Structuring the Verification of Heap-Manipulating Program s

Aleksandar Nanevski Viktor Vafeiadis Josh Berdine
IMDEA Software, Madrid Microsoft Research, Cambridge Microsoft Research, Cambridge
aleks.nanevski@imdea.org viktorva@microsoft.com jib@microsoft.com

Abstract Bl, obtained by specializing the model of heaps and addiag-th

predicate; thus, all the above tools perform proof searchsiyg
some form of a sequent calculus for Bl. Proving either of the s
quents has to break up the implication at some point, and rflpve
andP; into the context". But then, one needs two different context
constructors in order to record th& and P, are conjoined by
in the first case, and by in the second. This is semantically im-
portant, because in the first cagg,and P. hold of separate heaps,
while in the second case, they hold of the same heap. Thus, con
texts in the presence of bothand A cannot be implemented in the
usual manner as lists of hypotheses, but must be more invaive
subject to much more complicated rules for context mantmra
There have been a few systems that consider proofs and proof
search in Bl [4, 13], but to the best of our knowledge, none has
been extended to support general-purpose reasoning abaps.h
Instead, separation logic systems simply restrict cortjoncP A
Q@ and implicationP — @ to assertionsP that arepure that
is, independent of the underlying heap. Fffis pure, then list-

Most systems based on separation logic consider only ctexdri
forms of implication or non-separating conjunction, ad fup-
port for these connectives requires a non-trivial notionarfable
context, inherited from the logic of bunched implicatioBs)(We
show that in an expressive type theory such as Coq, one cé&h avo
the intricacies of BIl, and support full separation logic weffi-
ciently, using the native structuring primitives of the éygheory.

Our proposal uses reflection to enable equational reasoning
about heaps, and Hoare triples with binary postconditionfurt-
ther facilitate it. We apply these ideas to Hoare Type Thetory
obtain a new proof technique for verification of higher-aréa-
perative programs that is general, extendable, and sigppery
short proofs, even without significant use of automationdayits.

We demonstrate the usability of the technique by verifytmgfast
congruence closure algorithm of Nieuwenhuis and Oliveeas;
ployed in the state-of-the-art Barcelogic SAT solver.

Categories and Subject Descriptors=.3.1 [Logics and Mean- like contexts suffice. Of course, this comes at the expengbeof
ings of Programp Specifying and Verifying and Reasoning about generality of the implemented logic.
Programs—Logic of programs An alternative is to explicitly introduce an abstract typke o

heaps into the formal logic, and represent separation tasseas
predicates over this type. Then heap variables can explicime
Keywords Type Theory, Hoare Logic, Separation Logic, Monads the various heaps during proving. For example, the entailsnd)
and (2) can be transformed¥o(hq e h2), Pi hi, P2 ho F Q (h1 o
h2) andT h, PL h, P h + Q@ h, respectively. Here, the variable
contexts are list-likel, h1, ho are fresh heap variables, ald e K.

General Terms Languages, Verification

1. Introduction

While separation logic [25, 26] has proved to be extremehoti/e is adisjoint unionof h; andhs.

in reasoning about heap-manipulating programs in the poesef To someone working in separation logic, adding the type of
aliasing, most practical systems such as Smallfoot [6], 2H, heaps as above may look like a significant loss of abstraction
SLAyer [5], Space Invader [8] or Xisa [10] address only anieted and explicit reasoning about disjointness and heap union vea
fragment of assertions, roughly described by the grammar: difficult to automate. Even in interactive provers like Cadyere

o . " automation is not always a priority, this may lead to largd an

P :=atomic |emp | T |z —y [Pr P, | 3u. P ®) tedious proof obligations. Thus, all Coq embeddings of s&ijmm
Here emp is an assertion which holds of the empty heap, the logic that we know of [1, 11, 12, 17, 18] effectively focus pmn
“points-to” predicatex — y holds of the singleton heap with the (*) fragment, extended with pure predicates.

locationz whose contents ig, and P, « P, holds of a heap if it can Our first contribution in this paper is to show that by choos-
be split into disjoint subheaps satisfyifiy and P», respectively. ing somewhat less straightforward definitions of heaps diheap
One important omission in (*) is the customary non-sepagati union in Cog, we can obtain effective reasoning in the presen
connectives such as implication, conjunction and uniVeysan- of abstract heap variables, and hence support full separatiser-
tification. To see why these are omitted, consider the entaits tion logic while using only native hypothesis contexts, anthout
QOrr PAxP, — Qand ()T - PA A P, — Q, in the se- excessive proof obligations. The definition uses depehdgmed
quent calculus for Bl [24]. Separation assertion logic ikeoty of programming, and the idea oéflection whereby decidable opera-

tions on a type are implemented as functions with codorba.
Its important aspect is to make heaps satisfy the algebrajwep-
ties of partial commutative monoids [9].
Permission to make digital or hard copies of all or part o thiork for personal or To test our new definition in practice, we apply it to_the imple
classroom use is granted without fee provided that copesar made or distributed mentation of Hoare Type Theory (HTT) [11, 20, 21], which exte
for profit or commercial advantage and that copies bear titiseand the full citation the type theory of Coq to integrate separation logic intmisuch a
on the first page. To copy otherwise, to republish, to posteswess or to redistribute setting, one can develdfigher-order statefuprograms, carry out
to lists, requires prior specific permission and/or a fee. ! .) ;
proofs of their full functional correctness, and check thaofls me-

POPL’10, January 17-23, 2010, Madrid, Spain.
Copyright© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00 chanically. Programs and proofs can be organized into edrlf

braries, with interfaces at an arbitrary level of abstattihus en-
abling code and proof reuse. The existing implementatidhlqd,
however, either allowed general separation logic [21],lead to
a prohibitive overhead in the size and number of proof ohibga
about heap disjointness [15], or provided aggressive motifma-
tion by tactics (and hence very short proof scripts), butieed
expressiveness by focusing on the (*) fragment and omittiogt
structural rules of separation logic [11].

As our second contribution, we reformulate HTT to support
both properties. We rely on the new definition of heaps to Gvoi
generating excessive obligations, and keep the proof¢ shtre
presence of non-separating connectives. We rely on Hoiptesr
with postconditions that arbinary, rather than unary relations

disjoint heaps, s& is commutative and associative, uncondition-
ally. However, it is unclear how to avoid explicit heaps anih
the presence of non-separating connectives, so it is warthinfy
definitions that support unconditional algebraic lawssfor

The main problem is that is a partial operation which is not
really supposed to be applied to overlapping heaps. The @ymm
way of dealing with partial operations, of course, is to ctatg
them. We will thus adjoin a new element to the type of heapdl- ca
this elementUndef — which will be used as a default result ©fn
case we try to union non-disjoint heaps.

For the latter to work smoothly in Coq, it has to be possible
to decide if two heaps are disjoint. We need a terminatinggro
dure disj:heap—heap—bool, which reflectsdisjointness; that is,

on heaps, to make the system general and extendable. We showdisj 1 he evaluates tarue if and only if disjoint hy h2 holds.

that the bhinary setting supports the standard structurak raf
separation logic, but also that the user can extend theraysith
her own auxiliary structural rules — typically, after progia simple
lemma — thus implementing new proving strategies. We develo
one such strategy, and confirm that it behaves well in prctic
For example, for the linked data structures such as staclsias
and hash tables, we derive explicit full correctness préiuds are
of comparable size to the proof scripts or proof hints foriEim
examples in related systems for full verification such astYhb]
and Jahob [27]. This despite the fact that the related systdiow
large parts of the proofs to be omitted by the user, as thetbavi
recovered by the proving automation.

As our third contribution, we demonstrate that the techaiqu
can be effectively applied to more realistic and complexnexa
ples. We verify the fast congruence closure algorithm ofMien-
huis and Oliveras [23], deployed in the state-of-the-artcBa
logic SAT solver. Our developments are carried outSisre-
flect [14], which is a recent extension of Coq that simplifies
dealing with reflection. All our files are available on the wath
http://software.imdea.org/~aleks/htt.tgz.

2. Reflecting heap disjointness

The most natural — and we argue, naive — semantic definition
represents heaps as functions from locations to some kivelwés.

For example, in [21], heaps are definedi@s—option dynamic,
where the type of locationkec is isomorphic to natural numbers
and dynamic is the record type{tp:Type, val:tp}, packaging a
value val with its typetp. The main problem with this definition
shows up when one considers heap union.

hox if hiz = None
Somew if h1 x = Some v andhs x = None
None if h1 x = Somev andhs x = Some w

hl . hz = fun .

We could make a different choice and instead of returriiege
whenh; andh overlap, give preference to the value stored in one
of them [11, 12, 17]. In either case, we are immediately fagitkd
proving some basic algebraic properties.

commute : hy e ho = ha e hy
assoc : disjoint by he V disjoint ha hsz V disjoint hg h1 —
hi e (ha e hg) = (h1 e h2) * hs

wheredisjoint h1 he = V& v. hi x = Some v — he x = None.
An inadequacy of this definition lies in the disjointnessditions
that prefix the associativity law. Associativity is used sfiently
in practice that discharging its preconditions quickly drees a
serious burden. If we choose the alternative definitiom ahich
gives preference to one heap over the other when they oyénkzp
commutativity becomes conditional, which is even worse.

