A Relational Logic for Higher-Order Programs

Alejandro Aguirre! Gilles Barthe! Marco Gaboardi?> Deepak Garg?
Pierre-Yves Strub*

ICFP, Sep 5 2017

1Imdea Software; 2University at Buffalo, SUNY: 3MPI-SWS; “Ecole Polytechnique

Relational properties a.k.a. 2-properties (I)

Two runs of two programs, e.g. equivalence...

Relation R

Xy and X; are equal

& J

Relational properties a.k.a. 2-properties (I1)

...or two runs of the same program, e.g. non-interference

e

Relation R

X and X; are
low-equivalent

Relational refinement types (I)

Refinement types extend types with logical properties:

NEt:{x:N|Jzx=2xz}

Relational refinement types ! generalize them to a relational setting:

Nt~ {x:N|xg=x}

lGilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy, and Santiago Zanella
Béguelin. Probabilistic relational verification for cryptographic implementations (POPL '14)

Relational refinement types (I1)

Pros:

= Very intuitive (e.g. {x:N | x1 <x} = {y:N|y <y}
types monotonic functions)

= Syntax directed

= Exploit structural similarities

if b then 2+x else x+1 ~ if b then 2xx else x—1

= Lots of theoretical and practical developments for unary
refinements could be reused

Limits of RRT

We want to prove:

take n (map f /) = map f (take n /)

Limits of RRT

We want to prove:

take n (map f /) = map f (take n /)

Which type to give it?

take n (map f /) ~map f (take n [): {x : listy | x1 = xo}

Limits of RRT

We want to prove:

take n (map f /) = map f (take n /)

Which type to give it?
take n (map f /) ~map f (take n [): {x : listy | x1 = xo}

We apply [APP] rule...

take ~ map : {x :? |7}

Our contributions

= A foundational system to prove relational properties
= in a syntax directed way

= not restricted by types or structure

Base logic: HOL

= \-terms over simple + inductive types

= (Axiomatically defined) Predicates: P(t1,...,ts)
Vi.prefix([],]) Vxtl.prefix(t,]) = prefix(x :: t,x :: /)

= Propositional connectives: A,V,=-

= Quantification over simple/inductive types: ¥(x : 7), 3(x : 7)

Base logic: HOL

= \-terms over simple + inductive types

= (Axiomatically defined) Predicates: P(t1,...,ts)
Vi.prefix([],]) Vxtl.prefix(t,]) = prefix(x :: t,x :: /)

= Propositional connectives: A,V,=-

= Quantification over simple/inductive types: ¥(x : 7), 3(x : 7)

Why not just use this?

Base logic: HOL

= \-terms over simple + inductive types

= (Axiomatically defined) Predicates: P(t1,...,ts)
Vi.prefix([],]) Vxtl.prefix(t,]) = prefix(x :: t,x :: /)

= Propositional connectives: A,V,=-

= Quantification over simple/inductive types: ¥(x : 7), 3(x : 7)

Why not just use this?

No syntax directedness or structural reasoning

Relational HOL

Judgements combine types and logic:

HOL: T | V F ¢

UHOL: I'\\Ul— t1 : 11 | ng(r)

RHOL: F\llll— th .11 ~ th:m ‘ (b(rl,rz)

Relational HOL

Judgements combine types and logic:

HOL: [T | v + ¢

Context

UHOL: I'\\Ul— t1 : 11 | ng(r)

RHOL: F\llll— th .11 ~ th:m ‘ (b(rl,rz)

Relational HOL

Judgements combine types and logic:

Assertions over [
HOL: [T |(W + ¢

Context

UHOL: I'\\Ul— t1 : 11 | ng(r)

RHOL: F\\I!I— th .11 ~ th:m ‘ (b(rl,rz)

Relational HOL

Judgements combine types and logic:

Assertions over [
HOL: (T | (W (4

Context Predicate

UHOL: I'\\Ul— t1 : 11 | ng(r)

RHOL: F\\I!I— th .11 ~ th:m ‘ (b(rl,rz)

Relational HOL

Judgements combine types and logic:

HOL: T | V F ¢

UHOL: I'\\Ul— th ' 1 | ng(r)
Term

RHOL: F\\I!I— th .11 ~ th:m ‘ (b(rl,rz)

Relational HOL

Judgements combine types and logic:

HOL: T | V F ¢

UHOL: I'\\Ul— th ' 1 | gb(r)
Term Predicate

RHOL: F\\I!I— th .11 ~ th:m ‘ (b(rl,rz)

Relational HOL

Judgements combine types and logic:

HOL: T | V F ¢

UHOL: I'\\Ul— t1 : 11 | ng(r)

