A Logic for Information Flow

in Object-oriented Programs

Anindya Banerjee
ab@cis.ksu.edu
http://www.cis.ksu.edu/"ab

Kansas State University
Joint work with Torben Amtoft and Sruthi Bandhakavi

The big picture

¢ Specification for interprocedural information flow
analysis for sequential OO-programs.

¢ Uses local reasoning about state[O’'Hearn/Reynolds/Yang/...]
¢ Uses alias information ([Jif, Banerjee/Naumann] don’t).
¢ Flow-sensitive specs.

¢ Permits JML-style programmer assertions.

Information flow regulates
confidentiality

¢ Data is secret (High) or public/observable (Low).

¢ Confidentiality: High inputs do not influence Low output
channels. (End-to-end property).

¢ Typical analyses based on security types, e.g.,
(int, High), (com, Low);
* Flow insensitive [Volpano/Smith/Irvine,Myers,...]

¢+ Flow sensitive [Hunt/Sands].

Noninterference

classified
Hin —— —— H out HV !

channels
Lin Program L out W unclassified

channels

Noninterference property [Goguen-Meseguer]: For any two
runs of program, Low-indistinguishable input states yield
Low-indistinguishable output states.

Equivalently [Cohen]: L out independent of initial H in.

Noninterference

classified
Hin —— —— H out HV !

channels
Lin Program L out W unclassified

channels

Noninterference property [Goguen-Meseguer]: For any two
runs of program, Low-indistinguishable input states yield
Low-indistinguishable output states.

Equivalently [Cohen]: L out independent of initial H in.

mmocﬂm”:”u_ :”u_“_”n: _”u:-: _”u:“_”nu
insecure: | :=h ifhthenl:=7elsel :=8 (indirect flow)

Noninterference

classified
Hin —— —— H out HV !

channels
Lin Program L out W unclassified

channels

Noninterference property [Goguen-Meseguer]: For any two
runs of program, Low-indistinguishable input states yield
Low-indistinguishable output states.

Equivalently [Cohen]: L out independent of initial H in.

mmocﬁm“:”u:_:”u_._”n: | :=h-h l:=h;|l:=7
iInsecure: | ;= h[X]if hthen | := 7 else | := 8 (indirect flow) [X]

Security types: well-typed programs are noninterferent.

4-b

Noninterference

classified
Hin —— —— H out HV !

channels
Lin Program L out W unclassified

channels

Noninterference property [Goguen-Meseguer]: For any two
runs of program, Low-indistinguishable input states yield
Low-indistinguishable output states.

Equivalently [Cohen]: L out independent of initial H in.

secure: h :=I[v]h:=11:=h[X] | :=h-h[X]|:=h;l:=7][X]
insecure: | ;= h[X]if hthen | := 7 else | := 8 (indirect flow) [X]

Security types: well-typed programs are noninterferent.

Object Examples

T

Y
K
o

secret |7

L2

Y
K
o

Object Examples

T

\
K
~

secret |7

L2

Y
K
o

71.q == secret; /| OK
2z =x2.q; 1/ OK

Object Examples

T

\
K
~

secret |7

L2

Y
K
o

71.q == secret; /| OK
2z =x2.q; 1/ OK

T

secret

L2

Y

Y

Object Examples

T

\
K
~

secret |7

L2

Y
K
o

71.q == secret; /| OK
2z =x2.q; 1/ OK

X
LT N q-10
secret |7
X
) > ¢.|10
T = X2, // OK

Object Examples

T

\
K
~

secret |7

L2

Y
K
o

71.q == secret; /| OK
2z =x2.q; 1/ OK

X
LT N q-10
secret |7
X
Uiy > q.|7
T = X2, // OK

11.q = secret; /| Reject!

2 =122.q

5-d

Object Examples

T

\
K
~

secret |7

L2

Y
K
o

71.q == secret; /| OK
2z =x2.q; 1/ OK

Aliasing distinguishes these examples.

X
L1 N q-{0
secret |7
X
) > q.|7
T = X2, // OK

11.q = secret; [/ Reject!

2 .= 22.4

Checking Noninterference

Check (Hoare-style) triple
o, ..., 2, X P{yiX, ..., ymX |
... Independence Assertions ...
Given any two runs of P:

o If observable inputs z1, ..., 2, agree (precondition)

e Then observable outputs v, ..., 1, agree in the same
two runs (postcondition).

Checking Noninterference

Check (Hoare-style) triple
{mx, ooz X Py, e ym X

... Independence Assertions ...
Given any two runs of P:
o If observable inputs z1, ..., 2, agree (precondition)

e Then observable outputs v, ..., 1, agree in the same
two runs (postcondition).

