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Abstract
Efficient concurrent programs and data structures rarely em-
ploy coarse-grained synchronization mechanisms (i.e., locks);
instead, they implement custom synchronization patterns via
fine-grained primitives, such as compare-and-swap. Due to
sophisticated interference scenarios between threads, rea-
soning about such programs is challenging and error-prone,
and can benefit from mechanization.

In this paper, we present the first completely formalized
framework for mechanized verification of full functional
correctness of fine-grained concurrent programs. Our tool is
based on the recently proposed program logic FCSL. It is im-
plemented as an embedded domain-specific language in the
dependently-typed language of the Coq proof assistant, and
is powerful enough to reason about programming features
such as higher-order functions and local thread spawning.
By incorporating a uniform concurrency model, based on
state-transition systems and partial commutative monoids,
FCSL makes it possible to build proofs about concurrent
libraries in a thread-local, compositional way, thus facili-
tating scalability and reuse: libraries are verified just once,
and their specifications are used ubiquitously in client-side
reasoning. We illustrate the proof layout in FCSL by exam-
ple, and report on our experience of using FCSL to verify a
number of concurrent algorithms and data structures.

1. Introduction
It has been long recognized that efficient concurrency is of
crucial importance for high-performant software. Unfortu-
nately, proving correctness of concurrent programs, in which
several computations can be executed in parallel, is diffi-
cult due to the large number of possible interactions between
concurrent processes/threads on shared data structures.

One way to deal with the complexity of verifying concur-
rent code is to employ the mechanisms of so-called coarse-
grained synchronization, i.e., locks. By making use of locks
in the code, the programmer ensures mutually-exclusive
thread access to critical resources, therefore, reducing the
proof of correctness of concurrent code to the proof of cor-
rectness of sequential code. While sound, this approach to
concurrency prevents one from taking full advantage of par-
allel computations. An alternative is to implement shared
data structures in a fine-grained (i.e., lock-free) manner, so
the threads manipulating such structures would be reaching

a consensus via the active use of non-blocking read-modify-
write operations (e.g., compare-and-swap) instead of locks.

Despite the clear practical advantages of the fine-grained
approach to the implementation of concurrent data struc-
tures, it requires significant expertise to devise such struc-
tures and establish correctness of their behavior.

In this paper, we focus on program logics as a generic
approach to specify a program and formally prove its cor-
rectness wrt. the given specification. In such logics, program
specifications (or specs) are represented by Hoare triples
{P} c {Q}, where c is a program being described, P is a
precondition that constrains a state in which the program
is safe to run, and Q is a postcondition, describing a state
upon the program’s termination. Modern logics are suffi-
ciently expressive: they can reason about programs operat-
ing with first-class executable code, locally-spawned threads
and other features omnipresent in modern programming.
Verifying a program in a Hoare-style program logic can be
done structurally, i.e., by means of systematically applying
syntax-directed inference rules, until the spec is proven.

Importantly, logic-based verification of fine-grained con-
currency requires reasoning about a number of concepts that
don’t have direct analogues in reasoning about sequential or
coarse-grained concurrent programs:
(1) Custom resource protocols. Each shared data structure

(i.e., a resource) that can be used by several threads con-
currently, requires a specific “evolution protocol”, in or-
der to enforce preservation of the structure’s consistency.
In contrast with coarse-grained case, where the protocol
is fixed to be locking/unlocking, a fine-grained resource
comes with its own notion of consistency and protocol.

(2) Interference and stability. Absent locking, local reason-
ing about a shared resource from a single thread’s per-
spective should manifest the admissible changes that can
be made by other threads that interfere with the current
one. Every thread-local assertion about a fine-grained
data structure’s state should be stable, i.e., invariant under
possible concurrent modifications of the resource.

(3) Work stealing. This common concurrent pattern appears
in fine-grained programs due to relaxing the mutual ex-
clusion policy; thus several threads can simultaneously
operate with a single shared resource. The “stealing” hap-
pens when a thread is scheduled for a particular task in-
volving the resource, but the task is then accomplished
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by another thread; however, the result of the work is nev-
ertheless ascribed to the initially assigned thread.

In addition, Hoare-style reasoning about coarse- or fine-
grained concurrency requires a form of (4) auxiliary state
to partially expose the internal threads’ behavior and relate
local program assertions to global invariants, accounting for
specific threads’ contributions into a resource [Jones 2010].

These aspects, critical for Hoare-style verification of fine-
grained concurrent programs, have been recognized and for-
malized in one form or another in a series of recently pub-
lished works by various authors [Feng et al. 2007; Vafeiadis
and Parkinson 2007; Feng 2009; Dinsdale-Young et al. 2010;
Jacobs and Piessens 2011; Turon et al. 2013; Svendsen and
Birkedal 2014; da Rocha Pinto et al. 2014], providing log-
ics of increasing expressivity and compositionality. In for-
mal proofs of correctness of concurrent libraries, that are
based upon these logical systems, the complexity is not due
to the libraries’ sizes in terms of lines of code, but predom-
inantly due to the intricacy of the corresponding data struc-
ture invariant, and the presence of thread interference and
work stealing. This fact, in contrast to proofs about sequen-
tial and coarse-grained concurrent programs, requires one
to establish stability of every intermediate verification as-
sertion. Needless to say, manual verification of fine-grained
concurrent programs therefore becomes a challenging and
error-prone task, as it’s too easy for a human prover to for-
get about a piece of resource-specific invariant or to miss an
assertion that is unstable under interference; thus the entire
reasoning can be rendered unsound.

Since the process of structural program verification in a
Hoare-style logic is largely mechanical, there have been a
number of recent research projects that target mechanization
and automation of the verification process by means of em-
bedding it into a general-purpose proof assistant [Nanevski
et al. 2008, 2010; Shao 2010; Chlipala 2011], or implement-
ing a standalone verification tool [Leino and Müller 2009;
Cohen et al. 2009; Jacobs et al. 2011]. However, to the best
of our knowledge, none of the existing tools has yet adopted
the logical foundations necessary for compositional reason-
ing about all of the aspects (1)–(4) of fine-grained concur-
rency. This is the gap which we intend to fill in this work.

In this paper, we present a framework for mechanized
verification of fine-grained concurrent programs based on
the recently proposed Fine-grained Concurrent Separation
Logic (FCSL) by Nanevski et al. [2014].1 FCSL is a library
and an embedded domain-specific language (DSL) in the
dependently-typed language of Coq proof assistant [2014].
Due to its logical foundations, FCSL, as a verification tool
and methodology for fine-grained concurrency, is:
• Uniform: FCSL’s specification model is based on two ba-

sic constructions: state-transition systems (STSs) and par-
tial commutative monoids (PCMs). The former describe

1 Hereinafter, we will be using the acronym FCSL to refer both to the
Nanevski et al.’s logical framework and to our implementation of it.

concurrent protocols and thread interference, whereas the
latter provide a generic treatment of shared resources and
thread contributions, making it possible to encode, in par-
ticular, the work stealing pattern. Later in this paper, we
will demonstrate how these two components are sufficient
to specify a large spectrum of concurrent algorithms, data
structures, and synchronization mechanisms, as well as to
make the proofs of verification obligations to be uniform.

• Expressive: FCSL’s specification fragment is based on
the propositional fragment of Calculus of Inductive Con-
structions (CIC) [Bertot and Castéran 2004]. Therefore,
FCSL can accommodate and compose arbitrary mathemat-
ical theories, e.g., PCMs, heaps, arrays, graphs, etc.

