
Mechanized Verification of Fine-grained Concurrent Programs

Ilya Sergey
IMDEA Software Institute
ilya.sergey@imdea.org

Aleksandar Nanevski
IMDEA Software Institute

aleks.nanevski@imdea.org

Anindya Banerjee
IMDEA Software Institute

anindya.banerjee@imdea.org

Abstract
Efficient concurrent programs and data structures rarely employ
coarse-grained synchronization mechanisms (i.e., locks); instead,
they implement custom synchronization patterns via fine-grained
primitives, such as compare-and-swap. Due to sophisticated inter-
ference scenarios between threads, reasoning about such programs
is challenging and error-prone, and can benefit from mechanization.

In this paper, we present the first completely formalized frame-
work for mechanized verification of full functional correctness of
fine-grained concurrent programs. Our tool is based on the re-
cently proposed program logic FCSL. It is implemented as an
embedded domain-specific language in the dependently-typed lan-
guage of the Coq proof assistant, and is powerful enough to rea-
son about programming features such as higher-order functions
and local thread spawning. By incorporating a uniform concurrency
model, based on state-transition systems and partial commutative
monoids, FCSL makes it possible to build proofs about concurrent
libraries in a thread-local, compositional way, thus facilitating scal-
ability and reuse: libraries are verified just once, and their specifi-
cations are used ubiquitously in client-side reasoning. We illustrate
the proof layout in FCSL by example, and report on our experience
of using FCSL to verify a number of concurrent programs.
Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs
General Terms Algorithms, Theory, Proofs, Verification
Keywords Compositional program verification, concurrency, sep-
aration logic, mechanized proofs, dependent types.

1. Introduction
It has been long recognized that efficient concurrency is of crucial
importance for high-performant software. Unfortunately, proving
correctness of concurrent programs, in which several computations
can be executed in parallel, is difficult due to the large number
of possible interactions between concurrent processes/threads on
shared data structures.

One way to deal with the complexity of verifying concurrent
code is to employ the mechanisms of so-called coarse-grained syn-
chronization, i.e., locks. By making use of locks in the code, the
programmer ensures mutually-exclusive thread access to critical

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright © 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737964Reprinted from PLDI’15, [Unknown Pro-
ceedings], June 13–17, 2015, Portland, OR, USA, pp. 1–11.

resources, therefore, reducing the proof of correctness of concur-
rent code to the proof of correctness of sequential code. While
sound, this approach to concurrency prevents one from taking full
advantage of parallel computations. An alternative is to implement
shared data structures in a fine-grained (i.e., lock-free) manner, so
the threads manipulating such structures would be reaching a con-
sensus via the active use of non-blocking read-modify-write opera-
tions (e.g., compare-and-swap) instead of locks.

Despite the clear practical advantages of the fine-grained ap-
proach to the implementation of concurrent data structures, it re-
quires significant expertise to devise such structures and establish
correctness of their behavior.

In this paper, we focus on program logics as a generic ap-
proach to specify a program and formally prove its correctness wrt.
the given specification. In such logics, program specifications (or
specs) are represented by Hoare triples {P} c {Q}, where c is
a program being described, P is a precondition that constrains a
state in which the program is safe to run, and Q is a postcondition,
describing a state upon the program’s termination. Modern logics
are sufficiently expressive: they can reason about programs oper-
ating with first-class executable code, locally-spawned threads and
other features omnipresent in modern programming. Verifying a
program in a Hoare-style program logic can be done structurally,
i.e., by means of systematically applying syntax-directed inference
rules, until the spec is proven.

Importantly, logic-based verification of fine-grained concur-
rency requires reasoning about a number of concepts that don’t
have direct analogues in reasoning about sequential or coarse-
grained concurrent programs:
(1) Custom resource protocols. Each shared data structure (i.e.,

a resource) that can be used by several threads concurrently,
requires a specific “evolution protocol”, in order to enforce
preservation of the structure’s consistency. In contrast to the
coarse-grained case, where the protocol is fixed to be lock-
ing/unlocking, a fine-grained resource comes with its own no-
tion of consistency and protocol.

(2) Interference and stability. Absent locking, local reasoning
about a shared resource from a single thread’s perspective
should manifest the admissible changes that can be made by
other threads that interfere with the current one. Every thread-
local assertion about a fine-grained data structure’s state should
be stable, i.e., invariant under possible concurrent modifications
of the resource.

(3) Helping. This concurrent pattern appears in fine-grained pro-
grams due to relaxing the mutual exclusion policy; thus sev-
eral threads can simultaneously operate with a single shared re-
source. The “helping” happens when a thread is scheduled for
a task involving the resource, but the task is then accomplished
by another thread; however, the result of the work, once the task
is completed, is ascribed to the initially assigned thread.

In addition, Hoare-style reasoning about coarse- or fine-grained
concurrency requires a form of (4) auxiliary state to partially ex-
pose the internal threads’ behavior and relate local program asser-

1

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

tions to global invariants, accounting for specific threads’ contribu-
tions into a resource [26].

These aspects, critical for Hoare-style verification of fine-
grained concurrent programs, have been recognized and formal-
ized in one form or another in a series of recently published works
by various authors [10, 13–15, 22, 27, 36, 43, 51, 53, 55], pro-
viding logics of increasing expressivity and compositionality. In
formal proofs of correctness of concurrent libraries, that are based
upon these logical systems, the complexity is not due to the li-
braries’ sizes in terms of lines of code, but predominantly due to
the intricacy of the corresponding data structure invariant, and the
presence of thread interference and helping. This fact, in contrast to
proofs about sequential and coarse-grained concurrent programs,
requires one to establish stability of every intermediate verification
assertion. Needless to say, manual verification of fine-grained con-
current programs therefore becomes a challenging and error-prone
task, as it is too easy for a human prover to forget about a piece
of resource-specific invariant or to miss an intermediate assertion
that is unstable under interference; thus the entire reasoning can be
rendered unsound.

Since the process of structural program verification in a Hoare-
style logic is largely mechanical, there have been a number of re-
cent research projects that target mechanization and automation of
the verification process by means of embedding it into a general-
purpose proof assistant [6, 38, 39, 47], or implementing a stan-
dalone verification tool [8, 23, 28]. However, to the best of our
knowledge, none of the existing tools has yet adopted the logical
foundations necessary for compositional reasoning about all of the
aspects (1)–(4) of fine-grained concurrency. This is the gap which
we intend to fill in this work.

In this paper, we present a framework for mechanized verifi-
cation of fine-grained concurrent programs based on the recently
proposed Fine-grained Concurrent Separation Logic (FCSL) by
Nanevski et al. [36].1 FCSL is a library and an embedded domain-
specific language (DSL) in the dependently-typed language of Coq
Proof Assistant [9]. Due to its logical foundations, FCSL, as a ver-
ification tool and methodology for fine-grained concurrency, is:
• Uniform: FCSL’s specification model is based on two basic con-

structions: state-transition systems (STSs) and partial commuta-
tive monoids (PCMs). The former describe concurrent protocols
and thread interference, whereas the latter provide a generic treat-
ment of shared resources and thread contributions, making it pos-
sible to encode, in particular, the helping pattern. Later in this
paper, we will demonstrate how these two components are suffi-
cient to specify a large spectrum of concurrent algorithms, data
structures, and synchronization mechanisms, as well as to make
the proofs of verification obligations to be uniform.

• Expressive: FCSL’s specification fragment is based on the propo-
sitional fragment of Calculus of Inductive Constructions (CIC)
[2]. Therefore, FCSL can accommodate and compose arbitrary
mathematical theories, e.g., PCMs, heaps, arrays, graphs, etc.

• Realistic: FCSL’s programming fragment features a complete
toolset of modern programming abstractions, including user-
defined algebraic datatypes, first-class functions and pattern
matching. That is, any Coq program is also a valid FCSL pro-
gram. The monadic nature of FCSL’s embedding into Coq [37]
makes it possible to encode a number of computational effects,
e.g., thread spawning and general recursion. This makes program-
ming in FCSL similar to programming in functional languages,
such as ML or Haskell.

• Compositional: Once a library is verified in FCSL against a
suitable spec, its code is not required to be re-examined ever

1 Hereafter, we will be using the acronym FCSL to refer both to the
Nanevski et al.’s logical framework and to our implementation of it.

1 span (x : ptr) : bool {
2 if x == null then return false;
3 else
4 b← CAS(x->m, 0, 1);
5 if b then
6 (rl, rr)← (span(x->l) || span(x->r));
7 if ¬rl then x->l := null;
8 if ¬rr then x->r := null;
9 return true;

10 else return false; }

Figure 1: Concurrent spanning tree construction procedure.

again: all reasoning about the client code of that library can be
conducted out of the specification. The approach is thus scalable:
even though the proofs for some libraries might be large, they are
done just once.

