
Verifying Graph Algorithms in Separation Logic: A Case for
an Algebraic Approach (Appendices)

MARCOS GRANDURY, IMDEA Software Institute, Spain and Universidad Politécnica de Madrid, Spain
ALEKSANDAR NANEVSKI, IMDEA Software Institute, Spain
ALEXANDER GRYZLOV, IMDEA Software Institute, Spain

A Proof outline for the length-calculating program

{𝑙𝑖𝑠𝑡 𝛼0 (𝑖, null)}
𝑛 :=0;
{𝑙𝑖𝑠𝑡 𝛼0 (𝑖, null) ∧ 𝑛 = 0}
𝑗 :=𝑖;
{𝑖 = 𝑗 ∧ 𝑙𝑖𝑠𝑡 𝛼0 (𝑖, null) ∧ 𝑛 = 0}
{𝑙𝑖𝑠𝑡 [] (𝑖, 𝑗) ∗ 𝑙𝑖𝑠𝑡 𝛼0 (𝑗, null) ∧ 𝑛 = #[] ∧ 𝛼0 = [] • 𝛼0}
{∃𝛼 𝛽 . 𝑙𝑖𝑠𝑡 𝛼 (𝑖, 𝑗) ∗ 𝑙𝑖𝑠𝑡 𝛽 (𝑗, null) ∧ 𝑛 = #𝛼 ∧ 𝛼0 = 𝛼 • 𝛽}
while 𝑗 ≠ null do

{∃𝛼 𝛽 . list 𝛼 (𝑖, 𝑗) ∗ list 𝛽 (𝑗, null) ∧ 𝑛 = #𝛼 ∧ 𝛼0 = 𝛼 • 𝛽 ∧ 𝑗 ≠ null}
{∃𝛼 𝑏 𝛽 ′ . list 𝛼 (𝑖, 𝑗) ∗ list (𝑏 • 𝛽 ′) (𝑗, null) ∧ 𝑛 = #𝛼 ∧ 𝛼0 = 𝛼 • (𝑏 • 𝛽 ′)}
{∃𝛼 𝑏 𝛽 ′ 𝑘 . list 𝛼 (𝑖, 𝑗) ∗ 𝑗 Z⇒ 𝑏,𝑘 ∗ list 𝛽 ′ (𝑘, null) ∧ 𝑛 = #𝛼 ∧ 𝛼0 = 𝛼 • (𝑏 • 𝛽 ′)}
𝑗 := 𝑗 .next;
{∃𝛼 𝑏 𝛽 ′ 𝑗 ′ . list 𝛼 (𝑖, 𝑗 ′) ∗ 𝑗 ′ Z⇒ 𝑏, 𝑗 ∗ list 𝛽 ′ (𝑗, null) ∧ 𝑛 = #𝛼 ∧ 𝛼0 = 𝛼 • (𝑏 • 𝛽 ′)}
{∃𝛼 𝑏 𝛽 ′ . list (𝛼 • 𝑏) (𝑖, 𝑗) ∗ list 𝛽 ′ (𝑗, null) ∧ 𝑛 = #𝛼 ∧ 𝛼0 = (𝛼 • 𝑏) • 𝛽 ′}
𝑛 :=𝑛 + 1;
{∃𝛼 𝑏 𝛽 ′ . list (𝛼 • 𝑏) (𝑖, 𝑗) ∗ list 𝛽 ′ (𝑗, null) ∧ 𝑛 = #𝛼 + 1 ∧ 𝛼0 = (𝛼 • 𝑏) • 𝛽 ′}
{∃𝛼 𝑏 𝛽 ′ . list (𝛼 • 𝑏) (𝑖, 𝑗) ∗ list 𝛽 ′ (𝑗, null) ∧ 𝑛 = #(𝛼 • 𝑏) ∧ 𝛼0 = (𝛼 • 𝑏) • 𝛽 ′}
{∃𝛼 ′ 𝛽 ′ . list 𝛼 ′ (𝑖, 𝑗) ∗ list 𝛽 ′ (𝑗, null) ∧ 𝑛 = #𝛼 ′ ∧ 𝛼0 = 𝛼 ′ • 𝛽 ′}