Most of this inadequacy can be hidden if one avoids explicit
heap variables ane and uses only separating conjunctierin-
stead. Assertions conjoined byare explicitly made to operate on

The difference between the two expressions is thigth; ho is

a boolean, whildlisjoint hy hs is a proposition. The first can be
branched on in conditionals, while the second cannot. Weusé

this property ofdisj to give a new definition oé below. We also
need heaps to be canonical, in the sense that two heaps ale equ
iff they store equal values into equal locations. These ®euiire-
ments can be satisfied in many ways, but here we choose to model
heaps as lists of location-value pairs, sorted in somelstincreas-

ing order with respect to locations. In this cadij is conceptually
easy to define; it merely traverses the lists of locatiom&aiairs,
returningfalse if it finds an overlap in the location components,
andtrue when it reaches the end. The definition of heaps and heap
operations then takes roughly the following form.

heap = Undef | Def of {I : list (locxdynamic),
_:sorted [}
empty = Def (nil, sorted_nil)
[x = v] = if z==null then Undef
else Def ((z,v)::nil, sorted_cons x v)
h1 e hy = if (hl7 hz) is (Def (l17 _)7 Def (lz, _)) then
if disj I1 I2 then
Def (sort (11 ++12), sorted_cat I1 I2)
else Undef
else Undef
def b = if his Undef then false else true

Since the definition packages eachligtith a proof ofsorted [, the
operations requirdependently-typed programmiirgorder to pro-
duce various sortedness proofs on-the-fly. For examplejefigi-
tion of « applies the lemmsorted _cat:V; I2. sorted(sort(l1 ++12))
to /1 and Iz to convince the typechecker thabrt(i, ++12) is
indeed sorted. Similarly, the definitions efpty heap and sin-
gleton heap[z — v], require lemmassorted_nil:sorted nil and
sorted_cons : Vz v. sorted((x, v)::nil).

Of course, we will hide the intricacies of this definition,dan
keep heaps as an abstract type, only exposing several aigebr
properties. Main among them are the followinmconditional
equations which, together with thief predicate, show that heaps
with e form apartial commutative monoidVe will use the equa-
tions as rewrite rules for reordering heap unions duringfsro

unC . h10h2:h2'h1

unCA: hy e (ho e h3) = ho o (hy1 » h3)
unAC : (hy ¢ h2) hg = (hy ¢ h3) » ho
unA (h1 L] h2) L] h3 = h1 L] (h2 . hg)
unOh : empty e h = h

unhQ : heempty=~h

For example, iterated rewriting lmnCA or unAC can bring a heap
expression from the middle of a large union to the front orehd
of it, without the steep price of proving disjointness atrgv&ep.

Even more important is thdef predicate, which we use to state
disjointness of heaps. For example, we can define

P x Po =fun h.3h1 ha.h =hi1eha Adefh A P h1 A Ps ho.

The real significance afef, however, is that it can operate on arbi-
trary heap expressions, and can thus stateiltaneouslisjointness
of a series of heaps in a union. This will allow us to freely mov
between assertions in separation logic, to assertions exjplicit
heaps, without incurring a significant blowup in size. Indiegon-
sider the separation logic assertiBr« Pz « (Ps AVx. Py) — Ps,
which is outside the (*) fragment. If we want to destruct thipli-
cation and movePy, .. ., P, into the Coq hypothesis context, we
can make the heap variables explicit and write

Py hi APy hao A P3 hg A (Vz. Py z hg) —
def (h1 @ ho ® h3) — Ps (h1 ¢ ha ¢ h3)

This is more verbose than the originbijt only slightly as we have
to keep track ofonly onedef predicate per sequence of iterated
x's. With the naive definition, exposing the heap variablesi®n-
starter, as we would have to separately assert that eaclofpair
heaps in the serigl;, hs, hs is disjoint, and possibly later prove
disjointness for anyartitioning of the series (e.g4: is disjoint
from ha e hs, he is disjoint fromh; e hs, etc.). This leads to an
exponential blowup, whereas with the new definition, préjpmss
and proofs are proportional to their separation logic oats. Of
course, we will have to devise methods to make inferences fro
and aboutlef predicates.

Examplel. A frequently used law related to non-separating con-
junction is the following.

(z = v1)xPIA(z = v2)xPs — v1 = va Az — v1) % (PLAP2)

The law can be proved in our setting as well, but we have found
that a somewhat different formulation, which states a vawd the
cancellation property fo¥, is much more convenient to use.

cancel : def([z > vi] e h1) — ([x > v1] @ b1 = [z = v2] ® h2)
— V1 = V2 /\defh1 /\h1

= ho.

The conclusion otancel produces new factdef h; andh;, = ha,

to which cancel can be applied again. This way, we can iterate
and chain several cancellations in one line of proof, olotgin
definedness of sub-unions, out of definedness of larger hréapau

Example2. Consider the predicateeq p [h, which states that the
heaph contains a singly-linked list headed at poingeland stores
elements from the purely-functional list

Fixpoint Iseq (p : loc) (I : list T') : heap — Prop =
if { is z::xt then
funh.3gh . h=[p—x]e[p+l—-ql e h' A
Iseq g xt b’ A def h
else fun h.p = null A h = empty

Imagine we want to prove théteq is functional in thel argument;
thatislseq_func: Vi1 laph.lseqpli h — Iseqpla h — 11 = la.
We will use the following easy helper lemmas.

Iseq_nil VI h.lseqnulll h — | = nil A h = empty
Iseqcons:Viph.p # null > lseqpl h —
Jrqh'.l = x:tail I A
h=I[p—az]e[ptl-gleh A
Iseq ¢ (tail) ' A def h
def_null :Vpz h.def ([p—=x] e h) — p # null

The proof is by induction o#y . If I; = nil, thenlseq p I h implies
p = null and the result follows by applying the lemrsaq_nil to
the hypothesiseq p I h. Otherwise, let; =z :: xt, letIH be the
induction hypothesi¥iz p h.lseq p xt h —lseq p 2 h — xt = 2.
Fromlseq p I1 h and the definition okeq, we know that there exist

g1, h1 such thath = [p—x1] e [p+1—q1] * h1, andlseq g1 xt h1
anddef ([p— x1] e [p+1 — qi1] » h1). Call the last two factd] and
D, respectively. It suffices to show

Iseqplz ([p—z1]e[p+l—>q]eh1) — z1:at = o,

The hypothesidseq p l2 ([p— z1] ¢ [p+1— ¢1] » h1) and the fact
thatp # null (proved bydef_null and D) can now be used with the
lemmalseq_cons, to obtainzz, g2 andhz, and reduce the goal to

[p—z1] e [ptl>qi] e hy = [p—x2] ¢ [p+1-q2] ¢ ho
— lseq g2 (tail l2) he — x1 a0t = zo :tail lo

By applyingcancel to D and the antecedent of this implication, we
getz; =2 aswell aslef ([p+1— ¢1] e h1) and[p+1—q1] e h1 =
[p+1 — g2] » h2. By chaining cancel again over thisdef predi-
cate and equation, we further get =¢- and h; = h2, reduc-
ing the goal tdseq ¢1 (taill2) h1 — x1 = at =1 ::tail lo. But, if
Iseq ¢1 (taill2) hi1, then bylH and H, it must bext = tail l2, and
thuszy :: ot = x1 :: tail lo.

Notice that the proof did not require any overwhelming reaso
ing about heap disjointness, despite the explicit heapbbes. In
fact, the whole argument can be captured by the followingequi
concise formal proof irssreflect.

elim = [|z1 «t IH] l2 p h; first by case=——; case/Iseq_nil.
case = qi [hi1][—] H D.

case/(Iseq_cons (def_null D)) = z2 [g2][h2][—].

do 2![case/(cancel D) =« {D} D] =+.

by case/(IH - __ H) =«.

In Section 4, we return to the issue of chaining the reasoning
aboutdef predicates, and show how it applies when proving prop-
erties of Hoare triples. But first, we describe the basicsdeshind
our representation of Hoare triples in type theory.

3. Hoare type theory for separation logic

The most common approach to formalizing Hoare logic in proof
assistants like Coq is by “deep embedding” where one reasons
about the abstract syntax of the programming language is-que
tion [17, 18]. This reasoning indirection via syntax is oftguite
burdensome. For example, a deep embedding of a typed foattio
language will usually involve explicit manipulation of deun
representation of bound variables, formalization of a typecker

for the embedded language, etc.

In contrast, HTT formalizes separation logic via types;ipler
{p}e{q} in HTT becomes a type ascriptian: STsep A (p, q),
where A is the type of the return value of the “command'The
typeSTsep A (p, q) is a monad [20], which makes it possible for
commandse to perform side-effects, without compromising the
soundness of the whole system. Moreover, commands cay freel
use the purely-functional programming fragment of Codjuding
inductive types, higher-order functions, type abstractod first-
class modules, which removes a level of indirection andastre
lines the programming and reasoning in HTT. Encoding viasyp
however, is not straightforward, and requires a refornntesf the
inference rules of separation logic.

These inference rules are presented in Figure 1, and theg com
in two flavors. The first flavor includes rules that infer prope
ties based on program’s top command, where the commands are:
move x v for assigning a value to the variabler; store = v for
writing v into the locationz; load y « for reading the value stored
in locationz and assigning it to variablg, alloc y v for allocating
a new location initialized withy, and storing the address into
dealloc z for deallocating the locatior; ande; ; e2 for sequential
composition of commands, andes.

The second flavor includes the structural rules. These vary
across systems, but here we take them to include the rules of

{emp} move z v {z = v Aemp} {x+ —}storezv{z — v}
{z — v}loadyz{z — vAy =0}
{emp}allocy v {y — v} {z — —}deallocz {emp}
{pyei{a} {q}ea{r}
{p}er;ea{r}

{p} e{q} [frame]
:=p*TF€:=q *TF

p—p {pleld} d —q [
{r}e{q}

{pte{a} {p}efg}

[seq]

consequence]

{r}e{q} =z &FV(e,p)

Wrelanay relvoar
{pl}e{Q} {p2}e{Q} [\/] {p 37}6{‘1} xz & FV(e,q) [3]
{p1 Vp2}e{q} {Fz.p}e{q}

Figure 1. Inference rules of separation logic.

frame, consequence, conjunction and disjunction in bottargi
and quantified (i.e., universal and existential) variaBegparation
logic also includes the rule of substitution, which allowgeiring
{op}oe{oq} out of {p}e{q}, for any variable substitutios,

but we will not explicitly consider such a rule in this papas, we
will inherit it from the underlying substitution principgeof Coq.

Ignoring the rule of frame for a second, the role of the other

structural rules is, informally, to present the view of coemds

as relations between the input and output heaps. Intwfivél
{p} e {q}, thene implements the relatiof((h1, h2) | ph1 — q ha},

Given the typeA, preconditiorp:heap—Prop, and binary post-
condition ¢: A—heap—heap—Prop, our predicate transformers
are elements of the type

model p A = ideal p — A — heap — Prop.

