
A Language for Information Flow:
Dynamic Tracking in Multiple Interdependent Dimensions

Avraham Shinnar ∗

Harvard University
shinnar@eecs.harvard.edu

Marco Pistoia
IBM T. J. Watson Research Center

pistoia@us.ibm.com

Anindya Banerjee †

IMDEA Software
anindya.banerjee@imdea.org

Abstract
This paper presents λI , a language for dynamic tracking
of information flow across multiple, interdependent dimen-
sions of information. Typical dimensions of interest are in-
tegrity and confidentiality. λI supports arbitrary domain-
specific policies that can be developed independently. λI
treats information-flow metadata as a first-class entity and
tracks information flow on the metadata itself (integrity on
integrity, integrity on confidentiality, etc.).

This paper also introduces IMPOLITE, a novel class of
information-flow policies for λI . Unlike many systems,
which only allow for absolute-security relations, IMPOLITE
can model more realistic security policies based on relative-
security relations. IMPOLITE demonstrates how policies on
interdependent dimensions of information can be simultane-
ously enforced within λI ’s unified framework.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; D.4.6
[Operating Systems]: Security and Protection—Information
flow controls,Verification

General Terms Languages, Security, Verification

Keywords Information flow control, declassification, secu-
rity type system

∗ This work was performed while the author was a Research Intern at the
IBM T. J. Watson Research Center, Hawthorne, New York. This material
is also based upon work supported under a National Science Foundation
Graduate Research Fellowship.
† This work, performed while the author was on sabbatical at the IBM T. J.
Watson Research Center, was partially supported at Kansas State University
by US NSF awards CNS-0627748 and ITR-0326577.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS ’09 June 15, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-645-8/09/06. . . $10.00

1. Introduction
This paper addresses the need for general information-
flow systems that allow for expressive policy specifications.
Security-enforcement mechanisms in existing commercial
languages, such as Java and the Common Language Runtime
(CLR), are imprecise and unsound [20]. Research systems,
such as Jif [16], Flow Caml [6], and Information-Based Ac-
cess Control (IBAC) [20], are sound, but restrict the class
of policies that can be enforced. In particular, existing sys-
tems can only encode absolute-security relations: from the
point of view of integrity, all the principals responsible for
the value of an expression must be equally trusted with re-
spect to any security-sensitive use of that expression, and
from the point of view of confidentiality, it is only possible
to control who has access to sensitive data, without being
able to control who has access to the confidentiality pol-
icy itself. Additionally, static-enforcement methodologies
generally require the program to be statically labeled with
information-flow-policy annotations—a significant burden
on the developer, which may limit the portability of the pro-
gram and restrict who can configure the information-flow
policy of the program.

This paper defines λI , a language that can precisely track
information flow in multiple dimensions, such as integrity
and confidentiality, without restricting the type of tracked
data or the enforceable policies. Next, this paper introduces
IMPOLITE, a class of policy-enforcement systems that can
simultaneously enforce integrity and confidentiality poli-
cies on both the data manipulated by a program and the
information-flow metadata kept by the systems.

IMPOLITE supports relative-security relations. From the
point of view of integrity, different principals often have
varying degrees of responsibility for a given value v . For
example, a principal p may be responsible for having de-
fined v , but the identity of p is only trusted up to the Certifi-
cate Authority a that signed p’s certificate. Systems that only
support absolute-security relations typically require that not
only p, but also a be sufficiently trusted to define v . Con-
versely, λI allows policies to make security decisions based
on whether or not p is trusted to define v and a is trusted to

125

certify p’s identity. Security decisions can be based on the
history and structure of influences.