• Realistic: FCSL’s programming fragment features a com-
plete toolset of modern programming abstractions, includ-
ing user-defined algebraic datatypes, first-class functions
and pattern matching. That is, any Coq program is also a
valid FCSL program. The monadic nature of FCSL’s em-
bedding into Coq [Nanevski et al. 2006] makes it possible
to encode a number of computational effects, e.g., thread
spawning and general recursion. This makes programming
in FCSL similar to programming in ML or Haskell.

• Compositional: Once a library is verified in FCSL against
a suitable spec, its code is not required to be re-examined
ever again: all reasoning about the client code of that li-
brary can be conducted out of the specification. The ap-
proach is thus scalable: even though the proofs for libraries
might be large, they are done just once.

• Interactive: FCSL benefits from the infrastructure, pro-
vided by Coq’s fragment for mechanized reasoning, en-
hanced by Ssreflect extension [Gonthier et al. 2009]. While
the verification process can’t be fully automated (as full
functional correctness of concurrent programs often re-
quires stating specs in terms of higher-order predicates),
the human prover nevertheless can take advantage of all of
Coq’s tools to discharge proof obligations.

• Foundational: The soundness of FCSL as a logic has been
proven in Coq with respect to a version of denotational
semantics for concurrent programs in the spirit of Brookes
[2007]. Moreover, since FCSL program specs are encoded
as Coq types, the soundness result scales to the entire
language of Coq, not just a toy core calculus. This ensures
the absence of bugs in the whole verification tool and, as a
consequence, in any program, which is verified in it.

In the remainder of the paper, we will introduce the FCSL
framework by example, specifying and verifying full func-
tional correctness of a characteristic fine-grained program—
a concurrent spanning tree algorithm. Starting from the in-
tuition behind the algorithm, we will demonstrate the com-
mon stages of program verification in FCSL. We next ex-
plain some design choices, made in the implementation of
FCSL, and report on our experience of verifying a num-
ber of benchmark concurrent programs and data structures:
locks, memory allocator, concurrent stack and its clients, an
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1 span (x : ptr) : bool {
2 if x == null then return false;
3 else
4 b← CAS(x->m, 0, 1);
5 if b then
6 (rl, rr)← (span(x->l) || span(x->r));
7 if ¬rl then x->l := null;
8 if ¬rr then x->r := null;
9 return true;

10 else return false; }

Figure 1: Concurrent spanning tree construction procedure.

atomic snapshot structure and non-blocking universal con-
structions. We conclude with a comparison to related logical
frameworks and tools, and a discussion on future work.

2. Overview
2.1 A graph spanning tree algorithm and its intuition
We introduce verification in FCSL by informally explaining
a fine-grained concurrent program for computing in place a
spanning tree of a binary directed graph [Hobor and Villard
2013; Raad et al. 2014]. The recursive procedure span (Fig-
ure 1) takes an argument x, which is pointer to a node in
the graph, and constructs the spanning tree rooted in x by
traversing the graph and removing redundant edges.

The graph is implemented as a memory region where each
pointer’s target value is a triple. The triple’s first component
is a bit m indicating whether the node is marked; the second
and third components are pointers to the node’s left and right
successors, or null if a successor doesn’t exist.

If x is null, span returns false (line 2). Otherwise, it tries
to mark the node by invoking the compare-and-swap (CAS)
operation (line 4). If CAS fails, then x was previously marked,
i.e. included in the spanning tree by another call to span, so
no need to continue (line 10). If CAS succeeds, two new par-
allel threads are spawned (line 6): span is called recursively
on the left (x.l) and right (x.r) successors of x, returning re-
spectively the booleans rl and rr upon termination. When rl
is false, x.l has already been marked, i.e., span has already
found a spanning subtree that includes x.l but doesn’t tra-
verse the edge from x to x.l. That edge is superfluous, and
thus removed by nullifying x.l (line 7). The behavior is dual
for x.r. Figure 3 illustrates a possible execution of span.

Why does span compute a tree? Assume that (1) the graph
initially represented in memory is connected, and that (2) it
is modified only by recursive calls to span, with no external
interference. To see that span obtains a tree, consider four
cases, according to the values of rl and rr. If rl = rr = true,
then the calls to span have, by recursive assumption, com-
puted trees from subgraphs rooted at x.l and x.r to trees.
These trees have disjoint nodes, and there are no edges con-
necting them. As will be shown in Section 3, this will follow
from a property that each tree is maximal wrt. the resulting

Program Definition span : span_tp :=

ffix (fun (loop : span_tp) (x : ptr) =>

Do (if x == null then ret false else

b <-- trymark x;

if b then

xl <-- read_child x Left;

xr <-- read_child x Right;

rs <-- par (loop xl) (loop xr);

(if ~~rs.1 then nullify x Left else ret tt);;

(if ~~rs.2 then nullify x Right else ret tt);;

ret true

else ret false)).

Figure 2: FCSL implementation of the span procedure.

final graph’s topology (i.e., the tree cannot be extended with
additional nodes). Lines 7 and 8 of span preserve the edges
from x to x.l and x.r; thus x becomes a root of a tree with
subtrees pointed to by x.l and x.r (Figure 3(6)). If rl = true

and rr = false, the recursive call has computed a tree from
the subgraph rooted at x.l, but x.r has been found marked.
The edge to x.r is removed in line 8, but that to x.l is pre-
served in line 7; x becomes a root of a tree with left subtree
rooted in x.l, and right subtree empty (Figure 3(5)). The case
rl = false, rr = true is dual. The case rl = rr = false re-
sults in a subtree containing just the root x (Figure 3(4)).

Why does span construct a spanning tree? Consider the
front of the constructed tree in the initial graph (i.e., the
nodes immediately reachable in the initial graph, from the
nodes of the constructed tree. For example, in Figure 3(5),
the front of b are nodes d, e in Figure 3(1)). We will show
in the next section that this front must contain only marked
nodes, as otherwise span would have proceeded with node
marking, instead of terminating. Thus, the front of the tree
constructed by the top-level call to span must actually be
included in the very same tree. Otherwise, there exists a node
which is marked but not in the tree. Therefore, this node
must have been marked by another thread, thus contradicting
assumption (2). Since, by (1), the initial graph is connected,
a tree which contains its front must contain all the nodes, and
thus be a spanning one.

2.2 Infrastructure for mechanizing the proof in FCSL
To flesh out the above informal argument and mechanize it in
FCSL, we require a number of logical concepts. We describe
these next, and tie them to the span algorithm.
Concurroids. FCSL requires an explicit description of the
common assumptions that threads operating on the shared
resource observe. Such agreement between threads is needed
so that one thread’s changes match other threads’ expecta-
tions. In the case of span, for example, one assumption we
elided above is that an edge out of a node x can be removed
only by a thread that marked x. This thread can rely on the
property that edges to x.l and x.r won’t be nullified by an-
other thread. These assumptions are formalized by STSs of
a special form, which are called concurroids.
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Figure 3: Stages of concurrent spanning tree construction. A node is painted grey right after a corresponding thread success-
fully marks it (line 4 of Figure 1). It is painted black right before the thread returns true (line 9). A black subtree is logically
ascribed to a thread that marked its root. 4 indicates a child thread exploring an edge and succeeding in marking its target
node; 7 indicates a thread that failed to do so. (1) the main thread marks a and forks two children; (2) the children succeed
in marking b and c; (3) only one thread succeeds in marking e; (4) the processing of d and e is done; (5) the redundant edges
b→ e and c→ c are removed by the corresponding threads; (6) the initial thread joins its children and terminates.

