
A Relational Logic for Higher-Order Programs

Alejandro Aguirre1 Gilles Barthe1 Marco Gaboardi2 Deepak Garg3
Pierre-Yves Strub4

ICFP, Sep 5 2017
1Imdea Software; 2University at Buffalo, SUNY; 3MPI-SWS; 4École Polytechnique

1

Relational properties a.k.a. 2-properties (I)

Two runs of two programs, e.g. equivalence...

2

Relational properties a.k.a. 2-properties (II)

...or two runs of the same program, e.g. non-interference

3

Relational refinement types (I)

Refinement types extend types with logical properties:

Γ ` t : {x : N | ∃z .x = 2 ∗ z}

Relational refinement types 1 generalize them to a relational setting:

Γ ` t1 ∼ t2 : {x : N | x1 = x2}

1Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy, and Santiago Zanella
Béguelin. Probabilistic relational verification for cryptographic implementations (POPL ’14)

4

Relational refinement types (II)

Pros:

• Very intuitive (e.g. {x : N | x1 ≤ x2} → {y : N | y1 ≤ y2}
types monotonic functions)

• Syntax directed

• Exploit structural similarities

if b then 2∗x else x+1 ∼ if b then 2∗x else x−1

• Lots of theoretical and practical developments for unary
refinements could be reused

5

Limits of RRT

We want to prove:

take n (map f l) = map f (take n l)

Which type to give it?

take n (map f l) ∼ map f (take n l) : {x : listN | x1 = x2}

We apply [APP] rule...

take ∼ map : {x :? |?}

6

Limits of RRT

We want to prove:

take n (map f l) = map f (take n l)

Which type to give it?

take n (map f l) ∼ map f (take n l) : {x : listN | x1 = x2}

We apply [APP] rule...

take ∼ map : {x :? |?}

6

Limits of RRT

We want to prove:

take n (map f l) = map f (take n l)

Which type to give it?

take n (map f l) ∼ map f (take n l) : {x : listN | x1 = x2}

We apply [APP] rule...

take ∼ map : {x :? |?}

6

Our contributions

• A foundational system to prove relational properties

• in a syntax directed way

• not restricted by types or structure

7

Base logic: HOL

• λ-terms over simple + inductive types
• (Axiomatically defined) Predicates: P(t1, . . . , tn)

∀l .prefix([], l) ∀xtl .prefix(t, l)⇒ prefix(x :: t, x :: l)

• Propositional connectives: ∧,∨,⇒
• Quantification over simple/inductive types: ∀(x : τ), ∃(x : τ)

Why not just use this?
No syntax directedness or structural reasoning

8

Base logic: HOL

• λ-terms over simple + inductive types
• (Axiomatically defined) Predicates: P(t1, . . . , tn)

∀l .prefix([], l) ∀xtl .prefix(t, l)⇒ prefix(x :: t, x :: l)

• Propositional connectives: ∧,∨,⇒
• Quantification over simple/inductive types: ∀(x : τ), ∃(x : τ)

Why not just use this?

No syntax directedness or structural reasoning

8

Base logic: HOL

• λ-terms over simple + inductive types
• (Axiomatically defined) Predicates: P(t1, . . . , tn)

∀l .prefix([], l) ∀xtl .prefix(t, l)⇒ prefix(x :: t, x :: l)

• Propositional connectives: ∧,∨,⇒
• Quantification over simple/inductive types: ∀(x : τ), ∃(x : τ)

Why not just use this?
No syntax directedness or structural reasoning

8

Relational HOL

Judgements combine types and logic:

HOL: Γ | Ψ ` φ

Context

Assertions over Γ

Predicate

UHOL: Γ | Ψ ` t1 : τ1 | φ(r)
Term Predicate

RHOL: Γ | Ψ ` t1 : τ1 ∼ t2 : τ2 | φ(r1, r2)
1st term 2nd term Predicate

9

Relational HOL

Judgements combine types and logic:

HOL: Γ | Ψ ` φ

Context

Assertions over Γ

Predicate

UHOL: Γ | Ψ ` t1 : τ1 | φ(r)
Term Predicate

RHOL: Γ | Ψ ` t1 : τ1 ∼ t2 : τ2 | φ(r1, r2)
1st term 2nd term Predicate

9

Relational HOL

Judgements combine types and logic:

HOL: Γ | Ψ ` φ

Context

Assertions over Γ

Predicate

UHOL: Γ | Ψ ` t1 : τ1 | φ(r)
Term Predicate

RHOL: Γ | Ψ ` t1 : τ1 ∼ t2 : τ2 | φ(r1, r2)
1st term 2nd term Predicate

9

Relational HOL

Judgements combine types and logic:

HOL: Γ | Ψ ` φ

Context

Assertions over Γ

Predicate

UHOL: Γ | Ψ ` t1 : τ1 | φ(r)
Term Predicate

RHOL: Γ | Ψ ` t1 : τ1 ∼ t2 : τ2 | φ(r1, r2)
1st term 2nd term Predicate

9

Relational HOL

Judgements combine types and logic:

HOL: Γ | Ψ ` φ

Context

Assertions over Γ

Predicate

UHOL: Γ | Ψ ` t1 : τ1 | φ(r)
Term Predicate

RHOL: Γ | Ψ ` t1 : τ1 ∼ t2 : τ2 | φ(r1, r2)
1st term 2nd term Predicate

9

Relational HOL

Judgements combine types and logic:

HOL: Γ | Ψ ` φ

Context

Assertions over Γ

Predicate

UHOL: Γ | Ψ ` t1 : τ1 | φ(r)
Term Predicate

RHOL: Γ | Ψ ` t1 : τ1 ∼ t2 : τ2 | φ(r1, r2)
1st term 2nd term Predicate

9

Relational HOL

Judgements combine types and logic:

HOL: Γ | Ψ ` φ

Context

Assertions over Γ

Predicate

UHOL: Γ | Ψ ` t1 : τ1 | φ(r)
Term Predicate

RHOL: Γ | Ψ ` t1 : τ1 ∼ t2 : τ2 | φ(r1, r2)
1st term 2nd term Predicate

9

Relational HOL

Judgements combine types and logic:

HOL: Γ | Ψ ` φ

Context

Assertions over Γ

Predicate

UHOL: Γ | Ψ ` t1 : τ1 | φ(r)
Term Predicate

RHOL: Γ | Ψ ` t1 : τ1 ∼ t2 : τ2 | φ(r1, r2)
1st term 2nd term Predicate

9

Relational HOL

Judgements combine types and logic:

HOL: Γ | Ψ ` φ

Context

Assertions over Γ

Predicate

UHOL: Γ | Ψ ` t1 : τ1 | φ(r)
Term Predicate

RHOL: Γ | Ψ ` t1 : τ1 ∼ t2 : τ2 | φ(r1, r2)
1st term 2nd term Predicate

9

Refinement types vs RHOL

Key Idea: separation of concerns between types and assertions

• Unary
` t : {x : τ | φ(x)} −→ t : τ | φ(r)

• Relational

t1 ∼ t2 : {x : τ | φ(x1, x2)} −→ t1 : τ ∼ t2 : τ | φ(r1, r2)

10

Two-sided and one-sided rules

Two-sided rules relate two terms with the same top term former

λx1.t1 ∼ λx2.t2

One-sided rules relate two terms with different top term former

λx1.t1 ∼ t2 u2

11

Two-sided rules

Judgements combine types and logic:

Abstraction
Γ, x1 : τ1, x2 : τ2 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ

Γ | Ψ ` λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1, x2.φ′ ⇒ φ[r1 x1/r1][r2 x2/r2]

Application
Γ | Ψ ` t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1, x2.φ′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

Γ | Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]

12

Two-sided rules

Judgements combine types and logic:

Abstraction
Γ, x1 : τ1, x2 : τ2 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ

Γ | Ψ ` λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1, x2.φ′ ⇒ φ[r1 x1/r1][r2 x2/r2]

Application
Γ | Ψ ` t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1, x2.φ′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

Γ | Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]

12

Two-sided rules

Judgements combine types and logic:

Abstraction
Γ, x1 : τ1, x2 : τ2 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ

Γ | Ψ ` λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1, x2.φ′ ⇒ φ[r1 x1/r1][r2 x2/r2]

Application
Γ | Ψ ` t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1, x2.φ′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

Γ | Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]

12

Two-sided rules

Judgements combine types and logic:

Abstraction
Γ, x1 : τ1, x2 : τ2 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ

Γ | Ψ ` λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1, x2.φ′ ⇒ φ[r1 x1/r1][r2 x2/r2]