end while
{∃𝛼 ′ 𝛽 ′ . 𝑙𝑖𝑠𝑡 𝛼 ′ (𝑖, 𝑗) ∗ 𝑙𝑖𝑠𝑡 𝛽 ′ (𝑗, null) ∧ 𝑛 = #𝛼 ′ ∧ 𝛼0 = 𝛼 ′ • 𝛽 ′ ∧ 𝑗 = null}
{∃𝛼 ′ 𝛽 ′ . 𝑙𝑖𝑠𝑡 𝛼 ′ (𝑖, 𝑗) ∗ 𝑙𝑖𝑠𝑡 𝛽 ′ (𝑗, null) ∧ 𝑛 = #𝛼 ′ ∧ 𝛼0 = 𝛼 ′ • 𝛽 ′ ∧ 𝑗 = null ∧ 𝛽 ′ = []}
{∃𝛼 ′ . 𝑙𝑖𝑠𝑡 𝛼 ′ (𝑖, null) ∗ 𝑙𝑖𝑠𝑡 [] (null, null) ∧ 𝑛 = #𝛼 ′ ∧ 𝛼0 = 𝛼 ′}
{𝑙𝑖𝑠𝑡 𝛼0 (𝑖, null) ∗ 𝑒𝑚𝑝 ∧ 𝑛 = #𝛼0}
{𝑙𝑖𝑠𝑡 𝛼0 (𝑖, null) ∧ 𝑛 = #𝛼0}

Authors’ Contact Information: Marcos Grandury, IMDEA Software Institute, Madrid, Spain and Universidad Politécnica
de Madrid, Madrid, Spain, marcos.grandury@imdea.org; Aleksandar Nanevski, IMDEA Software Institute, Madrid, Spain,
aleks.nanevski@imdea.org; Alexander Gryzlov, IMDEA Software Institute, Madrid, Spain, aliaksandr.hryzlou@imdea.org.

This work is licensed under a Creative Commons Attribution 4.0 International License.

241:2 Marcos Grandury, Aleksandar Nanevski, and Alexander Gryzlov

B Proof outline for computing if 𝑡 is marked (or null)

{∃𝛾 . graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝}
{graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝}
if 𝑡 = null then

{graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ 𝑡 = 𝑛𝑢𝑙𝑙}
tm := true
{graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ 𝑡 = 𝑛𝑢𝑙𝑙 ∧ tm = true}
{graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ tm = (𝑡 = 𝑛𝑢𝑙𝑙)}

else
{graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ 𝑡 ≠ 𝑛𝑢𝑙𝑙}
{∃𝑚. 𝑡 Z⇒𝑚,−,− ∗ graph 𝛾\𝑡 ∧ inv 𝛾0 𝛾 𝑡 𝑝}
tmp :=𝑡 .𝑚;
{∃𝑚. 𝑡 Z⇒𝑚,−,− ∗ graph 𝛾\𝑡 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ tmp =𝑚}
tm := (tmp ≠ O)
{∃𝑚. 𝑡 Z⇒𝑚,−,− ∗ graph 𝛾\𝑡 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ tmp =𝑚 ∧ tm = (tmp ≠ O)}
{∃𝑚. 𝑡 Z⇒𝑚,−,− ∗ graph 𝛾\𝑡 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ tm = (𝑚 ≠ O)}
{graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ tm = (𝑡 .𝑚 ≠ O)}�
graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ tm = (𝑡 ∈ nodes 𝛾/L,R,X)

	
end if�
graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ tm = (𝑡 = null ∨ 𝑡 ∈ nodes 𝛾/L,R,X)

	
{graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ tm = (𝑡 ∈ marked0 𝛾)}

{∃𝛾 . graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ tm = (𝑡 ∈ marked0 𝛾)}

C Proof for SWING
The pre- and postcondition for SWING derive from lines 18 and 20 of Fig. 10.

