
A Formal Proof of PAC Learnability
for Decision Stumps

Dedicated to Olivier Danvy on the occasion of his sixtieth birthday.

Joseph Tassarotti

tassarot@bc.edu
Boston College

USA

Koundinya Vajjha

kov5@pitt.edu
University of Pittsburgh

USA

Anindya Banerjee

anindya.banerjee@imdea.org
IMDEA Software Institute

Spain

Jean-Baptiste Tristan
∗

tristanj@bc.edu
Boston College

USA

Abstract
We present a formal proof in Lean of probably approximately

correct (PAC) learnability of the concept class of decision

stumps. This classic result inmachine learning theory derives

a bound on error probabilities for a simple type of classifier.

Though such a proof appears simple on paper, analytic and

measure-theoretic subtleties arise when carrying it out fully

formally. Our proof is structured so as to separate reasoning

about deterministic properties of a learning function from

proofs of measurability and analysis of probabilities.

CCS Concepts: • General and reference→ Verification;
• Theory of computation→ Sample complexity and gen-
eralization bounds.

Keywords: interactive theorem proving, probably approxi-

mately correct, decision stumps

ACM Reference Format:
Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, and Jean-

Baptiste Tristan. 2021. A Formal Proof of PAC Learnability for

Decision Stumps. In Proceedings of the 10th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs (CPP ’21), January
18–19, 2021, Virtual, Denmark. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3437992.3439917

∗
Corresponding author

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

CPP ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8299-1/21/01. . . $15.00

https://doi.org/10.1145/3437992.3439917

1 Introduction
Machine learning (ML) has achieved remarkable success in

a number of problem domains. However, the often opaque

nature of ML has led to concerns about its use in impor-

tant contexts such as medical diagnosis and fraud detection.

To address these concerns, researchers have developed a

number of algorithms with proved guarantees of robustness,

privacy, fairness, and accuracy.

One essential property for an ML algorithm is to gener-
alize well to unseen data. That is, after an algorithm has

been trained on some data, it should be possible to present

it with new data and expect it to classify or analyze it cor-

rectly. Valiant introduced the framework of Probably Ap-

proximately Correct (PAC) learnability [39], which gives a

mathematical characterization of what it means for an al-

gorithm to generalize well. This framework has become an

essential part of the study of computational and statistical

learning theory, and a large body of theoretical results has

been developed for proving that an algorithm generalizes.

However, at present, the vast majority of these and other

proofs in ML theory are pencil-and-paper arguments about

idealized versions of algorithms. There is considerable room

for error when real systems are built based on these algo-

rithms. Such errors can go unnoticed for long periods of time,

and are often difficult to diagnose with testing, given the

randomized behavior of ML systems. Moreover, the original

pencil-and-paper proofs of correctness may have errors. Be-

cause machine learning algorithms often involve randomized

sampling of continuous data, their formal analysis usually

requires measure-theoretic reasoning, which is technically

subtle.

Formal verification offers a way to eliminate bugs from

analyses of algorithms and close the gap between theory

and implementation. However, the mathematical subtleties

that complicate rigorous pencil-and-paper reasoning about

ML algorithms also pose a serious obstacle to verification.

In particular, while there has been great progress in recent

5

https://doi.org/10.1145/3437992.3439917
https://doi.org/10.1145/3437992.3439917

CPP ’21, January 18–19, 2021, Virtual, Denmark Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, and Jean-Baptiste Tristan

years in formal proofs about randomized programs, this work

has often been restricted to discrete probability theory. In

contrast, machine learning algorithms make heavy use of

both discrete and continuous data, a mixture that requires

measure-theoretic probability.

Thus, to even begin formally verifying ML algorithms

in a theorem prover, results from measure theory must be

formalized first. In recent years, some libraries of measure-

theoretic results have been developed in various theorem

provers [1, 20, 27, 36, 38]. However, it can be challenging to

tell which results needed for ML algorithms are missing from

these libraries. The difficulty is that, on the one hand, stan-

dard textbooks on the theoretical foundations of machine

learning [28, 29, 35] omit practically all measure-theoretic de-

tails. Meanwhile, research monographs that give completely

rigorous accounts [16] present results in maximal generality,

well beyond what appears to be needed for many ML appli-

cations. This generality comes at the cost of mathematical

prerequisites that go beyond even a first or second course in

measure theory.

This paper describes the formal verification in Lean [15]
of a standard result of theoretical machine learning which

illustrates the complexities of measure-theoretic probability.

We consider a simple type of classifier called a decision stump.
A decision stump classifies real-numbered values into two

groups with a simple rule: all values ≤ some threshold 𝑡 are

labeled 1, and those above 𝑡 are labeled 0. We show that

decision stumps are PAC learnable by proving a generaliza-
tion bound, which bounds the number of training examples

needed to obtain a chosen level of classification accuracy

with high probability.

We describe more precisely below how decision stumps

are trained and the bound that we have proved (Section 2).

Although decision stumps appear simple, they are worth

considering because they are the 1-dimensional version of a

classifying algorithm for axis-aligned rectangles that is used

as a motivating example in all of the standard textbooks in

this field [28, 29, 35].

In spite of the seeming simplicity of this example, all three

of the cited textbooks either give an incorrect proof of this

result or omit what we found to be the most technically

challenging part of the proof (Section 3). In noting this, we

do not wish to exaggerate the importance of these errors. The

proofs can be fixed, and in each book, the results are correctly

re-proven later as consequences of general theorems. Rather

our point is to emphasize that even basic results in this

area can touch on subtle issues, and errors can evade notice

despite much review and scrutiny by a wide audience. We

believe this further motivates the need for machine-checked

proofs of such results if they are to be deployed in high-

importance settings.

A key component of our work is that we structure our

formal proof in a manner that lets us separate the high-level

reasoning found in textbook descriptions from the low-level

details about measurability. We outline the structure used

to achieve this separation of concerns in Section 4. We then

describe some preliminaries about measure-theoretic proba-

bility in Section 5. The Giry monad [18] allows us to give a

precise description of the sources of randomness involved in

training and evaluating the performance of classifiers (Sec-

tion 6). We exploit this to split deterministic reasoning about

basic properties of the stump learning algorithm (Section 7)

from proofs of measurability (Section 8) and the analysis of

bounds on probabilities (Section 9).

The proof is publicly available at https://github.com/jtristan/
stump-learnable.

2 Decision Stumps and PAC Learnability
To motivate decision stumps and the result that we have for-

malized, consider the following scenario. Suppose a scientist

has developed a test to measure levels of some protein in

blood in order to diagnose a disease. Assume there is some

(unknown) threshold 𝑡 ∈ R such that if the protein level is

≤ 𝑡 , then the patient has the disease, and otherwise does not.

Given a random sample of patients whose disease status is

known, the scientist wants to estimate the threshold 𝑡 so that

the test can be used to screen and diagnose future patients

whose disease statuses are unknown.

In other words, the scientist wants to find a decision stump

to classify whether patients have the disease or not. We can

model the blood test as returning a nonnegative real number.

There is some distribution 𝜇 on the interval [0,∞) repre-
senting levels of the protein in the population. The scientist

has samples 𝑥1, . . . , 𝑥𝑛 ∈ [0,∞) independently drawn from

𝜇 giving the results of the test on a collection of 𝑛 patients,

along with labels 𝑦1, . . . , 𝑦𝑛 ∈ {0, 1} giving each patient’s

disease status. A label of 1 means a patient has the disease,

while 0means they do not, so that 𝑦𝑖 = 1 if and only if 𝑥𝑖 ≤ 𝑡 .

The (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛) are called training examples. The
scientist is trying to pick some value 𝑡 as an estimate of 𝑡

to use to classify future patients. In particular, she will use

her estimate to define a decision stump classifier. To state

this formally, we first define a function Label that assigns a

label to a point 𝑥 according to a threshold 𝑑 :

Label(𝑑, 𝑥) =
{
1 if 𝑥 ≤ 𝑑

0 if 𝑥 > 𝑑
(1)

The scientist will pick some threshold 𝑡 and then use the

classifier 𝜆𝑥. Label(𝑡, 𝑥) to label future patients.We call such

a classifier a hypothesis.
How should the scientist select 𝑡? One idea is to take 𝑡 to be

the maximum of the 𝑥𝑖 that have label 1. (If no 𝑥𝑖 has label 1,

she can take 𝑡 to be 0.) This estimate, at least, would correctly

label all of the training examples. This corresponds to the

following learning algorithm A, which returns a classifier

6

https://github.com/jtristan/stump-learnable
https://github.com/jtristan/stump-learnable

A Formal Proof of PAC Learnability for Decision Stumps CPP ’21, January 18–19, 2021, Virtual, Denmark

using this estimate:

A ([(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)])
= let 𝑡 = max{𝑥𝑖 | 𝑦𝑖 = 1} in
𝜆𝑥. Label(𝑡, 𝑥)

(2)

wheremax of the empty set is defined to be 0.
1
Of course, the

estimate 𝑡 used in the classifier returned by this algorithm is

not going to be exactly the value of 𝑡 , especially if the number

of training examples, 𝑛, is small. But if 𝑛 is large enough, we

might hope that a good estimate can be produced. The key

question then becomes, how many training examples should

the scientist use?

