
A Simple Semantics and
Static Analysis for Java Security

Anindya Banerjee and David A. Naumann

Stevens Institute of Technology, CS Report 2001-1

July 5, 2001

Abstract: Security in Java depends on an access control mechanism specified
operationally in terms of run-time stack inspection. We give a denotational
semantics in “eager” form, and show that it is equivalent to the “lazy” seman-
tics using stack inspection. We give a static analysis of safety, i.e., the absence
of security errors, that is significantly simpler than previous proposals. We
identify several program transformations that can be used to remove run-time
checks. We give complete, detailed proofs for safety of the analysis and for the
transformations, exploiting compositionality of the “eager” semantics.

This material is based upon work supported by the
National Science Foundation under Grants EIA-9806835 and INT-9813854.

A Simple Semantics and Static Analysis for

Java Security

Anindya Banerjee a,1

aStevens Institute of Technology, Hoboken, NJ 07030 USA

David A. Naumann b,2

bStevens Institute of Technology, Hoboken, NJ 07030 USA

Abstract

Security in Java depends on an access control mechanism specified operationally
in terms of run-time stack inspection. We give a denotational semantics in “eager”
form, and show that it is equivalent to the “lazy” semantics using stack inspection.
We give a static analysis of safety, i.e., the absence of security errors, that is signifi-
cantly simpler than previous proposals. We identify several program transformations
that can be used to remove run-time checks. We give complete, detailed proofs for
safety of the analysis and for the transformations, exploiting compositionality of the
“eager” semantics.

1 Introduction

System security depends in part on protecting resources through specified ac-
cess control policies. For example, a policy may allow only some users the
privilege to write the password file. A typical implementation of the policy
found e.g., in UNIX operating systems, involves an access control list A which
associates with each user name n their set of privileges A(n). When a pro-
gram is running it has an associated user, normally the user who invoked the
program. To write a file, a program for user n must make a system call, and
that system code checks whether A(n) includes the privilege of writing to the

1 Partially supported by the National Science Foundation under Grant No. EIA-
9806835.
2 Partially supported by the National Science Foundation under Grant No. INT-
9813854.

Preprint submitted to Elsevier Preprint July 5, 2001

file. In order for users to be able to change their passwords, the system code
for this task executes in a special mode (“setuid” in UNIX); the effective user
is the owner of the code (say, root) rather than the originator of the call (n,
which can write some files but not the password file).

The Java security system is intended to offer such a mechanism in a somewhat
more general form. Instead of code being owned by a user or by “the system”,
there can be code from a number of sources, called principals, which can be
offered varying degrees of trust. Moreover, instead of associating a principal
with a loadable executable file, principals can be associated with fragments
such as class declarations. Another refinement of the Java system is that priv-
ileges must be explicitly enabled, by an operation called doPrivileged. The
intent is that a program only enables its privileges when they are needed; this
“principle of least privilege” [2] may help isolate the effect of security bugs
and may facilitate static analysis. Before executing a dangerous operation, a
check is made that the associated privilege has been enabled and is authorized
for the current principal. This check is specified in terms of an implementation
called stack inspection. Each stack frame is marked with the principal associ-
ated with the code for that frame, and the frame also records the privileges
that have been enabled. This is used by procedure checkPermission which
inspects the current stack.

The above description of the Java security model is an operational one. While
easy to understand, it may over-constrain implementations, and it is difficult
to analyze. We might question why the security model need be defined in terms
of stack frames – what if we considered an implementation in which procedure
calls don’t always push stack? Moreover, to understand the security properties
achieved and to optimize performance, we need analyses that capture the Java
security model more abstractly.

Our contribution is threefold: (i) we give a denotational semantics in “eager”
form, and show that it is equivalent to the “lazy” semantics using stack inspec-
tion; (ii) we give a static analysis of safety, i.e., the absence of security errors,
that is significantly simpler than previous proposals; (iii) we identify several
program transformations that can be used to remove run-time checks. We give
complete, detailed proofs for safety of the analysis and for the transformations,
exploiting compositionality of the “eager” semantics.

Skalka and Smith [4] give an operational semantics and use it to justify a
static analysis of safety specified by a type system. Their type system is com-
plicated by the choice of using a constraint system which is basis for a type
inference algorithm. We use a similar type system, but prefer to separate the
specification of an analysis from algorithms to perform the analysis. We also
include recursion in the language. Their semantics is easily seen to model the
operational descriptions of stack inspection, but it has the usual shortcomings

3

of operational semantics. For example, proofs ultimately go by induction on
computations; a detailed proof is not given for their safety result, presumably
because it is too long to fit in a short paper. It can also be difficult to extend
operational semantics to additional language features in a modular way.

Wallach, Appel and Felten [5] model the mechanism with an operational se-
mantics that manipulates formulas in a formal logic of authentication [1]. They
show that the particular logical deductions corresponding to checkPermission
can be decided efficiently, and propose an implementation called “security
passing style” in which the security state is calculated in advance. The only
result proven is equivalence of the two implementations. They do not include
recursion or higher order functions, and the formal semantics is not made ex-
plicit. Although the use of logic sheds some light on the security properties
achieved by the mechanism, the approach requires a considerable amount of
theory that is not directly germane to analyzing safety or justifying optimiza-
tions.

Security passing style seems to be a presentation of the “eager” means of
evaluating security checks mentioned by Li Gong [2]. We give a simple deno-
tational formulation of the eager semantics, using only the notions of direct
interest: principals and privileges. For static analysis of safety, in the manner
of Skalka and Smith, we formulate a simple syntax-directed type system and
prove its soundness using the denotational semantics. We also show that the
denotational semantics is equivalent to the “lazy” stack-inspection semantics,
and we use the semantics to justify some program transformations that can be
used to eliminate unnecessary run-time checks. The eager semantics facilitates
proofs, but Java implementations use lazy semantics which appears to have
better performance [2,5].

Pottier et al. [3] formalize the eager semantics by a translation into a lambda
calculus with operations on sets. Using an operational semantics for the cal-
culus, a proof is sketched of equivalence with stack semantics. Using a some-
what complicated general framework for typing, a static analysis is given and
a safety result is sketched. The language does not include recursion.

Thanks to the simplicity of our semantics, there is no difficulty in treating
language constructs such as recursion; in fact, once the meanings of types are
specified, the rest of the specification (i.e., meanings of expressions) follows
easily. Adding state appears to be straightforward, although we follow the
cited works and confine attention to applicative expressions. The simplicity
of our model makes it possible to give a self-contained formal semantics and
succinct but complete formal proofs. For security, one wants carefully checked
proofs; the trusted computing base should be small. Simple, but adequate,
formalizations are particularly crucial for the “proof carrying code” approach
where proof checking is used for efficient, accurate static analysis of mobile

4

code at the point of deployment. The compositional nature of proofs based on
denotational semantics is particularly useful in this regard.

The next section explains stack inspection informally, and it introduces our
language. Section 3 gives the eager denotational semantics, Section 4 gives the
static analysis, Section 5 gives example program transformations. Section 7
gives the stack semantics, and Section 8 gives examples. Section 9 concludes
with a discussion.

2 Overview and language

Each declared procedure is associated with a principal n. We call n the signer,
and write signs n e for a signed expression, because typically n is given by
a cryptographic signature on a downloaded class file. During execution, each
stack frame is labeled with the principal that signs the function, as well as
the set P of privileges that have been explicitly enabled during execution
of the function. For our purposes, a frame is a pair 〈n, P 〉, and a nonempty
stack is a list 〈n, P 〉 :: S with 〈n, P 〉 the top. There should be an initial stack
S0 = 〈n0,∅〉 :: nil for some designated n0. An expression is evaluated in a
stack S and with an environment h that provides values for its free variables.

Java provides operations to enable and disable a privilege, i.e., to add it to
the stack frame or remove it. Normally these are used in bracketed fashion,
as provided by procedure doPrivileged which is given a privilege p and an
expression e to evaluate. It enables p, evaluates e, and then disables p. Our
construct is written dopriv p in e. The effect of dopriv p in e in stack
〈n, P 〉 :: S is to evaluate e in stack 〈n, P ∪ {p}〉 :: S, that is, to assert p in
the current frame. (This is done regardless of whether p is authorized for n,
although an equivalent effect can be obtained by asserting only authorized
privileges.)

Java’s checkPermission operation checks whether a certain privilege has been
enabled and is authorized for the current principal. Checking is done by in-
specting the current stack. Each dangerous code fragment should be guarded
by a check for an associated privilege, so that the code cannot be executed
unless the check has succeeded. This can be assured by inspection of the code,
or by other forms of analysis. In our syntax, a guarded expression is written
check p for e. The execution of an expression checked for privilege p is to
raise a security error, which we denote by ?, unless the following predicate is
true of p and the current stack.

5

chk(p, nil) ⇔ false

chk(p, (〈n, P 〉 :: S)) ⇔ p ∈ A(n) ∧ (p ∈ P ∨ chk(p, S))

That is, a privilege is enabled for a particular stack, S, provided there is some
frame 〈n, P 〉 with p ∈ P and p authorized for n and for all principals in frames
above this one in S.

A direct implementation in these terms requires inspecting some or all of the
stack frames. The implementation is “lazy” in that no checking is performed
when a privilege is enabled, only when it is needed to actually perform a
guarded operation. On the other hand, each check incurs a significant cost, and
in secure code the checks will never fail. Static analysis can detect unnecessary
checks, and justify security-preserving transformations.