{∃𝛾 . graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ 𝑡 ∈ marked0 𝛾 ∧ 𝛾val 𝑝 = L}
SWING

{∃𝛾 ′ . graph 𝛾 ′ ∧ inv 𝛾0 𝛾 ′ 𝑡 𝑝}
(25)

The precondition says that the heap implements a well-formed graph 𝛾 , that satisfies the invariant.
Additionally, 𝑡 is marked or null and 𝑝 is marked L. The postcondition asserts that the heap
represents a new graph 𝛾 ′ that satisfies the invariant for the updated values of 𝑡 and 𝑝 .

1. {∃𝛾 . graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ 𝑡 ∈ marked0 𝛾 ∧ 𝛾val 𝑝 = L}
2. {graph 𝛾 ∧ 𝑡 = 𝑡0 ∧ 𝑝 = 𝑝0

∧inv 𝛾0 𝛾 𝑡0 𝑝0 ∧ 𝑡0 ∈ marked0 𝛾 ∧ 𝛾 𝑝0 = (L, [𝑝𝑙 , 𝑝𝑟])}
3. {graph (𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟]) • 𝛾\𝑝0) ∧ 𝑡 = 𝑡0 ∧ 𝑝 = 𝑝0}
4. {(𝑝0 Z⇒ L, 𝑝𝑙 , 𝑝𝑟 ∧ 𝑡 = 𝑡0 ∧ 𝑝 = 𝑝0) ∗ graph 𝛾\𝑝0}
5. {𝑝0 Z⇒ L, 𝑝𝑙 , 𝑝𝑟 ∧ 𝑡 = 𝑡0 ∧ 𝑝 = 𝑝0}

tmp1 :=𝑝 .𝑟 ; 𝑡𝑚𝑝2 :=𝑝 .𝑙 ; 𝑝 .𝑟 := tmp2; 𝑝 .𝑙 :=𝑡 ; 𝑝 .𝑚 :=R; 𝑡 := tmp1;

Verifying Graph Algorithms in Separation Logic: A Case for an Algebraic Approach (Appendices) 241:3

6. {𝑝0 Z⇒ R, 𝑡0, 𝑝𝑙 ∧ 𝑡 = 𝑝𝑟 ∧ 𝑝 = 𝑝0}
7. {(𝑝0 Z⇒ R, 𝑡0, 𝑝𝑙 ∧ 𝑡 = 𝑝𝑟 ∧ 𝑝 = 𝑝0) ∗ graph 𝛾\𝑝0}
8. {graph (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) • 𝛾\𝑝0) ∧ 𝑡 = 𝑝𝑟 ∧ 𝑝 = 𝑝0}
9. {graph (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) • 𝛾\𝑝0) ∧ 𝑡 = 𝑝𝑟 ∧ 𝑝 = 𝑝0

∧inv 𝛾0 𝛾 𝑡0 𝑝0 ∧ 𝑡0 ∈ marked0 𝛾 ∧ 𝛾 𝑝0 = (L, [𝑝𝑙 , 𝑝𝑟])}
10. {∃𝛾 ′ . graph 𝛾 ′ ∧ inv 𝛾0 𝛾 ′ 𝑡 𝑝}

Line 9 implies line 10. As for the case of POP, this step involves reformulating it as an implica-
tion, where initial and final values of the graph, stack and nodes 𝑡 and 𝑝 are made explicit.

𝛾 = 𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟]) • 𝛾\𝑝0 ∧ (26)
inv′ 𝛾0 𝛾 𝛼 𝑡0 𝑝0 ∧ (27)
𝑡0 ∈ marked0 𝛾 =⇒ (28)

∃𝛾 ′ .𝛾 ′ = 𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) • 𝛾\𝑝0 ∧ (29)
inv′ 𝛾0 𝛾 ′ 𝛼 𝑝𝑟 𝑝0 (30)

SWING differs from the other two operations in that the stack remains unaltered. Furthermore,
because we know 𝑝0 ≠ null, uniq (null • 𝛼) and 𝑝0 = last (null • 𝛼) it follows that 𝛼 = 𝛼 ′ • 𝑝0 for
some sequence 𝛼 ′. The invariant (𝑎) 𝑝𝑟 ∈ nodes0 𝛾 ′ follows from (26) and (27) as we know that
𝑝𝑟 ∈ sinks 𝛾 , closed 𝛾 and nodes0 𝛾 = nodes0 𝛾 ′.