RHOL: F\\I!I— 1 :71 ~ th:m ‘ (b(rl,rz)

1st term

Relational HOL

Judgements combine types and logic:

HOL: T | V F ¢

UHOL: I'\\Ul— t1 : 11 | ng(r)

RHOL: F\\IJI— ti i1 ~ b1 ‘ ¢(r1,r2)

1st term 2nd term

Relational HOL

Judgements combine types and logic:

HOL: T | V F ¢

UHOL: F\\Ul— t1 : 11 | gb(r)

RHOL: F\\IJI— ti i1 ~ b1 ‘ gb(rl,rg)

1st term 2nd term Predicate

Refinement types vs RHOL

Key ldea: separation of concerns between types and assertions

= Unary
Ft:i{x:7|od(x)} —t:7]o(r)

= Relational

ti~t i {x:iT|o(x,x)} — t1i T~ T | P(re,r2)

10

Two-sided and one-sided rules

Two-sided rules relate two terms with the same top term former
AX1.t1 ~ Axo. b
One-sided rules relate two terms with different top term former

AXq.t1 ~ to U

11

Two-sided rules

Judgements combine types and logic:

Abstraction

Mxi:m,x: |V, Fti:oi~t:oa]|¢

I | VEAX.t1:T1 — 01~ Axo.th i T2 — 02 | VX1,X2.¢, = qﬁ[h X1/l’1][l’2 Xz/l’z]

12

Two-sided rules

Judgements combine types and logic:

Abstraction

Mxi:m,x: |V, Fti:oi~t:o]|¢

M WVEXxat T =01~ XAo.b: T — 02 | Vxi, x.0 = dr xi/ri][r2 x/r]

12

Two-sided rules

Judgements combine types and logic:

Abstraction

r,X12T17X227‘2|W,(]5,|_t1Z(Tth'QZ(TQ|(]5

I | VEAMi.t1:T1 — 01~ XMo.bh: o — 02 |VX1,X2.§Z5, = qﬁ[h X1/l’1][l’2 Xz/l’z]

12

Two-sided rules

Judgements combine types and logic:

Abstraction

Mxi:m,x: |V, Fti:oi~t:oa]|¢

I | VEAX.t1:T1 — 01~ Axo.th i T2 — 02 | VX1,X2.¢, = qﬁ[h X1/l’1][l’2 Xz/l’z]

12

Two-sided rules

Judgements combine types and logic:

Abstraction

Mxi:m,x: |V, Fti:oi~t:oa]|¢

I | VEAX.t1:T1 — 01~ Axo.th i T2 — 02 | VX1,X2.¢, = qﬁ[h X1/l’1][l’2 Xz/l’z]

Application

[| (U t1:11 o1 ~1th:7— 02 ‘ VX17X2.¢/[X1/r1][X2/r2] = ¢[r1 X1/I’1][F2 X2/r2]
r‘w'_U1:TlNU2:T2|¢/

I | Ukt o1~ bu : oo | ¢[U1/X1][U2/X2]

12

One-sided rules

Abstraction

Mxi:m |V, Ftiior~t:oa| o
FMWEM .t 71— o1~ oo | Vx.¢ = @r1 x1/r]

Application

I ‘ Ukt i1 —01~U:oo |VX1.¢/[X1/I'1] :>¢[I’1 xl/rl]
MNwvku:o1|ed
MWk tu o1 ~u: oo | Plui/xi]

13

One-sided rules

Abstraction

Mxi:m |V, Ftiior~t:oa| o
FMWEM .t 71— o1~ oo | Vx.¢ = @r1 x1/r]

Application

I ‘ Uhkti:m —o1~Up:oo |Vx1.(,>’[x1/r1] = (.')[I’l Xl/l’l]
MNMwvbku:o1|ed

M VEtu oy ~u:oy| ofur/x1]

13

One-sided rules

Abstraction

Mxi:m |V, Ftiior~t:oa| o
FMWEM .t 71— o1~ oo | Vx.¢ = @r1 x1/r]

Application

I ‘ VkEti:m —o1~Up:oo |VX1.¢/[X1/I'1] :>¢[I’1 xl/rl]
r|\U|_U120'1|¢,
I | VI tiug:01~ Up: oo ‘ gzb[ul/xl]

13

One-sided rules

Abstraction

Mxi:m |V, Ftiior~t:oa| o
FMWEM .t 71— o1~ oo | Vx.¢ = @r1 x1/r]

Application

I ‘ Ukt i1 —01~U:oo |VX1.¢/[X1/I'1] :>¢[I’1 xl/rl]
MNwvku:o1|ed
MWk tu o1 ~u: oo | Plui/xi]

13

The SUB rule

Allows us to fall back to HOL:

[| Ukt :01~t: oo | ¢/ [| V Fhol (f)/[tl/l‘l][tg/rz] = ¢[t1/l’1][t2/l’2]
F|\I1Ft1:01~t2:02|¢

14

Equivalence between HOL and RHOL

r‘W|—t1:01Nt220'2|¢

0
[‘ (U ¢[t1/r1][t2/r2]

Plus: subject reduction, soundness, ...

