundary and are required to be preserved by module methods being
related. Encapsulation allows for coupling relations to be hidden so that clients are
exempt from reasoning about them.

The steps taken to complete the Stack development and verify equivalence of two
versions of its client are as follows: (i) build the STACK interface in WhyRel, with public
invariants on which clients can rely, and a boundary that designates encapsulated
locations; (ii) develop two modules refining this interface, ArrayStack and ListStack,
and verify that their implementations conform to STACK interface specs, relying on
any private invariants that capture conditions on encapsulated state; (iii) provide a
bimodule relating the two stack modules and prove equivalence of stack operations,
relying on a coupling relation that captures relationships between pointer structures
used by the two modules; (iv) verify the client with respect to specs given in STACK and
prove it respects WhyRel’s encapsulation regime; and finally (v) develop a bimodule
for the client and verify equivalence using relational specs for stack methods.

8



meth mult(n: int, m: int) =
i := 0;
while (i < n) do j := 0;

while (j < m) do
result := result+1; j := j+1

done; i := i+1 done;

meth mult(n:int, m:int) =
i := 0;
while (i < n) do

result := result+m;
i := i+1

done;

Fig. 5: Two versions of a simple multiplication routine.

meth mult(n: int, m: int | n: int, m: int) : (int | int) =
⌊ i := 0 ⌋;
while (i < n) | (i < n) do invariant { i =̈ i ∧ result =̈ result }

( j := 0; while (j < m) do result := result+1; j := j+1 done
| result := result+m );
assert { ⟨[result = old(result)+m⟨] };
⌊ i := i+1 ⌋ done;

Fig. 6: Biprogram for example in Fig. 5.

3 Patterns of alignment
Well chosen alignments help decompose relational verification, allowing for the use of
simple relational assertions and loop invariants. In this section, we’ll look at examples
of biprograms that capture alignments that aren’t maximal, unlike the STACK client
example in Sec. 2. We don’t formalize the syntax of biprograms here, but we show
representative examples. When discussing examples, we’ll omit frame conditions and
other aspects orthogonal to alignment.

Differing control structures
Churchill et al. [16] develop a technique for proving equivalence of programs using
state-dependent alignments of program traces. They identify a challenging problem for
equivalence checking, shown in Fig. 5, which compares two procedures for multiplication
with different control flow. For automated approaches to relational verification, their
example is challenging because of the need to align an unbounded number m of loop
iterations on the left with a single iteration on the right.

To prove equivalence, we verify the biprogram shown in Fig. 6 with respect to a
relational spec with pre-relation n =̈ n ∧ m =̈ m and post-relation result =̈ result;
i.e., agreement on inputs results in agreement of outputs. Unlike the stack client
biprogram shown in Fig. 3, the alignment embodied here is not maximal—indeed, such
alignment would not be possible due to the differing control structure. Similarities are
still exploited by aligning the outer loops in lockstep and the left inner loop with the
assignment to result on the right.

A simple relational loop invariant which asserts agreement on i and result is
sufficient for proving equivalence. To show this is invariant, we need to establish that the
inner loop on the left has the effect of incrementing result by m, thereby maintaining

9



meth ex (x: int, n: int)
: int =
y := x; z := 24; /* 4! */
w := 0;
while (y > 4) do

if (w mod n = 0) then
z := z * y;
y := y - 1; end;

w := w + 1 done;
result := z;

meth ex (x: int, n: int | x: int, n: int) : (int | int) =
⌊ y := x ⌋; ( z := 24 | z := 16 ); ⌊ w := 0 ⌋;
while (y > 4) | (y > 4) . ⟨[ w mod n ̸= 0 ⟨] | [⟩ w mod n ̸= 0 ]⟩ do

invariant { ⟨[ z ⟨] > [⟩ z ]⟩ ∧ y =̈ y ∧ [⟩ y ≥ 4 ]⟩ }
if (w mod n = 0) | (w mod n = 0) then

( z := z * y | z := z * 2 );
⌊ y := y - 1 ⌋;

end;
⌊ w := w + 1 ⌋;
done;

⌊ result := z ⌋;

meth ex (x: int, n: int)
: int =
y := x; z := 16; /* 2^4 */
w := 0;
while (y > 4) do

if (w mod n = 0) then
z := z * 2;
y := y - 1; end;

w := w + 1 done;
result := z;

Fig. 7: Programs that compute the factorial and exponent of x ≥ 4 and a biprogram.

equality on result after the inner loop. In Fig. 6 this is indicated by the assertion
after the left inner loop; old(result) stands for the value result held in the previous
iteration (or the value it held prior to entering the loop in case of the first iteration).
The notation ⟨[P ⟨] (resp. [⟩P ]⟩) is used to state that the unary formula P holds in the
left (and resp. right) state.

Conditionally aligned loops
The previous example exploits the fact that the two loops being related perform
the same number of iterations, as implied by their guards being in agreement: i.e.,
⟨[i < n⟨] = [⟩i < n]⟩. This enables a lockstep alignment of loop iterations, which in turn
leads to simple relational invariants. In many situations, however, lockstep reasoning is
inapplicable. For these, WhyRel provides for other patterns of loop alignment, including
those that account for conditions on data.

Consider the fairly contrived example shown in Fig. 7 (adapted from [17]). The
version of ex on the left computes the factorial of x for x ≥ 4 and the version on
the right computes the exponent 2^x. We aim to prove that for x ≥ 4, factorial
majorizes exponent, as expressed by the following relational spec. The post-relation
in the ensures clause says the value of result on the left is strictly greater than the
value of result on the right.

meth ex (x: int, n: int | x: int, n: int) : (int | int)
requires { x =̈ x ∧ [⟩ x ≥ 4 ]⟩ ∧ Both (n > 0) }
ensures { ⟨[ result ⟨] > [⟩ result ]⟩ }

10



The implementations of ex are structured similarly. To keep the example simple, the
two versions start by setting z to be 4! and 24 respectively. The variable w is used to
add stuttering steps: both loops update z and the counter y only when w is a multiple
of n. The only constraint on n in the relational spec for ex is that it must be strictly
greater than 0 on both sides.

