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Abstract. Region logic is Hoare logic for object-based programs. It features lo-
cal reasoning with frame conditions expressed in terms of sets of heap locations.
This paper studies tableau-based decision procedures for RL, the quantifier-free
fragment of the assertion language. This fragment combines sets and (functional)
images with the theories of arrays and partial orders. The procedures are of practi-
cal interest because they can be integrated efficiently into the satisfiability modulo
theories (SMT) framework. We provide a semi-decision procedure for RL and its
implementation as a theory plugin inside the SMT solver Z3. We also provide a
decision procedure for an expressive fragment of RL termed restricted-RL. We
prove that deciding satisfiability of restricted-RL formulas is NP-complete. Both
procedures are proven sound and complete. Preliminary performance results in-
dicate that the semi-decision procedure has the potential toscale to large input
formulas.

1 Introduction

Frame conditions are an important part of procedure specifications. For procedures act-
ing on shared mutable objects, frame conditions must designate the set of existing heap
locations that may be updated —the footprint, in the terminology of separation logic.
Following the lead of Kassios [12], the authors have developed a variant of Hoare logic,
dubbed region logic, to explore the use of ghost state to express frame conditions in
terms of explicit location sets [2]. We seek perspicuous specifications and effective lo-
cal reasoning in automated verification based on SMT provers, for programs at the Java
level of abstraction where heap locations are not integer addresses but rather are des-
ignated like p.f where p is an object reference and f a field name. In region logic,
frame conditions are designated in terms of image expressions1 like G‘f where G is
a set of references (a region) and G‘f is the set of f fields of objects in G . Verifica-
tion conditions typically involve operations on sets and predicates like containment and
disjointedness.

Object sets are ubiquitous in functional specifications for object based programs
(e.g., [28,19]). We are particularly interested in images, owing to their use in frame
conditions. For example, in a state where G1 #G2 holds (i.e., the regions are disjoint),
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a procedure that writes G1‘f does not interfere with a formula that only depends on f
fields of objects in G2. Images are also useful to express closure conditions: if p ∈ G
and G‘f ⊆G then G contains the objects reachable from p via f . Using loop invariants
that entail reachability properties but are expressed in pure first order logic, our pro-
totype verifier performs well both for verifying data structure implementations and for
local reasoning about data structure clients [22,25]. In addition to closure and disjoint-
edness constraints, the assertion language of region logic features reference equality,
points-to assertions, and type/subtype constraints (for Java’s class types).

Previous experiments with automation of region logic [1,22] relied on axiomatiza-
tion of region assertions, wherein regions are represented by ref → bool functions and
the semantics is encoded by axioms using quantified formulas. However, automated
reasoning about quantifiers is necessarily incomplete and typically ad-hoc. State-of-
the-art SMT solvers perform E-matching [7] in order to limit the number of quanti-
fier instantiations. Essentially, quantified formulas are annotated with syntactic patterns
or triggers; typically the user supplies these annotations, otherwise default heuristics
are used. Finding “good” patterns can drastically improve the performance of certain
benchmarks. However, not all quantified formulas lend themselves to useful patterns.
Furthermore, SMT solvers are typically not refutationally-complete; e.g., if a region
assertion happens to be invalid, then its encoding using quantifiers may yield UNKNOWN
which means that the solver did not find an unsatisfiable conjunction, although one must
exist by Compactness of first-order logic.

Goal. Our ultimate goal in this work is to obtain an efficient decision procedure for
the quantifier-free fragment of the region assertion language. Implicit in “efficient” is
the requirement to integrate well within the SMT framework; i.e., decision procedures
for region assertions must perform reasoning modulo theories such as partial order (for
class types) and integers that arise in program verification conditions. In particular we
want to decide verification conditions involving region assertions and heap updates. The
latter requires reasoning modulo the theory of arrays.

Approach and contributions. There has been great progress in automated reasoning
about sets and related theories, notably [26,24], but as we discuss in Sect. 6 prior work
does not fully reach our goal.

Our approach is inspired by a tableau-based decision procedure for a simple language
of sets of elements [27]. In that procedure, reasoning about sets is performed by tableau
rules while reasoning about the elements of sets can be done entirely by an SMT solver.

We formalize a quantifier-free first-order language RL which is sufficiently expres-
sive to accomodate the quantifier-free fragment of the region assertion language. We
formalize a set of tableau-based rules collectively referred to as the RL-tableau calcu-
lus. Applying the rules has the effect of deriving a refutation proof in case the given
formula is valid. If the formula is invalid, then a tableau obtained by saturating (i.e., ex-
haustively applying the rules) denotes a counterexample. RL-tableau rules contain only
syntactic conditions, namely (subterm) occurence checks in their premises, so the rules
are simple to implement. To check for saturation it suffices to ensure that every possible
distinct rule instance has been applied.
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We prove that the RL-tableau calculus is refutationally-complete. In general, for
some invalid RL-formulas, the rules may be non-terminating. Thus, what we obtain
is a semi-decision procedure for RL. We have implemented this procedure as a theory
plugin inside Z3 [6]. Preliminary performance results are encouraging.

