
Ownership transfer and abstraction

KSU CIS TR 2004-1

October, 2003

Anindya Banerjee1 and David A. Naumann2

1 Computing and Information Sciences, Kansas State University, USA
ab@cis.ksu.edu

2 Computer Science, Stevens Institute of Technology, USA
naumann@cs.stevens-tech.edu

Abstract. Ownership confinement expresses encapsulation in heap struc-
tures, in support of modular reasoning about effects, representation in-
dependence, and other properties. This paper studies heap encapsulation
from the perspective of substitutability for the class construct of Java-like
languages and a particular form of confinement is justified by a represen-
tation independence result. A syntax-directed static analysis is specified
and proved sound for checking confinement in the presence of ownership
transfer.

1 Introduction

Contemporary programming languages offer well developed features in support
of data abstraction, such as module-scoped fields and procedures/methods, en-
forced through strong typing. But few programmers have failed to discover
that the encapsulation provided by standard constructs in contemporary object-
oriented languages is easily breached by accidental or intentional sharing. In
the last decade a number of disciplines have been proposed for expressing and
enforcing encapsulation on heap structure, using both types and logics, to facil-
itate reasoning about properties of programs. Such properties include memory
safety of low-level code [20], data races [17, 5], software architecture [1], modular
reasoning about functional correctness of source programs [26, 9].

A fundamental issue is the encapsulation of data representations. Modular
reasoning about “modifies” specifications can be achieved if representation ob-
jects (called reps in the sequel) are not accessible except via the abstraction’s
interface [18, 21]. Class substitutability, i.e., equivalence or refinement between
programs using different versions of an abstract data type can be shown in terms
of a single instance of the type, provided the reps for that instance are suitably
encapsulated [2, 6].

Many alias controls involve a notion of object ownership. Despite impressive
advances, none of the extant proposals for ownership are entirely satisfactory, for
various reasons, e.g., failing to enforce a property sufficiently strong for soundness
of the intended reasoning or imposing unnecessarily strong restrictions that con-
flict with common design patterns and data structure optimizations. We empha-
size two shortcomings in particular. First, while there are attractive formulations

in terms of typing, this requires substantial annotations and these annotations
are subject to significantly different rules depending on what sort of reasoning
is of interest. By contrast, ordinary program types, and some refinements such
as non-null types [12], are useful for a variety of purposes.

A second major shortcoming is that the relation of ownership is fixed. For ex-
ample, it has often been suggested that each node of a data structure “owns” its
successor nodes, motivating a hierarchical notion of ownership. But if a node’s
owner cannot be changed then imperative reorganization of structure is quite
restricted. Another class of examples involves the explicit need to change own-
ership, e.g., initialization of a rep by a client or moving a task from one queue to
another. In some proposals, the connection between an object and its owner has
an explicit, immutable runtime representation [6]. In others, static rules preclude
change of ownership.

In this paper we focus on representation independence, which is a way to
assess encapsulation in programs independent from particular forms of specifica-
tion. The first contribution of this paper is to define a state predicate expressing
a notion of ownership that is sufficiently strong for soundness of single-instance
reasoning about equivalence of data representations in the presence of ownership
transfer. The second contribution is to identify the isolation condition needed
at transfer points and to give a sound static analysis for ownership confinement
using rules that involve only ordinary program types.

In Section 2 we use examples to illustrate an ownership confinement prop-
erty sufficient for modular reasoning about equivalence of class implementations.
In Section 3 we consider further examples to illustrate transfer of reps between
instances of an abstract data type as well as transfer between client and ab-
straction. Section 4 defines an illustrative sequential class-based language with
unrestricted aliasing and recursive types. The semantics is sufficiently abstract
and compositional to support proof of representation independence but it makes
it difficult to formalize transferrable ownership. Section 5 formalizes ownership
confinement and an isolation property akin to external uniqueness [10]. Section 6
shows that, modulo isolation, confinement can be statically enforced using con-
straints expressed in terms of program types without additional annotation and
with sufficient flexibility to allow interesting design patterns (including all of the
examples in Sections 2 and 3) beyond the reach of previous type systems. Sec-
tion 7 sketches the representation independence theorem. Section 8 concludes.
For lack of space, proofs are omitted. The appendix gives an illustrative case
from the proof for soundness of the static analysis, along with key lemmas.

2 Representation independence and ownership

Consider the example program in Fig. 1. Class TaskQueue maintains a linked
list of tasks and has a (simplistic) interface for executing tasks. Of course a
sequence can also be represented using an array. The programmer used a private
field in TaskQueue to reference the list, hoping to encapsulate the data structure
and thus allow it to be replaced by code using a different representation, say
an array of Task, without affecting client code. If the internal representation
is indeed encapsulated, it should be sound to reason about the replacement in

2

class Task { // serves as interface
unit exec(){ abort } }

class Node { // used by TaskQueue as rep
Task ob;
Node nxt; // next node in list
unit setOb(Task x){ self.ob := x } Task getOb(){ result := self.ob }
unit setNxt(Node n){ self.nxt := n } Node getNxt(){ result := self.nxt }
unit exec(){ self.ob.exec() } }

class TaskQueue { // owner, maintains list of Tasks
Node fst; // first node in list
unit add(Task ob){

Node n := new Node; n.setOb(ob); n.setNxt(self.fst); self.fst := n }
unit execOneTaskVsn1(){

Node n := “choose a task in the queue”; Task t := n.getOb(); t.exec() }
unit execOneTaskVsn2(){

Node n := “choose a task in the queue”; n.exec() } }

Fig. 1. Task queue. In our illustrative language, object types are implicitly references,
fields are private to their class, and the final value of variable result is returned.

local terms: one describes the connection between the array and linked list data
structures (a coupling relation) and verifies that relation is preserved by the two
versions of each method of class TaskQueue (the simulation property).

If instances of TaskQueue were allowed to have lists sharing a common tail
then the reasoner must resort to global reasoning about the entire heap and in
particular all instances of the abstraction rather than a single exemplary one.1

We aim for a discipline of confinement for reps that justifies a representation
independence theorem [23–25, 15, 19]. It says: if the methods of two versions
of TaskQueue have the simulation property for a single instance of TaskQueue
(together with its reps), then simulation holds for all client programs and un-
boundedly many instances.

For programs in an object-oriented language, formulation of a useful theorem
must take into account not just the interface for clients but also the interface
to subclasses of the abstraction. Moreover, there can be outgoing calls to the
client (as in the execOneTask methods) which can lead to calls back to the ab-
straction. The abstraction theorem in the sequel (Theorem 3, Section 7) handles
these issues adequately, extending our previous work [2] to encompass ownership
transfer.

We formalize encapsulation in two steps. The first step is to partition the heap
in terms of the types of the objects of interest. Then restrictions are imposed
on references between blocks of the partition. Suppose Own is the name of the
class for which two versions are to be shown equivalent. Each version of Own

1 If clients can gain direct access to reps, then the replacement is not likely to be
possible at all unless all clients are known, in which case non-modular reasoning
about those clients is necessary.

3

other
islands

owners

clients

reps

Main Task

queue

Node Node

free reps Node

PSfrag replacements
Ch

Uh

Ohj Ohi

Rhj Rhi

Fig. 2. Confinement scheme for island j with respect to another island i. Dashed boxes
delimit partition blocks and dotted lines indicate prohibited references. The right side
depicts object instances in a confined heap with a single island.

uses some representation objects. We assume that there is a class name Rep

(resp. Rep′) such that every representation object for one version of Own has
type ≤ Rep (resp. ≤ Rep′ for the other version). Typically, Rep and Rep′ are
library classes; we allow that one is a subclass of the other. Each version of Own

encapsulates its reps, so it suffices to define encapsulation for Rep.

We write C >6≤ D for C � D and D � C . Because C >6≤ D implies that
classes C and D have no instances in common, we can define the partition in
terms of types (under the assumption Own >6≤ Rep), as depicted in Fig. 2. The
set of objects in the heap is partitioned2 into the following: (a) The client block,
Ch , containing any object with type C such that C � Own and C � Rep. (b)
Some islands of the form Oh i ∗Rhi where Ohi consists of a single owner object
(with type C , C ≤ Own) and Rh i consists of the encapsulated representations
for that owner (each of which has some type D ≤ Rep).3 (c) A block, Uh , for
objects of class ≤ Rep that are not encapsulated by an owner. The block Uh
allows us to remedy a limitation of our previous work, where a library class could
not be used both as the designated rep class and for other uses. In the sequel we
also consider transfers of reps between clients and owners.