The transformers should only “transform” predicates theg a
“stronger” thanp, so we definédeal p as:

ideal p = {f : heap — Prop | f C p}

wherery C ro iff Vh:heap.r1 h — 72 h. We further only need
transformers that are monotone and boundeg: by

ST A(p,q) = {F:model p A | monotone F' A bounded F' ¢}

where

monotone F' = Vry ratideal p.ri Ere = V. Frix E Fraox
bounded F g =Vrz.Frx Cfunh.(Ji.riAqgzih).

The elements of typ8T A (p, q) can be used to model programs
that return values of typd, and have a preconditignand postcon-
dition ¢ in ordinary Hoare logi¢ wherep andq describe the behav-
ior of the program on the/hole heapBut in separation logig and

q only describe the part of the heap that the program actuedigls
from or modifies during execution; the information that tketrof
the heap remains invariant is implicit in the semantics. dptare
this aspect of separation logic, we next select a specifisetudf
predicate transformers out 8. Given a pre/postcondition pair
we definespatial extension®, and a news Tsep type, as follows.

s® (pre s x fun h. T, fun z.pre s —o post s x)

STsepAs = STAs®
wherepre andpost are the projections out of the pair, and

ande does not crash. The structural rules then simply expose how p — ¢ = {(i,m) | Vi1 h.i =141 ¢ h — defi — pi; —

logical connectives interact with the implication in thislation
(e.g., implication distributes over conjunction in the sequent,
and disjunction in the antecedent, etc.).

The difficulty with structural rules is that they cannot éasi
be encoded as typing rules. One problem is that the univarshl
existential rules require a side-condition thds not a free variable
of e, and this property ot cannot be expressed from within the
system. Another problem is that the structural rules usesémee
e both in premisses and conclusions, thus making it impassibl
to define the typing judgment by induction on the structure of
expressions, which is one of the main design principles af.Co

Our proposal for solving these problems is to switch to hinar
postconditions. If Hoare triples have binary postcondgiothis
quite directly exposes the relational nature of commandschw
is what the role of structural rules was to start with: intily, if
a command has a binary postconditiopn then it must implement
a relation on heaps which is a subsetgofThen reasoning about
e can be reduced to reasoning abquand can be carried ou
the logic of assertionsrather than in the logic of Hoare triples.
Of course, this only works smoothly if the assertion logia ca
express properties of relations, and quantify over thens iBmot
a problem for us, as Coq already includes higher-order logic

To present the semantics 5 sep, we briefly sketch a deno-
tational model based on predicate transformers. The tefateofs
are carried out in Coq, and can be found on our web site. We+epr
sent preconditions as elements of the tyipep—Prop, and post-
conditions as elements of —heap—heap—Prop, for any given

Imi.m=my e h Adef m A qir mi}.

Spatial extension allows that heaps on which a transformapi
plied be extended with portions that the transformer keepari-
ant. For example, transformers $sep A (p, q) take a predicate
describing a heap which contains a subheap satisfyingp, and
transform it into a predicate stating that the rest ¢here called
h) remains unchanged. The unchanged heapn be arbitrary, as
the precondition only requirdsto satisfyT. We note that the def-
inition of —o is quite similar to the notion of “best local action”
from [9], and has also been used previously in [19].

We can now transcribe the inference rules about commands as
typing rules about elements 8fTsep. We only list the relevant
types, and defer to the Coq scripts for the definitions andfgro
In all the types,i andm stand for the initial and ending heap of
a computation, ang is the name for the return value. We further
adopt names that are traditional in functional programma
usereturn for move, “:=" for store and “!” for load.

return :ITv:A.STsep A (emp,funyim.y =v Aempm)
= : [Mx:loc v:A.
STsep unit (x — —,funyim.(x —v)mAy={())
: Mz:loc. STsep A (x — —, funyim.Vo. (z — v) i —
(z—v)mAy=no)
alloc :IIw:A.STsep loc (emp, funy i m. (y — v) m)
dealloc : IIz:loc. STsep unit (z — —,
funyim.empmAy=())

We also have a command for allocation of a block.afonsecutive

type A. In addition to abstracting over two heaps, the postcondi- |gcations, initialized with the value:

tions also abstract over values of type because commands in
HTT are value-returning, so the postconditions must be tbie-
late the value to the input and the output heap of the comiputat
Despite this, we still refer to the postconditions as “byfiaas the
type A does not introduce any significant complications.

allocb : TTv: A. IIn:nat. STsep loc (emp,
funyim.m =iternyv)

iternyv=ifnisn’ + 1then[y—v]eitern’ (y+1)v
else empty

And, we require a fixed-point combinator with the type belbw.
our ST model, this combinator computes the least fixed point of the
monotone completion of the argument function.

fix: (Hx:A.STsep (B z) (sz)) — IIz:A.STsep (B z) (s x))
— Hxz:A.STsep (B z) (s x)

Transcribing the rule for sequential composition is sorregwhore
involved. The command; now returns a value of typd,, and
thuse2 must be a function which takes that value as an argument.
We will have a typing rule as follows

bind : ITe1:STsep A1 s1. Hea:(I1x:A1.STsep A2 (s2 x)).
STsep Az (bind_s s1 s2),

wheres; andsz x are pairs of pre/postconditions fer ande: =z,
respectively, andind_s s; sz is the following pre/postcondition
pair.

(fun i. pre s} i AVx h.post s} x i h — pre (s2 z)* h,
fun y i m.3z h. post s} x i h A post (s2)°* y hm).

The precondition in this pair states that in order to exethsese-
quential composition, we must ensure that the precondjtiers?
holds, so that; can run in a subheap of the initial heapAfter ey
is done, we will have an intermediate valuand heaph satisfying
post s} = 7 h, SO we need to showre (s2 x)° h in order to execute
e2. The postcondition states that there exists an intermedaltie
x and heaph, obtained after running; but before running:. In
the model ofST, bind is implemented as the functional composi-
tion of the transformers faf; ande.

We now turn to the structural rules. For a commandST A s,
we consider what can be inferred abeyuist by looking at the type
A and specifications. Quite directly, it must be thatre s 7 and
post s y ¢« m hold of the initial heapi, final heapm and return
valuey. Thus, given a property: A—heap—Prop, we can show
thatq y m holds after running if we can proveverify i s ¢, where

verifyi sq = presi AVym.postsyim — qym.

This definition assumes thatdescribes howe acts on thewvhole
heapi. If e:STsep A s, thens describes the action af only on
a subheap of. Following the definition ofSTsep, in order to
show thatqg y m holds after running, it then suffices to prove
verify i s° q.

Theverify predicate can now be used to represent Hoare triples
as assertions. For example, giveBTsep A s, the separation logic
triple {p} e {q} can be written a&/i.p i — verify i s* ¢. This
property will let us encode the standard structural rulssyall
as many other useful rules, as simpglerived lemmasbout the
verify predicate. Hence, our system will be inherently extendable
as the user is free to derive her own structural rules, and thu
design custom reasoning principles and strategies. Mergtive
definition of verify does not involve the command but only the
specifications, making any lemma abouwtrify independentf our
particular model ofST. We will be able in the future to develop
different models for HTT, while preserving the lemmas and th
verification technique we describe here.

As a first illustration of working withverify, we show the fol-
lowing variants of the binary and quantified conjunctioresul

conj : verify i s q1 — verify i s g2 —
verifyis (funy h.qi yh Aqay h)
all : (Vz:B.verify i s (¢qz)) — B —
verify i s (funy m.Vz:B. g x y m)
Several interesting twists appear here. First, the rulesimgpli-
cation and quantification, and cannot be stated in the (Ynfrent

alone. Thus, here we are making an essential use of our fatiowil
of heaps from Section 2. Second, the rules omit the predondit

p 4 as it is invariant across implications. They also omit thdesi
conditionz ¢ FV s, becauss is declared outside of the scopeof
Finally, theall rule requires thaB is a hon-empty type. Otherwise
Vx:B. q z y is trivially true, but this does not suffice to establish the
verify predicate, as the latter additionally requires the preitimmd
to hold of the initial state, no matter what the postcondiig This
makes the semantics of HTfault-avoiding[9]; that is, it ensures
that well-typed commands are safe to execute.

On the other hand, the binary and quantified disjunctionsrule
do not require any special treatment. For example, we carepro

disj : (p1 @ — verify i s q) — (p2 i — verify i s q) —
p1iV p2i— verifyisq

exist : (Vx.px — verifyisq) — (Jz.px) — verify i s ¢

but these are just instances of the usual elimination raleg find
3, and therefore do not require separate lemmas.

The frame rule can be formulated in several different ways, b
we choose the following:

frame : verify i s* (funy m. def (m e h) — qy (m e h)) —
def (i ® h) — verify (i e h) s* q.

When read bottom-up, this lemma replaces a goal about the hea
i » h and a postconditior, with a new goal involving the heap
1 alone, and a postcondition recording tgaghould eventually be
proved of the ending heap extended withh. We have chosen this
formulation because it applies to goals wheig arbitrary, whereas
the usual formulation from Figure 1 requires first rewritinonto a
form ¢’ x r, and this if often tedious in the presence of higher-order
operations and binary postconditions.

Finally, we need to conne&Tsep types with theverify pred-
icate. The structural rules all show how to change a spetitita
of a command under certain conditions. We match that akality
the level of typing rules, by introducing a construct for ebig an
STsep type of a command, which essentially implements the rule
of consequence.

do:STsep A s1 —
(Vi. pre sg i — verify i s] (funy m.post s2 yim)) —
STsep A s2

In our model ofST, do is an identity predicate transformer. With
this connective, we have embedded all the rules of separiatic
from the beginning of this section.