We conjecture that RL has a high complexity. If we consider only finite interpreta-
tions of RL, we can show that the resulting theory is NEXPTIME-hard (see [21]). This
leads us to investigate a syntactic restriction of RL, called restricted-RL. The restriction
amounts to disallowing assertions of the form H ⊆ G‘f but allowing assertions of the
form G‘f ⊆ H . We give a tableau calculus for restricted-RL and show that it provides
a nondeterministic polynomial time decision procedure. We also prove that deciding
conjunctions of restricted-RL literals is an NP-complete problem. Restricted-RL is suf-
ficiently expressive to capture what we have found to be the most useful idioms of
region logic, such as disjointedness and closure constraints.

Our main contributions can be summarized as follows.

– sound and complete tableau calculus for a theory RL which includes regions, refer-
ence subtyping, type-respecting functional images, arrays, etc.

– implementation of semi-decision procedure for RL as a theory plugin in Z3
– encouraging experimental results from synthetic benchmarks
– sound and complete calculus for an expressive fragment, restricted-RL
– NP-completeness of restricted-RL-tableau calculus

Full proofs and further details can be found in Rosenberg’s dissertation [21].

2 Preliminaries

Throughout, we work with quantifier-free, many-sorted first-order logic with equality.
We tacitly assume that each theory has the equality symbol always interpreted in the
standard way. There are countably many variables of each of a theory’s sorts.

Syntax. The language RL is boolean formulas over the signature ΣRL defined by:

– sorts: rgn, ref,arr, fname,cname
– constants:

• null, of sort ref (un-allocated reference), emp, of sort rgn (empty region)
• alloc, of sort rgn (universal region)

– function symbols:
• ∪,∩,−, of sort rgn× rgn→ rgn (union, intersection, difference)
• {·}, of sort ref → rgn (quasi singleton)
• img, of sort arr× rgn× fname→ rgn (image)
• read, of sort arr× ref× fname→ ref (field read)
• write, of sort arr× ref× fname× ref → arr (field write)
• type, of sort ref → cname (type of reference)
• dtype, of sort fname → cname (enclosing type of field)

– predicate symbols:
• ∈, of sort ref × rgn (membership), ≤, of sort cname× cname (subtype)
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We use metavariables r ,s , t for rgn-terms, u,v ,w for ref-terms, h for arr-terms, f ,g
for fname-terms, K for cname-terms.

In region logic the heap is implicit: expressions like x .f and G‘f are interpreted
with respect to a program state. In that setting, an update to the heap, e.g., x .f := y ,
yields a new program state. We aim to decide verification conditions containing re-
gion assertions, so we represent heap updates explicitly. We use two-dimensional ar-
rays to encode the heap. This representation is particularly useful for encoding frame
conditions [4] and is used in Verl [25]. The heap is made explicit in field read and
image expressions, read(h,u, f ) for u.f and img(h,r , f ) for r‘f . An update is en-
coded by a field write expression, e.g., write(h,u, f ,v) for u.f := v . Note that function
symbols are interpreted by total functions, yet field accesses are not defined every-
where.

To encode definedness of field accesses, we use type to encode the runtime class
type of a reference, ≤ to encode subtyping (i.e., the subclass relation), and dtype to
encode the class type enclosing a field (i.e., the class where a field is declared). For
example, the RL formula u ∈ alloc∧type(u)≤ dtype(f ) says that u.f is defined. (Here,
u denotes an allocated reference whose runtime type is a subclass of the class enclosing
f ’s declaration; this is consistent with the semantics of field access in Java.) Because
regions are untyped, i.e., may contain references of any class type, an image expression
must account for references where a field access would be undefined. The semantics of
RL reflects this constraint.

The syntax of RL is capable of expressing quantifier-free assertions of region logic
(cf. [2,3]) with the exception of: field access expression u.f in case f has type rgn,
image expression G‘f in case f has type rgn, and type predicate type(K ,x ) where
x has type rgn. See [21] for details on how to extend RL to handle these additional
constructs.

Example. Following [2] we consider a finite binary tree with method setLeftZero
whose body has a single command x .left .item := 0. The item field of parameter x ’s
left node is set to 0. (Each node has fields item, left and right .) Specifications of the
method, using region assertions, follow. The frame condition says that only the item
field of objects in r may be written.

requires x 	= null∧ x .left ∈ r ∧ x .right ∈ s ∧ r # s
requires r‘left ⊆ r ∧ r‘right ⊆ r ∧ s‘left ⊆ s ∧ s‘right ⊆ s
requires ∀o : Node ∈ s · o.item > 0
ensures ∀o : Node ∈ s · o.item > 0
writable r‘item

Verl works by translation to the intermediate form Boogie2 and uses the latter’s VC
generator, which is designed for performance rather than readability. To illustrate how
the preceeding example is verified, we derived the following verification condition, for
the ensures clause, by hand. It is a predicate on variables x and H , where H is a two-
dimensional array that represents the current heap.
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(1) (∀h : arr,o : ref · type(o) ≤ Node ∧o ∈ alloc ⇒ read(h,o, left) = null
∨(read(h,o, left) ∈ alloc∧ type(read(h,o, left)) ≤ Node)) ∧

(2) . . . ditto, with right for left . . . ∧
(3) type(x ) ≤ Node ∧ (x = null∨ x ∈ alloc) ∧
(4) x 	= null ∧ read(H ,x , left) ∈ r ∧ read(H ,x ,right) ∈ s ∧ r # s ∧
(5) img(H ,r , left) ⊆ r ∧ img(H ,r ,right) ⊆ r ∧
(6) img(H ,s , left) ⊆ s ∧ img(H ,s ,right) ⊆ s ∧
(7) (∀o : ref · type(o) ≤ Node ∧o ∈ s ⇒ read(H ,o, item) > 0)