To answer this more precisely, we need to decide how to

evaluate the quality of the classifier returned by A. At first,

one might think that the goal should be to minimize |𝑡 − 𝑡 |,
that is, to get an estimate that is as close as possible to the

true threshold 𝑡 . While minimizing the distance between

𝑡 and 𝑡 is useful, our primary concern should be how well

we classify future examples. The Error of a classifier ℎ is

the probability that ℎ mislabels a test example 𝑥 randomly

sampled from 𝜇:

Error(ℎ) = Pr

𝑥∼𝜇
(ℎ(𝑥) ≠ Label(𝑡, 𝑥)) (3)

We write 𝑥 ∼ 𝜇 in the above to indicate that the random

variable 𝑥 has distribution 𝜇. This 𝑥 is independent of the

training examples used by the scientist. While the definition

of Error refers to this randomized scenario of drawing a

test sample, for a fixed hypothesis ℎ the quantity Error(ℎ)
is a real number.

Because the training examples the scientist uses are ran-

domly selected, the Error of the hypothesis she selects using

A is a random variable. In practice, the scientist does not

know either the distribution 𝜇 or the target 𝑡 , so she cannot

compute the exact Error of the classifier she obtains. Nev-

ertheless, she might want to try to ensure that the Error of

the classifier she defines using A will be below some small

𝜖 with high probability.

To talk about the Error of the selected hypothesis pre-

cisely, let us first introduce a helper function which takes

an unlabeled list of examples and returns a list where each

example has been paired with its true label:

LList([𝑥1, . . . , 𝑥𝑛])
= Map

(
𝜆𝑥 . (𝑥, Label(𝑡, 𝑥))

)
[𝑥1, . . . , 𝑥𝑛]

(4)

Then through her choice of 𝑛, the scientist can bound the

following probability:

Pr

(𝑥1,...,𝑥𝑛)∼𝜇𝑛
(
Error(A(LList([𝑥1, . . . , 𝑥𝑛]))) ≤ 𝜖

)
1
We call this function an algorithm here, following Shalev-Shwartz and

Ben-David [35], although the operations on real numbers involved are

non-computable.

where (𝑥1, . . . , 𝑥𝑛) ∼ 𝜇𝑛 indicates that the variables 𝑥𝑖 are

drawn independently from the same distribution 𝜇. The fol-

lowing theorem, which is the central result that we have

formalized, tells the scientist how to select 𝑛 to achieve a

desired bound on this probability:

Theorem 2.1. For all 𝜖 and 𝛿 in the open interval (0, 1), if
𝑛 ≥ ln(𝛿)

ln(1−𝜖) − 1 then

Pr

(𝑥1,...,𝑥𝑛)∼𝜇𝑛
(
Error(A(LList([𝑥1, . . . , 𝑥𝑛]))) ≤ 𝜖

)
≥ 1 − 𝛿

(5)

Before giving an informal sketch of how this theorem

is proved, we briefly describe how this result fits into the

framework of PAC learnability [39].

PAC Learnability. PAC learning theory gives an abstract

way to explain scenarios like the one with the scientist de-

scribed above. In this general set up, there is some set X of

possible examples and a set C of hypotheses ℎ : X → {0, 1},
which are possible classifiers we might select. The set C is

also called a concept class. In the case of decision stumps,

X = R≥0, and C = {𝜆𝑥 . Label(𝑑, 𝑥) | 𝑑 ∈ R≥0}.
As in the stump example, there is assumed to be some

unknown distribution 𝜇 over X. Additionally, there is some

function 𝑓 : X → {0, 1} that maps examples to their true

labels. The Error of a hypothesis is the probability that it

incorrectly labels an example drawn according to 𝜇. The

function 𝑓 is said to be realizable if there is some hypothesis

ℎ ∈ C that has error 0. The goal is to select a hypothesis

with minimal Error when given a collection of training

examples that have been labeled according to 𝑓 . A concept

class is said to be PAC learnable if there is some algorithm to

select a hypothesis for which we can compute the number

of training examples needed to achieve error bounds with

high probability as in the stump example:

Definition 2.2. A concept class C is PAC learnable if there

exists an algorithmA : List(X × {0, 1}) → C and a function

𝑔 : (0, 1)2 → N such that for all distributions 𝜇 on X and

realizable label functions 𝑓 , when A is run on a list of at

least 𝑔(𝜖, 𝛿) independently sampled examples from 𝜇 with

labels computed by 𝑓 , the returned hypothesis ℎ has error

≤ 𝜖 with probability ≥ 1 − 𝛿 .

By “there exists” in the above definition, one typically

conveys a constructive sense: one can exhibit the algorithm

and compute 𝑔.2 The function 𝑔 is a bound on the sample
complexity of the algorithm, telling us how many training

examples are needed to achieve a bound on the Error with

a given probability. There is a large body of theoretical re-

sults for showing that a concept class is PAC learnable and

for bounding the sample complexity by analyzing the VC-

dimension [41] of the concept class.

2
Some authors require further that the algorithmA has polynomial running

time, but we will not do so.

7

CPP ’21, January 18–19, 2021, Virtual, Denmark Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, and Jean-Baptiste Tristan

Theorem 2.1 states that the concept class of decision stumps

is PAC learnable. We next turn to how this theorem is proved.

3 Informal Proof of PAC Learnability
The PAC learnability of decision stumps follows from the

general VC-dimension theory alluded to above. However,

mechanizing that underlying theory in all its generality is

beyond the scope of this paper.

Instead this paper formalizes a more elementary proof,

based on a description from three textbooks [28, 29, 35]. The

proofs in the textbooks are for a slightly different result—

learning a 2-dimensional rectangle instead of a decision

stump—but the idea is essentially the same. We first sketch

how the proof is presented in two of the textbooks [28, 35].

As we shall see, this argument has a flaw.

Proof sketch of Theorem 2.1. Given 𝜇 and 𝜖 , consider labeled

samples (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛). Recall that the true threshold is

some unknown value 𝑡 , and the learning algorithm A here

returns a classifier that uses the maximum of the positively

labeled examples as the decision threshold 𝑡 .

We start by noting some deterministic properties about

this classifier. Observe thatA ensures 𝑡 ≤ 𝑡 , because all pos-

itively labeled training examples must be ≤ 𝑡 . Furthermore,

a test example 𝑥 is misclassified only if 𝑡 < 𝑥 ≤ 𝑡 . Thus the

only errors that the classifier selected by A can make is by

incorrectly assigning the label 0 to an example that should

have label 1.

With this in mind, the proof goes by cases on the prob-

ability that a randomly sampled example 𝑥 ∼ 𝜇 will have

true label 1. First assume Pr𝑥∼𝜇 (𝑥 ≤ 𝑡) ≤ 𝜖 . That is, this case

assumes that examples with true label 1 are rare. Then the

classifier returned by A must have Error that is ≤ 𝜖 . In

other words, if the returned classifier can only misclassify

examples whose true label is 1, and those are sufficiently

rare, i.e., have probability ≤ 𝜖 by the above assumption, then

the classifier has the desired error bound.

Next assume Pr𝑥∼𝜇 (𝑥 ≤ 𝑡) > 𝜖 . The idea for this case is

to find an interval I such that, so long as at least one of the

training examples 𝑥𝑖 falls into I, the classifier returned byA
will have error ≤ 𝜖 . Then we find a bound on the probability

that none of the 𝑥𝑖 fall into I.
In particular, set I = [𝜃, 𝑡], choosing 𝜃 so that

Pr

𝑥∼𝜇
(𝑥 ∈ I) = 𝜖

That is, we want I to enclose exactly probability 𝜖 under 𝜇.

Let 𝐸 be the event that at least one of the training examples

falls in I. If 𝐸 occurs, then the threshold 𝑡 selected byA is in

I. To see this, observe that if for some 𝑥𝑖 we have 𝜃 ≤ 𝑥𝑖 ≤ 𝑡 ,

then we know 𝑦𝑖 = 1, and hence 𝜃 ≤ 𝑥𝑖 ≤ 𝑡 ≤ 𝑡 .