Relative-security relations are also useful to overcome
some limitations of existing access-control models. For ex-
ample, in Java and the CLR, permissions are assigned to
classes by class loaders [21]. The provider of a class loader
is implicitly granted the authority to assign any permis-
sion to any class loaded by that class loader. Ideally, the
permissions assigned to a class should be trusted as much
as the class-loader provider is trusted, but since Java and
the CLR security models do not support relative-security
relations, this restriction is not possible. For this reason,
the literature [9, 22] has emphasized that the permission
q to instantiate a class loader is implicitly equivalent to
AllPermission [21, Section 8.2.5]. To address this is-
sue, unlike other programming languages, λI allows ad-
dressing information-flow metadata as first-class informa-
tion. For example, λI allows keeping track of the fact that
a datum c may be labeled with an integrity level R, and R
itself may be labeled with integrity level S . In λI , we write
this as S [〈R〉][〈c〉], using frames [24, 7, 10], and we say that
R frames c and S frames R.

Common systems are also incapable of using relatively-
trusted integrity-enforcement mechanisms. In Java and the
CLR, an installed security manager can enforce any pol-
icy it desires [21, Section 8.2.5] [22, Section 7.5.1]. Thus,
a malicious implementation of a security manager can make
any permission check succeed. This is the same as granting
AllPermission to arbitrary code. Conversely, in a sys-
tem supporting relative-security relations, any security deci-
sion made by a security manager would be constrained by
the security manager’s integrity level, and would be trusted
as much as the security manager itself is trusted.

More generally, programs make decisions based on the
integrity levels of the data they use. However, an intruder
can affect a program by influencing the integrity level of a
value—not necessarily the value itself. Consider the case
of a library method m that takes a parameter a of type A,
and performs a callback, a.f. An intruder can choose to in-
ject one of two perhaps identical implementations of a.f,
with just different integrity levels, for example R1[〈a .f 〉] or
R2[〈a .f 〉]. On a subsequent security check involving a.f,
R1 may be sufficiently trusted, whereas R2 may not. Thus,
the intruder would have influenced the control flow of the
program. λI handles this situation by framing the frame of
a.fwith the frame A of the attacker, as in A[〈R1〉][〈a .f 〉] and
A[〈R2〉][〈a .f 〉], tracking the influences on the metadata R1
and R2, respectively. This problem can affect more than two
levels of integrity since the values injected by the attacker
may already have longer histories of influences, resulting in,
e.g., A[〈R1〉][〈S1〉][〈a .f 〉] and A[〈R2〉][〈S2〉][〈a .f 〉]. This demon-
strates the need for unbounded levels of framing.

Similarly, confidentiality levels may themselves need to
be confidential, requiring multiple (unbounded) levels of

frames. Integrity and confidentiality levels can also be in-
terdependent; confidentiality levels can have integrity levels,
which can have confidentiality levels, etc. In Section 2, we
will show the importance of a language that can account for
interdependent dimensions of integrity and confidentiality.

1.1 Overview
Section 3 presents λI , an expressive language for dynamic
information-flow tracking in multiple, interdependent di-
mensions. Information-flow tracking is built into λI , which
allows programs to access and manipulate information-
flow metadata. λI dynamically maintains security metadata
throughout the execution of a program for subsequent policy
decisions.

A storage channel arises whenever an attacker can influ-
ence the information-flow metadata of a value used in a se-
curity test, and not necessarily the value itself, thereby influ-
encing the control flow of the program, as in the class loader,
security manager, and callback examples discussed above.
The ability of λI to maintain frames on frames allows λI to
fully account for frames used as storage channels, in contrast
to previous work [7, 20].
λI tracks information-flow dynamically, potentially al-

lowing it to accept more programs then static systems—
such as type-based information-flow systems—at the cost of
greater overhead. The overhead arises because of the need
to handle implicit flows. For example, the fact that an action
has been prevented might itself constitute a leak. The cor-
rect handling of these flows requires the use of a write oracle
that essentially calculates what locations a code may write—
similar to the modifies specification required by tools such as
JML [12]. Details are available in the research report [25].
λI separates a unified information-flow tracking mecha-

nism from domain-specific policies via lazy policy enforce-
ment. λI delays making policy decisions until interactions
with the outside world arise. At that point, it presents the
policy enforcer with a structured view of the relevant in-
fluences. A program is allowed to continue execution even
when an untrusted value v1 has influenced a value v2, which
may be later used in a trusted computation, or when a con-
fidential value v ′1 has influenced a value v ′2, which may later
become publicly observable. The policy will only reject the
program if it tries to actually use v2 or reveal v ′2.
λI unifies the way information flow is tracked across

domains, neither interpreting nor constraining the data or
policies. Only at the point in which a security test on a
value necessary, is the information-flow metadata attached
to the value extracted and interpreted by the test function,
which is encoded in λI . Furthermore, λI treats integrity
and confidentiality uniformly and does not constrain the
allowable policies. In contrast, non-lazy systems generally
constrain policies, requiring the labels to form a lattice [4].