A stack S determines a set privs S of enabled, authorized privileges, to wit:

p ∈ privs S ⇔ chk(p, S)

This gives rise to a simple form of eager semantics: instead of evaluating an
expression in the context of a stack S, we use privs S, along with the current
principal which appears on top of S. The eager semantics is given in Section 3.

The language constructs are strict in ?: if a subexpression raises a security
error, so does the entire expression. In Java, security errors are exceptions
that can be caught. Thus it is possible for a program to determine whether
a checkPermission operation will succeed. Rather than model the full ex-
ception mechanism, we include a construct test p then e1 else e2 which
evaluates e1 if chk(p, S) succeeds in the current stack S, and evaluates e2 oth-
erwise. Note that security error ? is raised only by the check construct, not
by test or dopriv.

In Java, the call of a procedure of a class signed by, or otherwise associated
with, n, results in a new stack frame for the method, marked as owned by n.
We model methods as function abstractions, but whereas Skalka and Smith use
signed abstractions, we include a separate construct 3 signs n e. Evaluation
of signs n e in stack S goes by evaluating e in stack (〈n,∅〉 :: S). For example,
given a stack S, the evaluation of the application

(fun x. signs user writepass(x))“myName”

amounts to evaluating writepass(“myName”) in the stack (〈user,∅〉 :: S).

We separate signs from abstractions because it helps disentangle definitions
and proofs, e.g., these constructs are treated independently in our safety result.

3 Pottier et al. [3] also use a separate construct for signing, but require that ab-
straction bodies be signed.

6

On the other hand, unsigned abstractions do not model the Java mechanism.
In our consistency result, Theorem 7.2, we show that our semantics is equiv-
alent to stack inspection for all standard expressions, i.e., those in which the
body of every abstraction is signed.

2.1 Syntax and typing

Given are sets Principals and Privileges, and a fixed access control list A that
maps Principals to sets of privileges. In the grammar for data types and ex-
pressions, n ranges over Principals and p over Privileges. Application associates
to the left. We include recursive definitions for expressiveness, and simple
abstractions fun x. e which, while expressible using letrec, are easier to un-
derstand in definitions and proofs. For simplicity, the only primitive type is
bool, and the only type constructor is for functions. Products, sums, and other
primitive types can be added without difficulty, as can constants besides the
representative one true.

t ::= bool | (t→ t)

e ::= true | x | if e then e1 else e2 |
fun x. e | e1 e2 | letrec f(x) = e1 in e2 |
signs n e | dopriv p in e | check p for e | test p then e1 else e2

A signed abstraction nλx.e in the language of Skalka and Smith is written
fun x. signs n e in ours. Surprisingly, our safety result can be proved with-
out restriction to expressions of this form. But for the eager semantics to be
equivalent to stack semantics, it is crucial that function bodies be signed so
the semantics correctly tracks principals on behalf of which the body of an
abstraction is evaluated.

Definition 2.1 (Standard expression)
An expression is standard if for every subexpression fun x. e or letrec f(x) =
e in e1 we have that e is signs n e′ for some n, e′.

As an example of the intended usage, we consider the problem of protecting
the password file, using a privilege p for changing password and w for writing
to the password file. The user is authorized to change passwords: A(user) =
{p}. Root is authorized to change passwords and to write the password file:
A(root) = {p, w}. Suppose hwWrite is the operating system call which needs
to be protected from direct user access. The system provides the following

7

code, which guards hwWrite with the privilege w.

writepass = fun x. signs root check w for hwWrite(x, “/etc/password”)

passwd = fun x. signs root check p for dopriv w in writepass(x)

Consider the following user programs.

bad1 = signs user writepass(“mypass”)

bad2 = signs user dopriv w in writepass(“mypass”)

use = signs user dopriv p in passwd(“mypass”)

Here bad1 raises a security exception because writepass checks for privilege
w which is not possessed by user. The user can try to enable w, as in bad2,
but because w is not authorized for user the exception is still raised. By
contrast, use does not raise an exception: function passwd checks for privi-
lege p which is possessed by user, and it enables the privilege w needed by
writepass. Using transformations discussed in Section 5, checks that never fail
can be eliminated. For example, the analysis will show that use is safe, and
the transformations will reduce use to

signs user signs root hwWrite(“mypass”, “/etc/password”)

Well-formed expressions are characterized by typing judgements D ` e : t
which express that e has type t where free identifiers are declared by D. A
typing context D is a labeled tuple of declarations {x1 : t1, . . . , xk : tk}. We
write D, x : t for the extended context {x1 : t1, . . . , xk : tk, x : t}, and D.xi for
the type of xi. The typing rules are given in Figure 1.

3 Denotational semantics

This section gives the eager denotational semantics.

3.1 Meanings of types and type contexts

A cpo is a partially ordered set with least upper bounds of ascending chains;
it need not have a least element. Below we define, for each type t, a cpo [[t]].
We assume that ⊥ and ? are two values not in {true, false} and not functions;
this will ensure that {⊥, ?} ∩ [[t]] = ∅ for all t. We will identify ⊥ with non-
termination and ? with security errors. For cpo C, define C⊥? = C ∪ {⊥, ?},

8

D ` true : bool

D, x : t ` x : t
D ` e : bool D ` e1 : t D ` e2 : t

D ` if e then e1 else e2 : t

D, x : t1 ` e : t2

D ` fun x. e : t1 → t2

D ` e1 : t1 → t2 D ` e2 : t1

D ` e1 e2 : t2

D, f : t1 → t2, x : t1 ` e1 : t2 D, f : t1 → t2 ` e2 : t

D ` letrec f(x) = e1 in e2 : t

D ` e : t

D ` signs n e : t

D ` e : t

D ` dopriv p in e : t

D ` e : t

D ` check p for e : t

D ` e1 : t D ` e2 : t

D ` test p then e1 else e2 : t

Fig. 1. Typing rules.

ordered as the disjoint union of C with {?}, lifted with ⊥. That is, for any
u, v ∈ C⊥?, define u ≤ v iff u = ⊥, u = v, or u and v are in C and u ≤ v in C.

We define [[bool]] = {true, false}, ordered by equality. We also take the power-
set P(Privileges) to be a cpo ordered by equality. Define

[[t1 → t2]] = P(Privileges)→ [[t1]]→ [[t2]]⊥?

where→ associates to the right and denotes continuous function space, ordered
pointwise. Note that lubs are given pointwise. Also, [[t1 → t2]] does not contain
⊥ but it does have a least element, namely the constant function λP. λd. ⊥.

Principals behave in a lexically scoped way. By contrast, privileges are dynamic
and vary during execution; this is reflected in the semantics of the function
type.

Let D = {x1 : t1, . . . , xk : tk} be a type context. Then [[D]] is defined to be
the set {x1 : [[t1]], . . . , xk : [[tk]]} of labeled tuples of appropriate type. If h is
such a record, we write h.xi for the value of field xi. If D is the empty type
context ∅, then the only element of [[D]] is the empty record {}. For h ∈ [[D]]
and d ∈ [[t]] we write [h | x 7→d] for the extended record in [[D, x : t]].

9

3.2 Meanings of expressions

An expression judgement denotes a function

[[D ` e : t]] ∈ Principals→ P(Privileges)→ [[D]]→ [[t]]⊥?

Given a principal n, a set P ∈ P(Privileges) denoting privileges required by e,
and environment h ∈ [[D]], the meaning of [[D ` e : t]]nPh is either ⊥ or ? or
an element of [[t]].

In the denotational semantics (Figure 2), we use the metalanguage construct,
let d = E1 in E2, with the following semantics: if the value of E1 is either ⊥
or ? then that is the value of the entire let expression; otherwise, its value is
the value of E2 with d bound to the value of E1. We also write P tn {p} for
if p ∈ A(n) then P ∪ {p} else P .

The semantics is standard for the most part. We will only explain the mean-
ings of the expressions that directly concern security. In what follows, we will
assume, unless otherwise stated, that expression e is signed by principal n and
is computed with privilege set P and in environment h.

The meaning of signs n′ e is the meaning of e, signed by n′, computed with
privilege set P ∩A(n′), in h. To illustrate the idea, consider Li Gong’s exam-
ple [2, Section 3.11.2]. A game applet, applet, has a method that calls FileIn-
putStream to open the file containing the ten current high scores. In our seman-
tics, this scenario entails finding the meaning of signs system FileInputStream
by the principal applet under some privilege set P ; and, this means we need to
find the meaning of FileInputStream (i.e., whether read privileges are enabled)
under the privilege set P ∩ A(system). Assuming system has all privileges,
this reduces to checking if applet has been granted permission to read. If it
has not been granted the permission, the file will not be read, even though it
calls system code to do so.

The meaning of dopriv p in e is the meaning of e computed with privilege set
P ∪ {p} if p ∈ A(n), and is the meaning of e computed with privilege set P if
p 6∈ A(n). The meaning of check p for e is a security error if p 6∈ P ; otherwise,
the meaning is that of e. Finally, the meaning of test p then e1 else e2 is
the meaning of e1 or e2 according as p ∈ P or p 6∈ P .

We leave it to the reader to check that the semantics of each construct is
a continuous function of the semantics of its constituent expressions, so the
semantics of recursion is well defined.

The semantics of if-then-else is ?-strict in the guard but not in the branches,
that being our interpretation of the metalanguage conditional.