In that case, for a test example 𝑥 to be misclassified, we

must have 𝑡 < 𝑥 ≤ 𝑡 , meaning 𝑥 must also lie in I. Thus, the
event of misclassifying 𝑥 is a subset of the event that 𝑥 lies in

I. Hence, if 𝐸 occurs, the probability of misclassifying 𝑥 is at

most the probability that 𝑥 lies in I. But the probability that

𝑥 lies in I is 𝜖 by the way we defined 𝜃 . Therefore if 𝐸 occurs,

the probability that a randomly selected example 𝑥 will be

misclassified is ≤ 𝜖 , meaning the Error of the classifier will

be ≤ 𝜖 .

So for the error to be above 𝜖 means that none of our

training examples 𝑥𝑖 came from I. For each 𝑖 , we have

Pr

(𝑥1,...,𝑥𝑛)
(𝑥𝑖 ∉ I) = 1 − 𝜖

Because each 𝑥𝑖 is sampled independently from 𝜇, the prob-

ability that none of the 𝑥𝑖 lie in I is (1 − 𝜖)𝑛 . Thus the

probability of 𝐸, the event that at least one 𝑥𝑖 is in I, is
1 − (1 − 𝜖)𝑛 . Since we have shown that if 𝐸 occurs, then the

Error is ≤ 𝜖 , this means that the probability that the Error

is ≤ 𝜖 is at least the probability of 𝐸. The rest of the proof

follows by choosing 𝑛 to ensure 1 − (1 − 𝜖)𝑛 ≥ 1 − 𝛿 . □

The careful reader may notice that there is one subtle step

in the above: how do we choose 𝜃 to ensure that “I encloses

exactly probability 𝜖 under 𝜇”? The phrasing “encloses ex-

actly” comes from Kearns and Vazirani [28] (page 4), which

does not say how to prove that 𝜃 exists, beyond giving some

geometric intuition in which we visualize shifting the left

edge of I until the enclosed amount has the specified proba-

bility. Shalev-Shwartz and Ben-David [35] similarly instructs

us to select 𝜃 so that the probability “is exactly” 𝜖 .3

Unfortunately, the argument is not correct, because such

a 𝜃 may not exist.
4
The following counterexample demon-

strates this.

Counterexample 3.1. Take 𝜇 to be the Bernoulli distribu-

tion which returns 1 with probability .5 and 0 otherwise. Let

𝑡 = .5, and 𝜖 = .25. Then for all 𝑎 we have:

Pr

𝑥∼𝜇
(𝑥 ∈ [𝑎, 𝑡]) =

{
.5 if 𝑎 ≤ 0

0 otherwise

(6)

so this means that no matter how we select 𝜃 , we cannot

have Pr𝑥∼𝜇 (𝑥 ∈ [𝜃, 𝑡]) = 𝜖 , so the desired 𝜃 does not exist.

The issue in the proof is that the distribution function 𝜇

has been assumed to be continuous, whereas in the above

counterexample 𝜇 is a discrete distribution. In particular, if

there is some point 𝑦 such that Pr𝑥∼𝜇 (𝑥 = 𝑦) > 0 then this

introduces a jump discontinuity in the distribution function.

However, the statement of PAC learnability says that the

error bound should be achievable for any distribution 𝜇. In

order to fix the proof to work for any 𝜇, we need to consider

3
The cited references address the more general problem of axis-aligned

rectangles instead of stumps, so more specifically they describe shifting the

edge of a rectangle until the enclosed probability is 𝜖/4.
4
We are not the first to observe this error. The errata for the first printing

of Mohri et al. [29] points out the issue in the proof of Kearns and Vazirani

[28].

8

A Formal Proof of PAC Learnability for Decision Stumps CPP ’21, January 18–19, 2021, Virtual, Denmark

the following revised definition of 𝜃 , which will ensure it

exists:

𝜃 = sup

{
𝑑 ∈ X | Pr

𝑥∼𝜇
(𝑥 ∈ [𝑑, 𝑡]) ≥ 𝜖

}
(7)

In this definition, the set (say 𝑆) over which we are taking the

supremum might be infinite. However, recall that we only

need to construct the point 𝜃 in the sub-case of the proof

where we assume that Pr𝑥∼𝜇 (𝑥 ≤ 𝑡) > 𝜖 . This assumption

implies that the supremum exists, because it means that 𝑆

is nonempty, and furthermore we know that 𝑆 is bounded

above by 𝑡 . The existence of the supremum then follows from

the fact that the real numbers are Dedekind complete.

The idea behind this definition of 𝜃 is that, if the distribu-

tion function is continuous, then the definition picks a 𝜃 that

has the property required in the erroneous proof. Instead if

there is a discontinuity that causes a jump in the distribution

function past the value 𝜖 , then the definition selects the point

at that discontinuity. In particular, we can show that with

this definition

Pr

𝑥∼𝜇
(𝑥 ∈ [𝜃, 𝑡]) ≥ 𝜖 (8)

and also that

Pr

𝑥∼𝜇
(𝑥 ∈ (𝜃, 𝑡]) ≤ 𝜖 (9)

Note in Equation 8 we have the closed interval [𝜃, 𝑡], while
Equation 9 is about the half-open interval (𝜃, 𝑡]. This means

that if Pr𝑥∼𝜇 (𝑥 = 𝜃) = 0, as we would have in a continuous

probability distribution, then Pr𝑥∼𝜇 (𝑥 ∈ [𝜃, 𝑡]) = 𝜖 . Whereas

if Pr𝑥∼𝜇 (𝑥 = 𝜃) ≠ 0, as can occur in a discrete distribution,

the probabilities of lying in [𝜃, 𝑡] and (𝜃, 𝑡] will differ. For
example, for the discrete distribution in Counterexample 3.1,

the definition of 𝜃 in Equation 7 would yield 𝜃 = 0. Observe

that Pr𝑥∼𝜇 (𝑥 = 0) = .5 ≠ 0 while Pr𝑥∼𝜇 (𝑥 = 𝑣) = 0 for any

𝑣 ∈ (0, 1).
The original proof of PAC learnability of the class of rect-

angles [13] did give a correct definition of 𝜃 , as does the

textbook by Mohri et al. [29], although neither gives a proof

for why the point defined this way has the desired properties.

Indeed, Mohri et al. say that it is “not hard to see” that these

properties hold.

In fact, this turned out to be the most difficult part of the

whole proof to formalize. While it only requires some basic

results in measure theory and topology, it is nevertheless

the most technical step of the argument. There were two

other parts of the proof that seemed obvious on paper but

turned out to be much more technically challenging than

expected, having to do with showing that various functions

are measurable. Often, details about measurability are elided

in pencil-and-paper proofs. This is understandable because

these measurability concerns can be tedious and trivial, and

checking that everything is measurable can clutter an other-

wise insightful proof. However, many important results in

statistical learning theory do not hold without certain mea-

surability assumptions, as discussed by Blumer et al. [13]

and Dudley [16, chapter 5].

Now that we have seen some intuition for this result and

some of the pitfalls in proving it, we describe the structure

of our formal proof and how it addresses these challenges.

4 Structure of Formal Proof
When we examine the informal proof sketched above, we

can see that there are several distinct aspects of reasoning.

Instead of intermingling these reasoning steps as in the proof

sketch, we structure our formal proof to separate these com-

ponents. As we will see, this decomposition is enabled by

features of Lean. We believe that this proof structure ap-

plies more generally to other proofs of PAC learnability and

related results in ML theory.

Specifically, we identify the following four components.

We describe each briefly in the paragraphs below. The re-

maining sections of the paper then elaborate on each of these

parts of the formal proof, after giving some background on

measure theory in Section 5.

Specifying sources of randomness: As we saw in Sec-

tion 2, there are two randomized scenarios under consid-

eration in the statement of Theorem 2.1. First, there is the

randomized choice of the training examples that are given

as input to A. These are sampled independently and from

the same distribution 𝜇. This first source of randomness is

explicit since it appears in the statement of the probability

appearing in Equation 5. The second kind of randomization

is in the definition of Error. Recall that we defined Error

in Equation 3 as the probability that an example randomly

sampled from 𝜇 would be misclassified. This random sam-

pling is entirely separate from the sampling of the training

examples, although both samplings utilize the same 𝜇.

Finally, the theorem statement is quantifying over the

distribution 𝜇. As we saw in the counterexample to the in-

formal proof, inadvertently considering only certain classes

of distributions (such as continuous ones) leads to erroneous

arguments.

All of these details must be represented formally in the

theorem prover. To handle these issues, we make use of the

Giry monad [18] which allows us to represent sampling from

distributions as monadic computations. Section 6 explains

how this provides a convenient way to model the training

and testing of a learning algorithm in order to formally state

Theorem 2.1.