5

Embeddings

RHOL is also useful as a framework in which to embed other
relational typing systems:

= Relational Refinement Types
= DCC (dependency)
= RelCost (relational cost)

We get “for free” proofs of soundness.

Since RHOL is more expressive, we can verify new examples.

|s| = |t|, sorted(s) t- isort s ~ isort t | cost ry < cost r,

16

Conclusions

= Relational refinement types have limited one-sided reasoning
= HOL is expressive but does not exploit structural similarities

= RHOL combines the best of both worlds in a lossless way:
expressiveness + two-sided reasoning + 1 sided-reasoning

= This makes RHOL a foundational system

= Future work: extension with effects & implementation

17

Conclusions

= Relational refinement types have limited one-sided reasoning
= HOL is expressive but does not exploit structural similarities

= RHOL combines the best of both worlds in a lossless way:
expressiveness + two-sided reasoning + 1 sided-reasoning

= This makes RHOL a foundational system

= Future work: extension with effects & implementation

Thanks!

17

Questions?

18

Embedding refinement types

We can embed refinement types into our system:

Ly 713G,) & A Lr](x0) A ¢lxi/y]

ie{1,2}

Ly = T 1o} (xa, %) £ LT I(x1, %) A glxa/yallx2/ye]

[Ny :7)-ol(x) £ A Vy.lr](y) = lo)(xy)

ie{1,2}

[N(y = T). Ull(x1, x2) & Vyryo [T (y1, y2) = Lo ll(xay1, xey2)

19

Example: factorial (1)

We can implement factorial without and with accumulator:
fact; = letrec 1 x3 = case x3 of [0 — 1;Sy; — (Sy1) * (fiy1)]

facty = letrec f; xp = Aa.case x2 of [0 — a; Sy» — £ y2 (ax(Sy2))]

We want to prove:

0] 0F fact; ~ facty | Vxixea. x1 =x = (n x1)*xa=rn x a

Notice that the two programs have different types: N — N and
N—-N=N

20

Example: factorial (1)

Proof reduces to:

| ¢ F case xy of [0 = 1;Sy1 — (Sy1) * (fiy1)] ~
case xp of [0 = a;Sy» — hh yo (a%(Sy2))] [ri*xa=r

where 1) is the “inductive hypothesis”

21

Example: factorial (1)

Proof reduces to:

| ¢ F case xy of [0 = 1;Sy1 — (Sy1) * (fiy1)] ~
case xp of [0 = a;Sy» — hh yo (a%(Sy2))] [ri*xa=r

where 1) is the “inductive hypothesis”

Proof obligations:

s [|¢YFl~a|lnxa=n

21

Example: factorial (1)

Proof reduces to:

| ¢ F case xy of [0 = 1;Sy1 — (Sy1) * (fiy1)] ~
case xp of [0 = a;Sy» — hh yo (a%(Sy2))] [ri*xa=r

where 1) is the “inductive hypothesis”

Proof obligations:
s [|YpFl~aln*xa=n

Trivial

21

Example: factorial (1)

Proof reduces to:
I vk case x3 of [0 — 1;Sy; — (Sy1) * (fiy1)] ~
case xp of [0 = 3;Sy2 = fh yo (ax(Sy))] [r1*xa=r

where 1 is the “inductive hypothesis”

Proof obligations:

s [|Ypkl~alnxa=n

» [|1, x1 = Sy2,x2 = Syo = (Sy1) * (fiy1) ~ f2 y2 (@ (Sy2)) |
(rny1)xa=(ry)

22

Example: factorial (1)

Proof reduces to:
I vk case x3 of [0 — 1;Sy; — (Sy1) * (fiy1)] ~
case xp of [0 = 3;Sy2 = fh yo (ax(Sy))] [r1*xa=r

where 1 is the “inductive hypothesis”

Proof obligations:

s [|Ypkl~alnxa=n

» [|1, x1 = Sy2,x2 = Syo = (Sy1) * (fiy1) ~ f2 y2 (@ (Sy2)) |
(rny1)xa=(ry)

By instantiating

22