The second step in formalizing encapsulation is to restrict the direct points-
to relation in terms of the partition. A heap is confined if there is a partition (as
above) such that

– Clients do not point to encapsulated reps.

In our notation for heaps, this is written Ch 6; Rhj , where h 6; h′ says no
location in dom h′ is in a field of an object of h.

– Islands are separated from free reps (Oh j ∗Rhj 6; Uh and Uh 6; Ohj ∗Rhj).

– Islands are separated from each other: owners do not point to reps in a
different island (Ohj 6; Rhk) and encapsulated reps do not point to reps or
owners in a different island (Rhj 6; Ohk ∗ Rhk).

2 We allow the “partition” blocks to be empty.
3 We use the symbol ∗ for union of disjoint heaps, as in Separation Logic [26].

4

unit transferTo(TaskQueue o){ Node n := self.pull(); o.push(n) }
unit transferFrom(TaskQueue o){ Node n := o.pull(); self.push(n) }
unit push(isol Node n){ n.setNxt(self.fst); self.fst := n }
isol Node pull(){ result := self.fst; self.fst := result.getNext(); result.setNext(null) }

Fig. 3. Methods to be added to TaskQueue, possibly with module scope for push, pull.

– The pointers from Ohi to Rh i are in private fields of Own. The formal
notation is Ohi 6;

ḡ Rhi which weakens 6; by excluding the private fields ḡ

of Own.

Methods defined in a subclass of Own may manipulate reps but not store them in
its fields; this allows reasoning about versions of the owner class independently
from its subclasses [2]. A subclass of TaskQueue could, for example, augment
Node with fields to store accounting information; class TaskQueue would use a
factory method [13] to construct nodes.

Our notion of confinement does not involve hierarchical ownership [8, 9]. It
could well be that instances of Own are used as the representation of some ob-
ject we have classified as a client, but this should have no relevance in modular
reasoning about Own. Similarly, instances of Rep may themselves have asso-
ciated representation objects, perhaps of an incomparable class Rep1 . But for
reasoning about an instance of Own, say in island j , it is enough to lump all such
objects together in block Rhj . It could be convenient to refer to these objects
using transitive ownership relations, but the hierarchical structure has no other
significance so it is also possible to designate them using the straightforward
generalization of our definitions to multiple classes Rep, Rep1,

3 Ownership transfer

For load balancing it might be useful to move a task from one TaskQueue, say
q0, to another, say q1. Dequeuing from q0 and enqueuing to q1 would mean
discarding a node and constructing a new one. Better performance might be
achieved by transferring the existing node. In a more elaborate example, it might
be necessary to retain the node in order to preserve accounting information about
the task (perhaps visible only to a subclass of TaskQueue).

Consider the invocation q0.transferTo(q1) using a method defined in Fig. 3.
The intended effect is to move the first node from the island of q0 to the island of
q1. This code attempts to avoid several potential violations of confinement after
the transfer. If transferTo referenced n after o.push(n), say to store n in a field
of q0, then confinement would be violated because q0 would point to a node in
q1’s partition. Clearly we must consider confinement for local variables; requisite
conditions can be derived by imagining that locals are like additional fields of
self. In the case of n, we want it to be treated linearly in the sense that after its
value is passed to push it is no longer used by transferTo. (This is signalled by
tag isol as discussed in the sequel.) Sharing of a Task by different nodes within
one queue or between queues is very different; such sharing is allowed without
restriction.

5

class Rsrc { // rep for RsrcMgr
Object it;
Object getIt(){ result := self.it; }
unit setIt(Object x){ self.it := x; } }

class RsrcMgr { // owner
Rsrc freeList;
isol Rsrc alloc(){

result := self.freeList;
Object o := result.getIt(); self.freeList := (Rsrc)o; result.setIt(null); }

unit free(isol Rsrc r){ r.setIt(self.freeList); self.freeList := r; } }
class Client {

RsrcMgr rm := . . .
Rsrc r1, r2, r3; r1 := new Rsrc; r2 := new Rsrc;
// r1 is isolated, r2 pinned
rm.free(r1); r2 := rm.alloc(); r3 := r2;
rm.free(r2); } } // disallowed because r2 not isolated

Fig. 4. Bidirectional transfer.

In this example, an encapsulated rep is transferred between two instances, q0
and q1 of the TaskQueue abstraction. Another form of transfer is between client
and abstraction. Detlefs, Leino, and Nelson [11] describe an example where it is
necessary for the client of an abstraction to initialize a rep, in order to maintain
another abstraction. This is a transfer from client to instance of an encapsulating
abstraction. Yet another example is in resource management, where there may
be bidirectional transfer of encapsulated data between client and abstraction.
Fig. 4 gives a toy example; the Rsrc can be used by clients to hold some object
in a field, it, that is also used by the manager for chaining free objects.

The confinement scheme is adequate to ensure representation independence
even in the presence of transfers. The challenge is to ensure that confinement
is indeed maintained despite transfers. What is needed is that at the moment
of transfer, the object explicitly transferred is the root of a block sufficiently
separated that it can be merged with a different partition without violating
confinement. (This is the purpose of the assignment result.setNxt(null) in the
pull method in Fig. 3.) When this moment occurs is an interesting question. We
simplify the answer by allowing transfers via method calls, so the transfer can be
said to take place in the passing of arguments or results. An alternative is to allow
transfers by direct field assignments. For private fields this would be allowed
among owners though not between owner and client; but for a compositional
formulation it would seem to require an atomic transfer construct which we
prefer to avoid.

A key challenge is how to ensure that the block to be transferred is suf-
ficiently separated. To meet this challenge, we can use simple but restrictive
syntactic conditions (as in alias and ownership types), or we confront a need for
general reachability predicates. On one hand, the confinement property delimits
the program variables from which reachability needs to be considered, but on
the other hand our confinement property requires, e.g., absence of pointers be-

6

unit push2(isol Node n) { n.getNxt().setNxt(fst); fst := n }
unit transferTwoTo(TaskQueue o1, TaskQueue o2) {

Node n1, n2;
n1 := fst; n2 := fst.getNxt().getNxt(); fst := n2.getNxt().getNxt());
// n1 is first, n2 is third, fst is fifth
n1.getNxt().setNxt(null); n2.getNxt().setNxt(null);
// n1 and n2 isolated
o1.push2(n1);
// n1 is dead variable, n2 still isolated
o2.push2(n2) }

Fig. 5. Methods to be added to TaskQueue for transfer of a two-element segment to
each of two other TaskQueues. (Precondition: fst points to an acyclic chain of at least
four nodes.)

tween reps in different islands, even reps that are hierarchically “components”
of the reps directly manipulated by Own. This problem is one that we do not
solve but rather specify. The specification in itself is a significant challenge in a
denotational semantics where there is no explicit stack. Yet without a composi-
tional semantics it is an open problem how to express and prove representation
independence [14].

In our previous work [2], the key property which facilitates compositional
reasoning is that the result heap h0 from any command (and thus every method
meaning) extends the initial heap h in this sense:

– For every confining partition of h there exists a confining partition of h0

with possibly additional islands but each block of h extends, without losing
any objects, to a corresponding block in the partition of h0 (with possibly
additional objects).

A program state consists of a heap h and a store η that gives values for
the current command’s parameters/variables. Confinement of a state, written
conf Γ (h, η), is defined so that the values in the range of η could not violate heap
confinement if stored in fields of the object ηself. For example, if Γ self ≤ Own

then no reps in rng η may be in other islands. The above notion of extension
facilitates a compositional proof of preservation of confinement: Because confine-
ment of a store η depends only on the domain of the heap, not states of objects,
it follows easily that if conf Γ (h, η) and h0 extends h then conf Γ (h0, η).