⇒ (8) (∀o : ref · type(o) ≤ Node ∧o ∈ s ⇒ read(H ′,o, item) > 0)

where H ′ =̂ write(H , read(H ,x , left), item,0). Line (8) thus encodes the weakest pre-
condition for the assignment x .left .item := 0 to establish the specified postcondition.
Conjuncts (1)–(7) are essentially the translation of the requires clauses including addi-
tional assumptions. (The additional assumptions are conjuncts (1)–(3) which stem from
the semantics of the programming language, namely definedness of field dereferences,
type of x , whether x is allocated.) To prove the above VC is valid it suffices to prove
unsatisfiability of its negation. The VC can be automatically proven using Z3 to reason
about the quantifiers, types and arrays in conjunction with our (semi)decision procedure
for quantifier-free region assertions.

Semantics. The semantics of RL is given by Def. 2. Therein we make use of the theory
of arrays TA, the theory of partial orders T≤, and the theory of equality TE; the defini-
tions are standard and therefore omitted (see [21, Sect. 4.2.2]). It is convenient to refer
to the union of these theories as the background-theory.

Definition 1 (Background Theory)

– Let TA ∪TE ∪T≤ be called the background-theory with respect to RL.
– Let any literal from ΣA ∪ΣE ∪Σ≤ be called a background-literal.
– Let Φ be any conjunction of RL-literals. We say Φ is background-satisfiable iff all

background-literals of Φ are satisfiable modulo the background-theory.

Each of TA, TE, T≤ admits a decision procedure, each theory is infinitely stable,2

and no two signatures share any function or predicate symbol except the = symbol.
Thus, a decision procedure for the background-theory can be obtained by combining
the decision procedures for TA, TE, and T≤ à la Nelson-Oppen [20].

Definition 2 (RL-interpretation). An RL-interpretation is a ΣRL-interpretation, I ,
such that

– each sort τ ∈ {ref, rgn,arr,cname, fname} is mapped to a non-empty set Iτ
– Irgn = P(allocI ), allocI ∈ P(Iref \ {nullI }), and empI = ∅

– symbols ≤ and read,write, are interpreted according to T≤, TA, respectively
– symbols ∈,∪,∩,−, are interpreted in the standard (set-theoretic) way
– {a}I = {a}∩allocI , for every a ∈ Iref

2 A theory T is infinitely stable if every T -satisfiable formula has an infinite model.
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– For every h ∈ Iarr,r ∈ Irgn, f ∈ Ifname,

imgI (h,r , f ) = {readI (h,a, f ) | a ∈ r ∧ typeI (a) ≤I dtypeI (f )}∩allocI

The constant alloc is assigned any subset of the non-empty domain Iref which excludes
nullI . In region logic, alloc is implicitly updated following allocation so it contains
the references to currently allocated objects, which serves to reason about freshness.
The domain Irgn is interpreted to be the set of all subsets3 of allocI . Observe that Irgn

is non-empty since it contains at least the empty set. The quasi singleton is so named
because {u}I is empty if uI is not in allocI . Note that alloc is not required to be
finite; we return to this later.

The verification conditions generated by the Verl tool [25] impose additional con-
straints, in particular, heaps have no dangling references and object fields have values
compatible with their types. For these constraints, quantifiers work well (e.g., see [17]),
and they are not relevant in this paper.

The subset relation for regions can be expressed in more than one way; e.g., r ⊆ s
is equivalent to r ∪ s = s and to r ∩ s = r . In the sequel, let r ∪ s = s be synonymous
with r ⊆ s unless otherwise noted. The membership predicate can encoded using other
relations: u ∈ r is equivalent to {u} ⊆ r ∧{u} 	= emp. We include ∈ in the core syntax
because membership is used directly by our decision procedure.

The image term img(h,r , f ) is so called because its denotation is a region obtained
by computing the (functional) image of r under f pointwise, for those points a where f
is “defined”, viz. the constraint typeI (a)≤ dtypeI (f ). To express it using the standard
notion of images, img(h,r , f ) is the image of r under F : Iref → Iref , where F is the
partial function obtained by restricting readI appropriately: ((h,a, f ),b) ∈ F iff a ∈ r
and readI (h,a, f ) = b and typeI (a) ≤I dtypeI (f ) and b ∈ allocI .

Definition 3 (RL-model). An RL-model of an RL formula Φ is an RL-interpretation
that makes the formula true. We say M |= Φ to denote that M is an RL-model for Φ .

Here and in the sequel, “satisfiable” typically denotes T -satisfiable. That is, Φ is satisfi-
able modulo theory T . We can say this concisely using the satisfaction relation: |=T Φ .
When the theory is clear from the context, it can be elided (as in Def. 3).

3 RL-Tableau Calculus

Our aim is to decide whether a given conjunction of RL-literals is satisfiable. (An
arbitrary formula is converted to CNF whence it suffices to guess a satisfiable con-
junction of literals.) Our solution is based on the (refutational) proof method of an-
alytic tableaux [23,8]. The tableau calculus we describe was inspired by the work of
Zarba [27].

