
Visibility and Separability for a Declarative
Linearizability Proof of the Timestamped Stack
Jesús Domínguez #

IMDEA Software Institute, Madrid, Spain
Universidad Politécnica de Madrid, Spain

Aleksandar Nanevski #

IMDEA Software Institute, Madrid, Spain

Abstract
Linearizability is a standard correctness criterion for concurrent algorithms, typically proved by
establishing the algorithms’ linearization points (LP). However, LPs often hinder abstraction, and
for some algorithms such as the timestamped stack, it is unclear how to even identify their LPs.
In this paper, we show how to develop declarative proofs of linearizability by foregoing LPs and
instead employing axiomatization of so-called visibility relations. While visibility relations have
been considered before for the timestamped stack, our study is the first to show how to derive
the axiomatization systematically and intuitively from the sequential specification of the stack.
In addition to the visibility relation, a novel separability relation emerges to generalize real-time
precedence of procedure invocation. The visibility and separability relations have natural definitions
for the timestamped stack, and enable a novel proof that reduces the algorithm to a simplified form
where the timestamps are generated atomically.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases Linearizability, Visibility Relations, Timestamped Stack

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2023.30

Related Version Extended Version: https://arxiv.org/abs/2307.04720 [5]

Funding This work was partially supported by the ERC project MATHADOR (ERC2016-COG-
724464), the Madrid regional government and EU project BLOQUES (S2018/TCS-4339), and the
Spanish MCIN and EU project PRODIGY (TED2021-132464B-I00).

1 Introduction

A concurrent data structure is linearizable [11] if in every concurrent execution history of
the structure’s exportable methods, the method invocations can be ordered linearly just by
permuting overlapping invocations, so that the obtained history is sequentially sound; that
is, executing the methods sequentially in the linear order produces the same outputs that the
methods had in the concurrent history. In other words, every concurrent history is equivalent
to a sequential one where methods execute without interference, i.e., atomically.

While linearizability is a standard correctness criterion, proving that sophisticated data
structures are linearizable is far from trivial. The most common approach is to first describe
the linearization points (LPs) of the methods that the data structure exports. Given an
execution of a method (henceforth, event), its LP is the moment at which the event’s effect
can be considered to have occurred abstractly, in the sense that the linearization order
of the events is determined by the real-time order of the chosen LPs. LPs are described
operationally by indicating the line in the code together with a run-time condition under
which the line applies. The proof then proceeds by a simulation argument to show that the
effect of the invocation abstractly occurs at the declared line.

© Jesús Domínguez and Aleksandar Nanevski;
licensed under Creative Commons License CC-BY 4.0

34th International Conference on Concurrency Theory (CONCUR 2023).
Editors: Guillermo A. Pérez and Jean-François Raskin; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jesus.dominguez@imdea.org
https://orcid.org/0000-0002-5436-1384
mailto:aleks.nanevski@imdea.org
https://orcid.org/0000-0002-4851-1075
https://doi.org/10.4230/LIPIcs.CONCUR.2023.30
https://arxiv.org/abs/2307.04720
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Visibility and Separability for a Declarative Proof of the Timestamped Stack

While LPs lead to a complete proof method [16], the operational nature of the LP
description leads to very low-level proofs. Sometimes, it may even be unclear how to describe
the position of the LPs in the first place. An alternative, more declarative approach, that
offers higher levels of abstraction, has been proposed by Henzinger et al. [10]. It advocates
foregoing LPs in favor of axiomatizing how the events of the structure depend on each other.
Such dependence relation has since been termed visibility relation in the literature [17], and
has been used to axiomatize concurrent queues [10], stacks [3, 7], and snapshot algorithms [14].
In these cases, the higher abstraction capabilities of visibility relations (compared to LPs)
enabled that linearizability proofs of different implementations of a data structure can share
significant proof components, or that a linearizability proof can be developed in the first
place where an LP-based proof did not exist. Nevertheless, despite these recent successes,
developing visibility-based proofs remains an undeveloped area, with every proof approaching
the axiomatization in its own manner, without any specific systematization.

This paper advances the visibility approach by proposing that the axiomatization of
concurrent structures should rely on a separability relation between events, in addition to
the visibility relation. Separability relation partially characterizes when two events are
abstractly non-overlapping, with one event logically preceding the other. Thus, it is the
abstract counterpart to the “returns-before” relation, which is standard in the literature, and
holds between two events if, in real time, the first event terminates before the second begins.

We employ the visibility and separability relations in tandem to derive a new axiomatiza-
tion and linearizability proof for the concurrent structure of the timestamped stack, initially
designed and proved linearizable by Dodds et al. [3] and Haas [7]. Since its inception, the
timestamped stack has achieved some notoriety for the difficulty of its linearizability proof,
as it has so far resisted an operational description of its LPs, and simulation-based proof at-
tempts. For example, Khyzha et al. [12] verified the timestamped queue by a simulation-based
approach, but did not scale to the stack. Bouajjani et al. [1] employed forward simulation
on a simplified variant of the stack where timestamps are allocated atomically, but did not
attempt the general variant, where the timestamp allocation is a more complex non-atomic
operation that produces behaviors not observed in the atomic case. The original proof by
Dodds et al. is a large case analysis that mixes visibility relations with approximate LP
descriptions, and then adapts and corrects both as the proof advances. However, the axioms
and the definitions of the visibility relations have been justified only technically, and have
remained unconnected to the intuition behind the structure’s design.

By axiomatizing both separability and visibility relations, we derive the following contri-
butions: (1) We obtain a linearizability proof that elides LPs, and is thus more declarative
than the proof of Dodds et al.; (2) The proof’s declarative nature allows us to first consider
the simpler variant of the algorithm with atomic timestamp allocation, and then show that
the general variant reduces to the atomic case. The staged proof is more intuitive than if we
attempted the general case directly, which is what Dodds et al. do.; (3) Our contribution
goes beyond a new proof for the timestamped stack, as it suggests a systematic way to
axiomatize concurrent data structures in the visibility style. More specifically, we show
that the visibility relation naturally emerges when one transforms an obvious state-based
sequential axiomatization of stacks to the concurrent setting with histories. In the process, the
separability relation also naturally emerges, because one is immediately forced to generalize
the returns-before relation. So obtained axioms identify the abstractions that are essential for
understanding the algorithm, and strongly guide the remaining proof. Finally, our approach
to axiomatization applies to other concurrent algorithms as well, and we comment in Section 5
how we did so for RDCSS and MCAS of Harris et al. [8] and some other structures. Of
course, the generality of the approach remains to be evaluated on a wider set of examples.