Transfer invalidates this extension property. A transfer may move a rep be-
tween the free reps and an island or between islands. Figures 3 and 4 show simple
cases where the transfer occurs as direct result of a method call. What makes the
problem difficult is that the transfer may occur indirectly due to a chain of calls.
Fig. 5 illustrates transfer of an isle consisting of two objects, forming an isolated
pool. It also shows that a caller’s store can usefully contain reps during a call
to a method that may perform transfers. After the call o1.push2(n1), the store
including n1 is not confined because n1 has been transferred from the island for
self to the island for o1. This could be solved by using a destructive read of n1 as
in some proposals for uniqueness, but Boyland has pointed out that it is enough

7

to ensure that the alias is a dead variable at this point [7]. We formalize this by
removing n1 from the state space after the call, so it is a syntax error to access
n1 following a call like o1.push2(n1) that passes it by isol.

Fig. 4 shows a buggy version of transfer. Because of the assignment r3 := r2
in class Client, the method call rm.free(r2) results in an unconfined state because
r3 retains a pointer to the transferred object. One way a programmer might
choose to prevent such problems is to record in the state of the object r2 that
it is not allowed to be removed, e.g., by setting a boolean lock field pin. We
adopt this idea as a means of specifying a condition in the semantics of method
call to prevent the bad example. In the correct example of transfer, (Fig. 5),
immediately prior to the call o1.push2(n1), the semantics sets n2.pin to express
that after the call the pinned object is still in the caller’s island. In the buggy
version of Fig. 4, r3 is pinned, as it is a rep still referenced in the caller’s store.
Now we can specify just in the semantics of the called method that the pinned
object r3 moves to a new block, thus violating confinement.

The pinning mechanism is formulated as an auxiliary field in each rep, ma-
nipulated in an instrumented version of the semantics. Its only purpose is to be
able to define the confinement condition in a modular way.

Our assumption about isolation for method call is expressed directly in terms
of aliasing at the point of call: there can be no alias from the store of objects
passed through designated isol parameters. Pinning lets us say that except for
arguments passed as isol parameters, no objects are transferred —and to say
this purely in terms of the semantics of the called method, without mention of
the caller’s store. (Much less the stack of callers’ stores.)

4 Language

This section sketches the formalization of a language with class-based visibility,
mutable local variables and fields, recursive types and methods, type tests and
casts. We emphasize the typing system that accounts for how isol arguments
are removed from the caller’s state space. More leisurely and complete treatment
of a formalization that is similar in all other regards can be found in [2]; it
draws on [16]. The language is similar to the imperative core of Java/C#, and
in particular the data types T range over primitives bool and unit and class
names C .

A program is given as a class table CT , a finite partial function sending class
name C to its declaration CT (C) which may make mutually recursive references
to other classes. Consider a declaration class C extends D { T̄1 f̄ ; M̄ }. Let
M be in the list M̄ of method declarations, with M = T m(T̄2 x̄) {S}. We
record the typing information by defining mtype(m, C) = T̄2→T , the parameter
names by pars(m, C) = x̄. For the declared fields, we define dfields C = (f̄ : T̄1).
To include inherited fields, we define fieldsC = dfields C ∪fields D. The rules for
field access and update enforce private visibility by using the dfields function.
Note that the pin field is not included in dfields and therefore cannot be accessed
in source code; it is only manipulated in the semantics.

A typing context Γ is a finite mapping from variable and parameter names
to data types, such that self ∈ dom Γ . Rather than formalizing the keyword isol

8

Γ ` e : D mtype(m, D) = T̄→T Γ ` ē : Ū
Ū ≤ T̄ x 6= self T ≤ Γ x F = {ēi | isol-tag(T̄i)} F ⊆ dom(Γ �self)

Γ ` x := e.m(ē) ↘ F

Γ ` S1 ↘ F (Γ �F) ` S2 ↘ F2

Γ ` S1; S2 ↘ F2

mtype(m,C) is undefined or equals T̄→T x̄ : T̄ , self : C, result : T ` S ↘ F

pars(m, C) is undefined or equals x̄ self, result 6∈ F

C ` T m(T̄ x̄){S}

Table 1. Selected typing rules for commands and method declaration.

in syntax, we take the view that a data type T can be tagged or not, and this is
tested by isol-tag T .

To account for variable n1 being dead in Fig. 5, we type commands using the
judgment form Γ ` S ↘ F which means that the initial state space of the call
is given by Γ but the final state space is Γ �F where F is a subset of dom Γ .
Selected rules are in Table 1. For any parameter with the isol tag, the argument
must be a local variable of the caller so that this variable can be explicitly
included in F . The judgements for other command constructs manipulates F in
a straightforward way.

A class table is well formed provided that each of its method declarations
is well formed according to the rule above. Moreover, it must be well tagged :
any occurrence of a type T such that isol-tagT must be either the return type
or parameter type for a method and also T ≤ Rep. Note that the target of a
call is not tagged. It is client and owner objects that can transfer reps among
themselves. If the target of a call has type Rep, that call is not making a transfer
so it does not make sense to tag it. What does need to be handled is that this
call can lead to other calls that result in transfer of this rep.

The semantics is compositional: commands and methods denote state trans-
fermers, defined as a limit of approximations. The state of a method in execution
is comprised of a heap h, which is a finite partial function from locations to ob-
ject states, and a store η , which assigns locations and primitive values to local
variables and parameters. A command denotes a function from initial state to
either a final state or the error value ⊥. More precisely, the meaning is a function
[[Γ ` S ↘ F]] in [[MEnv]] → [[Heap ⊗ Γ]] → [[(Heap ⊗ (Γ �F))⊥]]. The semantic
domain [[MEnv]] of method environments, maps each class C and method name
m to an appropriate method meaning. The semantic domains and command
semantics are straightforward — see Tables 5 and 6 in the appendix.

We only give the semantics for method call, as it is instrumented to manip-
ulate the pin field. For any P ⊆ locs(Rep↓) we define pin P h to be h but with
h ` pin = true for every ` ∈ P . Similarly, unpin P h is h but with h ` pin = false
for every ` ∈ P . The sematics, given in Table 2, pins the reps in the callers
store, i.e., those which must not be transferred by the call; upon return, they

9

[[Γ ` x := e.m(ē) ↘ F]]µ(h, η) =
let ` = [[Γ ` e : D]](h, η) in

if ` = nil then ⊥ else

let x̄ = pars(m, D) in

let d̄ = [[Γ ` ē : Ū]](h, η) in

let η1 = [x̄ 7→ d̄, self 7→ `] in

let P = {`′ | (`′ = ` ∨ `′ ∈ rng (η� F)) ∧ loctype `′ ≤ Rep ∧ ¬(h `′ pin)} in

let h1 = pin P h in

let (h2, d1) = µ(loctype `)m(h1, η1) in

let h0 = unpin P h2 in (h0, ([η | x 7→d1])�F)

Table 2. Method call semantics with auxiliary fields.

are unpinned unless they had already been pinned. None of the other semantic
clauses manipulate the pin fields.

Define pndh, the set of all locations pinned in h, as pndh = {` | ` ∈ dom h∧
loctype ` ≤ Rep∧ h ` pin = true}. We say h, h0 are equal up to pinning if there’s
P with h0 = pin P h or h0 = unpin P h.

Finally, as in [2], the semantics [[CT]] of a class table is defined as the least
upper bound of an ascending chain of method environments. This is because a
class table may have mutually recursive method declarations.

5 Semantic confinement, isolation, and pinning

We let ` range over Locs∪ {nil} in the following. Reachability is defined induc-

tively by `
h

−→ `′ iff ` ∈ dom h ∧ (` = `′ ∨ ∃`′′ ∈ rng(h `) • `′′
h

−→ `′ ∧ `′ 6= nil).
We shall define predicate isol h ` to mean that the object referenced by ` does
not have any sharing that prevents it from being transferred, and isol Γ (h, η)
to mean that any tagged variables in Γ -state (h, η) have this property. First we
define the block of reps reached from a candidate for transfer. For any h and

` ∈ [[Rep]], let isle ` h = {`′ | `
h

−→ `′ ∧ loctype `′ ≤ Rep}.