Given an arbitrary RL-conjunction Φ , RL-tableau calculus lets us infer all member-
ship literals (literals of the form u ∈ r , u 	∈ r ) as well as background-literals entailed

3 This reflects the semantics in [2] that regions contain only allocated references, also imple-
mented in Verl [25].
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by Φ . We apply inference rules until either inconsistency is detected or every (appli-
cable) rule has been applied. Some inference rules are conjunctive, meaning that they
infer a conjunction of literals, while others are disjunctive, meaning that they infer a
disjunction of (conjunctions of) literals —a case split.

A tableau is a rooted, finitely branching tree with literals as nodes. Following stan-
dard terminology, a branch is a path from the root that is maximal —i.e., it includes
a leaf or is infinite. A tableau rule is applied to a branch. If applicable, a conjunctive
rule adds one or more literals, extending the branch linearly. A disjunctive rule creates
a fork, so the branch becomes several branches.

In a nutshell, the proof method works as follows. For the formula Φ to be decided,
construct an initial tableau comprising a single branch whose nodes are the conjuncts
of Φ . Repeatedly, non-deterministically choose an inference rule which when applied
adds new nodes, possibly splitting the branch. The goal is to try to close each branch
by determining that some of its nodes are contradictory. If we succeed in closing every
branch then Φ is unsatisfiable. On the other hand, if there exists an open (i.e., not closed)
branch and every rule instance has been applied, then Φ is satisfiable.

RL-tableau calculus comprises the rules in Figure 1. The premise of each rule is
composed of a set of literals and possibly some subterm occurrence checks denoted by
occurs predicate; occurs(t) holds whenever term t occurs as a (sub)term in any of the
literals of a given branch. The conclusion of a conjunctive rule (such as the first of the
∩-rules and the second of the img-rules) is composed of a set of literals; for a disjunctive
rule (such as the third of the =-rules, the second of the {·}-rules, the ∈-rules, and the
first of the img-rules) each disjunct is associated with some set of literals.

Rules are applied within a branch. Thus for a given branch B, in order to apply a rule,
we must find an applicable rule instance for B. A rule instance assigns terms to the free
variables occurring in the corresponding rule. Subsequently, to check if the rule instance
is applicable we must verify that the instantiated premise holds. E.g., let σ denote a rule
instance in B for the first ∩-rule in Fig. 1 such that σ(u) = u , σ(r) = r , σ(s) = r ∪ s .
Then, σ is applicable iff u ∈ r ∩ (r ∪ s) occurs in B. As a result of applying σ , we
would add u ∈ r and u ∈ r ∩ (r ∪ s) to B.

The rules marked with (∗) create fresh variables denoted by w ; freshness is en-
forced by negative occurrence checks. (While other rules may yield fresh terms, e.g.,
read(h,u, f ) in the first img-rule in Fig. 1, these terms do not occur in antecedents;
hence, only a bounded number of such terms can be created.) We preclude “dumb” rule
applications—those rule applications which repeatedly apply the same rule instance—
by tracking rule instances which already have been applied (see [21, Sect. 4.3]). E.g.,
for a given literal r 	= s we can apply the third =-rule in Fig. 1 exactly once; the instan-
tiation of w is irrelevant.

Definition 4 (Closed Branch). A branch B of an RL-tableau is closed iff it contains
any of the following contradictory sets of literals

– any conjunction of background-literals unsatisfiable modulo the background-theory
– any two complementary ∈-literals; i.e., literals of the form u ∈ r and u 	∈ r
– any literal of the form u ∈ emp

A tableau is closed iff all of its branches are closed. A branch/tableau which is not
closed is open.
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=-rules

r = s
u ∈ r

u ∈ s

r = s
u ∈ s

u ∈ r

r 	= s ¬occurs(w)
w ∈ r w ∈ s
w 	∈ s w 	∈ r

(∗)

∩-rules

u ∈ r ∩ s

u ∈ r u ∈ s

u ∈ r u ∈ s occurs(r ∩ s)
u ∈ r ∩ s

{·}-rules

u ∈ {v}
u = v

occurs({u})
u 	∈ alloc | u ∈ {u}

∈-rules

u ∈ r v ∈ s occurs(r ∩ s)
u ∈ s | u 	∈ s

u ∈ r occurs(r − s)
u ∈ s | u 	∈ s

u ∈ r

u ∈ alloc

u ∈ r

u 	= null

u ∈ r v 	∈ r

u 	= v

img-rules

u ∈ r occurs(img(h,r , f ))
type(u) 	≤ dtype(f ) | read(h,u, f ) 	∈ alloc | read(h,u, f ) ∈ img(h,r , f )

u ∈ img(h,r , f ) ¬occurs(w)
w ∈ r type(w) ≤ dtype(f ) read(h,w , f ) = u

(*)

Fig. 1. Selected RL-tableau rules. (Omitting set union and difference, see [21, Fig. 4.1]).

The first condition in Def. 4 uses a decision procedure for the background-theory (see
Sect. 2). The remaining conditions are purely syntactic. Intuitively, we need the first
condition because the following rules propagate background-literals: the first {·}-rule,
fourth and fifth ∈-rules and both img-rules.

A branch B of an RL-tableau is satisfiable iff there exists an RL-model for the con-
junction of all literals in B. A tableau is satisfiable iff at least one of its branches is
satisfiable.