“Two-state” semantics of assertions corresp. to two runs of
program: s1 & s, = oxX = s1(z) = s2(x)

Example: [.= h;[:=0

Does {[ix} [:= h;[:=0{lx} hold?

{{x}
[:=h

{} ([lost)
[=0

{Ix} ([recovered)

¢ Program secure.

¢ Rejected by flow-insensitive type-based analysis.

Proof rules: {¢} C' {d'} [X]

¢ are assertions that hold in precondition.

¢’ are assertions that hold in postcondition.

X Is set of variables that may be modified by command C'.
Meaning:

Suppose 51 & s, = ¢ and

[Cls1 = syand [Cls2 = s,.

Then s{&s) = &',

Assignment rule

{z1,..., 2, = free(F)

{1, o gy Xt o= B {oex} {z}]

Assignment rule

{z1,..., 2, = free(F)
{1, o gy Xt o= B {oex} {z}]

¢ Local reasoning: Only z;,..., 2, and z relevantto = := F.

¢ Small specification: provides bare essence of reasoning.

¢ Inlarger context, can add extra variables (except =) by
Frame rule, because these variables not modified.

Frame rule

1p; C 1) [X]

DA Cld Adyyx] TPre

¢ ¢ o X means variables mentioned in ¢ disjoint from X
(not modified by ().

¢ Meaning of variables mentioned in ¢; same before and
after execution of (.

¢ & is invariant for C'.

¢ Frame rule permits move from local to non-local specs.
Crucial for modular analysis.

10

Example: = .= [,y =

I}z :=1{xx} [{z}] {Ix}y:=1{yx} {y}H

Uxj =Ly =177} [{z, y]]

Can’t compose because = x, [x don’t match!

11

Example: = .= [,y =

I}z :=1{xx} [{z}] {Ix}y:=1{yx} {y}H
{Ix}x =1y = 1{?22} [{z, y}]

Can’t compose because = x, [x don’t match!
Frame to rescue!

(! not modified in = := [; x not modified in y :=).

{Ix}z:=[{xx, Ix} [{z]] {Ix,zx}y:=1{yx,zx} [{y}]

I}z =1y = 1{yx,zx} [{z, y}

11-a

Alias analysis (in logical form)

¢ Not performed by previous approaches for info. flow.
¢ Want local reasoning about aliasing: use small specs.

¢ Use abstract locations, [, which abstract sets of
concrete locations.

¢ Abstract addresses are variables or L./ (abstracting
heap-allocated value, e.g., z.f)

¢ L, ¢ L, holds provided /,; and [, abstract disjoint sets of
concrete locs.

12

Region assertions

¢ = ~ L: L abstracts concrete loc. denoted by .

¢ Li.f ~ Ly: for any concrete loc. {; abstracted by L, if
{;.f contains {,, then [, is abstracted by L-.

¢ lfz~ Lyand y ~ [, and L; ¢ L, then x, y must not
alias. Otherwise, =, y may alias.

13

Region assertions

¢ = ~ L: L abstracts concrete loc. denoted by .

¢ Li.f ~ Ly: for any concrete loc. {; abstracted by L, if
{;.f contains {,, then [, is abstracted by L-.

¢ lfz~ Lyand y ~ [, and L; ¢ L, then x, y must not
alias. Otherwise, =, y may alias.

@/, I1s another popular notation.

13-a

Some small specs. for alias analysis

[FieldAccess] [FieldUpdate]

{y ~ L, L.f ~ L1} {z ~ Ly~ L1, L.f ~ L4}
T =y.f T.f =y

z ~ L} {L.f ~ L1}

Rz} RL.f1]

[INew] {true}z :=new C{z ~~ L} [{z}]

14

Back to independences

¢ Need independences on abstract addresses, «; have
e.g., rix, L. x.

¢ ax means that for any two runs of a program, (states
(s1,h1), (52, ho)) the value of « “agrees for both runs”.

ha, ho jmmUm:.

15

Small specs.: Region + Independence
Assertions

[FieldAccess]

ly ~ L, L.f ~ Ly; yx, L.fix}
T =vy.f

{z ~ Ly; o<}

{z]]

16

Aliasing examples revisited

LT

\
R
~

secret |7

L2

Y
R
o

establish no aliasing
\x1 ~ L1,20 ~ Lo}, Ly o Ly
11.q = secret; [/ OK
L>.q not modified, L,.qx
2= 1.q; /1 OK

X
L1 \ q-10
secret |7
X
) > (.17
1 = I, /l OK

11.q .= secret; /| Reject!