• Interactive: FCSL benefits from the infrastructure, provided by
Coq’s fragment for mechanized reasoning, enhanced by Ssreflect
extension [16]. While the verification process can’t be fully au-
tomated (as full functional correctness of concurrent programs
often requires stating specs in terms of higher-order predicates),
the human prover nevertheless can take advantage of all of Coq’s
tools to discharge proof obligations.

• Foundational: The soundness of FCSL as a logic has been
proven in Coq wrt. a version of denotational semantics for con-
current programs in the spirit of Brookes [4]. Moreover, since
FCSL program specs are encoded as Coq types, the soundness
result scales to the entire programming language of Coq, not
just a toy core calculus. This ensures the absence of bugs in the
whole verification tool and, as a consequence, correctness of any
program, which is verified in it.

Our implementation of FCSL, unanimously accepted by PLDI’15
AEC, is available online with examples and the user manual [45].

In the remainder of the paper, we will introduce the FCSL
framework by example, specifying and verifying full functional
correctness of a characteristic fine-grained program—a concurrent
spanning tree algorithm. Starting from the intuition behind the
algorithm, we will demonstrate the common stages of program
verification in FCSL. We next explain some design choices in the
implementation of FCSL, and report on our experience of verifying
a number of benchmark concurrent programs and data structures:
locks, memory allocator, concurrent stack and its clients, an atomic
snapshot structure and non-blocking universal constructions. We
conclude with a comparison to related logical frameworks and
tools, and a discussion on future work.

2. Overview
We introduce verification in FCSL by informally explaining a fine-
grained concurrent program for computing in place a spanning tree
of a binary directed graph [21, 43].

2.1 A graph spanning tree algorithm and its intuition
The recursive procedure span (Figure 1) takes an argument x,
which is a pointer to a node in the graph, and constructs the span-
ning tree rooted in x by traversing the graph and removing redun-
dant edges. The graph is implemented as a memory region where
each pointer’s target value is a triple. The triple’s first component
is a bit m indicating whether the node is marked; the second and
third components are pointers to the node’s left and right succes-
sors, or null if a successor doesn’t exist.

If x is null, span returns false (line 2). Otherwise, it tries to
mark the node by invoking the compare-and-swap (CAS) operation
(line 4). If CAS fails, then x was previously marked, i.e. included in
the spanning tree by another call to span, so no need to continue
(line 10). If CAS succeeds, two new parallel threads are spawned

2

a

b c

ed

a

b c

ed

a

b c

ed

a

b c

ed

a

b c

ed

a

b c

ed

(1) (2) (3) (4) (5) (6)

✔✔ ✔✔ ✔✔ ✔✔

✔✔ ✔✔

✗ ✗

✗✗

Figure 2: Stages of concurrent spanning tree construction. A node is painted grey right after a corresponding thread successfully marks it
(line 4 of Figure 1). It is painted black right before the thread returns true (line 9). A black subtree is logically ascribed to a thread that
marked its root. 4 indicates a child thread exploring an edge and succeeding in marking its target node; 7 indicates a thread that failed to
do so. (1) the main thread marks a and forks two children; (2) the children succeed in marking b and c; (3) only one thread succeeds in
marking e; (4) the processing of d and e is done; (5) the redundant edges b→ e and c→ c are removed by the corresponding parent threads;
(6) the initial thread joins its children and terminates.

(line 6): span is called recursively on the left (x.l) and right (x.r)
successors of x, returning respectively the booleans rl and rr upon
termination. When rl is false, x.l has already been marked, i.e.,
span has already found a spanning subtree that includes x.l but
doesn’t traverse the edge from x to x.l. That edge is superfluous,
and thus removed by nullifying x.l (line 7). The behavior is dual
for x.r. Figure 2 illustrates a possible execution of span.

Why does span compute a tree? Assume that (1) the graph ini-
tially represented in memory is connected, and that (2) it is modi-
fied only by recursive calls to span, with no external interference.
To see that span obtains a tree, consider four cases, according to the
values of rl and rr . If rl = rr = true, then the calls to span have,
by recursive assumption, computed trees from subgraphs rooted at
x.l and x.r to trees. These trees have disjoint nodes, and there are
no edges connecting them. As will be shown in Section 3, this will
follow from a property that each tree is maximal wrt. the resulting
final graph’s topology (i.e., the tree cannot be extended with addi-
tional nodes). Lines 7 and 8 of span preserve the edges from x to
x.l and x.r; thus x becomes a root of a tree with subtrees pointed to
by x.l and x.r (Figure 2(6)). If rl = true and rr = false, the re-
cursive call has computed a tree from the subgraph rooted at x.l, but
x.r has been found marked. The edge to x.r is removed in line 8,
but that to x.l is preserved in line 7; x becomes a root of a tree with
left subtree rooted in x.l, and right subtree empty (Figure 2(5)).
The case rl = false, rr = true is dual. The case rl = rr = false
results in a subtree containing just the root x (Figure 2(4)).

Why does span construct a spanning tree? Consider the front of
the constructed tree in the initial graph (i.e., the nodes immediately
reachable in the initial graph, from the nodes of the constructed
tree. For example, in Figure 2(5), the front of b are nodes d, e
in Figure 2(1)). We will show in the next section that this front
must contain only marked nodes, as otherwise span would have
proceeded with node marking, instead of terminating. Thus the
front of the tree constructed by the top-level call to span must be
included in the very same tree. Otherwise, there exists a node which
is marked but not in the tree. Therefore, this node must have been
marked by another thread, thus contradicting assumption (2). Since,
by (1), the initial graph is connected, a tree which contains its front
must contain all the nodes, and thus be a spanning one.

2.2 Infrastructure for mechanizing the proof in FCSL
To flesh out the above informal argument and mechanize it in
FCSL, we require a number of logical concepts. We describe these
next, and tie them to the span algorithm.

2.2.1 Concurroids
FCSL requires an explicit description of the common assumptions
that threads operating on the shared resource observe. Such agree-
ment between threads is needed so that one thread’s changes match

other threads’ expectations. In the case of span, for example, one
assumption we elided above is that an edge out of a node x can
be removed only by a thread that marked x. This thread can rely
on the property that edges to x.l and x.r won’t be nullified by an-
other thread. These assumptions are formalized by STSs of a spe-
cial form, which are called concurroids.

The state of each concurroid is divided into three components
[self | joint | other]. The joint component describes shared state
that all threads can change. The self and other components are
owned by the observing thread, and its environment, respectively,
and may be changed only by its owner. If there are two threads t1
and t2 operating over a state, the proof of t1 will refer by self to the
private state of t1, and by other to the private state of t2, and the
roles are reversed for t2. This thread-specific, aka. subjective, split
into self, joint and other is essential for making the proofs insensi-
tive to the number of threads forked by the global program, and the
order in which this is done [32]. We also note that the self and other
components have to be elements of a PCM, i.e., a set U with an as-
sociative and commutative join operation •, and a unit element 1.
PCMs enable general and compositional representation of thread-
owned state (auxiliary or real), which can be split between parallel
threads [32]. Intuitively, commutativity and associativity account
for those of a parallel composition of threads, and partiality cap-
tures the fact that not all splits/combinations of state are valid.

All three state components of a concurroid may contain real
state, i.e. heap, or auxiliary state [34, 41], which is kept for logical
specification, but is erased before execution. In the case of the span

procedure, the joint component is the heap encoding the graph to
be spanned, as described above. The self and other components are
auxiliary state, consisting of sets of nodes (i.e., pointers) marked
by the observing thread and its environment, respectively. These
components are elements of a PCM of sets with disjoint union ·∪
as •, and the empty set as the unit. Thus, self • other is the set of
marked nodes of the graph in joint.

Transitions of a concurroid are binary relations between states.
They describe the state modifications that the threads are allowed
to do. The concurroid for span, named SpanTree in the sequel,
has two non-trivial transitions, which we call marknode_trans and
nullify_trans. Additionally, every concurroid has the trivial iden-
tity transition idle. A thread performs marknode_trans when it
successfully marks a node. Whenever the bit m of a node x is
set, the pointer x is also added to the auxiliary self state of the
thread that performed the operation. Thus, the self component cor-
rectly tracks the nodes marked by a thread. A thread performs
nullify_trans when it removes an edge out of a marked node.
However, this transition can only be taken in states in which x is in
the self component; thus, only a thread that previously marked x
can take this transition.

3

Program Definition span : span_tp :=
ffix (fun (loop : span_tp) (x : ptr) =>
Do (if x == null then ret false else

b <-- trymark x;
if b then
xl <-- read_child x Left;
xr <-- read_child x Right;
rs <-- par (loop xl) (loop xr);
(if ~~rs.1 then nullify x Left else ret tt);;
(if ~~rs.2 then nullify x Right else ret tt);;
ret true

else ret false)).

Figure 3: FCSL implementation of the span procedure.