10

[[D ` true : bool]]nPh = true

[[D, x : t ` x : t]]nPh = h.x

[[D ` if e then e1 else e2 : t]]nPh

= let b = [[D ` e : bool]]nPh in

if b then [[D ` e1 : t]]nPh else [[D ` e2 : t]]nPh

[[D ` fun x. e : t1 → t2]]nPh = λP ′ ∈ P(Privileges). λd ∈ [[t1]].

[[D, x : t1 ` e : t2]]nP ′[h | x 7→d]

[[D ` e1 e2 : t2]]nPh = let f = [[D ` e1 : t1 → t2]]nPh in

let d = [[D ` e2 : t1]]nPh in fPd

[[D ` letrec f(x) = e1 in e2 : t]]nPh

= let G(g) = λP ′. λd. [[D, f : t1 → t2, x : t1 ` e1 : t2]]nP ′[h | f 7→g, x 7→d] in

[[D, f : t1 → t2 ` e2 : t]]nP [h | f 7→fix G]

[[D ` signs n′ e : t]]nPh = [[D ` e : t]]n′(P ∩ A(n′))h

[[D ` dopriv p in e : t]]nPh = [[D ` e : t]]n(P tn {p})h

[[D ` check p for e : t]]nPh = if p ∈ P then [[D ` e : t]]nPh else ?

[[D ` test p then e1 else e2 : t]]nPh

= if p ∈ P then [[D ` e1 : t]]nPh else [[D ` e2 : t]]nPh

Fig. 2. Denotational semantics

4 Static Analysis

The denotational semantics in Section 3 gives a dynamic or run-time view
of safety; if a program is safe, its execution will not yield ?. In this section,
we specify a type system that statically guarantees safety; if a program is
well-typed in the system then it is safe. One may utilize the static analysis for
optimizing programs e.g., removing redundant checks of privileges at run-time.

The static analysis is specified by an extended form of typing judgement.
The idea is to give not only the type of an expression, but a principal n and
set P of privileges for which the expression is safe. An arrow type t1 → t2
denotes functions dependent on a set of privileges, and the static analysis uses
annotated types to track sets of privileges adequate for safety. We adopt a

11

∆; n ` true : bool, ∅

∆, x : θ; n ` x : θ, ∅
∆, x : θ1; n ` e : θ2, Π

∆; n ` fun x. e : θ1
Π−→ θ2, ∅

∆; n ` e1 : θ1
Π−→ θ2, Π1 ∆; n ` e2 : θ′1, Π2 θ′1 ≤ θ1

∆; n ` e1 e2 : θ2, Π ∪ Π1 ∪ Π2

∆; n ` e : bool, Π1 ∆; n ` e1 : θ, Π2 ∆; n ` e2 : θ, Π3

∆; n ` if e then e1 else e2 : θ, Π1 ∪ Π2 ∪ Π3

∆, f : θ1
Π−→ θ2, x : θ1; n ` e1 : θ2, Π ∆, f : θ1

Π−→ θ2; n ` e2 : θ, Π1

∆; n ` letrec f(x) = e1 in e2 : θ, Π ∪ Π1

∆; n ` e : θ, Π

∆; n ` check p for e : θ, Π ∪ {p}

∆; n ` e : θ, (Π tn {p})

∆; n ` dopriv p in e : θ, Π

∆; n′ ` e : θ, Π Π ⊆ A(n′)

∆; n ` signs n′ e : θ, Π

∆; n ` e1 : θ, Π1 ∆; n ` e2 : θ, Π2

∆; n ` test p then e1 else e2 : θ, Π1 ∪ Π2

Fig. 3. Static analysis

Greek notational style for types in the static analysis. Letting Π range over
sets of privileges, annotated types, θ, are defined by

θ ::= bool | (θ1
Π−→ θ2)

For this syntax to be finitary, one could restrict Π to finite sets, but we have no
need for such restriction in our proofs. An expression typed θ1

Π−→ θ2 signifies
that its application may require at least the privileges Π for safe execution.

4.1 Type-based analysis

The analysis is specified by the typing judgement ∆; n ` e : θ, Π. In words,
expression e signed by principal n and typed in context ∆, has (annotated)
type θ and is safe provided at least the set Π of privileges are enabled. Figure 3
gives the specification.

Constant true, identifiers, and anonymous functions of the form fun x. e are
all safe: they do not require any privileges be enabled for safe execution. How-

12

ever, the body e in fun x. e, may require a set of privileges Π be enabled. This
is manifest in the type θ1

Π−→ θ2. The latent privileges, Π, get exposed during
an application, e1e2. Say e1 has type θ1

Π−→ θ2; if Π1 may be enabled during
e1’s execution, and Π2 may be enabled during e2’s execution, then application
itself may require Π be enabled; hence Π ∪ Π1 ∪ Π2 may be enabled during
the execution of e1e2. The application rule also uses subtyping, as discussed
in the sequel.

The analysis for check p for e requires that in addition to privileges enabled
for e, the privilege p be enabled so that the check is safe. If Π is the set of
privileges that may be enabled during the execution of dopriv p in e, then p
can be assumed to be enabled during the execution of e, provided p ∈ A(n).

Finally, for signs n′ e the only privileges that should be enabled are the ones
authorized for n′. Note that a signed expression can occur in a term with
a different owner, so it is not the case that Π ⊆ A(n) for every derivable
∆;n ` e : θ, Π.

4.2 Subtyping

In contrast to the more complicated typing in Skalka and Smith, which uses
a system of constraints that must be solved, 4 our analysis is syntax-directed.
In some sense, our system gives minimal types and privilege assumptions. We
do not formalize this notion, but informally it sheds light on the specification
of the analysis. In the case of values, such as variables and abstraction, the
privilege set is empty. In the case of check p for e, the rule adds the checked
privilege p to the “minimal” privileges of e, and similarly for the other security
constructs. In the case of conditional, a union is formed from the “minimal”
privileges of the constituent expressions, and the types of the constituents are
the same as the type of the conditional. By contrast, in the case of application
e1e2, the “minimal” types and privileges for e1 and e2 need not match exactly.
So we define a relation of subtyping with the informal meaning that θ′ ≤ θ
provided the privileges required by θ′ are contained in those required by θ.
This is significant only in case e2 has functional type, in which case the latent
privileges of e2 should be among those of e1.

Subtyping is defined as the least relation ≤ with bool ≤ bool and, for arrow

types, θ1
Π1−→ θ′1 ≤ θ2

Π2−→ θ′2 provided θ2 ≤ θ1, θ′1 ≤ θ′2, and Π1 ⊆ Π2.

To relate the semantics to the static analysis, we need the ordinary type θ∗

obtained by erasing annotations. This is defined by induction on θ, to wit:

4 Pottier et al. [3] use unification of row variables, in a relatively complicated sys-
tem.

13

bool∗ = bool and (θ1
Π−→ θ2)∗ = θ∗1 → θ∗2. It is easy to show that if θ1 ≤ θ2,

then θ∗1 = θ∗2.

Due to subtyping, an expression can have more than one annotated type and
satisfy more than one judgement. But a derivable judgement ∆; n ` e : θ, Π
has only one derivation, which is dictated by the structure of e. Proofs in the
sequel will go by “induction on e”, meaning induction on the derivation of
some judgement ∆; n ` e : θ, Π.

4.3 The password example

For any n, the expressions in the password example can be analyzed as follows.

∅; n ` writepass : string
{w}−→ void, ∅

∅; n ` passwd : string
{p}−→ void, ∅

∅; n ` bad1 : void, {w}

∅; n ` bad2 : void, {w}

∅; n ` use : void, ∅

4.4 Safety of the analysis

Theorem 4.1 (Safety)
Suppose ∅; n ` e : θ, Π is derivable. Then for all P ∈ P(Privileges) and

Π ⊆ P , it is the case that [[∅ ` e : θ∗]]nP{} 6= ?.

Proof: Immediate consequence of Lemma 4.5 below.

In order to serve as an adequate induction hypothesis, the lemma strengthens
the theorem by allowing judgements with non-empty contexts. But this is not
enough. Values at arrow types are functions that depend on privilege sets. As
induction hypothesis for the case of application we require these functions be
safe with respect to the privilege set Π annotating their type.

Definition 4.2 For each annotated type θ the predicate safe θ on [[θ∗]]⊥? is
defined as follows: safe θ(⊥) ⇔ true and safe θ(?) ⇔ false for all θ. For values

14

other than ⊥ and ?, the definition is by induction on structure of θ.

safe bool(b) ⇔ true

safe (θ1
Π−→ θ2)(f) ⇔ ∀P ∈ P(Privileges).∀d ∈ [[θ∗1]].

Π ⊆ P ∧ safe θ1(d) ⇒ safe θ2(fPd)

For annotated type environment ∆, the predicate safe ∆ on [[∆∗]] is defined
by safe ∆(h) ⇔ ∀x ∈ dom(h).safe(∆.x)(h.x).

Recall that h.x 6= ⊥ and h.x 6= ?, because ⊥ 6∈ [[t]] and ? 6∈ [[t]], for all t.

Fact 4.3 θ ≤ θ′ and safe θ d imply safe θ′ d.