A purely lockstep alignment of the two loops doesn’t work anymore since one side
may perform more iterations than the other. Instead, we want to align iterations in
lockstep only when both sides are about to update z and y, i.e., when w mod n is 0 on
both sides. In case an iteration on a side is not going to update z, we want to align
this iteration with doing nothing, or skip, on the other side. Lockstep and one-sided
iterations of this kind preserve the relation ⟨[z⟨] > [⟩z]⟩.

Syntactically, the alignment is captured by the biprogram shown in Fig. 7. Condi-
tional alignment is captured through the use of additional annotations, called alignment
guards. These are general relation formulas that express conditions that lead to left-only,
right-only, or lockstep iterations. The alignment guards of the biprogram for ex are
⟨[ w mod n ̸= 0 ⟨] | [⟩ w mod n ̸= 0 ]⟩. The left alignment guard ⟨[ w mod n ̸= 0 ⟨]
says that the biprogram performs left-only iterations in the case that w on the left
is not a multiple of n on the left. A left-only iteration has the effect of executing
if (w mod n = 0) then (z := z*y; y := y-1) end; w := w+1 on the left. Since
this iteration is guarded by the left alignment guard, the overall effect is to simply
increment w on the left. The right alignment guard is similar to the left and specifies
the condition under which to consider right-only iterations. Iterations are considered in
lockstep when both alignment guards are false, i.e., in the case in which w is a multiple
of n on both sides. With this alignment, the relational invariant shown in Fig. 7 suffices
to establish the post-relation of interest: ⟨[ result ⟨] > [⟩ result ]⟩.

The version of this example developed in [17] fixes n to be 2 on the left and 3 on the
right. The alignment required for fixed n can be expressed in terms of loop unfoldings,
so in principle it may be within reach of some automated techniques [16, 18, 19].3
However, such forms of alignment are not adequate for our version where n is not fixed,
nor for the following example.

Another example of conditional alignment
A less contrived example demonstrating conditional alignment of loop iterations is

shown in Fig. 8. The sumpub program traverses a linked list and computes the sum of all
elements marked public, as indicated by each element’s pub field. The program satisfies
a noninterference property: its output doesn’t depend on the values of non-public
elements of the input list. This property is specified as follows.

meth sumpub (l: List | l: List) : (int | int)
requires { ∃ xs|xs. Both(listpub(l,xs)) ∧ xs =̈ xs }
ensures { result =̈ result }

Here, listpub(l,xs) says that the sequence of public elements reachable from the list
pointer l is realized in xs, a mathematical list of integers. The pre-relation requires
the two runs of sumpub being related start with lists with the same sequence of public
values. The post-relation ensures that the two runs produce the same result.

3However, [19] specifically mentions this example as a benchmark that their tool currently cannot verify.

11



class Node {
pub: bool;
data: int;
nxt: Node

}
class List {

head: Node;
rep: rgn

}

/* Biprogram for two copies of sumpub */
meth sumpub (l: List | l: List) : int =

⌊ p:=l.head ⌋; ⌊ sum:=0 ⌋;
while (p ̸= null) | (p ̸= null) .

⟨[ ¬ p.pub ⟨] | [⟩ ¬ p.pub ]⟩ do
( if p.pub then sum:=sum+p.data end;

p:=p.nxt
| if p.pub then sum:=sum+p.data end;

p:=p.nxt)
done; ⌊ result:=sum ⌋;

meth sumpub (l: List) : int =
p := l.head; sum := 0;
while (p ̸= null) do

if p.pub then
sum := sum + p.data

end;
p := p.nxt

done;
result := sum;

Fig. 8: Summing up public elements of a linked list.

inductive listpubN (n: Node, xs: intList) =
| lp_nil : listpubN null nil
| lp_nxt : ∀ n xs.

¬ n.pub ⇒ listpubN n.nxt xs ⇒ listpubN n xs
| lp_add : ∀ n xs.

n.pub ⇒ listpubN n.nxt xs ⇒ listpubN n (n.data::xs)

predicate listpub (l: List, xs: intList) =
l ̸= null ⇒ listpubN(l.head, xs)

We can prove that the program computes exactly the sum of public elements:
result = sum(xs); this would imply the desired noninterference property. We can
also come up with a simpler proof by conditionally aligning the loops in the two copies
of sumpub being related. The alignment we use is given by the biprogram in Fig. 8. It
works as follows: if p is a non-public node on one side, perform a loop iteration on the
other side; and if p on both sides is public, align the two loop bodies in lockstep. This
strategy has the effect of incrementing sum exactly when both sides are visiting public
nodes, the values of which are guaranteed to be the same by the relational precondition.

This biprogram maintains ∃ xs|xs. Both(listpub(p,xs)) ∧ xs=̈xs ∧ s=̈s as
loop invariant, which implies the desired post-relation. This invariant states that p on
both sides points to the same sequence of public values as captured by listpub(p,xs)
and that there is agreement on the sum sum computed so far. During verification,
we must establish that left-only, right-only, and lockstep iterations of the aligned
loops preserve this invariant. Due to the alignment, the value of sum is only updated
during lockstep iterations and its straightforward to show preservation. For one-sided
iterations, reasoning relies on knowing that the sequence of public values pointed to by
p remains the same.

12



4 Encoding and design
WhyRel functions as a front-end to Why3, translating source programs to WhyML
which serves as an intermediate verification language. This design is similar to other
tools such as Dafny based on Boogie [20], Frama-C based on Why3 [21], and Nagini
based on Viper [22]. During translation, WhyRel performs a number of checks and
transformations: primary among these are checks that clients of modules respect
encapsulation and that user provided biprograms are adequate. Proof obligations
pertinent to relational region logic, including encapsulation, are encoded as intermediate
assertions in WhyML programs and as lemmas for the user to prove. WhyRel is
implemented in OCaml and relies on a library provided by Why3 for constructing and
pretty-printing WhyML parse trees.