As discussed in Section 3.2, λI supports endorsement,
declassification, and other essential information-flow prim-
itives. λI can encode the Java doPrivileged (Assert

126

in the CLR) and doAs constructs, which allow trusted code
to ignore the permissions of its callers and run methods with
different permissions, respectively. An explicit encoding is
included as Appendix A.

Section 4 introduces Information Management POlicies
in a LImited Trust Environment (IMPOLITE), a class of secu-
rity policies, enforceable on λI , that allow relative-security
relations on multiple interdependent dimensions of informa-
tion. Existing systems, such as IBAC [20], can be modeled
as instantiations of IMPOLITE. In IBAC, integrity labels are
sets of permissions, and policy decisions treat all frames
equivalently by taking their intersection. IMPOLITE supports
relative-security relations, which can depend on the structure
of the influences, whereas IBAC can only model absolute-
security relations. A non-intereference theorem and proof
for IMPOLITE appear in the research report [25].

1.2 The Attacker Model
We assume a trusted-memory model; all memory accesses
are mediated by the runtime. This allows us to support an
active-attacker model [18]. Outside observers can inject
code into a program and monitor its public interactions.
Modulo timing- and termination-attacks, an active attacker
cannot compromise a system with an IMPOLITE policy[25].

2. Motivating Example
Medical NotesMedical Notes Financial InfoFinancial Info

Medical Record
… …

Mr. DoeMr. Doe PayrollPayroll Filing ClerksFiling ClerksSecretarySecretary Mr. DoeMr. Doe
= Integrity
= Confidentiality

Accounts PayableAccounts Payable Mr. DoeMr. DoeDr. SmithDr. SmithDoctorDoctor Mr. DoeMr. Doe Ms. JonesMs. Jones

Figure 1: Medical-Record Scenario Model

Figure 1 models
a medical
record
scenario. In
a medical
record each
field’s value may have its own integrity and confidentiality
requirements. These in turn may have their own integrity and
confidentiality requirements, necessitating a system that can
model the complex interactions of multiple, interdependent
dimensions of information.

In the scenario of Figure 1, Mr. Doe was seen by Dr.
Smith. The resulting Medical Record datum contains sev-
eral fields, including some Medical Notes and Financial
Info. Integrity and confidentiality edges represent trust levels
and privacy requirements, respectively. Principals written in
italic represent roles.
Integrity. The value of the Medical Notes field has Dr.
Smith’s integrity stamp on it. We model this property as
Dr. Smith[〈Medical Notes〉]. Similarly, the Financial Info
was given by Mr. Doe, yielding Mr. Doe[〈Financial Info〉].
Confidentiality. In an emergency, Dr. Smith’s Medical
Notes must be accessible to every Doctor. Mr. Doe may
access the Medical Notes, and has also chosen to grant his
fiancée, Ms. Jones, access to the Medical Notes. The re-
sulting confidentiality label is a structure with three fields:
Doctor, Mr. Doe, and Ms. Jones.
Confidentiality on Integrity. If Dr. Smith is an HIV spe-
cialist, knowing that he was consulted could lead people to

infer that Mr. Doe is HIV positive. Thus, it is necessary to
protect the integrity label of Medical Notes with a confiden-
tiality label, Payroll.
Integrity on Integrity. The integrity label on Dr. Smith is
Filing Clerks, as they certify that the Medical Notes were
submitted by Dr. Smith.
Confidentiality on Confidentiality. Mr. Doe may not want
his relatives to know that he has granted Ms. Jones access to
the Medical Notes. Thus, the Ms. Jones confidentiality label
is itself confidential, with a structured label containing fields
Secretary and Mr. Doe.
Integrity on Confidentiality. The Ms. Jones confidential-
ity label has an integrity level of Mr. Doe, as he granted her
access to the Medical Notes.