Example3. It is possible to use Coq's purely-functional pattern-
matching to build pattern-matching constructs with siffeegful
branches. For example, in the case of booleans, we have:

If : IIb:bool.STsep A s1 — STsep A s2 —
STsep A (if b then s1 else s2)
= fun b ey e2.if bthen (doey) else (do e2)

Thedo’s in the branches serve to weaken the types;dhto the
common type of the conditional. Bottb ¢; anddo es require a
(simple) proof that ifh equalstrue (resp.false), thens; (resp.sz)
can be weakened ini6b then s; else s2. To reduce clutter, in the
rest of the paper we blur the distinction between purelycfiamal
if and side-effectfulf, and usef for both.

Exampled. The following functions insert and remove an element
from the head of a singly-linked list pointed to py

insert (p : loc) (x: T) :
STsep loc (funi.3l.Iseq p 1 i,
funyim.Vi.lseqpli — lIseqy (z :: 1) m)
do (y < allocb p 2;
yi=u;
return y)

remove (p : loc) : STsep loc (funi.3l.Iseq p ! 7,
funyim.Vi.lseqpli —
Iseq y (tail l) m) =
do (if p==null then return p
elsey — I(p+1);
dealloc p;
dealloc (p + 1);
return y)
Here, we have used the standard abbreviation-ei;es for
bind e1 (fun x.e2), andes; e2 Whenz ¢ FV(e2). For both func-
tions, theSTsep type gives the specification that we want to prove
about the functions. The preconditions show that the fonstican
execute safely, as long as the initial heap contains a vailicbd
list, no matter what valueé are stored in it. The postconditions
show that the new list now contains:: [andtail /, respectively,
and that the returned valugis a pointer to the new head.

we may use the following rule to instantiate the quantifiethwie
unique value forr.

alllimp, : V&:B. (Vz:B.px — t =) — verify i s (¢ t) —
verify i s (funy m.Vo:B.px — gz ym)

Sometimesp may not uniquely determine, but determines “just
enough” ofz to establishy. For examplep may forcex to be in an
equivalence relation to a predeterminedhen we are justified in
instantiatinge with ¢, as long ag only makes statements about the
common equivalence classofandt.

allimp, : Vt:B. Vz:Bym.px — qtym — gz ym) —
verify i s (g t) —
verify i s (funy m.Vo:B.px — gz ym)

We also have additional rules to help us discharge the proof
obligations generated by typechecking. As Example 4 shows,

The specification pattern seen in these examples, where thethese should be lemmas about heerify interacts with pre/-

predicate from the precondition is, somewhat redundargpeated
in the postcondition, is characteristic to the setting wiithary
postconditions, though it is by no means always used. Fatély
this redundancy will not cause an explosion in proof oblayad,
and in Section 4, we show how to quickly remove it.

The typing rules are designed so that they can now genesmate th

proof obligation required to verify the programs. Fagert, we get

Vpxi. (Jl.lseqpli) —
verify 4 (bind_s (allocb_s p 2)
(fun y. bind_s (write_s y x)
fun _.returns y))*®
(funy m.Vi.lseq pli — lseq y (z::1) m)

and forremove

Vpi. (Al.lseqpli) —
verify ¢ (if p == null then return_s p
else bind_s (reads (p + 1)
(fun z. bind_s (dealloc_s p)
(fun _. bind_s (dealloc_s (p + 1))
fun _. return_s z))))*
(fungm.Vi.lseqpli — lIseq g (tail) m)

The proof obligations essentially copy the original comuohaex-
cept that the various primitive commands are replaced byphey/-
postcondition pairs from the beginning of this section. &le,
return_s pis the pairlemp, funy i m.y = pAempm), read sz is
(x— —,funyim.Yu.(x —v)i— (z— v)mAy =v),etc.In
the case of a call to an already verified non-primitive sitfeetful
command (not used imsert and remove, but used in programs
in Section 5), the command is not copied, but the pre/posiiton
pair from the type of the called command is simply splicedalls

to fix are similar, except that a separate obligation is genetated
prove that the body dix satisfies the provided type. Thus, the type
of the fixed point serves as the loop invariant.

4. Structural rules and verification

As structural rules are now simply lemmas over thefy predi-
cate, one is free to prove and use additional ones, that magdse
ful for the proof at hand. For example, the following is a sati
of the rule for universal quantifiers, which pulls a quantifiad an
implicationout of a postcondition, both at the same time.

alliimp : (3=:B.p x) —
(Vz:B.px — verify i s (funym. gz ym)) —
verify i s (funy m.Vo:B.px — gz y m)
This rule can be used to simplify the proof obligation fromakx

ple 4, by removing the occurrence leéq from the postcondition.
If p uniquely determines: in the current context of hypotheses,

postcondition pairs such dsnd_s, read_s, etc. The main lemma
of the system serves to simplify proof obligations that abe o
tained when verifying commands of the forsind e; e2 where
e1, ez are arbitrary commands, with types : STsep A; s; and
ez : Iz:A;.STsep Az (s2 x), respectively.

bnd_do : pre s1 i1 —
(Vz 4. post s1 x i1 1] —
def (i} o i2) — verify (i} ® i2) (s2 2)* 1) —
def (’il L] iz) — verify (i1 . ’ig) (bind_s S1 82)' T

Applying this lemma to a goal of the forrdef (i1 o i2) —
verify (i1 * i2) (bind_s s1 s2)® r essentially corresponds to “sym-
bolically executing”e; in the subheap;. The lemma first issues a
proof obligation that the preconditigire s1 of e; is satisfied in1,
then replace$;, with a fresh heap variablg, inserts the knowledge
thati} satisfies the postcondition ef, and reduces to verifying the
continuatione; in the changed heap.

We can further instantiate this lemma to exploit additional
knowledge that we may have about. For example, ife; starts
with one of the primitive commands, we have the following in-
stances, where we omit tlief predicate if the command does not
change the heap.

bnd_ret : verify i (s2 v)® r — verify i (bind_s (return_s v) s2)® r
bnd_read : verify ([x > v] ¢ i) (s2 v)® r —

def ([z - v] e 3) —

verify ([x — v] @ i) (bind_s (read_s A x) s2)® 7
bnd_write : (def ([z —v] ® i) — verify ([x —>v] @ i) (s2 ())®) —
def ([z - w] i) —

verify ([x — w] o ¢) (bind_s (write_s x v) $2)® 7

bnd_alloc : (Va:loc. def ([x —v] ¢ i) —

verify ([x = v] i) (s2 x)® 1) —
def i — verify i (bind_s (alloc_s v) s2)® 7

bnd_allocb : (Va:loc. def (iternz v o i) —
verify (iternz v ¢ 3) (s2)® r) —
def 5 — verify ¢ (bind_s (allocb_s v n) $2)® 7

bnd_dealloc : (defi — verify i (s2 ())® r) —
def ([z —>v] o 3) —

verify ([x — v] @ i) (bind_s (dealloc_s) s2)® r

verify ¢ (bind_s t1 (fun z.bind_s (t2 z) s2))® r —
verify i (bind_s (bind_s t1 t2) s2)® r

bnd_bnd :

The above lemmas apply only when verifying compound com-
mands (i.e., command starting withbind). We need another set

of lemmas for atomic commands. For example:
val_ret : rvi— defi — verify i (returnsv)® r,

and similarly for the other commands.

Verification of any given command in HTT then works basically
by applying one of the lemmas above, or one of the structutesy
as may be required, updating the heap accordingly, andosigp
off the commands from the goal one at a time. This process-inte
acts very well with the partiality of heap union from Sect@ras
we have instrumented the lemmas to chaindéiepredicates from
one application to the next, changing the predicates toctetfte
changes to the heaps. During verification, it may be necgdear
reorder the involved heap unions and bring the subheap restjui
by the current command to the top of the expression, or ekse th
corresponding lemma will not apply. The reordering, howgise
quite inexpensive, using the unconditional rewrite rukes Sec-

tion 2. Once the commands are exhausted, we have to show that

the heap obtained at the end satisfies the desired postoondit
this point, we usually require some mathematical knowletigeis
specific to the problem at hand, and has to be developed selyara

Example5. We now proceed to discharge the proof obligation for
insert. We first break up the obligation inteloc, z:T, I:list T,
hypothesisH :Iseq p [¢, and the goal

verify 4 (bind_s (allocb_s p 2)
(fun y. bind_s (write_s y x)
fun _.returnsy))*®
(funym.Vi.lseqpli — lseqy (z::1)

m).
We apply the lemmall_imp, to remove the quantifier ovérand
the antecedenseq p [¢ from the postcondition, to obtain

verify 7 (bind_s (allocb_s p 2)
(fun y. bind_s (write_s y x)
fun _. returnsy))*®
(funy m.lseq y (z::1) m).

The hypothesis ofll_imp, is easily satisfied, usingZ and the
lemmalseq_func proved in Example 2. Next, by hypothedisand
helper lemmdseq_def:lseq p [© — def 7, we obtaindef 7. Using
this andbnd_allocb, we reduce the goal to

def (([y > pl * [y+1-p] » empty) » i) —

verify (([y—>p] » [y+1-p] » empty) « i)
(bind_s (write_s y x) (fun _. returns y))*
(funy m.lseqy (z::1) m)

wherey is a fresh variable. We next want to bring the singleton heap
[y — p] to the top of the union, so we remoempty, and apply the
associativity law. After that, we can appbyd_write to obtain

verify ([y —x] o [y+1-p] » 1)
(returns y)®
(funy m.lseq y (z::1) m)

under hypothesi® : def ([y > z] » [y+1— p| * ¢). By val_ret, it
suffices to shoviseq y (z::l) ([y —] o [y+1 - p| i), which by
definition oflseq equals

gh' Jy—a]elytl—plei=[y—x]e[y+l—gleh
Nlseq gl h' Adef ([y—x] o [y+1—p] o).

One can now instantiateandh’ with p andi, respectively, or alter-
natively, introduce unification variables, and let the sgsinstan-
tiateq andh’ from the heap equation in the goal. The argument can
be summarized by the followirsreflect proof.

apply: (allZimp, 1) = [?|]; first by apply: Iseq_func.
apply: bnd_allocb (Iseq_def H) = y; rewrite unhO unA.
apply: bnd_write = D; apply: val_ret = /.

by do leconstructor.

