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Abstract
We formulate an intraprocedural information flow anal-
ysis algorithm for sequential, heap manipulating pro-
grams. We prove correctness of the algorithm, and ar-
gue that it can be used to verify some naturally oc-
curring examples in which information flow is condi-
tional on some Hoare-like state predicates being satis-
fied. Because the correctness of information flow anal-
ysis is typically formulated in terms of noninterference
of pairs of computations, the algorithm takes as input a
program together with two-state assertions as postcon-
dition, and generates two-state preconditions together
with verification conditions. To process heap manipula-
tions and while loops, the algorithm must additionally
be supplied “object flow invariants” as well as “loop
flow invariants” which are themselves two-state, and
possibly conditional.

1. Introduction
Information flow analyses are used to ensure that
programs satisfy confidentiality policies. Such poli-
cies are expressed by labeling variables with security
levels, e.g., H for secrets/classified and L for pub-
lic/observable/unclassified. For a given policy, a pro-
gram P satisfies noninterference (NI) [18] provided
that for any two runs of P , if P is executed from two
∗ On sabbatical leave from Kansas State University, Manhattan, KS,
USA.
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input states that are L-indistinguishable (i.e., the input
states agree on the values of L-variables) then it yields
output states that are also L-indistinguishable. A sound
information flow analysis guarantees that the programs
it accepts are noninterferent.

This paper formulates a sound intraprocedural in-
formation flow analysis algorithm — rather than a
type-based or logic-based specification — for heap ma-
nipulating programs. We assume that such programs
are more or less decorated with assertion statements
and loop/object invariants; those can be automatically
checked by tools such as BLAST [20], ESC/Java [14]
or Spec# [8]. A novel aspect of the algorithm is that
it reasons about possibly conditional information flow,
and also handles while loops and common data struc-
tures when armed with flow invariants (introduced in
the sequel). We leave the automatic inference of flow
invariants for future work.

Given a variable x labeled L, the formulation of
noninterference entails that we restrict our attention
to pair of states σ1, σ2 where σ1(x ) = σ2(x ). This
observation inspired Amtoft et al. [2, 1] to a logical
rendition of NI which uses agreement assertions of the
form xn, where two states σ1, σ2 satisfy xn when
σ1(x ) = σ2(x ). If a program P has observable input
variables x1, . . . , xn , and observable output variables
y1, . . . , ym , then NI can be recast as

{x1n ∧ . . . ∧ xnn} P {y1n ∧ . . . ∧ ymn}

The meaning (partial correctness) of the above triple
is that for any two states σ1, σ2 that agree on the val-
ues of x1, . . . , xn (as asserted by the precondition), if
one run of P transforms σ1 to σ′

1 and another run of
P transforms σ2 to σ′

2, then the values of y1, . . . , ym
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agree in the final states, σ′
1, σ

′
2 (as asserted by the post-

condition).1

Amtoft et al.[1] specify, in logical form, a mod-
ular information flow analysis for sequential, heap-
manipulating programs. If a triple is derivable for a pro-
gram then NI holds for the program. The specification
is flow sensitive (unlike most type-based approaches),
can check information leaks caused by aliasing, and
can be used for analyzing observational purity. More-
over, the specification can be used to check compliance
with delimited release policies [23] in a technically
straightforward manner: extend agreements over vari-
ables to agreements over “escape-hatch” expressions
that syntactically specify such policies. More recently,
the specification has been proposed as a crucial com-
ponent for the verification of state-dependent declassi-
fication policies [6].

The logical specification of [1] comes with an analy-
sis algorithm which, however, has some shortcomings:
it needs to know the shape of the heap, and it does not
integrate well with programmer assertions. Also, the
specification itself does not capture conditional infor-
mation flows. These shortcomings make it difficult to
analyze information flow in non-trivial programs, espe-
cially ones that involve reasoning about common data
structures. (A similar situation prevails with extant se-
curity type systems [25, 5, 21]).

Contributions. This paper shows how to reason about
information flow that may be conditional, and how to
compute it for programs that may manipulate common
data structures. The algorithm (Sect. 4) takes as input a
program and a (possibly conditional) agreement asser-
tion as postcondition, and as output generates precondi-
tions and verification conditions (VCs). Currently, the
algorithm expects the user to provide loop invariants
and object invariants that are themselves (conditional)
agreement assertions; we call such invariants flow in-
variants. The algorithm always terminates, but the VCs
may be unsatisfiable; this will happen if the flow invari-
ants are not strong enough. We prove the correctness of
the algorithm, and use it to verify some naturally oc-

1 Two remarks: (a) The connection with NI based on security la-
bels [25] is that for any well-labeled program, P , if l1, . . . , ln are
all the L-variables in P then l1n ∧ . . . ∧ lnn is an invariant.
(b) To model security lattices with more than two elements, say
L ≤ M ≤ H , multiple specifications are needed, like “if input
states agree on L then output states agree on L” and “if input states
agree on L,M then output states agree on L,M ”.

curring examples. A prototype implementation2 is cur-
rently being developed by Jonathan Hoag.

An example loop flow invariant is xn, with the fol-
lowing informal semantics: if two states, σ1 and σ2,
agree on the value of x , and one iteration of the loop
transforms σ1 into σ′

1 and σ2 into σ′
2, then also σ′

1 and
σ′

2 agree on the value of x . If the invariant is condi-
tional, like i > n ⇒ xn, then σ′

1 and σ′
2 are required

to agree on x only if they both assert i > n , whereas σ1

and σ2 can be assumed to agree on x only if they both
assert i > n . (We defer examples of object flow invari-
ants to Sect. 2.) A second contribution of the paper is
the underlying semantic framework (Sect. 3) for such
conditional assertions that mixes ordinary, Hoare-logic
style predicates with two-state agreement assertions.

A third contribution is the smooth integration with
standard assertions, the presence of which can help the
algorithm to increase precision. A simple example of
this is the program

if w then x := 7 else x := 7;assert(x = 7)

Given the postcondition xn, the algorithm will com-
pute x = 7 ⇒ xn as the precondition of the assertion
statement; this is justified in all contexts because we
employ a correctness criterion which considers only
executions that terminate successfully, and the asser-
tion will abort if x 6= 7 (which of course cannot hap-
pen in the given context). Since x = 7 ⇒ xn always
holds, it can be simplified to true, which, when given
as postcondition to the conditional is also returned as
the precondition. Without the ability to use and/or de-
rive/infer the assertion statement, however, the precon-
dition would need to include wn. The inference of such
“standard” assertions can be done by, e.g., BLAST, but
will not be our concern in this paper.

2. Examples
We now illustrate, by way of examples in Figs. 1 and
2, the issues involved in verifying information flow
policies for while loops, as well as for programs that
manipulate the heap using field update, field access and
object allocation.