Definition 1 (isol). For heap h and ` ∈ [[Rep]], define isol h ` iff the following
hold.

– for all `′ , if `
h

−→ `′ then loctype `′ � Own (that is, ` reaches no owner)
– for all `′ ∈ dom h, if rng(h `′) ∩ isle ` h 6= ∅ then `′ ∈ isle ` h (that is, ` is

isolated from the rest of the heap)

For heap h and store η ∈ [[Γ]], define isol Γ (h, η) iff the following hold for all
x ∈ dom Γ such that isol-tag(Γ x).

– isol h (η x) (that is, η x is isolated from owners and heap)
– rng(η�x) ∩ isle (η x) h = ∅ (that is, η x is isolated from the store)

10

Note that in Figure 4, the call rm.free(r2) in class Client is disallowed because
r2 and r3 are aliases. Thus the heap location referenced by r2 is not isolated from
the store at the point of call.

Confinement for global state (h, η) for Γ , written conf Γ (h, η), is defined by
imposing conditions on η so that if η was taken to be an object then it would
be allowed in the partition block containing η self. Thus these conditions can be
expressed in terms of the type Γ self, except that in the case Γ self ≤ Rep one
must consider the two subcases where η self is in Uh and in some Rhj . There is
a similar definition for expressions. (See Def. 11 and 12 in the appendix.) The
conditions are also similar to the conditions for method results, in Def. 3 below.

To express that confinement is preserved, we need to connect the initial and
final heaps for methods, as a method may transfer some reps (possibly by calling
many other methods). The following definition expresses that some set P of reps
does not get transferred.

Definition 2 (confining P -extension, �P). For any P ⊆ locs(Rep↓) and
any h with confining partition h = Ch ∗ Uh ∗ Oh1 ∗ Rh1 ∗ . . . ∗ Ohk ∗ Rhk

(k ≥ 0), we define a confining P -extension of heap h0 to be an admissible
partition h0 = Ch0 ∗ Uh0 . . . that satisfies the following:

– n ≥ k
– dom(Ch) ⊆ dom(Ch0)
– dom(Uh) ∩ P ⊆ dom(Uh0)
– dom(Ohj) ⊆ dom(Oh0

j) for all j ≤ k

– dom(Rhj) ∩ P ⊆ dom(Rh0
j) for all j ≤ k

Define h �P h0 iff h is confined and for any confining partition of h, there is a
confining P -extension of h0 .

The following kind of confinement property of a transferrable location `, given
in terms of isle h `, can be proven. Essentially, if h has a confining partition and
Vh is the subheap of h determined by isol h `, then for any rep block (Uh or
one of the Rhj) we get a confining partition by moving Vh to that block. Here
we just consider the transfer to Uh .

Lemma 1. Suppose conf h and isol h ` for some ` ∈ dom h. Consider a confin-
ing partition h = Ch∗Uh∗. . .. If ` ∈ dom(Rhj) then Ch∗Uh ′∗. . .∗Ohj ∗Rh′

j ∗. . .

is a confining partition for h, where Uh ′ = Uh ∗Vh and Rhj = Rh ′

j ∗Vh. More-
over, if pnd(dom V h) = ∅, then the above partition is a pndh-extension.

A confined command is one that preserves confinement of global states. Be-
cause command meanings depend on method environments, confinement for
method environment is formalized first. We need to ensure that a method call
yields a heap that is an extension of the caller’s heap and preserves all pinned
reps in the caller’s heap. Moreover, the result is confined for the target object.

Definition 3 (iconf µ, isol-confined method, environment). Let µ be a
method environment, mtype(m, C) = T̄→T , pars(m, C) = x̄, and Γ = [x̄ : T̄ , self : C].
Then µ C m is isol-confined provided the following holds for all (h, η) ∈ [[Heap ⊗ Γ]]
with conf Γ (h, η) and isol Γ (h, η). If (h0, d) = µCm(h, η) then h �pnd h h0 and
moreover there exists a confining (pndh)-extension, h0 = Ch0 ∗ Uh0 ∗ . . ., with

11

1. pnd h0 = pnd h

2. isol-tag T ⇒ isol h0 d

3. C � Rep ∧ C � Own and d ∈ locs(Rep↓) implies d ∈ dom(Uh 0)

4. C ≤ Own and d ∈ locs(Rep↓) and η self ∈ dom(Oh0
j) implies d ∈ dom(Rh0

j).

5. C ≤ Rep and η self ∈ dom(Uh0) and d ∈ Locs implies d ∈ dom(Ch0 ∗Uh0)
6. C ≤ Rep and η self ∈ dom(Rh0

j) and d ∈ locs(Own↓, Rep↓) implies d ∈

dom(Oh0
j ∗ Rh0

j).

Method environment µ is isol-confined, written iconf µ, iff µ C m is isol-confined
for all C, m.

Definition 4 (confined command). Command Γ ` S ↘ F is confined iff

– iconf µ∧conf Γ (h, η)∧(h0, η0) = [[Γ ` S ↘ F]]µ(h, η) ⇒ conf (Γ�F) (h0, η0),
for any µ, and (h, η).

– if S is a method call then it has confined and isolated arguments (see below).

To be able to reason compositionally about methods which can make “outgo-
ing” calls to clients, we need to constrain the arguments they pass. Confinement
of arguments means that the store η1 passed in the semantics of method call
Γ ` x := e.m(ē) is confined and isolated for the class of the callee e, whenever
the call is made in an initial state (h, η) that is confined and isolated for the
caller.

Definition 5 (confined arguments). Consider a call Γ ` x := e.m(ē) ↘ F .
The call has confined arguments provided the following holds. For any (h, η)
with conf Γ (h, η), let U, D, `, Γ1, d̄, η1 be as in the semantics of method call. If
` 6= ⊥, ` 6= nil , and d̄ 6= ⊥, then conf Γ1 (h, η1).

For simplicity in the following, we assume that the caller’s environment Γ

has disjoint domain from the parameter environment Γ1 so we may form their
union. We write droptags Γ for the environment where any isol-tags have been
erased and self has been replaced by a fresh name.

Definition 6 (isolated arguments). Consider a call Γ ` x := e.m(ē) ↘ F .
The call has isolated arguments provided the following holds. For any (h, η) with
conf Γ (h, η), let U, D, `, Γ1, d̄, η1 be as in the semantics of method call. If ` 6= ⊥,
` 6= nil , and d̄ 6= ⊥, then isol ((droptags Γ), Γ1) (h, (η, η1)).

Definition 7 (confined class table). Well formed CT is confined4 iff for
every C and every m with mtype(m, C) = T̄→T the following hold.

1. If m is declared in C by T m(T̄ x̄){S} then S and all its constituents are
confined.

2. If m is inherited in Own then T̄ >6≤ Rep.

4 A purely semantic formulation would call class table CT confined just if [[CT]] is a
confined method environment. But confinement of [[CT]] follows from confinement
of method bodies and constructors and this is independent from the particulars of
our static analysis. The proof of Theorem 1 is critical in that it holds together (and
helped us debug) all the preceding definitions.

12

3. No m is inherited in Rep from any B > Rep.

The conditions on inheritance are as in [2].
We say µ has isolated results if, for all C and m such that mtype(m, C) =

T̄ → T and isol-tagT , if µCm(h, η) = (h0, d) then isol h0 d.

Theorem 1. If CT is confined and [[CT]] has isolated results then iconf [[CT]].

The theorem uses the following crucial property of confinement of commands.

Lemma 2 (extension by commands). Suppose Γ ` S ↘ F is confined and
all its constituents are confined. For any µ, h, η with iconf µ and conf Γ (h, η),

if (h0, η0) = [[Γ ` S ↘ F]]µ(h, η) then h �pnd h h0 .

6 Static analysis

This section gives a syntax directed static analysis. It checks a property called
safety. Safety is shown to imply confinement. The input to the analysis is a well
formed class table and designated class names Own and Rep.

Definition 8. (safe) Well formed class table CT is safe iff for every C and
every m with mtype(m, C) = T̄→T the following hold.