J. Domínguez and A. Nanevski 30:3

1: pools : Node[maxT hreads];
2: T S, ID : Int = 0;
3:
4: proc push (v : Val)
5: Node n =
6: Node{v, ∞, pools[TID], false, ID++ };
7: pools[TID] = n;
8: Stamp ts = newTimestamp();
9: n.stamp = ts;

10:
11: proc newTimestamp ()
12: Int ts1 = T S;
13: pause();
14: Int ts2 = T S;
15: if ts1 ̸= ts2 then
16: return [ts1, ts2 − 1];
17: else if CAS(T S, ts1, ts1 + 1) then
18: return [ts1, ts1];
19: else
20: return [ts1, T S − 1];

21: record Node:
22: val : Val; stamp : Stamp; next : Node;
23: taken : Bool; id : Int ;
24:
25: proc pop ()
26: Bool suc = false; Node chosen;
27: while not suc do
28: Stamp maxT = −∞;
29: chosen = null;
30: for i from 0 to maxT hreads − 1 do
31: Node n = pools[i];
32: while n.taken and n.next ̸= n do
33: n = n.next;
34: Stamp ts = n.stamp;
35: if maxT <T ts then
36: chosen = n; maxT = ts;
37: if chosen ̸= null then
38: suc = CAS(chosen.taken, false, true);
39: return chosen.val;

Figure 1 Pseudocode of a simplified TS-stack.

2 The Timestamped Stack and its Timestamps

The timestamped stack (TS-stack) keeps an array of pools, indexed by thread IDs; one pool
for each thread. A pool is a linked list of nodes. The array index identifying the pool (line 1
in Figure 1) stores the head node of the pool list, and each node (lines 22-23) stores a value
val, timestamp stamp, the next node in the list, a boolean taken indicating if the value has
been taken by some pop, and a unique identifier id for the node.1 Each thread can only
insert values in its own pool by allocating a node at the head of the list. A value is logically
removed from the pool once its taken flag is set to true.2

The push procedure inserts a new node containing the pushed value v into the pool of
the executing thread with thread id TID. More specifically, in line 6, push allocates a new
node with the value v, infinite timestamp, next pointing to the current head of the pool,
taken flag set to false, and fresh unique identifier, where ID++ denotes an atomic fetch and
increment on the global counter ID. Then, the new node is set as the new head of the TID
pool (line 7), a new timestamp is generated (line 8) and assigned to the node (line 9) as a
replacement for the original infinity timestamp. We will discuss infinity timestamps and the
newTimestamp procedure further below.

The pop procedure traverses the pools (loop at line 30), searching for an untaken node
with a maximal timestamp in the partial order <T, updating the current maximum in the
variable maxT (lines 35-36). Once a maximal node is found, pop attempts to remove it by
CAS-ing on its taken flag at line 38. The pop procedure restarts (loop at line 27) if it was
not able to take a maximal node at line 38.

The role of <T is to endow TS-stack with a LIFO discipline whereby an element with a
larger timestamp (i.e, the more recently pushed element), is popped first. In the concurrent
setting, however, the meaning of “more recent” is not as straightforward as in the sequential
setting, as the definition of linearizability allows that overlapping operations can be linearized

1 Unique identifiers id are ghost code (gray color in Figure 1), introduced solely for use in proofs.
2 For presentation purposes, we simplified the original algorithm, but treat a more general form in

Appendix B.2 [5]. The two versions exhibit the same challenges, and use the sames axiomatization and
definitions of visibility and separability. The differences between them are discussed in Section 5.

CONCUR 2023

30:4 Visibility and Separability for a Declarative Proof of the Timestamped Stack

in either order. In particular, if two invocations of push overlapped, they can actually be
popped in either order. To reflect this property of linearizability, the order <T is partial as
opposed to total. However, to be sequentially sound, it is of essence that if two pushes did not
overlap, then the more recent push is indeed popped first.3 This is why the implementation of
newTimestamp should satisfy the property that two non-overlapping calls to newTimestamp
produce timestamps that actually are ordered by <T.

There are several ways in which one can implement newTimestamp to satisfy this property,
and Figure 1 shows the particularly efficient variant proposed by Dodds et al. [3]. We will
return to this variant promptly. However, for purposes of understanding and proving the
algorithm linearizable, one may consider a simpler version whereby timestamps are integers,
and newTimestamp is implemented to keep a global counter that is atomically fetch-and-
incremented on each call, returning the current count as the fresh timestamp. Such an atomic
implementation results in <T that is actually a total order, and much simpler to analyze
than the efficient variant in Figure 1. We will use the atomic implementation as a stepping
stone in our proof; we will prove it linearizable first, and then show that the linearizability
argument for the efficient variant reduces to the atomic case.

The reason to consider a non-atomic implementation at all is that the atomic one suffers
from a performance issue that threads contend on the global timestamp counter. The efficient
variant from Figure 1 improves on this by introducing interval timestamps of the form
[a, b] for integers a ≤ b, where [a, b] <T [c, d] holds if b < c in the standard integer order.
Obviously, so defined <T is only a partial order, as it does not order every two interval
timestamps. Nevertheless, it still suffices for linearizability, because if two push events are
assigned overlapping interval timestamps, such events must overlap as well, and thus do not
constrain the order in which they are popped in a linearization.

The newTimestamp from Figure 1 still keeps a global counter TS, as the atomic variant
would, but it does not always synchronize accesses to it. In particular, TS is first read twice
into ts1 and ts2 (lines 12 and 14, respectively). In the common case when some thread
interfered on TS (i.e., ts1 ̸= ts2), the method generates an interval with endpoint ts2 − 1,
and terminates without having performed any synchronization. Some synchronization is
required only when no interference is detected (i.e., ts1 = ts2). In that case, newTimestamp
CAS-es over TS (line 17), to atomically increment TS. As CAS is an expensive operation,
invoking pause() in line 13 increases the probability of interference, and thus decreases the
need for CAS. If the CAS succeeds, an interval with endpoint ts1 is returned. If the CAS
fails, some other thread increased TS, and the method returns an endpoint TS − 1. In
all cases, when newTimestamp terminates, TS has been increased either by the executing
thread or by another thread, and the generated interval’s endpoint is strictly smaller than
the current value of TS. Thus, a subsequent non-overlapping invocation of newTimestamp
will produce an interval that is strictly larger in <T. This ensures that two sequentially
non-overlapping pushes generate non-overlapping interval timestamps.

Note that newTimestamp could return the same interval timestamp for two different
overlapping invocations. For example, with initial TS = 0, a thread T1, after reading TS the
first time at line 12 (returning 0), waits at line 13 while another thread T2 fully executes
newTimestamp, meaning that T2 increased TS at line 17 and returned timestamp [0, 0].
When T1 resumes, it again reads TS at line 14 (returning 1), and so returns [0, 0].

3 Further assuming that the pops also did not overlap among themselves or with the pushes.

J. Domínguez and A. Nanevski 30:5

(A1) Non-empty pop

v :: S
pop() ⟨v⟩−−−−−−→ S

(A2) Empty pop

[] pop() ⟨EMPTY⟩−−−−−−−−−−→ []
(A3) push

S
push(v) ⟨tt⟩−−−−−−−−→ v :: S

(a) State-based sequential specification.