(𝑏) sinks 𝛾 ′ = Def. of 𝛾 ′

= sinks (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) • 𝛾\𝑝0) Lem. 3.1 (6) (distrib.)
= sinks (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙])) ∪ sinks (𝛾\𝑝0) Def. of sinks (11)
= {𝑡0, 𝑝𝑙 } ∪ sinks (𝛾\𝑝0) Set inclusion
⊆ {𝑡0, 𝑝𝑙 , 𝑝𝑟 } ∪ sinks (𝛾\𝑝0) Assump. (27) & (28)
⊆ nodes0 𝛾 Def. of nodes
= nodes0 𝛾 ′

(𝑐) 𝑛𝑜𝑑𝑒𝑠 𝛾 ′/L,R = Def. of 𝛾 ′

= nodes (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) • 𝛾\𝑝0)/L,R Lem. 3.1 (1) (distrib.)
= nodes (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]))/L,R ·∪ nodes (𝛾\𝑝0)/L,R Def. of filter (10)
= nodes (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙])) ·∪ nodes (𝛾\𝑝0)/L,R Def. of nodes
= {𝑝0} ·∪ nodes (𝛾\𝑝0)/L,R Def. of nodes
= nodes (𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟])) ·∪ nodes (𝛾\𝑝0)/L,R Def. of filter (10)
= nodes (𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟]))/L,R ·∪ nodes (𝛾\𝑝0)/L,R Lem. 3.1 (1) (distrib.)
= nodes (𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟]) • 𝛾\𝑝0)/L,R Assump. (27)
= 𝛼

(𝑑) inset 𝛼 𝛾 ′ = Def. of 𝛾 ′

= inset 𝛼 (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) • 𝛾\𝑝0) Lem. 3.1 (5) (distrib.)
= inset 𝛼 (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙])) • inset 𝛼 𝛾\𝑝0 Def. of inset (14)

241:4 Marcos Grandury, Aleksandar Nanevski, and Alexander Gryzlov

= 𝑝0 ↦→ [𝑡0, prev (null • 𝛼) 𝑝0] • inset 𝛼 𝛾\𝑝0 Assump. (27)
= 𝑝0 ↦→ [𝑡0, 𝑝𝑙] • |𝛾\𝑝0 | Def. of erasure (8)
= |𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) | • |𝛾\𝑝0 | Lem. 3.1 (4) (distrib.)
= |𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) • 𝛾\𝑝0 | Def. of 𝛾 ′

= |𝛾 ′ |

(𝑒) restore 𝛼 𝑝𝑟 𝛾
′ = Def. of 𝛾 ′

= restore 𝛼 𝑝𝑟 (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) • 𝛾\𝑝0) Lem. 3.1 (5) (distrib.)
= restore 𝛼 𝑝𝑟 (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙])) • restore 𝛼 𝑝𝑟 𝛾\𝑝0 Def. of restore (15)
= 𝑝0 ↦→ [𝑡0, next (𝛼 • 𝑝𝑟) 𝑝0] • restore 𝛼 𝑝𝑟 𝛾\𝑝0 Assump. (27)
= 𝑝0 ↦→ [𝑡0, 𝑝𝑟] • restore 𝛼 𝑝𝑟 𝛾\𝑝0 Lem. 17
= 𝑝0 ↦→ [𝑡0, 𝑝𝑟] • restore 𝛼 𝑡0 𝛾\𝑝0 Def. of restore (15)
= restore 𝛼 𝑡0 (𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟])) • restore 𝛼 𝑡0 𝛾\𝑝0 Lem. 3.1 (5) (distrib.)
= restore 𝛼 𝑡0 (𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟]) • 𝛾\𝑝0) Def. of 𝛾
= restore 𝛼 𝑡0 𝛾 Assump. (27)
= |𝛾0 |