2.2.2 Atomic actions
Concurroids logically specify the behavior of threads, and one
needs a way to tie the logical specs to actual program operations,
such as, e.g., CAS. An atomic action is a program operation that can
change the heap by one read-modify-write operation, and simul-
taneously change the auxiliary state. In Section 3, we expand on
how actions are defined. For now, we just briefly describe the three
actions required for implementation of span in FCSL.

The trymark action attempts to mark a node x, and move x
into the self auxiliary component simultaneously. Operationally,
i.e., when the auxiliary state is erased, it corresponds to the CAS

on line 4 of Figure 1. Logically, if successful, it corresponds to
a marknode_trans transition in the concurroid. If unsuccessful, it
corresponds to the concurroid’s idle transition. The nullify action
invoked with an argument x, and a two-valued indicator side (Left
or Right), sets the x.l (or x.r, depending on side) pointer to
null, but emits a precondition that x is in self. Operationally, it
corresponds to the assignment of null on lines 7 and 8 of Figure 1.
Logically, it corresponds to taking the nullify_trans transition.
Finally, read_child atomic action, invoked with arguments x and
side, returns the pointer x.l (or x.r, depending on side). It also
emits a precondition that x is in self. Operationally, it corresponds
to the pointer reads on line 6 in Figure 1. Logically, it corresponds
to the concurroid’s idle transition.

Figure 3 shows how the actions are used to translate the span

procedure from Figure 1 into FCSL.

2.2.3 Hoare specifications as types and stability
In Figure 3, span is ascribed the type span_tp. While Section 3
defines it formally, here we provide some basic intuition for it.

Among other components, the type span_tp contains the for-
mal pre- and postconditions, ascribed to span. Hence, it is a user-
defined type, rather than inferred by the system. Also, span_tp is
declared as the type of the fixpoint combinator ffix’s argument
loop, and thus serves as the “loop invariant” as well. The compo-
nents of span_tp provide the following information: (a) The pre-
condition in span_tp ensures that the input node x is either null

or points to a node in the heap. (b) If span returns false, the post-
condition ensures that x is either null or is marked in the graph,
and the thread hasn’t marked any other nodes during the call. (c) If
span returns true, the postcondition states that x 6= null, and the
thread being specified has marked a set of nodes t, which form a
maximal tree in the final graph with root x; moreover, t’s front wrt.
initial graph is marked, possibly by other threads.

We further note that the assertions (a)–(c) will be stable wrt.
interference, i.e., they remain valid no matter which transitions of
the span concurroid the interfering threads take. Proving stability
is an important component of FCSL. Typically, every spec used in
FCSL will be stable, or else it won’t be possible to ascribe it to a
program. In the next section, we will exhibit several stable example
specifications wrt. the concurroid for span, including span_tp.

Definition span_tp := forall (x : ptr),
{i (g1 : graph (joint i))}, STsep [SpanTree sp]
(* precondition predicate *)
(fun s1 => i = s1 /\

(x == null \/ x \in dom (joint s1)),
(* postcondition predicate *)
fun (r : bool) s2 => exists g2 : graph (joint s2),
subgraph g1 g2 /\
if r then x != null /\ exists t,
self s2 = self i \+ t /\ tree g2 x t /\
maximal g2 t /\ front g1 t (self s2 \+ other s2)

else (x == null \/ mark g2 x) /\ self s2 = self i).

Figure 4: Specification span_tp of the span procedure.

2.2.4 Hiding from external interference
The type span_tp specifies the calls to span in the loop, but the
top-most call to span requires a somewhat stronger context, as it
should know that no other threads, aside from its children, can
interfere on the shared graph. Without this knowledge, explicitly
stated by the assumption (2), it is impossible to show that span

actually constructs a spanning tree, so we need to enforce it.
The encapsulation of interference is achieved in FCSL by the

program constructor hide. For instance, writing hideΦ,∅{ span(x) },
makes it apparent to the type system of FCSL that the top-most call
to span runs without interference on the shared graph. More pre-
cisely, the call, span(x), within hide will execute relative to the
protocol implemented by the SpanTree concurroid. Any threads
spawned internally will also follow this protocol. Outside of hide,
the active protocol allows manipulation of the caller’s private state
only, but is oblivious to the span protocol. The surrounding threads
thus cannot interfere with the inside call to span. In this sense, hide
installs a concurroid in a scoped manner, and then executes the
supplied program relative to that concurroid. The role of hide is
thus purely logical, and operationally it behaves as a no-op.

The annotation Φ is a predicate over heaps that indicates the
portion of the private heap of span’s caller onto which the span

concurroid should be installed. In the case of span, Φ merely
describes the nodes of the graph we want to span. ∅ indicates that
span is initially invoked with the empty auxiliary state, i.e., no
nodes are initially marked.

3. Outline of the Mechanized Development
We next discuss how the above informal overview is mechanized in
Coq. We start with the definition of span_tp and proceed to explain
all of its components. The specifications and code shown will be
very similar to what’s in our Coq files, though, to improve presenta-
tion, we occasionally take liberties with the order of definitions and
notational abbreviations. We do not assume any familiarity with
Coq, and explain the code displays as they appear. We also omit
the proofs and occasional auxiliary definitions, which can be found
in the FCSL code, accompanying the paper [45].

3.1 The definition of the type span_tp

The type span_tp is described in Figure 4. It is an example of
a dependent type, as it takes formal arguments in the form of
variables x, i and g1, that the body of the type can use, i.e., depend
on. The roles of the variables differ depending on the keyword
that binds them. For example, the Coq keyword forall binds the
variable x of type ptr, and indicates that span_tp is a specification
for a procedure that has x as input. Indeed, span is exactly such
a procedure, as apparent from Section 2. Using forall to bind
x allows x to be used in the body of span_tp, but also in the
body of span (Figure 3). On the other hand, i and g1 are bound
by FCSL binder {...}. This binding is different; it allows i and

4

g1 to be used in the body of span_tp, but not in the procedure
span. In terminology of Hoare-style logic, i and g1 are logical
variables (aka. ghosts), which are used in specs, but not in the
code. STsep is a Coq macro, defined by FCSL announcing that
what follows is a Hoare-style partial correctness specification for
a concurrent program. The component SpanTree sp in the brackets
is the concurroid whose protocol span_tp respects. We will define
SpanTree shortly. Finally, the parentheses include the precondition
and the postcondition (defined as Coq’s functions) that we want to
ascribe to span. The precondition is a predicate over the pre-state
s1. The postcondition is a predicate over the boolean result r and
post-state s2. As customary in many programming languages, Coq
included, we omit the types of various variables when the system
can infer them (e.g., the variables i, s1 and s2 are all of type state).

The precondition says that the input x is either null (since span

can be called on a leaf node), or belongs to the domain of the input
heap, and hence is a valid node in the heap-represented graph.
The heap is computed as the projection joint out of the input
state s1, which i snapshots. The projections self and other are
sets of marked nodes, belonging to the caller of span and to its
environment, respectively.

The postcondition says that in the case the return result is
r = false, the pointer x was either null or already marked. Oth-
erwise, there is a set of nodes t which is freshly marked by the call
to span; that is, self s2 is a disjoint union (\+) of t with the set
of nodes marked in the pre-state self i. The set t satisfies several
important properties. First, t is a subtree in the graph, g2, of the
post-state s2, with root x. Second, the tree t is maximal, i.e., it can-
not be extended into a larger tree by adding more nodes from g2, as
all the edges between t and the rest of the graph have been severed
by span. Third, all the nodes immediately reachable from t in the
initial state i (i.e., t’s front) are marked in g2 either by this or some
other thread (self s2 \+ other s2). That is, span did not leave
any reachable nodes unmarked; if such nodes existed, span would
not have terminated. Finally, in both cases, subgraph g1 g2 states
that the final graph g2 is obtained by marking nodes and removing
edges from the initial graph g1; no new edges are added, no nodes
are un-marked.

We close the description of span_tp by noting its interesting bi-
directional nature. It contains properties such as tree and maximal,
stated over the post-state graph g2 (forward direction), but also the
property front which is stated of the pre-state graph g1, and can
be stated only in relation to s2 (backward direction). The backward
direction is a crucial component in the proof that the top-most call
to span, shielded from interference by hide, indeed marked all the
nodes and, hence, constructed a spanning tree.

3.2 Representing graphs in a heap
Next we define the predicate graph h, which appears in span_tp

(Figure 4), and says when a heap h represents a graph. It does so
if every pointer x in h stores some triple (b, xl, xr), where b is
the “marked” bit, and xl, xr are pointers in the domain of h (and,
hence, are x itself or other nodes), or null if x has no successors.

Definition graph (h : heap) := valid h /\
forall x, x \in dom h -> exists (b : bool) (xl xr : ptr),

h = x :-> (b, xl, xr) \+ free x h /\
{subset [:: xl; xr] <= [:: null] ++ dom h}.

The conjunct valid h says that the heap h doesn’t contain duplicate
pointers. The notation \+ is overloaded and used for disjoint union
of sets of nodes in span_tp, and for disjoint union of heaps in
graph. In general, we use \+ for any PCM • operation. free x h is
the heap obtained by deallocating x from h. Finally, the last line is
concrete syntax for {xl, xv} ⊆ {null} ∪ dom h.