The state of each concurroid is divided into three compo-
nents [self | joint | other ]. The joint component describes
shared state that all threads can change. The self and other
components are owned by the observing thread, and its en-
vironment, respectively, and may be changed only by its
owner. If there are two threads t1 and t2 operating over a
state, the proof of t1 will refer by self to the private state of
t1, and by other to the private state of t2, and the roles are re-
versed for t2. This thread-specific, aka. subjective, split into
self, joint and other is essential for making the proofs insen-
sitive to the number of threads forked by the global program,
and the order in which this is done [Ley-Wild and Nanevski
2013]. We also note that the self and other components have
to be elements of a PCM, i.e., a set U with an associative and
commutative join operation •, and a unit element 1.

All three components may contain real state, i.e. heap, or
auxiliary state [Lucas 1968; Owicki and Gries 1976], which
is kept for logical specification, but is erased before execu-
tion. In the case of the span procedure, the joint component
is the heap encoding the graph to be spanned, as described
above. The self and other components are auxiliary state,
consisting of sets of nodes (i.e., pointers) marked by the ob-
serving thread and its environment, respectively. These com-
ponents are elements of a PCM of sets with disjoint union ·∪
as •, and the empty set as the unit. Thus, self • other is the
set of marked nodes of the graph in joint.

Transitions of a concurroid are binary relations between
states. They describe the state modifications that threads
may do, if they are to respect the agreement represented by
the concurroid. The concurroid for span, named SpanTree in
the sequel, has two non-trivial transitions, which we call
marknode_trans and nullify_trans. Additionally, every
concurroid has the trivial identity transition idle. A thread
performs marknode_trans when it successfully marks a
node. Whenever the bit m of a node x is set, the pointer
x is also added to the auxiliary self state of the thread that
performed the operation. Thus, the self component correctly
tracks the nodes marked by a thread. A thread performs
nullify_trans when it removes an edge out of a marked

node. However, this transition can only be taken in states in
which x is in the self component; thus, only a thread that
marked x can take this transition.

Atomic actions. Concurroids logically specify the behavior
of threads, and one needs a way to tie the logical specs to
actual program operations, such as, e.g., CAS. An atomic ac-
tion is a program operation that can change the heap by one
read-modify-write operation, and simultaneously change the
auxiliary state. In Section 3, we expand on how actions are
defined. For now, we just briefly describe the three actions
required for implementation of span in FCSL.

The trymark action attempts to mark a node x, and move
x into the self auxiliary component simultaneously. Oper-
ationally, i.e., when the auxiliary state is erased, it corre-
sponds to the CAS on line 4 of Figure 1. Logically, if success-
ful, it corresponds to a marknode_trans transition in the con-
curroid. If unsuccessful, it corresponds to the concurroid’s
idle transition. The nullify action invoked with an argument
x, and a two-valued indicator side (Left or Right), sets the
x.l (or x.r, depending on side) pointer to null, but emits a
precondition that x is in self. Operationally, it corresponds to
the assigning null on lines 7 and 8 of Figure 1. Logically, it
corresponds to taking the nullify_trans transition. Finally,
read_child atomic action, invoked with arguments x and
side, returns the pointer x.l (or x.r, depending on side). It
also emits a precondition that x is in self. Operationally, it
corresponds to the pointer reads on line 6 in Figure 1. Logi-
cally, it corresponds to the concurroid’s idle transition.

Figure 2 shows how the actions are used to translate the
span procedure in Figure 1 into FCSL.

Hoare specifications as types and stability. In Figure 2,
span is ascribed the type span_tp. While Section 3 defines it
formally, here we provide some basic intuition for it.

Among other components, the type span_tp contains the
formal pre- and postconditions, ascribed to span. Hence, it is
a user-defined type, rather than inferred by the system. Also,
span_tp is declared as the type of the fixpoint combinator
ffix’s argument loop, and thus serves as the “loop invariant”
as well. The components of span_tp provide the following

4 2015/2/6



information: (a) The precondition in span_tp ensures that
the input node x is either null or points to a node in the heap.
(b) If span returns false, the postcondition ensures that x is
either null or is marked in the graph, and the thread hasn’t
marked any other nodes during the call. (c) If span returns
true, the postcondition states that x 6= null, and the thread
being specified has marked a set of nodes t, which form a
maximal tree in the final graph with root x; moreover, t’s
front wrt. initial graph is marked, possibly by other threads.

We further note that the assertions (a)–(c) will be stable
wrt. interference, i.e., they remain valid no matter which
transitions of the span concurroid the interfering threads
take. Proving stability is an important component of FCSL.
Typically, every spec used in FCSL will be stable, or else
it won’t be possible to ascribe it to a program. In the next
section, we will exhibit several stable example specifications
wrt. the concurroid for span, including span_tp.
Hiding from external interference. The type span_tp speci-
fies the calls to span in the loop, but the top-most call to span

requires a somewhat stronger context, as it should know that
no other threads, aside from its children, can interfere on the
shared graph. Without this knowledge, explicitly stated by
the assumption (2), it is impossible to show that span actu-
ally constructs a spanning tree, so we need to enforce it.

The encapsulation of interference is achieved in FCSL
by the program constructor hide. For instance, writing
hideΦ,∅{ span(x) }, makes it apparent to the type system
of FCSL that the top-most call to span runs without interfer-
ence on the shared graph. More precisely, the call, span(x),
within hide will execute relative to the protocol implemented
by the SpanTree concurroid. Any threads spawned inter-
nally will also follow this protocol. Outside of hide, the
active protocol allows manipulation of the caller’s private
state only, but is oblivious to the span protocol. The sur-
rounding threads thus cannot interfere with the inside call
to span. In this sense, hide installs a concurroid in a scoped
manner, and then executes the supplied program relative to
that concurroid. The role of hide is thus purely logical, and
operationally it behaves as a no-op.

The annotation Φ is a predicate over heaps that indicates
the portion of the private heap of span’s caller onto which the
span concurroid should be installed. In the case of span, Φ
merely describes the nodes of the graph we want to span.
∅ indicates that span is initially invoked with the empty
auxiliary state, i.e., no nodes are initially marked.

3. Outline of the mechanized development
We next discuss how the above informal overview is mech-
anized in Coq. We start with the definition of span_tp and
proceed to explain all of its components. The specifications
and code shown will be very similar to what’s in our Coq
files, though, to improve presentation, we occasionally take
liberties with the order of definitions and notational abbre-
viations. We do not assume any familiarity with Coq, and
explain the code displays as they appear. We also omit the

Definition span_tp := forall (x : ptr),
{i (g1 : graph (joint i))}, STsep [SpanTree sp]
(* precondition predicate *)
(fun s1 => i = s1 /\ (x == null \/ x \in dom (joint s1)),
(* postcondition predicate *)
fun (r : bool) s2 => exists g2 : graph (joint s2),
subgraph g1 g2 /\
if r then x != null /\ exists t,
self s2 = self i \+ t /\ tree g2 x t /\
maximal g2 t /\ front g1 t (self s2 \+ other s2)

else (x == null \/ mark g2 x) /\ self s2 = self i).