Deterministic properties of the algorithm: In the be-

ginning of the proof sketch of Theorem 2.1 we started by

noting certain deterministic properties of the learning algo-
rithm A, such as the fact that the threshold value 𝑡 in the

classifier returned byA must be ≤ the true unknown thresh-

old 𝑡 . These deterministic properties were the only details

9

CPP ’21, January 18–19, 2021, Virtual, Denmark Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, and Jean-Baptiste Tristan

about A upon which we relied when later establishing the

Error bound. This means that an analogue of Theorem 2.1

will hold for any other stump learning algorithm with those

properties.

As we will see, the Giry monad enables us to encodeA as

a purely functional Lean term that selects the maximum of

the positively labeled training examples. This means we can

prove these preliminary deterministic properties in the usual

way one reasons about pure functions in Lean. The Lean
statements of these deterministic properties are described in

Section 7.

Measurability of maps and events: One detail missing

from the informal proof was any consideration ofmeasurabil-
ity of functions and events. In measure-theoretic probability,

probability spaces are equipped with a collection of measur-
able sets. We can only speak of the probability of an event

if we show that the set corresponding to the event is mea-
surable, meaning that it belongs to this collection. Similarly,

random variables, such as the learning algorithm A itself,

must be measurable functions.
While these facts are necessary for a rigorous proof, they

risk cluttering a formal proof and obscuring all of the in-

tuition that the informal proof gave. However, with Lean’s
typeclass mechanism and other proof automation, we can

mostly separate the parts of the proof concerningmeasurabil-

ity from the rest of the argument, as we describe in Section 8.

Quantitative reasoning about probabilities: The last
step of the proof involves constructing the point 𝜃 described

above and showing bounds on the probability that a sampled

example lies in the interval [𝜃, 𝑡]. Other than correcting the

issue involved in the definition of 𝜃 , this stage of reasoning

is similar to the proof style found in informal accounts of

this result. Our goal is that this portion of the proof should

resemble the kind of probabilistic reasoning that is familiar

to experts in ML theory. This portion of the argument, and

the final proof of Theorem 2.1 are described in Section 9.

5 Preliminaries
In this sectionwe describe some basic background onmeasure-

theoretic probability and how measure theory has been for-

malized in Lean as part of the mathlib library [38].

Measure theory. The starting point for probability theory
is a set Ω called a sample space. Elements of Ω are called

outcomes, and represent possible results of some randomized

situation. For example, if the randomized situation is the roll

of a six-sided die, we would have Ω = {1, 2, 3, 4, 5, 6}. In
naive probability theory, subsets of Ω are called events, and

a probability function 𝑃 on Ω is a function mapping events

to real numbers in the interval [0, 1], satisfying some axioms.

While this naive approach works so long as Ω is a finite

or countable set, attempting to assign probabilities to all

subsets of Ω runs into technical difficulties when Ω is an

uncountable set such as R.
Measure-theoretic probability theory resolves this issue

by only assigning probabilities to a collection F of subsets

of Ω. The elements of F are called measurable sets. This
collection F must be a sigma-algebra, which means that it

must be closed under certain operations (e.g. taking count-

able unions). We call the pair (Ω, F) a measurable space. A
probability measure 𝜇 is then a function of type F → [0, 1]
satisfying the following axioms:

• 𝜇 (∅) = 0

• 𝜇 (Ω) = 1

• If 𝐴1, 𝐴2, . . . is a countable collection of measurable

sets such that 𝐴𝑖 ∩𝐴 𝑗 = ∅ for 𝑖 ≠ 𝑗 , then

𝜇

(∞⋃
𝑖=1

𝐴𝑖

)
=

∞∑
𝑖=1

𝜇 (𝐴𝑖)

For the reader familiar with topology, the notion of a

measurable space is analogous to the situation in topology,

where a topological space is a pair (𝑋,V) where 𝑋 is a set

and V is a collection of subsets of 𝑋 called the open sets,

andV must be closed under various set operations. Indeed,

for every topological space there is a minimal sigma-algebra

containing all open sets, which is called the Borel sigma-
algebra. We use the Borel sigma-algebra on the real numbers

throughout the following.

A function 𝑓 : (Ω1, F1) → (Ω2, F2) between two mea-

surable spaces is said to be a measurable function if, for all

𝐴 ∈ F2, we have 𝑓 −1 (𝐴) ∈ F1. Again, there is an analogy

to topology, where a function between topological spaces is

continuous if inverse images of open sets are open. In fact, if

𝑓 is a continuous function between two topological spaces,

then 𝑓 is measurable when those spaces are equipped with

their Borel sigma-algebras. Continuity implies that many

standard arithmetic operations on the reals are measurable.

Other examples which are measurable but not continuous

include functions for testing whether a real number is =, ≤
or ≥ to some value.

The general measure theory in mathlib allows the mea-

sures of events to be greater than 1. To obtain just probability

measures, we restrict these general definitions to require that

if 𝜇 is a probability measure on𝑋 , then 𝜇 (𝑋) = 1. In Section 2

we subscripted the Pr notation to indicate the distributions

that we were considering. In the context of a theorem prover,

which obliges us to be precise in this manner, we forgo the Pr

notation altogether. Instead, for the probability of an event

𝐸 with respect to some measure 𝜇, we simply write 𝜇 (𝐸).
Above we have used the traditional mathematical notation

of writing 𝑓 (𝑥) for the application of a function 𝑓 to an

argument 𝑥 . However, to more closely match notation in

Lean, the sequel uses 𝑓 𝑥 when referring to definitions from

our Lean development.

10

A Formal Proof of PAC Learnability for Decision Stumps CPP ’21, January 18–19, 2021, Virtual, Denmark

Typeclasses. In mathematical writing, we often associate

a particular mathematical structure, such as a topology or

sigma-algebra with a given set, with the convention that

the structure should be used throughout. For example, when

talking about continuous functions from R→ R, we do not

constantly clarify that we mean continuous functions with

respect to the topology generated by the Euclidean metric

on R.
This style of mathematical writing can be mimicked with

Lean’s typeclasses. After defining a typeclass, the user can
declare instances of that typeclass, which associate a default

structure with a given type. This mechanism is used through-

out mathlib to supply default topologies, ring structures,

and so on with particular types.

For example, the commands below first introduce the no-

tation H to refer to the type nnreal of nonnegative real

numbers from mathlib. We will use this notation when re-

ferring to the type of training examples and thresholds used

for classification. After declaring this notation, an instance

of measurable_space is defined on this type:

notation `H` := nnreal
instance meas_H: measurable_space H := ...

where we have omitted the definition after the := sign. After
this instance is declared, any time we refer to H in a context

where we need a sigma-algebra, this instance will be used.

The mathlib library comes with lemmas to automatically

derive instances of measurable_space from other instances.

For example, if a type has been associated with a topology,

we can automatically derive the Borel sigma-algebra as an in-

stance of measurable_space for that type. We use this Borel

sigma-algebra on H above. Similarly, we can derive a prod-

uct sigma-algebra on the product A × B of two types from
existing instances for A and B, as in the following example:

instance meas_lbl: measurable_space (H × bool)

Measurable spaces for stump training. At this point,
considerations about the sigma-algebras with which a type

is equipped introduce the first discrepancy between the in-

formal set-up in Section 2 and our formalization. As we

described there, it is common to treat the learning algorithm

as if it returned a function of typeH→ {0, 1}, mapping exam-

ples to labels. Since one wants to speak about probabilities

involving these classifiers, this means the type of classifiers

must be equipped with a sigma-algebra. What sigma-algebra

should be chosen? While there are canonical choices for

types that have a topology (the Borel sigma-algebra) and for

various operations on spaces such as products, there is no

such standard choice for function types. In particular, the

category of measurable spaces is not Cartesian closed [4].

Hence, there is no generic sigma-algebra on function types

that would also make evaluation measurable. The textbook

by Shalev-Shwartz and Ben-David points out that the PAC

learnability framework requires the existence of a sigma-

algebra on the class of hypotheses that makes classification

measurable [35, Remark 3.1], but the construction of this

sigma-algebra is not typically explained in examples.

Fortunately, the subset of decision stump classifiers has a

simpler structure than the type of all functions from H→
{0, 1}. In particular, the behavior of a decision stump classi-

fier is entirely determined by the threshold used as a cut-off

when assigning labels. These thresholds have type H, which
is equipped with the Borel sigma-algebra. In particular, given

a threshold 𝑡 , the function 𝜆𝑥. Label(𝑡, 𝑥) is measurable, and

this is the evaluation function for a decision stump classifier.

Thus, as we will see in the next section, we formalize the

learning algorithm A such that it directly returns a thresh-

old instead of a classifier. Similarly we adjust the definitions

of Error (and associated functions) to take a threshold as

input instead of a classifier.

A similar concern arises with how we represent the collec-

tion of training examples passed to the learning algorithmA.