Loop flow invariants. Consider the program P in
Fig. 1(a), and the policy specification {xn} {resultn}.

2 Available at http://people.cis.ksu.edu/~jch5588/
securityflow/SecurityFlow.html. It requires Java 1.5.11. As
of writing, it handles assignments, conditionals, and while loops.
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Does P satisfy this specification? That is, will two runs
of P for which the values of x agree in the initial states
also yield final states in which the values of result
agree? Note that the precondition does not make any
commitments about vn and hn.

To answer the above question, observe that since the
program updates result (line 4), for resultn to hold
at the end, vn must also hold. Alas, vn holds only
at the beginning of every odd iteration of the loop —
but fortunately, this is exactly when v is used to update
result . It turns out that to verify the program we need
the loop flow invariant odd(i) ⇒ vn which testifies to
conditionally secure information flow within the loop.3

Furthermore, after result is updated, the assignment to
v (line 5) invalidates the invariant because hn need
not hold. But because i is incremented by 1 (line 8),
odd(i) is falsified and the invariant is reestablished,
vacuously, at the beginning of the next (even) iteration
of the loop. Our algorithm, applied to the program
in Fig. 1(a) and equipped with the above loop flow
invariant, generates valid verification conditions (VCs)
together with a precondition that includes xn but not
hn. Thus the program is deemed secure.

Note that standard security type systems do not take
conditional loop flow invariants like the one above into
account and therefore, given that result has type L and
h has type H , reject the program as insecure. (The
security type given to a while loop can be interpreted as
an unconditional loop flow invariant, which in this case
is not precise enough.) For, well-typedness demands v
to have type L, due to the assignment to result (line
4), and also to have type H , due to the assignment to v
(line 5).

Object flow invariants. The next example is moti-
vated by an actual program, used in hardware verifi-
cation of operational amplifiers, that was provided by
our industrial collaborators, Rockwell-Collins. The ex-
ample also serves to introduce the heap manipulating
fragment of the language we analyze. We are given a
collection of objects where each object has three fields:
val containing its “value”, src containing the “source”
object whose value will be used to update the val field,
and idx containing the object’s index in the collection.
The overall policy specification is that odd elements
should be public; formally, we need to specify

3 Note that we do not want odd(i) in the precondition along with
xn; i can be any integer, odd or even.

odd(o.idx ) ⇒ (o.val)n and
odd(o.idx ) ⇒ (o.src)n.

Given this object flow invariant, we now ask whether
the program

y := x .src; i := x .idx ;
q := y .val ; x .val := q ; result := x .val

satisfies the policy {xn} {odd(i) ⇒ resultn}.
Intuitively, for this to hold we must demand that if

the val field of an object with odd index is updated
with a value q then the source object whose val field
contains q must be one with odd index. We therefore
assert an implication based on the above intuition:

y := x .src; i := x .idx ;
assert (odd(i) → odd(y .idx ));
q := y .val ; x .val := q ; result := x .val

It is well-known that standard Hoare logic does not
handle heaps very well, a key issue being “pointer
swing” that leads to aliasing. An update of u.f may
affect w .f if u and w may alias. Rather than employ a
may-alias analysis, we demand that all field accesses
and updates be scoped. For example, a field access,
y := x .f , occurs as open x in y := .f ; close. A field
update, x .f := y , occurs as open x in .f := y ; close.

Fig. 1(b) shows the program that corresponds to
the one above. It also exemplifies the syntax of the
language that we analyze: it is a simple imperative
language, extended with assertions and scoped heap
manipulating commands (field accesses, field updates,
object allocation). A formal BNF appears in Sect. 3.

Because of scoped field accesses and updates, we no
longer need a prefix for a field as this is clear from the
scope. In general, to compare claims about two differ-
ent scopes, as in assert(odd(x .idx ) → odd(y .idx )),
we need to save the result of x .idx into a variable i .
Finally, it turns out that we must assist our analysis by
explicitly asserting (line 10) that when x is opened the
second time, the index is still i .

The task of each scope is now to maintain the ob-
ject flow invariant. To see that reasoning about aliasing
is not a problem, observe that it is possible that updat-
ing the object pointed to by x also updates the object
pointed to by y . However, this is permissible as long as
the new object state satisfies the object flow invariant.

Note that the assertions used in the program (lines 6,
10) can be eliminated by theorem proving tools used
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1. i := 0; result := 0;
2. while (i < 7) do
3. if odd(i)
4. then result := result + v ;
5. v := v + h;
6. else v := x ;
7. fi;
8. i := i + 1;
9. od

(a)

1. open x in
2. y := .src;
3. i := .idx ;
4. close;
5. open y in
6. assert (odd(i) → odd(.idx ));
7. q := .val ;
8. close;
9. open x in
10. assert (.idx = i);
11. .val := q ;
12. result := .val ;
13. close;

(b)

Figure 1. Two examples that illustrate (a) loop flow invariants, and (b) object flow invariants and scoped heap
operations. odd(i) is expressible as (i mod 2 = 1) in our language.

in conjunction with other static analyses. In particu-
lar, the first assertion (line 6) could be eliminated in
case we can prove, say, that for all objects o we have
o.src.idx = o.idx + 2.

Our algorithm for verification condition generation,
when given as input the program in Fig. 1(b) with post-
condition odd(i) ⇒ resultn and object flow invariant
{odd(.idx ) ⇒ .valn, odd(.idx ) ⇒ .srcn}, generates
(as sketched in Sect. 5) valid VCs, and the precondition
true ⇒ xn (equivalent to xn).

Combining loop flow invariants, object flow invari-
ants, and allocation. Next, we consider the example
in Fig. 2, featuring a heterogeneous list pointed to by x
and represented as a node chain, where one node can be
reached from another by traversing next links. The val
field of each node contains either a high (H ) value or
a low (L) value, where the protocol is that a value is L
provided it is less than 10. Informally, the list satisfies
an object flow invariant .val < 10 ⇒ valn.

We wish to split the list pointed to by x and output
two homogeneous lists, pointed to by y and z ; here y
will point to a list containing all the nodes of x with val
fields that are L, i.e., less than 10, whereas z will point
to a list containing the other nodes of x . Since the final
value of result is taken from the list pointed to by y , the
overall policy specification is {xn} {resultn}. Our
algorithm verifies that the program in Fig. 2 satisfies

this specification, in that from postcondition resultn it
generates precondition xn and some valid VCs.

For the verification process, object flow invariants
are needed; one might think that we need one invariant
for each kind of node but those can be combined into a
“universal” object flow invariant, using a field t which
tags the lists x , y and z with 1, 2, 3 respectively.

(.t = 1 ∧ .val < 10) ⇒ .valn
.t = 1 ⇒ .nextn .t = 1 ⇒ (.val < 10)n
.t = 2 ⇒ .valn .t = 2 ⇒ .nextn

Here (.val < 10)n is satisfies by a pair of states if
they agree on the value of the comparison (but not
necessarily on the value of .val ).