(𝑓) nodes 𝛾 ′/O = Def. of 𝛾 ′

= nodes (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]) • 𝛾\𝑝0)/O Lem. 3.1 (3) (distrib.)
= nodes ((𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]))/O • (𝛾\𝑝0)/O) Lem. 3.1 (1) (distrib.)
= nodes (𝑝0 ↦→ (R, [𝑡0, 𝑝𝑙]))/O ·∪ nodes (𝛾\𝑝0)/O Def. of filter (10)
= nodes 𝑒 ·∪ nodes (𝛾\𝑝0)/O Def. of filter (10)
= nodes (𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟]))/O ·∪ nodes (𝛾\𝑝0)/O Lem. 3.1 (1) (distrib.)
= nodes ((𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟]))/O • (𝛾\𝑝0)/O) Lem. 3.1 (3) (distrib.)
= nodes (𝑝0 ↦→ (L, [𝑝𝑙 , 𝑝𝑟]) • 𝛾\𝑝0)/O Def. of 𝛾
= nodes 𝛾/O Assump. (27)
⊆ Ð

𝛼 ′ ·𝑝0
(reach 𝛾/O ◦ 𝛾𝑟) ∪ reach 𝛾/O 𝑡0 𝑡0 ∉ nodes 𝛾/O

=
Ð

𝛼 ′ ·𝑝0
(reach 𝛾/O ◦ 𝛾𝑟) Comm.&Assoc. of ∪

=
Ð
𝛼 ′

(reach 𝛾/O ◦ 𝛾𝑟) ∪ reach 𝛾/O 𝑝𝑟 𝛾/O = 𝛾 ′/O
=
Ð
𝛼 ′

(reach 𝛾 ′/O ◦ 𝛾𝑟) ∪ reach 𝛾 ′/O 𝑝𝑟 𝛾𝑟 = 𝛾 ′𝑟 on 𝛼 ′

=
Ð
𝛼 ′

(reach 𝛾 ′/O ◦ 𝛾 ′𝑟) ∪ reach 𝛾 ′/O 𝑝𝑟 𝛾 ′𝑟 𝑝0 ∉ nodes 𝛾 ′/O
=

Ð
𝛼 ′ ·𝑝0

(reach 𝛾 ′/O ◦ 𝛾 ′𝑟) ∪ reach 𝛾 ′/O 𝑝𝑟

Verifying Graph Algorithms in Separation Logic: A Case for an Algebraic Approach (Appendices) 241:5

D Proof for PUSH
The pre- and postcondition for PUSH derive from lines 23 and 25 of Fig. 10.

{∃𝛾 . graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ 𝑡 ∉ marked0 𝛾}
PUSH

{∃𝛾 ′ . graph 𝛾 ′ ∧ inv 𝛾0 𝛾 ′ 𝑡 𝑝}
(31)

The precondition says that the heap implements a well-formed graph 𝛾 , that satisfies the invariant
and 𝑡 is an unmarked node different from null. The postcondition asserts that the heap represents
a new graph 𝛾 ′ that satisfies the invariant for the updated values of 𝑡 and 𝑝 .

1. {∃𝛾 . graph 𝛾 ∧ inv 𝛾0 𝛾 𝑡 𝑝 ∧ 𝑡 ∉ marked0 𝛾}
2. {graph 𝛾 ∧ 𝑡 = 𝑡0 ∧ 𝑝 = 𝑝0

∧inv 𝛾0 𝛾 𝑡0 𝑝0 ∧ 𝛾 𝑡0 = (O, [𝑡𝑙 , 𝑡𝑟])}
3. {graph (𝑡0 ↦→ (O, [𝑡𝑙 , 𝑡𝑟]) • 𝛾\𝑡0) ∧ 𝑡 = 𝑡0 ∧ 𝑝 = 𝑝0}
4. {(𝑡0 Z⇒ O, 𝑡𝑙 , 𝑡𝑟 ∧ 𝑡 = 𝑡0 ∧ 𝑝 = 𝑝0) ∗ graph 𝛾\𝑡0}
5. {𝑡0 Z⇒ O, 𝑡𝑙 , 𝑡𝑟 ∧ 𝑡 = 𝑡0 ∧ 𝑝 = 𝑝0}