5. Fast congruence closure

To put our proof technique to the test, we implemented anifiegr
in HTT one of the fastest practical algorithms for computthg

congruence closure of a set of equations, designed by Nieuwe
huis and Oliveras [23], and used in the Barcelogic SAT Solver
whose efficiency has been confirmed in various SAT-solvimg-co
petitions [3]. The algorithm simultaneously uses sevetatieful
data structures such as arrays, hash tables and linkedwisitsh

all interact in very subtle ways, governed by highly nowi#ii in-
variants.

The algorithm starts with a set of equations between expres-
sions, all of which contain symbols drawn from a finite sghb.
Each expression is either a constant symbol, or an apmicate.
our type of expressions is

exp = const of symb | app of exp X exp.

Of course, we will use the customary shorthand and, for el@mp
abbreviateconst ¢ = app (const ¢1) (const ¢2) asc = ¢ ca.

Definition 6. A binary relationR on expressions is monotone iff
Vf1 f2 e1 62.(f1,f2) € R — (61,62) €R — (f1 e1, f2 62) € R.

R is a congruence iff it is monotone and an equivalence. The
congruence closure @t is the smallest congruence containiRg

and is defined adosure R = ({C|C is congruence an& C C'}.

The algorithm internally maintains a data structure thatee
sents the congruence closure of a set of equations. ItSdneer
consists of two methods: (Iperge (¢1 t2), extends the cur-
rently represented congruence with a new equatios ¢-, that is,
it combines the congruence classes;adindts, and (2)check ¢1 to
determines whether the pdin , t2) belongs to the represented con-
gruence. Additionally, the algorithm assumes that the gops
passed tamerge are inflattened formin the sense that they are
either simpleequations of the forne; = c2 or compoundequa-
tions of the forme = ¢ c2, Wherec, c1, c2 aresymbols rather
than general expressions. We will need a data type of eaqusato
capture this distinction, which we define as

Eq = simp of symb x symb | comp of symb x symb x symb.

Any system of equations can be brought into a flattened foom. F
example, the non-flat equatien= c; c2 cs can be flattened by in-
troducing a fresh symbal;, and then decomposing into two equa-
tions:c = ¢4 c3 andes = ¢1 co. It turns out that in the setting of
SAT solvers, it suffices to flatten the expressions from thgiral
SAT formula once and for all, as the intervening computatiof
congruence closure will not require additional flattening gen-
eration of new symbols [23].

Knowing the number of symbols ahead of time makes it pos-
sible to improve the efficiency by storing some of the data int
arrays rather than linked structures. For example, therighgo
stores: (1) The array of representatives=or each symbalt, r[c] is
the selected representative of the congruence classTofreduce
clutter, we will abbreviate[c] simply asc’. (2) The arrayclist of
classlists: for each representative symholclistc] is (a pointer
to) the (singly-linked) list of symbols in the congruencesd ofc.

(3) The arrayulist of uselists: for each representative symhgl
ulist|c] is (a pointer to) the (singly-linked) list of compound equa-
tionsc; = c2 c3, Wherec = ¢} or ¢ = ¢4 or both. If during
the executiorr stops being a representative because its congruence
class is merged into another, thselist of ¢ gives an upper bound
on the set of expressions and equations affected by thigehdo
restore the internal soundness of the data structuresl| uffice

to reprocess only the equationstilist[c]. (4) The pointemp to the
list of pendingsimple equations. If the equatian = ¢, is in the
pending list, it indicates that the congruence classes @nd c
need to be merged in order to restore the internal soundidsmn
the pending listis empty, the data structures are in a ciemsistate.
(5) Thelookup table htabis a hash table storing for each pair of
representative§ri, r2) some compound equatien= c; cz such
thatr; = ¢} andra = c5. If no such equation exists, the lookup

Module Array
array : finType — Type — Type
shape:array IT — (I — T) — Prop
read :Ila:array I T.I1k:I.
STsep T (fun i.3f.shapea f i,
funyim.Vf.shapea fi —
y=fkANi=m)
write : Ila:array [T.11k:1. T1x:T'.
STsep unit (fun <. 3f. shapea f i,
funyim.Vf.shapea fi—
shape a f[k — z] m)
Module Hashtab
kvmap : eqType — Type — Type
shape :kvmap KV — (K — option V) — Prop
lookup : ITt:kvmap K V. 11k:K.
STsep (option V') (fun . 3f. shapet f i,
funy ¢ m.Vf.shape fi —
shapet fmAy = fk)
insert :IIt:kvmap K V.I11k:K.Ilz:V.
STsep unit (fun 4. 3f.shapet f i,
funyim.Vf.shapet fi —
shape t f[k — Some z] m)

Figure 2. Relevant parts of array and hash table signatures.

table contains no entries f@r1,r2). This table is the main data
structure from which one can read off the represented cengeu
For example, to check if the pafe, ¢1 ¢2) is in the congruence, it
suffices to search the lookup table for the ke, c3). If the lookup
returns some equatiah= d; d-, thend’ is the representative sym-
bol for ¢1 c2, and(c, c1 c2) is in the congruence iff’ = ¢'.

Since we require arrays and hash tables, we implemented li-
braries for both, but here only summarize in Figure 2 thedtignes
of the type constructors, predicates and methods that wig tisis
section. The actual libraries are much more general, andvaié
able on our web site. Each module exports a type represetigng
data structure. Both typerray I T andkvmap K V are imple-
mented adoc, but the signature hides that fact. Arrays expect the
index typel to be finite, and hash tables expect the type of keys
K to beeqType, that is, it supports a decidable equality function
==: K — K — bool. The later is also a property required of
finType's. Both modules export an abstract predicdigpe, which
relates the layout of each data structure with a mathenhatiteay
that the structure represents. In the case of arrays, tlity &a
function of typel — T, and in the case of hash tables, itis a func-
tion of type K — option V/, reflecting the fact that the hash table
need not contain a value for every key. In our libraries, vge ahp-
ture the fact that the hash table can contain values for onielfy
many keys, but for this discussion, the above weaker ab&tnac
suffices. For both arrays and hash tables, we wfjte — z] to
describe a function obtained frofnby changing the value atinto
x. Now the stateful data structures described above can lerddc
as the following five variables which are global to the methotl
the algorithm:r : array symb symb, clist, ulist : array symb loc,
htab : kvmap (symb x symb) (symb x symb x symb), andp : loc.

Since we are interested in the functional verification of the
algorithm, we need to capture the contents of these arragh h
tables and linked lists as appropriate mathematical vaNyesdo
this with the following record type.

data = {rep : symb — symb; class : symb — list symb;
use : symb — list (symb x symb x symb);
lookup : symbxsymb — option (symbxsymbxsymb);
pending : list (symb x symb))}

The intention is that, give®:data, the functionrep D represents
the contents of the array and similarlyclass D, use D, lookup D
andpending D capture the contents dfist, ulist, htabandp. The

formal correspondence is established by the following ipetd.

shape’ (D : data) (h : heap) : Prop :=
det ut:symb — loc. Jg:loc.
Array.shape r (rep D) *
Array.shape clist ct ®c€symb Iseq (ct ¢) (class D c) *
Array.shape ulist ut * ®c€symb Iseq (ut ¢) (use D c)
Hashtab.shape htab (lookup D) *
p — q *Iseq ¢ (pending D)) h
Here we freely use the separation logi¢as defined in Section 2)
and its iterated versiof®. In the proofs, we will unfold their
definitions in terms of explicit heaps, when needed. $iape’
predicate captures the layout of the structures in the Haatpye
also need to capture the relationships between theselseact
shape (R : exp X exp — Prop) (h : heap) : Prop =
dD:data. shape’ D h A rep_idemp D A class_inv D A

use_inv D A lkp_inv D A use_lkp_inv D A
lkp_use_inv D A pending D = nil A CRel D =, R

In shape, we list that the array must be idempotent:
rep-idemp D = Vc.rep D (rep D c)

The class lists invert the representative array:
class.inv D =Vxc. (repDx==c) = (z € class D c).

rep D c.

Use lists store only equations with appropriate represigata

use_inv D =Vaccyc2. a € reps D —
(¢,c1,c2) €use Da —repDeci =aVrepDca =a,

wherereps D is the list of symbols that are representatives, that is,
they appear in theangeof the functionrep D. Next, the hash table
stores equations with appropriate representatives:

lkp_inv D =Vabccica. a €Ereps D — b € reps D —

lookup D (a,b) = Some (c,c1,c2) — repDci =aArepDcy =b.
For each equation in a use list, there is an appropriate iequiat
the hash table, and vice versa:

use_lkp_inv D =Vaccyca. a € reps D — (¢,c1,c2) €Euse D a —
3d dy da. lookup D (rep D c1,rep D ¢c2) = Some (d, d1,d2) A
repDci =repDdiy ANrepDcag =repDda ANrepDc=repDd

lkp_use_inv D = Vabddi d2. a € reps D — b € reps D —
lookup D (a,b) = Some (d, d1,d2) —
(Fcer . (c,c1,c2) €Euse Da A
repDci =aArepDca=bArepDc=repDd)A
(Fcer . (cyc1,c2) Euse Db A
repDci=aArepDcay=bArepDc=repDd).

The shape predicate will be used for the specification of
the main methods of the algorithm. Hence it also requires tha
pending D = nil, i.e., the structures are in a consistent state, and
CRel D =, R, i.e., the relationR is the congruence represented
by the structures. Her&Rel D is defined as the congruence clo-
sure of all the equations ilwokup D, pending D as well as the
equationsc = rep D ¢, for all c. The operatoe,. is the equality
on relations:R1=,R2 = Vt. R1 t <« R> t. On the other hand,
shape’ will be used to specify the helper functions, where some of
the above properties may be temporarily invalidated.

The main functions of the algorithm are now implemented as
HTT code in Figure 3. The type ofierge quite directly states that
merge starts with the internal state representing some congeuenc
relation R, and changes the internal state to represent the congru-
ence closure of the extension Bfwith the argument equatiosy.