Proof: By induction on derivation of θ ≤ θ′. The result is clear for bool ≤
bool. For (θ1

Π−→ θ2) ≤ (θ′1
Π′−→ θ′2), assume safe (θ1

Π−→ θ2) f . To show

safe (θ′1
Π′−→ θ′2) f , consider any P ∈ P(Privileges), such that Π′ ⊆ P , and

any d ∈ [[θ′1
∗]] with safe θ′1 d. From the subtyping, we know that Π ⊆ Π′,

hence Π ⊆ P . Moreover, by induction on derivation of θ′1 ≤ θ1, we obtain
safe θ′1 d implies safe θ1 d. Hence from assumption safe (θ1

Π−→ θ2) f , we
obtain safe θ2(fPd) holds. Now by induction on derivation θ2 ≤ θ′2, we obtain
safe θ′2(fPd).

Lemma 4.4 The predicate safe preserves lubs. That is, for any θ, let u : N→
[[θ∗]]⊥? be an ascending chain. Then, ∀i.safe θ (ui) implies safe θ (

⊔
i ui).

Proof: By structural induction on θ. When θ = bool, the assumption safe θ (ui)
implies ui 6= ? for each i, so

⊔
i ui is true or false or ⊥. Thus the result holds

by definition safe.
When θ = (θ1

Π−→ θ2), assume P ∈ P(Privileges) and d ∈ [[θ∗1]], such that

Π ⊆ P and safe θ1(d). Then, from assumption safe (θ1
Π−→ θ2) ui we obtain

safe θ2 (uiPd) holds for every i. Hence, by the induction hypothesis on θ2, we
get safe θ2 (

⊔
i(uiPd)). Because lubs are pointwise, we get safe θ2 ((

⊔
i ui)Pd).

Lemma 4.5
Suppose ∆; n ` e : θ, Π is derivable. Then for all P ∈ P(Privileges), for all
h ∈ [[∆∗]], if safe ∆(h) and Π ⊆ P then safe θ ([[∆∗ ` e : θ∗]]nPh).

The theorem follows from the lemma because safe∅{} and safe θ([[∅ ` e : θ∗]]nP{})
implies [[∅ ` e : θ∗]]nP{} 6= ?.

Another consequence of the lemma is that the language admits additional
constants at all types, declared in an initial context D0, provided the corre-
sponding initial environment assigns a safe meaning to each identifier in D0.

15

Proof: of Lemma. Go by induction on the typing derivation, ∆; n ` e : θ, Π.
Throughout, we assume P ∈ P(Privileges) and h ∈ [[∆∗]] and safe ∆(h) and
Π ⊆ P , and also let u = [[∆∗ ` e : θ∗]]nPh for each case of e.

• Case true: Then, u = true so safe bool(u) by definition safe.

• Case x: Then, u = h.x and safe θ(h.x) follows, by definition safe, from the
assumption safe ∆(h).

• Case if e then e1 else e2: Then Π1 ∪ Π2 ∪ Π3 ⊆ P , and

u = if b then [[∆∗ ` e1 : θ∗]]nPh else [[∆∗ ` e2 : θ∗]]nPh

where b = [[∆∗ ` e : bool]]nPh. By the induction hypothesis on the typing
derivation of e, noting that Π1 ⊆ P , we have safe bool(b) and hence b 6= ?.
If b = ⊥ then u = ⊥ and ⊥ is safe. Otherwise, b = true or b = false.
In the former case, by the induction hypothesis on the typing derivation of
e1, noting that Π2 ⊆ P , we have safe θ(u). The case of b = false is symmetric.

• Case fun x. e: Then u = λP ′. λd. [[∆∗, x : θ∗1 ` e : θ∗2]]nP ′[h | x 7→ d]. Thus

u 6= ?. To prove safe (θ1
Π−→ θ2)(u), consider any P ′′ ∈ P(Privileges) and

any d′ ∈ [[θ∗1]] such that Π ⊆ P ′′ and safe θ1(d′), to show safe θ2(uP ′′d′).
By semantics, uP ′′d′ = [[∆∗, x : θ∗1 ` e : θ∗2]]nP ′′[h | x 7→ d′], so the induc-
tion hypothesis for e yields safe θ2(uP ′′d′) provided that Π ⊆ P ′′ and
safe (∆, x : θ1)[h | x 7→d′]. We have Π ⊆ P ′′ by assumption, and safe (∆, x : θ1)[h |
x 7→d′] follows from safe ∆(h) and safe θ1(d′).

• Case e1 e2: Let f = [[∆∗ ` e1 : θ∗1 → θ∗2]]nPh and d = [[∆∗ ` e2 : θ′1
∗]]nPh, so

that u = fPd. (Recall that θ′1 ≤ θ1 implies θ′1
∗ = θ∗1 so the application fPd

makes sense.) From safety of h and the assumption Π ∪ Π1 ∪ Π2 ⊆ P , we

get by induction on e1 that safe (θ1
Π−→ θ2)(f), and we get safe θ′1(d) by

induction on e2. By θ′1 ≤ θ1 and Fact 4.3 we have safe θ′1(d) ⇒ safe θ1(d).

Then by definition safe (θ1
Π−→ θ2)(f) we get safe θ2(fPd).

• Case letrec f(x) = e1 in e2: Then, Π ∪ Π1 ⊆ P .
Now u = [[∆∗, f : θ∗1 → θ∗2 ` e2 : θ∗]]nP [h | f 7→fix G], where
G(g) = λP ′. λd. [[∆∗, f : θ∗1 → θ∗2, x : θ∗1 ` e1 : θ∗2]]nP ′[h | f 7→ g, x 7→ d]. To
get safe θ(u) by induction for e2, we need Π1 ⊆ P and

safe (∆, f : θ1
Π−→ θ2)[h | f 7→fix G]

The former follows from the assumption Π ∪ Π1 ⊆ P . The latter follows
from assumption, safe ∆(h), and safe (θ1

Π−→ θ2)(fix G). We proceed to
show safety of fix G.

Now fix G =
⊔
i gi, where g0 = λP ′′. λd ∈ [[θ∗1]]. ⊥ and gi+1 = G(gi). And,

safe (θ1
Π−→ θ2)(fix G) is a consequence of the following claim:

16

∀i. safe (θ1
Π−→ θ2)(gi) (1)

Then from Lemma 4.4, we get safe (θ1
Π−→ θ2)(

⊔
i gi). It remains to show

(1), for which we proceed by induction on i.

Base case: Show safe (θ1
Π−→ θ2)(g0). Assume any P ′′ ∈ P(Privileges) and

any v ∈ [[θ∗1]], such that Π ⊆ P ′′ and safe θ1(v). Then g0P
′′v = ⊥ 6= ? and

safe θ2(g0P
′′v) holds.

Induction step: Assume safe (θ1
Π−→ θ2)(gi). Show safe (θ1

Π−→ θ2)(gi+1).
Now gi+1 = G(gi) = λP ′. λd. [[∆∗, f : θ∗1 → θ∗2, x : θ∗1 ` e1 : θ∗2]]nP [h | f 7→
gi, x 7→ d]. Assume any P ′′ ∈ P(Privileges) and v ∈ [[θ∗1]], such that Π ⊆ P ′′

and safe θ1(v). Then

gi+1P
′′(v) = [[∆∗, f : θ∗1 → θ∗2, x : θ∗1 ` e1 : θ∗2]]nP ′′[h | f 7→gi, x 7→v]

Note that safe (∆, f : θ1
Π−→ θ2, x : θ1)[h | f 7→ gi, x 7→ v]. Therefore, by

the main induction hypothesis on the typing derivation ∆, f : θ1
Π−→ θ2, x :

θ1; n ` e1 : θ2, Π, since Π ⊆ P , we obtain safe θ2(gi+1P
′′v).

• Case signs n′ e: Then Π ⊆ P and u = [[∆∗ ` e : θ∗]]n′(P ∩ A(n′))h. The
induction hypothesis on the typing derivation of e can be used to obtain
safe θ(u), because Π ⊆ (P ∩ A(n′)) which follows from assumption Π ⊆ P
and side condition Π ⊆ A(n′) on the antecedent ∆; n′ ` e : θ, Π of
∆; n ` signs n′ e : θ, Π.

• Case dopriv p in e: Then Π ⊆ P and u = [[∆∗ ` e : θ∗]]n(P tn {p})h. By
the induction hypothesis for e, noting that (Π tn {p}) ⊆ (P tn {p}), we
have safe θ(u).

• Case check p for e: Then Π ∪ {p} ⊆ P , hence p ∈ P . Now

u = if p ∈ P then [[∆∗ ` e : θ∗]]nPh else ?

Since p ∈ P , we have, u = [[∆∗ ` e : θ∗]]nPh and, by the induction hypoth-
esis on the typing derivation of e, we have safe θ(u).

• Case test p then e1 else e2: Then Π1 ∪ Π2 ⊆ P and

u = if p ∈ P then [[∆∗ ` e1 : θ∗]]nPh else [[∆∗ ` e2 : θ∗]]nPh

We have two cases. Case(a): Suppose p ∈ P . Then, by induction hypoth-
esis on typing derivation of e1 and noting that Π1 ⊆ P , we have u =
[[∆∗ ` e1 : θ∗]]nPh and safe θ(u). Case(b), where p 6∈ P , is symmetric.

17

5 Examples of program transformations

Using the eager semantics it is straightforward to justify program transforma-
tions that can be used for optimization.