tmp :=𝑡 .𝑙 ; 𝑡 .𝑙 :=𝑝 ; 𝑡 .𝑚 :=L; 𝑝 :=𝑡 ; 𝑡 := tmp;
6. {𝑡0 Z⇒ L, 𝑝0, 𝑡𝑟 ∧ 𝑡 = 𝑡𝑙 ∧ 𝑝 = 𝑡0}
7. {(𝑡0 Z⇒ L, 𝑝0, 𝑡𝑟 ∧ 𝑡 = 𝑡𝑙 ∧ 𝑝 = 𝑡0) ∗ graph 𝛾\𝑡0}
8. {graph (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • 𝛾\𝑡0) ∧ 𝑡 = 𝑡𝑙 ∧ 𝑝 = 𝑡0}
9. {graph (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • 𝛾\𝑡0) ∧ 𝑡 = 𝑡𝑙 ∧ 𝑝 = 𝑡0

∧inv 𝛾0 𝛾 𝑡0 𝑝0 ∧ 𝛾 𝑡0 = (O, [𝑡𝑙 , 𝑡𝑟])}
10. {∃𝛾 ′ . graph 𝛾 ′ ∧ inv 𝛾0 𝛾 ′ 𝑡 𝑝}

Line 9 implies line 10. Proving this last step corresponds to proving the following implication.
𝛾 = 𝑡0 ↦→ (O, [𝑡𝑙 , 𝑡𝑟]) • 𝛾\𝑡0 ∧ (32)
inv′ 𝛾0 𝛾 𝛼 𝑡0 𝑝0 =⇒ (33)

∃𝛾 ′ .𝛾 ′ = 𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • 𝛾\𝑡0 ∧ (34)
inv′ 𝛾0 𝛾 ′ (𝛼 • 𝑡0) 𝑡𝑙 𝑡0 (35)

Proving invariant (𝑎) requires showing that (32) and (33) imply uniq (null•𝛼 •𝑡0), 𝑡0 = last (null•
𝛼 • 𝑡0) and 𝑡𝑙 ∈ nodes0 𝛾 ′. From 𝛾𝑚 𝑡0 = O and nodes 𝛾/L,R = 𝛼 it follows uniq (null • 𝛼 • 𝑡0). By 32
it follows 𝑡𝑙 ∈ sinks 𝛾 . Then closed 𝛾 implies that 𝑡𝑙 ∈ nodes0 𝛾 . And finally nodes0 𝛾 = nodes0 𝛾 ′ so
𝑡𝑙 ∈ nodes0 𝛾 ′.

(𝑏) sinks 𝛾 ′ = Def. of 𝛾 ′

= sinks (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • 𝛾\𝑡0) Lem. 3.1 (6) (distrib.)
= sinks (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟])) ∪ sinks (𝛾\𝑡0) Def. of sinks (11)
= {𝑝0, 𝑡𝑟 } ∪ sinks (𝛾\𝑡0) Set inclusion
⊆ {𝑝0, 𝑡𝑙 , 𝑡𝑟 } ∪ sinks (𝛾\𝑡0) Assump. (33)
⊆ nodes0 𝛾 Def. of nodes
= nodes0 𝛾 ′

241:6 Marcos Grandury, Aleksandar Nanevski, and Alexander Gryzlov

(𝑐) 𝑛𝑜𝑑𝑒𝑠 𝛾 ′/L,R = Def. of 𝛾 ′

= nodes (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • 𝛾\𝑡0)/L,R Lem. 3.1 (3) (distrib.)
= nodes ((𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]))/L,R • (𝛾\𝑡0)/L,R) Def. of filter (10)
= nodes (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • (𝛾\𝑡0)/L,R) Lem. 3.1 (1) (distrib.)
= nodes (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟])) ·∪ nodes (𝛾\𝑡0)/L,R Def. of nodes
= {𝑡0} ·∪ nodes (𝛾\𝑡0)/L,R Def. of filter (10)
= {𝑡0} ·∪ nodes (𝑡0 ↦→ (O, [𝑡𝑙 , 𝑡𝑟]) • 𝛾\𝑡0)/L,R Def. of 𝛾
= {𝑡0} ·∪ nodes 𝛾/L,R Assump. (33)
= {𝑡0} ·∪ 𝛼 Set equality
= (𝛼 • 𝑡0)