Encoding program states
WhyML supports records with mutable fields, encompassing ML-style references. A
static analysis is used to disallow any aliasing [11, 23]. It helps ensure that the
verification conditions for WhyML are simple enough to be amenable to automation. It
also means that Why3 does not have to fix a memory model or an assertion language
with explicit support for the heap, for e.g., one based on a separation logic. To overcome
Why3’s limitations on aliasing and faithfully represent the heap model formalized in
region logic, WhyRel generates WhyML programs that act on an explicit representation
of program state.

Our encoding models WhyRel references as an uninterpreted WhyML type
reference with a distinguished element, null. WhyRel permits equality comparisons
on reference values, but not pointer-arithmetic. Regions in WhyRel are encoded using
WhyML ghost state, as mathematical sets of references. The usual set operations
are supported. In addition, WhyRel axiomatizes image expressions: for each field f ,
WhyRel generates a WhyML function symbol img_f along with an axiom that captures
the meaning of G‘f for any given region G.

WhyRel program states are encoded using WhyML records and a usual fields-as-
arrays representation [24]. An example is shown in Fig. 9. The state type includes
one component for each field of a class in the source program. The component alloct
stores a map from references to object types, reftype, and is used to keep track of
allocated objects. Each source language field is modeled as a map from references
to values. The set of values includes references, WhyML mathematical types such as
arrays and lists, regions, and primitives such as int and bool. In addition, the state
type contains one mutable field per global variable in the source program storing a
value of the appropriate type. The type Rgn.t is the type of regions in WhyML. Our
encoding of program states operates on whole programs, so WhyRel requires access to
all class definitions in all modules. At the WhyML level, WhyRel classes and fields are
treated globally.

The state type is annotated with a WhyML invariant that captures well-formedness
of program states. In addition to conditions such as null never being allocated, and
there being no dangling references, this invariant captures constraints related to typing:
for example, the value stored in the nxt field of a Node is either null or allocated at
type Node. For the example shown in Fig. 9, the invariant is of the form:

13



/* class defs */
class Cell {

data: int;
ghost rep: rgn; }

class Node {
curr: Cell;
nxt: Node; }

/* global vars */
public pool : rgn

type reftype = Cell | Node (*class names*)
type state = {

(* fields *)
mutable data: map reference int;
mutable ghost rep: map reference Rgn.t;
mutable curr: map reference reference;
mutable nxt: map reference reference;
(* global variables *)
mutable alloct: map reference reftype;
mutable ghost pool: Rgn.t }

(* axiomatization of r‘nxt *)
function img_nxt : state → Rgn.t → Rgn.t
axiom img_nxt_ax : ∀ s, r, p.

Rgn.mem p (img_nxt s r) ⇔ ∃ q.
s.alloct[q] = Node ∧ Rgn.mem q r

∧ p = s.nxt[q]

Fig. 9: State encoding: WhyRel source on left, encoding in WhyML on right.

type state = { ... }
(* null is never allocated *)
invariant { ¬(mem null alloct) }
(* null does ¬ have any fields *)
invariant { ¬(mem null data) ∧ ... }
(* type conditions for objects of type Node *)
invariant { ∀ p. alloct[p] = Node → mem p curr ∧ mem p nxt

∧ (curr[p] = null ∨ alloct[curr[p]] = Cell)
∧ (nxt[p] = null ∨ alloct[nxt[p]] = Node) }

invariant { ... }

Finally, for each field of the source language, WhyRel generates a setter in WhyML,
used in modeling field updates. The setter for field nxt is shown below.

val set_nxt (s: state) (p: reference) (q: reference) : unit
requires {s.alloct[p] = Node ∧ (q = null ∨ s.alloct[q] = Node)}
ensures {s.nxt = add (old s.nxt) p q}
writes {s.nxt}

Definitions relevant to our state encoding are placed in a WhyML module named
State, imported by all programs generated by WhyRel. The State module additionally
includes, for each class K in the source program, a function mk_K that allocates a new
object of type K in a given state.

Translating unary programs and effects
WhyRel translates unary programs to WhyML functions that act on our encoding
of states. Commands that modify the heap, i.e., field updates, are modeled as calls
to the appropriate setters. Local variables, parameters, and the distinguished result
variable are encoded using WhyML ref cells.4 Object parameters are modeled using the
reference type along with a typing assumption. Translation of control flow statements

4That is, using ML-style references.

14



meth m (c: Cell, i: int) : int
requires { c.data ≥ 0 }

= while (i ≥ 0) do
invariant { c.data ≥ 0 }
c.data := c.data+i;
i := i-1

done;
result := c.data

let m (s:state) (c:reference) (i:int)
: int diverges
requires { s.alloct[c] = Cell }
requires { s.data[c] ≥ 0 }

= let result = ref 0 in
let c = ref c in
let i = ref i in
while (!i ≥ 0) do

invariant { s.data[!c] ≥ 0 }
(* c.data := c.data + i *)
set_data s c (s.data[!c] + !i);
i := !i-1

done;
result := s.data[!c]; !result

Fig. 10: Program translation example: WhyRel program on the left, WhyML
translation on the right; frame conditions omitted.

is straightforward. For programs with loops, WhyRel additionally adds a diverges clause
to the generated WhyML function: this indicates that the function may potentially
diverge, avoiding generation of VCs for proving termination. While Why3 supports
reasoning about total correctness, we’re only concerned with partial correctness. Fig. 10
shows an example translation. Note that (:=) is used to update ref cells and (!) to
dereference ref cells.