We emphasize that the code does not contain any other kinatof a
notations, such as for example framing conditions, and irecs
looks very close to what one would write in an ordinary impeea
language. limerge is passed a simple equatian= b, it places the
pair (a, b) onto the head of the pending list, and invokes the helper
functionhpropagate, defined in Figure 5, to merge the congruence

1. merge (eq: Eq) :
2. STsep unit (fun ¢. 3R. shape p R 1,
3. funyim.VR.shapep Ri —
4. shape p (closure (R U rel_of eq)) m) =
5. match eq with
6. simpa b=
7. do (g < !p;
8. x « insert q (a, b);
9. pi=uz;
10. hpropagate)
11. | compecer e =
12. do (¢} « Array.read r c1;
13. ¢l «— Array.read r c2;
14. v « Hashtab.lookup htab (¢}, c5);
15. match v with
16. None =
17. Hashtab.insert htab (c|, c}) (¢, c1, c2);
18. u1 « Array.read ulist c|;
19. x « insert uy (¢, c1,c2);
20. Array.write ulist ¢} ;
21. ug «— Array.read ulist c};
22. x «— insert uz (¢, c1,c2);
23. Array.write ulist ¢}, x
24. | Some (b, b1,b2) =
25. q < p;
26. x « insert q (¢, b);
27. pi=x;
28. hpropagate
29. end)
30. end
31. check (t1 t2 : exp) :
32. STsep bool (fun i. IR. shapep R 3,
33. fun y i m.VR.shapep Ri — shapep Rm A
34. y = true < R (t1,t2)) =
35. do (u1 < hnorm t1;
36. uz < hnorm ta;
37. return (u1 ==u2))
where

rel_of (eq : Eq) : exp X exp — Prop :=
match eq with
simpab=-funt. t.1 = consta A t.2 = const b
| compecer ez = funt. t.1 = const ¢ A
t.2 = app (const ¢1) (const c2)
end

Figure 3. The main functions of the fast congruence closure algo-
rithm, and their specifications.

classes ofs andb (lines 7-10). Ifmerge is passed a compound
equationc = ¢; ¢z, then the lookup table is queried for an equation
v of the formb = b1 b2, whereb, andc; have the same representa-
tives (lines 12—14). If such an equation exists, then torekfewith

eq, it suffices simply to join the congruence classes afidc. This

is accomplished by putting the pd#r, c) on the top of the pending
list, and again invokinghpropagate (lines 25-28). If an equation
v does not exist, then it suffices to insert the equatios ci1 co
directly into the lookup table for future queries (line 2ahd add
the equation to the use lists df andc}, (lines 18-23).

The type ofcheck declares that the return boolean valughows
whether the paift: , t2) is in the congruence relatidR represented
by the internal statecheck first “normalizes”¢; andtq; that is, it
expresses; andt. in terms of representatives, using the helper
function hnorm defined in Figure 4. Then the obtained normal
forms are compared for syntactic equality (lines 35-37).

Next we have to implement and verify the helper functions.
There will be four of themhpropagate and hnorm are directly
used by the main functions, ahgbin_class (Figure 6) ancjoin_use
(Figure 7), are called from withihpropagate. In the verification

38. hnorm (¢ : exp) =

39. fix (fun hnorm (t:exp).

40. do (match ¢t with

41. const a =

42. a’ < Array.read r a;

43. return (const a’)

44. | app t1t2 =

45. u1 < hnorm t1;

46. ug < hnorm tg;

47. match w1, ug with

48. const w1, const w2 =

49. v «— Hashtab.lookup htab (w1, w2);
50. match v with

51. None = return (app u1 u2)
52. | Some (b, ,.) =

53. b’ < Array.read 7 b;
54. return (const b’)
55. end

56. | -, - = return (app u1 u2)
57. end

58. end)) t

Figure 4. Helper function for normalizing expressions.

of the helper functions we adopt the following strategy. Wt fim-
plement the purely-functional variarggopagate, norm, join_class
andjoin_use, which is possible since the logic of Coq already in-
cludes pure lambda calculus with terminating recursiod, ahof
the helper functions are terminating loops. The pure vésiaiill
operate on the values of thata record, rather than on the pointers
themselves. Of course, the pure variants do not exhibit és&ed
run-time complexity and efficiency, so we only use them facip
fication and reasoning. In particular, as a first phase ofigation,
we prove that each helper method exhibits the same behavibieo
underlying stateful structures as that described by ite pariant.
The first phase takes care of all the reasoning about pojratiéas-
ing and heap disjointness. Then in the second phase, we slabw t
the pure variants combine to correctly compute congrueih@e c
sure, but our task will be simplified by not having to worry abo
pointers anymore.

In Figures 4-7, we present the helper functions, but omit the
definitions of the pure variants, as these — we hope — carydzsil
reconstructed from our discussion of the code. To redudteciwe
also omit the types and the various loop invariants, sinteisfirst
phase these are not particularly involved: they all balyisthte that
the helper function and its pure variant correspond to edlcéro
For example, the types dhorm andhpropagate are

normT = Ilt:exp. STsep exp (fun i. 3D.shape’ p D ¢,
fun y i m.VD.shape’ p D i —
shape’ p D m Ay = norm D t)

propagateT = STsep unit (fun i. 3D.shape’ p D,
funyim.VD.shape' p Di —
shape' p (propagate D) m)

which show that the result dfnorm is specified bynorm, and the
behavior ofhpropagate is specified bypropagate.

We start our description with the functidmorm for computing
normal forms of expressions, given in Figure 4. If the expi@s
t is a constant symbat, then the normal form of is the repre-
sentativer’, as read from the array of representatives (lines 42-43).
Otherwise{ is an expression of the form ¢,. To compute its nor-
mal form, we recursively compute the normal formsandu. of 1
andt., respectively (lines 45-46). In case andu, are themselves
constant symbolss; andw-, then the lookup table may contain
an equation of the fornh = w; w2 which would imply that the
normal form should bé’ (lines 53-54). Otherwise, we return the
applicationu, u2 as the result (lines 51 and 56).

59. hpropagate =
60. fix (fun loop (z:unit).
61 do (q < !p;
62. if g==null then return ()
63. else
64. eq < !q;
65. next — (¢ + 1);
66. p = next;
67. dealloc g;
68. dealloc (¢ + 1);
69. a’ < Array.read r (eq.1);
70. b «— Array.read r (eq.2);
71. if a’ ==’ then loop ()
72. else
73. hjoin_class a’ V';
74. hjoin_use a’ v’;
75. loop () ()

Figure 5. Helper function for propagating the pending equations.
76. hjoin_class (a’ b’ : symb) =
e fix (fun loop (z : unit).
78. do (ua < Array.read clist a’;
79. ub < Array.read clist b’;
80. if ua==null then return()
81. else
82. s «— lua;
83. next — (ua + 1);
84. ua + 1 := ub;
85. Array.write clist b’ ua;
86. Array.write clist o/ next;
87. Array.write r s b';
8s. loop () ()

Figure 6. Helper function for merging the class lists@fandbd’.

The functionhpropagate from Figure 5 is the main loop of
merge. Its role is to “empty” the list of pending simple equations,
by merging these equation into the other structures. Eaold-pe
ing equation is represented as a pair of symlgls= (a,b), de-
noting that the congruence classesaaiind b should be merged.
hpropagate reads off the equations from the pending list one-
by-one (lines 61-68), computes the representativeand b’ of
the first and second elements @f, respectively (lines 69-70). If
a’ and b’ are equal, then the equation is redundant. Otherwise,
hpropagate calls helper functionshjoin_class and hjoin_use to
merge the classes af andb’ and adjust the various pointers and
array fields accordingly (lines 71-75).

The functionhjoin_class takes two distinct symbols’ and b’
and modifies the state of the algorithm so that the congruelass
of a’ is appended onto the congruence clas$’ofThis involves
obtaining the pointers to the class list @f andb’ (lines 78-79),
then iterating to remove the head symbselsom the class list for
a’, pushs onto the class list o’ (lines 82-86), and then change
the representative of to b’ (line 87). A call tohjoin_class joins
the immediate data representing the congruence classeésaoti
b, but a bit more work has to be done. For example, if the lookup
table stores equations of the formhmb = c andd’ b = d, then
merginga’ andb’” must be followed by a merge ofandd, in order
to restore internal consistency. This is the jothfafin_use.

A naive implementation ohjoin_use may be simply to tra-
verse the lookup table, merging outstanding classes asatey
discovered. A more efficient implementation, shown in Fégidr
exploits the property that it suffices to revisit only the atjons
stored in theuselist of a’. If the use list ofa’ contains the equation
c1 = ¢ c3, represented as a triptgc = (c1, c2, c3), we query the
lookup table for the keycs, c5) (lines 97-99). If some equation
eqd = (d1,d2,ds) is discovered, theny, = d5, c5 = ds, by the
invariants of the algorithm, but there is no guarantee thaand

89. hjoin_use (a’ b’ : symb) =
90. fix (fun loop (z:unit).
91. do (ua < Array.read ulist a’;
92. if ua==null then return ()
93. else
94. eqc — lua;
95. next — !(ua + 1);
96. Array.write ulist a’ next;
97. ¢l «— Array.read r eqc.2
98. ¢l «— Array.read r eqc.3
99. v« Hashtab.lookup htab (c}, c%);
100. match v with
101. None =
102. Hashtab.insert htab (c}, c§) eqc;
103. ub «— Array.read ulist b';
104. ua + 1 := ub;
105. Array.write ulist b’ ua;
106. loop ()
107. | Some eqd =
108. dealloc ua;
109. dealloc (ua + 1);
110. p — Ip;
111. q < insert p’ (egc.1,eqd.1);
112. pi=q;
113. loop ()
114. end)) ())

Figure 7. Helper function for adjusting the use lists and the lookup
table, after the class lists of af andb’ have been merged.

d, are congruent. Thus, we schedule the geir d:) for merging,
by placing it onto the pending list (lines 110-112). If theegure-
turns no equations, then we simply insert the equatigninto the
lookup table (line 102). We also movgc onto theuselist of ¢', to
be considered in the future, when and'ifs equated to some other
symbol (lines 103-105). Either waygc has to be removed from
the use list ofx’ (lines 96 and 108-109).