1. If m is declared in C by T m(T̄ x̄){S} then x̄ : T̄ , self : C, result : T S ↘ F

where is the safety relation defined in the sequel.
2. If m is inherited in Own from some B > Own then T̄ >6≤ Rep.
3. No m is inherited in Rep from any B > Rep.

The safety relation is defined by the rules appearing in Tables 3.5 (The
complete specification appears in the appendix, Tables 7,8). For expressions, the
analysis imposes restrictions on field access and nothing else. If e.f occurs in
the body of an owner method, then a Rep can be accessed only via the private
fields of Own: this requires e to be self. For commands, we use a judgement
Γ S ↘ F interpreted as follows: S is safe in the context Γ provided that no
variables in “freed set” F are accessed subsequently.

For lack of space, we only explain conditions (b) and (d) in the method call
case. Condition (b) considers method calls from an owner class or its subclasses:
if the target’s type is comparable to Own, then reps can be passed as parameters
if e is self. In all other cases, for a rep to be passed as parameter or returned as
result, it must be isolated in the heap. Then the caller can transfer the isolated
rep to the callee’s partition. Likewise, isolation for the result rep allows the
callee to transfer it to the caller’s partition. Method calls, o1.push2(n1) and
o2.push2(n2) in Fig. 5 satisfy (b). Condition (d) says that if m is an owner
method called by a client, then a rep may be passed as parameter or returned
as result, only if this rep is isolated in the heap. For parameter passing, the rep
must be isolated in the unconfined partition of the heap and it can be transferred
to the confined reps in the owner’s partition. The reverse transfer happens for
reps returned as result. Method calls rm.free(r1) and r2 := rm.alloc() in Fig. 4
satisfy (d).

5 The rules must be read in concert with the typing rules for expressions and com-
mands. Because CT is well formed, all expressions and commands appearing in
method bodies are well-typed. We elide typing information except when necessary.

13

C = (Γ self)
Γ e : C (f : T) ∈ dfieldsC C = Own ∧ e 6= self ⇒ T >6≤ Rep

Γ e.f : T

Γ e : D mtype(m, D) = T̄→T Γ ē : Ū C = (Γ self)
(a) (C ≤ Own ∨ C ≤ Rep) ∧ (D � Rep ∧ D � Own) ⇒ (∀U ∈ (T, T̄) • U >6≤ Rep ∨ isol-tag U)

(b) C ≤ Own ⇒ D >6≤ Own ∨ (e = self) ∨ (∀U ∈ (T, T̄) • U >6≤ Rep∨ isol-tag U)
(c) C ≤ Own ⇒ D >6≤ Rep ∨ (∀ei ∈ ē • ei = self ∨ Ti >6≤ Own)

(d) C � Own ∧ C � Rep ⇒ D >6≤ Own ∨ (∀U ∈ (T, T̄) • U >6≤ Rep ∨ isol-tag U)
(e) C ≤ Rep ∧ (D ≤ Own ∨ D � Rep) ⇒ T >6≤ Own

(f) C � Own ∧ C � Rep ⇒ D >6≤ Rep ∨ T̄ >6≤ Own

Γ x := e.m(ē) ↘ F

Table 3. Safety for selected expressions and commands.

Lemma 3 (argument values confined). Suppose Γ ` e : D and Γ ` ē : Ū
are confined at Γ self. If Γ ` x := e.m(ē) ↘ F has isolated arguments and Γ

x := e.m(ē) ↘ F then m has confined arguments.

Lemma 4 (safe commands). If Γ S ↘ F and all method calls in S have
isolated arguments then Γ ` S ↘ F is confined.

We show a proof subcase in the Appendix.

Theorem 2 (safety). If CT is safe and all method calls in CT have isolated
arguments then CT is confined.

As a corollary of the safety theorem we obtain that if CT is safe, all method
calls in CT have isolated arguments, and [[CT]] has isolated results then [[CT]]
is isol-confined.

In summary, we note that confinement is an invariant and imposes constraints
throughout a program. Isolation is a state predicate that is only needed at call
boundaries, and only for calls that perform transfers. These are the exception
rather than the rule. We focus on confinement and have given a static analysis
that is sound relative to isolation. In order to specify isolation, it is necessary to
use annotations on method types, but no other annotations are needed.

As presented, the static analysis is less modular than the one in our previ-
ous work [2]. In that work, only rep and owner code (including subclasses) is
constrained except for new: a client cannot construct a new rep. On the con-
trary, in this work we allow clients to have access to free reps and pass them to
owner methods. We impose constraints on clients calling owners and reps and no
longer constrain the case for new. While this is done for flexibility, for practical
deployment, one could impose constraints directly on signatures of classes Own

and Rep. For Own methods, this would mean annotating Rep parameters and
Rep results with tag isol, and for Rep methods it would mean ensuring that
there are no Own parameters. Thus the analysis can be made modular and one
can avoid directly checking client code.

14

7 The abstraction theorem

Representation-independence involves comparing two class tables, CT, CT ′ , that
differ only in that (a) they declare different fields and method bodies for class
Own, and (b) the designated rep classes may be different. The theorem requires
that CT be confined with respect to Rep and CT ′ confined with respect to
Rep′ . Simulation for global states is induced from the basic coupling that would
be defined by a programmer to describe the correspondence between a single
instance of Own for each of the two implementations. A basic coupling is thus
a predicate on a pair (Oh ∗ Rh, Oh ′ ∗ Rh ′) of islands where Rh (resp. Rh ′) has
objects ≤ Rep (resp. ≤ Rep′). A basic coupling induces a relation on heaps h, h′

that requires corresponding pairs of islands to be pointwise related by the basic
coupling. Although h is partitioned with respect to Rep and h′ to Rep′ , the
free reps can be treated as clients for purpose of coupling. Another complication
is the use of a bijection on locations in order to allow the two versions to have
different allocation behavior without making assumptions about the allocator.
Yet another complication is the possibility that one version of Own can override
a method that is inherited in the other version. The technical details are omitted
for lack of space; we just sketch the highlights. Aside from the differences due to
the presence of free reps, the definitions and proofs are similar to those in [2]. In
particular, isolation and heap extension (�P) play no role in the representation
independence proof.

The induced coupling relation depends on a partial bijection, σ , on locations.6

Locations visible to clients, i.e., objects in Ch , Uh , and Oh j s, are related by σ .
If (h, h′) is in the induced coupling relation, islands are related in accord with
the given coupling. For client-visible locations (`, `′) ∈ σ , the objects h ` and
h′ `′ have related fields. Similarly for stores. Note in particular that free reps in
h and h′ must correspond. For example, if loctype ` ≤ Rep and ` is a free rep in
h then there must be (`, `′) ∈ σ and the states of h ` and h′ `′ must correspond.

The role of confinement is to restrict the quantification in the logical-relations
condition for command and method meanings. The simulation property for com-
mands is that if (h, η), (h′, η′) are confined and coupled then the corresponding
final states are coupled. Because command semantics depends on method en-
vironments, the precise definition also assumes simulation for the method en-
vironments. Simulation for (µ, µ′) means that corresponding method meanings
preserve coupling —again, only for initial states that are confined.

Theorem 3 (Abstraction). Suppose that the induced coupling relation is pre-
served by every method (declared or inherited) in Own. Then simulation holds
for [[CT]], [[CT ′]].

To prove program equivalence using the theorem, one uses an identity exten-
sion lemma that says coupled states are equal from the point of view of clients.

6 In [3] we avoided the complication of a non-identity partial bijection on locations
by imposing a parametricity condition on the allocator: the location chosen for an
object of given type C depends only on the currently allocated objects of type C .
In the present context this is inadequate because a client can allocate an object of
type Rep and states h, h′ may differ in the number of allocated Rep’s.

15

Here equality is modulo the bijection on locations, and the client perspective can
be formalized by garbage-collecting owners or by hiding private fields of owners.