Figure 4: Specification span_tp of the span procedure.

proofs and occasional auxiliary definitions, which can be
found in the FCSL code, accompanying the paper.
The definition of the type span_tp is given in Figure 4. It is
an example of a dependent type, as it takes formal arguments
in the form of variables x, i and g1, that the body of the type
can use, i.e., depend on. The roles of the variables differ de-
pending on the keyword that binds them. For example, the
Coq keyword forall binds the variable x of type ptr, and
indicates that span_tp is a specification for a procedure that
has x as input. Indeed, span is exactly such a procedure, as
apparent from Section 2. Using forall to bind x allows x

to be used in the body of span_tp, but also in the body of
span (Figure 2). On the other hand, i and g1 are bound by
FCSL binder {...}. This binding is different; it allows i and
g1 to be used in the body of span_tp, but not in the proce-
dure span. In terminology of Hoare-style logic, i and g1 are
logical variables (aka. ghosts), which are used in specs, but
not in the code. STsep is a Coq macro, defined by FCSL an-
nouncing that what follows is a Hoare-style partial correct-
ness specification for a concurrent program. The component
SpanTree sp in the brackets is the concurroid whose proto-
col span_tp respects. We will define SpanTree shortly. Fi-
nally, the parentheses include the precondition and the post-
condition (defined as Coq’s functions) that we want to as-
cribe to span. The precondition is a predicate over the pre-
state s1. The postcondition is a predicate over the boolean
result r and post-state s2. As customary in many program-
ming languages, Coq included, we omit the types of various
variables when the system can infer them (e.g., the variables
i, s1 and s2 are all of type state).

The precondition says that the input x is either null (since
span can be called on a leaf node), or belongs to the domain
of the input heap, and hence is a valid node in the heap-
represented graph. The heap is computed as the projection
joint out of the input state s1, which i snapshots. The pro-
jections self and other are sets of marked nodes, belonging
to the caller of span and to its environment, respectively.

The postcondition says that in the case the return result is
r = false, the pointer x was either null or already marked.
Otherwise, there is a set of nodes t which is freshly marked
by the call to span; that is, self s2 is a disjoint union (\+)
of t with the set of nodes marked in the pre-state self i.
The set t satisfies several important properties. First, t is a
subtree in the graph, g2, of the post-state s2, with root x.
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Second, the tree t is maximal, i.e., it cannot be extended into
a larger tree by adding more nodes from g2, as all the edges
between t and the rest of the graph have been severed by
span. Third, all the nodes immediately reachable from t in
the initial state i (i.e., t’s front) are marked in g2 either by
this or some other thread (self s2 \+ other s2). That is,
span did not leave any reachable nodes unmarked; if such
nodes existed, span would not have terminated. Finally, in
both cases, subgraph g1 g2 states that the final graph g2 is
obtained by marking nodes and removing edges from the
initial graph g1; no new edges are added, or nodes unmarked.

We close the description of span_tp by noting its inter-
esting bi-directional nature. It contains properties such as
tree and maximal, stated over the post-state graph g2 (for-
ward direction), but also the property front which is stated
of the pre-state graph g1, and can be stated only in relation
to s2 (backward direction). The backward direction is a cru-
cial component in the proof that the top-most call to span,
shielded from interference by hide, indeed marked all the
nodes and, hence, constructed a spanning tree.
Representing graphs in a heap. Next we define the predi-
cate graph h, which appears in span_tp (Figure 4), and says
when a heap h represents a graph. It does so if every pointer x
in h stores some triple (b, xl, xr), where b is the “marked”
bit, and xl, xr are pointers in the domain of h (and, hence,
are x itself or other nodes), or null if x has no successors.
Definition graph (h : heap) := valid h /\
forall x, x \in dom h -> exists (b : bool) (xl xr : ptr),

h = x :-> (b, xl, xr) \+ free x h /\
{subset [:: xl; xr] <= [:: null] ++ dom h}.

The conjunct valid h says that the heap h doesn’t contain
duplicate pointers. The notation \+ is overloaded and used
for disjoint union of sets of nodes in span_tp, and for dis-
joint union of heaps in graph. In general, we use \+ for any
PCM • operation. free x h is the heap obtained by deallo-
cating x from h. Finally, the last line is concrete syntax for
{xl, xv} ⊆ {null} ∪ dom h.

The graph predicate illustrates certified programming in
Coq [Chlipala 2013], i.e., the ability to use propositions as
types, and pass variables such as g1 and g2 that stand for
proofs of the graph property, as inputs to other types (e.g.,
span_tp) or functions. This ability enables formally defin-
ing partial functions over heaps that are undefined when
the heap doesn’t encode a valid graph. An alternative to this
somewhat unique capability of dependent types is to encode
partial functions as relations, but that usually results in in-
crease in proof tedium and size.

Here are a few examples of such partial functions. Given
a node (i.e., a pointer) x and a proof that the heap h repre-
sents a graph (written (g : graph h)), we name mark g x,
edgl g x and edgr g x the three components stored in the
pointer x in the heap (i.e., the “marked” bit, left, right suc-
cessor), and write contents g x for the whole triple. By de-
fault, these values are false, null, null if x is not in the
heap. Each of these functions takes h as an argument; i.e.,

one could also write mark h g x etc., but we omit h as it
can be inferred from g’s type, following Coq’s standard no-
tational abbreviation.

We can now define the remaining predicates used in
span_tp in Figure 4. For all of the definitions, we assume
that variables h and (g : graph h) are in scope, and omit
them. We also use ptr_set as an alias for finite maps from
pointers to the unit type.2

First, we define the function edge, which represents the
incidence relation for the graph g.
Definition edge (x y : ptr) :=
(x \in dom h) && (y != null) && (y \in [:: edgl g x; edgr g x]).

Second, tree x t requires that t contains x, and for any
node y ∈ t, there exists a unique path (i.e., a list of nodes) p
from x to y via edge’s links, which lies within the tree (i.e.,
the nodes p are a subset of t). Note how edge is curried, i.e.,
passed to path as a function, abstracted over arguments. This
illustrates that even simple mathematical mechanizations re-
quire higher-order functions in order to work.
Definition tree (x : ptr) (t : ptr_set) := x \in dom t /\
forall y, y \in dom t -> exists !p,
path edge x p /\ y = last x p /\ {subset p <= dom t}.

Third, front t t’, determines if the nodes reachable from
t in zero or one step are included in t’.
Definition front (t t’ : ptr_set) :=
{subset dom t <= dom t’} /\
forall x y, x \in dom t -> edge x y -> y \in dom t’.

Fourth, a tree t is maximal if it includes its front. A graph is
connected if there’s a path from x to every other node in it.
Definition maximal (t : ptr_set) := front t t.
Definition connected (x : ptr) (t : ptr_set) := forall y : ptr,
y \in dom t -> exists p, path edge x p /\ last x p = y.

Finally, subgraph codifies a number of properties between
pre-state s1 and post-state s2, and their graphs g1, g2. In
particular: g1, g2 contain the same nodes (=i is equality on
lists modulo permutation), the set of self-marked and other-
marked nodes only increase, edges out of a node y can be
changed only if the node is marked, and the only change to
the edges is nullification (that is, removal).
Definition subgraph s1 s2
(g1 : graph (joint s1)) (g2 : graph (joint s2)) :=
dom (joint s1) =i dom (joint s2) /\
{subset dom (self s1) <= dom (self s2)} /\
{subset dom (other s1) <= dom (other s2)} /\
(forall y, ~~(mark g2 y) -> contents g1 y = contents g2 y) /\
(forall x, (edgl g2 x \in [:: null; edgl g1 x]) /\

(edgr g2 x \in [:: null; edgr g1 x])).