The example also shows a scoped object allocation,
where new objects (pointed to by y1 and z1) are allo-
cated in the heap and their fields initialized as shown.
Once all fields are initialized, the object flow invari-
ant must have been established so that when the scope
new . . . close is exited the object is in a “steady state”.

Readers familiar with the Boogie methodology [7]
might notice some similarity between open . . . close
and Boogie’s unpack and pack, where the object in-
variant must be reestablished at the end of every field
update. Boogie requires object invariants to be associ-
ated with every object of a class. Our language seems
impoverished in comparison to Boogie’s in that we
have the equivalent of a single universal class, but as
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1. y := nil ; z := nil ;
2. while x 6= nil do
3. open x in assert(.t = 1); v := .val ; n := .next ; close;
4. x := n;
5. if v < 10
6. then new y1 in .val := v ; .t := 2; .next := y ; close;
7. y := y1;
8. else new z1 in .val := v ; .t := 3; .next := z ; close;
9. z := z1;
10. fi;
11. od;

12. result := nil ;
13. while y 6= nil do
14. open y in
15. assert(.t = 2);
16. result := .val ;
17. y := .next ;
18. close;
19. od

Figure 2. List splitting

the above object flow invariant shows, the use of tags
enables us to encode multiple invariants.

3. Syntax and Semantics
Expression syntax. An expression E ∈ Exp is ei-
ther an arithmetic expression A ∈ AExp or a boolean
expression B ∈ BExp, given by the syntax

A ::= x | .f | c | nil | A op A
B ::= A bop A

where we use x , y , . . . to range over variables in Var,
and f , g , . . . to range over field names in Fld, and c
to range over integer constants, and op to range over
arithmetic operators in {+,×,mod, . . .}, and bop to
range over comparison operators in {=, <, . . .}.

We write fv(E ) (or ff(E )) for the variables (field
names) occurring free in E . We write E [A/x ] for the
result of substituting all occurrences of x in E by A;
similarly we write E [A/.f ]. We say that E is field-free
if E contains no field names, and that E is an object
expression if E contains no variables.

We assume that each variable and each field is either
for integers or for pointers (to objects), as prescribed
by a function type mapping Var∪Fld into {int, obj}.
We shall only consider programs that are “well-typed”
in that respect. In particular, we disallow pointer arith-
metic; the only operation allowed on pointers is pointer
equality. Therefore, if type(x ) = obj then x ∈ fv(A)
implies A = x , and x ∈ fv(B) implies that B is either
x = x or A = x or x = A with x /∈ fv(A).

Semantic domains. A value (v ∈ Val ) is an integer
n , a location l ∈ Loc, or nil ; default values are de-
fined as deflt(int) = 0 and deflt(obj) = nil , and we

write deflt(f ) for deflt(type(f )). A store s ∈ Store
maps variables to values, an object state r maps field
names to values, and a heap h ∈ Heap maps locations
to object states; the notions of dom( ) and ran( ) are
as usual except that (with misuse of notation) we write
ran(h) = {v | ∃l ∈ dom(h), f ∈ Fld • v = h(l)(f )}.
We write [s | x 7→ v ] for the store that is like s except
that it maps x into v ; similarly we write [r | f 7→v ] and
[h | l 7→r ].

Expression semantics. The semantics of an arith-
metic (boolean) expression is a function from stores
and object states into values (booleans). If an expres-
sion E is field-free (an object expression), the “r” com-
ponent (the “s” component) can be omitted.

[[x ]]sr = s(x ), [[.f ]]sr = r(f ), [[c]]sr = c,
[[nil]]sr = nil
[[A1 + A2]]sr = [[A1]]sr + [[A2]]sr , etc.
[[A1 < A2]]sr = True iff [[A1]]sr < [[A2]]sr , etc.

One-state assertions. We use φ ∈ 1Assert to range
over “standard” assertions, given by the syntax

φ ::= B | φ ∧ φ | φ ∨ φ | ¬φ

We may define true as 0 = 0, and false as 0 = 1;
as usual, we define φ1 → φ2 as ¬φ1 ∨ φ2. We write
φ[A/x ] for the result of substituting all occurrences of
x in φ by A; similarly we define φ[A/.f ].

The satisfaction relation for assertions reads s,r |=
φ and denotes that φ holds in the one state comprised
by the store s and the object state r . The definition is
standard and elided. We say that φ is field-free if φ
contains no field names, in which case the r component
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can be omitted; we say that φ is an object assertion if
φ contains no variables, in which case the s component
can be omitted.

Command syntax. A command S ∈ Cmd is either
a top-level command TS ∈ TCmd or a record com-
mand RS ∈ RCmd; the latter is executed within the
scope of a single object and is thus allowed to refer-
ence its fields. The syntax is given in Fig. 3, where in
the grammar for TS we demand that all instances of A,
B , and φ are field-free.

Command semantics. A record command transforms
the store, and the state of the object being manipu-
lated, into another store and another object state; hence
its semantics is given in relational style, in the form
s,r [[RS ]] s ′,r ′. A top-level command transforms a
store and a heap into another store and another heap;
thus its semantics is given in the form s,h [[TS ]] s ′,h ′.
The semantics is defined inductively on RS and TS ;
some key clauses are given in Fig. 6 in Appendix. Note
that for some TS and s, h , there may not exist any s ′, h ′

such that s,h [[TS ]] s ′,h ′ (modulo the choice of fresh
location for object allocation, there exists at most one
s ′, h ′); this can happen if a while loop does not termi-
nate, or an assert fails.

Two-state assertions. We shall use θ ∈ 2Assert
to range over conditional agreement assertions, also
called 2-assertions; they are of the form φ ⇒ En
which intuitively is satisfied by a pair of states if either
at least one of them does not satisfy φ, or they agree
on the value of E . As we cannot expect two runs to
choose the same fresh location for object allocation, we
employ a bijection β between locations; we extend β so
that c β c for all integers c, nil β nil , True β True,
and False β False.

Then we define s,r&s1,r1 |=β θ, the satisfaction
relation for 2-assertions, by

s,r&s1,r1 |=β φ ⇒ En iff whenever s,r |= φ
and s1,r1 |= φ then [[E ]]sr β [[E ]]s1r1 .

For θ = (φ ⇒ En), we call φ the antecedent of θ and
write φ = ant(θ), and we call E the consequent of θ
and write E = con(θ). We say that θ is field-free if
it contains no field names, in which case the r and r1

can be omitted, and say that θ is an object assertion if
it contains no variables, in which case the s and s1 can
be omitted.

We use Θ ∈ P(2Assert) to range over sets of 2-
assertions, with conjunction implicit. Thus

s,r&s1,r1 |=β Θ iff ∀θ ∈ Θ • s,r&s1,r1 |=β θ.