If a branch is satisfiable, then by semantics (Def. 2) none of the conditions in Def. 4
can hold. Therfore, a satisfiable branch is open. The other direction—an open branch is
satisfiable, may not hold. E.g., the branch corresponding to u ∈ r ∩ s , u 	∈ r , is open by
Def. 4. Yet, it is easily seen that an application of the first ∩-rule will yield a new branch,
with the literals u ∈ r and u ∈ s ; this branch is closed owing to the second condition in
Def. 4. Thus, a priori we cannot determine whether an open branch is satisfiable unless
all rules in the branch have been exhaustively applied.

A branch B of a RL-tableau is saturated iff whenever a rule instance applies, and is
not “dumb”, the literals in its conclusion already occur in B. A tableau is saturated iff
all of its branches are saturated.
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Intuitively, a saturated branch is closed under all possible inferences. The notion of
saturation plays a key role in establishing completeness (of the proof method). That
is, if an RL-tableau for Φ yields an open and saturated branch, then Φ is satisfiable.
Conversely, if the tableau is closed, then Φ is unsatisfiable.

A branch B of a RL-tableau is completed iff it is either saturated or closed. A tableau
is completed iff all of its branches are completed. A completed tableau can be obtained
by applying the rules until every branch either becomes closed or saturated.

Theorem 1 (Soundness). Let Φ be a conjunction of RL-literals. If there exists a closed
RL-tableau for Φ , then Φ is unsatisfiable.

Theorem 2 (Completeness). Let Φ be a conjunction of RL-literals. If Φ is unsatisfi-
able, then every completed RL-tableau for Φ is closed.

(1) r ∩ r‘f = r

(2) r‘f ∩ r 	= r‘f

(3) w1 ∈ r‘f ∩ r

(4) w1 	∈ r‘f

(5) w1 ∈ r‘f

(6) w1 ∈ r

⊥

(7) w1 ∈ r‘f

(8) w1 	∈ r‘f ∩ r

(9) w2 ∈ r

(10) w2.f = w1

(11) type(w2) ≤ dtype(f )

(12) w2 ∈ r ∩ r‘f

(13) w2 ∈ r‘f

...

– (3), (4) and (7), (8) from
(2) by third of =-rules

– (5), (6) from (3) by first
of ∩-rules

– (9), (10), (11) from (7)
by second of img-rules

– (12) from (1), (9) by
second of =-rules

– (13) from (12) by first of
∩-rules

Boxed nodes are contradic-
tory; right branch is infinite.

Fig. 2. RL-tableau for r � r‘f , that is, r ∩ r‘f = r ∧ r‘f ∩ r 	= r‘f

Example. Several illustrative examples of RL-tableau are given in [21, Sect. 4.4]. Here,
we describe one for which every completed RL-tableau must be infinite. Fig. 2 illus-
trates an RL-tableau for the conjunction r ∩ r‘f = r ∧ r‘f ∩ r 	= r‘f which denotes:
r is a proper subset of r‘f . (For brevity we use region logic notation r‘f to stand for
img(h,r , f ) since the example only involves a single heap.) Observe that if the right
branch is to be completed, then the branch must be infinite; the second img-rule will
have been applied infinitely often. The tableau in Fig. 2 is not unique; e.g., we could
swap the right and the left branches to obtain another RL-tableau. However, it is not
difficult to see that every completed RL-tableau for the given conjunction is infinite.
Intuitively, r ⊆ r‘f expresses that there exists a function f : r → r ∪s , for some s , such
that f is surjective onto r , whereas r‘f 	⊆ r expresses that the range of f extends beyond
r . No such function exists for any finite r .
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4 Implementation of Semi-decision Procedure

Using the RL-tableau calculus we can construct a completed tableau T for any given
RL-conjunction Φ . If T is closed, then owing to Theorem 1 Φ is unsatisfiable. If T
is open, then owing to Theorem 2 Φ is satisfiable; indeed T determines a model. As
witnessed by the previous example, some RL-conjunctions may yield completed RL-
tableaux which are infinite. However, we can obtain a semi-decision procedure by en-
suring that rules are applied in a systematic fashion.4 Essentially, img-rules are applied
in a lock-step fashion; i.e., apply exhaustively non-img-rules, apply img-rules for oc-
curring terms, repeat.

The semi-decision procedure for RL has been implemented as a theory plugin in Z3;
theory plugins are based on the DPLL(T) architecture [9]. In a nutshell, Z3 guesses a
conjunction of literals, say L, which must hold. The plugin is notified with each asserted
RL-literal l ∈ L at which point it asserts new theory lemmas into Z3’s context. (Z3’s
context represents the current tableau branch.)

The theory lemmas are nothing more than instances of the RL-tableau rules. Each
rule is potentially applied to ensure saturation.5 Reasoning modulo the background-
theory is peformed entirely within Z3. (New background-literals are propagated by in-
santiating rules, e.g., first {·}-rule.) Thus, to check if a branch is closed, we merely
check if the literals u ∈ r and u 	∈ r have been asserted or the literal u ∈ emp has been
asserted; both checks are purely syntactic. E.g., if u ∈ emp is asserted, then we simply
assert u ∈ emp ⇒ false.