The graph predicate illustrates certified programming in Coq [7],
i.e., the ability to use propositions as types, and pass variables such

as g1 and g2 that stand for proofs of the graph property, as inputs
to other types (e.g., span_tp) or functions. This ability enables
formally defining partial functions over heaps that are undefined
when the heap doesn’t encode a valid graph. An alternative to this
somewhat unique capability of dependent types is to encode partial
functions as relations, but that usually results in increase in proof
tedium and size.

Here are a few examples of such partial functions. Given a
node (i.e., a pointer) x and a proof that the heap h represents a
graph (written (g : graph h)), we name mark g x, edgl g x and
edgr g x the three components stored in the pointer x in the heap
(i.e., the “marked” bit, left, right successor), and write cont g x for
the whole triple. By default, these values are false, null, null if x
is not in the heap. Each of these functions takes h as an argument;
i.e., one could also write mark h g x etc., but we omit h as it
can be inferred from g’s type, following Coq’s standard notational
abbreviation.

We can now define the remaining predicates used in span_tp in
Figure 4. For all of the definitions, we assume that variables h and
(g : graph h) are in scope, and omit them. We also use ptr_set

as an alias for finite maps from pointers to the unit type.2

First, we define the function edge, which represents the inci-
dence relation for the graph g.

Definition edge (x y : ptr) := (x \in dom h) &&
(y != null) && (y \in [:: edgl g x; edgr g x]).

Second, tree x t requires that t contains x, and for any node y∈ t,
there exists a unique path (i.e., a list of nodes) p from x to y via
edge’s links, which lies within the tree (i.e., the nodes p are a sub-
set of t). Note how edge is curried, i.e., passed to path as a func-
tion, abstracted over arguments. This illustrates that even simple
mathematical mechanizations require higher-order functions in or-
der to work.

Definition tree (x : ptr) (t : ptr_set) := x \in dom t /\
forall y, y \in dom t -> exists !p,
path edge x p /\ y = last x p /\ {subset p <= dom t}.

Third, front t t’, determines if the nodes reachable from t in zero
or one step are included in t’.

Definition front (t t’ : ptr_set) :=
{subset dom t <= dom t’} /\
forall x y, x \in dom t -> edge x y -> y \in dom t’.

Fourth, a tree t is maximal if it includes its front. A graph is
connected if there’s a path from x to every other node y in it.

Definition maximal (t : ptr_set) := front t t.
Definition connected (x : ptr) (t : ptr_set) := forall y,
y \in dom t -> exists p, path edge x p /\ last x p = y.

Finally, subgraph codifies a number of properties between pre-
state s1 and post-state s2, and their graphs g1, g2. In particular:
g1, g2 contain the same nodes (=i is equality on lists modulo
permutation), the set of self-marked and other-marked nodes only
increase, edges out of a node y can be changed only if the node is
marked, and the only change to the edges is nullification (that is,
removal).

Definition subgraph s1 s2
(g1 : graph (joint s1)) (g2 : graph (joint s2)) :=
dom (joint s1) =i dom (joint s2) /\
{subset dom (self s1) <= dom (self s2)} /\
{subset dom (other s1) <= dom (other s2)} /\
(forall y, ~~(mark g2 y) -> cont g1 y = cont g2 y) /\
(forall x, (edgl g2 x \in [:: null; edgl g1 x]) /\

(edgr g2 x \in [:: null; edgr g1 x])).

2 This is a bit expedient way of implementing finite sets, but it saves work by
reusing an extensive library of finite maps, also used for formalizing heaps.

5

We close the description of the predicates used in span_tp, by
listing two important lemmas that relate them. The first lemma,
max_tree2, says that if y1 and y2 are successors of x (i.e., edge x

equals the set [:: y1; y2] modulo permutation), and ty1 and
ty2 are maximal trees rooted in y1 and y2, and moreover, ty1

and ty2 are disjoint, then the set of nodes built from x, ty1 and
ty2 by disjoint union (\+) is a tree itself, i.e., no edges connect
ty1 and ty2 (the notation #x is concrete syntax for the singleton
finite map containing node x). This lemma is essential in proving
that span produces a tree, as mentioned in Section 2 for the case
rl = rr = true.

Lemma max_tree2 x y1 y2 ty1 ty2 :
edge x =i [:: y1; y2] -> tree y1 ty1 -> maximal ty1 ->
tree y2 ty2 -> maximal ty2 -> valid (ty1 \+ ty2) ->
tree x (#x \+ ty1 \+ ty2).

The second lemma shows that subgraph is monotone wrt. the
stepping of environment threads in the SpanTree concurroid.

Lemma subgraph_steps s1 s2
(g1 : graph (joint s1)) (g2 : graph (joint s2)) :
env_steps (SpanTree sp) s1 s2 -> subgraph g1 g2.

We used this lemma as the main tool in establishing a number
of stability properties in Coq, related to the conjuncts from the
definition of subgraph g1 g2. For example, the lemma implies that
if x is a node of joint s1, then it is so in a stable manner; that is, x
is a node in joint s2 for any s2, obtained from s1 by changes via
environment interference.

3.3 SpanTree concurroid
Next we define the SpanTree concurroid. Being an STS, the defi-
nition includes the specification of the state space, and transitions
between states. In the case of concurroids, we have an additional
component: labels (semantically, natural numbers) that differenti-
ate instances of the concurroid. Thus the definition of SpanTree is
parametrized by the variable sp, which makes it possible to use sev-
eral instances of SpanTree with different labels in a specification of
a single program. For example, say we want to run two span proce-
dures in parallel on disjoint heaps. Such a program could be spec-
ified by a Cartesian product of SpanTree sp1 and SpanTree sp2,
where the different labels sp1 and sp2 instantiate the variable sp.

The state space of SpanTree is defined by the following state
predicate coh, which we call coherence predicate.

Variable sp : nat.
Definition coh s := exists g : graph (joint s),
s = sp ->> [self s, joint s, other s] /\
valid (self s \+ other s) /\
forall x, x \in dom (self s \+ other s) = mark g x.

The coherence predicate codifies that the state s is a triple, [self s,

joint s, other s], and that it is labelled by sp. The proof g is a
witness that the joint component is a graph-shaped heap. The
conjunct valid (self s \+ other s) says that the self and other
components of the auxiliary state are disjoint; their union is a finite
map which is valid, i.e., doesn’t contain duplicate keys. Finally,
the most important invariant is that a node x is contained in either
self or other subjective view iff it’s marked in the joint graph.

The metatheory of FCSL [36, §4] requires the coherence predi-
cates to satisfy several properties that we omit here, but prove in our
implementation. The most important property is the fork-join clo-
sure, stating that the state space is closed under realignment of self
and other components. In other words, one may subtract a value
from self and add it to other (and vice versa), without changing the
coherence of the underlying state.

SpanTree sp contains two non-idle transitions. The first transi-
tion marknode_trans, parametrized by the node x, describes how

an unmarked x is physically marked in the joint graph, and si-
multaneously added to the self component. The second transition
nullify_trans is parametrized by node x and the direction c, in-
dicating the successor of x (left or right) that must be cut off from
the graph. We omit the definitions of the functions mark_node and
null_edge that describe the physical changes performed by the two
transitions to the underlying shared graph. These can be found in
the accompanying Coq code [45].

Definition marknode_trans x s s’ :=
exists g : graph (joint s), ~~(mark g x) /\
joint s’ = mark_node g x /\ self s’ = #x \+ self s /\
other s’ = other s /\ coh s /\ coh s’.

Definition nullify_trans x (c : side) s s’ :=
exists g : graph (joint s), x \in dom (self s) /\
joint s’ = null_edge g c x /\ self s’ = self s /\
other s’ = other s, coh s /\ coh s’.

The FCSL metatheory requires that transitions also satisfy several
properties. For example, marknode_trans and nullify_trans pre-
serve the other-component and the coherence predicate, as imme-
diately apparent from their definitions. They also preserve the foot-
print of the underlying state, i.e., they don’t add or remove any
pointers. Adding and removing heap parts can be accomplished by
communication between concurroids, which we will briefly discuss
in Section 4 of this paper.

The coherence predicate, the transitions, and the proofs of their
properties are packaged into a dependent record3

SpanTree sp,
which encapsulates all that’s important about a concurroid. Thus,
we use the power of dependent types in an essential way to build
mathematical abstractions, such as concurroids, that are critical for
reusing proofs.

3.4 Defining atomic actions
We next illustrate the mechanism for defining atomic actions in
FCSL. The role of atomic actions is to perform a single physical
memory operation on the real heap, simultaneously with an arbi-
trary modification of the auxiliary part of the state. In FCSL, we
treat the real and auxiliary state uniformly as they both satisfy the
same PCM laws. We specify their effects in one common step, but
afterwards prove a number of properties that separate them. For in-
stance, for each atomic action we always prove the erasure property
that says that the effect of the action on the auxiliary state doesn’t
affect the real state.