Object flow invariants. We assume that there exists
an object assertion I that serves as a flow invariant for
every object (cf. the discussion at the end of Sect. 2).
We shall demand that for two runs of the program, the
heap part obeys this invariant (except when an object is
being manipulated within a scoped construct), and thus
define

h&h1 |=β I iff for all l , l1 with l β l1:
h(l)&h1(l1) |=β I.

4. Algorithm
We shall define, as done in Figs. 4 & 5, an algorithm
VCgen for inferring preconditions, and verification
conditions, from postconditions. We write

[VC ]{Θ} (R)⇐= S {Θ′}
if from input S and Θ′, VCgen returns output Θ, R,
and VC . Here S is a command, Θ′ is the desired post-
condition for S , and Θ is a precondition for S that
is designed so as to be sufficient to establish Θ′; if
S is a top-level command then VCgen requires Θ′ to
be field-free and ensures that Θ is field-free. We shall
shortly explain the role of the verification conditions
VC , but shall first explain the R component which cap-
tures how 2-assertions in Θ relate to 2-assertions in
Θ′. More precisely, we have R ⊆ Θ × {m, u} × Θ′

where tags m ,u are mnemonics for “modified” and
“unmodified”; we use γ to range over {m, u}. We
write dom(R) = {θ | ∃(θ, , ) ∈ R} and ran(R) =
{θ′ | ∃( , , θ′) ∈ R}. Intuitively, if (θ, , θ′) ∈ R then
θ is in the precondition because θ′ is in the postcondi-
tion (θ′ is an origin of θ); moreover, if (θ, u, θ′) ∈ R
then additionally it holds that S modifies no “rele-
vant” variable or field name, where a “relevant” vari-
able is one occurring in the consequent of θ′. For ex-
ample, if S is x := w then R might contain the triplets
(q > 4 ⇒ wn,m, q > 4 ⇒ xn) and (w > 3 ⇒
zn, u, x > 3 ⇒ zn).

Verification conditions. These are either of the form
φ B1 φ′, meaning that φ logically implies φ′, or of
the form Θ B2 θ, again meaning that Θ logically
implies θ but now for 2-assertions. Thus |= φ B1 φ′

iff for all s, r : whenever s,r |= φ then also s,r |=
φ′; and |= Θ B2 θ iff for all s, r , s1, r1, β: whenever
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RS ::= skip TS ::= skip
assertion | assert(φ) | assert(φ)
sequential execution | RS ;RS | TS ;TS
conditional | if B then RS else RS | if B then TS else TS
iteration | while B do RS | while B do TS
variable assignment | x := A | x := A
field update | .f := A
object allocation | new x in RS close
object manipulation | open x in RS close

Figure 3. Command syntax

s,r&s1,r1 |=β Θ then also s,r&s1,r1 |=β θ. We use
VC to range over sets of verification conditions, and
write |= VC iff |= vc holds for all vc ∈ VC .

Now assume that some vc in the output of VCgen
cannot be satisfied. (This is the only way that VCgen
can “fail” on a well-typed program.) Looking at the
clauses, we see that vc must have been generated by
either open or while. The former case would reflect
the failure to prove that I is indeed a flow invariant for
objects in the heap; the user would then need to propose
another object flow invariant. The latter case would
reflect the failure to prove that the given postcondition
is indeed a loop flow invariant; the user would then
need to strengthen it. The above situations are the only
places where VCgen needs user assistance.

Correctness results. Ultimately, we must express that
if [VC ]{Θ} ( )⇐= S {Θ′} with |= VC then Θ is in-
deed a precondition that is strong enough to establish
Θ′. (Θ may not be the weakest such precondition, how-
ever.) For record commands, this is stated as:

PROPOSITION 4.1 (Correctness of record commands).
Assume that

1. [VC ]{Θ} ( )⇐= RS {Θ′} and that |= VC
2. s,r [[RS ]] s ′,r ′ and s1,r1 [[RS ]] s ′

1,r
′
1

3. s,r&s1,r1 |=β Θ.

Then s ′,r ′&s ′
1,r

′
1 |=β Θ′.

Note that Proposition 4.1 is termination-insensitive, as
is also Theorem 4.2; this is not surprising given our
choice of a relational semantics (but see [3] for a logic-
based approach that is termination-sensitive).

Proposition 4.1 is used to prove correctness of top-
level commands, for which the correctness statement is
slightly more complex:

THEOREM 4.2 (Correctness). Assume that

1. [VC ]{Θ} ( )⇐= TS {Θ′} and that |= VC
2. s,h [[TS ]] s ′,h ′ and that s1,h1 [[TS ]] s ′

1,h
′
1

3. s&s1 |=β Θ and h&h1 |=β I.
4. There exists θ′

0 ∈ Θ′ such that s ′ |= ant(θ′
0) and

s ′
1 |= ant(θ′

0).

Then there exists β′ extending β such that s ′&s ′
1 |=β′

Θ′ and h ′&h ′
1 |=β′ I.

If TS contains no new commands, we may choose
β′ = β, but otherwise β′ may be a proper extension
of β so as to model that new heap locations have been
allocated. Condition 4 is a bit nonintuitive, but it is (at
least currently) needed for the proofs to carry through,
and it is non-restrictive as it can be fulfilled by adding
to Θ′ a trivial 2-assertion true ⇒ 0n.

Theorem 4.2 is proved in a forthcoming4 technical
report [4], by establishing a number of auxiliary prop-
erties. These properties have largely determined the de-
sign of VCgen and will thus guide us as we later explain
the various clauses of Figs. 4 & 5.

The first such property is a variant of the “*-property”
by Bell and La Padula [10], also called “write confine-
ment” [5], which is used to preclude, e.g., “low writes
under high guards”. In our setting, it captures the role
of the R component and reads as follows:

LEMMA 4.3 (Write Confinement).
Assume [VC ]{Θ} (R)⇐= S {Θ′} . Then dom(R) =
Θ and ran(R) = Θ′. Given θ′ ∈ Θ′, there exists at
most one θ such that (θ, u, θ′) ∈ R. If there exists such
θ, then con(θ) = con(θ′), and with E = con(θ) we
have
4 Note to referees: all proofs have been done; we are about to
convert them into LATEX.
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• if s, [[S ]] s ′, then s agrees with s ′ on fv(E );
• if s,r [[S ]] s ′,r ′ (thus S is of form RS ) then also r

agrees with r ′ on ff(E ).

Lemma 4.3 is needed in the proof of Theorem 4.2 (and
Prop. 4.1) to handle the case where the two runs in
question follow different branches in a conditional, as
we must then ensure that neither run modifies a variable
(field name) on which we want the two runs to agree
afterwards.