First, we list a series of program transformations that move checking of priv-
ileges “outwards” from an expression.

if e then check p for e1 else check p for e2 = check p for if e then e1 else e2

e1(check p for e2) = check p for e1e2

test p then e1 else check p for e2 = check p for test p then e1 else e2

test p′ then check p for e1 else check p for e2 = check p for test p′ then e1 else e2

letrec f(x) = e1 in check p for e2 = check p for letrec f(x) = e1 in e2

check p for check p for e = check p for e

signs n signs n e = signs n e

These are unconditional equalities, as the reader can verify using the denota-
tional semantics (Figure 2). Once checks have been moved outward, some can
be eliminated. To eliminate a check, it must be known definitely to succeed,
e.g., because it has been enabled for an authorized principal. We give an ex-
ample transformation of this kind in Theorem 5.4, formulated in terms of the
following notions concerning expressions that do not depend on privilege p.

Definition 5.1 (p-purity) An expression e is p-pure if e has no sub-expressions
of the form check p for e′ or test p then e′ else e′′.

For each type t we define semantic p-purity as a predicate pure p t on [[t]]⊥?, as
follows: pure p t(⊥) ⇔ true and pure p t(?) ⇔ true for all t. For values other
than ⊥ and ?, the definition is by induction on structure of t.

pure p bool(b) ⇔ true

pure p (t1 → t2)(f) ⇔ ∀P ∈ P(Privileges).∀d ∈ [[t1]].

pure p t1(d) ⇒ pure p t2(fPd) ∧ fPd = f(P − {p})d

Finally, for environment h ∈ [[D]] we define pure p D(h) iff pure p t(h.x) for all
x : t in D.

Lemma 5.2 Suppose u : N→ [[t1 → t2]] is an ascending chain. Then ∀i.pure p (t1 →
t2)(ui) implies pure p (t1 → t2)(tiui).

Proof: By definition of pure and since joins are given pointwise.

18

Lemma 5.3 If e is p-pure and typable as D ` e : t, then for all n, P, h with
pure p D(h) we have

[[D ` e : t]]nPh = [[D ` e : t]]n(P − {p})h

and pure p t([[D ` e : t]]nPh).

Proof: By induction on e. We observe for any D,n, P, h with pure p D (h)

• Case true: The equation is direct from the semantics, which is independent
of P . For p-purity of true, the result holds by definition of pure p bool.
• Case x: the equation is direct from the semantics which is independent of
P . For p-purity of [[D ` x : t]]nPh, the result holds by hypothesis on h.
• Case if e1 then e2 else e3: straightforward use of induction.
• Case fun x. e: The equation holds because the semantics is independent of
P . Purity holds by induction on e.
• Case e1e2: To show the equation, we use that [[D ` e1]] is p-pure, which holds

by induction. To show purity, we again use purity of e1 as well as purity of
e2.
• Case letrec f(x) = e1 in e2: By induction on e2, using Lemma 5.2.
• Case signs n′ e: The equation is direct from semantics, using the fact that

(P ∩ A(n′))− {p} = (P − {p}) ∩ A(n′).
• Case dopriv p′ in e: We first consider the case where p′ is distinct from p.

We have

[[D ` dopriv p′ in e : t]]nPh

= [[D ` e : t]]n(P tn {p′})h semantics

= [[D ` e : t]]n((P tn {p′})− {p})h induction hyp.

= [[D ` e : t]]n((P − {p} tn {p′})h p, p′distinct

= [[D ` dopriv p′ in e : t]]n(P − {p})h semantics

In case p′ is p we have

[[D ` dopriv p in e : t]]nPh

= [[D ` e : t]]n(P tn {p})h semantics

= [[D ` e : t]]n((P − {p}) tn {p})h see below

= [[D ` dopriv p in e : t]]n(P − {p})h semantics

The middle step is by cases on whether p ∈ A(n). If it is, the step holds by
simply by definition of tn. If not, the step holds by induction on e.

19

• Case check p′ for e: Here p′ is distinct from p, by p-purity. We observe

[[D ` check p′ for e : t]]nPh

= if p′ ∈ P then [[D ` e : t]]nPh else ? semantics

= if p′ ∈ P − {p} then [[D ` e : t]]n(P − {p})h else ? p′, p distinct, ind. for e

= [[D ` check p′ for e : t]]n(P − {p})h

• Case test p′ then e1 else e2: Again, p′ is distinct from p, and the argument
is similar to check.

Theorem 5.4 For all n, all p ∈ A(n), and all p-pure closed terms e

signs n dopriv p in check p for e = signs n e

Proof: Let h be the empty environment for e which is closed. We observe for
any n′, P :

[[signs n dopriv p in check p for e]]n′Ph

= [[dopriv p in check p for e]]n(A(n) ∩ P)h by semantics

= [[check p for e]]n((A(n) ∩ P) tn {p})h semantics

= [[check p for e]]n((A(n) ∩ P) ∪ {p})h p ∈ A(n)

= [[e]]n((A(n) ∩ P) ∪ {p})h semantics

= [[e]]n(A(n) ∩ P)h e and h are p-pure, Lemma 5.3

= [[signs n e]]n′Ph semantics

In the penultimate step, two uses are needed for the lemma: to remove p and,
in the case that p ∈ P , to add it back.

Theorem 5.5 For all n, all p ∈ A(n), and all terms e

signs n check p for e = check p for signs n e

20

Proof: We observe for any n′, P, h:

[[signs n check p for e]]n′Ph

= [[check p for e]]n(P ∩ A(n))h by semantics

= if p ∈ (P ∩ A(n)) then [[e]]n(P ∩ A(n))h else ? by semantics

= if p ∈ P then [[e]]n(P ∩ A(n))h else ? by sets, since p ∈ A(n)

= if p ∈ P then [[signs n e]]n′Ph else ? by semantics

= [[check p for signs n e]]n′Ph by semantics

The above proofs are examples of the benefit of a compositional semantics. The
proofs are by direct calculation, without need for induction. For Theorem 5.4,
the proof goes through for open terms as well, if the environment h is pure.
One expects built-in constants to have pure and safe values.

We now work out the password example (Section 4.3) using Theorems 5.4
and 5.5. Using these theorems, we show how checks can be eliminated from
the example. We abbreviate user, root as u, r.

passwd(“mypass”)

= {because passwd = (fun x. signs r check p for dopriv w in writepass(x))}

signs r check p for dopriv w in writepass(“mypass”)

= {because writepass = (fun x. signs r check w for hwWrite(x, “/etc/password”))}

signs r check p for dopriv w in signs r check w for hwWrite(“mypass”, “/etc/password”)

= {by Theorem 5.5 since A(r) = {p, w}}

check p for signs r dopriv w in check w for signs r hwWrite(“mypass”, “/etc/password”)

= {by Theorem 5.4 since w ∈ A(r) and signs r hwWrite(. . .) is p-pure closed}

check p for signs r signs r hwWrite(“mypass”, “/etc/password”)

= {because signs n signs n e = signs n e}

check p for signs r hwWrite(“mypass”, “/etc/password”)

21

Finally, we obtain:

use = signs u dopriv p in passwd(“mypass”)

= signs u dopriv p in check p for signs r hwWrite(“mypass”, “/etc/password”)

= {by Theorem 5.4 since p ∈ A(u) and signs r hwWrite(. . .) is p-pure closed}

signs u signs r hwWrite(“mypass”, “/etc/password”)

6 Using the Static Analysis

Section 5 gives several program transformations that can be justified by the
eager denotational semantics of our language. Of what use then is the static
analysis? The safety results of Section 4 show that if the static analysis derives
a judgement ∆; n ` e : θ,Π, then executing e using a privilege set that
contains at least the enabled privileges Π would not lead to a security error.
We should therefore be able to drop all dopriv’s and check’s from e. If e is
test-free, we can then show that the meaning of e is the same as its meaning
with dopriv’s and check’s erased. This is formalized below.

Definition 6.1 The erasure translation (.)− is defined as follows:

true− = true

x− = x

(if e1 then e2 else e3)− = if e−1 then e−2 else e−3

(fun x. e)− = fun x. e−

(letrec f(x) = e1 in e2)− = letrec f(x) = e−1 in e−2

(signs n e)− = signs n e−

(dopriv p in e)− = e−

(check p for e)− = e−

(test p then e1 else e2)− is undefined.

Theorem 6.2 Let e be test-free and let ∅; n ` e : bool,Π. Then for all
P ∈ P(Privileges), if Π ⊆ P then [[∅ ` e : bool]]nP{} = [[∅ ` e− : bool]]nP{}.

Proof: Immediate consequence of Lemma 6.6 and definition rel bool below.

Definition 6.3 For each annotated type θ the relation rel θ on [[θ∗]]⊥? is de-
fined as follows: For all θ, rel θ ⊥ ⊥ always holds and rel θ ? ? never holds.

22

For values other than ⊥, ?, the definition is by induction on structure of θ.

rel bool b b′ ⇔ b = b′

rel (θ1
Π−→ θ2) f f ′ ⇔ ∀P ∈ P(Privileges).∀d, d′ ∈ [[θ∗1]].

Π ⊆ P ∧ rel θ1 d d
′ ⇒ rel θ2 (fPd) (f ′Pd′)

For annotated type environment ∆, the predicate rel ∆ on [[∆∗]] is defined by
rel ∆ h h′ ⇔ dom(h) = dom(h′) and ∀x ∈ dom(h).rel (∆.x) (h.x) (h′.x).

Fact 6.4 θ ≤ θ′ and rel θ d d′ imply rel θ′ d d′.