Translation of frame conditions requires care given our encoding of states. As an
example, the writes for method m shown in Fig. 10 would include rw {c}‘data due
to the write to, and read of, field data of object c. Correspondingly, in the Why3
translation of m, component data of the state parameter s is updated via the setter
set_data; so specifying the function in Why3 requires adding writes {s.data} as
annotation. However, this doesn’t describe framing at the granularity we desire: it
implies that the field data of any reference whatsoever can be written. To deal with
this, WhyRel generates a specification for method m with an additional postcondition:
wframed_data (old s) s (Rgn.singleton c), where

predicate wframed_data (s: state) (t: state) (r: rgn) =
∀ p: reference.

s.alloct[p] = Cell ∧ ¬ (Rgn.mem p r) ⇒ s.data[p] = t.data[p]

With this postcondition, callers of m (in WhyML) can rely on knowing that the data
fields of only references in {c} are modified, i.e., only c.data is modified.

Biprograms
WhyRel translates biprograms into product programs: WhyML functions that act on a
pair of states.5 Before translation, WhyRel performs an adequacy check on biprograms.
Intuitively, a biprogram is adequate if its two underlying programs are related in accord
with a relational spec whenever the biprogram satisfies that spec. That is, correctness
of the biprogram implies relatedness.

5WhyML functions that encode biprograms also act on a refperm: a renaming of references allocated in
the two states being related. Refperms are used when translating relation formulas such as x =̈ y where x
and y are references [7]. To streamline discussion, we avoid mention of refperms here.

15



BJC|C’K(Γl,Γr) =̂ UJCK(Γl); UJC’K(Γr)

BJ⌊m(x|y)⌋K(Γl,Γr) =̂ Φ(m)(Γl.st,Γr.st, EJxK(Γl), EJyK(Γr))

BJ⌊C⌋K(Γl,Γr) =̂ BJC|CK(Γl,Γr)

BJCC; DDK(Γl,Γr) =̂ BJCCK(Γl,Γr); BJDDK(Γl,Γr)

BJvar x:T|x:T’ in CCK(Γl,Γr) =̂ let xl = def(T) in let xr = def(T’) in
BJCCK([Γl | x : xl], [Γr | x : xr])

BJif E|E’ then CC else DDK(Γl,Γr) =̂ assert {EJEK(Γl) = EJE’K(Γr)};
if EJEK(Γl) then BJCCK(Γl,Γr)
else BJDDK(Γl,Γr)

BJwhile E|E’ do DDK(Γl,Γr) =̂ while EJEK(Γl) do
invariant {EJEK(Γl) = EJE’K(Γr)}
BJCCK(Γl,Γr)

BJwhile E|E’. P|P do DDK(Γl,Γr) =̂

while (EJEK(Γl) ∨ EJE’K(Γr)) do invariant {A}
if (EJEK(Γl) ∧ FJPK(Γl,Γr)) then UJ↼−CCK(Γl)

else if (EJE’K(Γr) ∧ FJP ′K(Γl,Γr)) then UJ−⇀CCK(Γr) else BJCCK(Γl,Γr)

where A ≡ (EJEK(Γl) ∧ FJPK(Γl,Γr)) ∨ (EJE′K(Γr) ∧ FJP ′K(Γl,Γr)) ∨
(¬EJEK(Γl) ∧ ¬EJE′K(Γr)) ∨ (EJEK(Γl) ∧ EJE′K(Γr))

Fig. 11: Translation of biprograms, excerpts.

Adequacy holds when a biprogram can cover all pairs of executions of the underlying
programs. WhyRel checks this in two stages. The first stage is syntactic and uses
projection operations to ensure that the biprogram is indeed constructed from the
unary programs of interest. For a biprogram CC, its left projection

↼−
CC (and resp. its

right projection
−⇀
CC) is the unary program on the left (and resp. on the right). As

an example, the left projection of ⌊c.f:=g⌋; (x:=c.f | skip) is c.f:=g; x:=c.f
and its right projection is c.f:=g. Given unary programs C and C ′ and their aligned
biprogram CC, WhyRel checks that

↼−
CC ≡ C and

−⇀
CC ≡ C ′, where (≡) is syntactic

equality. In the second stage, WhyRel adds annotations—assertions or loop invariants—
to the biprogram which serve to ensure adequacy. For example, a biprogram that aligns
two loops in lockstep includes as relational loop invariant the fact that the two loop
guards are in agreement.

Translation of biprograms is described in Fig. 11. The translation function B takes a
biprogram and a pair of contexts (Γl,Γr) to a WhyML program. In addition to mapping
WhyRel identifiers to WhyML identifiers, contexts store information about the state
parameters on which the generated WhyML program acts. Similar to B, the function U
translates unary programs to WhyML programs, E , expressions to WhyML expressions,
and F , a restricted set of relation formulas to WhyML expressions. Biprograms don’t

16



let sumpub l_s r_s (l_l: reference) (r_l: reference) : (int, int)
requires { l_s.alloct[l_l] = List ∧ r_s.alloct[r_l] = List }
requires { ∃ l_xs: intList, r_xs: intList.

listpub l_s l_l l_xs ∧ listpub r_s r_l r_xs ∧ l_xs = r_xs }
ensures { match result with (l_res, r_res) → l_res = r_res end }

= ... (* set up locals; translation of stmts before loop *)
while (!l_p ̸= null || !r_p ̸= null) do

invariant { ... (* those provided in the biprogram *) }
invariant {

(* adequacy condition *)
(!l_p ̸= null ∧ l_s.pub[!l_p] = false)

∨ (!r_p ̸= null ∧ r_s.pub[!r_p] = false)
∨ (!l_p ̸= null ∧ !r_p ̸= null) ∨ (!l_p = null ∧ !r_p = null) }

if (!l_p ̸= null ∧ l_s.pub[!l_p] = false) then
(* left-only iteration when

left loop guard and left alignment guard hold. *)
if l_s.pub[!l_p] then l_sum := !l_sum + l_s.data[!l_p];
l_p := l_s.nxt[!l_p]

else if (!r_p ̸= null ∧ r_s.pub[!r_p] = false) then
(* right-only iteration when

right loop guard and right alignment guard hold. *)
...

else
(* lockstep iteration otherwise *)
if l_s.pub[!l_p] then l_sum := !l_sum + l_s.data[!l_p];
l_p := l_s.nxt[!l_p];
if r_s.pub[!r_p] then r_sum := !r_sum + r_s.data[!r_p];
r_p := r_s.nxt[!r_p];

done; ...