Specifically, the effect of the trymark action is defined by the
following relation between the input pointer x, the pre-state s1,
post-state s2 and the return result r of type bool.

Definition trymark_step (x : ptr) s1 s2 (r : bool) :=
exists g : graph (joint s1),
x \in dom (joint s1) /\ other s2 = other s1 /\
if mark g x
then r = false /\ joint s2 = joint s1 /\

self s2 = self s1
else r = true /\ joint s2 = mark_node g x /\

self s2 = #x \+ self s1.

The relation requires that x is a node in the pre-state graph
(x \in dom (joint s1)). If x is unmarked in this graph, then the
action returns true, together with marking the node physically in
the real state (employing the function mark_node already used in
marknode_trans). Otherwise, the state remains unchanged, and the
action’s result is false. Notice that when restricted to the real heap,
i.e., if we ignore the auxiliary state in self s1 and other s1, the
relation essentially describes the effect of the CAS command on the
mark bit of x. Thus, trymark erases to CAS.

3 A type-theoretic variant of a C struct, where fields can contain proofs.

6

There are several other components that go into the definition
of an atomic action. In particular, one has to prove that transitions
are total, local, and frameable in the sense of Separation Logic, and
then ascribe to each action a stable specification. However, the most
important aspect of action definitions is to identify their behavior
with some transition in the underlying concurroid. For example,
trymark behaves like marknode_trans transition of SpanTree if it
succeeds, and like idle if it fails. Actions may also change state
of a number of concurroids simultaneously, as we will discuss in
Section 4. We omit the formal definition of all these properties, but
they can be found in the accompanying code [45].

3.5 Scoped concurroid allocation and hiding
The span_tp type from Figure 4 operates under open-world as-
sumption that span runs in an environment of interfering threads,
which, however, respect the transitions of the SpanTree concurroid.
If one wants to protect span from interference, and move to closed-
world assumption, the top-most call must be enclosed within hide.
We next show how to formally do so.

The hide construct allocates a new lexically-scoped concurroid
from a local state of a particular thread. The thread-local state is
modelled in FCSL by a basic concurroid Priv pv with a label
pv [36, §4], and its self /other components are retrieved via pv_self

and pv_other projections. The description of how much local heap
should be “donated” to the concurroid creation is provided by the
user-supplied predicate Φ, called decoration predicate. In addition
to the heap, the predicate scopes over the auxiliary self value,
while the auxiliary other is fixed to the PCM unit, to signal that
there’s no interference from outside threads. In the case of span,
the decoration predicate is the following one.

Definition graph_dec sp (g : heap * ptr_set) s := coh s /\
exists (pf : graph g.1), s = sp ->> [g.2, g.1, Unit].

We can now write out a new type span_root_tp, to specify the top-
most call to span, under the closed-world assumption that there’s
no interference. Parametrizing wrt. the locally-scoped variable
h1 : heap that snapshots the initial heap, the type is as follows.

Definition span_root_tp (x : ptr) :=
{g1 : graph h1}, STsep [Priv pv]
(* precondition predicate *)
(fun s1 => (forall y, ~~(mark g1 y)) /\

pv_self s1 = h1 /\ x \in dom h1 /\ connected g1 x,
(* postcondition predicate *)
fun _ s2 => exists (g2 : graph (pv_self s2)) t,
(forall x, (edgl g2 x \in [:: null; edgl g1 x]) /\

(edgr g2 x \in [:: null; edgr g1 x])) /\
tree g2 x t /\ dom t =i dom h1).

The precondition says that the argument x is the root of the graph
g1 stored in h1, and all the nodes of g1 are reachable from x. The
postcondition says that the final heap’s topology is a tree t, whose
edges are a subset of the edges of g1, but whose nodes include all
the nodes of g1. Thus, the tree is a spanning one. The program
satisfying this spec is a call to span, wrapped into hide, annotated
with the decorating functions. We also supply h1 as the initial heap,
and Unit of the PCM of finite sets (hence, the empty set), as the
initial value for self, which indicates that span is invoked with the
empty set of marked nodes.

Program Definition span_root x : span_root_tp x :=
Do (priv_hide pv (graph_dec sp) (h1, Unit) [span sp x]).

Coq will emit a proof obligation that the pre and post of span_tp
can be weakened into those of span_root_tp under the closed-
world assumption that other s2 = Unit. This proof is in the de-
velopment, accompanying this paper [45].

4. More Examples
We next briefly illustrate two additional features of FCSL that
our implementation uses extensively: concurroid composition and
reasoning about higher-order concurrent structures with helping.

4.1 Composing concurrent resources
The span algorithm uses only one concurroid SpanTree, allocated
by hide out of the concurroid Priv for thread-local state. In general,
FCSL specs can span multiple primitive concurroids, of the same
or different kinds, which are entangled by interconnecting special
channel-like transitions [36]. The interconnection implements syn-
chronized communication, by which concurroids exchange heap
ownership. Entangling several concurroids yields a new concur-
roid. Omitting the formal details of the entanglement operators, let
us demonstrate a program whose spec uses a composite concurroid.

Definition alloc :
{h : heap}, STsep [entangle (Priv pv) ALock]
(fun s1 => pv_self s1 = h,
fun r s2 => exists B (v : B), pv_self s2 = r :-> v \+ h)

:= ffix (fun (loop : unit -> alloc_tp) (_ : unit) =>
Do (res <-- try_alloc;

if res is Some r then ret r else loop tt)) tt.

The alloc procedure implements a pointer allocator. Its postcondi-
tion says that the initial heap h is augmented by a new pointer r stor-
ing some value v (r :-> v). The heap h is part of the Priv concur-
roid, as evident by the projection pv_self in the precondition. The
pointer r is logically transferred from the concurroid ALock which
implements a coarse-grained (i.e., lock-protected) concurrent allo-
cator. Hence, the whole procedure alloc uses the composed con-
curroid [entangle (Priv pv) ALock]. The body of alloc imple-
ments a simple spin-loop, trying to acquire the pointer by invoking
the try_alloc procedure, omitted here.

Whereas separation logic [44] always assumes allocation as a
primitive operation, the above example illustrates that in FCSL,
allocation is definable. One can also define a new variant of the
STsep type that automatically entangles the underlying concurroid
with ALock, thus enabling allocation without the user having to
explicitly do so herself.

4.2 Higher-order specifications
Due to embedding in Coq, FCSL is also capable of specifying
and verifying higher-order concurrent data structures, which we
illustrate by an example of a universal non-blocking construction
of flat combining by Hendler et al. [19].4

A flat combiner (FC) is a higher-order structure, whose method
flat_combine takes a sequential state-modifying function f and its
argument v, and works as follows. While for the client, invoking
flat_combine(f, v) looks like a sequence lock; f(v); unlock,
in reality, the structure implements a sophisticated concurrent be-
havior. Instead of expensive locking and unlocking, the calling
thread doesn’t run f, but only registers f to be executed on v. One
of the threads then becomes a combiner and executes the registered
methods on behalf of everyone else. Since only the combiner needs
exclusive access to the data structure, this reduces contention and
improves cache locality. This design pattern is known as helping or
work stealing: a thread can complete its task even without access-
ing the shared resource.

To specify FC, we parametrize it by a sequential data structure
and a validity predicate fc_R, which relates a function f (from a
fixed set of allowed operations), the argument of type fc_inT f,
result of type fc_outT f and the contribution of type fc_pcm. The

4 For simplicity, we present here a specification that is much weaker than
what we have actually verified in our implementation.

7

last entry is a description of what f does to the shared state, ex-
pressed in abstract algebraic terms as an element from a user-
supplied PCM fc_pcm.

Variable fc_R : forall f,
fc_inT f -> fc_outT f -> fc_pcm -> Prop.

The spec of the flat_combine is then given in the context of
three entangled concurroids: Priv for thread-local state, a lock-
based allocator Alloc, adapted from the previous example (since a
sequential function f might allocate new memory), and a separate
concurroid FlatCombine.

Definition PA := (entangle (Priv pv) Alloc).
Program Definition flat_combine f (v : fc_inT f) :
STsep [entangle PA (FlatCombine fc)]
(fun s1 => pv_self s1 = Unit /\ fc_self s1 = Unit,
fun (w : fc_outT f) s2 => exists g, pv_self s2 = Unit /\

fc_self s2 = g /\ fc_R f v w g) := ...

The precondition says that flat_combine executes in the empty ini-
tial heap (pv_self s1 = Unit), and hence by framing, in any initial
heap. Similarly, the initially assumed effects of the calling thread
on the shared data structure are empty (fc_self s1 = Unit), but
can be made arbitrary by applying FCSL’s frame rule to the spec of
flat_combine. The postcondition says that there exists an abstract
PCM value g describing the effect of f in terms of PCM elements
(fc_R f v w g). Moreover, the effect of g is attributed to the invok-
ing thread (fc_self s2 = g), even though in reality f could be ex-
ecuted by the combiner, on behalf of the calling thread. In our Coq
implementation, we instantiated the FC structure with a sequential
stack, showing that the result has the same spec as a concurrent
stack implementation.