(B1) LIFO
u1 ⋖ o1 ∧ u1 < u2 < o1 =⇒ ∃o2. u2 ⋖ o2 ∧ o2 < o1

(B2) Pop uniqueness
u ⋖ o1 ∧ u ⋖ o2 =⇒ o1 = o2

(B3) Dependences occur in the past
u ⋖ o =⇒ u < o

(B4.1) Non-empty pop

o = pop() ⟨v⟩ ∧ v ̸= EMPTY =⇒ ∃u. u ⋖ o ∧ v = u.in
(B4.2) Empty pop

o1 = pop() ⟨EMPTY⟩ =⇒ ∀u. u < o1 =⇒ ∃o2. u ⋖ o2 ∧ o2 < o1

(B4.3) push

u = push(_) ⟨v⟩ =⇒ v = tt

(b) History-based sequential specification. Relation ⋖ : Ev × Ev is abstract, and u.in is event u’s input.

Figure 2 State-based and history-based sequential specifications for stacks. Variables u, o, and
their indexed variants, range over pushes and pops, respectively.

Finally, <T is formally augmented with infinite timestamps −∞ and ∞, so that −∞ <T
t <T ∞ for any timestamp t generated by newTimestamp. This enables pop to start its search
with minimum timestamp −∞ (line 28). Similarly, push can assign maximum timestamp ∞
to a fresh node (line 6) before assigning it a finite timestamp; an intervening pop could take
such a fresh node immediately, as the node is the most recent.

3 Axiomatizing Visibility and Separability

3.1 Sequential History Specifications and Visibility Relations
Following Henzinger et al. [10], we start the development of visibility relations by introducing
history-based specifications for our data structure. History-based specifications describe
relationships between the data structure’s procedures in an execution history. They are
significantly different from the perhaps more customary state-based specifications that
describe the actions of a procedure in terms of input and output state. However, history-
based specifications scale better to the concurrent setting, which is why concurrent consistency
criteria such as linearizability are invariably defined in terms of execution histories.

In this section we focus on sequential histories in order to introduce the idea of visibility
relation in a simple way, before generalizing to concurrent histories in Section 3.2. A
sequential history is a sequence of the form [proc(in1)⟨out1⟩, . . . , proc(inn)⟨outn⟩], where
proc(ini)⟨outi⟩ means that proc(ini) executed atomically and produced output outi. We
term event each element in a sequential history h, and Ev denotes the set of all events in h.

Figure 2 illustrates the distinction between sequential state-based and history-based
specifications for stacks. For the state-based specification in Figure 2a, let us denote by
S

proc(in) ⟨out⟩−−−−−−−−−→ S′ the statement that event proc with input in executes atomically on stack
S, produces output out and modifies the stack into S′. Axiom A1 says that a pop removes
the top element v from a non-empty stack and returns v. Axiom A2 says that pop returns
EMPTY when the stack is empty, leaving the stack unchanged. Axiom A3 says push(v)
inserts v into the stack as the new top element, returning the trivial value tt.

CONCUR 2023

30:6 Visibility and Separability for a Declarative Proof of the Timestamped Stack

Figure 2b shows the history-based sequential specification for stacks. The specification
utilizes the visibility relation ⋖ to capture a push-pop causal dependence between events. In
particular, u ⋖ o means that “event o pops a value that event u pushed onto the stack”. We
usually say that u is visible to o, or that o observes u. Under this interpretation, axioms
B1, ..., B4.3 state the following expected properties.4

Axiom B1 (LIFO) states that more recent pushes are popped first. More specifically,
if o1 observes u1 (i.e, u1 ⋖ o1) and u2 is a later push executing between u1 and o1 (i.e.,
u1 < u2 < o1), then u2 must be popped before o1 pops u1, otherwise the value pushed by u1
would not be at the top of the stack for o1 to take. Relation < is the returns-before relation
(with ⊑ its reflexive closure), where x < y means that x terminated before y started. Note
that < is a total order on events, as in a sequential execution, different events cannot overlap.

Axiom B2 (Pop uniqueness) says that a push is observed by at most one pop.
Axiom B3 (Dependences occur in the past) says that if a pop depends on a push, then

the push executes before the pop.
Axioms B4.1 (Non-empty pop), B4.2 (Empty pop), and B4.3 essentially are the counterparts

of the state-based sequential axioms A1-A3, respectively, as we show next.
Axiom B4.1 says that a pop() ⟨v⟩ event o observes a push u that pushed v. This axiom,

along with B1-B3, ensures that o relates to u as in the following diagram.

S v :: S . . . v :: S . . . v :: S S
u ui oj uk ol o=pop()⟨v⟩

⋖

⋖ ⋖

In particular: (i) u executes before o (by axiom B3, because u ⋖ o), (ii) every push between
u and o is popped before o (by axiom B1), and each push is popped exactly once (by axiom
B2). Thus, once o executes, the value v pushed by the observed u, is actually the most recent
unpopped value, i.e., it is on the top of the stack. Subsequent pops cannot observe this value
anymore either (again by axioms B1 and B2), thus the stack is modified from v :: S to S.
This explains that B4.1 is essentially a history-based version of A1.

Similarly, axiom B4.2 states that if a pop() ⟨EMPTY⟩ event o occurs, then every push
before o must have been popped before o, as this ensures that the stack is empty when o is
reached. Hence, the axiom is counterpart to A2.

Finally, axiom B4.3 says that the output of a push event is the trivial value tt. The
axiom imposes no conditions on the stack, as a value can always be pushed. In this, B4.3 is
the counterpart to A3 which also imposes no conditions on the input stack, and posits that
push’s output value is trivial. However, unlike A3, B4.3 does not directly says that the value
is pushed on the top of the stack, as that aspect is captured by the relationships between
pushes and pops described by B4.1.

3.2 Concurrent Specifications and Separability Relations
Concurrent execution histories do not satisfy the sequential axioms in Figure 2b for two
related reasons. First, concurrent events can overlap in real time. As a consequence, the
axioms B1 (LIFO), B3 (Dependencies occur in the past), and B4.2 (Empty pop) are too

4 Our paper will make heavy use of several different relations. To help the reader keep track of them, we
denote the relations by symbols that graphically associate to the relation’s meaning. For example, we
use ⋖ for the visibility relation, because the symbol graphically resembles an eye.

J. Domínguez and A. Nanevski 30:7

(C1) Concurrent LIFO
u1 ⋖ o1 ∧ o1 ̸⋉− u2 ̸⋉− u1 =⇒ ∃o2. u2 ⋖ o2 ∧ o2 ⋉ o1

(C2) Pop uniqueness
u ⋖ o1 ∧ u ⋖ o2 =⇒ o1 = o2

(C3) No future dependences
x ≺+ y =⇒ y ̸⊑ x

(C4) Return value completion
∃v. Qx,v ∧ (x ∈ T =⇒ v = x.out)

(a) Concurrent specification. Relations ⋖,⋉ : Ev × Ev are abstract.