Our preliminary evaluation used synthetic benchmarks [21, Figs. 4.13, 4.14] to com-
pare the performance of the semi-decision procedure versus an axiomatization of RL
which relies on Z3’s quantifier reasoning. The looping phenomenon (cf. Fig. 2) is ob-
served in some cases, when the image rules are implemented directly as presented in
Fig. 1. Our implementation includes an option to switch on certain heuristics described
in [21, Sect. 4.4.1]. With that option all our benchmarks terminate, but there is no guar-
antee in general. The benchmarks include basic properties of boolean algebra and func-
tion images, as well as formulas, both valid and invalid, involving the full signature of
RL except array writes. These capture typical verification conditions except for exclud-
ing literals involving integers or array manipulation, our goal being to focus evaluation
on performance of the tableau procedure itself.

The procedure terminates fast (under 50ms) for valid formulas (i.e., UNSAT for their
negations). For invalid formulas, it terminates fast with UNKNOWN, due to (potential)
incomplete6 quantifier reasoning in the theory of partial orders; partial order is typically
axiomatized in Z3. For these benchmarks, however, it is sound to treat read, type, dtype,
and ≤ as uninterpreted; then all the invalid benchmarks terminate under 50ms. Our
results suggest that the semi-decision procedure has the potential to scale (see [21,
Sect. 4.12]). Even on small benchmarks, its performance is much more predictable
than the one that is reliant on quantifier instantiation. For example, out of 44 UNSAT

4 The same idea is used in Smullyan’s tableaux for first-order logic. For details see [21, Fig. 4.7].
5 We describe how to do this efficiently in [21, Sect. 4.11].
6 As of release 2.17, Z3 supports complete instantiation though it is not yet fully integrated with

theory plugins.
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benchmarks, Z3 timed out on 32 of them when using axioms for the region theory,
while the theory plugin returned UNSAT in under 50ms for each of the 44 benchmarks.
(Timeout was set to 100 seconds.) For the 8 UNSAT benchmarks on which Z3 terminated,
its performance exhibited high variance (due to quantifiers).

5 Restricted-RLE-Tableau Calculus

Unrestricted RL appears to be of high complexity. In [21, Prop. 4.33] we show that it
becomes NEXPTIME-hard if we change Def. 2 to require alloc to be interpreted as a
finite set. (The proof builds on ideas of [10,26].) By imposing simple syntactic restric-
tions we obtain a theory for which satisfiability is NP-complete, yet which is expressive
enough to encompass the verification conditions that arise from the specifications we
have used in case studies [1,22]. We retain Def. 2 unchanged.

Definition 5 (restricted-RLE, restricted-RL). A restricted-RLE literal is one such that

– there is no write symbol
– img symbol occurs only in the forms img(h,r , f ) ⊆ s and u 	∈ img(h,r , f ) where

r ,s are any img-free rgn-terms and h, f ,u are any terms of the appropriate sort

A restricted-RL literal is one that satisfies the second of these restrictions.

The first restriction is only superficial since the theory of arrays can be reduced to the
theory of equality by eliminating write terms. (See [21, Sect. 4.6] or [11].) The second
restriction is key in establishing NP upper-bound; it essentially disallows literals of the
form s ⊆ img(h,r , f ) while allowing literals of the form img(h,r , f ) ⊆ s .

Our complexity result is the same for both restricted-RL and restricted-RLE. How-
ever, for technical 7 reasons our tableaux are formulated for restricted-RLE.

(R1)

u ∈ r occurs(img(h,r , f )) occurs(read(h,u, f ))
type(u) ≤ dtype(f )

type(u) 	≤ dtype(f ) read(h,u, f ) 	∈ alloc read(h,u, f ) ∈ img(h,r , f )

(R2)

u ∈ r occurs(img(h,r , f )) ¬occurs(read(h,u, f )) occurs(read(h ′,u ′, f ′))
|=TBG

h ′ = h |=TBG
u ′ = u |=TBG

f ′ = f

type(u ′) ≤ dtype(f ′)
type(u ′) 	≤ dtype(f ′) read(h ′,u ′, f ′) 	∈ alloc read(h ′,u ′, f ′) ∈ img(h,r , f )

Fig. 3. img rules for restricted-RLE tableau

7 The background theory of restricted-RLE is convex; not so for restricted-RL, due to arrays.
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New rules. The restricted-RLE tableau calculus has the img-rules in Fig. 3 which re-
place the img-rules in Fig. 1. The other rules are the same as in Fig. 1. The background-
theory, TBG, for restricted-RLE is the union of the theory of equality, TE, and the
theory of partial orders, T≤. The rules in Fig. 3 provide complete reasoning about
img literals for the restricted-RLE theory. (R1) is nearly the same as the first img-
rule in Fig. 1. The only difference is the addition of type(u) ≤ dtype(f ) to the right-
most disjunct. (R2), however, is an entirely new rule. (R2) deals with the case when
read(h,u, f ) does not occur in a branch (and hence not in the input conjunction). Intu-
itively, (R2) says that if some read(h ′,u ′, f ′) occurs in a branch, then we must guess if
read(h ′,u ′, f ′) ∈ img(h,r , f ); the entailment conditions express that read(h ′,u ′, f ′) has
the same denotation as read(h,u, f ). That is, the equalities h ′ = h, u ′ = u , f ′ = f are
implied by the current branch, modulo the background-theory.