In the earlier informal presentation,A takes a list of labeled

examples as input. However, the construction of a sigma-

algebra on variable-length lists is not commonly discussed in

measure theory texts. We therefore work with dependently

typed vectors of a specified length. Given a type A and nat-

ural n, the type vec A n represents vectors of size n+1 of

values of type A. When A is a topological space, vec A n can
be given the (n + 1)-ary product topology, and we can then

make it into a measurable space by equipping it with the

Borel sigma-algebra.

6 Specifying Randomized Processes with
the Giry Monad

Now that we have described some of the preliminaries of

measure-theoretic probability, we turn to the question of how

to formally represent the learning algorithm in the theorem

prover.

In traditional probability theory, it is common to fix some

sample space Ω and then work with a collection of random
variables on this sample space. If𝑉 is a measurable space, a𝑉 -

valued randomvariable is ameasurable function of typeΩ →
𝑉 . One can think of the elements of the sample space Ω as

some underlying source of randomness, and then the random

variables encode how that randomness is transformed into

an observable value. For example, Ω could be a sequence

of random coin flips, and a random variable 𝑓 might be a

randomized algorithm that uses those coin flips.

In fact, at a certain point most treatments of probability

theory start to leave the sample space Ω completely abstract.

One simply postulates the existence of some Ω on which

a collection of random variables with various distributions

are said to exist. To ensure that the resulting theory is not

vacuous, a theorem is proven to show that there exists an Ω

11

CPP ’21, January 18–19, 2021, Virtual, Denmark Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, and Jean-Baptiste Tristan

and a measure 𝜇 on Ω for which a suitably rich collection of

random variables can be constructed.

While this pencil-and-paper approach could be used in

formalization, it is inconvenient in several ways. First, while

random variables are formally functions on the sample space,

in practice we often treat them as if they were elements of

their codomain. For example if 𝑋 and 𝑌 are two real-valued

random variables, then one writes𝑋 +𝑌 to mean the random

variable 𝜆𝜔. 𝑋 (𝜔) + 𝑌 (𝜔). Similarly, if 𝑓 : R→ R, we write
𝑓 (𝑋) for the random variable (𝜆𝜔. 𝑓 (𝑋 (𝜔)). While this kind

of convention is well understood on paper, trying to overload

notations in a theorem prover to support it seems difficult.

The Giry monad [18] solves this problem by providing a

syntactic sugar to describe stochastic procedures concisely.

6.1 Definition of the Giry Monad
The Giry monad is a triple (Meas(.), bind, ret). For any mea-

surable space 𝑋 , Meas(𝑋) is the space of probability mea-

sures over 𝑋 , that is, functions from measurable subsets of

𝑋 to [0, 1] that satisfy the additional axioms of probability

measures. The function bind is of type Meas(𝑋) → (𝑋 →
Meas(𝑌)) → Meas(𝑌). That is, it takes a probability measure

on 𝑋 , a function that transforms values from 𝑋 into proba-

bility measures over 𝑌 , and returns a probability measure on

𝑌 . The return function ret is of type 𝑋 → Meas(𝑋). It takes
a value from 𝑋 and returns a probability measure on 𝑋 . The

mathlib library defines this monad for general measures,

which we then restrict to probability measures.

Functions bind and ret construct probability measures,

so their definitions say what probability they assign to an

event. Letting 𝐴 be an event we define:

bind 𝜇 𝑓 𝐴 =

∫
𝑥 ∈𝑋

𝑓 (𝑥) (𝐴)𝑑𝜇 (10)

ret 𝑥 𝐴 =

{
1 if 𝑥 ∈ 𝐴
0 otherwise

(11)

While we give the definitions here using standard mathemat-

ical notation, the formalization in mathlib uses the Lean
definition of the integral. Here, ret(𝑥) is the distribution

that always returns 𝑥 with probability 1. The definition of

bind 𝜇 𝑓 corresponds to first sampling from 𝜇 to obtain some

value 𝑥 , and then continuing with the probability measure

𝑓 (𝑥). Then, bind and ret satisfy the usual monad laws

bind (ret 𝑥) 𝑓 = ret(𝑓 𝑥) (12)

bind 𝜇 (𝜆𝑥. ret 𝑥) = 𝜇 (13)

bind (bind 𝜇 𝑓) 𝑔 = bind 𝜇 (𝜆𝑥.bind (𝑓 𝑥) 𝑔) (14)

However, these laws only hold when 𝑓 and 𝑔 are measurable

functions. We will use the usual do-notation, writing do 𝑥 ←
𝜇 ; 𝑔(𝑥) for bind 𝜇 𝑔.

As with any monad, we can define a function map which
lifts a function 𝑓 : 𝐴→ 𝐵, to a function of type Meas(𝐴) →
Meas(𝐵). Given 𝜇 : Meas(𝐴), we interpret map 𝑓 𝜇 as the

probability distribution that first samples from 𝜇 to obtain a

value of type 𝐴, and then applies 𝑓 to it. Concretely, this is

defined in terms of bind and ret as:

map 𝑓 𝜇 = do 𝑥 ← 𝜇 ; ret (𝑓 𝑥) (15)

As an example, we show how to construct a distribution

that samples 𝑛 independent times from a distribution 𝜇 and

returns the result as a tuple. That is, we formally define

the 𝜇𝑛 distribution that we used in Section 2. Let (𝑋, F) be
a measurable space and (𝑋𝑛, F 𝑛) be the measurable space

where 𝑋𝑛
is the cartesian product of 𝑋 (𝑛 times) and F 𝑛

is

the product of F (𝑛 times). Let 𝜇 be a probability measure on

(𝑋, F). Then, we define the measure 𝜇𝑛 recursively on 𝑛 as

𝜇1 = 𝜇 (16)

𝜇𝑛 = do 𝑣 ← 𝜇𝑛−1 ; do 𝑠 ← 𝜇 ; ret(𝑠, 𝑣) (17)

Instead of nested tuples, as in the above, or lists of training

examples, as we did in Section 2, we will use dependently

typed vectors in Lean. The following term (definition omit-

ted) gives the probability measure corresponding to taking

n+1 independent samples from a distribution and assembling

them in a vector:

def vec.prob_measure
(n : N) (𝜇 : probability_measure A)
: probability_measure (vec A n) := ...

6.2 Modeling Stump Training and Testing
Let us now see how the decision stump training and testing

procedures can be described using the Giry monad. Lean has
a sectioning mechanism and a way to declare local variables.

In our formalization, the lines below declare probability mea-

sures over the class of examples, and an arbitrary target

threshold value for labeling samples:

variables (𝜇: probability_measure H) (target: H)

When we write definitions that use these variables, Lean
will interpret the definition to treat these variables as if they

were additional parameters on which the function depends.
5

The following pure function labels a sample according to

the target.

def label (target: H): H → H × bool :=
𝜆 x: H, (x,rle x target)

where rle x target returns true if x ≤ target and false

otherwise.

Finally, we can define the event that an example is mis-

classified, and the Error function:

def error_set (h: H) :=
{x: H | label h x ≠ label target x}

def error := 𝜆 h, 𝜇 (error_set h target)

5
This is different from the behavior in Coq, where a definition that depends

on section variables is only generalized to take additional arguments outside
the section where the variables are declared.

12

A Formal Proof of PAC Learnability for Decision Stumps CPP ’21, January 18–19, 2021, Virtual, Denmark

The learning functionA will take a vector of labeled exam-

ples as input and output a hypothesis. The function vec_map
takes a function as an argument and applies it pointwise to

the elements of the vector. We use this to label the inputs to

the learning function:

def label_sample := vec_map (label target)

Our learning algorithm starts by transforming any nega-

tive example to 0 and then stripping off the labels, with the

following function:

def filter :=
vec_map (𝜆 p, if p.snd then p.fst else 0)

This is safe since, if there were no positive examples, the

learning algorithm should return 0 as we described in Sec-

tion 2. Finally, we can define the learning functionA that we

will use. We call this function choose in the formalization. It

selects the largest example after the above filtering process:

def choose (n: N):vec (H × bool) n → H :=
𝜆 data: (vec (H × bool) n), max n (filter n data)

We then use the Giry monad to describe the measure on

classifiers that results from running the algorithm:

def denot: probability_measure H :=
let 𝜂 := vec.prob_measure n 𝜇 in
let 𝜈 := map (label_sample target n) 𝜂 in
let 𝛾 := map (choose n) 𝜈 in
𝛾

Note that map here is the monadic map operation defined in

Equation 15, not vec_map. Thus, 𝜂 is a distribution on train-

ing examples which is then transformed to 𝜈 , a distribution

on labeled training examples. Then 𝜈 is transformed into a

distribution 𝛾 on thresholds by lifting choose.
Finally, we have the following formal version of Theo-

rem 2.1:

theorem choose_PAC:
∀ 𝜖: nnreal, ∀ 𝛿: nnreal, ∀ n: N,
𝜖 > 0 → 𝜖 < 1 → 𝛿 > 0 → 𝛿 < 1 →
n > (complexity 𝜖 𝛿) →
(denot 𝜇 target n) {h: H | error 𝜇 target h ≤ 𝜖}
≥ 1 - 𝛿

where complexity is the following function:

def complexity (𝜖: R) (𝛿: R) : R :=
(log(𝛿) / log(1 - 𝜖)) - (1: nat)

The following sections outline how we prove this theorem

in Lean.