Constraint relation
≺ =̂ ⋖ ∪ ⋉

Returns-before relation
e1 < e2 =̂ e1.end <N e2.start

Set of terminated events
T =̂ {e | e.end ̸= ⊥}

Closure of terminated events
T =̂ {e | ∃t ∈ T. e ≺∗ t}

Qo1,v =̂

{
∃u. u ⋖ o1 ∧ v = u.in if v ̸= EMPTY
∀u. o1 ̸⋉− u =⇒ ∃o2. u ⋖ o2 ∧ o2 ⋉ o1 if v = EMPTY

Qu,v =̂ v = tt

(b) Defined notions.

Figure 3 Concurrent history-based specification for stacks. Variables u, o, and their indexed
variations, range over pushes and pops in T , respectively. Variables x, y range over T . Variable e,
and its indexed variations, range over Ev. x.out denotes x’s output.

restrictive, as they force events to be non-overlapping (i.e., disjoint in time) due to the use of
the returns-before relation <. Second, events can no longer be treated as atomic; thus event’s
start and end times (if the event terminated) must be taken into account. As a consequence,
axioms B4.1, B4.2, and B4.3 must be modified to account for the output of an unfinished
event not being available yet. We continue using Ev for the set of events in the concurrent
history. We denote by e.start and e.end the start and end time of event e, respectively; for
example, for the implementation in Figure 1, a push event starts when line 5 executes, and
ends when line 9 executes. We use the standard order relation on natural numbers <N to
compare start and end times.

Figure 3 shows the modified axioms that address the above issues. Importantly, in
addition to the visibility relation, the axioms utilize the separability relation x ⋉ y to capture
that “event x is separable before y”, i.e., x should be linearized before y.5 The reason for the
separation depends on the particular stack implementation, but is kept abstract in the axioms.
Correspondingly, the relation ⋉ is also kept abstract. We now explain how the concurrent
axioms in Figure 3 are systematically obtained from the sequential ones in Figure 2b.

Axiom C1 is obtained from B1 by replacing < with ⋉ or with the (negation of the)
reflexive closure ⋉−, following the rules below. The goal is to relax the real-time strong
separation imposed by < with a more permissive separation of ⋉.

If subformula a < b occurs in a condition of an implication (negative occurrence), it is
replaced with b ̸⋉− a. Notice the flip in the arguments and the negation.
If subformula a < b occurs in the conclusion of an implication (positive occurrence), it is
replaced with a ⋉ b.

These rules have the following justification. Let us suppose we have a formula ϕ =̂ a <

b =⇒ c < d in some sequential axiom. In the sequential case, < is a total order, which
means that ϕ is equivalent to b ⊑ a ∨ c < d. After directly replacing < for ⋉, we obtain

5 The symbol ⋉ twists <, suggesting that ⋉ relaxes (i.e., is a twist on) returns-before relation <.

CONCUR 2023

30:8 Visibility and Separability for a Declarative Proof of the Timestamped Stack

b ⋉− a ∨ c ⋉ d, which is further equivalent to ψ =̂ b ̸⋉− a =⇒ c ⋉ d. Comparing ϕ and
ψ, we see that ψ’s condition is flipped, replaced, and negated, while its conclusion is only
replaced. An important aspect of our procedure is that negative occurrences of ⋉ in ψ are
themselves negated. Thus, intuitively, ψ as a whole remains positive with respect to ⋉.
Positive formulas remain true under extensions of ⋉, which is crucial, as the linearizability
proof will involve extending ⋉ until reaching a total order.

Axiom C2 is unchanged compared to B2.
Axiom C3 is obtained from B3 as follows. In the sequential specification, ⋖ was the

only relation encoding dependences between events, but now we have two relations encoding
dependences, ⋖ and ⋉. To collect them, we define a new relation ≺ =̂ ⋖ ∪ ⋉ which we call
constraint relation.6 We can consider modifying Axiom B3 into x ≺ y =⇒ x < y to say that
any dependence x of y must terminate before y starts. However, such a modification of B3 is
too stringent, as it does not allow x to overlap with y. Instead, we relax the conclusion to
say that an event cannot depend on itself or events from the future, i.e., x ≺ y =⇒ y ̸⊑ x.
Finally, we get axiom C3 by replacing ≺ with its transitive closure ≺+ to account for indirect
dependences of y; e.g., in x1 ≺ x2 ≺ y, event x1 is an indirect dependence of y. Hence, C3
reads “any direct or indirect dependence does not execute in the future, and events do not
depend on themselves”.

To understand Axiom C4, we need to consider the set T of all terminated events and its
closure under the constraint relation T =̂ {e ∈ Ev | ∃t ∈ T. e ≺∗ t}. As usual, ≺∗ is the
reflexive-transitive closure of ≺. The reason for considering this set is that the variable x
over which the axiom implicitly quantifies ranges over T .

It is standard in linearizability that the linearization order contains all the terminated
events, plus selected unterminated events with fictitious, but suitable, outputs. The selected
unterminated events are typically those that executed their effect, which then influenced
others, and must thus be included for sequential soundness. The set T precisely determines
the events to be included by saturating the set of terminated events T under ≺.

Axiom C4 then codifies when an output v is suitable for an event x by means of the
postcondition predicate Qx,v. In particular, C4 says that v exists such that Qx,v. If x ∈ T

is unterminated, we use that v as the fictitious output. If x is terminated (x ∈ T), then v

must be x’s actual output. The postcondition predicate Qx,v describes how x and v relate
in the case of stacks. It is obtained by coalescing the axioms B4.1, B4.2 and B4.3, which
themselves describe the outputs of stack events in the sequential setting, and which we first
modify according to the systematic transformation outlined above.

We henceforth call the axioms in Figure 3, visibility-style axioms. These axioms imply
linearizability of any stack implementation satisfying them,

▶ Theorem 3.1. Let D be an arbitrary implementation of a concurrent stack. If there are
relations ⋉ and ⋖ definable using D such that the visibility-style axioms hold, then D is
linearizable.

The proof starts with the relation ◁ =̂ (≺ ∪ <)+, i.e, the transitive closure of the union
of ≺ and <. Then, it shows that ◁ is a partial order that can be extended to a sequentially
sound total order ≤ by using the visibility-style axioms. Since ≤ contains ≺, this means that
relations ⋖ and ⋉ define ordering constraints that linearization respects.

6 The symbol ≺ is like an eye with no iris; thus, “blinder” than ⋖, reflecting that ≺ is a superset of ⋖.

J. Domínguez and A. Nanevski 30:9

4 Visibility and Separability for the TS-stack

By Theorem 3.1, to prove linearizability for the TS-stack, it suffices to define the relations
⋖ and ⋉ and show that they satisfy the axioms from Figure 3. We carry out this proof
in two stages: In Section 4.2 we prove linearizability when the newTimestamp procedure
is implemented by an atomic fetch-and-increment operation on a global counter TS, as
discussed in Section 2. In Section 4.3 we show how the general case of interval timestamps
reduces to the atomic case. The lifting exploits that the difference between the atomic and
interval cases is only in the implementation of newTimestamp.