Fig. 12: Example biprogram translation.

require the underlying unary programs to act on a disjoint set of variables; however,
this means that WhyRel has to perform appropriate renaming during translation.
Renaming is manifest in the translation of variable blocks (var x:T|x:T’ in CC),
where the context Γl (and resp. Γr) is extended, [Γl | x : xl], mapping x to a renamed
copy xl (and resp. Γr is extended with the binding x : xr).

In translating (C|C ′), the unary translations of C and C ′ are sequentially composed.
Syncs ⌊C⌋ are handled similarly, as syntactic sugar for (C|C), except for the case
of method calls. Procedure-modular reasoning about relational properties is enabled
by aligning method calls which indicates that the relational spec associated with the
method is to be exploited. WhyRel will translate these to calls to the appropriate
WhyML product program, using a global method context (Φ in Fig. 11). Since translated
product programs act on pairs of states, the generated WhyML call takes Γl.st and
Γr.st, names for left and right state parameters, as additional arguments.

Product constructions for control flow statements require generating additional proof
obligations. For aligned conditionals, WhyRel introduces an assertion that the guards
are in agreement. Lockstep aligned loops are dealt with similarly; guard agreement
must be invariant. For conditionally aligned loops, the generated loop body captures

17



the pattern indicated by the alignment guards P |P ′: if the left (resp. right) guard is
true and P (resp. P ′) holds, perform a left-only (resp. right-only) iteration; otherwise,
perform a lockstep iteration. Adequacy is ensured by requiring the condition A to be
invariant. This condition states that until both sides terminate, the loop can perform
a lockstep or a one-sided iteration. In relational region logic, the alignment guards P
and P ′ can be any relational formula. However, the encoding of conditionally aligned
loops is in terms of a conditional that branches on these alignment guards. In Why3,
this only works if P and P ′ are restricted; for example, to not contain quantifiers.
WhyRel supports alignment guards that include agreement formulas, one-sided points-to
assertions, one-sided boolean expressions, and the usual boolean connectives.

The WhyML program corresponding to the sumpub biprogram in Fig. 8 is shown
in Fig. 12. The function parameters l_s and r_s are the left and the right state
parameters; l_l and r_l model the parameter l of type List in Fig. 8 on either side.
The body of the WhyML product program is a loop which encodes the biprogram
loop shown in Fig. 8. This loop consists of a nested conditionals which branch on the
left and right loop and alignment guards. For example, in the case where the left loop
guard is true and the left alignment guard ⟨[¬ p.pub⟨] holds, the WhyML product
performs a left-only iteration. The adequacy condition is added as a loop invariant by
WhyRel during translation.

Proof obligations for encapsulation
To ensure that clients of modules respect encapsulation, WhyRel performs an analysis
on source programs. This analysis includes two parts: a static check to ensure client
programs don’t directly write to variables in a module’s boundary; and the generation
of intermediate assertions that express disjointness between the footprints of client heap
updates and regions demarcated by module boundaries. An example is given in Fig. 13.

For modules with public/private invariants, WhyRel additionally generates a lemma
which states that the module’s boundary frames the invariant, i.e., the invariant only
depends on locations expressed by the boundary. The same is done with coupling
relations, for which we need to consider boundaries of both modules being related. A
technical condition of relational region logic requiring boundaries grow monotonically
as computation proceeds is also ensured by introducing appropriate postconditions in
generated programs.

5 Evaluation
We evaluate WhyRel via a series a case studies, representative of the challenge problems
highlighted at the outset of this article. Examples include representation indepen-
dence, optimizations such as loop tiling [25], and others from recent literature on
relational verification (including [26] and [17]). Some, like those described in Sec. 3,
deal with reasoning in terms of varying alignments including data-dependent ones. Our
representation independence examples include showing equivalence of Dijkstra’s single-
source shortest-paths algorithm linked against two implementations of priority queues,
which requires reasoning about fine-grained couplings between pointer structures; and

18



/* WhyRel source */
interface I =

class C {f: int; rep: rgn;}
public pool : rgn;
/* this boundary specifies encapsulated locations */
boundary { pool, pool‘rep, pool‘rep‘any }

end
module Client =

import I
meth main () : unit = /* frame conditions elided */

var c: C in
c := new C;
c.f := 0;
/* Writes to locations in the boundary of I are disallowed */
/* pool := {} */ /* raises an error */

end

(* WhyML program corresponding to main *)
let main (s: state) : unit =

let c = ref null in
c := mk_C s; (* allocate a new object of type C in state s *)
(* assertion added by WhyRel’s encap check

ensures c isn’t contained in the boundary of I *)
assert { ¬ (Rgn.mem c (Rgn.union pool (img_rep s s.pool))) };
set_f s !c 0; (* translation of c.f := 0 *)

Fig. 13: An example of WhyRel’s encapsulation check.

Kruskal’s minimum spanning tree algorithm linked against different modules imple-
menting union-find, which requires couplings equating the partitions represented by
the two versions. For all examples, VCs are discharged using the SMT solvers Alt-Ergo,
CVC4, and Z3. Replaying proofs of most developments using Why3’s saved sessions
feature takes less than 30 minutes on a machine with an Intel Core i5-6500 processor
and 32 gigabytes of RAM.

A primary goal of this work is to investigate whether verifying relational properties
of heap manipulating programs can be performed in a manner tractable to SMT-based
automation, and for the most part, we believe WhyRel provides a promising answer.
The tool serves as an implementation of relational region logic and demonstrates that
even its additional proof obligations for encapsulation can be encoded using first-order
assertions. In fact, exploration of case studies using WhyRel was instrumental in
designing proof rules of relational region logic.