3. Language
In this section, we present a language that provides primi-
tives for tracking and manipulating information-flow meta-
data. As discussed in Section 1.2, our system mediates all
access to memory, which is assumed local. Policies are lazily
enforced immediately prior to a security-sensitive event. The
programmer can choose when to enforce their desired poli-
cies. The language simply tracks influences.

We first present a core language, λF , for manipulating
the metadata, and then define the full language, λI , via
a translation to λF . This separation helps provide a clean
interface to the metadata.

3.1 Core Frame Language: λF
Figure 2 presents the syntax of λF , an A-normalized lan-
guage with references, structures, conditionals, and recur-
sive first-class functions. λF also includes frames, a mech-
anism for associating information-flow metadata with data.
λF provides primitives to manipulate these frames, but does
not enforce policies on them. A frame can be any denotation,
and frames can themselves be framed. Denotations include
atomic denotations, structures, and framed constructs.

Framed constructs, as seen in Figure 2, are canonicalized
according to the rules in Figure 3(b) so that only atomic
denotations are framed. null is used as a terminator and is
absorbed by framing.

Canonicalization emphasizes the underlying data, ascrib-
ing a clear, useful meaning to constructs such as R[〈S 〉][〈3〉]+
T [〈4〉]. It succinctly describes the interplay between frames
and structures, allowing λI to track multiple dimensions of
information in an interdependent fashion. Structures can also
be used to encode structured information. A plus function,
given arguments R[〈S 〉][〈3〉] and T [〈4〉] as above could return
{part1 = R[〈S 〉] , part2 = T }[〈7〉].

Throughout the paper, we will write d1[〈d2〉] for all de-
notations d2, and assume canonicalization is implicitly per-
formed as per Figure 3(b).

Figure 3 describes the semantics of λF . d [d1/x] is stan-
dard capture avoiding substitution of d1 for x in d . λF pro-
vides recursive closures as a form of fix. frame with,

127

Variables x ,m
Field Names (F) f
Commands (C) C ::= v | let x = C in C | ref v |!v | v := v | values, let, refs

true | false | n | unit | null | primitive values
struct {f = v } | v .f | records
frame v with v | frameof v | valueof v | frames
fix m x ⇒ C | v v | if v then C else C functions, conditionals

Atomic Den. (A) a ::= true | false | n | unit | null | ` | 〈m , x ,C 〉 primitives, locations, closures
Denotations (D) d ,R ::= a | {f = d } | R[〈a〉] atomics, structs, frames
Value (V) v ::= x | d variables, denotations

Figure 2: Frame Language Syntax

PRIMITIVES

(true, h) ↓(true, h). . .
FRAMING

(frame d with R, h) ↓(R[〈d〉] , h)
VALUE PROJECTION

(valueof R[〈d〉], h) ↓(d , h)
FRAME PROJECTION

(frameof R[〈d〉], h) ↓(R, h)

LET
(C1, h) ↓(d1, h1) (C2[d1/x], h1) ↓(d , h ′)

(let x = C1 in C2, h) ↓(d , h ′)

REF
` < dom(h) passive d

(ref d , h) ↓(`, [h | ` 7→ d])

ASSIGNMENT
passive d

(` := d , h) ↓(unit, [h | ` 7→ d])

DEREFERENCING

(!R[〈`〉], h) ↓((h `), h)
STRUCTURE CREATION
(struct {f = d }, h) ↓({f = d }, h)

FIELD PROJECTION

({fi = di }.fi , h) ↓(di , h)
METHOD DEFINITION

(fix m x ⇒ C , h) ↓(〈m , x ,C 〉 , h)

METHOD APPLICATION
(C [d/x][〈m , x ,C 〉/m], h) ↓(d ′, h ′)

(R[〈〈m , x ,C 〉〉] d , h) ↓(d ′, h ′)