We close the description of the predicates used in span_tp,
by listing two important lemmas that relate them. The first
lemma, max_tree2, says that if y1 and y2 are successors of
x (i.e., edge x equals the set [:: y1; y2] modulo permuta-
tion), and ty1 and ty2 are maximal trees rooted in y1 and y2,
and moreover, ty1 and ty2 are disjoint, then the set of nodes
built from x, ty1 and ty2 by disjoint union (\+) is a tree

2 This is a bit expedient way of implementing finite sets, but it saves work by
reusing an extensive library of finite maps, also used for formalizing heaps.
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itself, i.e., no edges connect ty1 and ty2 (the notation #x is
concrete syntax for the singleton finite map containing node
x). This lemma is essential in proving that span produces a
tree, as mentioned in Section 2 for the case rl = rr = true.
Lemma max_tree2 x y1 y2 ty1 ty2 :
edge x =i [:: y1; y2] -> tree y1 ty1 -> maximal ty1 ->
tree y2 ty2 -> maximal ty2 -> valid (ty1 \+ ty2) ->
tree x (#x \+ ty1 \+ ty2).

The second lemma shows that subgraph is monotone wrt. the
stepping of environment threads in the SpanTree concurroid.
Lemma subgraph_steps s1 s2
(g1 : graph (joint s1)) (g2 : graph (joint s2)) :
env_steps (SpanTree sp) s1 s2 -> subgraph g1 g2.

We used this lemma as the main tool in establishing a num-
ber of stability properties in Coq, related to the conjuncts
from the definition of subgraph g1 g2. For example, the
lemma implies that if x is a node of joint s1, then it is so in
a stable manner; that is, x is a node in joint s2 for any s2

obtained from s1, by environment interference.
SpanTree concurroid. Next we define the SpanTree con-
curroid. Being an STS, the definition includes the specifi-
cation of the state space, and transitions between states. In
the case of concurroids, we have an additional component:
labels (semantically, natural numbers) that differentiate in-
stances of the concurroid. Thus the definition of SpanTree is
parametrized by the variable sp, which makes it possible to
use several instances of SpanTree with different labels in a
specification of a single program. For example, say we want
to run two span procedures in parallel on disjoint heaps.
Such a program could be specified by a Cartesian product
of SpanTree sp1 and SpanTree sp2, where the different la-
bels sp1 and sp2 instantiate the variable sp.

The state space of SpanTree is defined by the following
state predicate coh, which we call coherence predicate.
Variable sp : nat.
Definition coh s := exists g : graph (joint s),
s = sp ->> [self s, joint s, other s] /\
valid (self s \+ other s) /\
forall x, x \in dom (self s \+ other s) = mark g x.

The coherence predicate codifies that the state s is a triple,
[self s, joint s, other s], and that it is labelled by sp.
The proof g is a witness that the joint component is a graph-
shaped heap. The conjunct valid (self s \+ other s)

says that the self and other components of the auxiliary state
are disjoint; their union is a finite map which is valid, i.e.,
doesn’t contain duplicate keys. Finally, the most important
invariant is that a node x is contained in either self or other
subjective view iff it’s marked in the joint graph.

The metatheory of FCSL [Nanevski et al. 2014, §4] re-
quires the coherence predicates to satisfy several properties
that we omit here, but prove in our implementation. The
most important property is the fork-join closure, stating that
the state space is closed under realignment of self and other
components. In other words, one may subtract a value from
self and add it to other (and vice versa), without changing
the coherence of the underlying state.

SpanTree sp contains two non-idle transitions. Transition
marknode_trans, parametrized by the node x, describes how
an unmarked x is physically marked in the joint graph, and
simultaneously added to the self component. The transition
nullify_trans is parametrized by node x and the direction
c, indicating the successor of x (left or right) that must be cut
off from the graph. We omit the definitions of the functions
mark_node and null_edge that describe the physical changes
performed by the two transitions to the underlying shared
graph. These can be found in the Coq code.
Definition marknode_trans x s s’ := exists g : graph (joint s),
~~(mark g x) /\ joint s’ = mark_node g x /\
self s’ = #x \+ self s /\ other s’ = other s /\ coh s /\ coh s’.

Definition nullify_trans x (c : side) s s’ :=
exists g : graph (joint s),
x \in dom (self s) /\ joint s’ = null_edge g c x /\
self s’ = self s /\ other s’ = other s, coh s /\ coh s’.

The FCSL metatheory requires that transitions also sat-
isfy several properties. For example, marknode_trans and
nullify_trans preserve the other-component and the co-
herence predicate, as immediately apparent from their def-
initions. They also preserve the footprint of the underlying
state, i.e., they don’t add or remove any pointers. Adding and
removing heap parts can be accomplished by communication
between concurroids, as we briefly discuss in Section 4.

The coherence predicate, the transitions, and the proofs
of their properties are packaged into a dependent record3

SpanTree sp, which encapsulates all that’s important about
a concurroid. Thus, we use the power of dependent types in
an essential way to build mathematical abstractions, such as
concurroids, that are critical for reusing proofs.
Atomic actions. We next illustrate the mechanism for defin-
ing atomic actions in FCSL. The role of atomic actions is
to perform a single physical memory operation on the real
heap, simultaneously with an arbitrary modification of the
auxiliary part of the state. In FCSL, we treat the real and
auxiliary state uniformly as they both satisfy the same PCM
laws. We specify their effects in one common step, but after-
wards prove a number of properties that separate them. For
instance, for each atomic action we always prove the era-
sure property that says that the effect of the action on the
auxiliary state doesn’t affect the real state.

Specifically, the effect of the trymark action is defined by
the following relation between the input pointer x, the pre-
state s1, post-state s2 and the return result r of type bool.
Definition trymark_step (x : ptr) s1 s2 (r : bool) :=
exists g : graph (joint s1),
x \in dom (joint s1) /\ other s2 = other s1 /\
if mark g x
then r = false /\ joint s2 = joint s1 /\ self s2 = self s1
else r = true /\ joint s2 = mark_node g x /\

self s2 = #x \+ self s1.

The relation requires that x is a node in the pre-state graph
(x \in dom (joint s1)). If x is unmarked in this graph,
then the action returns true, together with marking the

3 A type-theoretic variant of a C struct, where fields can contain proofs.
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node physically in the real state (employing the function
mark_node already used in marknode_trans). Otherwise, the
state remains unchanged, and the action’s result is false.
Notice that when restricted to the real heap, i.e., if we ignore
the auxiliary state in self s1 and other s1, the relation es-
sentially describes the effect of the CAS command on the
mark bit of x. Thus, trymark erases to CAS.

There are several other components that go into the def-
inition of an atomic action. In particular, one has to prove
that transitions are total, local, and frameable in the sense
of Separation Logic, and then ascribe to each action a stable
specification. However, the most important aspect of action
definitions is to identify their behavior with some transition
in the underlying concurroid. For example, trymark behaves
like marknode_trans transition of SpanTree if it succeeds,
and like idle if it fails. Actions may also change state of a
number of concurroids simultaneously, as we will discuss in
Section 4. In the interest of brevity, we omit the formal def-
inition of all these properties here, but they can be found in
the accompanying Coq files.
Scoped concurroid allocation and hiding. The span_tp

type from Figure 4 operates under open-world assump-
tion that span runs in an environment of interfering threads,
which, however, respect the transitions of the SpanTree con-
curroid. If one wants to protect span from interference, and
move to closed-world assumption, the top-most call must be
enclosed within hide. We next show how to formally do so.