Application
Γ | Ψ ` t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1, x2.φ′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

Γ | Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]

12

Two-sided rules

Judgements combine types and logic:

Abstraction
Γ, x1 : τ1, x2 : τ2 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ

Γ | Ψ ` λx1.t1 : τ1 → σ1 ∼ λx2.t2 : τ2 → σ2 | ∀x1, x2.φ′ ⇒ φ[r1 x1/r1][r2 x2/r2]

Application
Γ | Ψ ` t1 : τ1 → σ1 ∼ t2 : τ2 → σ2 | ∀x1, x2.φ′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ | Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

Γ | Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]

12

One-sided rules

Abstraction

Γ, x1 : τ1 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ
Γ | Ψ ` λx1.t1 : τ1 → σ1 ∼ t2 : σ2 | ∀x1.φ′ ⇒ φ[r1 x1/r1]

Application

Γ | Ψ ` t1 : τ1 → σ1 ∼ u2 : σ2 | ∀x1.φ′[x1/r1]⇒ φ[r1 x1/r1]
Γ | Ψ ` u1 : σ1 | φ′

Γ | Ψ ` t1u1 : σ1 ∼ u2 : σ2 | φ[u1/x1]

13

One-sided rules

Abstraction

Γ, x1 : τ1 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ
Γ | Ψ ` λx1.t1 : τ1 → σ1 ∼ t2 : σ2 | ∀x1.φ′ ⇒ φ[r1 x1/r1]

Application

Γ | Ψ ` t1 : τ1 → σ1 ∼ u2 : σ2 | ∀x1.φ′[x1/r1]⇒ φ[r1 x1/r1]
Γ | Ψ ` u1 : σ1 | φ′

Γ | Ψ ` t1u1 : σ1 ∼ u2 : σ2 | φ[u1/x1]

13

One-sided rules

Abstraction

Γ, x1 : τ1 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ
Γ | Ψ ` λx1.t1 : τ1 → σ1 ∼ t2 : σ2 | ∀x1.φ′ ⇒ φ[r1 x1/r1]

Application

Γ | Ψ ` t1 : τ1 → σ1 ∼ u2 : σ2 | ∀x1.φ′[x1/r1]⇒ φ[r1 x1/r1]
Γ | Ψ ` u1 : σ1 | φ′

Γ | Ψ ` t1u1 : σ1 ∼ u2 : σ2 | φ[u1/x1]

13

One-sided rules

Abstraction

Γ, x1 : τ1 | Ψ, φ′ ` t1 : σ1 ∼ t2 : σ2 | φ
Γ | Ψ ` λx1.t1 : τ1 → σ1 ∼ t2 : σ2 | ∀x1.φ′ ⇒ φ[r1 x1/r1]

Application

Γ | Ψ ` t1 : τ1 → σ1 ∼ u2 : σ2 | ∀x1.φ′[x1/r1]⇒ φ[r1 x1/r1]
Γ | Ψ ` u1 : σ1 | φ′

Γ | Ψ ` t1u1 : σ1 ∼ u2 : σ2 | φ[u1/x1]

13

The SUB rule

Allows us to fall back to HOL:

Γ | Ψ ` t1 : σ1 ∼ t2 : σ2 | φ′ Γ | Ψ `HOL φ′[t1/r1][t2/r2]⇒ φ[t1/r1][t2/r2]
Γ | Ψ ` t1 : σ1 ∼ t2 : σ2 | φ

14

Equivalence between HOL and RHOL

Γ | Ψ ` t1 : σ1 ∼ t2 : σ2 | φ
m

Γ | Ψ ` φ[t1/r1][t2/r2]

Plus: subject reduction, soundness, . . .

15

Embeddings

RHOL is also useful as a framework in which to embed other
relational typing systems:

• Relational Refinement Types
• DCC (dependency)
• RelCost (relational cost)

We get “for free” proofs of soundness.

Since RHOL is more expressive, we can verify new examples.

|s| = |t|, sorted(s) ` isort s ∼ isort t | cost r1 ≤ cost r2

16

Conclusions

• Relational refinement types have limited one-sided reasoning
• HOL is expressive but does not exploit structural similarities
• RHOL combines the best of both worlds in a lossless way:

expressiveness + two-sided reasoning + 1 sided-reasoning
• This makes RHOL a foundational system
• Future work: extension with effects & implementation

Thanks!