The first phase of verification now closely follows the apptoa
outlined in Section 4, of applying the various structuratfeas and
reordering heap unions so as to indicate the subheap thairtrent
command modifies. For all the six methods in this sectiormakt
276 lines of proof to complete. One minor hurdle was definirg t
iterated operatof®) from theshape’ predicate. It is best to iterate
® over finitesets rather than lists, which was our first attempt. If
s is a set of symbols, one can show

mes—>®Pi:T-P:c*

i€s

® P
i€s\{z}
We used this lemma to expose the heaps storing the class and us
lists of concrete symbols. were a list, the corresponding lemma
requires a spurious condition thatcontainsz only once. In our
development, we were able to relBeeflect’s extensive library of
finite sets over types with decidable equality.

The second verification phase mainly involves showing that
the various properties listed in tldape predicate hold after the
execution of the pure variants of the helper functions. kangle,
one of the easier properties was that the prediestes_inv is
preserved between the calls to the helper functiortgiopagate
(lines 73-74), and after the call tgpropagate in merge (lines 10
and 28). It is established by the following lemmas.

1.a’ # b — class_inv D — class_inv (join_class D a’ b')
2.a' #b — class_inv D — class_inv (join_use D a’ V')
3. class_inv D — class_inv (propagate D)

Most of the other predicates from the definition sbfape were
much more difficult to establish, primarily because they arti-
ally invalidated at various point of the execution, but drert re-
established at the end. Thus, we needed to generalize tredie p

cates to properly capture how the code works at all stagestham
show that at the end ofierge, the more general versions imply the
original definitions.

This was, of course, the most difficult part of the whole depel
ment, as the dependencies between the congruence datarstsuc
are extremely subtle. The generalizations ended up beingire
volved, and took about 120 lines of Coq definitions, just tiest
For example, it turns out that in cases when the pendingslisot
empty, the appropriate generalization of il _lkp_inv property
which relates the use lists with the lookup table is:

use_lkp_inv0 D =Vacecy ca. a € reps D — (¢,c1,c2) €Euse D a —
3d dy da. lookup D (rep D ci,rep D c2) = Some (d, d1,d2) A
repDci =rep D dy Arep D ca =rep D da Asimilar D cd

Here,similar D ¢ d holds if the symbolg andd are in the congru-
ence relation generated by the equations rep D z for all z, as
well as the equations in the pending lihe property of similarity
justifies the algorithm to save time when processing the igt® |
and sometimes omit equations as redundant, on the grouatls th
their involved symbols will eventually be equated once teeding
list is emptied.

After an equationa’ = b is removed from the pending list
in hpropagate, and before a call tdjoin_class a’ b (line 73),
another propertyse_lkp_invl D is required. This one replaces
similar D ¢ d in the definition ofuse_lkp_inv0 with similarl D ¢ d
which makes it possible thatandd are related via an equation
a’ = b’ as well. Yet another propertyse_lkp_inv2 is required to
describe the relation between the use lists and the loolklg &dter
a call tohjoin_class, and during the call thjoin_use, etc. Similar
generalizations have to be madelkp_use_inv as well, and then
one has to prove that these properties indeed hold in theusri

stages of the program. In these proofs, we may need to rely on g4,

some of the other invariants. For example, we have a lemma
join_classP (D : data) (a’d’ : symb) :
a €repsD — bV €repsD —a’ #b —
rep_idemp D — use_inv D — lkp_inv D —
use_lkp_invl D a’ b’ — Ikp_use_invl D a’ b/ —
use_lkp_inv2 (join_class D a’ b’) a’ b’ A
Ikp_use_inv2 (join_class D a’ b’) a’ ¥/,

which states that the above properties hold after a cajdia_class,
assuming that appropriate properties held before the Thakn
similar lemmas have to be proved foin_use andpropagate in all
combinations with the properties from the definitiorsbfpe.
Altogether, these proofs took 645 lines of proof, reflecting
subtlety of the invariants of the fast congruence closugeréhm,
which is required for its practical efficiency. Of course fdre

we were able to carry out these proofs, we first had to develop a
number of facts about congruences and closures, define the da 7.

types, define the pure variants of the helper function andgateem
terminating, and define the generalized invariants theraselT his
background development took another 632 lines.

6. Using Coqg and Ssreflect

In our developments, we have kept the proofs fully explaiyays
naming hypotheses as they are introduced, destructed, difietb
We have found this explicitness to be quite helpful whenateféng
larger developments, such as our verification of fast campe
closure. When proofs are explicit in this sense, making gean
to the definitions and lemmas usually causes the proofs takbre
exactly at the point where the error introduced by the change
actually is, rather than somewhere at random later in thefpro

these have direct analogues in the natural deduction rofeSdq.
Despite the full explicitness and general absence of automaur
proofs are — perhaps somewhat surprisingly — still quitetsiraod
comparable in size with other approaches, such as Ynot dut,Ja
which use very aggressive automation (we discuss the oal&di
Ynot and Jahob in Section 7). Even in the case of congruence
closure, whose full proof was quite large, the phase of tlwefor
related to pointers and aliasing was proportional in sizeht®
verified program. We attribute these properties not onlyutoreew
techniques, but also to the very prudent design of Sheflect
language and libraries.

The tactics that we have used are the following.

1. heap_cancel takes ahypothesidgn the form of an equation be-
tween heaps, such as for example>v1] e h1 = [z —v2] ©
ha, and derives consequences from it, like= v, andh;
h2, which it prepends onto the goal of the sequent. In exam-
ple 2, we have used a simple iteration of the cancellatiomam
for this purpose, buieap_cancel is more general, as it does not
rely on the order of heaps in the union.

2. heap_congr is dual toheap_cancel. It takes agoal in the form
of a heap equation, and produces subgoals needed to discharg
it. In the above example, it would produce exactly the sulsgoa
v1 = ve andh; = ha.

3. defcheck takes an implication of the forrdef h1 — def ho,
whereh; andhz are unions of heaps, and tries to discharge it
by matching all the locations in the heapshifnto locations in
the heaps itk , irrespectively of the order in which they appear.
Thus, it effectively checks if the domain of the uniés is a
subdomain of;.

hauto combines the generation of unification variables (the
econstructor primitive of Coq), withheap_cancel anddefcheck.

5. heval pattern-matches against the goal in the form etafy
predicate, to determine the first command appearing in it,
so that it can choose whidbind_command or val_command
lemma from Section 4 to apply.

All of these tactics are conceptually simple, and only mpdifals

of sequents, but not the hypotheses; thus they do not breakxth
plicit nature of our proofs. However, because Coq'’s taetiglage
is interpreted and untyped, we have still found them to beesom
what slow in practice, and quite difficult to debug and mamtin
future work, we plan to remove even these tactics, and replam
with equivalent lemmas and rewrite rules, which could gagdie
built using ideas based on reflection.

Related work

HTT and Ynot Just like the current paper, the original implemen-
tations of HTT and Ynot [20, 21] used Hoare triples with binar
postconditions. However, those papers did not recognigetim-
nection between binary postconditions and structurabrualehich

we proposed here. In particular, they used a different difimbf

the verify predicate from the one we used in Section 3, and which
in our current notation can be presented roughly as follows.

verify i sq= 3hi1.i =141 e h Adefi Apresii A
Yymmi.m=mi e h— defm —
postsyiimi —qyitm
This definition existentially abstracts over the invaripatth of the
heap, and thus directly “bakes in” the frame rule into the @etins

Furthermore, we have used only a few simple custom-made of Hoare triples. In this sense, it is closely related to teeent

tactics that we describe below, and have otherwise reliedniyn
the standard primitives of Coq arfdreflect for introduction and
destruction of hypotheses, lemma application and rewgitiil of

semantic models of separation logic by Birkedal et al. [Gwver,
abstractingh on the outside causes this definition to not support
the rules of conjunction (binary or quantified), without &idshal

requirements such as, for example, that s determines a unique
subheap of (i.e., thatpre s is a precisepredicate, in separation
logic terminology). Our definition from Section 3 does nopiose
such additional requirements.

Furthermore, the implementation in [21] relied on a naivi-de
nition of heaps from Section 2, which caused an explosiomaofp
obligations. This problem was already observed by Kristvaasi
et al. [15], who attempted to use the system to verify the “fly-
weight” OO-design pattern, but could not finish the proof.

This motivated Chlipala et al. [11] to revert to the (*) fragnt,
unary postconditions and no explicit heap variables, as a=l
to develop a number of tactics for automating the reasoning i
separation logic. This is an appealing idea, as binary pasitions

postconditions does not require such annotations, as sgiétkby
our examples in Section 5. Binary postconditions also alfloey
user to derive auxiliary structural rules, thus implemegitustom
verification strategies, while it is not clear that this candwmne in
the alternative approach.

Moreover, binary postconditions do not lead to proof exjllos
as the redundancy that they exhibit can be remavedoofsmerely
by one application oéll_imp, or one of the related lemmas. And
indeed, on the examples that we have implemented in comntbn wi
[11], our developments are of comparable size, even if wealo n
use significant automation by tactics. For example, in thease
current at the time of our writing, the verifications of stacjueues
and hash tables in the system of [11] take respectively 88, 19

come with a redundancy exhibited in our Example 4, where the and 397 lines of code, specifications, lemmas, tactics aodfgr
type ofremove had to repeat the precondition as an antecedent of whereas in our system, these numbers are 66, 116 and 160.

an implication in the postcondition. With unary postcoiudit, one
could write this type simply as

remove p : STsep loc (Iseq p [, fun q. Iseq g (tail 1)).