5. Elements of FCSL Infrastructure
In this section we sketch the ideas behind implementation of FCSL
as an embedding into Coq, and describe important parts of FCSL
machinery, used to simplify construction of proofs.

5.1 FCSL model and embedding into Coq
Programs in FCSL are encoded as their values in the denotational
semantics of sets of action trees [36, Appendix F of extended
version]. The trees are a structured version of action traces by
Brookes [4]. They implement finite, partial approximations of the
behavior of FCSL commands. Basic commands, such as ret and
atomic actions are given semantics as finite sets of primitive trees.
The semantics of program combinators, such as sequential or par-
allel composition, is defined as a set-comprehension over the el-
ements of their constituents’ semantics, and ffix combinator is
defined by taking Tarski’s fixed point of its argument function’s
monotone closure over the powerset lattice. Therefore, each FCSL
program (e.g., span in Figure 3) is a value in Coq, obtained by com-
posing primitive commands and atomic actions via FCSL combina-
tors and native Coq expressions (e.g., functions and conditionals).

In our implementation, the definition of each FCSL command
(i.e., its denotational semantics) is packaged, as a dependent record,
together with a specification, corresponding to its weakest pre-
and strongest postconditions [11] wrt. the natural safety predicate,5

and with a proof that such specification is a valid one for the
corresponding program’s semantics. We also defined a number of
implicit coercions that inject a command into the corresponding
record instance, containing the command’s spec. This allowed us
to exploit the type-checking machinery of Coq, which is capable of
composing coercions, thus synthesizing weakest pre- and strongest
postconditions for arbitrarily complex well-typed FCSL programs.

5 The predicate states that a program can execute (possibly, concurrently) in
a state, satisfying a given precondition, without crashing [36, §F.5].

5.2 Verification conditions and structural lemmas
Even though each well-typed FCSL program has already the
strongest specification inferred automatically by the system, such
spec isn’t what one would typically like to ascribe to a program
and expose to the clients. Therefore, verification in FCSL reduces
to weakening the derived strongest spec to the one of interest.

The verification conditions for weakening are encoded by wrap-
ping a program into the Do constructor (e.g., in Figure 3), which
emits a corresponding proof obligation. Such proofs in FCSL are
structured to facilitate systematic application of Floyd-style struc-
tural rules, one for each command. All the rules are proved sound
from first principles, and are applied as lemmas to advance the ver-
ification. As the first step of every proof, the system implicitly ap-
plies the weakening rule to the automatically synthesized weak-
est pre- and strongest postconditions, essentially converting the
program into the continuation-passing style (CPS) representation
and sequentializing its structure. Every statement-specific struc-
tural rule “symbolically evaluates” the program by one step, and
replaces the goal with a new one (or several ones) to be verified.

For example, the following lemma step, corresponding to the
rule of sequential composition, reduces the verification of a pro-
gram (y ← e1; (e2 y)) with continuation k, to the verification of
the program e1 and the program e2 y k, where y corresponds to
a symbolic result of evaluating e1, constrained according to e1’s
postcondition. One can apply it several times until e1 is reduced to
some primitive action, at which point one can apply the structural
rule for that action.

Lemma step W A B (e1 : ST W A)
(e2 : A -> ST W B) i (k : cont B):

verify i e1 (fun y m => verify m (e2 y) k) ->
verify i (y <-- e1; e2 y) k.

ST is a type synonym for STsep, hiding its pre’s and post’s.

5.3 Extracting concurroid structure via getters
When working with compositions of multiple concurroids, as in
examples listed in Section 4, one frequently has to select the self,
joint or other components that belong to one of the composed
concurroids. A naı̈ve way of doing this is to describe the state
space of the composition concurroid using existentials that ab-
stract over the concurroid-specific fields. For instance, in the case
of flat combiner, which composes three concurroids Priv, Alloc
and FlatCombine, we could use three existentials to abstract over
self /joint/other fields for Priv, another three for Alloc, and three
more for FlatCombine. To access any of the fields, we have to de-
struct all nine of the existentials. This quickly becomes tedious and
results in proofs that are obscured by such existential destruction.

Our alternative approach develops a systematic way of project-
ing the fields associated with each concurroid, based on the concur-
roid’s label. Thus, for example, we can write self pv s to obtain
the self component of s, associated with a concurroid whose label
is pv. The identifier pv_self we used in the spec for span_root

and for flat_combine is a notational abbreviation for exactly this
projection. While this is an obvious idea, its execution required a
somewhat involved use of dependently-typed programming, and an
intricate automation by employing canonical structures and lemma
overloading [17, 35].

6. Evaluation and Experience
The Coq proof assistant serves as a tool for implementing FCSL’s
metatheory and as a language for writing and verifying concurrent
programs. The formalization of the metatheory, which includes the
semantic model, implementation of getters, structural lemmas and
a number of useful libraries (e.g., theory of PCMs, heaps, arrays,
etc.), is about 17.2 KLOC size.

8

Program Libs Conc Acts Stab Main Total Build
CAS-lock 63 291 509 358 27 1248 1m 1s
Ticketed lock 58 310 706 457 116 1647 2m 46s
CG increment 26 - - - 44 70 8s
CG allocator 82 - - - 192 274 14s
Pair snapshot 167 233 107 80 51 638 4m 7s
Treiber stack 56 323 313 133 155 980 2m 41s
Spanning tree 348 215 162 217 305 1247 1m 11s
Flat combiner 92 442 672 538 281 2025 10m 55s
Seq. stack 65 - - - 125 190 1m 21s
FC-stack 50 - - - 114 164 44s
Prod/Cons 365 - - - 243 608 2m 43s

Table 1: Statistics for implemented programs: lines of code for
program-specific libraries (Libs), definitions of concurroids and
decorations (Conc), actions (Acts), stability-related lemmas (Stab),
spec and proof sizes of the main functions (Main), total LOC
count (Total), and build times (Build). The “-” entries indicate the
components that were not needed for the example.

We evaluated FCSL by implementing, specifying and verifying
a number of characteristic concurrent programs and structures. The
simplest fine-grained structure is a lock, and we implemented two
different locking protocols: CAS-based spinlock and a ticketed
lock [13]. Both locks instantiate a uniform abstract lock interface,
and are used by coarse-grained programs, performing concurrent
incrementation of a pointer and memory allocation. In addition to
the spanning tree algorithm and the flat combining construction,
we also implemented such fine-grained programs as an atomic pair
snapshot [33, 42] and non-blocking stack [52], both given specs
via a PCM of time-stamped action histories [46] in the spirit of
linearizability [20], as well as several client programs: a sequential
stack (obtained from Treiber stack via hiding), FC-based stack, and
a Treiber stack-based concurrent Producer/Consumer.

The PCMs employed in formalizations of the case studies are:
disjoint sets [36] (spanning tree, FC, ticketed lock), heaps [32]
(thread-local state), natural numbers with addition and zero [32]
(CG increment), mutual exclusion PCM [32, 36] (CAS-lock, FC),
time-stamped histories [46] (pair snapshot, Treiber stack, produc-
er/consumer), client-provided PCMs [32, 36] (FC, locks), lifted
PCMs—products of basic PCMs [32, 36] (FC, locks). All these
PCM instances are treated uniformly by in the proofs conducted in
FCSL, due to the unifying algebraic structure.

Table 1 presents some statistics wrt. implemented programs in
terms of LOCs and build times. The program suite was compiled
on a 2.7 GHz Intel Core i7 OS X machine with 8 Gb RAM, us-
ing Coq 8.4pl4 and Ssreflect 1.4. We didn’t rely on any advanced
proof automation in the proof scripts, which would, probably, de-
crease line counts at the expense of increased compilation times.
Notably, for those programs that required implementing new prim-
itive concurroids (e.g., locks or Treiber stack), a large fraction of an
implementation is due to proofs of properties of transitions and ac-
tions, as well as stability-related lemmas, while the sizes of proofs
of the main programs’ specs are always relatively small.

Our development is inherently compositional, as illustrated by
the dependency diagram on Figure 5. For example, both lock im-
plementations are instances of the abstract lock interface, which is
used to implement and verify the allocator, which is then employed
by a Treiber stack, used as a basis for sequential stack and produc-
er/consumer implementations. In principle, we could implement an
abstract interface for stacks, too, to unify the Treiber stack and the
FC-stack, although, we didn’t carry out this exercise.

As hinted by Table 1, not every concurrent program requires
implementing a new primitive concurroid: typically this is done
only for libraries, so library clients can reason out of the specifi-

CAS-lock Ticketed lock

Abstract lock

CG incrementor

CG Allocator

Flat combiner

FC stackTreiber stack

Sequential stack Producer/Consumer

Figure 5: Dependencies between concurrent libraries.