For simplicity, in both cases we explicitly exclude elimination pairs from the discussion.
An elimination pair consists of a push and an overlapping pop event that takes the value
pushed. The elision allows the discussion to only consider pushes with finite timestamps.
Indeed, every push is first assigned an infinite timestamp (line 6 in Figure 1), which is then
refined into a finite one in line 9. If a push u, having not yet reached line 9, is taken by some
pop o, then u and o overlap, and hence form an elimination pair.7

Also, in both cases, we utilize the abstraction we call spans, to define the visibility and
separability relations. A span of an event is the interval in which the event accesses the
shared state of the stack. We could trivially take the span to be the whole interval of the
event, but in the case of TS-stack we can tighten it as discussed below. In this sense, a
span is a generalization of LPs; being an interval, rather than a single point, it approximates
where the LP of an event lies, but allows for some uncertainty as to the LPs exact position.

The span of the push procedure starts when the new node is linked as the first node of
the pool (line 7), as this is the moment when the new node becomes available for other events
to see. The span ends when a finite timestamp is assigned to the new node (line 9). Notice
how the span encompasses all the commands of push that change the pool or the new node.

The span of the pop procedure starts at the infinity stamp assignment (line 28) of the
last iteration of the pools scan. The span ends at the successful CAS at line 38 which takes
the node for the pop to return. Again, the span covers all the commands of pop that change
the pools or the taken node. These are all included in the last iteration of the pools scan,
because in all the prior iterations, the CAS modifying the pools must have failed.

We formalize spans as pairs of rep events (a, b), where a and b are the initial and final rep
event in the span, respectively. We denote by start (b) and end (b) the standard projection
functions for span b. Rep events are generated by the invocation of a code line inside a
procedure. For example, invoking line 7 in Figure 1 produces a rep event. The set of all rep
events in an execution history is denoted as Rep. The distinction between events (Ev) and
rep events is standard in linearizability [11]. We denote by < the real-time order between
rep events. We consider only fully-formed spans; for example, if pop has not executed its
successful CAS, then it has no span.

We also extend our notion of timestamp into abstract timestamp. An abstract timestamp
is a pair (i, t), where i is the (ghost) id of a node, and t is a (plain) timestamp. The extension
is motivated by the observation explained in Section 2 that two pushes may actually generate

7 Eliding elimination pairs when dealing with stacks is justified because such pairs can be linearized simply
as a push that is immediately followed by a pop. The idea was originated by Hendler et al. [9] and was
also employed in Haas’ PhD dissertation [7], though with a different motivation from us and with a
different soundness proof. For example, to prove the elimination sound, Haas shows how elimination
pairs could be put back into the histories from which they have been removed. In contrast, we define
visibility and separability relations that exclude elimination pairs, and show in Appendix B.1 [5], how
to extend the relations iteratively, one elimination pair at a time. The extension adds some bulk, but
does not change the structure of the proof that we illustrate in this section.

CONCUR 2023

30:10 Visibility and Separability for a Declarative Proof of the Timestamped Stack

the same (plain) timestamp. By attaching the node id i to the timestamp t, we differentiate
such cases. We use “timestamp” to refer to abstract timestamps or plain timestamps when
the adjective can be inferred from the context.

We also utilize the following notation.
Given event e, S e is the unique span executed by e. The function is undefined if the
argument event has not completed its span.
Given spans a, b, the relation a <S b means that a finished before b started. ⊑S denotes
its reflexive closure.
For a push u, id u is the unique id of the node that u inserted into the pool in line 7.
Similarly, for a pop o, id o is the unique id of the node that o took at the successful CAS
in line 38. If u and o have not executed the mentioned lines, id is undefined.
For a push u, ts u is the abstract timestamp (id u, t), combining id u with the timestamp
t that u assigned at line 9. In particular, t is always finite, because newTimestamp only
generates finite timestamps. Similarly, for a pop o, ts o is the abstract timestamp (id o, t),
combining id o with the timestamp t of the taken node that o read in line 34. Generally,
ts o may return an infinite plain timestamp; however, if elimination pairs are excluded,
then timestamps are finite, as explained before. If an event x has not executed its span,
ts x is undefined.
Abstract timestamps admit the following partial order defined out of <T on plain
timestamps, where we overload the symbol <T without confusion.

(i1, t1) <T (i2, t2) =̂ t1 <T t2

We define when push u and pop o form an elimination pair.

u Elim o =̂ id u = id o ∧ u ̸< o

In English: (1) o pops the node that u pushed (id u = id o), and (2) u and o overlap.
Events u and o overlap if u ̸< o and o ̸< u, but it is not necessary to explicitly check
o ̸< u, as that follows from id u = id o and a structural invariant that o cannot pop a
node that has not been pushed yet (Appendix B.1 [5]).
The set of events that occur in elimination pairs is E =̂ {x | ∃y. x Elim y ∨ y Elim x}.
As we explicitly exclude elimination pairs from the presentation, we assume that each
event variable x occurring in the forthcoming definitions is such that x /∈ E. In Section 5
we comment how elimination pairs are placed back into consideration.

4.1 Key Abstractions and Invariants
When pop misses a push. The key for understanding TS-stacks is explaining what it means
for a pop o to have missed a push u. Informally, a miss occurs when o, in its scan of the
pools, takes a push u′ with a smaller timestamp than that of u (hence, u′ is less recent than
u). This is critical, because o taking a less recent push than available is seemingly a violation
of the LIFO order. However, this does not actually have to be so in the case of TS-stacks,
where, for example, it is fine for u to insert into the pool after o has already scanned past
the point of insertion. We can say that u occurred too late to really be available for o to
pop, and we simply linearize u after o. The following definition formalizes when o misses u
(i.e., when u occurs too late for o), focusing on the atomic timestamp case.

Miss o u =̂ ts o <T ts u ∧
∀o′. ts u = ts o

′ =⇒ end (S o) < end (S o′)
(1)

J. Domínguez and A. Nanevski 30:11

Figure 4 Possible execution showing three atomic timestamp generation rep events for push
events u1, u2, u3, labeled by their generated timestamps; and two pop spans for pop events o1 and
o3. Spans are shown as line segments and rep events (being atomic) as dots. The timestamps are
strictly increasing ts u1 <T ts u2 <T ts u3. Event o1 took u1, while o3 took u3. The events will be
linearized as u1, o1, u2, u3, o3. In particular, o1 must be linearized before u2.

The first conjunct directly says that for o to miss u, it must be that o takes a node with
a smaller timestamp than that of u. The second conjunct adds that, intuitively, u remains
untaken during the execution of o. Indeed, if u is taken by o′ (ts u = ts o

′), the definition
requires that the span of o′ finishes after the span of o (end (S o) < end (S o′)). That is, the
CAS that sets the taken flag in the node of u executes after the span of o. In other words, if
u is taken at all, then it is taken after the span of o.