Reasoning about heap effects à la region logic is generally simple and VCs get
discharged quickly using SMT. However, WhyRel generates some technical lemmas
which require considerable manual effort to prove; these lemmas ensure that private
invariants and couplings are framed by module boundaries. These lemmas usually
involve reasoning about image expressions, which involve existentials and nontrivial
set operations on regions. Given our encoding of states and regions, SMT solvers seem
to have difficulties solving these goals. Manual effort involves applying a series of

19



Why3 transformations (or proof tactics) and introducing intermediate assertions. We
conjecture that the issue can be mitigated by using specialized solvers [27] or different
heap encodings [28].

Apart from these challenges related to verification, we note that specs in region logic
tend to be verbose when compared to other formalisms such as separation logic [8].

6 Related work
WhyRel is closely modeled on relational region logic, developed in [7]. That article
provides a high-level overview of WhyRel, using a small set of examples verified in the
tool to motivate aspects of the formal logic; but it doesn’t give a full presentation of the
tool or go into details about the encoding. It provides comprehensive soundness proofs
of the logic and shows how the VCs WhyRel generates and the checks it performs
correspond closely to obligations of relational proof rules. The article builds on a line
of work on region logic [8, 9, 29]. The VERL tool implements an early version of unary
region logic without encapsulation and was used to evaluate a decision procedure for
regions [27]. A previous paper on WhyRel describes the tool and a few select case
studies [14]. The current article extends it and includes additional details on case studies
and tool implementation. The encoding of program states detailed in Sec. 4 differs
from the encoding described in [14] and helps reduce the overall verification burden on
users. Previously, WhyRel would translate field updates to direct writes to the state
parameter. The user would have to prove the state invariant is preserved after each
of these writes. This is no longer the case thanks to the judicious use of setters. The
encoding may be improved further by exploiting Why3’s features for abstraction [30].

For local reasoning about pointer programs, separation logic is an effective and
elegant formalism. For relational verification, ReLoC [31], based on the Iris separation
logic and built in the Coq proof assistant supports, apart from many others, language
features such as dynamic allocation and concurrency. However, we are unaware of
auto-active relational verifiers based on separation logic.

Alignments for relational verification have been explored in various contexts. In
WhyRel, the biprogram syntax captures alignment based on control flow, but also caters
to data-dependent alignment of loops through the use of alignment guards (as discussed
in Sec. 3). Churchill et al. [16] develop a technique for equivalence checking by using data
dependent alignments represented by control flow automata which they use to prove
correctness of a benchmark of vectorizing compiler transformations and hand-optimized
code. Unno et al. [32] address a wide range of relational problems including k-safety and
co-termination, expressing alignments and invariants as constraint satisfaction problems
they solve using a counterexample-guided inductive synthesis (CEGIS)-like technique.
Their work is applied to benchmarks proposed by Shemer et al. [5] who develop a
technique for equivalence and regression verification. Both the above works represent
alignments as transition systems and perform inference of relational invariants and
alignment conditions. Itzhaky et al. [33] more tightly integrate solving for alignments
with solving for invariants. Since inference relies on solvers, the techniques are most
effective on programs that can be encoded in ways amenable to the solvers. Currently
this does not include heap based data structures.

20



More recently, Dickerson et al. [19] develop a technique for searching for good
alignments represented in a form similar to our biprograms. They use e-graphs to
compactly represent the space of all possible alignments of two programs, and use
sample executions to guide the search. An algebraic view of alignment is also explored
by Antonopoulos et al. [34]. These techniques may lead to ways for an auto-active tool
to help the user explore alignments.

A promising approach by Barthe et al. [2] reduces relational verification to proving
formulas in trace logic, a multi-sorted first-order logic using first-order provers. In trace
logic, conditions can be expressed on traces including relationships between different
time points without recourse to alignment per se.

Sousa and Dillig develop Descartes [35] for reasoning about k-safety properties
of Java programs automatically using implicit product constructions and in a logic
they term Cartesian Hoare logic. Their work is furthered by Pick et al. [36] who
develop novel techniques for detecting alignments. The REFINITY [37] workbench
based on the interactive KeY tool can be used to reason about transformations of Java
programs; heap reasoning relies on dynamic frames and relational verification proceeds
by considering abstract programs. Other related tools include SymDiff [38] which is
based on Boogie and can modularly reason about program differences in a language-
agnostic way, and LLRêve [39] for regression verification of C programs. Eilers et al. [40]
develop an encoding of product programs for noninterference that facilitates procedure-
modular reasoning. They verify a large collection of benchmark examples using the
Viper toolchain. Eilers et al. [41] explore the advantages of product constructions at
the intermediate verification language level, such as in WhyML, over constructions
at the source level. Recent works address the verification of ∀∃ relational properties
which encompass relations such as refinement and formulations of noninterference and
go beyond what WhyRel supports [18, 32, 33].

7 Conclusion
In this article we present WhyRel, a prototype for relational verification of pointer
programs that supports dynamic framing and state-based encapsulation. The tool
faithfully implements relational region logic and demonstrates how its proof obligations,
including those related to encapsulation, can be encoded in a first-order setting. We’ve
performed a number of representative examples in WhyRel, leveraging support Why3
provides for SMT, and believe these demonstrate the amenability of region logic, and
its relational variant, to automation.

Acknowledgments. We thank the anonymous TACAS 2023 reviewers and artifact
evaluators for their thorough feedback and suggestions which have led to major
improvements in this article. We also thank Lennart Beringer for detailed feedback
and thoughts on improving the article. We thank Seyed Mohammad Nikouei who
built an initial version of WhyRel which helped guide the design of the current
version. Nagasamudram and Naumann were partially supported by NSF award 1718713.
Banerjee’s research was based on work supported by the NSF, while working at the
Foundation. Any opinions, findings, and conclusions or recommendations expressed in
this article are those of the authors and do not necessarily reflect the views of the NSF.

21



Data Availability Statement. The current development version of WhyRel can
be found at https://github.com/dnaumann/RelRL. The previous version of the tool
(described in [14]), including sources and Why3 session files for all case studies, can be
found on Zenodo with identifier https://doi.org/10.5281/zenodo.7308342 [42].