Proof: By induction on derivation of θ ≤ θ′. The result is clear for bool ≤
bool. For (θ1

Π−→ θ2) ≤ (θ′1
Π′−→ θ′2), assume rel (θ1

Π−→ θ2) f f ′. To show

rel (θ′1
Π′−→ θ′2) f f ′, consider any P ∈ P(Privileges), such that Π′ ⊆ P , and

any d, d′ ∈ [[θ′1
∗]] with rel θ′1 d d

′. From the subtyping, we know that Π ⊆ Π′,
hence Π ⊆ P . Moreover, by induction on derivation of θ′1 ≤ θ1, we obtain
rel θ′1 d d

′ implies rel θ1 d d
′. Hence from assumption rel (θ1

Π−→ θ2) f f ′, we
obtain rel θ2(fPd)(f ′Pd′). Now by induction on derivation θ2 ≤ θ′2, we obtain
rel θ′2(fPd)(f ′Pd′).

Fact 6.5 The relation rel preserves lubs. That is, for any θ, let u, u′ : N →
[[θ∗]]⊥? be ascending chains. Then, ∀i.rel θ ui u

′
i implies rel θ (

⊔
i ui)(

⊔
i u
′
i).

Proof: By structural induction on θ. When θ = bool, we have
⊔
i ui =

⊔
i u
′
i =

true or false or ⊥. Thus the result holds by definition rel.
When θ = (θ1

Π−→ θ2), assume P ∈ P(Privileges) and d, d′ ∈ [[θ∗1]], such

that Π ⊆ P and rel θ1d d
′. Then, from assumption rel (θ1

Π−→ θ2) ui u
′
i we

obtain rel θ2 (uiPd)(u′iPd
′) for every i. Hence, by the induction hypothesis

on θ2, we get rel θ2 (
⊔
i(uiPd))(

⊔
i(u
′
iPd

′)). Because lubs are pointwise, we get
rel θ2 ((

⊔
i ui)Pd)((

⊔
i u
′
i)Pd

′).

Lemma 6.6 Suppose ∆; n ` e : θ, Π is derivable and e is test-free. Then
for all P ∈ P(Privileges), for all h, h− ∈ [[∆∗]], if rel ∆ h h− and Π ⊆ P then
rel θ u u−, where u = [[∆∗ ` e : θ∗]]nPh and u− = [[∆∗ ` e− : θ∗]]nPh−.

(Note that h−, u− are just suggestively named identifiers whereas e− is the
erasure of e.) The theorem follows from the lemma because rel ∅ {} {} and
by definition rel bool, [[∅ ` e : bool]]nP{} = [[∅ ` e− : bool]]nP{}.

Proof: of Lemma. Go by induction on the typing derivation, ∆; n ` e : θ, Π.
Throughout, we assume P ∈ P(Privileges) and h, h− ∈ [[∆∗]] and rel ∆ h h−.
Let u = [[∆∗ ` e : θ∗]]nPh and u− = [[∆∗ ` e− : θ∗]]nPh− for each case of e.

• Case true: Then, u = true = u− and rel bool u u− by definition rel.

23

• Case x: Then, u = h.x and u− = h−.x. And, rel θ u u− follows from as-
sumption rel ∆ h h−.

• Case if e then e1 else e2: Then Π1 ∪ Π2 ∪ Π3 ⊆ P , and

u= if b then [[∆∗ ` e1 : θ∗]]nPh else [[∆∗ ` e2 : θ∗]]nPh

u−= if b− then [[∆∗ ` e−1 : θ∗]]nPh− else [[∆∗ ` e−2 : θ∗]]nPh−

where b = [[∆∗ ` e : bool]]nPh and b− = [[∆∗ ` e− : bool]]nPh−. By the in-
duction hypothesis on the typing derivation of e, noting that Π1 ⊆ P , we
have rel bool b b−. If b = ⊥ = b− then u = ⊥ = u− and rel θ ⊥ ⊥. Other-
wise, b = true or b = false. In the former case, by the induction hypothesis
on the typing derivation of e1, noting that Π2 ⊆ P , we have rel θ u u−. In
the latter case, by the induction hypothesis on the typing derivation of e2,
noting that Π3 ⊆ P , we have rel θ u u−.

• Case fun x. e: Then

u=λP ′. λd. [[∆∗, x : θ∗1 ` e : θ∗2]]nP ′[h | x 7→d]

u−=λP ′. λd−. [[∆∗, x : θ∗1 ` e− : θ∗2]]nP ′[h− | x 7→d−]

To prove rel (θ1
Π−→ θ2) u u−, consider any P ′ ∈ P(Privileges) and any

d, d− ∈ [[θ∗1]] such that Π ⊆ P ′ and rel θ1 d d
−, to show rel θ2 (uP ′d′) (u−P ′d−).

By semantics,

uP ′d= [[∆∗, x : θ∗1 ` e : θ∗2]]nP ′[h | x 7→d]

u−P ′d−= [[∆∗, x : θ∗1 ` e− : θ∗2]]nP ′[h− | x 7→d−]

So the induction hypothesis for e yields rel θ2 (uP ′d) (u−P ′d−) provided
that Π ⊆ P ′ and rel (∆, x : θ1)[h | x 7→ d][h− | x 7→ d−]. We have Π ⊆ P ′

by assumption, and rel (∆, x : θ1)[h | x 7→ d][h− | x 7→ d−] follows from
rel ∆ h h− and rel θ1 d d

−.

• Case e1 e2: Let f = [[∆∗ ` e1 : (θ1
Π−→ θ2)∗]]nPh and d = [[∆∗ ` e2 : θ′1

∗]]nPh,

so that u = fPd. Let f− = [[∆∗ ` e−1 : (θ1
Π−→ θ2)∗]]nPh− and d− = [[∆∗ ` e−2 : θ′1

∗]]nPh−,
so that u− = f−Pd−. (Recall that θ′1 ≤ θ1 implies θ′1

∗ = θ∗1 so the appli-
cations fPd and f−Pd− make sense.) From rel ∆ h h− and assumption

Π ∪ Π1 ∪ Π2 ⊆ P , we get by induction on e1 that rel (θ1
Π−→ θ2) f f−, and

we get rel θ′1 d d
− by induction on e2. By θ′1 ≤ θ1 and Fact 6.4 we have

rel θ′1 d d
− ⇒ rel θ1 d d

−. Then by definition rel (θ1
Π−→ θ2) f f−, since

Π ⊆ P , we get rel θ2(fPd)(f−Pd−).

• Case letrec f(x) = e1 in e2: Then, Π ∪ Π1 ⊆ P .
Now

24

u= [[∆∗, f : (θ1
Π−→ θ

)
2∗ ` e2 : θ∗]]nP [h | f 7→fix G]

u−= [[∆∗, f : (θ1
Π−→ θ

)
2∗ ` e−2 : θ∗]]nP [h− | f 7→fix G−]

where

G(g) =λP ′. λd. [[∆∗, f : (θ1
Π−→ θ2)∗, x : θ∗1 ` e1 : θ∗2]]nP ′[h | f 7→g, x 7→d]

G−(g−) =λP ′. λd−. [[∆∗, f : (θ1
Π−→ θ2)∗, x : θ∗1 ` e−1 : θ∗2]]nP ′[h− | f 7→g−, x 7→d−]

To show rel θ u u− by induction on e2, we need Π1 ⊆ P and

rel (∆, f : θ1
Π−→ θ2) [h | f 7→fix G] [h− | f 7→fix G−]

The former follows from assumption Π ∪ Π1 ⊆ P . The latter follows from
assumption, rel ∆ h h−, and rel (θ1

Π−→ θ2)(fix G)(fix G−), which we now
proceed to show.

Now fix G =
⊔
i gi, where g0 = λP ′. λd ∈ [[θ∗1]]. ⊥ and gi+1 = G(gi). Also

fix G− =
⊔
i g
−
i , where g−0 = λP ′. λd− ∈ θ∗1. ⊥ and g−i+1 = G−(g−i). And,

rel (θ1
Π−→ θ2)(fix G)(fix G−) is a consequence of the following claim:

∀i. rel (θ1
Π−→ θ2) gi g

−
i (2)

Then from Lemma 6.5, we get rel (θ1
Π−→ θ2)(

⊔
i gi)(

⊔
i g
−
i). It remains to

show (2), for which we proceed by induction on i.

Base case: Show rel (θ1
Π−→ θ2) g0 g

−
0 . Assume any P ′ ∈ P(Privileges) and

any v, v− ∈ [[θ∗1]], such that Π ⊆ P ′ and rel θ1 v v
−. Then g0P

′v = ⊥ =
g−0 P

′v− and rel θ2(g0P
′v)(g−0 P

′v−).

Induction step: Assume rel (θ1
Π−→ θ2) gi g

−
i . Show rel (θ1

Π−→ θ2) gi+1 g
−
i+1.

Now:

gi+1 =λP ′. λd. [[∆∗, f : (θ1
Π−→ θ2)∗, x : θ∗1 ` e1 : θ∗2]]nP [h | f 7→gi, x 7→d]

g−i+1 =λP ′. λd−. [[∆∗, f : (θ1
Π−→ θ2)∗, x : θ∗1 ` e−1 : θ∗2]]nP [h− | f 7→g−i , x 7→d−]

Assume any P ′ ∈ P(Privileges) and v, v− ∈ [[θ∗1]], such that Π ⊆ P ′ and
rel θ1 v v

−. Then

gi+1P
′v= [[∆∗, f : (θ1

Π−→ θ2)∗, x : θ∗1 ` e1 : θ∗2]]nP ′[h | f 7→gi, x 7→v]

g−i+1P
′v−= [[∆∗, f : (θ1

Π−→ θ2)∗, x : θ∗1 ` e1 : θ∗2]]nP ′[h− | f 7→g−i , x 7→v−]

Note that rel (∆, f : θ1
Π−→ θ2, x : θ1) [h | f 7→ gi, x 7→ v] [h− | f 7→

g−i , x 7→ v−]. Therefore, by the main induction hypothesis on the typing

derivation ∆, f : θ1
Π−→ θ2, x : θ1; n ` e1 : θ2, Π, since Π ⊆ P , we obtain

rel θ2(gi+1P
′v)(g−i+1P

′v−).