8 Discussion

One could say that transfer liberates an object from its owner, but the title of this
paper alludes to two other ideas. One is that confinement is supposed to liberate
reasoners from global reasoning. In the present case, we show how to reason about
a collection class in terms of a single instance while reaching a conclusion that
applies to unboundedly many instances and unrestricted sharing among clients.
The other idea is that confinement deserves to be liberated from the predominant
type-theoretic view, to allow thorough exploration of other parts of the design
space. To impose confinement through the use of a type system requires the
global imposition of that type system and it requires the types to be sufficiently
flexible and general to handle all the design and reasoning patterns of interest.
Even for the single reasoning problem of substitutability, there are a number of
important patterns that are beyond the reach of current type systems. In this
paper we consider replacement of a single class but for practical purposes it is
important to consider several classes that share representation, e.g., a collection
and an unbounded number of iterators, or direct access to reps from subclasses.
Such patterns are all amenable to the approach elaborated in this paper —
but a single “most general” pattern would be clumsy at best. In unfinished
work, we have also shown that our approach can be extended to a language
with C#-style parametric classes and methods (which avoids the problem that
Object is comparable to every class). We use ordinary program types with little
or no additional annotation to express an invariant on heap structure directly
pertinent to the pattern of interest. Our slogan is: “What do you want to confine
today?”

The closest related work on ownership transfer is that by Clarke and Wrigstad [10]
on external uniqueness. They use ownership types [8] and consequently, a hierar-
chical ownership model, to specify uniqueness of pointers. External uniqueness
allows an object to have several aliases within the abstraction but a unique alias
from outside. This facilitates transfer of ownership of entire aggregates between
abstractions. They give a static analysis for external uniqueness but do not prove
the analysis correct. Assuming correctness, we could adapt their static analysis
to give a static analysis for isolation at the cost of significant annotation of the
program. Even so, it is unclear how the analysis will handle isolation of n1 and
n2 in the method transferTwoTo in Fig. 5. The issue is that n2 is a pending rep in
the caller’s store when the transfer of n1 occurs and n2 cannot be moved during
the transfer.

Boyapati et al. [6] also use ownership types for object encapsulation and lo-
cal reasoning about program correctness. Their ingenious observation is that in
Java there is a fixed association between an instance of an inner class and its
outer class instance. In terms of ownership types, every inner class instance has
a specific owner, namely, its outer class instance. This approach allows them to
express the iterator pattern: the inner class can be used to implement an iterator
for the outer class. Local reasoning is supported because the outer class and in-

16

ner class instances can be reasoned about together as a module. Unfortunately,
because of the fixed ownership association, this model cannot handle ownership
transfer. Clarke and Drossopoulou [9] use annotations (e.g., read-only) and own-
ership types to get reasoning principles about aliasing and disjointness of effects.
These papers thus show the use of ownership types for data abstraction – but
they do not consider ownership transfer.

Barnett et al. [4] recently proposed a means of modular checking of object
invariants and “modifies” specifications without alias confinement: an auxiliary
variable tracks whether an object is owned and rules ensure that there is at most
one owner while allowing transfer of ownership. We are currently investigating
confinement and data abstraction in this setting.

O’Hearn et. al. [22] use Separation Logic to reason about the heap. (In fact,
our work responds to O’Hearn’s challenge [Dagstuhl, March 2003] to handle
malloc and free.) The language considered is a low-level imperative language
with parameterless procedures. The key result is the soundness of the hypothet-
ical frame rule which implies soundness of local reasoning for procedures. Their
theory handles single instances of abstractions; to cope with object-oriented lan-
guages it has to be extended to handle dynamic creation of instances. It would
be a challenging exercise to devise a sound reasoning framework for encapsula-
tion and ownership transfer for an object-oriented language as considered in our
paper.

References

1. Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. Alias annotations
for program understanding. In ACM Symposium on Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA). ACM Press, 2002.

2. Anindya Banerjee and David A. Naumann. Ownership confinement ensures repre-
sentation independence for object-oriented programs. Revised and extended from
[3]; submitted., 2002.

3. Anindya Banerjee and David A. Naumann. Representation independence, con-
finement and access control. In ACM Symposium on Principles of Programming
Languages (POPL), pages 166–177. ACM Press, 2002.

4. Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino, and Wol-
fram Schulte. Verification of object-oriented programs with invariants. In ECOOP
Workshop on Formal Techniques for Java-like Programs, 2003.

5. Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In ACM Symposium on
Object Oriented Programming: Systems, Languages, and Applications (OOPSLA),
2002.

6. Chandrasekhar Boyapati, Barbara Liskov, and Liuba Shrira. Ownership types for
object encapsulation. In ACM Symposium on Principles of Programming Lan-
guages (POPL), 2003.

7. John Boyland. Alias burying: Unique variables without destructive reads. Software
Practice and Experience, 31(6), 2001.

8. David Clarke. Object Ownership and Containment. PhD thesis, University of New
South Wales, Australia, 2001.

9. David Clarke and Sophia Drossopoulou. Ownership, encapsulation and the dis-
jointness of type and effect. In ACM Symposium on Object Oriented Programming:
Systems, Languages, and Applications (OOPSLA). ACM Press, 2002.

17

10. David Clarke and Tobias Wrigstad. External uniqueness is unique enough. In
European Conference on Object Oriented Programming (ECOOP), 2003.

11. D. Detlefs, K. R. M. Leino, and G. Nelson. Wrestling with rep exposure. Technical
Report 156, COMPAQ Systems Research Center, July 1998.

12. Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null
types in an object-oriented language. In ACM Symposium on Object Oriented
Programming: Systems, Languages, and Applications (OOPSLA), 2003.

13. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

14. Daniel Grossman, Greg Morrisett, and Steve Zdancewic. Syntactic type abstrac-
tion. ACM Transactions on Programming Languages and Systems, 22(6), 2000.

15. J. He, C. A. R. Hoare, and J.W. Sanders. Data refinement refined (resumé). In
European Symposium on Programming, volume 213 of Lecture Notes in Computer
Science. Springer-Verlag, 1986.

16. Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A min-
imal core calculus for Java and GJ. ACM Transactions on Programming Languages
and Systems, 23(3):396–459, May 2001.

17. Doug Lea. Concurrent Programming in Java. Addison-Wesley, second edition,
2000.

18. K. Rustan M. Leino and Greg Nelson. Data abstraction and information hiding.
ACM Transactions on Programming Languages and Systems, 24(5), 2002.

19. John C. Mitchell. Foundations for Programming Languages. MIT Press, 1996.

20. G. Morrisett, F. Smith, and D. Walker. Alias types. In ESOP, 2000.

21. Peter Müller. Modular Specification and Verification of Object-Oriented programs,
volume 2262 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

22. Peter O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and information
hiding. In ACM Symposium on Principles of Programming Languages (POPL),
2004.

23. Gordon Plotkin. Lambda definability and logical relations. Technical Report SAI-
RM-4, University of Edinburgh, School of Artificial Intelligence, 1973.

24. John C. Reynolds. Towards a theory of type structure. In Colloques sur la Pro-
grammation, LNCS 19, pages 408–425, 1974.

25. John C. Reynolds. Types, abstraction, and parametric polymorphism. In R.E.A.
Mason, editor, Information Processing ’83, pages 513–523. North-Holland, 1984.

26. John C. Reynolds. Separation logic: a logic for shared mutable data structures. In
IEEE Symposium on Logic in Computer Science (LICS). IEEE Computer Society
Press, 2002.

Appendix for convenience of referees

Syntax and semantics

Table 4 completes the definition of syntax.
The semantic domains are defined in Table 5. For locations, we assume that

a countable set Loc is given, along with a distinguished entity nil not in Loc and
a function loctype :Loc → ClassNames . The semantic definitions and results are
given for an arbitrary allocator, i.e., a location-valued function fresh such that
loctype(fresh(C, h)) = C and fresh(C, h) 6∈ dom h, for all C, h.

Table 6 gives the semantics for commands other than method call.