References
[1] Strichman, O., Godlin, B.: Regression verification - a practical way to verify

programs. In: Verified Software: Theories, Tools, Experiments (VSTTE), pp.
496–501 (2008)

[2] Barthe, G., Eilers, R., Georgiou, P., Gleiss, B., Kovács, L., Maffei, M.: Verifying
relational properties using trace logic. In: Formal Methods in Computer Aided
Design, pp. 170–178 (2019). https://doi.org/10.23919/FMCAD.2019.8894277

[3] Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Static
Analysis Symposium (SAS). Lecture Notes in Computer Science, vol. 3672, pp.
352–367 (2005)

[4] Kovács, M., Seidl, H., Finkbeiner, B.: Relational abstract interpretation for the
verification of 2-hypersafety properties. In: ACM Conference on Computer and
Communications Security, pp. 211–222 (2013). https://doi.org/10.1145/2508859.
2516721

[5] Shemer, R., Gurfinkel, A., Shoham, S., Vizel, Y.: Property directed self composition.
In: Computer Aided Verification, pp. 161–179 (2019)

[6] Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Ball, T., Shankar,
N., Zuck, L. (eds.) Usable Verification Workshop (2010). http://fm.csl.sri.com/
UV10/submissions/uv2010_submission_20.pdf

[7] Banerjee, A., Nagasamudram, R., Naumann, D.A., Nikouei, M.: A relational
program logic with data abstraction and dynamic framing. ACM Transactions on
Programming Languages and Systems 44(4), 25–125136 (2022) https://doi.org/
10.1145/3551497

[8] Banerjee, A., Naumann, D.A., Rosenberg, S.: Local reasoning for global invariants,
part I: Region logic. Journal of the ACM 60(3), 18–11856 (2013) https://doi.org/
10.1145/2485982

[9] Banerjee, A., Naumann, D.A.: Local reasoning for global invariants, part II:
Dynamic boundaries. Journal of the ACM 60(3), 19–11973 (2013) https://doi.
org/10.1145/2485981

[10] Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing
without restrictions. In: Formal Methods. Lecture Notes in Computer Science, vol.
4085, pp. 268–283 (2006). https://doi.org/10.1007/11813040_19

22

https://github.com/dnaumann/RelRL
https://doi.org/10.5281/zenodo.7308342
https://doi.org/10.23919/FMCAD.2019.8894277
https://doi.org/10.1145/2508859.2516721
https://doi.org/10.1145/2508859.2516721
http://fm.csl.sri.com/UV10/submissions/uv2010_submission_20.pdf
http://fm.csl.sri.com/UV10/submissions/uv2010_submission_20.pdf
https://doi.org/10.1145/3551497
https://doi.org/10.1145/3551497
https://doi.org/10.1145/2485982
https://doi.org/10.1145/2485982
https://doi.org/10.1145/2485981
https://doi.org/10.1145/2485981
https://doi.org/10.1007/11813040_19


[11] Bobot, F., Filliâtre, J.-C., Marché, C., Paskevich, A.: Why3: Shepherd your
herd of provers. In: Boogie 2011: First International Workshop on Intermediate
Verification Languages, pp. 53–64 (2011)

[12] Filliâtre, J.: One logic to use them all. In: Int’l Conf. on Automated Deduction.
Lecture Notes in Computer Science, vol. 7898, pp. 1–20 (2013). https://doi.org/
10.1007/978-3-642-38574-2_1

[13] Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Formal Methods. Lecture Notes in Computer Science, vol. 6664 (2011)

[14] Nagasamudram, R., Banerjee, A., Naumann, D.A.: The WhyRel prototype for
modular relational verification of pointer programs. In: Tools and Algorithms for
the Construction and Analysis of Systems. Lecture Notes in Computer Science,
vol. 13994, pp. 133–151 (2023). https://doi.org/10.1007/978-3-031-30820-8_11

[15] Hoare, C.A.R.: Proofs of correctness of data representations. Acta Informatica 1,
271–281 (1972) https://doi.org/10.1007/BF00289507

[16] Churchill, B.R., Padon, O., Sharma, R., Aiken, A.: Semantic program align-
ment for equivalence checking. In: ACM Conf. on Program. Lang. Design and
Implementation, pp. 1027–1040 (2019)

[17] Naumann, D.A.: Thirty-seven years of relational Hoare logic: Remarks on its
principles and history. In: 9th International Symposium On Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISOLA), Part II. Lecture
Notes in Computer Science, vol. 12477, pp. 93–116 (2020). Extended version at
https://arxiv.org/abs/2007.06421. https://doi.org/10.1007/978-3-030-61470-6_7

[18] Beutner, R.: Automated software verification of hyperliveness. In: Tools and
Algorithms for the Construction and Analysis of Systems, pp. 196–216 (2024)

[19] Dickerson, R., Mukherjee, P., Delaware, B.: Kestrel: Relational verification using
e-graphs for program alignment. CoRR abs/2404.08106 (2024) https://doi.org/
10.48550/ARXIV.2404.08106 2404.08106

[20] Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: International Conference on Logic for Programming Artificial Intelligence and
Reasoning, pp. 348–370 (2010). https://doi.org/10.1007/978-3-642-17511-4_20

[21] Baudin, P., Bobot, F., Bühler, D., Correnson, L., Kirchner, F., Kosmatov, N.,
Maroneze, A., Perrelle, V., Prevosto, V., Signoles, J., Williams, N.: The dogged
pursuit of bug-free C programs: the Frama-C software analysis platform. Commun.
ACM 64(8), 56–68 (2021) https://doi.org/10.1145/3470569

[22] Eilers, M., Müller, P.: Nagini: A static verifier for python. In: Computer Aided
Verification, pp. 596–603 (2018)