Checking implied equalities. One way to fulfill the semantic checks in (R2) is to com-
pute all the implied equalities on all the background-terms in π(B). To check if an
equality u = v is implied by the current branch modulo the background-theory, it suf-
fices to check unsatisfiability of the conjunction π(B)∧u 	= v modulo TBG. (Here π(B)
is the conjunction of all background-literals in the branch.)

Computing all implied equalities every time (R2) is considered would be inefficient.
We describe one possible optimization. The optimization relies on the observation that
fresh equality literals are added by the first {·}-rule in Fig. 1; remaining rules can add
background-literals of the form u 	= v , u 	= null and type(u) 	≤ dtype(f ), none of which
could imply new equalities. Consequently, all implied equalities can be precomputed
and updated whenever the first {·}-rule is applied in the branch.

In practice, the implementation of (R2) may not need to query implied equalities.
SMT solvers typically implement Nelson-Oppen combination method [18]. Z3 uses
model-based theory combination [5]. In both frameworks, all implied equalities on mu-
tually shared variables are eventually propagated to all other theories.

Theorem 3 (Soundness). Let Φ be any conjunction of restricted-RLE-literals. If there
exists a closed restricted-RLE-tableau for Φ , then Φ is unsatisfiable.

Theorem 4 (Completeness). Let Φ be any conjunction of restricted-RLE literals. If Φ
is unsatisfiable, then every completed restricted-RLE tableau for Φ is closed.

Complexity. Observe that the img-rules in Fig. 3 can create fresh terms only of the form
type(u), dtype(f ), both of sort cname, where neither u nor f is fresh; the number of
such fresh terms is O(n2) where n is the size of the input. This is in stark contrast to
the img-rules in Fig. 1 which can create an unbounded number of fresh terms of sort ref
(e.g., Fig. 2). We can derive the following branch bound for restricted-RLE tableaux.

Lemma 1 (branch bound). Let Φ be any restricted-RLE conjunction. Let size(Φ) = n .
Let B be any branch of a restricted-RLE tableau for Φ . Then, size(B) is O(n3).

Conjunctions of resricted-RLE literals suffice to encode arbitrary boolean clauses. Intu-
itively, non-determinism due to disjunctions can be encoded by singleton sets. Thus we
have the following result ([21, Lemma 4.57]).
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Lemma 2. Deciding the satisfiability of a conjunction of restricted-RLE literals is NP-
hard.

Owing to Lemma 1 and the fact that the premises in (R1) and (R2) of Fig. 3 can be
checked in polynomial time,8 we can formulate a non-deterministic decision procedure
which runs in polynomial time. Given an arbitrary restricted-RLE formula, Φ , we first
transform it into CNF using Tseitsin’s encoding, e.g., [13]. (The equisatisfiable CNF
formula is linear in the size of Φ .) Next, we guess a conjunction of disjuncts and use it
as the input to the tableau procedure; the tableau procedure merely applies all possible
tableau rules in a non-deterministic fashion until each branch is complete.

Lemma 3. Deciding the satisfiability of a restricted-RLE formula is in NP.

Theorem 5. The satisfiability problem for restricted-RLE is NP-complete.

Recall that restricted-RLE is obtained from restricted-RL by eliminating all array lit-
erals, i.e., literals containing write-terms. The reduction introduces only polynomially
many fresh literals (see [21, Lemma 4.62]). Consequently, we can apply the reduction
and appeal to Theorem 5 to obtain

Theorem 6. The satisfiability problem for restricted-RL is NP-complete.

6 Related Work

Our decision procedure extends the tableau-based decision procedure for the quantifier-
free language 2LST—two-level syllogistic modulo T [27]. 2LST is an extension of
2LS—a two-sorted language of sets of elements where the element sort is uninter-
preted. Additionally, 2LST has any number of constant, function and predicate symbols
over the elem sort in some theory T , provided as a parameter. The function and predi-
cate symbols are of the form: F : elem× ·· ·× elem → elem, P : elem× ·· ·× elem, of
any arity. The interpretation of these symbols is dictated according to T . The decision
problem is NP-complete assuming the decision problem for T is in NP. A tableau-
based decision procedure for 2LST was presented in [27]. It corresponds essentially to
our Fig. 1, excluding the second {·}, and the third and fourth ∈-rules; in our setting,
the background-theory plays the role of T . Note, if we keep the third ∈-rule, we es-
sentially obtain a decision procedure for 2LST with a universal set, denoted by alloc.
Consequently, RL can be seen as an extension of 2LST with a universal set and images.

The tableau-based decision procedure is a combination method different from that
of Nelson-Oppen. Notably, it does not perform the equality propagation between T
and 2LS in the sense of Nelson-Oppen. (Although, equalities amongst T -terms are
propagated by tableau rules.) Furthermore, T need not be stably infinite. Intuitively, a
decision procedure for T serves as a black box. After a rule is applied, a tableau simply
asks the black box to determine if the new branch(es) remains open, i.e., whether a
conjunction of elem-literals is T -satisfiable.