Figure 4 shows a push u2 that overlaps with a pop o1, but o1 takes a push u1 whose
timestamp is smaller than that of u2. In our definition, Miss o1 u2 holds because u2 remains
untaken on the stack after o1 terminates. Miss o1 u2 indicates that we must linearize o1
before u2. And indeed, this is consistent with the situation in the figure, as any order where
u2 appears before o1 violates some linearizability requirement. For example, the order u1,
u2, o1 is sequentially unsound because o1 pops u1 while u2 is the top of the stack, while u2,
u1, o1 does not respect the ordering of the timestamps of u1 and u2.8

Continuing with Figure 4, o1 does not miss u3, even though u3 also overlaps with o1,
and o1 takes u1 whose timestamp is smaller than that of u3. In our definition, ¬Miss o1 u3
because the span of o3 ends before the span of o1. ¬Miss o1 u3 indicates no restrictions on
the ordering between o1 and u3. For example, the only linearization order of Figure 4 is u1,
o1, u2, u3, o3, but this is forced by the existence of u2. Removing u2, the orders u1, u3, o3,
o1 (where u3 appears before o1) and u1, o1, u3, o3 (where u3 appears after o1) are both valid.

Misses start late. Having defined Miss o u, we can now explain the most important
invariants of the TS-stack, again focused on the atomic timestamps. The first invariant says
that a push u missed by a pop o has a span that starts after the pop’s span starts. In other
words, a missed push starts after the pop that missed it.

Miss o u =⇒ start (S o) < start (S u) (2)

To intuit why (2) is an invariant, consider a situation when o misses u but u’s span starts
before o’s. In that case, u’s pool contains u’s node before o even starts its scan. Thus o’s
scan will encounter u and proceed to either take u, or take an even more recent push. At
any rate, o will not take a push with a timestamp below that of u; thus, ¬(Miss o u).

8 We linearize pushes by the order of their timestamps.

CONCUR 2023

30:12 Visibility and Separability for a Declarative Proof of the Timestamped Stack

Disjoint pushes order timestamps. The next invariant is that pushes with disjoint spans,
produce ordered timestamps. Intuitively, this is so because disjoint push spans make disjoint
calls to newTimestamp, which in turn generate ordered timestamps as explained in Section 2.

S u1 <S S u2 =⇒ ts u1 <T ts u2 (3)

4.2 Case: Atomic Timestamps

We next define the visibility ⋖ and separability ⋉ relations for atomic timestamps.

u ⋖ o =̂ ts u = ts o (4)
u1 ⋉ u2 =̂ ts u1 <T ts u2 (5)
o ⋉ u =̂ ∃u′. Miss o u′ ∧ ts u

′ ≤T ts u (6)
o2 ⋉ o1 =̂ ts o1 <T ts o2 ∧ ¬∃u′. Miss o1 u

′ ∧ ts u
′ ≤T ts o2 (7)

The definition of ⋖ relates u and o if they have the same timestamp (i.e., o took u).
The definition of ⋉ comes with three clauses, motivated by the form of the axioms from

Figure 3. In particular, we need to separate a push from a push (u1 ⋉ u2), a pop from a
push (o ⋉ u), and a pop from a pop (o2 ⋉ o1), but not a push from a pop, as only the first
three clauses of ⋉ appear in the axioms.

The clause u1 ⋉ u2 naturally orders push events according to their timestamps.
The clause o ⋉ u extends Miss o u′ to account for pushes being ordered by their

timestamps, as per the previous clause. It says that pop o is separated before push u, if
there is a push u′ that was missed by o, and the timestamp of u′ is below (or equals) that of
u. For example, in Figure 4 we have o1 ⋉ u2 and o1 ⋉ u3.

The clause o2 ⋉ o1 separates pops inversely to the order of the taken timestamps, or
equivalently, inversely to the order of the taken pushes, but under the condition that o1
did not miss any push with a timestamp below o2. The last requirement is important. For
example, if we ignored it in Figure 4, we would obtain o3 ⋉ o1 since ts u1 <T ts u3. But this
order is sequentially unsound; the pushes being ordered as u1, u2, u3, after o3 takes u3, the
value pushed by u2 is at the top of the stack. But then o1 cannot execute next, as we need
an intervening pop to remove u2.

It is worth mentioning that we arrived at the definition of the clause o2 ⋉ o1 by formal
symbol manipulation aimed at fulfilling axiom C1 (Concurrent LIFO) after the definitions of
the other clauses have been unfolded in C1. In hindsight, this may have been expected, as
the clauses u1 ⋉ u2 and o ⋉ u are hypotheses of C1, while o2 ⋉ o1 is in the conclusion.

The engineering of the (uniquely determined) definition of the clause o2 ⋉ o1 thus makes
the proof of axiom C1 out of definitions (4)-(7) quite straightforward, but for one important
observation. Because the axiom contains negations of several clauses of ⋉, unfolding the
definitions of these clauses reveals comparisons of the form ts x ̸<T ts y, where the relation
<T appears negated. The proof then crucially relies on <T being total, so that we can flip
the negated comparisons into the form ts y ≤T ts x. It is the requirement of totality of
<T that makes the described development specific to atomic timestamps. In Section 4.3, we
shall see how to adapt to interval timestamps where <T is not total.

▶ Theorem 4.1. Given ⋖ and ⋉ as in (4)–(7), the TS-stack with atomic timestamps
satisfies the invariants in Section 4.1 and the axioms in Figure 3, and is thus linearizable by
Theorem 3.1.

J. Domínguez and A. Nanevski 30:13

The characteristic part of the proof is showing that the axiom C3 (no future dependences)
holds, which is where we rely on the invariants (2) and (3). This proof generates obligations,
one of which is that o⋉ u < o for some push u and pop o is impossible, as such u depends
on o which is in u’s future. The proof proceeds by contradiction: suppose o ⋉ u < o. By
definition of o⋉ u, there exists a push u′ missed by o such that ts u′ ≤T ts u. By invariant
(2), u′ starts after o starts, and since u < o, it must also be u < u′. But then, by invariant
(3), it is also ts u <T ts u

′. In other words, ts u <T ts u
′ ≤T ts u, a contradiction.

4.3 Case: Interval Timestamps
The proof from Section 4.2 does not directly apply to the interval timestamps because
proving axiom C1 (Concurrent LIFO) relies on the totality of <T in order to flip the negated
inequalities ts x ̸<T ts y into positive facts ts y ≤T ts x. The relation <T is total in the
atomic case, but not in the interval case.