Program Pr
iv

CL
oc
k

TL
oc
k

Re
ad
Pa
ir

Tr
ei
be
r

Sp
an
Tr
ee

Fl
at
Co
mb
in
e

CAS-lock 3 3
Ticketed lock 3 3
CG increment 3 3L 3L
CG allocator 3 3L 3L
Pair snapshot 3
Treiber stack 3 3L 3L 3
Spanning tree 3 3
Flat combiner 3 3L 3L 3
Seq. stack 3 3L 3L 3
FC-stack 3 3L 3L 3
Prod/Cons 3 3L 3L 3

Table 2: Primitive concurroids (in column headings) employed
by different programs. Two lock concurroids, for CAS-based and
ticketed locks, are interchangeable, as they implement the same
abstract interface (indicated by 3L).

cations. Table 2 shows that the reuse of concurroids is quite high,
and most of the programs make consistent use of the concurroid for
thread-local state and locks (abstracted through the corresponding
interface), as well as of those required by the used libraries (e.g.,
Treiber stack or Flat combiner).

7. Related and Future Work
Using the Coq proof assistant as a uniform platform for imple-
mentation of logic-based program verification tools is a well-
established approach, which by now has been successfully em-
ployed in a number of projects on certified compilers [1, 30] and
verified low-level code [6, 24, 47], although, with no specific focus
on abstractions for fine-grained concurrency, such as protocols and
auxiliary state.

Related program logics The FCSL logic has been designed as
a generalization of the classical Concurrent Separation Logic by
O’Hearn [40], combining the ideas of local concurrent protocols
with arbitrary interference [14, 25] and compositional (i.e., subjec-
tive) auxiliary state [32] with the possibility to compose protocols.
Other modern concurrency logics, close to FCSL in their expressive
power, are iCAP [51], Iris [27], CoLoSL [43], and CaReSL [53].

Both iCAP and Iris leverage the idea, originated by Jacobs and
Piessens [22], of parametrizing specs for fine-grained concurrent
data types by client-provided auxiliary code, which can be seen as a
“callback”, and nowadays is usually referred to as a view shift. View
shifts also serve purposes similar to FCSL’s concurroid transitions.
A form of composition of concurrent resources can be encoded by
combining view shifts with fractional permissions [3] (in iCAP)
or invariant masks (in Iris). Similarly to FCSL, Iris makes use
of PCMs as a generic mechanism to describe state, which can be
split between parallel threads. However, neither iCAP, nor Iris have
explicit subjective dichotomy of the auxiliary state, which makes

9

encoding of thread-specific contributions (e.g., marked nodes from
the graph example) in them less direct comparing to FCSL.

CoLoSL defines a different notion of thread-local views to a
shared resource, and uses overlapping conjunction [21] to recon-
cile the permissions and capabilities, residing in the shared state
between parallel threads. Overlapping conjunction affords a de-
scription of the shared structure mirroring the recursive calls in the
structure’s methods. In FCSL, such machinery isn’t required, as self
and other suffice to represent the thread-specific views, and joint
state doesn’t need to be divided. In our opinion, this leads to sim-
pler specs and proofs. For example, the proof that span constructs a
tree in CoLoSL involves abstractions such as shared capabilities for
marking nodes and extension of the graph with virtual edges, none
of which is required in FCSL. Moreover, CoLoSL doesn’t prove
that the tree is spanning, which we achieve in FCSL via hiding.

CaReSL combines the Hoare-style reasoning and proofs about
contextual refinement. Similarly to FCSL, CaReSL employs re-
source protocols to specify thread interference, although, targeting
the “life stories” of particular memory locations instead of describ-
ing a whole concurrent data structure by means of an STS. While
FCSL is not equipped with abstractions for contextual refinement,
in our experience it was never required to prove the desired Hoare-
style specs for fine-grained data structures.

Neither of the four mentioned logics features hiding as a lanu-
gage constructor for controlling interference. Reasoning in iCAP,
Iris, CoLoSL and CaReSL follows the tradition of Hoare-style log-
ics, so the specs never mention explicitly the heap and state com-
ponents. In contrast, FCSL assertions use explicit variables to bind
heap and auxiliary state, as well as their components. In our expe-
rience, working directly with the state model is pleasant, and has
to be done in Coq anyway, since Coq lacks support for contexts
of bunched implications, as argued by Nanevski et al. [39]. None
of iCAP, CoLoSL or CaReSL features a mechanized metatheory,
and neither of these logics has been implemented as a mechanized
verification tool. The soundness of Iris’ primitive proof rules has
been mechanized in Coq, however, the logic itself has only been
employed for paper-and-pencil verification of example programs.

Related tools for concurrency verification SAGL and RGSep,
the first logics for modular reasoning about fine-grained concur-
rency [15, 55], inspired creation of semi- and fully-automated ver-
ification tools: SmallfootRG [5] and Cave [54]. These tools target
basic safety properties of first-order code, such as data integrity and
absence of memory leaks.

Chalice [28] is an experimental first-order concurrent language,
supplied with a tool that generates verification conditions (VCs)
for client-annotated Chalice programs. Such VCs are suitable for
automatic discharge by SMT solvers. For local reasoning, Chalice
employs fractional permissions [3], implicit dynamic frames [48],
and auxiliary state [29], which, unlike the one of FCSL, is not a
subject of PCM laws, and thus is not compositional, as its shape
should match the forking pattern of the client program being ver-
ified. Chalice also supports a form of symmetric Rely/Guarantee
reasoning, i.e., it does not allow the threads to take different roles
in a protocol (which is expressible in FCSL via self -enabled transi-
tions, such as nullify_trans from Section 3.3). Chalice’s specifi-
cation fragment is a first-order logic, whereas FCSL admits higher-
order functions and predicates in specs, therefore, enabling pro-
gram composition and proof reuse, as shown in Figure 5.

VCC [8] is a tool for verifying low-level concurrent C code.
VCC doesn’t provide machinery for reasoning about custom inter-
ference or compositional auxiliary state, and, similarly to Chalice,
allows specifications only in a first-order logic to support an SMT-
based automation back-end.

VeriFast [23] is a tool for deductive verification of sequential and
concurrent C and Java programs, based on separation logic [44]. To

specify and verify fine-grained concurrent algorithms, VeriFast em-
ploys fractional permissions [3] and a form of first-class auxiliary
code [22], enabling manipulation of (non-compositional) auxiliary
state. VeriFast has been recently extended with Rely/Guarantee rea-
soning [49], although, without a possibility to compose resources.
To the best of our knowledge, soundness of VeriFast core has been
formally proved only partially [56].

Rely-Guarantee references (RGREFs) by Gordon [18] are a
mechanism to prove transition invariants of concurrent data struc-
tures. While the language of RGREFs is implemented as an axiom-
atized Coq DSL, the system’s soundness is proved by hand using
the Views framework [12]. Since RGREFs focuses on correctness
of data structures wrt. specific protocols and doesn’t provide auxil-
iary state, it’s unclear how to employ it for client-side reasoning.

Future work In the future, we plan to augment FCSL with the
program extraction mechanism [31] and implement proof automa-
tion for stability-related facts via lemma overloading [17]. Due to
the limitations of Coq’s model wrt. impredicativity, at this moment,
FCSL doesn’t support higher-order heaps (i.e., the possibility to
reason about arbitrary storable effectful procedures). While pro-
grams requiring this feature are rare, we hope that it will be possible
to encode and verify the characteristic ones, once the development
is migrated to Coq 8.5, featuring universe polymorphism [50].

8. Conclusion
Our experience with implementing a number of concurrent data
structures in FCSL indicates a recurring pattern, exhibited by the
formal proof development. Verification of a new library in FCSL
starts from describing its invariants and evolution in terms of an
STS. It’s common to consider parts of real or auxiliary state, which
are a subject of the logical split between parallel threads, as ele-
ments of a particular PCM. Such representation of resources makes
the verification uniform and compositional, as it internalizes the
library protocol, so the clients can reason out of the specifications.

This observation indicates that STSs and PCMs can be a ro-
bust basis for understanding, formalizing and verifying existing
fine-grained programs. We conjecture that the same foundational
insights will play a role in future designs and proofs of correctness
of novel concurrent algorithms.

Acknowledgments We thank the anonymous reviewers from
PLDI’15 PC and AEC for their feedback. We are also grateful
to Steve Blackburn for his efforts as PLDI PC chair. This research
is partially supported by Ramon y Cajal grant RYC-2010-0743 and
the US National Science Foundation (NSF). Any opinion, findings,
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of NSF.

References
[1] A. W. Appel, R. Dockins, A. Hobor, L. Beringer, J. Dodds, G. Stewart,

S. Blazy, and X. Leroy. Program Logics for Certified Compilers.
Cambridge University Press, 2014.

[2] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Construc-
tions. Texts in Theoretical Computer Science. Springer Verlag, 2004.