7 Deterministic Reasoning
The overall proof builds on two simple assumptions thatmust

be satisfied by the learning algorithm. First, the algorithm

must return an estimate that is ≤ target. Formally,

lemma choose_property_1:
∀ n: N, ∀ S: vec H n,
choose n (label_sample target n S) ≤ target

Our implementation satisfies this property since after the

filter step in choose, all of the examples will have been

mapped to a value ≤ target, and we then select the maxi-

mum value from the vector.

Second, the algorithm must return an estimate that is

greater or equal to any positive example. This is because the

proof uses the assumption that no examples lie in the region

between the estimate and the target. Formally,

lemma choose_property_2:
∀ n: N, ∀ S: vec H n,
∀ i,
∀ p = kth_projn (label_sample target n S) i,
p.snd = tt →
p.fst ≤ choose n (label_sample target n S)

where kth_projn l i is an expression giving component i
of the vector l. Our implementation satisfies this property

because choose calls filter which leaves positive exam-

ples unchanged, and then we select the maximum from the

filtered vector.

These proofs are trivial and account for only a very small

fraction of the overall proof. Yet, these are the two specific

properties of the algorithm that we need.

8 Measurability Considerations
About a quarter of the formalization consists in proving that

various sets and functions are measurable. The predicate

is_measurable S states that the set S is a measurable set,

while measurable f states that the function f is measurable.

These proofs can be long but are generally routine, with a

few notable exceptions.

We will need to divide up the sample space into various

intervals. If 𝑎 and 𝑏 are two reals, then we write Ioo a b, Ioc
a b, Ico a b, Icc a b in Lean to refer to the intervals (𝑎, 𝑏),
(𝑎, 𝑏], [𝑎, 𝑏), and [𝑎, 𝑏], respectively. To start, we observe

that the error of a hypothesis is the measure of the interval

between it and the target.

lemma error_interval_1:
∀ h, h ≤ target →
error 𝜇 target h = 𝜇 (Ioc h target)

lemma error_interval_2:
∀ h, h > target →
error 𝜇 target h = 𝜇 (Ioc target h)

We next use these lemmas to prove that the function that

computes the Error of a hypothesis is measurable:

lemma error_measurable:
measurable (error 𝜇 target)

Proof. First, note that if𝐴 and 𝐵 are measurable subsets such

that 𝐴 ⊆ 𝐵, then 𝜇 (𝐵 \𝐴) = 𝜇 𝐵 − 𝜇 𝐴. If ℎ ≤ target, then

error 𝜇 target h = 𝜇 (ℎ, target]
= 𝜇 [0, target] − 𝜇 [0, ℎ]

13

CPP ’21, January 18–19, 2021, Virtual, Denmark Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, and Jean-Baptiste Tristan

Likewise, if ℎ > target then error 𝜇 target h = 𝜇 [0, ℎ] −
𝜇 [0, target]. Subtraction is measurable and testing whether

a value is ≤ target is measurable. Therefore, since measur-

ability is closed under composition, it suffices to show that

the function 𝜆𝑥.𝜇 [0, 𝑥] is Borel measurable. Because this

function is monotone, its measurability is a standard result,

though this fact was missing from mathlib. □

Next, one must show that the learning algorithm choose
is measurable, after fixing the number of input examples:

lemma choose_measurable: measurable (choose n)

Proof. To prove that choose is a measurable function, we

must prove that max is a measurable function. Because max
is continuous, it is Borel measurable. □

Although the previous proof is straightforward, it hinges

on the fact that the sigma-algebra structure we associate with

vec H n is the Borel sigma-algebra. But, because we define a

vector as an iterated product, another possible sigma-algebra

structure for vec H n is the n+1-ary product sigma-algebra.

Recall from the previous section that our development uses

Lean’s typeclass mechanism to automatically associate prod-

uct sigma-algebras with product spaces, and Borel sigma-

algebras with topological spaces. As the preceding paragraph

explains, for vec H n there are two possible choices. Which

choice should be used? In programming languages with type-

classes, the problem of having to select between two poten-

tially different instances of a typeclass is called a coherence
problem [31]. Because of this ambiguity, mathlib is careful to
only enable certain instances by default. Of course, this same

potential ambiguity arises in normal mathematical writing,

when we omit mentioning the associated sigma-algebra.

Fortunately, in the case of vec H n, these two sigma-

algebras happen to be the same. In general, if 𝑋 and 𝑌 are

topological spaces with a countable basis, then the Borel

sigma-algebra on 𝑋 × 𝑌 is equal to the product of the Borel

sigma-algebras on 𝑋 and 𝑌 . The standard topology on the

nonnegative reals has a countable basis, so the equivalence

holds. Thus, although the proof of measurability formax can

be simple, it uses a subtle fact that resolves the ambiguity

involved in referring to sets without constantly mentioning

their sigma-algebras.

9 Probabilistic Reasoning
The remainder of the proof involves the construction of the

point 𝜃 and explicitly bounding the probability of various

events.

Recall from the informal sketch in Section 3 that we first

case split on whether Pr𝑥∼𝜇 (𝑥 ≤ target) ≤ 𝜖 or not. In the

language of measures, this is equivalent to a case split on

whether 𝜇 [0, target] ≤ 𝜖 . In the formalization, it simplifies

slightly the application of certain lemmas if we instead split

on whether 𝜇 (0, target] ≤ 𝜖 . The following lemma is the

key property in the case where the weight between 0 and

target is ≤ 𝜖 . In that case, the learning algorithm always

chooses a hypothesis with error at most 𝜖 .

lemma always_succeed:
∀ 𝜖: nnreal, 𝜖 > 0 → ∀ n: N,
𝜇 (Ioc 0 target) ≤ 𝜖 →
∀ S: vec H n,
error 𝜇 target

(choose n (label_sample target n S))
≤ 𝜖

Proof. By error_interval_1, we know that the error is go-

ing to be equal to the measure of the interval

(Ioc (choose n (label_sample target n S)) target)

Because we know choose must return a threshold between

0 and target, this interval is a subset of (Ioc 0 target).
Since measures are monotone, this means the measure of

that interval must be ≤ 𝜇 (Ioc 0 target), which is ≤ 𝜖 by

assumption. □

For the case where 𝜇 (0, target] > 𝜖 , the informal sketch

selected a point 𝜃 such that 𝜇 [𝜃, target] = 𝜖 . However,

as we saw in Counterexample 3.1, such a 𝜃 may not exist

when 𝜇 is not continuous. Instead, we construct 𝜃 so that

𝜇 [𝜃, target] ≥ 𝜖 , and 𝜇 (𝜃, target] ≤ 𝜖 . The following

theorem states the existence of such a point:

theorem extend_to_epsilon_1:
∀ 𝜖: nnreal, 𝜖 > 0 →
𝜇 (Ioc 0 target) > 𝜖 →
∃ 𝜃: nnreal, 𝜇 (Icc 𝜃 target) ≥ 𝜖 ∧

𝜇 (Ioc 𝜃 target) ≤ 𝜖

Proof. We take 𝜃 to be sup{𝑥 ∈ X | 𝜇 [𝑥, target] ≥ 𝜖}.
The supremum exists because the set in question is bounded

above by target, and the set is nonempty because it must

contain 0 by our assumption that 𝜇 (0, target] > 𝜖 . To see

that 𝜇 [𝜃, target] ≥ 𝜖 , we can construct an increasing se-

quence of points 𝑥𝑛 ≤ 𝜃 such that lim𝑛→∞ 𝑥𝑛 = 𝜃 , where for

each 𝑛, 𝜇 [𝑥𝑛, target] ≥ 𝜖 . We have then that:⋂
𝑖

[𝑥𝑖 , target] = [𝜃, target]

We use this in conjunction with the fact that measures are

continuous from above, meaning that if 𝐴1, 𝐴2, . . . is a se-

quence of measurable sets such that 𝐴𝑖+1 ⊆ 𝐴𝑖 for all 𝑖 , then

𝜇

(∞⋂
𝑖=1

𝐴𝑖

)
= lim

𝑖→∞
𝜇 𝐴𝑖

Hence we have

𝜇 [𝜃, target] = 𝜇

(∞⋂
𝑖=1

[𝑥𝑖 , target]
)

= lim

𝑛→∞
𝜇 [𝑥𝑛, target]

≥ 𝜖

14

A Formal Proof of PAC Learnability for Decision Stumps CPP ’21, January 18–19, 2021, Virtual, Denmark

The proof that 𝜇 (𝜃, target] ≤ 𝜖 is the dual argument, using

continuity from below. □

The conclusion of this theorem states two inequalities

involving 𝜃 . On the one hand, we need 𝜃 to be small enough

that we can ensure at least one training example will lie

between 𝜃 and target. On the other hand, we want 𝜃 to be

large enough that if we only misclassify test examples that
lie between 𝜃 and target, the error will nevertheless be at
most 𝜖 .