The hide construct allocates a new lexically-scoped con-
curroid from a local state of a particular thread.4 The de-
scription of how much local heap should be “donated” to the
concurroid creation is provided by the user-supplied predi-
cate Φ, called decoration predicate. In addition to the heap,
the predicate scopes over the auxiliary self value, while the
auxiliary other is fixed to the PCM unit, to signal that there’s
no interference from outside threads. In the case of span, the
decoration predicate is as follows.
Definition graph_dec sp (g : heap * ptr_set) s :=
exists (pf : graph g.1), s = sp ->> [g.2, g.1, Unit] /\ coh s.

We can now write out a new type span_root_tp, to spec-
ify the top-most call to span, under the closed-world as-
sumption that there’s no interference. Parametrizing wrt. the
locally-scoped variable h1 : heap that snapshots the initial
heap, the type is the following one.
Definition span_root_tp (x : ptr) :=
{g1 : graph h1}, STsep [Priv pv]
(* precondition predicate *)
(fun s1 => (forall y, ~~(mark g1 y)) /\

pv_self s1 = h1 /\ x \in dom h1 /\ connected g1 x,
(* postcondition predicate *)
fun (_ : bool) s2 => exists (g2 : graph (pv_self s2)) t,
(forall x, (edgl g2 x \in [:: null; edgl g1 x]) /\

(edgr g2 x \in [:: null; edgr g1 x])) /\
tree g2 x t /\ dom t =i dom h1).

4 The thread-local state is modelled in FCSL by a basic concurroid Priv pv

with a label pv [Nanevski et al. 2014, §4]. Priv’s self/other components are
retrieved via pv_self and pv_other projections.

The precondition says that the argument x is the root of the
graph g1 stored in h1, and all the nodes of g1 are reachable
from x. The postcondition says that the final heap’s topology
is a tree t, whose edges are a subset of the edges of g1, but
whose nodes include all the nodes of g1. Thus, the tree is
a spanning one. The program satisfying this spec is a call
to span, wrapped into hide, annotated with the decorating
functions. We also supply h1 as the initial heap, and Unit of
the PCM of finite sets (hence, the empty set), as the initial
value for self, which indicates that span is invoked with the
empty set of marked nodes.

Program Definition span_root x : span_root_tp x :=
Do (priv_hide pv (graph_dec sp) (h1, Unit) [span sp x]).

Coq will emit a proof obligation that the pre and post of
span_tp can be weakened into those of span_root_tp under
the closed-world assumption that other s2 = Unit. This
proof is in the development, accompanying this paper.

4. More examples
We next briefly illustrate two additional features of FCSL
that our implementation uses extensively: concurroid com-
position and reasoning about higher-order concurrent struc-
tures with work stealing.
Composing concurrent resources. The span algorithm uses
only one concurroid SpanTree, allocated by hide out of the
concurroid Priv for thread-local state. In general, FCSL
specs can span multiple primitive concurroids, of the same
or different kinds, which are entangled by interconnecting
special channel-like transitions [Nanevski et al. 2014]. The
interconnection implements synchronized communication,
by which concurroids exchange heap ownership. Entangling
several concurroids yields a new concurroid. Omitting the
formal details of the entanglement operators, let us demon-
strate a program whose spec uses a composite concurroid.

Definition alloc : {h : heap}, STsep [entangle (Priv pv) ALock]
(fun s1 => pv_self s1 = h,
fun r s2 => exists B (v : B), pv_self s2 = r :-> v \+ h) :=

ffix (fun (loop : unit -> alloc_tp) (_ : unit) =>
Do (res <-- try_alloc;

if res is Some r then ret r else loop tt)) tt.

The alloc procedure implements a pointer allocator. Its
postcondition says that the initial heap h is augmented by
a new pointer r storing some value v (r :-> v). The heap
h is part of the Priv concurroid, as evident by the projec-
tion pv_self in the precondition. The pointer r is logically
transferred from the concurroid ALock which implements
a coarse-grained (i.e., lock-protected) concurrent allocator.
Hence, the whole procedure alloc uses the composed con-
curroid [entangle (Priv pv) ALock]. The body of alloc

implements a simple spin-loop, trying to acquire the pointer
by invoking the try_alloc procedure, omitted here.

Whereas separation logic [Reynolds 2002] always as-
sumes allocation as a primitive operation, the above example
illustrates that in FCSL, allocation is definable. One can also
define a new variant of the STsep type that automatically en-
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tangles the underlying concurroid with ALock, thus enabling
allocation without the user having to explicitly do so herself.
Higher-order specifications. Due to embedding in Coq,
FCSL is also capable of specifying and verifying higher-
order concurrent data structures, which we illustrate by an
example of a universal non-blocking construction of flat
combining by Hendler et al. [2010].5

A flat combiner (FC) is a higher-order structure, whose
method flat_combine takes a sequential state-modifying
function f and its argument v, and works as follows. While
for the client, invoking flat_combine(f, v) looks like a
sequence lock; f(v); unlock, in reality, the structure im-
plements a sophisticated concurrent behavior. Instead of ex-
pensive locking and unlocking, the calling thread doesn’t
run f, but only registers f to be executed on v. One of the
threads then becomes a combiner and executes the regis-
tered methods on behalf of everyone else. Since only the
combiner needs exclusive access to the data structure, this
reduces contention and improves cache locality. This design
pattern is known as work stealing or helping: a thread can
complete its task even without accessing the shared resource.

To specify FC, we parametrize it by a sequential data
structure and a validity predicate fc_R, which relates a func-
tion f (from a fixed set of allowed operations), the argument
of type fc_inT f, result of type fc_outT f and the contribu-
tion of type fc_pcm. The last entry is a description of what f
does to the shared state, expressed in abstract algebraic terms
as a value from a user-supplied PCM.

Variable fc_R : forall f, fc_inT f -> fc_outT f -> fc_pcm -> Prop.

The spec of the flat_combine is then given in the context
of three entangled concurroids: Priv for thread-local state,
a lock-based allocator Alloc, adapted from the previous
example (since a sequential function f might allocate new
memory), and a separate concurroid FlatCombine.

Definition PA := (entangle (Priv pv) Alloc).
Definition W := (entangle PA (FlatCombine fc)).
Program Definition flat_combine f (v : fc_inT f) : STsep [W]
(fun s1 => pv_self s1 = Unit /\ fc_self s1 = Unit,
fun (w : fc_outT f) s2 => exists g,

pv_self s2 = Unit /\ fc_self s2 = g /\ fc_R f v w g) := ...

The precondition says that flat_combine executes in the
empty initial heap (pv_self s1 = Unit), and hence by fram-
ing, in any initial heap. Similarly, the initially assumed ef-
fects of the calling thread on the shared data structure are
empty (fc_self s1 = Unit), but can be made arbitrary by
applying FCSL’s frame rule to the spec of flat_combine.
The postcondition says that there exists an abstract PCM
value g describing the effect of f in terms of PCM elements
(fc_R f v w g). Moreover, the effect of g is attributed to the
invoking thread (fc_self s2 = g), even though in reality f

could be executed by the combiner, on behalf of the calling
thread. In our Coq implementation, we instantiated the FC

5 For simplicity, we present here a specification that is much weaker than
what we have actually verified in our implementation.

structure with a sequential stack, showing that the result has
the same spec as a concurrent stack implementation.