IF TRUE
(C1, h) ↓(d , h ′) passive d

(if R[〈true〉] then C1 else C2, h) ↓(d , h ′)

IF FALSE
(C2, h) ↓(d , h ′) passive d

(if R
[
〈false〉

]
then C1 else C2, h) ↓(d , h ′)

passive d ≡ d contains no closures.
(a) passive Denotations

NULL ABSORPTION: null[〈d1〉][〈null〉][〈d2〉]≡d1[〈d2〉]

STRUCT LIFTING: d ≡ {.1 = d }

DISTRIBUTION: d
[〈
{fi = di }

〉]
≡ [{fi = d [〈di 〉]}]

(b) Frame Canonicalization

Figure 3: Frame Language Semantics

frameof, and valueof are the intro and elim forms for
framed constructs. passive, as expressed in Figure 3(a), is
a predicate on denotations indicating that they do not contain
closures. Only passive denotations can be put in the heap
and returned from conditionals. Additionally, writes are re-
stricted to bare (unframed) locations. These restrictions will
be discussed in Section 3.2, which introduces λI .

3.2 Information-Flow Language: λI
λI is defined by translation to λF , tracking control- and data-
flow and framing every value with its dependencies. Figure 4
presents excerpts of this translation; the full translation is in
the tech report[25].

Programs (top-level commands) are translated by prepend-
ing two let bindings for special heap locations, pc and meth ,
created and used by the system, as defined in Figure 4(b).
pc is used to track the current control dependencies. meth

records the frame of the currently executing function; it is
changed upon function invocation and restored upon func-
tion return. The translation then proceeds recursively on the
program’s command, propagating influences as needed. For
example, the ref rule taints (meaning, frames with pc) the
value being written to memory, recording the influence of
the current control dependencies. Dereferencing a location
frames the looked-up value with the frame of the location.

Influence is relative. In Figure 5, getName completely
f(dir) { dir + g(); }
g() {
name=getName();
... }

getName() {
return "log"; }

Figure 5: Relative Trust

trusts the string log. Method g
trusts the string as much as it
trusts getName. This trust is in-
dependent of g’s callers; f does
not influence the trust level. λI ’s
application rule frames f ’s argu-
ment, dir , with the meth frame
of f ’s caller and f ’s return value with f ’s frame.

128

Commands C (λI ⊃ λF) ::= . . . | getpc | getmeth | v .f := v | assert R in C
(a) Information Flow Language Syntax

Tp(C) = let pc = ref null in let meth = ref null in [[C]]
(b) Translation of the top level program

[[v]] ≡ v
[[valueof v]] ≡ valueof v
[[getmeth]] ≡ !meth
[[getpc]] ≡ !pc
[[struct {f = v }]] ≡ struct {f = v }
[[frame v1 with v2]] ≡ frame v1 with v2

[[let x = C1 in C2]] ≡ let x = [[C1]] in [[C2]]

[[v .f]] ≡ v .f
[[frameof v]] ≡ frameof v
[[fix m x ⇒ C]] ≡ fix m x ⇒ [[C]]
[[ref v]] ≡ ref taint(v)
[[assert R in C]] ≡

let R′ = frame R with !meth in
set(pc = R′) in [[C]]

[[!v]] ≡ frame !v with (frameof v)
[[v1 v2]] ≡

let R = frameof v1 in
let v ′2 = frame v2 with !meth in
set(meth = R) in
set(pc = taint(R)) in

frame (v1 v ′2) with R

With the following helper functions

C1; C2 ≡ let = C1 in C2

taint(v) ≡ frame v with !pc

set(var = R) in C ≡
let old = !var in

var := frame null with R
let ret = C in var := old ; ret

Note: For readability, the translation is not into
the A-normal form of Figure 3. A-normalization
is straightforward.

Figure 4: Information Flow Language→ Frame Language Translation (Excerpts)

λI provides access to the underlying frame with, frameof,
and valueof commands in λF , allowing code to access and
manipulate the information-flow metadata. In particular,
this allows code to endorse and declassify data in integrity
and confidentiality environments, respectively. λI also adds
in some new commands. assert in allows the programmer
to explicitly ignore control dependencies. This is akin to
doPrivileged in Java and Assert in the CLR. If a li-
brary wants to write to a log file, it can use assert in to do
so, even if the client does not have the required permissions.
getpc and getmeth help the programmer selectively ignore
some control dependencies. Appendix A has some examples.