We now embark on explaining the various clauses
of VCgen in Figs. 4 and 5. For an assignment x := A,
each 2-assertion φ ⇒ En in Θ′ produces exactly
one 2-assertion in Θ, given by substituting A for x
(as in standard Hoare logic) in φ as well as in E ;
the connection is tagged m when x occurs in E . The
treatment of field update is similar, and of skip even
simpler. The rule for S1 ;S2 works backwards, first
computing the precondition for S2 which is then used to
compute the precondition for S1; the tags express that a
consequent is modified iff it has been modified in either
S1 or S2. The rule for assert allows us to weaken
2-assertions, by strengthening their antecedents; this
is sound since execution will abort from states not
satisfying the new antecedents.

To motivate the treatment (Fig. 4) of a conditional
if B then S1 else S2, assume that φ ⇒ En occurs
in Θ′. If (φ ⇒ En) ∈ Θ′

u , we can assume from
Lemma 4.3 that neither S1 nor S2 has modified E ,
and that the precondition of each Si will contain a 2-
assertion of the form φi ⇒ En; these can now be
combined by R0 into one single precondition. On the
other hand, if (φ ⇒ En) ∈ Θ′

m then E has been
modified by at least one branch; therefore, we should
not allow two runs to take different branches if they
both satisfy φ afterwards. This is ensured by R′

0, while
R′

1 (R′
2) caters for the case where both runs choose S1

(S2).

EXAMPLE 4.4. Consider the result of applying VCgen
to the body of the while loop in Fig 1(a), with postcon-
dition {xn, odd(i) ⇒ vn}. (We write xn for true ⇒
xn.) Working backwards, the assignment to i trans-
forms odd(i) ⇒ vn to odd(i + 1) ⇒ vn, which
amounts to ¬odd(i) ⇒ vn, but keeps xn unchanged.
To process the conditional, we apply VCgen to the
branches; the else branch produces R2 given by

(xn, u, xn),
(¬odd(i) ⇒ xn,m,¬odd(i) ⇒ vn)

while the then branch produces R1 given by

(xn, u, xn),
(¬odd(i) ⇒ (v + h)n,m,¬odd(i) ⇒ vn)

Referring to the clause for if in Fig. 4, we have
Θ′

u = {xn} and Θ′
m = {¬odd(i) ⇒ vn}. The for-

mer contributes, by R0, the precondition (odd(i) ∨
¬odd(i)) ⇒ xn which amounts to xn. The lat-
ter contributes by R′

1 the precondition (¬odd(i) ∧
odd(i)) ⇒ (v + h)n which is vacuously true, by R′

2

the precondition (¬odd(i) ∧ ¬odd(i)) ⇒ xn which
amounts to ¬odd(i) ⇒ xn, and by R′

0 the precon-
dition (¬odd(i) ∧ odd(i) ∨ ¬odd(i) ∧ ¬odd(i)) ⇒
odd(i)n which is always true (two states satisfying
¬odd(i) will agree on the value of odd(i)). Assuming
VCgen is able to carry out such basic simplifications,
it will return, for the body of the while loop, an R
component given by

(xn, u, xn),
(¬odd(i) ⇒ xn,m, odd(i) ⇒ vn)

The noteworthy part is that even though the postcondi-
tion mentions vn, and v is updated using h , VCgen
generates a precondition which does not mention h ,
since it exploits the parity of i .

For a while loop (Fig. 5), VCgen checks whether the
given postcondition Θ can indeed serve as a flow in-
variant. (As mentioned earlier this may fail in which
case the user must strengthen the postcondition.) First
we partition Θ into two sets, Θm and Θu ; a 2-assertion
can be in the latter set if its consequent is not modified
by the loop body. Now VC2 serves a similar function
as R′

0 did in the clause for conditionals: by demanding
a precondition with the loop test B as consequent, it
ensures that if one run stays in the loop and updates a
variable on which the two runs must agree, then also
the other run stays in the loop. When both runs stay in
the loop, VC1 ensures that the loop flow invariant is
maintained.

The need for VC3, VC4 and VC5 is less obvi-
ous, but they are designed so as to establish an aux-
iliary result, stated below as Lemma 4.5. VC3 de-
mands that Θm contains an assertion θm with a “weak-
est” antecedent. (This is no serious restriction, since if
Θm = {φi ⇒ Ein | i ∈ {1 . . .n}} we can just add
(φ1 ∨ . . . ∨ φn) ⇒ 0n to Θm .)
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LEMMA 4.5. Assume [VC ]{Θ} (R)⇐= S {Θ′} with
|= VC . Given θ′ ∈ Θ′, there exists (θ, , θ′) ∈ R such
that

• if S = RS : whenever s,r [[S ]] s ′,r ′ and s ′,r ′ |=
ant(θ′) then s,r |= ant(θ);

• if S = TS : whenever s,h [[S ]] s ′,h ′ and s ′ |=
ant(θ′) then s |= ant(θ).

For S = while B do S0, if θ′ ∈ Θu we can use θ = θ′,
otherwise we can use θ = θm .

We now address the clause for open x in RS close,
where we first compute in Θ0 a precondition for RS ,
given a postcondition that is augmented with I (as
the object invariant must be re-established at the end).
Note that we must remove from Θ0 any references to
field names; for that purpose we assume that there is
a function ff + : 1Assert → 1Assert such that if
φ′ = ff +(φ) then (i) φ′ is field-free, and (ii) φ logi-
cally implies φ′. These demands are trivially fulfilled
if ff +(φ) = true for all φ, but a more precise solu-
tion is possible; then, e.g., ff + returns x = 7 given
x = 7 ∧ ¬(.f = 8). Thus, e.g., Θ will (by R3) contain
x = 7 ⇒ yn if Θ0 contains (x = 7 ∧ ¬(.f = 8)) ⇒
yn.

Equipped with ff +, we can explain the various
clauses, first R4 which “lifts out” assertions in Θ0 that
originate from a top-level assertion and whose conse-
quents have not been modified. Now consider an as-
sertion in Θ0 whose consequent has been modified.
If the resulting consequent is not field-free, we must
demand that it follows from the object flow invari-
ant, as expressed by VC2. Otherwise, it can be lifted
out of the scope, as done by R3. A precondition, say
true ⇒ (.f + x )n might need to be replaced by the
two assertions true ⇒ xn and true ⇒ .f n which
together are strictly stronger; the former can be lifted
out, the latter must follow from I. Also, assertions in I
whose consequents have not been modified (and there-
fore still contain field names) must follow from I, as
expressed by VC1. The role of R1 and R2 is to ensure
that if a relevant variable (in Θ′ or in I) is modified,
the two runs are indeed manipulating the same object.