8 This stems from the fact that TE,T≤ are convex and can be decided in polynomial time.
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Kuncak, et al. give a decision procedure for a quantified language of sets of uninter-
preted elements with cardinality constraints [14]. The language is known as BAPA—
boolean algebra with Presburger arithmetic. It permits quantification over sets and inte-
gers; quantification over elements is expressible in terms of set quantification. The de-
cision procedure for BAPA admits quantifier-elimination. The restriction to quantifier-
free formulas is called QFBAPA. This language has no separate syntax for element
terms; elements are encoded by fresh set-variables whose cardinality is constrained
to be 1. Remarkably, QFBAPA’s decision problem was shown to be NP-complete by
Kuncak and Rinard [16].

Yessenov, et al. introduce a decidable language QFBAPA-Rel with image expres-
sions under unary function symbols and predicate symbols of any arity [26]. As in
QFBAPA, the element sort is un-interpreted. This language is very expressive and
suited to verification of object based programs. It comes close to subsuming RL, indeed
one of their examples is based on our specification for setLeftZero. Their functions are
total whereas our images are not: region r in r‘f may contain some objects that lack
field f . Perhaps this can be patched by introducing types.

For a function f : A → A and set X ⊆ A, the decision procedure of [26] eliminates
terms of the form f [X ] by first rewriting X as a union of (disjoint) Venn regions, i.e.,
X =

⋃

vi and f [X ] =
⋃

f [vi ]. Subsequently, each f [vi ] is replaced by a fresh variable ti
with the cardinality constraints: |ti | ≤ |vi | and |ti |= 0⇔|vi |= 0. The resulting formula
is in QFBAPA which is NP-complete, thus the decision problem is in NEXPTIME.
However, because the translation (to Venn regions) yields a QFBAPA formula of expo-
nential size, the decision procedure does not seem practical.

Recently Suter et al. [24] have shown that it is possible to obtain an SMT-based de-
cision procedure for QFBAPA. Their decision procedure has been implemented as a
plugin in Z3. To reason about interpreted elements of sets, axiomatized predicate sym-
bols singleton and element are added to QFBAPA subject to axioms |singleton(e)|= 1
(for singleton set) and element(singleton(e)) = e. The crux of the decision procedure
is an algorithm that decomposes a formula such that the number of considered Venn
regions is significantly reduced. Several experiments show that in practice the decom-
position algorithm can handle formulas with a large number of set variables, despite
exponential worst-case complexity. Suter et al. conjecture that their approach can be
extended to QFBAPA-Rel.

7 Discussion

We conjecture that it is possible to devise a terminating tableau procedure to decide
full RL, with respect to interpretations where alloc is finite; but this is unlikely to
be of practical value because of its NEXPTIME-time complexity. (Our procedure is
incomplete for finite alloc, as illustrated by the example in Fig. 2.) We conjecture
that NEXPTIME-time complexity also holds for RL without the restriction to finite
alloc. For typical verification condition generators, there is no need to explicitly re-
quire the heap domain to be finite. However, if alloc is fixed to be finite, then one can
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express cardinality constraints of the form |r | ≤ |s |, for any rgn-terms r ,s . Observe
that under a finite interpretation of regions, r ⊆ img(h,s , f ) implies the cardinality
constraint |r | ≤ |s |. (By cardinality, r ⊆ img(h,s , f ) implies |r | ≤ |img(h,s , f )|; by
image semantics and finiteness of regions, |img(h,s , f )| ≤ |s |, whence |r | ≤ |s | by
transitivity.) The case of restricted-RL is simpler since every satisfiable formula has a
finite model owing to Lemma 1 and Theorem 4.

In previous work we used a translation to the BSR fragment9 inspired by [15]. For
example a restricted-RL literal r‘f ⊆ s where r ,s are variables, can be roughly encoded
by a BSR formula ∀u,v · v 	= null ⇒ (r(u)∧ f (u,v) ⇒ s(v)), where r ,s , f are pred-
icate symbols. While the translation is possible for a language akin to restricted-RL, it
breaks down when we encounter RL literals of the form s ⊆ r‘f ; such a literal would
result in a formula with the quantifier prefix ∀∃ which does not belong to BSR.

Although the procedures presented here seem promising, much more thorough per-
formance evaluation is needed. The semi-decision procedure is not currently integrated
with the Verl tool, but we have already instrumented Verl with the necessary hooks.
We plan to complete that integration and also to implement the decision procedure for
restricted RL. This will enable comparison between performance of the (semi)-decision
procedures and the axiomatic implementation of RL already present in Verl. (And with
QFBAPA-Rel, if an SMT-based implementation becomes available.) Ordinary use of
Verl will assess performance on full VCs for a range of correct and incorrect pro-
grams, i.e., involving integers and other theories besides RL. From those VCs we may
also extract benchmark formulas in the RL and restricted RL fragments, for more direct
comparative evaluation of the procedures.

As presented here, RL reflects the semantics in the original paper on region logic [2].
Subsequently we streamlined the assertion language by allowing regions to contain
null [3]; this validates a slightly different set of formulas (e.g., x ∈ {x} becomes valid,
whereas only x 	= null ⇒ x ∈ {x} is valid according to Def. 2). It should be straight-
forward to adapt the tableau procedures to this semantics.

Acknowledgements. Thanks to Nikolaj Bjørner and Leonardo de Moura for help with
Z3 integration and feedback on the implementation. Thanks to Clark Barrett for study-
ing proofs of soundness and completeness of tableaux. Thanks to the anonymous refer-
ees for their comments.
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