3.3 Restrictions
To ensure correct influence tracking, λI restricts condition-
als, closures, and the heap. These restrictions are all related
to implicit flows. An attacker can influence the behavior of
a program by preventing it from executing some code that
would otherwise have been executed. More sophisticated
static analysis could remove these restrictions by conser-
vatively approximating the code that did not execute. For
simplicity, we choose to simply prohibit some of the more
difficult to analyze situations. To handle if statements, λI
assumes a write oracle that approximates the locations that
would have been written in the branch not taken. This is sim-
ilar to that employed by Le Guernic et al. [14, 13]. More in-
formation concerning the motivation for these restrictions as
well as approaches for removing them can be found in [25].

4. Security Policy Interpretation
In this section we discuss the IMPOLITE class of policies and
the interpretation of such policies.

Our overall goal is to check diagrams such as Fig. 1
with regards to policies such as: Payroll is allowed to view
Dr. Smith was consulted by Mr. Doe, but Joe the Plumber is
not allowed to view this information. Here is another policy:
Payroll cannot view Dr. Smith’s notes.

An IMPOLITE policy has two components. The first com-
ponent is a relative trust relation, termed validfor, be-
tween (field name , atomic denotation) pairs. For example,
in the scenario of Section 2, the trust relation can ask: Do
Payroll employees believe that Dr. Smith is the integrity la-
bel on Medical Notes? In our formulation this is represented
as (C,Payroll)|=(I,Dr. Smith), read: Is (C,Payroll) valid for
(I,Dr. Smith)? (Were one to define a relation that asserted
(I,Dr. Smith) for all pairs (f , a) where f is a label and a is
an atomic denotation, one obtains the IBAC [20] policy.)

The second component of a policy specifies how a pol-
icy is interpreted on general structures (see Section 3.2).
For 1, Doctor, Mr. Doe and Ms. Jones can be represented
as a structure {part1 = Doctor, part2 = Mr. Doe, part3 =
Ms. Jones}; that they are all given access to Medical Notes
is represented by the fact that the interpretation of this struc-
ture in dimension C is true if one of Doctor, Mr. Doe or
Ms. Jones attempts access to medical notes. More complex
policies such as always requiring the presence of Mr. Doe
along with Ms. Jones or a Doctor can also be interpreted.

Given a policy specified as above we show [25] that a λI
program that does not use endorsement or declassification
satisfies non-interference. This means the following: Con-
sider two runs of the program from two initial environments
set up by completely untrusted (not even partially trusted)
attackers. Run the program from these two environments. If
the respective denotations of the program satisfy the security
policy then the two denotations are the same. Note that the
formulation does not prevent violation of the policy in inter-
mediate states of computation as long as the violations have
no influence on the final denotations.

5. Related Work
Since Denning and Denning [5], there has been a large
volume of work on static checking of information flow
policies [23]. Goguen and Meseguer [8] introduce non-
interference based on earlier work by Cohen [3]. Volpano,

129

et al. [28] are the first to show a type-based algorithm that
certifies implicit and explicit flows and also guarantees non-
interference. Most of these works focus on confidentiality.
Integrity is explored by Li, et al. [15]. Based on the premise
that many software attacks subvert the execution of ma-
chine code, Abadi, et al. perform a comprehensive study
of control-flow integrity [1].

Myers’ Jif [16] and Pottier and Simonet’s Flow Caml [6]
use type-based static analysis to track information flow. Nei-
ther Jif nor Flow Caml address the interactions amongst dif-
ferent dimensions of information. Jif is based on the Decen-
tralized Label Model [17]. Section 1 has already discussed
a few key differences between Jif and our system. Another
difference is that Jif considers all memory as a channel of
information, which requires that every variable, field, and
parameter used in the program be statically labeled. Labels
can either be declared or inferred. Jif thereby requires the
programmer to specify the security policy. In contrast, λI
can encode declarative policies, such as those of Java and
the CLR. λI ’s memory model assumes a core trusted mem-
ory that does not act as a channel and saves the program-
mer from the burden of labeling channels. This is a realistic
model assuming that the operating system enforces mem-
ory protection across processes. Furthermore, λI supports a
very flexible policy-enforcement mechanism, with arbitrary
values as labels, and arbitrary information-flow tests.