• Case signs n′ e: Then Π ⊆ P and u = [[∆∗ ` e : θ∗]]n′(P ∩ A(n′))h. The
induction hypothesis on the typing derivation of e can be used to obtain

25

rel θ u u−, because Π ⊆ (P ∩A(n′)) which follows from assumption Π ⊆ P
and side condition Π ⊆ A(n′).

• Case dopriv p in e: Then Π ⊆ P and u = [[∆∗ ` e : θ∗]]n(P tn {p})h.
By the induction hypothesis for e, noting that (Π tn {p}) ⊆ (P tn {p}),
we have rel θ u [[∆∗ ` e− : θ∗]]n(P tn {p})h−. But now e− is p-pure. So
by Lemma 5.3, [[∆∗ ` e− : θ∗]]n(P tn {p})h− = [[∆∗ ` e− : θ∗]]nPh−. But
u− = [[∆∗ ` e− : θ∗]]nPh−. Hence rel θ u u−.

• Case check p for e: Then Π ∪ {p} ⊆ P , hence p ∈ P . Now

u = if p ∈ P then [[∆∗ ` e : θ∗]]nPh else ?

Since p ∈ P , we have, u = [[∆∗ ` e : θ∗]]nPh and, by the induction hypothe-
sis on the typing derivation of e, we have rel θ u [[∆∗ ` e− : θ∗]]nPh−. Hence
rel θ u u−.

7 Stack Semantics

This section gives a formal semantics using stack inspection, and shows that
for standard expressions it coincides with the eager semantics. The connection
is much more direct than that of Wallach, Appel and Felten, so a complete
detailed proof is not very lengthy.

Because the operations on the stack are in fact stack-like, it is straightforward
to give a denotational style semantics parameterized on the stack. We define
Stacks = nonempty list of(Principals × P(Privileges)), taken as a cpo ordered
by equality. The top is the head of the list, and we write infix :: for cons, so
〈n, P 〉 :: S is the stack with 〈n, P 〉 on top of S, as in Section 2. We also use the
predicate chk defined there, and recall the definition p ∈ privs S ⇔ chk(p, S).

Fact 7.1 For all S and all n we have privs(S) ∩ A(n) = privs(〈n,∅〉 :: S).

Proof: The sets are equal because for any p

p ∈ privs(〈n,∅〉 :: S) ⇔ chk(p, (〈n,∅〉 :: S)) by def privs

⇔ p ∈ A(n) ∧ chk(p, S) by def chk and p 6∈ ∅

⇔ p ∈ A(n) ∧ p ∈ privs(S) by def privs

26

([D ` true : bool])Sh = true

([D ` x : t])Sh = h.x

([D ` if e then e1 else e2 : t])Sh = let b = ([D ` e : bool])Sh in

if b then ([D ` e1 : t])Sh else ([D ` e2 : t])Sh

([D ` fun x. e : t1 → t2])Sh = λS ′ ∈ Stacks. λd ∈ ([t1]).

([D, x : t1 ` e : t2])S ′[h | x 7→d]

([D ` e1 e2 : t2])Sh = let f = ([D ` e1 : t1 → t2])Sh in

let d = ([D ` e2 : t1])Sh in fSd

([D ` letrec f(x) = e1 in e2 : t])Sh

= let G(g) = λS ′. λd. ([D, f : t1 → t2, x : t1 ` e1 : t2])S[h | f 7→g, x 7→d] in

([D, f : t1 → t2 ` e2 : t])S[h | f 7→fix G]

([D ` signs n′ e : t])Sh = ([D ` e : t])(〈n′,∅〉 :: S)h

([D ` dopriv p in e : t])(〈n, P 〉 :: S)h = ([D ` e : t])(〈n, P ∪ {p}〉 :: S)h

([D ` check p for e : t])Sh = if chk(p, S) then ([D ` e : t])Sh else ?

([D ` test p then e1 else e2 : t])Sh = if chk(p, S) then ([D ` e1 : t])Sh else ([D ` e2 : t])Sh

Fig. 4. Stack semantics

The stack semantics of an expression is a function

([D ` e : t]) ∈ Stacks→ ([D])→ ([t])⊥?

Just as in the eager semantics, we need to account for dynamic binding of
privileges by interpreting arrow types using an extra parameter. The stack
semantics of types is as follows.

([bool]) = {true, false}

([t1 → t2]) = Stacks→ ([t1])→ ([t2])⊥?

The semantics of expressions is in Figure 4.

We can now relate the denotational semantics of Figure 2 to the stack seman-
tics of Figure 4.

Theorem 7.2 (Consistency)

27

For any standard expression e and stack (〈n, P ′〉 :: S), we have

[[∅ ` e : bool]]nP{} = ([∅ ` e : bool])(〈n, P ′〉 :: S){}

where P = privs(〈n, P ′〉 :: S).

Proof: Immediate consequence of Lemma 7.5 and definition sim bool below.

As in the proof of safety, we need to generalize the result to allow nonempty
contexts. We also consider expressions of arrow type, for which a logical rela-
tion is needed.

Definition 7.3 Define data-type indexed family sim t ⊆ [[t]]⊥? × ([t])⊥? as
follows.

sim t ⊥ ⊥ ⇔ true

sim t ? ? ⇔ true

sim bool b b′ ⇔ b = b′

sim (t1 → t2) f f ′ ⇔ ∀S ∈ Stacks.∀d ∈ [[t1]].∀d′ ∈ ([t1]).

sim t1 d d
′ ⇒ sim t2 (f (privs S) d) (f ′ S d′)

An environment h ∈ [[D]] simulates an environment h′ ∈ ([D]), written sim D h h′,
provided sim (D.x) (h.x) (h′.x) for all x ∈ dom(h).

Lemma 7.4 The relation sim preserves lubs. That is, for any t, if u : N→ [[t]]
and u′ : N→ ([t]) are ascending chains and ∀i.sim t ui u

′
i then sim t (

⊔
i ui) (

⊔
i u
′
i).

Proof: Go by structural induction on t. Assume that sim t ui u
′
i. When t =

bool, by definition sim we obtain, for each i, ui = u′i. Thus sim t (
⊔
i ui) (

⊔
i u
′
i).

When t = t1 → t2, consider any P, S, d, d′ with P = privs(S) and sim t1 d d
′.

We must show sim t2 ((
⊔
i ui)Pd) ((

⊔
i u
′
i)Sd

′), i.e., by definition of lubs we
must show, sim t2

⊔
i(uiPd)

⊔
i(u
′
iSd

′). By assumption, for every i, sim (t1 →
t2) ui u

′
i, hence, sim t2 (uiPd) (u′iSd

′) holds for each i. Therefore, by induction
for t2, we obtain sim t2

⊔
i(uiPd)

⊔
i(u
′
iSd

′).

Lemma 7.5 For any stack (〈n, P ′〉 :: S), for any standard expression e, and
any D, t, h, h′, let u = [[D ` e : t]]nPh where P = privs(〈n, P ′〉 :: S), and let

u′ = ([D ` e : t])(〈n, P ′〉 :: S)h′

Then sim D h h′ ⇒ sim t u u′.

The Consistency Theorem follows from the lemma because sim ∅ {} {} and
since sim bool u u′ implies u = u′.

28

Proof: of Lemma. Go by induction on e.

• Case true: Immediate from semantic definitions.

• Case x: Immediate from semantic definitions.

• Case if e then e1 else e2: Directly by induction.

• Case fun x. e: Let u = [[D ` fun x. e : t1 → t2]]nPh and let

u′ = ([D ` fun x. e : t1 → t2])Sh′

Then

u=λP ′. λd. [[D, x : t1 ` e : t2]]nP ′[h | x 7→d]

u′=λS ′. λd′. ([D, x : t1 ` e : t2])S ′[h′ | x 7→d′]

To show sim (t1 → t2) u u′, need to show that for any S ′′, d′′, d′′′, such
that sim t1 d

′′ d′′′, it is the case that sim t2 (u (privs S ′′) d′′) (u′ S ′′ d′′′).
By standardness, e is signs n′ e′ for some n′, e′. Thus we can proceed as
follows, using e ≡ signs n′ e′ and semantics of signs.

u (privs S ′′) d′′= [[D, x : t1 ` e : t2]]n (privs S ′′) [h | x 7→d′′]

= [[D, x : t1 ` e′ : t2]]n′ (privs(S ′′) ∩ A(n′)) [h | x 7→d′′]

u′ S ′′ d′′′= ([D, x : t1 ` e : t2]) S ′′ [h′ | x 7→d′′′]

= ([D, x : t1 ` e′ : t2])(〈n′,∅〉 :: S ′′) [h′ | x 7→d′′′]

Note that by definition sim and by assumption sim t1 d′′ d′′′, we have,
sim (D, x : t1) [h | x 7→ d′′] [h′ | x 7→ d′′′]. Furthermore, by Fact 7.1,
privs(S ′′)∩A(n′) = privs(〈n′,∅〉 :: S ′′). Therefore, by induction for e′, we ob-
tain, sim t2 (u (privs S ′′) d′′) (u′ S ′′ d′′′). This is where we need Definition 2.1.