5. Elements of FCSL infrastructure
In this section we sketch two important parts of FCSL ma-
chinery, used to simplify construction of proofs.
Extracting concurroid structure via getters. When working
with compositions of multiple concurroids, as in examples
listed in Section 4, one frequently has to select the self, joint
or other components that belong to one of the composed
concurroids. A naı̈ve way of doing this is to describe the state
space of the composition concurroid using existentials that
abstract over the concurroid-specific fields. E.g., in the case
of flat combiner, which composes three concurroids Priv,
Alloc and FlatCombine, we could use three existentials to
abstract over self /joint/other fields for Priv, another three
for Alloc, and three more for FlatCombine. To access any
of the fields, we have to destruct all nine of the existentials.
This quickly becomes tedious and results in proofs that are
obscured by such existential destruction.

Our alternative approach develops a systematic way of
projecting the fields associated with each concurroid, based
on the concurroid’s label. Thus, for example, we can write
self pv s to obtain the self component of s, associated with
a concurroid whose label is pv. The identifier pv_self we
used in the spec for span_root and for flat_combine is a no-
tational abbreviation for exactly this projection. While this is
a simple and obvious idea, its execution required a somewhat
involved use of dependently-typed programming, and an in-
tricate automation by canonical structures and lemma over-
loading [Gonthier et al. 2011; Mahboubi and Tassi 2013].
Structural lemmas. The proofs in FCSL are structured to fa-
cilitate systematic application of Floyd-style structural rules,
one for each program command. All the rules are proved
sound from first principles, and are applied as lemmas to ad-
vance the verification. As the first step of every proof, the
system implicitly applies the weakening rule to the auto-
matically synthesized weakest pre- and strongest postcon-
ditions [Dijkstra 1975], essentially converting the program
into the continuation-passing style (CPS) representation and
sequentializing its structure. Every statement-specific struc-
tural rule “symbolically evaluates” the program by one step,
and replaces the goal with a new one to be verified.

For example, the following lemma step, corresponding to
the rule of sequential composition, reduces the verification
of a program (y ← e1; (e2 y)) with continuation k, to
the verification of the program e1 and the program e2 y k,
where y corresponds to a symbolic result of evaluating e1,
constrained according to e1’s postcondition. One can apply it
several times until e1 is reduced to some primitive action, at
which point one can apply the structural rule for that action.
Lemma step W A B (e1 : ST W A) (e2 : A -> ST W B) i (k : cont B):

verify i e1 (fun y m => verify m (e2 y) k) ->
verify i (y <-- e1; e2 y) k.

ST is a type synonym for STsep, hiding its pre’s and post’s.
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Program Libs Conc Acts Stab Main Total Build

CAS-lock 63 291 509 358 27 1248 1m 1s
Ticketed lock 58 310 706 457 116 1647 2m 46s
CG increment 26 - - - 44 70 8s
CG allocator 82 - - - 192 274 14s
Pair snapshot 167 233 107 80 51 638 4m 7s
Treiber stack 56 323 313 133 155 980 2m 41s
Spanning tree 348 215 162 217 305 1247 1m 11s
Flat combiner 92 442 672 538 281 2025 10m 55s
Seq. stack 65 - - - 125 190 1m 21s
FC-stack 50 - - - 114 164 44s
Prod/Cons 365 - - - 243 608 2m 43s

Table 1: Statistics for implemented programs: lines of code
for program-specific libraries (Libs), definitions of concur-
roids and decorations (Conc), actions (Acts), stability lem-
mas (Stab), spec and proof sizes of the main functions
(Main), total LOC count (Total), and build times (Build).

6. Evaluation and experience
The Coq proof assistant serves as a tool for implementing
FCSL’s metatheory and as a language for writing and verify-
ing concurrent programs. The formalization of the metathe-
ory, which includes the semantic model, structural lemmas
and a number of useful libraries (e.g., getters, theory of
PCMs, heaps, arrays, etc.), is about 17.2 KLOC size.

We evaluated FCSL by implementing, specifying and
verifying a number of characteristic concurrent programs
and structures. The simplest fine-grained structure is a lock,
and we implemented two different locking protocols: CAS-
based spinlock and a ticketed lock [Dinsdale-Young et al.
2010]. Both locks instantiate a uniform abstract lock inter-
face, and are used by coarse-grained programs, performing
concurrent incrementation of a pointer and memory allo-
cation. In addition to the spanning tree algorithm and the
flat combining construction, we also implemented such fine-
grained programs as an atomic pair snapshot [Qadeer et al.
2009; Liang and Feng 2013] and non-blocking stack [Treiber
1986], both given specs via a PCM of time-stamped action
histories [Sergey et al. 2015] in the spirit of linearizabil-
ity [Herlihy and Wing 1990], as well as several client pro-
grams: a sequential stack (obtained from Treiber stack via
hiding), FC-based stack, and a Treiber stack-based concur-
rent Producer/Consumer.

Table 1 presents some statistics wrt. implemented pro-
grams in terms of LOCs and build times. The program suite
was compiled on a 2.7 GHz Intel Core i7 OS X machine with
8 Gb RAM, using Coq 8.4pl4 and Ssreflect 1.4. We didn’t
rely on any advanced proof automation in the proof scripts,
which would, probably, decrease line counts at the expense
of increased compilation times. Notably, for those programs
that required implementing new primitive concurroids (e.g.,
locks or Treiber stack), a large fraction of an implementa-
tion is due to proofs of properties of transitions and actions,

CAS-lock Ticketed lock

Abstract lock

CG incrementor

CG Allocator

Flat combiner

FC stackTreiber stack

Sequential stack Producer/Consumer

Figure 5: Dependencies between concurrent libraries.
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CAS-lock 3 3

Ticketed lock 3 3

CG increment 3 3L 3L
CG allocator 3 3L 3L
Pair snapshot 3

Treiber stack 3 3L 3L 3

Spanning tree 3 3

Flat combiner 3 3L 3L 3

Seq. stack 3 3L 3L 3

FC-stack 3 3L 3L 3

Prod/Cons 3 3L 3L 3

Table 2: Primitive concurroids (in column headings) em-
ployed by different programs. Two lock concurroids, for
CAS-based and ticketed locks, are interchangeable, as they
implement the same abstract interface (indicated by 3L).

as well as stability-related lemmas, while the sizes of proofs
of the main programs’ specs are always relatively small.

Our development is inherently compositional, as illus-
trated by the dependency diagram on Figure 5. For exam-
ple, both lock implementations are instances of the abstract
lock interface, which is used to implement and verify the
allocator, which is then employed by a Treiber stack, used
as a basis for sequential stack and producer/consumer im-
plementations. In principle, we could implement an abstract
interface for stacks, too, to unify the Treiber stack and the
FC-stack, although, we didn’t carry out this exercise.

As hinted by Table 1, not every concurrent program re-
quires implementing a new primitive concurroid: typically
this is done only for libraries, so library clients can reason
out of the specifications. Table 2 shows that the reuse of con-
curroids is quite high, and most of the programs make con-
sistent use of the concurroid for thread-local state and locks
(abstracted through the corresponding interface), as well as
of those required by the used libraries (e.g., Treiber or FC).