Zheng and Myers [29] describe a language that, like λI ,
allows first-class labels. Their language assumes that the
labels form a lattice and use the associated join operation to
merge labels. In contrast, λI does not require that the labels
form a lattice, and maintains the structure of the labels. This
allows λI to account for interdependencies between different
dimensions of information. This also allows λI to support
policies such as the relative-security relations of IMPOLITE.

Pistoia, et al. [20] describe IBAC, a unified access-control
and information-flow system that uses permission sets as
labels for information flow. The IBAC language supports a
subset λI ’s features. IBAC’s non-interference can be viewed
as an instantiation of the IMPOLITE non-interference result.
IBAC does not support any relative-security relations. The
use of the intersection operator by IBAC can be viewed as a
policy-driven optimization.

With robust declassification, Myers, et al. enforce that
only high-integrity data be declassified, and declassification
be performed only in high-integrity contexts [18]. Quali-
fied robustness provides an attacker a limited ability to af-
fect what information may be released by programs [19].
An endorse primitive is used to upgrade the integrity of
data. The RX language allows integrity and confidentiality
metapolicy labels on roles [27, 11]. Deeper interactions be-
tween integrity and confidentiality are not investigated.

Swamy et al. [26] design the dependently-typed lan-
guage, Fable, wherein a variety of security policies can be
expressed. Such policies include access control, information

flow and provenance. Data is protected by way of secu-
rity labels based on dependent types. These labels, like our
frames-on-frames, capture security policy. Policy enforce-
ment happens in a separate part of the code by way of an
interpretation of labels provided by the programmer, and
can be checked statically. In contrast, λI tracks information
flow dynamically and does not handle access control and
provenance presently. Although Fable allows programs in
which multiple policies may be at play simultaneously, the
notion of composition of the policies forbids any interaction
between policies. In contrast, λI allows interaction between
confidentiality and integrity policies.

6. Discussion
This paper presented λI , a language for dynamic tracking of
information flow in multiple, interdependent dimensions. A
promising research direction is to apply λI to other dimen-
sions of information, such as non-repudiation, provenance,
and concurrency.

As presented in this paper, λI has a number of restrictions
to ensure that influences are correctly tracked. We would like
to remove these restrictions by designing a static analysis
or type system to conservatively approximate or constrain
implicit flows.

We are also interested in exploring policy-driven opti-
mizations. λI is less efficient than more specialized, less ex-
pressive systems since it needs to maintain the entire struc-
ture of every frame. For a given policy, it should be possible
to automatically optimize λI ’s tracking mechanism.

Acknowledgments
The authors would like to thank Greg Morrisett, John Field
and David Naumann for their helpful suggestions.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity: Principles, Implementations, and Applications.
In CCS 2005.

[2] D. E. Bell and L. LaPadula. Secure Computer Systems:
Mathematical Foundations. MITRE MTR-2547, 1973.

[3] E. S. Cohen. Information Transmission in Sequential
Programs. In R. A. DeMillo, D. P. Dobkin, A. K. Jones,
and R. J. Lipton, editors, Foundations of Secure Computation.
Academic Press, 1978.

[4] D. E. Denning. A Lattice Model of Secure Information Flow.
CACM, 19(5), 1976.

[5] D. E. Denning and P. J. Denning. Certification of Programs
for Secure Information Flow. CACM, 20(7), 1977.

[6] Flow Caml. http://cristal.inria.fr/˜simonet/
soft/flowcaml/

[7] C. Fournet and A. D. Gordon. Stack Inspection: Theory and
Variants. In POPL 2002.

[8] J. A. Goguen and J. Meseguer. Security Policies and Security
Models. In S&P 1982.