[3] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permis-
sion accounting in separation logic. In POPL, pages 259–270. ACM,
2005.

[4] S. Brookes. A semantics for concurrent separation logic. Th. Comp.
Sci., 375(1-3), 2007.

[5] C. Calcagno, M. J. Parkinson, and V. Vafeiadis. Modular safety
checking for fine-grained concurrency. In SAS, volume 4634 of LNCS,
pages 233–248. Springer, 2007.

[6] A. Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In PLDI, pages 234–245. ACM, 2011.

10

[7] A. Chlipala. Certified Programming with Dependent Types. The MIT
Press, 2013. Available from http://adam.chlipala.net/cpdt.

[8] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system for
verifying concurrent C. In TPHOLs, volume 5674 of LNCS, pages
23–42. Springer, 2009.

[9] Coq Development Team. The Coq Proof Assistant Reference Manual
- Version V8.4, 2014. http://coq.inria.fr/.

[10] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A Logic
for Time and Data Abstraction. In ECOOP, volume 8586 of LNCS,
pages 207–231. Springer, 2014.

[11] E. W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453–457, Aug. 1975.

[12] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and
H. Yang. Views: compositional reasoning for concurrent programs.
In POPL, pages 287–300. ACM, 2013.

[13] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and
V. Vafeiadis. Concurrent Abstract Predicates. In ECOOP, volume
6183 of LNCS, pages 504–528. Springer, 2010.

[14] X. Feng. Local rely-guarantee reasoning. In POPL, pages 315–327.
ACM, 2009.

[15] X. Feng, R. Ferreira, and Z. Shao. On the relationship between con-
current separation logic and assume-guarantee reasoning. In ESOP,
volume 4421 of LNCS, pages 173–188. Springer, 2007.

[16] G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection
Extension for the Coq system. Technical Report 6455, Microsoft
Research – Inria Joint Centre, 2009.

[17] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make
ad hoc proof automation less ad hoc. In ICFP, pages 163–175. ACM,
2011.

[18] C. S. Gordon. Verifying Concurrent Programs by Controlling Alias
Interference. PhD thesis, University of Washington, 2014.

[19] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In SPAA, pages 355–364. ACM,
2010.

[20] M. Herlihy and J. M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Prog. Lang. Syst., 12(3):463–492,
1990.

[21] A. Hobor and J. Villard. The ramifications of sharing in data struc-
tures. In POPL, pages 523–536. ACM, 2013.

[22] B. Jacobs and F. Piessens. Expressive modular fine-grained concur-
rency specification. In POPL, pages 271–282, 2011.

[23] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier
for C and Java. In NASA Formal Methods, volume 6617 of LNCS,
pages 41–55. Springer, 2011.

[24] J. B. Jensen, N. Benton, and A. Kennedy. High-level separation logic
for low-level code. In POPL, pages 301–314. ACM, 2013.

[25] C. B. Jones. Tentative steps toward a development method for inter-
fering programs. ACM Trans. Prog. Lang. Syst., 5(4):596–619, 1983.

[26] C. B. Jones. The role of auxiliary variables in the formal development
of concurrent programs. In Reflections on the Work of C.A.R. Hoare,
pages 167–187. Springer London, 2010.

[27] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon,
L. Birkedal, and D. Dreyer. Iris: Monoids and invariants as an or-
thogonal basis for concurrent reasoning. In POPL, pages 637–650.
ACM, 2015.

[28] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded
programs. In ESOP, volume 5502 of LNCS, pages 378–393. Springer,
2009.

[29] K. R. M. Leino, P. Müller, and J. Smans. Verification of Concurrent
Programs with Chalice. In FOSAD, volume 5705 of LNCS, pages
195–222. Springer, 2009.

[30] X. Leroy. Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant. In POPL, pages 42–54. ACM,
2006.

[31] P. Letouzey. Extraction in Coq: An Overview. In Computability in
Europe, volume 5028 of LNCS, pages 359–369. Springer, 2008.

[32] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for coarse-
grained concurrency. In POPL, pages 561–574. ACM, 2013.

[33] H. Liang and X. Feng. Modular verification of linearizability with
non-fixed linearization points. In PLDI, pages 459–470. ACM, 2013.

[34] P. Lucas. Two constructive realizations of the block concept and their
equivalence. Technical Report 25.085, IBM Laboratory Vienna, 1968.

[35] A. Mahboubi and E. Tassi. Canonical structures for the working Coq
user. In ITP, volume 7998 of LNCS, pages 19–34. Springer, 2013.

[36] A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco. Com-
municating State Transition Systems for Fine-Grained Concurrent Re-
sources. In ESOP, volume 8410 of LNCS, pages 290–310. Springer,
2014. Extended version is available at http://software.imdea.
org/fcsl/papers/concurroids-extended.pdf.

[37] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and sepa-
ration in Hoare Type Theory. In ICFP, pages 62–73. ACM, 2006.

[38] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal.
Ynot: Dependent types for imperative programs. In ICFP, pages 229–
240. ACM Press, 2008.

[39] A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verification
of heap-manipulating programs. In POPL, pages 261–274. ACM,
2010.

[40] P. W. O’Hearn. Resources, concurrency, and local reasoning. Th.
Comp. Sci., 375(1-3):271–307, 2007.

[41] S. S. Owicki and D. Gries. Verifying properties of parallel programs:
An axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

[42] S. Qadeer, A. Sezgin, and S. Tasiran. Back and forth: Prophecy
variables for static verification of concurrent programs. Technical
Report MSR-TR-2009-142, Microsoft Research, 2009.

[43] A. Raad, J. Villard, and P. Gardner. CoLoSL: Concurrent Local
Subjective Logic. In ESOP, volume 9032 of LNCS, pages 710–735.
Springer, 2015.

[44] J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data
Structures. In LICS, pages 55–74. IEEE Computer Society, 2002.

[45] I. Sergey, A. Nanevski, and A. Banerjee. Mechanized verification of
fine-grained concurrent programs. Accompanying code and tutorial.
Available from http://software.imdea.org/fcsl.

[46] I. Sergey, A. Nanevski, and A. Banerjee. Specifying and verifying con-
current algorithms with histories and subjectivity. In ESOP, volume
9032 of LNCS, pages 333–358. Springer, 2015.

[47] Z. Shao. Certified software. Commun. ACM, 53(12):56–66, 2010.
[48] J. Smans, B. Jacobs, and F. Piessens. Implicit Dynamic Frames: Com-

bining Dynamic Frames and Separation Logic. In ECOOP, volume
5653 of LNCS, pages 148–172. Springer, 2009.

[49] J. Smans, D. Vanoverberghe, D. Devriese, B. Jacobs, and F. Piessens.
Shared boxes: Rely-Guarantee reasoning in VeriFast. CW Reports
CW662, KU Leuven, May 2014.

[50] M. Sozeau and N. Tabareau. Universe polymorphism in Coq. In ITP,
volume 8558 of LNCS, pages 499–514. Springer, 2014.

[51] K. Svendsen and L. Birkedal. Impredicative Concurrent Abstract
Predicates. In ESOP, volume 8410 of LNCS, pages 149–168. Springer,
2014.

[52] R. K. Treiber. Systems programming: coping with parallelism. Tech-
nical Report RJ 5118, IBM Almaden Research Center, 1986.

[53] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and Hoare-
style reasoning in a logic for higher-order concurrency. In ICFP, pages
377–390. ACM, 2013.

[54] V. Vafeiadis. RGSep Action Inference. In VMCAI, volume 5944 of
LNCS, pages 345–361. Springer-Verlag, 2010.

[55] V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR, volume 4703 of LNCS, pages 256–
271. Springer, 2007.

[56] F. Vogels. Formalisation and Soundness of Static Verification Algo-
rithms for Imperative Programs. PhD thesis, KU Leuven, 2012.

11

http://adam.chlipala.net/cpdt
http://coq.inria.fr/
http://software.imdea.org/fcsl/papers/concurroids-extended.pdf
http://software.imdea.org/fcsl/papers/concurroids-extended.pdf
http://software.imdea.org/fcsl

	Introduction
	Overview
	A graph spanning tree algorithm and its intuition
	Infrastructure for mechanizing the proof in FCSL
	Concurroids
	Atomic actions
	Hoare specifications as types and stability
	Hiding from external interference

	Outline of the Mechanized Development
	The definition of the type [basicstyle=]spantp
	Representing graphs in a heap
	[basicstyle=]SpanTree concurroid
	Defining atomic actions
	Scoped concurroid allocation and hiding

	More Examples
	Composing concurrent resources
	Higher-order specifications

	Elements of FCSL Infrastructure
	FCSL model and embedding into Coq
	Verification conditions and structural lemmas
	Extracting concurroid structure via getters

	Evaluation and Experience
	Related and Future Work
	Conclusion