7. Related and future work
Using the Coq proof assistant as a uniform platform for im-
plementation of logic-based program verification tools is a
well-established approach, which by now has been success-
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fully employed in a number of projects on certified com-
pilers [Leroy 2006; Appel et al. 2014] and verified low-
level code [Shao 2010; Chlipala 2011; Jensen et al. 2013],
although, with no specific focus on abstractions for fine-
grained concurrency, such as protocols and auxiliary state.

Related program logics. The FCSL logic has been designed
as a generalization of the classical Concurrent Separation
Logic by O’Hearn [2007], combining the ideas of local con-
current protocols with arbitrary interference [Jones 1983;
Feng 2009] and compositional auxiliary state [Ley-Wild
and Nanevski 2013] with the possibility to compose pro-
tocols. Other concurrency logics, close to FCSL in their
expressive power, are iCAP [Svendsen and Birkedal 2014],
CoLoSL [Raad et al. 2014], and CaReSL [Turon et al. 2013].

iCAP leverages the idea, originated by Jacobs and Piessens
[2011], of parametrizing specs for fine-grained concurrent
data types by client-provided auxiliary code, which can be
seen as a “callback”. A form of composition of concurrent
resources can be encoded in iCAP using fractional permis-
sions [Bornat et al. 2005] and view-shifts [Dinsdale-Young
et al. 2013]. Since iCAP doesn’t have explicit subjective di-
chotomy of the auxiliary state, encoding of thread-specific
contributions in it is less direct comparing to FCSL.

CoLoSL defines a different notion of thread-local views
to a shared resource, and uses overlapping conjunction [Ho-
bor and Villard 2013] to reconcile the permissions and ca-
pabilities, residing in the shared state between different
threads. Overlapping conjunction affords a description of
the shared structure mirroring the recursive calls in the struc-
ture’s methods. In FCSL, such machinery isn’t required, as
self and other suffice to represent the thread-specific views,
and joint state doesn’t need to be divided between threads. In
our opinion, this leads to simpler specs and proofs. For ex-
ample, CoLoSL’s proof that span constructs a tree involves
abstractions such as shared capabilities for marking nodes
and extension of the graph with virtual edges, none of which
is required in FCSL. Moreover, CoLoSL doesn’t prove that
the tree is spanning, which we achieve in FCSL via hiding.

CaReSL combines the Hoare-style reasoning and proofs
about contextual refinement. Similarly to FCSL, CaReSL
employs resource protocols, although, targeting the “life sto-
ries” of particular memory locations instead of describing a
whole concurrent data structure by means of an STS. While
FCSL is not equipped with abstractions for contextual re-
finement, in our experience it was never required to prove the
desired Hoare-style specs for fine-grained data structures.

Reasoning in all the three alternative logics follows the
tradition of Hoare-style logics, so the specs never mention
explicitly the heap and state components. In contrast, FCSL
assertions use explicit variables to bind heap and auxiliary
state, as well as their components. In our experience, work-
ing directly with the state model is pleasant, and has to be
done in Coq anyway, since Coq lacks support for contexts of
bunched implications, as argued by Nanevski et al. [2010].

None of iCAP, CoLoSL or CaReSL features a mecha-
nized metatheory, nor any of these logics has been imple-
mented in a form of a mechanized verification tool.

Related tools for concurrency verification. SAGL and
RGSep, the first logics for modular reasoning about fine-
grained concurrency [Feng et al. 2007; Vafeiadis and Parkin-
son 2007], inspired creation of semi- and fully-automated
verification tools: SmallfootRG [Calcagno et al. 2007] and
Cave [Vafeiadis 2010]. These tools target basic safety prop-
erties of first-order code, such as data integrity and absence
of memory leaks.

Chalice [Leino and Müller 2009] is an experimental first-
order concurrent language, supplied with a tool that gener-
ates verification conditions (VCs) for client-annotated Chal-
ice programs. Such VCs are suitable for automatic discharge
by SMT solvers. For local reasoning, Chalice employs frac-
tional permissions [Bornat et al. 2005], implicit dynamic
frames [Smans et al. 2009], and auxiliary state [Leino et al.
2009], which, unlike the one of FCSL, is not a subject of
PCM laws, and thus is not compositional, as its shape should
match the forking pattern of the client program being veri-
fied. Chalice also supports a form of symmetric Rely/Guar-
antee reasoning, i.e., not allowing the threads to take dif-
ferent roles in a protocol (which is expressible in FCSL via
self -enabled transitions). Chalice’s specification fragment is
a first-order logic, whereas FCSL admits higher-order func-
tions and predicates in specs, therefore, enabling program
composition and proof reuse, as shown in Figure 5.

VCC [Cohen et al. 2009] is a tool for verifying low-level
concurrent C code. VCC doesn’t support reasoning about
custom interference or compositional auxiliary state, and,
similarly to Chalice, allows specifications only in a first-
order logic to support an SMT-based automation back-end.

VeriFast [Jacobs et al. 2011] is a tool for deductive verifi-
cation of sequential and concurrent programs, based on sep-
aration logic [Reynolds 2002]. To specify and verify fine-
grained concurrent algorithms, VeriFast employs fractional
permissions and a form of (non-compositional) first-class
auxiliary state [Jacobs and Piessens 2011]. VeriFast has been
recently extended with Rely/Guarantee reasoning [Smans
et al. 2014], although, without a possibility to compose re-
sources. To the best of our knowledge, soundness of VeriFast
core has been formally proved only partially [Vogels 2012].

Rely-Guarantee references (RGREFs) by Gordon [2014]
are a mechanism to prove transition invariants of concurrent
data structures. While the language of RGREFs is imple-
mented as a Coq DSL, the system’s soundness is proved
by hand using the Views framework [Dinsdale-Young et al.
2013]. Since RGREFs focuses on correctness of data struc-
tures wrt. specific protocols and doesn’t provide auxiliary
state, it’s unclear how to employ it for client-side reasoning.

Future work. In the future, we plan to augment FCSL with
the program extraction mechanism [Letouzey 2008] and
implement proof automation for stability-related facts via
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lemma overloading [Gonthier et al. 2011]. Due to the limi-
tations of Coq’s model wrt. impredicativity, at this moment,
FCSL doesn’t support higher-order heaps (i.e., the possibil-
ity to reason about arbitrary storable effectful procedures).
While programs requiring this feature are rare, we hope that
it will be possible to encode and verify the characteristic
ones, once the development is migrated to Coq 8.5, featur-
ing universe polymorphism [Sozeau and Tabareau 2014].

8. Conclusion
Our experience with implementing a number of concurrent
data structures in FCSL indicates a recurring pattern, exhib-
ited by the formal proof development. Verification of a new
library in FCSL starts from describing its invariants and evo-
lution in terms of an STS. It’s common to consider parts of
real or auxiliary state, which are a subject of the logical split
between parallel threads, as elements of a particular PCM.
Such representation of resources makes the verification uni-
form and compositional, as it internalizes the library proto-
col, so the clients can reason out of the specifications.

This observation indicates that STSs and PCMs can be
a robust basis for understanding, formalizing and verifying
existing fine-grained programs. We conjecture that the same
foundational insights will play a role in future designs and
proofs of correctness of novel concurrent algorithms.
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