• Case e1e2:

[[D ` e1 e2 : t2]]nPh= let f = [[D ` e1 : t1 → t2]]nPh in

let d = [[D ` e2 : t1]]nPh in fPd

([D ` e1 e2 : t2])Sh′= let f ′ = ([D ` e1 : t1 → t2])Sh′ in

let d′ = ([D ` e2 : t1])Sh in f ′Sd′

Need to show sim t2 (fPd) (f ′Sd′). Since sim D h h′ and P = privs(S),
therefore, by induction for e1, we have sim (t1 → t2) f f ′. Similarly, by
induction for e2, we have sim t1 d d

′. Hence the result follows by definition
sim since P = privs(S). This case of the proof shows the necessity of defining

29

the relation sim.

• Case letrec f(x) = e1 in e2:

[[D ` letrec f(x) = e1 in e2 : t]]nPh

= let G(g) = λP ′. λd. [[D, f : t1 → t2, x : t1 ` e1 : t2]]nP ′[h | f 7→g, x 7→d] in

[[D, f : t1 → t2 ` e2 : t]]nP [h | f 7→fix G]

([D ` letrec f(x) = e1 in e2 : t])Sh

= let G′(g′) = λS ′. λd′. ([D, f : t1 → t2, x : t1 ` e1 : t2])S ′[h′ | f 7→g′, x 7→d′] in

([D, f : t1 → t2 ` e2 : t])S[h′ | f 7→fix G′]

To show the result, it suffices to show sim (t1 → t2) (fix G) (fix G′),
because then we can use induction for e2, noting that sim (D, f : t1 →
t2) [h | f 7→fix G] [h′ | f 7→fix G′], and that P = privs(S). Accordingly, we
demonstrate the following claim:

∀i.sim (t1 → t2) gi g
′
i (3)

Then from Lemma 7.4, we get sim (t1 → t2)
⊔
i gi

⊔
i g
′
i. This completes the

proof. To show (3), we proceed by induction on i. We have:

g0 =λP ′. λd. ⊥
gi+1 =λP ′. λd. [[D, f : t1 → t2, x : t1 ` e1 : t2]]nP ′[h | f 7→gi, x 7→d]

= {because e1 ≡ signs n′ e′1 by standardness}
λP ′. λd. [[D, f : t1 → t2, x : t1 ` e1 : t2]]n′(P ′ ∩ A(n′))[h | f 7→gi, x 7→d]

g′0 =λS ′. λd′. ⊥
g′i+1 =λS ′. λd′. ([D, f : t1 → t2, x : t1 ` e1 : t2])S ′[h′ | f 7→g′i, x 7→d′]

= {because e1 ≡ signs n′ e′1}
λS ′. λd′. ([D, f : t1 → t2, x : t1 ` e′1 : t2])(〈n′,∅〉 :: S ′)[h′ | f 7→g′i, x 7→d′]

Clearly, sim (t1 → t2) g0 g
′
0, by definition sim. To show sim (t1 → t2) gi+1 g

′
i+1,

assume sim (t1 → t2) gi g
′
i (induction hypothesis), and that for any S ′ and

P ′ = privs(S ′), sim t1 d d
′ holds. Then

sim (D, f : t1 → t2, x : t1) [h | f 7→gi, x 7→d] [h′ | f 7→g′i, x 7→d′]

by definition sim and since sim D h h′. Now by Fact 7.1, P ′ ∩ A(n′) =
privs(〈n′,∅〉 :: S ′), so by the main induction hypothesis on e′1, sim t2 (gi+1P

′d) (g′i+1S
′d′)

holds.

• Case signs n e: We have: [[D ` signs n′ e : t]]nPh = [[D ` e : t]]n′(P ∩
A(n′))h and ([D ` signs n′ e : t])Sh′ = ([D ` e : t])(〈n′,∅〉 :: S)h′ so the re-

30

sult holds by induction on e provided P ′ ∩ A(n′) = privs(〈n′,∅〉 :: S). But
this equality holds by Fact 7.1.

• Case dopriv p in e: The result holds by induction for e, provided that
P tn {p} = privs(〈n, P ′ ∪ {p}〉 :: S). This holds because for any p′

p′ ∈ P tn {p}

⇔ p′ ∈ P ∨ (p′ ∈ A(n) ∧ p′ = p) by def tn
⇔ chk(p′, 〈n, P ′〉 :: S) ∨ (p′ ∈ A(n) ∧ p′ = p) assumption, def privs

⇔ (p′ ∈ A(n) ∧ (p′ ∈ P ′ ∨ chk(p′, S)) ∨ (p′ ∈ A(n) ∧ p′ = p) def chk

⇔ p′ ∈ A(n) ∧ (p′ ∈ P ′ ∪ {p} ∨ chk(p′, S)) logic and sets

⇔ p′ ∈ privs(〈n, P ′ ∪ {p}〉 :: S) defs chk and privs

• Case check p for e: Both semantics are conditional; the condition in one
case is p ∈ P ′ and in the other case chk(p, S), and these are equivalent
conditions by assumption P ′ = privs(S) for the Lemma. In case the condi-
tion is true, the result holds by induction, which applies because for both
semantics the security arguments for e are unchanged. If the condition is
false, the result holds because both semantics are ? and sim t ? ?.

• Case test p then e1 else e2: Similar to the case for check.

8 Examples

Inspired by Skalka and Smith, we define the following standard expressions:

lp= fun f. signs n (fun x. signs n (dopriv p in (f x)))

cp= fun x. signs n (check p for x)

The reader can verify that one possible analysis for cp is given by the typing

∆; n ` cp : (bool
{p}−→ bool),∅. and that the typing demands p ∈ A(n).

Similarly, the reader can verify that one possible analysis for lp is given by

the typing ∆; n ` lp : (bool
{p}−→ bool)

∅−→ (bool
∅−→ bool),∅.

For all P ∈ P(Privileges), for all h : ∆∗, we can show (omitting types and

31

some steps),

[[lp]]nPh = λP1. λd1. λP2. λd2. [[dopriv p in f x]]n(P2 ∩ A(n))[h | f 7→ d1, x 7→ d2]

= {letting P3 = P2 ∩ A(n)}

λP1. λd1. λP2. λd2. d1(P3 tn {p})d2

[[cp]]nPh = λP ′1. λd
′
1. if p ∈ (P ′1 ∩ A(n)) then [[x]]n(P ′1 ∩ A(n))[h | x 7→d′1] else ?

= λP ′1. λd
′
1. if p ∈ (P ′1 ∩ A(n)) then d′1 else ?

Let F = [[lp]]nPh, let d = [[cp]]nPh and let G = [[(lp cp)]]nPh. Then

[[(lp cp)]]nPh = FPd

= λP2. λd2. if p ∈ ((P3 tn {p}) ∩ A(n)) then d2 else ?

= {because p ∈ A(n)}

λP2. λd2. d2

[[(lp cp)true]]nPh = GP ([[true]]nPh)

= true

Hence (lp cp)true is safe in any environment and typable as ∆; n ` (lp cp)true :
bool,∅.

9 Discussion

We have given a static analysis that characterizes safe expressions, i.e., ones
that never cause a security violation. For such expressions, one can imagine an
implementation with no security mechanism whatsoever. This seems to be the
use of static analysis suggested by Skalka and Smith [4], although they do not
formalize the intended implementation. On the other hand, for a language in
which presence of privileges can be tested (like Java, our language, and that
of Pottier et al. [3]), the mechanism needs to be present in some form even if
some checks are eliminated. In any case, to justify the elimination of checks
requires a semantic argument showing that program behavior is preserved.

It is worth recalling that the Java security model supports the principle of least
privilege, which is intended in part to protect against the inevitable flaws in
real implementations. It is a non-trivial engineering problem to decide how to
use a static analysis; it is not necessarily desirable to eliminate all checks that
could in theory be eliminated.

32

Program transformations give a way to describe the elimination of some, but
not necessarily all, checks. Transformations may be performed selectively, at
compile time and at link time. Using the eager denotational semantics, we have
validated several transformations and shown their application to the password
example. The applicability conditions for these particular transformations are
expressed very simply, in terms of patterns using signs and conditions on A.
We envisage that more sophisticated transformations will depend on context
conditions expressed by the static analysis. To justify such transformations,
we aim to use a semantics for annotated typing judgements.

References

[1] M. Abadi, M. Burrows, B. Lampson and G. Plotkin. A calculus for access control
in distributed systems. ACM Trans. Programming Languages and Systems 15
(4), 1993.

[2] Li Gong. Inside Java 2 Platform Security. Addison-Wesley, 1999.

[3] F. Pottier, C. Skalka and S. Smith. A systematic approach to static access
control. Proceedings of ESOP, 2001.

[4] C. Skalka and S. Smith. Static enforcement of security with types. Proceedings
of the fifth ACM International Conference on Functional Programming, 2000.

[5] D. Wallach, A. Appel and E. Felten. SAFKASI: a security mechanism for
language-based systems. ACM Trans. Software Engineering and Methodology,
2000.

33