18

Γ ` x : Γx Γ ` true :bool Γ ` null : B

Γ ` e1 : T1 Γ ` e2 : T2

Γ ` e1 = e2 :bool

Γ ` e : C (f : T) ∈ fields C

Γ ` e.f : T

Γ ` e : D B ≤ D

Γ ` (B) e : B

Γ ` e : D B ≤ D

Γ ` e is B :bool

Γ ` e : T T ≤ Γ x x 6= self

Γ ` x := e

B ≤ Γx x 6= self B 6= Object

Γ ` x := new B

Γ ` e1 : (Γ self) (f : T) ∈ dfields(Γ self) Γ ` e2 : U U ≤ T

Γ ` e1.f := e2

Γ ` e :bool Γ ` S1 ↘ F1 Γ ` S2 ↘ F2

Γ ` if e then S1 else S2 fi ↘ F1 ∩ F2

Γ ` e : U U ≤ T x 6= self (Γ, x : T) ` S ↘ F

Γ ` T x := e in S ↘ F − {x}

Table 4. Typing rules for expressions and commands not in Table 1.

Definition 9 (admissible partition). An admissible partition of heap h is a
set of pairwise disjoint heaps Ch ,Uh,Oh1,Rh1 , . . . ,Ohk,Rhk , for k ≥ 0, with

h = Ch ∗ Uh ∗ Oh1 ∗ Rh1 ∗ . . . ∗ Ohk ∗ Rhk

such that for all i (1 ≤ i ≤ k)

– domOh i ⊆ locs(Own↓) and size(domOh i) = 1 (owner blocks)
– dom Rhi ⊆ locs(Rep↓) (confined rep blocks)
– domCh ∩ locs(Own↓, Rep↓) = ∅ (client block)
– domUh ⊆ locs(Rep↓) (free Reps)

Definition 10 (confined heap, confining partition). A heap h is confined,
written conf h, iff h has a confining partition. A confining partition is an ad-
missible partition such that for all j, k with j 6= k we have

1. Ch 6; Rhj (clients do not point to confined reps)
2. Ohj 6; Rhi (owners do not share reps)
3. Uh 6; Ohj ∗ Rhj (free reps do not point to islands)
4. Ohj ∗ Rhj 6; Uh (islands do not point to free Reps)
5. Ohj 6;ḡ Rhj where ḡ = dom(dfields(Own)) (reps are private to Own)
6. Rhj 6; Ohk ∗ Rhk (reps are confined to their islands)

Definition 11 (confined store, global state). Let h be a confined heap and
η be a store in [[Γ]]. We say η is confined in h for Γ iff

19

[[bool]] = {true , false} [[unit]] = {it}

[[C]] = {nil} ∪ {` | ` ∈ Loc ∧ loctype ` ≤ C}

[[Γ]] = {η | dom η = domΓ ∧ η self 6= nil ∧ ∀x ∈ dom η • η x ∈ [[Γ x]]}

[[state C]] = if C � Rep

then {s | doms = dom(fieldsC) ∧ ∀(f : T) ∈ fieldsC • sf ∈ [[T]] }

else {s | dom s = {pin} ∪ dom(fieldsC) ∧ s(pin) ∈ [[bool]]

∧∀(f : T) ∈ fieldsC • sf ∈ [[T]] }

[[Heap]] = {h | dom h ⊆fin Loc ∧ ∀` ∈ dom h • h` ∈ [[state(loctype `)]] ∧ rng(h `) ∩ Loc ⊆ dom h}

[[Heap ⊗ Γ]] = {(h, η) | h ∈ [[Heap]] ∧ η ∈ [[Γ]] ∧ rng η ∩ Loc ⊆ dom h}

[[Heap ⊗ T]] = {(h, d) | h ∈ [[Heap]] ∧ d ∈ [[T]] ∧ (d ∈ Loc ⇒ d ∈ domh)}

[[C, x̄, T̄→T]] = [[Heap ⊗ (x̄ : T̄ , self : C)]] → [[(Heap ⊗ T)⊥]]

[[MEnv]] = {µ | ∀C, m • µCm is defined iff mtype(m, C) is defined,
and µCm ∈ [[C, pars(m, C),mtype(m, C)]] if µCm defined }

Table 5. Semantic domains.

1. (Γ self) � Rep∧(Γ self) � Own implies that there is some confining partition
such that rng η ∩ locs(Rep↓) ⊆ dom(Uh).

2. If (Γ self) ≤ Own then rng η ∩ locs(Rep↓) ⊆ dom(Rh j)
for some confining partition and j with η self ∈ dom(Oh j).

3. If (Γ self) ≤ Rep then for any confining partition
η self ∈ dom(Uh) ⇒ rng η ∩ Locs ⊆ dom(Ch ∗ Uh)
and η self ∈ dom(Rhj) ⇒ rng η ∩ locs(Own↓, Rep↓) ⊆ dom(Ohj ∗ Rhj).

A global state (h, η) is confined for Γ , written conf Γ (h, η), iff h is confined
and η is confined in h for Γ .

Lemma 5. If P ⊆ Q and h �Q h0 then h �P h0 .

Lemma 6. If h and h′ (resp. h0 and h′
0) are equal up to pinning then, for any

P , h �P h0 iff h′ �P h′

0 .

Lemma 7. If h, h0 are equal up to pinning then conf Γ (h, η) iff conf Γ (h0, η),
for any P .

Lemma 8. If h and h0 are equal up to pinning then isol Γ (h, η) iff isol Γ (h0, η).

Lemma 9. If conf Γ (h, η) and rng η ∩ locs(Rep↓) ⊆ P and h �P h0 then
conf Γ (h0, η).

Lemma 10. If iconf µ and [[Γ ` S ↘ F]]µ(h, η) = (h0, η0) then pndh = pndh0 .

Definition 12. (confined expression) Expression Γ ` e : T is confined iff for
any (h, η), if conf Γ (h, η), and [[Γ ` e : T]](h, η) 6= ⊥ then the following hold,
where d = [[Γ ` e : T]](h, η).

1. (Γ self) � Rep∧(Γ self) � Own implies that there is some confining partition
such that d ∈ locs(Rep↓) ⇒ d ∈ dom(Uh).

20

[[Γ ` x := e]]µ(h, η) =

let d = [[Γ ` e : T]](h, η) in (h, [η | x 7→d])

[[Γ ` e1.f := e2]]µ(h, η) =

let ` = [[Γ ` e1 : (Γ self)]](h, η) in

if ` = nil then ⊥ else

let d = [[Γ ` e2 : U]](h, η) in ([h | ` 7→ [h` | f 7→d]], η)

[[Γ ` x := new B]]µ(h, η) =

let ` = fresh(B,h) in

let h0 = [h | ` 7→ [fieldsB 7→ defaults]] in (h0, [η | x 7→`])
[[Γ ` S1; S2 ↘ F2]]µ(h, η) =

let (h1, η1) = [[Γ ` S1 ↘ F]]µ(h, η) in [[(Γ �F) ` S2 ↘ F2]]µ(h1, η1)

[[Γ ` if e then S1 else S2 fi]]µ(h, η) =

let b = [[Γ ` e :bool]](h, η) in

let (h0, η0) = if b then [[Γ ` S1 ↘ F1]]µ(h, η) else [[Γ ` S2 ↘ F2]]µ(h, η) in

(h0, η0�(F1 ∩ F2))

[[Γ ` T x := e in S]]µ(h, η) =

let d = [[Γ ` e : U]](h, η) in

let η1 = [η | x 7→d] in

let (h1, η2) = [[(Γ, x : T) ` S ↘ F]]µ(h, η1) in (h1, (η2�x�F))

Table 6. Semantics of commands other than method call.

Γ x : Γx Γ null : B Γ true :bool Γ false : bool

Γ e1 : T1 Γ e2 : T2

Γ e1 = e2 : bool

Γ e : D

Γ (B) e : B

Γ e : D

Γ e is B :bool

Table 7. Safety for expressions other than field access

2. (Γ self) ≤ Own ⇒ (d ∈ locs(Rep↓) ⇒ d ∈ dom(Rh j)) for some confining
partition and j with η self ∈ dom(Oh j)

3. If (Γ self) ≤ Rep then for any confining partition
η self ∈ dom(Uh) ∧ d ∈ Locs ⇒ d ∈ dom(Ch ∗ Uh)
and η self ∈ dom(Rhj) ∧ d ∈ locs(Own↓, Rep↓) ⇒ d ∈ dom(Ohj ∗ Rhj)

Static Analysis

Lemma 11 (safe expressions). If Γ e : T then Γ ` e : T is confined.