Note that R2 ensures that there are “m” tags going
out from all 2-assertions in the postcondition of a com-
mand that modifies a consequent of a 2-assertion in I.
This property is required by the following Lemma:

LEMMA 4.6. Assume [VC ]{Θ} (R) ⇐= TS {Θ′}
with |= VC , and that θ′ ∈ Θ′ is such that if ( , γ, θ′) ∈

R then γ = u . For (φ0 ⇒ E0n) ∈ I, if s,h [[TS ]] s ′,h ′

then for all l ∈ dom(h): (i) if h ′(l) |= φ0 then
h(l) |= φ0; (ii) h(l)(f ) = h ′(l)(f ) for all f in ff(E0).

To see why Lemma 4.6 is needed, recall that the cor-
rectness of if and while rests on Lemma 4.3 which
ensures that if two runs follow different paths then
they do not modify consequents of top-level assertions.
Lemma 4.6 now further ensures that two such diverting
runs do not invalidate object flow invariants.

The clause for new first computes in Θ0 a pre-
condition for RS , and then exploits that the seman-
tics of new initializes all fields to a default value. So
if Θ0 contains say .f = 1 ⇒ yn, we generate the
(trivial) precondition 0 = 1 ⇒ yn; if Θ0 contains
say true ⇒ (.f + y)n, we generate the precondition
true ⇒ (0 + y)n. We also want to eliminate x from
the precondition; this is possible due to the freshness
of the new location and the absence of pointer arith-
metic: after object allocation, it can never hold that
x = A, unless A = x . This is formalized by the func-
tion rmx : 1Assert → 1Assert which is a homo-
morphism on the structure of φ, which maps x = x
to true, which maps x = A and A = x to false if
x 6= A and hence x /∈ fv(A), and which maps any
B not containing x to itself. Concerning the conse-
quents, we exploit that two runs will always agree on
the value of x after allocation (as β can be extended
to relate the fresh locations); this is formalized by the
function rmx : Exp → Exp which maps E into 0 if
x ∈ fv(E ), and into E otherwise.

Strengthening and simplifying assertions. As can be
seen by inspecting, e.g., the clause for conditionals,
the preconditions generated by VCgen may contain a
number of assertions which is exponential in the size
of the program. Our implementation therefore needs to
be able to simplify assertions, replacing a precondition
with one which is equivalent. In particular, it is impor-
tant (cf. Example 4.4) to recognize when a 2-assertion
has an antecedent which is always false, or when it is
of the form φ ⇒ Bn where φ implies B (or ¬B ), since
then it can be eliminated. Preliminary experiments with
our prototype implementation indicate that a few such
rules are sufficient to yield readable preconditions; this
makes us hope for a running time which is close to lin-
ear though further experiments are needed.

Let us be a bit more formal about what must hold,
apart from {θ1, . . . , θn} B2 θ, when θ is replaced by
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θ1 . . . θn . Lemma 4.5 requires that for at least one i ∈
{1 . . .n} we can verify ant(θ) B1 ant(θi). Moreover,
we need to record in R that θ is related to each θi , and
if we want to assign the tag u we must demand (due to
Lemma 4.3) that n = 1 and con(θ) = con(θ1). These
considerations suggest that rather than eliminating a
2-assertion which is always true, we replace it by a
designated such assertion, e.g., true ⇒ 0n.

5. Worked Out Example
In this section we work out the example in Fig. 1(b).
The other examples are worked out in the forthcoming
technical report. We want to prove that the program
satisfies the specification {true ⇒ xn} {odd(i) ⇒
resultn}. The object invariant, I, is a conjunction of
odd(.idx ) ⇒ .valn and odd(.idx ) ⇒ .srcn.

We first consider the last open, lines 9–13 of
Fig. 1(b), where we must analyze the body (lines 10–
12) with a postcondition which is odd(i) ⇒ resultn
conjoined with the object invariant. Using VCgen’s
clauses for assignment, field update, and assert, this
yields an empty set of VCs, and R0 containing

(odd(i) ∧ (.idx = i) ⇒ qn,m, odd(i) ⇒ resultn)
(odd(.idx ) ∧ (.idx = i) ⇒ qn,m, odd(.idx ) ⇒ .valn)
(odd(.idx ) ∧ (.idx = i) ⇒ .srcn, u, odd(.idx ) ⇒ .srcn)

Applying the clause in VCgen for open now gener-
ates the verification conditions: VC1 = {odd(.idx ) ∧
(.idx = i) B1 odd(.idx )} and VC2 = {}. (To see why
VC2 is empty, note that the relevant assertions are of
the form ⇒ qn but qn is field-free.) Also, it gener-
ates a set R which is the union of the sets R1,R2,R3

below (since R4 is empty).

R1 = {(odd(i) ⇒ xn,m, odd(i) ⇒ resultn)}
R2 = {true ⇒ xn,m, odd(i) ⇒ resultn)}
R3 = {(odd(i) ⇒ qn,m, odd(i) ⇒ resultn)}

We have assumed that ff + maps odd(.idx )∧(.idx = i)
into odd(i). Now the precondition of lines 9–13 can be
read off from the above sets as

{odd(i) ⇒ xn, xn, odd(i) ⇒ qn}

where the first assertion can be removed as it follows
from the second. Lines 1–8 of Fig. 1(b) are next ana-
lyzed with the above as postcondition. For lines 5–8,
it can be shown that, using the case for open, VCgen
generates the verification conditions

odd(.idx ) ∧ (odd(i) → odd(.idx )) B1 odd(.idx ),
I B2 (odd(i) ∧ (odd(i) → odd(.idx ))) ⇒ .valn

and preconditions {odd(i) ⇒ yn, true ⇒ xn}. Fi-
nally, the analysis of lines 1–4 of Fig. 1(b) generates
the VCs odd(.idx ) B1 odd(.idx ), I B2 odd(.idx ) ⇒
.srcn as well as the overall precondition of the pro-
gram, true ⇒ xn. The overall VCs generated for the
program are the union of the VCs generated for each of
the open. We note that the VCs are valid.

Fig. 7 in the Appendix shows the assertions that hold
at each line in the program.

6. Discussion
A recently popular approach to information flow anal-
ysis is self-composition, first proposed by Barthe et
al. [9] and later extended by, e.g., Terauchi and Aiken [24]
and Naumann [22]. Self-composition works as follows:
for a given program S , a copy S ′ is created with all vari-
ables renamed (primed); with the observable variables
say x , y , then NI holds provided the sequential compo-
sition S ;S ′ when given precondition x = x ′ ∧ y = y ′

also ensures postcondition x = x ′ ∧ y = y ′.
Terauchi and Aiken [24] use self-composition to ver-

ify information flow automatically using the BLAST [20]
tool. To obtain good experimental results, they intro-
duce sound program transformations of self-composed
programs; it is also often necessary to leverage the re-
sults of a standard information flow analyses, such as a
security typing. In a sense, our approach is dual in that
noninterference properties are explicit in our analysis
but we can leverage standard assertions, inserted and/or
checked by general verifiers. An interesting question
is whether the 2-assertions generated by VCgen could
be translated into assertions that would assist the self-
composition approach.