The key observation that allows us to recover the argument is that whenever <T is used
to compare the timestamps of two push events in the proofs of the atomic case, at least one
of the push events is invariably popped. In other words, the proof does not actually require
totality, but only the following weaker property of pop-totality. Formally, if R is a partial
order on abstract timestamps, then R is pop-total if:

∀u1 u2 o. (ts u1 = ts o) ∨ (ts u2 = ts o) =⇒
(ts u1) R (ts u2) ∨ (ts u2) R (ts u1) ∨ (ts u1 = ts u2)

(8)

In English: if at least one of the pushes is taken, then the timestamps generated by the
pushes are totally comparable under R.

As an illustration why the weaker property suffices, consider the hypotheses of the axiom
C1: these are u1 ⋖ o1, o1 ̸⋉− u2 and u2 ̸⋉− u1. Let us further assume that <T in all the
definitions is replaced by an arbitrary pop-total R. A common pattern throughout the proof
of Theorem 4.1 is that three conjuncts of the above form appear together. Such combination
entails that u1 and u2 are both popped, thus allowing us to flip any negated relation R in
which ts u1 or ts u2 may appear.

Indeed, that u1 is popped, and by o1, follows from u1 ⋖ o1, which is defined as ts o1 = ts u1.
To see that u2 must also be popped consider the following. First, note that o1 ̸⋉− u2 implies
¬Miss o1 u2, by an easy derivation. Pushing the negation inside the definition of Miss and
substituting ts o1 = ts u1 derives ¬(ts u1) R (ts u2) ∨ ∃o′. ts u2 = ts o

′ ∧ The second
disjunct directly says that u2 is popped by some o′. By pop-totality of R, the first disjunct
implies (ts u2) R (ts u1)∨(ts u2) = (ts u1), and thus ts u2 = ts u1, because ¬(ts u2) R (ts u1)
by u2 ̸⋉− u1. Thus, u1 and u2 are the same push, and u2 is popped as well.

It follows that we could replicate the atomic case proof to the interval case, if we could
replace <T with some pop-total relation over interval timestamps throughout the definitions
and proofs in Sections 4.1 and 4.2. We next define such a relation ≪ that includes <T.

t2 ≪ t1 =̂ t2 <T t1 ∨ ∃u1, u2. ts u1 ̸<T ts u2 ∧ Tb u1 u2 ∧
t2 ≤T ts u2 ∧ ts u1 ≤T t1

Tb u1 u2 =̂ ∃o1. ts u1 = ts o1 ∧ ∀o2. ts u2 = ts o2 =⇒ end (S o1) < end (S o2)

The key insight of the definition is that if two pushes u1 and u2 are not already ordered
by <T, i.e., ts u1 ̸<T ts u2, we could order their timestamps in ≪ in the order in which the
pushes are popped. Indeed, if u1 is taken before u2 (Tb u1 u2), then LIFO warrants that u2

CONCUR 2023

30:14 Visibility and Separability for a Declarative Proof of the Timestamped Stack

is linearized before u1. We thus order u2’s timestamp before u1’s timestamp in ≪. It follows
that u2 ⋉ u1 (assuming ≪ substitutes <T in the definition of u2 ⋉ u1), and consequently
that u2 is linearized before u1. The definition of ≪ further saturates the relation to include
any t2 ≪ t1 where t2 ≤T ts u2 and ts u1 ≤T t1, as then t2 ≪ t1 is forced by ts u2 ≪ ts u1.

Returning to taken-before, we define Tb u1 u2 to hold of two pops u1 and u2 if: (1) u1 is
taken and u2 is not, or (2) both are taken by pops o1 and o2, respectively. In the case (2) we
require that the span of o1 ends before the span of o2, i.e., o1 took its push before o2 did.

One can now proceed to prove that ≪ is a strict partial order that is pop-total, that
the invariants “Misses start late” and “Disjoint pushes order timestamps” from Section 4.1,
continue to hold for the TS-stack with interval timestamps, after substituting <T := ≪
in the definition of Miss (1), and definitions (2), (3) of the invariants. The visibility and
separability relations for the TS-stack with interval timestamps are exactly as in (4)-(7)
but with substitution <T := ≪, and our final theorem about the correctness of TS-stack is
obtained simply by retracing the proof of Theorem 4.1.

▶ Theorem 4.2. Let ⋖ and ⋉ defined as in (4)–(7) but under the substitution <T := ≪.
The TS-stack with interval timestamps satisfies the invariants in Section 4.1 under the
substitution, and the axioms in Figure 3, and is thus linearizable by Theorem 3.1.

5 Discussion, Related and Future Work

Dealing with elimination pairs. To handle elimination pairs that were excluded in Section 4,
we recursively define indexed families of visibility and separability relations, where ⋖i and
⋉i means that the first i elimination pairs have been added (Appendix B.1 [5]). At level 0,
⋖0 and ⋉0 are the relations from Section 4. At some limit level n, where n is the number of
elimination pairs, we have the final relations ⋖n and ⋉n that consider all the events.

The theorems in Section 4 show that the visibility-style axioms in Figure 3 hold for
events in T \ E, i.e., T without elimination pairs. They are the base case of our proof in
Appendix B.1 [5], which proceeds to inductively show that if the visibility-style axioms hold
for the first i pairs, they continue to hold when the pair i+ 1 is added.

Differences with the original algorithm. Figure 1 is a simplified version of the algorithm
from Appendix B.2 [5]. The latter further treats elimination pair detection and node
unlinking (i.e., node deallocation from memory). We consider the simplified version solely
for presentation reasons, as the simplification still presents the same verification challenges
and suffices to motivate the visibility and separability relations in Section 4. The definitions
of these relations transfer to Appendix B.1 [5], where they serve as a basis for defining a
family of augmented relations that deal with elimination pairs, as described above.

Having said this, the program that we treat in Appendix B.2 [5] still differs in a relatively
minor way from the original program of Dodds et al. [3] in that we elide empty stack detection
(i.e. pops returning EMPTY). This can be treated separately as an extra independent step
in the proof [7], which means that considering empty pops changes neither the analysis we
already presented in Section 4 nor the proof for elimination pairs in Appendix B.1.3 [5].
Nevertheless, we plan to augment the proof with an extra step that considers empty pops.

Related proofs. Dodds et al. [3] proof is also based on a visibility relation (their val),
in addition to several other relations. However, our two axiomatizations and proofs differ
significantly. Our axiomatization arises from a systematic transformation of a state-based
sequential specification of stacks into a history-based concurrent specification, while that

J. Domínguez and A. Nanevski 30:15

of Dodds et al. does not seem to derive from such prior principles, though it does suffice
for the linearizability proof. The different axiomatizations give rise to different relations
on histories as well. For example, their insert-remove (ir) relation is defined in terms of
LPs of submodules. The objective in using LPs of submodules is to start with a definition
for that may have linearizability violations, which then gets adjusted along the proof to
remove such violations. In contrast, the definitions of our relations in Section 4 require no
adjustments since they already lead to a correct linearization, albeit by eliding LPs. As a
result, our relations are quite a bit more direct, and support better proof decomposition. In
particular, our proof transfers from the easier atomic timestamp case to the more difficult
interval timestamp case, whereas Dodds et al. immediately consider the interval case.