The next two lemmas formalize these properties. Recall

that choose maps all negative training examples to 0, leaves

positive examples unchanged, and then takes the maximum

of the resulting vector. The next lemma says that given a

point 𝜃 such that 𝜇 [𝜃, target] ≥ 𝜖 , the measure of the event

that an example gets mapped to something less than 𝜃 is at

most 1 − 𝜖 .
lemma miss_prob:
∀ 𝜖, ∀ 𝜃: nnreal, 𝜃 > 0 →
𝜇 (Icc 𝜃 target) ≥ 𝜖 →
𝜇 {x : H | ∀ a b,

(a,b) = label target x →
(if b then a else 0) < 𝜃} ≤ 1 - 𝜖

The next lemma shows why the property 𝜇 (𝜃, target] ≤
𝜖 is useful. In particular, it says that for such a 𝜃 , in order to

have an error > 𝜖 on the hypothesis selected by choose, all
training examples must get mapped to something less than

𝜃 . Formally, we say that the set of training samples which

would lead to an error greater than 𝜖 , is a subset of those in

which all the examples get mapped to a value less than 𝜃 .

lemma all_missed:
∀ 𝜖: nnreal,
∀ 𝜃: nnreal,
𝜇 (Ioc 𝜃 target) ≤ 𝜖 →
{S | error 𝜇 target

(choose n (label_sample target n S))
> 𝜖} ⊆

{S | ∀ i,
∀ p = label target (kth_projn S i),
(if p.snd then p.fst else 0) < 𝜃}

Finally, we prove a bound related to the complexity func-
tion, which computes the number of training examples needed:

lemma complexity_enough:
∀ 𝜖: nnreal, ∀ 𝛿: nnreal, ∀ n: N,
𝜖 > (0: nnreal) → 𝜖 < (1: nnreal) →
𝛿 > (0: nnreal) → 𝛿 < (1: nnreal) →

(n: R) > (complexity 𝜖 𝛿) → ((1 - 𝜖)^(n+1)) ≤ 𝛿

Combining these lemmas together, we can finish the proof:

Proof of choose_PAC. We have seen that always_succeed
handles the case 𝜇 (0, target] ≤ 𝜖 . For the other case, where

𝜇 (0, target] > 𝜖 , we can apply extend_to_epsilon_1 to

get a 𝜃 with the specified properties. By all_missed we

know that the event that the hypothesis selected has error

> 𝜖 is a subset of the event where all the training examples

get mapped to < 𝜃 . Then, by miss_prob we know the prob-

ability that a given example gets mapped to < 𝜃 is ≤ 1 − 𝜖 .
Because the training examples are selected independently,

the probability that all 𝑛 + 1 examples get mapped to a value

< 𝜃 is at most (1−𝜖)𝑛+1. Applying complexity_enough, we
have that (1 − 𝜖)𝑛+1 ≤ 𝛿 , so we are done. □

10 Related Work
Classic results about the average case behavior of quicksort

and binary search trees have been formalized by a number of

authors using different proof assistants [17, 37, 40]. In each

case, the authors write down the algorithm to be analyzed

using a variant of the monadic style we discuss in Section 6.

Gopinathan and Sergey [19] verify the error rate of Bloom

Filters and variants. Affeldt et al. [2] formalize results from

information theory about lossy encoding. For the most part,

these formalizations only use discrete probability theory,

with the exception of Eberl et al.’s analysis of treaps [17],

which requires general measure-theoretic probability. They

report that dealing with measurability issues adds some over-

head compared to pencil-and-paper reasoning, though they

are able to automate many of these proofs.

Several projects have formalized results from cryptogra-

phy, which also involves probabilistic reasoning [8, 9, 12, 30].

A challenge in formalizing such proofs lies in the need to

establish a relation between the behavior of two different ran-

domized algorithms, as part of the game-playing approach to

cryptographic security proofs. Because cryptographic proofs

generally only use discrete probability theory, these libraries

do not formalize measure-theoretic results. There are many

connections between cryptography and learning theory [32],

which would be interesting to formalize.

There have been formalizations of measure-theoretic prob-

ability theory in a few proof assistants. Hurd [23] formalized

basic measure theory in the HOL proof assistant, including a

proof of Caratheodory’s extension theorem. Hölzl and Heller

[21] developed a more substantial library in the Isabelle the-

orem prover, which has since been extended further. Avigad

et al. [5] used this library to formalize a proof of the Cen-

tral Limit Theorem. Several measure theory libraries have

also been developed in Coq [1, 27, 36]. The ALEA library [3]

instead uses a synthetic approach to discrete probability in

Coq, a technique that has subsequently been extended to

continuous probabilities by Bidlingmaier et al. [11].

More recent work has formalized theoretical machine

learning results. Selsam et al. [34] use Lean to prove the

correctness of an optimization procedure for stochastic com-

putation graphs. They prove that the random gradients used

in their stochastic backpropagation implementation are un-

biased. In their proof, they add axioms to the system for

various basic mathematical facts. They argue that even if

15

CPP ’21, January 18–19, 2021, Virtual, Denmark Joseph Tassarotti, Koundinya Vajjha, Anindya Banerjee, and Jean-Baptiste Tristan

there are errors in these axioms that could potentially lead

to inconsistency, the process of constructing formal proofs

for the rest of the algorithm still helps eliminate mistakes.

Bagnall and Stewart [6] use Coq to give machine-checked

proofs of bounds on generalization errors. They use Hoeffd-

ing’s inequality to obtain bounds on error when the hypoth-

esis space is finite or there is a separate test-set on which

to evaluate a classifier after training. They apply this result

to bound the generalization error of ReLU neural networks

with quantized weights. Their proof is restricted to discrete

distributions and adds some results from probability theory

as axioms (Pinsker’s inequality and Gibbs’ inequality).

Bentkamp et al. [10] use Isabelle/HOL to formalize a result

by Cohen et al. [14], which shows that deep convolutional

arithmetic circuits are more expressive than shallow ones,

in the sense that shallow networks must be exponentially

larger in order to express the same function. Although con-

volutional arithmetic circuits are not widely used in practice

compared to other artificial neural networks, this result is

part of an effort to understand theoretically the success of

deep learning. Bentkamp et al. report that they proved a

stronger version of the original result, and doing so allowed

them to structure the formal proof in a more modular way.

The formalization was completed only 14 months after the

original arXiv posting by Cohen et al., suggesting that once

the right libraries are available for a theorem prover, it is

feasible to mechanize state of the art results in some areas

of theoretical machine learning in a relatively brief period

of time.

After the development described by our paper was pub-

licly released, Zinkevich [42] published a Lean library for

probability theory and theoretical machine learning. Among

other results, this library contains theorems about PAC learn-

ability when the class of hypotheses is finite. Because the

decision stump hypothesis class is the set of all nonnegative

real numbers, our result is not covered by these theorems.

A related but distinct line of work applies machine learn-

ing techniques to automatically construct formal proofs of

theorems. Traditional approaches to automated theorem

proving rely on a mixture of heuristics and specialized algo-

rithms for decidable sub-problems. By using a pre-existing

corpus of formal proofs, supervised learning algorithms can

be trained to select hypotheses and construct proofs in a

formal system [7, 22, 24–26, 33].

11 Conclusion
We have presented a machine-checked, formal proof of PAC

learnability of the concept class of decision stumps. The

proof is formalized using the Lean theorem prover. We used

the Giry monad to keep the formalization simple and close

to a pencil-and-paper proof. To formalize this proof, we

specialized the measure theory formalization of the mathlib
library to the necessary basic probability theory. As expected,

the formalization is at times subtle when we must consider

topological or measurability results, mostly to prove that

the learning algorithm and Error are measurable functions.

The most technical part of the proof has to do with proving

the existence of an interval with the appropriate measure, a

detail that standard textbook proofs either omit or get wrong.

Our work shows that the Lean prover and the mathlib
library are mature enough to tackle a simple but classic

result in statistical learning theory. A next step would be

to formally prove more general results from VC-dimension

theory. In addition, there exist a number of generalizations

of PAC learnability, such as agnostic PAC learnability, which

removes the assumption that some hypothesis in the class

perfectly classifies the examples. Other generalizations allow

for more than two classification labels and different kinds of

Error functions. It would be interesting to formalize these

various extensions and some related applications.