Since [24] does not address heap-manipulating pro-
grams, the work most closely related to ours is the
one by Naumann [22] whose goal was the verifica-
tion of information flow using existing verifiers like
Spec# [8] or ESC/Java2 [14], and whose contribution
is to extend the theory of self-composition to account
for manipulations of heap objects. In some cases, like
for while loops, it is more practical (but not necessary)
for the technique to perform program transformations.
For heap-manipulating programs, the two copies of the
programs involve different sets of objects and therefore
the correspondence between the objects (“mates” in
Naumann’s terminology) must be made explicit in the
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[VC ]{Θ} (R)⇐= skip {Θ′}
iff R = {(θ, u, θ) | θ ∈ Θ′} and Θ = Θ′ and VC = ∅

[VC ]{Θ} (R)⇐= assert(φ0) {Θ′}
iff R = {((φ ∧ φ0) ⇒ En, u, φ ⇒ En) | φ ⇒ En ∈ Θ′}
and Θ = dom(R) and VC = ∅

[VC ]{Θ} (R)⇐= x := A {Θ′}
iff R = {(φ[A/x ] ⇒ E [A/x ]n, γ, φ ⇒ En) | φ ⇒ En ∈ Θ′}

where γ = m iff x ∈ fv(E )
and Θ = dom(R) and VC = ∅

[VC ]{Θ} (R)⇐= .f := A {Θ′}
iff R = {(φ[A/.f ] ⇒ E [A/.f ]n, γ, φ ⇒ En) | φ ⇒ En ∈ Θ′}

where γ = m iff f ∈ ff(E )
and Θ = dom(R) and VC = ∅

[VC ]{Θ} (R)⇐= S1 ;S2 {Θ′}
iff [VC2]{Θ′′} (R2)⇐= S2 {Θ′} and [VC1]{Θ} (R1)⇐= S1 {Θ′′}
and R = {(θ, γ, θ′) | ∃θ′′, γ1, γ2 • (θ, γ1, θ

′′) ∈ R1, (θ′′, γ2, θ
′) ∈ R2}

where γ = m iff γ1 = m or γ2 = m
and VC = VC1 ∪VC2

[VC ]{Θ} (R)⇐= if B then S1 else S2 {Θ′}
iff [VC1]{Θ1} (R1)⇐= S1 {Θ′} and [VC2]{Θ2} (R2)⇐= S2 {Θ′}
and R = R′

1 ∪ R′
2 ∪ R′

0 ∪ R0

where R′
1 = {((φ1 ∧ B) ⇒ E1n,m, θ′) | θ′ ∈ Θ′

m , (φ1 ⇒ E1n, , θ′) ∈ R1}
and R′

2 = {((φ2 ∧ ¬B) ⇒ E2n,m, θ′) | θ′ ∈ Θ′
m , (φ2 ⇒ E2n, , θ′) ∈ R2}

and R′
0 = {(((φ1 ∧ B) ∨ (φ2 ∧ ¬B)) ⇒ Bn,m, θ′)

| θ′ ∈ Θ′
m , (φ1 ⇒ E1n, , θ′) ∈ R1, (φ2 ⇒ E2n, , θ′) ∈ R2}

and R0 = {(((φ1 ∧ B) ∨ (φ2 ∧ ¬B)) ⇒ En, u, θ′)
| θ′ ∈ Θ′

u , (φ1 ⇒ En, u, θ′) ∈ R1, (φ2 ⇒ En, u, θ′) ∈ R2}
and Θ′

m = {θ′ ∈ Θ′ | ∃( ,m, θ′) ∈ R1 ∪ R2}
and Θ′

u = Θ′ \Θ′
m

and Θ = dom(R) and VC = VC1 ∪VC2

Figure 4. The verification condition generator, part I

specification of the composed program. Our approach
avoids program transformations, and our specifications
do not need to specify mates: that is handled by the se-
mantics of assertions. On the other hand, we cannot use
an existing verifier like Spec# or ESC/Java2 directly;
we must thus show how preconditions and VCs are ac-
tually generated.

Dufay et al. [16] use self-composition to check non-
interference for data mining algorithms implemented in
Java, using the Krakatoa tool, based on the Coq theo-
rem prover and using JML [12]. However, they do not

provide details on how the heap is handled. Darvas et
al. [15] use the KeY tool for interactive verification of
noninterference. Information flow is modeled by a dy-
namic logic formula rather than by assertions as in self-
composition.

Bergeretti and Carré [11] present a compositional
method for inferring which variables are dependent
on which variables; this technique forms the basis for
the Spark Ada Examiner [13] which requires that each
method is annotated with derives annotations like

derives u from y,z, derives w from x,y
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[VC ]{Θ} (R)⇐= while B do S0 {Θ}
iff [VC0]{Θ0} (R0)⇐= S0 {Θ}
and R = {(θ, u, θ) | θ ∈ Θu} ∪ {(θ1,m, θ2) | θ1, θ2 ∈ Θm}
and VC = VC0 ∪VC1 ∪VC2 ∪VC3 ∪VC4 ∪VC5

where VC1 = {Θ B2 (φ ∧ B) ⇒ En | (φ ⇒ En, , ) ∈ R0}
and VC2 = {Θ B2 φm ⇒ Bn}
and VC3 = {ant(θ) B1 φm | θ ∈ Θm}
and VC4 = {ant(θ) B1 φm | (θ, , θm) ∈ R0}
and VC5 = {ant(θ0) B1 ant(θ) | (θ0, , θ) ∈ R0, θ ∈ Θu}
and Θm = {θ ∈ Θ | ∃( ,m, θ) ∈ R0}
and Θu = Θ \Θm

and Θm contains a special element θm with φm = ant(θm)

[VC ]{Θ} (R)⇐= open x in RS close {Θ′}
iff [VC0]{Θ0} (R0)⇐= RS {Θ′ ∪ I}
and R = R1 ∪ R2 ∪ R3 ∪ R4

where R1 = {(ff +(φ) ⇒ xn,m, θ′) | θ′ ∈ Θ′, (φ ⇒ n,m, θ′) ∈ R0}
and R2 = if exists θ ∈ I with ( ,m, θ) ∈ R0 then {(true ⇒ xn,m, θ′) | θ′ ∈ Θ′} else ∅
and R3 = {(ff +(φ) ⇒ En,m, θ′) | θ′ ∈ Θ′, E field-free, ∃θ′