Separation logic in type theory Appel [1] defines heaps as finite
lists of location-value pairs, just like we do, but does reftact the
disjointness predicate. As a consequence, he observes.thhe

The latter, however, opens the question of where and how the Nonlinear conjunction of separation logic is not well sdite the
variablel should be bound. One cannot use the ordinary dependent@SSumptions of tactical provers..", and restricts to theggment.

function type and write
I1i:list T. STsep loc (Iseq p I, fun q.Iseq ¢ (tail 1)),

because this allowsto be used in commands of the above type,
and! is supposed to only belagical variable; that is, it can appear
in specifications, but not in the commands. Chlipala et alppse
that logical variables be coerced immofs and write roughly

ITl:inhabited(list T).
STsep loc (let pack I = z in Iseq p (,
fun q. let pack I = x in Iseq ¢ (tail 1))

whereinhabited A is theproposition3z:A. T, andpack : A —
inhabited A is the single constructor of proofs of this proposition.
Coqg's type theory makes it impossible to “unpadkivithin an
executable program, and Coq’s extraction mechanismefapbve
would, appropriately, not produce a closure which abssracer!.
This coercion, however, comes with significant logical com-
plexity. Even if] cannot be unpacked in a commadt does not
prevent! from being used ire, albeit packed. Thus, it is not clear
that the technique can support structural rules where oedsi®
testifl ¢ FV(e), such as the rule for existentials. Indeed, the sys-
tem in [11] does not support this rule (nor any other strudturle
beyond frame and consequence), which is a restrictionehaslto
loss of abstraction. The existential rule is frequentlydugepush
a logical variable into the pre/post-conditions, so thagit be re-
moved later by applying the rule of consequence. Withouethe
istential rule, it seems that logical variables must renfeinnd in
the type, even if they are not needed anymore. Working wigh th
coercions further requires adding an axiom

pack_injective : VT:Set.Va y:T. pack © = pack y — = =y,

which compares proofs for equality, and is thus unsound é th
presence of important features such as proof irrelevanciassical
logic.

It may be possible that the recent extension of the calculus o
constructions with a variant of intersection types [2], nadfer a
way out of these logical problems, and allow structuralgsutebe
encoded as typing rules, rather than as logical formulaseien
then, questions remain as to the practicality of such andéngo
For example, Chlipala et al. encode the frame rule as a tympileg
as a result, programs written in their system often have texse
plicitly annotated with framing predicates, as well as viitbtanti-
ations for various ghost variables. In our opinion, thisxdigantly
obscures the structure of the programs. Our approach witrpi

Marty et al. [17] define heaps in a similar way too, but they use
a union operator which is not commutative, and thus alsa trea
only the (*) fragment. McCreight [18] defines heaps follogitne
memory model of Leroy et al. [16], which allows him to define a
union operator that is commutative and associative, budjesator
does not propagate the disjointness information, and hiérece is

no equivalent of ouref predicate, which is crucial for efficient
work. Thus, McCreight too admits only the (*) fragment. Al o
these systems target deeply embedded programs and lasguage
unlike HTT which uses shallow embedding.

Verification of linked data structures Jahob [27] is another
higher-order system in which verification of interestingrper-
based data structures has been performed. Jahob compitesith
fication conditions for Java programs, and then feeds thdittions

to automatic provers for discharging. The programmer haop
tion of including proof hints with the code, which can be used
guide the automation. In this respect, the proof hints irobadre
similar to our explicit proofs. In the case of hash tablebpbetakes
343 lines of proof hints and invariants, which is comparablsize

to our proofs. One important difference between HTT and Bako
that Java, unlike Coq, has not been designed with proofs mami
and thus lacks the ability to package together programgaepties
and proofs, and parametrize libraries with respect to sackages.
We have used this in Section 5 to parametrize the implementat
of congruence closure with respect to the signatures fayarand
hash tables. This makes it possible for us to freely plug i an
verified implementation of these signatures, without chamghe
code or theproofsof congruence closure. We have not found a dis-
cussion or a theorem in [27] of whether similar substituigbis
possible in Jahob as well.

Higher-order separation logic Krishnaswami et al. [15] has re-
cently developed a higher-order separation logic for paogy writ-
ten in the core fragment of an ML-like language, and applted i
to a verification of several object-oriented patterns. Gfferénce
from HTT is that the language in [15] is simply typed, and thus
does not support first-class structures and functors thatedor
free with the dependent types of Coq, and are important for pr
gramming and proving in-the-large. Birkedal et al. [7] ddes a
higher-order separation logic and its interaction withhgigorder
frame rules and parametricity. In the current paper, we mete
considered these issues, but believe that it is an impoftamte
work to build models for HTT that reconcile these featurethwi
dependent types.

8. Conclusions

The most common approach to program verification in separati

or other logics is to investigate how to automate the digihgr
of the proof obligations in order to reduce the burden on thedn
verifier. Automation works very well when the propertiesrigirest
are relatively simple, but in the case of full functionalifieation, it
is frequently insufficient. In this paper, we instead inigese how
to exploit the structuring primitives of type theory, to peet the
proof obligations from being generated in the first place.

Our first example was a new definition of heaps, which let

us work efficiently with ordinary logical connectives, watlt in-
ducing a blowup in the proof obligations about heap disjuss.
The definition involved advanced type theoretic featurashsas
dependently-typed programming and reflection, but its rpaint
was to ensure that heaps satisfy the algebraic propertiagaf-

tial commutative monoid (PCM). PCMs have been considered be

fore in the semantics of separation logic [9], but here wensthat

if heaps are PCMs, then it becomes quite practical to untodd t

definitions of separating connectives suchxaand work directly
with heap variables and disjoint unions. The latter was s&ag
for supporting non-separating connectives such as cotifumaém-
plication and universal quantification.

[5] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. Gike
T. Wies, and H. Yang. Shape analysis for composite datatstes
In CAV’'07, pages 178-192.

[6] J. Berdine, C. Calcagno, and P. W. O’'Hearn. SmallfootdMar au-
tomatic assertion checking with separation logic.Atmmal Methods
for Components and Obje¢isages 115-137, 2006.

[7] L. Birkedal and H. Yang. Relational parametricity ancpamtion
logic. Logical Methods in Computer Sciene&2:6):1-27, 2008.

[8] C. Calcagno, D. Distefano, P. O’'Hearn, and H. Yang. Cositimmal
shape analysis by means of bi-abductionrP®PL’'09, pages 289-300.

[9] C. Calcagno, P. W. O’'Hearn, and H. Yang. Local action abstract
separation logic. 1hICS’07, pages 366—368.

[10] B.-Y. E. Chang and X. Rival. Relational inductive shapmlysis. In
POPL'08 pages 247-260.

[11] A. J. Chlipala, J. G. Malecha, G. Morrisett, A. Shinnand R. Wis-
nesky. Effective interactive proofs for higher-order imgi&ve pro-
grams. INICFP’09, pages 79-90.

[12] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying lowd¢programs
with hardware interrupts and preemptive threadsPWLDI'08, pages
170-182.

[13] D. Galmiche and D. Méry. Semantic labelled tableaux gmoposi-
tional BI. Journal of Logic and Computatiori3(5):707-753, 2003.

Our second example was embedding and reformulating a sep-[14] G. Gonthier and A. Mahboubi. A small scale reflectionemsion for

aration logic for partial correctness into type theory witle use
of binary postconditions. This made it possible to derivetom
structural rules that helped in proofs. Moreover, stathegrules in
this way essentially depends on our definition of heaps, Useca
requires a logic that efficiently supports implication amversal
quantification.

We have used our approach successfully to verify a number of

smaller programs such as modules for arrays, linked lisisks,

queues and hash tables. In all the cases, we were able tocprodu

correctness proofs of size proportional to the size of tlog@ams.

We have shown that the approach scales to larger examples as

well, by verifying one of the fastest known congruence ctesu
algorithms, used in the Barcelogic SAT solver.

9. Acknowledgment
We thank Georges Gonthier for introducing usSwreflect, and

Nick Benton and Martin Hofmann for discussions regarding de

pendent types.

References

[1] A. W. Appel. Tactics for separation logic. Available at
http://www.cs.princeton.edu/"appel/papers/septafs3006.

[2] B. Barras and B. Bernardo. The implicit calculus of constions as a
programming language with dependent typesFd8SaCS’'08pages
365-379.

[3] C. Barrett, M. Deters, A. Oliveras, and A. Stump. Desigd aesults of
the 4th annual satisfiability modulo theories competitisMT-COMP
2008). To appear.

[4] J. M. L. Bean. Ribbon Proofs — A Proof System for the Logic of

Bunched ImplicationsPhD thesis, Queen Mary University of London,
2006.

the Coq system. Technical Report 6455, INRIA, 2007.

[15] N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendseand
A. Buisse. Design patterns in separation logic. TikDI'09, pages
105-116.

[16] X. Leroy and S. Blazy. Formal verification of a C-like merg model
and its uses for verifying program transformatiodsAutom. Reasop.
41(1):1-31, 2008.

[17] N. Marty and R. Affeldt. A certified verifier for a fragmenf separa-
tion logic. Computer Software25(3):135-147, 2008.

[18] A. McCreight. Practical tactics for separation logim TPHOL'09,

pages 343-358.

[19] A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphi and sepa-
ration in Hoare Type Theory. IflCFP’06, pages 62—-73.

[20] A. Nanevski, G. Morrisett, and L. Birkedal. Hoare typeetry,
polymorphism and separationlournal of Functional Programming
18(5&6):865-911, 2008.

[21] A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, anirkedal.
Ynot: Dependent types for imperative programs.|@#P’08, pages
229-240.

[22] H. H. Nguyen and W.-N. Chin. Enhancing program verifimatwith
lemmas. INCAV'08, pages 355-369.

[23] R. Nieuwenhuis and A. Oliveras. Fast congruence closind exten-
sions. Information and Computatiqr205(4):557-580, 2007.

[24] P. O’Hearn. On bunched typingournal of Functional Programming
13(4):747-796, 2003.

[25] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoningulpro-
grams that alter data structures.@SL'01, pages 1-19.

[26] J. C. Reynolds. Separation logic: A logic for shared ablg¢ data
structures. IrLICS’02 pages 55-74.

[27] K. Zee, V. Kuncak, and M. Rinard. An integrated proofdaage for
imperative programs. IRLDI'09, pages 338-351.