17

Conclusions

• Relational refinement types have limited one-sided reasoning
• HOL is expressive but does not exploit structural similarities
• RHOL combines the best of both worlds in a lossless way:

expressiveness + two-sided reasoning + 1 sided-reasoning
• This makes RHOL a foundational system
• Future work: extension with effects & implementation

Thanks!

17

Questions?

18

Embedding refinement types

We can embed refinement types into our system:

T{y : τ | φ}U(x1, x2) ,
∧

i∈{1,2}
bτc(xi) ∧ φ[xi/y]

T{y :: T | φ}U(x1, x2) , TTU(x1, x2) ∧ φ[x1/y1][x2/y2]

TΠ(y : τ).σU(x) ,
∧

i∈{1,2}
∀y .bτc(y)⇒ bσc(xy)

TΠ(y :: T).UU(x1, x2) , ∀y1y2.TTU(y1, y2)⇒ TσU(x1y1, x2y2)

19

Example: factorial (I)

We can implement factorial without and with accumulator:

fact1 ≡ letrec f1 x1 = case x1 of [0→ 1; Sy1 → (Sy1) ∗ (f1y1)]

fact2 ≡ letrec f2 x2 = λa.case x2 of [0→ a;Sy2 → f2 y2 (a∗(Sy2))]

We want to prove:

∅ | ∅ ` fact1 ∼ fact2 | ∀x1x2a. x1 = x2 ⇒ (r1 x1) ∗ a = r2 x2 a

Notice that the two programs have different types: N→ N and
N→ N→ N

20

Example: factorial (II)

Proof reduces to:

Γ | ψ ` case x1 of [0→ 1;Sy1 → (Sy1) ∗ (f1y1)] ∼
case x2 of [0→ a;Sy2 → f2 y2 (a ∗ (Sy2))] | r1 ∗ a = r2

where ψ is the “inductive hypothesis”

Proof obligations:

• Γ | ψ ` 1 ∼ a | r1 ∗ a = r2

Trivial

21

Example: factorial (II)

Proof reduces to:

Γ | ψ ` case x1 of [0→ 1;Sy1 → (Sy1) ∗ (f1y1)] ∼
case x2 of [0→ a;Sy2 → f2 y2 (a ∗ (Sy2))] | r1 ∗ a = r2

where ψ is the “inductive hypothesis”

Proof obligations:

• Γ | ψ ` 1 ∼ a | r1 ∗ a = r2

Trivial

21

Example: factorial (II)

Proof reduces to:

Γ | ψ ` case x1 of [0→ 1;Sy1 → (Sy1) ∗ (f1y1)] ∼
case x2 of [0→ a;Sy2 → f2 y2 (a ∗ (Sy2))] | r1 ∗ a = r2

where ψ is the “inductive hypothesis”

Proof obligations:

• Γ | ψ ` 1 ∼ a | r1 ∗ a = r2

Trivial

21

Example: factorial (II)

Proof reduces to:

Γ | ψ ` case x1 of [0→ 1;Sy1 → (Sy1) ∗ (f1y1)] ∼
case x2 of [0→ a;Sy2 → f2 y2 (a ∗ (Sy2))] | r1 ∗ a = r2

where ψ is the “inductive hypothesis”

Proof obligations:

• Γ | ψ ` 1 ∼ a | r1 ∗ a = r2
• Γ | ψ, x1 = Sy2, x2 = Sy2 ` (Sy1) ∗ (f1y1) ∼ f2 y2 (a ∗ (Sy2)) |

(r1 y1) ∗ a = (r2 y2)

By instantiating ψ

22

Example: factorial (II)

Proof reduces to:

Γ | ψ ` case x1 of [0→ 1;Sy1 → (Sy1) ∗ (f1y1)] ∼
case x2 of [0→ a;Sy2 → f2 y2 (a ∗ (Sy2))] | r1 ∗ a = r2

where ψ is the “inductive hypothesis”

Proof obligations:

• Γ | ψ ` 1 ∼ a | r1 ∗ a = r2
• Γ | ψ, x1 = Sy2, x2 = Sy2 ` (Sy1) ∗ (f1y1) ∼ f2 y2 (a ∗ (Sy2)) |

(r1 y1) ∗ a = (r2 y2)

By instantiating ψ

22