23

https://doi.org/10.1007/978-3-642-38574-2_1
https://doi.org/10.1007/978-3-642-38574-2_1
https://doi.org/10.1007/978-3-031-30820-8_11
https://doi.org/10.1007/BF00289507
https://arxiv.org/abs/2007.06421
https://doi.org/10.1007/978-3-030-61470-6_7
https://doi.org/10.48550/ARXIV.2404.08106
https://doi.org/10.48550/ARXIV.2404.08106
https://arxiv.org/abs/2404.08106
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/3470569


[23] Filliâtre, J.-C., Gondelman, L., Paskevich, A.: A Pragmatic Type System for
Deductive Verification. working paper or preprint (2016). https://inria.hal.science/
hal-01256434

[24] Bornat, R.: Proving pointer programs in Hoare logic. In: Mathematics of Program
Construction, pp. 102–126 (2000)

[25] Barthe, G., Crespo, J.M., Kunz, C.: Beyond 2-safety: Asymmetric product pro-
grams for relational program verification. In: Logical Foundations of Computer
Science, International Symposium. Lecture Notes in Computer Science, vol. 7734,
pp. 29–43 (2013)

[26] Eilers, M., Müller, P., Hitz, S.: Modular product programs. In: Programming
Languages and Systems, European Symposium on Programming, pp. 502–529
(2018)

[27] Rosenberg, S., Banerjee, A., Naumann, D.A.: Decision procedures for region
logic. In: Int’l Conf. on Verification, Model Checking, and Abstract Interpretation.
Lecture Notes in Computer Science, vol. 7148, pp. 379–395 (2012)

[28] Schmid, G.S., Kuncak, V.: Proving and disproving programs with shared mutable
data. CoRR abs/2103.07699 (2021) 2103.07699

[29] Banerjee, A., Naumann, D.A., Nikouei, M.: A logical analysis of framing for speci-
fications with pure method calls. ACM Transactions on Programming Languages
and Systems 40(2), 6–1690 (2018)

[30] Filliâtre, J.-C., Paskevich, A.: Abstraction and genericity in Why3. In: Lever-
aging Applications of Formal Methods, Verification and Validation: Verification
Principles, pp. 122–142 (2020)

[31] Frumin, D., Krebbers, R., Birkedal, L.: ReLoC: A mechanised relational logic
for fine-grained concurrency. In: IEEE Symp. on Logic in Computer Science, pp.
442–451 (2018)

[32] Unno, H., Terauchi, T., Koskinen, E.: Constraint-based relational verification. In:
Computer Aided Verification. Lecture Notes in Computer Science, vol. 12759, pp.
742–766 (2021). https://doi.org/10.1007/978-3-030-81685-8_35

[33] Itzhaky, S., Shoham, S., Vizel, Y.: Hyperproperty verification as CHC satisfiability.
In: Programming Languages and Systems, European Symposium on Programming.
Lecture Notes in Computer Science, vol. 14577, pp. 212–241 (2024). https://doi.org/
10.1007/978-3-031-57267-8_9 . https://doi.org/10.1007/978-3-031-57267-8_9

[34] Antonopoulos, T., Koskinen, E., Le, T.C., Nagasamudram, R., Naumann, D.A.,
Ngo, M.: An algebra of alignment for relational verification. Proc. ACM Program.
Lang. 7(POPL) (2023) https://doi.org/10.1145/3571213

24

https://inria.hal.science/hal-01256434
https://inria.hal.science/hal-01256434
https://arxiv.org/abs/2103.07699
https://doi.org/10.1007/978-3-030-81685-8_35
https://doi.org/10.1007/978-3-031-57267-8_9
https://doi.org/10.1007/978-3-031-57267-8_9
https://doi.org/10.1007/978-3-031-57267-8_9
https://doi.org/10.1145/3571213


[35] Sousa, M., Dillig, I.: Cartesian Hoare Logic for verifying k-safety properties. In:
ACM Conf. on Program. Lang. Design and Implementation, pp. 57–69 (2016)

[36] Pick, L., Fedyukovich, G., Gupta, A.: Exploiting synchrony and symmetry in
relational verification. In: Computer Aided Verification, pp. 164–182 (2018)

[37] Steinhöfel, D.: REFINITY to model and prove program transformation rules. In:
Asian Symposium on Programming Languages and Systems APLAS. Lecture
Notes in Computer Science, vol. 12470, pp. 311–319 (2020). https://doi.org/10.
1007/978-3-030-64437-6_16

[38] Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In: Computer Aided
Verification, pp. 712–717 (2012). https://doi.org/10.1007/978-3-642-31424-7_54

[39] Kiefer, M., Klebanov, V., Ulbrich, M.: Relational program reasoning using compiler
IR: Combining static verification and dynamic analysis. J. Automated Reasoning
60, 337–363 (2018)

[40] Eilers, M., Müller, P., Hitz, S.: Modular product programs. ACM Trans. Program.
Lang. Syst. 42(1), 3–1337 (2020) https://doi.org/10.1145/3324783

[41] Eilers, M., Meier, S., Müller, P.: Product programs in the wild: Retrofitting
program verifiers to check information flow security. In: Silva, A., Leino, K.R.M.
(eds.) Computer Aided Verification, pp. 718–741. Springer, Cham (2021)

[42] Nagasamudram, R., Banerjee, A., Naumann, D.A.: The WhyRel Prototype for
Modular Relational Verification of Pointer Programs. Zenodo (2022). https://doi.
org/10.5281/zenodo.7308342

25

https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1145/3324783
https://doi.org/10.5281/zenodo.7308342
https://doi.org/10.5281/zenodo.7308342

	Introduction
	Organization

	A tour of WhyRel
	Programs and specifications
	Example client, equivalence spec, and verification
	Relational specs for Stack and verification



	Patterns of alignment
	Differing control structures
	Conditionally aligned loops
	Another example of conditional alignment



	Encoding and design
	Encoding program states
	Translating unary programs and effects
	Biprograms
	Proof obligations for encapsulation



	Evaluation
	Related work
	Conclusion
	Acknowledgments
	Data Availability Statement