130

[9] L. Gong, G. Ellison, and M. Dageforde. Inside Java 2 Platform
Security: Architecture, API Design, and Implementation.
Addison-Wesley, 2nd edition, 2003.

[10] D. Grossman, J. G. Morrisett, and S. Zdancewic. Syntactic
Type Abstraction. TOPLAS, 22(6), 2000.

[11] H. H. Hosmer. Metapolicies I. SIGSAC Review, 10(2-3),
1992.

[12] JML. http://www.eecs.ucf.edu/˜leavens/JML/

[13] G. Le Guernic. Automaton-based Confidentiality Monitoring
of Concurrent Programs. In CSF 2007.

[14] G. Le Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt.
Automata-based Confidentiality Monitoring. In ASIAN 2006.

[15] P. Li, Y. Mao, and S. Zdancewic. Information Integrity
Policies. In FAST 2003.

[16] A. C. Myers. JFlow: Practical Mostly-static Information Flow
Control. In POPL 1999.

[17] A. C. Myers and B. Liskov. A Decentralized Model for
Information Flow Control. In SOSP 1997.

[18] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
Robust Declassification. In CSFW 2004.

[19] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing
Robust Declassification and Qualified Robustness. JCS, 14(2),
2006.

[20] M. Pistoia, A. Banerjee, and D. A. Naumann. Beyond Stack
Inspection: A Unified Access Control and Information Flow
Security Model. In S&P 2007.

[21] M. Pistoia, N. Nagaratnam, L. Koved, and A. Nadalin.
Enterprise Java Security. Addison-Wesley, 2004.

[22] M. Pistoia, D. Reller, D. Gupta, M. Nagnur, and A. K. Ramani.
Java 2 Network Security. Prentice Hall PTR, 2nd edition, 1999.

[23] A. Sabelfeld and A. C. Myers. Language-Based Information-
Flow Security. J-SAC, 21(1), 2003.

[24] P. Sewell and J. Vitek. Secure Composition of Untrusted
Code: Wrappers and Causality Types. In CSFW 2000.

[25] A. Shinnar, M. Pistoia and A Banerjee. A Language for
Information Flow: Dynamic Information Tracking in Multiple
Interdependent Dimensions. IBM RC24541, 2008.

[26] N. Swamy, B. Corcoran and M. Hicks. Fable: A Language for
Enforcing User-defined Security Policies. In S&P 2008.

[27] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic. Managing
Policy Updates in Security-Typed Languages. In CSFW 2006.

[28] D. Volpano, C. Irvine, and G. Smith. A Sound Type System
for Secure Flow Analysis. JCS, 4(2-3), 1996.

[29] L. Zheng and A. C. Myers. Dynamic Security Labels and
Static Information Flow Control. IJIS, 6(2), 2007.

A. Encoding Security Primitives in λI
Many common security primitives can be encoded in λI . We
present here encodings for three primitives found in Java and
the CLR: doPrivileged, Assert, and doAs. They all
take a closure m encoded in Java and the CLR as an object
with a single run method. For readability, the examples are
not in A-normal form; A-normalization is straightforward.

Java’s doPrivileged prevents stack inspection from
traversing the rest of the stack; the caller of doPrivileged
is checked, but the code above it is not. In λI this is encoded
by adjusting the control dependencies using assert in.

doPrivileged(m) ≡ assert null in (m unit)

The CLR’s Assert stops stack inspection from looking
at the rest of the stack above the caller of Assert for
a given permission. If frames are just simple permissions,
then, assuming an equality test, this can be encoded by
selectively removing problematic frames.

Assert(p,m) ≡ let filter =
fix f l ⇒
let v = valueof l in
let r = frameof l in

if v = null then null
else if v = p then f r
else frame v with f r in

assert (filter getpc) in (m unit)

Java’s doAs takes a subject s and a closure m , and runs m
after adding the permissions of s to the permissions already
owned by m . Assuming that perms returns s’s permissions,
doAs in λI alters m’s frames appropriately.

doAs(s ,m) ≡ (frame m with perms(s)) unit

131