Acknowledgments
We thank Gordon Stewart for comments on a previous draft

of the paper. We thank the anonymous reviewers from the

CPP’21 PC for their feedback. Some of the work described

in this paper was performed while Koundinya Vajjha was an

intern at Oracle Labs. Vajjha was additionally supported by

the Alfred P. Sloan Foundation under grant number G-2018-

10067. Banerjee’s research was based on work supported by

the US National Science Foundation (NSF), while working at

the Foundation. Any opinions, findings, and conclusions or

recommendations expressed in the material are those of the

authors and do not necessarily reflect the views of the NSF.

References
[1] Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien

Rouhling, Kazuhiko Sakaguchi, and Pierre-Yves Strub. 2020. math-

comp Analysis Library. https://github.com/math-comp/analysis.
[2] Reynald Affeldt, Manabu Hagiwara, and Jonas Sénizergues. 2014. For-

malization of Shannon’s Theorems. J. Autom. Reason. 53, 1 (2014),

63–103.

[3] Philippe Audebaud and Christine Paulin-Mohring. 2009. Proofs of

randomized algorithms in Coq. Sci. Comput. Program. 74, 8 (2009),

568–589.

[4] Robert J. Aumann. 1961. Borel structures for function spaces. Illinois
J. Math. 5, 4 (12 1961), 614–630.

[5] Jeremy Avigad, Johannes Hölzl, and Luke Serafin. 2017. A Formally

Verified Proof of the Central Limit Theorem. J. Autom. Reason. 59, 4
(2017), 389–423.

[6] Alexander Bagnall and Gordon Stewart. 2019. Certifying the True Er-

ror: Machine Learning in Coq with Verified Generalization Guarantees.

In AAAI’19: The Thirty-Third AAAI Conference on Artificial Intelligence.
2662–2669.

[7] Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, and

Stewart Wilcox. 2019. HOList: An Environment for Machine Learning

of Higher Order Logic Theorem Proving. In Thirty-sixth International
Conference on Machine Learning (ICML). 454–463.

[8] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,

Benedikt Schmidt, and Pierre-Yves Strub. 2013. EasyCrypt: A Tutorial.

In Foundations of Security Analysis and Design VII - FOSAD 2012/2013
Tutorial Lectures. 146–166.

16

https://github.com/math-comp/analysis

A Formal Proof of PAC Learnability for Decision Stumps CPP ’21, January 18–19, 2021, Virtual, Denmark

[9] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. 2009.

Formal certification of code-based cryptographic proofs. In POPL. 90–
101.

[10] Alexander Bentkamp, Jasmin Christian Blanchette, and Dietrich

Klakow. 2019. A formal proof of the expressiveness of deep learn-

ing. Journal of Automated Reasoning 63, 2 (2019), 347–368.

[11] Martin E. Bidlingmaier, Florian Faissole, and Bas Spitters. 2019. Syn-

thetic topology in Homotopy Type Theory for probabilistic pro-

gramming. CoRR abs/1912.07339 (2019). arXiv:1912.07339 http:
//arxiv.org/abs/1912.07339

[12] Bruno Blanchet. 2006. A Computationally Sound Mechanized Prover

for Security Protocols. In 2006 IEEE Symposium on Security and Privacy.
140–154.

[13] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K

Warmuth. 1989. Learnability and the Vapnik-Chervonenkis dimension.

Journal of the ACM (JACM) 36, 4 (1989), 929–965.
[14] Nadav Cohen, Or Sharir, and Amnon Shashua. 2016. On the Expressive

Power of Deep Learning: A Tensor Analysis. In Proceedings of the 29th
Conference on Learning Theory, COLT 2016. 698–728.

[15] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris

van Doorn, and Jakob von Raumer. 2015. The Lean Theorem Prover

(System Description). In CADE-25 - 25th International Conference on
Automated Deduction. 378–388.

[16] R. M. Dudley. 2014. Uniform Central Limit Theorems (2nd ed.). Cam-

bridge University Press.

[17] Manuel Eberl, Max W. Haslbeck, and Tobias Nipkow. 2018. Verified

Analysis of Random Trees. In ITP. 196–214.
[18] Michèle Giry. 1982. A Categorical Approach to Probability Theory. In

Categorical Aspects of Topology and Analysis (Lecture Notes in Mathe-
matics, Vol. 915), B. Banaschewski (Ed.). 68–85.

[19] Kiran Gopinathan and Ilya Sergey. 2020. Certifying Certainty and

Uncertainty in Approximate Membership Query Structures. In CAV,
Shuvendu K. Lahiri and Chao Wang (Eds.). 279–303.

[20] Johannes Hölzl. 2013. Construction and stochastic applications of mea-
sure spaces in higher-order logic. Ph.D. Dissertation. Technical Univer-
sity Munich.

[21] Johannes Hölzl and Armin Heller. 2011. Three Chapters of Measure

Theory in Isabelle/HOL. In ITP. 135–151.
[22] Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever.

2019. GamePad: A Learning Environment for Theorem Proving. In 7th
International Conference on Learning Representations, ICLR 2019.

[23] Joe Hurd. 2003. Formal Verification of Probabilistic Algorithms. Ph.D.
Dissertation. Cambridge University.

[24] Jan Jakubuv and Josef Urban. 2019. Hammering Mizar by Learning

Clause Guidance (Short Paper). In ITP. 34:1–34:8.
[25] Cezary Kaliszyk, François Chollet, and Christian Szegedy. 2017. Hol-

Step: A Machine Learning Dataset for Higher-order Logic Theorem

Proving. In 5th International Conference on Learning Representations,
ICLR 2017.

[26] Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Ol-

sák. 2018. Reinforcement Learning of Theorem Proving. In NeurIPS.
8836–8847.

[27] Robert Kam. 2008. coq-markov Library. https://github.com/coq-
contribs/markov.

[28] Michael J Kearns and Umesh Virkumar Vazirani. 1994. An Introduction
to Computational Learning Theory. MIT press.

[29] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018.

Foundations of Machine Learning. MIT press.

[30] Adam Petcher and Greg Morrisett. 2015. The Foundational Cryptogra-

phy Framework. In POST. 53–72.
[31] Simon Peyton Jones, Mark Jones, and Erik Meijer. 1997. Type classes:

an exploration of the design space. In Haskell Workshop.
[32] Ronald L. Rivest. 1991. Cryptography and Machine Learning. In Ad-

vances in Cryptology - ASIACRYPT ’91. 427–439.
[33] Daniel Selsam and Nikolaj Bjørner. 2019. Guiding High-Performance

SAT Solvers with Unsat-Core Predictions. In Theory and Applications
of Satisfiability Testing - SAT 2019. 336–353.

[34] Daniel Selsam, Percy Liang, and David Dill. 2017. Developing Bug-Free

Machine Learning Systems With Formal Mathematics. In International
Conference on Machine Learning (ICML). 3047–3056.

[35] Shai Shalev-Shwartz and Shai Ben-David. 2014. UnderstandingMachine
Learning: From Theory to Algorithms. Cambridge University Press.

[36] Joseph Tassarotti. 2020. coq-proba Probability Library. https://github.
com/jtassarotti/coq-proba.

[37] Joseph Tassarotti and Robert Harper. 2018. Verified Tail Bounds for

Randomized Programs. In ITP. 560–578.
[38] The mathlib Community. 2020. The Lean Mathematical Library. In

CPP. 367–381.
[39] Leslie G. Valiant. 1984. A Theory of the Learnable. Commun. ACM 27,

11 (1984), 1134–1142.

[40] Eelis van der Weegen and James McKinna. 2008. A Machine-Checked

Proof of the Average-Case Complexity of Quicksort in Coq. In TYPES.
256–271.

[41] Vladimir Naumovich Vapnik. 2000. The Nature of Statistical Learning
Theory, Second Edition. Springer.

[42] Martin Zinkevich. 2020. https://github.com/google/formal-ml

17

https://arxiv.org/abs/1912.07339
http://arxiv.org/abs/1912.07339
http://arxiv.org/abs/1912.07339
https://github.com/coq-contribs/markov
https://github.com/coq-contribs/markov
https://github.com/jtassarotti/coq-proba
https://github.com/jtassarotti/coq-proba
https://github.com/google/formal-ml

	Abstract
	1 Introduction
	2 Decision Stumps and PAC Learnability
	3 Informal Proof of PAC Learnability
	4 Structure of Formal Proof
	5 Preliminaries
	6 Specifying Randomized Processes with the Giry Monad
	6.1 Definition of the Giry Monad
	6.2 Modeling Stump Training and Testing

	7 Deterministic Reasoning
	8 Measurability Considerations
	9 Probabilistic Reasoning
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