Bouajjani et al. [1] employs forward simulation on the atomic timestamp variant of the TS-
stack, but do not attempt the interval timestamp variant. Our proof (Appendix B.2.2 [5]) does
not employ simulations, and also lifts the atomic timestamp case to the interval timestamp
case. The lifting exploits that the difference between the atomic and interval timestamp
cases is not in the program structure, but only in the implementation of newTimestamp.

Visibility relations in other contexts. Our approach uses visibility and separability relations
to model ordering dependencies between events. A general survey of the use of visibility
relations in concurrency and distributed systems is given by Viotti and Vukolić [17]. Visibility
relations and declarative proofs have also been utilized to specify consistency criteria weaker
than linearizability (Emmi and Enea [6]), to introduce a specification framework for weak
memory models (Raad et al. [15]), and to specify the RC11 memory model (Lahav et al. [13]).

In contrast to the above papers that focus on the semantics of consistency criteria, our
use of visibility relations focuses on verifying specific algorithms and data structures, and is
thus closer to the following work where visibility relations are applied to concurrent queues
(Henzinger et al. [10, 2]), concurrent stacks (Dodds et al. [3] and Haas [7]), and memory
snapshot algorithms (Öhman and Nanevski [14]). We differ from these in the addressed
structures, or in the case of Dodds et al. in the structure of the proof and its components.

Our key innovation compared to these works is the introduction of the separability relation
and its utilization to systematically axiomatize the stack structure in a novel way.

Visibility and separability as a general methodology. The pattern suggested by Sections 3.1
and 3.2, whereby one transforms a history-based sequential specification into a concurrent
specification, by replacing the returns-before relation < with a separability relation ⋉, points
towards a general methodology for axiomatizing concurrent structures.

To test the generality of the approach, we have applied it – successfully ([4] and Ap-
pendix C.1 [5]) – to the RDCSS and MCAS algorithms of Harris et al. [8]. These algorithms
write descriptors (a record with information about the task that a thread requires help
with) into pointers, so that a thread that reads a descriptor can provide help by executing
the described task. These algorithms implicitly “bunch” their help requests into related
groups, and the separability relation models gaps between such bunches. On the other
hand, the visibility relation models a writer-reader dependency, similarly to the push-pop
dependency in this paper. We have also applied the approach to queues, where it derived
a mildly streamlined variant of the queue axioms of Henzinger et al. [10, 2], and to locks,
including readers-writers locks. In the future, we plan to study if this pattern applies to
other concurrent data structures (e.g., memory snapshots, trees, lists, sets, etc.).

CONCUR 2023

30:16 Visibility and Separability for a Declarative Proof of the Timestamped Stack

References
1 Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. Proving

linearizability using forward simulations. In Computer Aided Verification (CAV), pages
542–563, 2017. doi:10.1007/978-3-319-63390-9_28.

2 Soham Chakraborty, Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-oriented
linearizability proofs. Logical Methods in Computer Science (LMCS), 11(1), 2015. doi:
10.2168/LMCS-11(1:20)2015.

3 Mike Dodds, Andreas Haas, and Christoph M. Kirsch. A scalable, correct time-stamped
stack. In Symposium on Principles of Programming Languages (POPL), pages 233–246, 2015.
doi:10.1145/2676726.2676963.

4 Jesús Domínguez and Aleksandar Nanevski. Declarative linearizability proofs for descriptor-
based concurrent helping algorithms. arXiv:2307.04653.

5 Jesús Domínguez and Aleksandar Nanevski. Visibility and separability for a declarative
linearizability proof of the timestamped stack: Extended version. arXiv:2307.04720.

6 Michael Emmi and Constantin Enea. Weak-consistency specification via visibility relaxation.
Proc. ACM Program. Lang., 3(POPL):60:1–60:28, 2019. doi:10.1145/3290373.

7 Andreas Haas. Fast Concurrent Data Structures Through Timestamping. PhD thesis, University
of Salzburg, 2015. URL: https://www.cs.uni-salzburg.at/~ahaas/papers/thesis.pdf.

8 Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word compare-and-swap
operation. In International Symposium on Distributed Computing (DISC), pages 265–279,
2002. doi:10.1007/3-540-36108-1_18.

9 Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 206–215, 2004.
doi:10.1145/1007912.1007944.

10 Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. Aspect-oriented linearizability
proofs. In International Conference on Concurrency Theory (CONCUR), pages 242–256, 2013.
doi:10.1007/978-3-642-40184-8_18.

11 Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for
concurrent objects. ACM Transactions on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990. doi:10.1145/78969.78972.

12 Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew Parkinson. Proving linearizability
using partial orders. In European Symposium on Programming (ESOP), pages 639–667, 2017.
doi:10.1007/978-3-662-54434-1_24.

13 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in C/C++11. In Conference on Programming Language Design and
Implementation (PLDI), pages 618–632, 2017. doi:10.1145/3062341.3062352.

14 Joakim Öhman and Aleksandar Nanevski. Visibility reasoning for concurrent snapshot
algorithms. Proc. ACM Program. Lang., 6(POPL):33:1–33:30, 2022. doi:10.1145/3498694.

15 Azalea Raad, Marko Doko, Lovro Rožić, Ori Lahav, and Viktor Vafeiadis. On library correctness
under weak memory consistency: Specifying and verifying concurrent libraries under declarative
consistency models. Proc. ACM Program. Lang., 3(POPL), 2019. doi:10.1145/3290381.

16 Gerhard Schellhorn, John Derrick, and Heike Wehrheim. A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. Comput. Logic, 15(4), 2014.
doi:10.1145/2629496.

17 Paolo Viotti and Marko Vukolić. Consistency in non-transactional distributed storage systems.
ACM Comput. Surv., 49(1):19:1–19:34, 2016. doi:10.1145/2926965.

https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.2168/LMCS-11(1:20)2015
https://doi.org/10.1145/2676726.2676963
https://arxiv.org/abs/2307.04653
https://arxiv.org/abs/2307.04720
https://doi.org/10.1145/3290373
https://www.cs.uni-salzburg.at/~ahaas/papers/thesis.pdf
https://doi.org/10.1007/3-540-36108-1_18
https://doi.org/10.1145/1007912.1007944
https://doi.org/10.1007/978-3-642-40184-8_18
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3498694
https://doi.org/10.1145/3290381
https://doi.org/10.1145/2629496
https://doi.org/10.1145/2926965

	1 Introduction
	2 The Timestamped Stack and its Timestamps
	3 Axiomatizing Visibility and Separability
	3.1 Sequential History Specifications and Visibility Relations
	3.2 Concurrent Specifications and Separability Relations

	4 Visibility and Separability for the TS-stack
	4.1 Key Abstractions and Invariants
	4.2 Case: Atomic Timestamps
	4.3 Case: Interval Timestamps

	5 Discussion, Related and Future Work