Lemma 12 (safe commands). If Γ S ↘ F and all method calls in S have
isolated arguments then Γ ` S ↘ F is confined.

Proof. Let C = (Γ self). Now we go by induction on Γ S↘F and by cases on
C . Assume conf Γ (h, η) and iconf µ and let (h0, η0) = [[Γ ` S]]µ(h, η). In each
case we must show conf (Γ �F) (h0, η0). We show the subcase of the method call
case that involves constraint (d).

21

C ≤ Rep ⇒ B � Own

Γ x := new B

C = (Γ self) Γ e1 : C
Γ e2 : U C = Own ∧ e1 6= self ⇒ U >6≤ Rep C < Own ⇒ U >6≤ Rep

Γ e1.f := e2

Γ e : T

Γ x := e

Γ S1 ↘ F1 (Γ �F1) S2 ↘ F

Γ S1; S2 ↘ F

Γ e : bool Γ S1 ↘ F1 Γ S2 ↘ F2

Γ if e then S1 else S2 fi ↘ (F1 ∩ F2)

Γ e : U (Γ, x : T) S ↘ F

Γ T x := e in S ↘ (F − {x})

Table 8. Safety for commands other than method call

As in the semantics of method call, let η1 = [x̄ 7→ d̄, self 7→ `], let P = {`′ |
(`′ ∈ rng (η� F) ∨ `′ = `)∧ (loctype `′ ≤ Rep)∧¬(h `′ pin)}, let h1 = pin P h, let
(h2, d1) = µ(loctype `)m(h1, η1), and let h0 = unpin P h2 . Note that η0 = ([η |
x 7→d1]�F . Let Γ1 = [x̄ : Ū , self : (loctype `)]. Because m has isolated arguments,
by Lemma 3, conf Γ1 (h, η1). Then by Lemma 7, conf Γ1 (h1, η1).

Let Q = {`′ | (`′ ∈ rng (η� F) ∨ `′ = `) ∧ (loctype `′ ≤ Rep) ∧ h `′ pin}. Then
pnd(pin P h) = Q∪pnd h. Because h1 = pin P h, we get rng(η�F)∩locs(Rep↓) ⊆

Q. By Def. 3, we obtain h1 �pnd(pin P h) h2 , so by Lemma 5, h1 �Q h2 and

h1 �pnd h h2 . Because h0 = unpin P h2 , we get by Lemma 6 that h �Q h0

and h �pnd h h0 . Then, by Lemma 9, and assumption conf Γ (h, η) we get
conf (Γ �F) (h0, (η�F)).

It remains to deal with d1 = η0 x, for which we go by cases on C .

Case C � Own ∧ C � Rep: We want some confining partition of h0 such
that d1 ∈ locs(Rep↓) implies d1 appears in the free reps of the partition. We
now proceed by cases on the callee’s class loctype `. We show the proof of one
subcase.

Subcase loctype ` ≤ Own: Because Γ e : D, by Lemma 11, Γ ` e : D is

confined for C . Let ` ∈ dom(Ohj). Because h �pnd h h0 , ` ∈ dom(Oh0
j). By

Def. 3 condition 4, if d1 ∈ locs(Rep↓), then d1 ∈ dom(Rh0
j). Case (d) of the anal-

ysis applies. If T >6≤ Rep, then the result follows vacuously. Otherwise, isol-tag T .
Then, by condition (2) of definition 3, isol h2 d1 . By Lemma 8, isol h0 d1 . Let
Vh0 be the subheap of h0 determined by isol h0 d1 . By Lemma 1, we can trans-
fer Vh0 to the free reps. Thus h0 = Ch0 ∗ Uh ′0 ∗ . . . ∗ Oh0

j ∗ Rh ′0
j ∗ . . ., with

Uh ′0 = Uh0∗Vh0 and Rh0
j = Rh ′0

j ∗Vh0 , yields a confining partition of h0 . Thus
d1 appears in the free reps of the partition. Moreover, by Def. 3, pnd h = pnd h0 .

Hence nothing in Vh0 is pinned, so h �pnd h h0 holds.

22

Abstraction theorem

Definition 13 (typed bijection). A typed bijection is finite bijective function
σ from Locs to Locs such that σ ` = `′ implies loctype ` = loctype `′. ut

Definition 14 (basic coupling). A basic coupling is a function R that assigns
to each typed bijection a binary relation R σ on heaps (not necessarily closed
heaps) that satisfies the following. For any σ, h, h′ , if R σ h h′ then there are
partitions h = Oh ∗Rh and h′ = Oh ′ ∗Rh′ and locations ` and `′ in locs(Own↓)
such that

1. σ ` = `′ and {`} = domOh and {`′} = domOh ′

2. dom(Rh) ⊆ locs(Rep↓) and dom(Rh ′) ⊆ locs(Rep′↓)
3. R σ (type(f, loctype `)) (h`f) (h′`′f) for all (f : T) ∈ dom(fields(loctype `))

with f 6∈ ḡ = dom(dfields(Own)) and f 6∈ ḡ′ = dom(dfields′(Own)). ut

Item (3) uses the induced coupling R defined below; it is a harmless forward
reference because the definition of R for data types does not depend on R (or
R) for heaps. Note that we do not require dom σ to include the reps, nor do we
disallow that it includes some of them.

Definition 15 (coupling relation, Rσ θ). Given basic coupling R, we define
for each σ and semantic category θ a relation R σ θ ⊆ [[θ]] × [[θ]]′ as follows.

For heaps h, h′ , we define R Heap h h′ iff there are confining partitions
h = Ch∗Uh∗Oh1∗Rh1 . . .Ohn∗Rhn and h′ = Ch ′∗Uh ′∗Oh ′

1∗Rh′

1 . . .Oh ′

n∗Rh ′

n

such that

– R σ (Oh i ∗ Rhi) (Oh ′

i ∗ Rh ′

i) for all i in 1..n

– dom(Ch ∗ Uh) = dom(Ch ′ ∗ Uh ′)
– R (state (loctype `)) (h`) (h′`) for all ` ∈ dom(Ch ∗ Uh)

For other categories θ we define R θ in Table 9.

23

R σ bool d d′ ⇔ d = d′

R σ unit d d′ ⇔ d = d′

R σ C d d′ ⇔ σ d = d′ ∨ d = nil = d′

R σ Γ η η′ ⇔ ∀x ∈ domΓ • R σ (Γx) (ηx) (η′x)

R σ (state C) s s′ ⇔

C � Own ∧ ∀f ∈ dom(fieldsC) • R σ (type(f, C)) (s f) (s′ f)

R σ (θ⊥) α α′ ⇔ (α = ⊥ = α′) ∨ (α 6= ⊥ 6= α′ ∧R σ θ α α′)

R σ (Heap ⊗ Γ) (h, η) (h′, η′) ⇔ R σ Heap h h′ ∧ R σ Γ η η′

R σ (Heap ⊗ T) (h, d) (h′, d′) ⇔ R σ Heap h h′ ∧ R σ T d d′

R (C, x̄, T̄→T) d d′ ⇔ ∀σ, (h, η) ∈ [[Heap ⊗ Γ]], (h′, η′) ∈ [[Heap ⊗ Γ]]′ •

R σ (Heap ⊗ Γ) (h, η) (h′, η′) ∧ conf C (h, η) ∧ conf C (h′, η′) ∧ freeRep(C, h, h′, η, η′)

⇒∃σ0 ⊇ σ • R σ0 (Heap ⊗ T)⊥ (d(h, η)) (d′(h′, η′))

where Γ = [x̄ 7→ T̄ , self 7→ C]

Finally, R MEnv µ µ′ iff for all C, m with pars(m, C) = x̄ and mtype(m,C) = T̄→T ,
we have R (C, x̄, (T̄→T)) (µCm) (µ′Cm).

Table 9. The induced coupling relation, where we use freeRep(C, h, h′, η, η′) iff ei-
ther C ≤ Rep ∧ C ≤ Rep′ or there are confining partitions satisfying the conditions
for Rσ Heap and moreover η self ∈ dom(Uh) and η′ self ∈ dom(Uh ′) (the last two
conditions are equivalent in the contexts where freeRep is used).

24