0 ∈ I ∪ {θ′} • (φ ⇒ En,m, θ′
0) ∈ R0}

and R4 = {(ff +(φ) ⇒ En, u, θ′) | θ′ ∈ Θ′, (φ ⇒ En, u, θ′) ∈ R0}
and Θ = dom(R) and VC = VC0 ∪VC1 ∪VC2

where VC1 = {ant(θ) B1 ant(θ′) | θ′ ∈ I, (θ, u, θ′) ∈ R0}
and VC2 = {I B2 θ | (θ,m, ) ∈ R0, con(θ) not field-free}

[VC ]{Θ} (R)⇐= new x in RS close {Θ′}
iff [VC0]{Θ0} (R0)⇐= RS {Θ′ ∪ I}
and R = {(rmx (φ[deflt(f )/f ]) ⇒ rmx (E [deflt(f )/f ])n, γ, θ′)

| (φ ⇒ En, γ0, θ
′) ∈ R0, γ = m iff γ0 = m or x ∈ fv(E )}

and Θ = dom(R) and VC = VC0

Figure 5. The verification condition generator, part II

It is interesting to observe that such “channels” of infor-
mation flow is captured by our R component, as when

[VC ]{xn, yn, zn} (R)⇐= S {un,wn}

with R containing the elements (yn, , un), (zn, , un),
(xn, ,wn), (yn, ,wn). Our approach is more gen-
eral in that it also captures conditional channels; we
plan to investigate how to extend the Spark Ada Exam-
iner framework to express R elements like (i > 5 ⇒
yn, , j > 7 ⇒ un). Also, we hope to investigate the
relationship to the path conditions presented by Ham-
mer et al. [19].

In the near future, we plan to experiment with the
prototype implementation which is currently being de-
veloped by our undergraduate student Jonathan Hoag.
Over the summer, we might try to integrate it with the
Bogor tool [17] to generate and/or check standard as-

sertions that will increase precision. To ease expres-
siveness, we would like to allow multiple scopes to be
simultaneously open.

An important long-term goal is to develop tech-
niques for the automatic computation of flow (loop/object)
invariants, thereby moving closer to an automatic in-
formation flow analysis, and to extend the frame-
work to an interprocedural setting. We would also
like a (sound and preferably complete) axiomatiza-
tion of B2 so as to automatically check whether the
VCs generated are satisfiable; a trivial rule is that
φ ⇒ xn ∧ φ ⇒ wn B2 φ ⇒ (x + w)n holds
for all φ,x ,w . Relatedly, we would like to investigate
whether our analysis is in some sense “optimal”, with
the preconditions being “weakest”.
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Appendix

s,r [[assert(φ)]] s ′,r ′ iff s,r |= φ and s ′ = s and r ′ = r

s,r [[RS1 ;RS2]] s ′,r ′ iff ∃s ′′, r ′′ • s,r [[RS1]] s ′′,r ′′ and s ′′,r ′′ [[RS2]] s ′,r ′

s,h [[if B then TS1 else TS2]] s ′,h ′ iff ([[B ]]s = True and s,h [[TS1]] s ′,h ′)
or ([[B ]]s = False and s,h [[TS2]] s ′,h ′)

s,h [[x := A]] s ′,h ′ iff ∃v • v = [[A]]s and s ′ = [s | x 7→v ] and h ′ = h

s,r [[.f := A]] s ′,r ′ iff ∃v • v = [[A]]sr and s ′ = s and r ′ = [r | f 7→v ]

s,h [[new x in RS close]] s ′,h ′ iff ∃l , r , r ′ • (l /∈ dom(h) ∪ ran(h) ∪ ran(s) and r = deflt
and [s | x 7→ l ],r [[RS ]] s ′,r ′ and h ′ = [h | l 7→r ′])

s,h [[open x in RS close]] s ′,h ′ iff ∃l , r , r ′ • (l = s(x ) and r = h(l)
and s,r [[RS ]] s ′,r ′ and h ′ = [h | l 7→r ′])

s,h [[while B do TS ]] s ′,h ′ iff ∃i ≥ 0 • s,h fi s ′,h ′ where fi is inductively defined by:
s,h f0 s ′,h ′ iff [[B ]]s = False and s ′ = s and h ′ = h

s,h fi+1 s ′,h ′ iff ∃s ′′, h ′′ • ([[B ]]s = True and
s,h [[TS ]] s ′′,h ′′ and s ′′,h ′′ fi s ′,h ′)

Figure 6. Command semantics, selected clauses
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{true ⇒ xn}
1. open x in

{odd(.idx ) ⇒ .srcn, true ⇒ xn, odd(.idx ) ⇒ .valn}
2. y := .src;

//Case of field access: replace y by .src to obtain pre
{odd(.idx ) ⇒ yn, true ⇒ xn, odd(.idx ) ⇒ .valn, odd(.idx ) ⇒ .srcn}

3. i := .idx ;
//Case of field access: replace i by .idx to obtain pre
{odd(i) ⇒ yn, true ⇒ xn, odd(.idx ) ⇒ .valn, odd(.idx ) ⇒ .srcn}
// Conjoin object invariant to post

4. close;
{odd(i) ⇒ yn, true ⇒ xn}

5. open y in
{(odd(i) → odd(.idx )) ⇒ xn,
odd(i) ∧ (odd(i) → odd(.idx )) ⇒ .valn,
odd(.idx ) ∧ (odd(i) → odd(.idx )) ⇒ .valn,
odd(.idx ) ∧ (odd(i) → odd(.idx )) ⇒ .srcn}

6. assert (odd(i) → odd(.idx ));
//Conjoin assertion to obtain pre
{true ⇒ xn, odd(i) ⇒ .valn, odd(.idx ) ⇒ .valn, odd(.idx ) ⇒ .srcn}

7. q := .val ;
//Case of field access: replace q by .val to obtain pre
{true ⇒ xn, odd(i) ⇒ qn, odd(.idx ) ⇒ .valn, odd(.idx ) ⇒ .srcn}
// Conjoin object invariant to simplified post

8. close;
{odd(i) ⇒ xn, true ⇒ xn, odd(i) ⇒ qn}

9. open x in
{odd(i) ∧ (.idx = i) ⇒ qn, odd(.idx ) ∧ (.idx = i) ⇒ qn,
odd(.idx ) ∧ (.idx = i) ⇒ .srcn}

10. assert (.idx = i);
//Conjoin assertion to obtain pre
{odd(i) ⇒ qn, odd(.idx ) ⇒ qn, odd(.idx ) ⇒ .srcn}

11. .val := q ;
//Case of field update: replace .val by q to obtain pre
{odd(i) ⇒ .valn, odd(.idx ) ⇒ .valn, odd(.idx ) ⇒ .srcn}

12. result := .val ;
//Case of field access: replace result by .val to obtain pre
{odd(i) ⇒ resultn, odd(.idx ) ⇒ .valn, odd(.idx ) ⇒ .srcn}
// Conjoin object invariant to post

13. close;
{odd(i) ⇒ resultn}

Figure 7. Applying VCgen to Fig. 1(b).
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