71, 1> must be in same abs. loc.

17

Observational PuU _.m._”<=wm_‘=mz\2m:Bmss\mn::_ﬁm\m:a

¢ Typically use pure functions in specifications.

¢ Can use methods with “benevolent side-effects” [Hoare]
In specs. also.

18

Example

private Hashtable t == new Hashtable; //cache with key, val fields
public U m(7T z){//memo function

if (! t.contains(z)){

d
N
w
R_. Q@“Hmomt@@wN%SQVSL
6 U res = (U)t.get(z);

7 assert (res = costly(z));

8. result:=res; }}

)

(i) Show result depends only on z.
(i) Show m modifies only locations not visible to caller.

19

Example

private Hashtable t == new Hashtable; //cache with key, val fields
public U m(7T z){//memo function

if (! t.contains(z)){

d
N
w
R_. Q@“qumt@@wN%SQVSL
6 U res = (U)t.get(z);

7 assert (res = costly(z));

8. result:=res; }}

)

(i) Show result depends only on z. Assume zx. Show resultx.
(i) Show m modifies only locations not visible to caller.

19-a

Example

class C{

1. private Hashtable t := new Hashtable; //cache with key, val fields
2. public U m(T z){//memo function {xx}
3 if (! t.contains(z)){ {xx}
4, U y:= costly(z); t.put(x,y);} {xx}
6 U res .= (U)t.get(x); {xx}
7 assert (res = costly(z)); (zx /A (res = costly(x)) = resx)
8 result := res; } } {result x }

(i) Show result depends only on z. Assume zix. Show resultx.

(i) Show m modifies only locations not visible to caller.

19-b

Example

class C{

1. private Hashtable t := new Hashtable; //cache with key, val fields
2. public U m(T z){//memo function {xx}
3 if (! t.contains(z)){ {xx}
4 U y:= costly(z); t.put(x,y);} {xx}
6. U res .= (U)t.get(x); {zx}
7 assert (res = costly(z)); (zx /A (res = costly(x)) = resx)
8 result := res; } } {result x }

(i) Show result depends only on z. Assume zix. Show resultx.

(i) Show m modifies only locations not visible to caller.
¢ Assume t ~ Lo. Only Lo.key, Lo.val modified (by put).

¢ Assume L, disjoint from all abstract locations used outside of 1.

19-c

Conclusion

¢ Spec. for interproc. info. flow analysis; uses local reasoning.

¢ Crucial: interprocedural alias analysis; uses local reasoning.

¢ Considered sequential Java-like language with programmer
assertions (as in JML).

¢ Given method environment, precondition and command,
there exists a sound algorithm to compute postconditions.

¢ With region and independence assertions, strongest
postcondition can be computed.

¢ Reason about observational purity, selective dependency.

Technical details/Theorems in paper; Proofs in Tech. Rep.

20

Future Work

e In general, interested in using local reasoning for program
analysis (small specs., disjointness, reasoning via Frame).

e Build a modular verifier for info. flow (or other) properties —
maybe extend JML? Specify other analyses on top of alias
analysis.

e Declassification: use richer assertion language, e.g., FOL?
Use, e.g., 0 = x1x, where 6 are assertions on events?

e Completeness of logic wrt underlying abstract interpretation.

e Support local reasoning for concurrency.

21

Some references

P. O'Hearn, J. Reynolds, and H. Yang: Local reasoning about programs
that alter data structures. CSL 2001.

J. C. Reynolds: Separation logic: a logic for shared mutable data
structures. LICS 2002.

A. Borgida, J. Mylopoulos, and R. Reiter: On the frame problem in
procedure specifications. IEEE Trans. Software Engg. 21(10), 1995.

M. Berndl, O. Lhotak, F. Qian, L. J. Hendren, and N. Umanee: Points-to
analysis using BDDs. PLDI 2003.

A. C. Myers: JFlow: Practical mostly-static information flow control.
POPL 1999.

A. Banerjee and D. A. Naumann: Stack-based access control and
secure information flow. JFP, Mar. 2005.

22

E. S. Cohen: Information transmission in sequential programs. In
Foundations of Secure Computation, pages 297-335. Academic Press,

1978.

T. Amtoft and A. Banerjee: Information flow analysis in logical form. SAS
2004.

S. Hunt and D. Sands: On flow-sensitive security types. POPL 2006.

A. Banerjee and D.A. Naumann: Ownership confinement ensures
representation independence of object-oriented programs. J.ACM 2005.

23