(𝑑) inset (𝛼 • 𝑡0) 𝛾 ′ = Def. of 𝛾 ′

= inset (𝛼 • 𝑡0) (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • 𝛾\𝑡0) Lem. 3.1 (5) (distrib.)
= inset (𝛼 • 𝑡0) (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟])) • inset (𝛼 • 𝑡0) 𝛾\𝑡0 Def. of inset (14)
= 𝑡0 ↦→ [prev (null • 𝛼 • 𝑡0) 𝑡0, 𝑡𝑟] • inset (𝛼 • 𝑡0) 𝛾\𝑡0 Assump. (33)
= 𝑡0 ↦→ [𝑝0, 𝑡𝑟] • inset (𝛼 • 𝑡0) 𝛾\𝑡0 Lem. 16
= 𝑡0 ↦→ [𝑝0, 𝑡𝑟] • inset 𝛼 𝛾\𝑡0 Def. of erasure (8)
= |𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) | • |𝛾\𝑡0 | Lem. 3.1 (4) (distrib.)
= |𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • 𝛾\𝑡0 | Def. of 𝛾 ′

= |𝛾 ′ |

(𝑒) restore (𝛼 • 𝑡0) 𝑡𝑙 𝛾 ′ = Def. of 𝛾 ′

= restore (𝛼 • 𝑡0) 𝑡𝑙 (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • 𝛾\𝑡0) Lem. 3.1 (5) (distrib.)
= restore (𝛼 • 𝑡0) 𝑡𝑙 (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]))

• restore (𝛼 • 𝑡0) 𝑡𝑙 𝛾\𝑡0 Def. of restore (15)
= 𝑡0 ↦→ [next (𝛼 • 𝑡0 • 𝑡𝑙) 𝑡0, 𝑡𝑟] • restore (𝛼 • 𝑡0) 𝑡𝑙 𝛾\𝑡0 Assump. (33)
= 𝑡0 ↦→ [𝑡𝑙 , 𝑡𝑟] • restore (𝛼 • 𝑡0) 𝑡𝑙 𝛾\𝑡0 Lem. 17
= 𝑡0 ↦→ [𝑡𝑙 , 𝑡𝑟] • restore 𝛼 𝑡0 𝛾\𝑡0 Def. of restore (15)
= restore 𝛼 𝑡0 (𝑡0 ↦→ (O, [𝑡𝑙 , 𝑡𝑟]))

• restore 𝛼 𝑡0 𝛾\𝑡0 Lem. 3.1 (5) (distrib.)
= restore 𝛼 𝑡0 (𝑡0 ↦→ (O, [𝑡𝑙 , 𝑡𝑟]) • 𝛾\𝑡0) Def. of 𝛾
= restore 𝛼 𝑡0 𝛾 Assump. (33)
= |𝛾0 |

(𝑓) nodes 𝛾 ′/O = Def. of 𝛾 ′

= nodes (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]) • 𝛾\𝑡0)/O Lem. 3.1 (3) (distrib.)
= nodes ((𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]))/O • (𝛾\𝑡0)/O) Lem. 3.1 (1) (distrib.)
= nodes (𝑡0 ↦→ (L, [𝑝0, 𝑡𝑟]))/O ·∪ nodes (𝛾\𝑡0)/O Def. of filter (10)
= nodes 𝑒 ·∪ nodes (𝛾\𝑡0)/O Def. of nodes

Verifying Graph Algorithms in Separation Logic: A Case for an Algebraic Approach (Appendices) 241:7

= nodes (𝛾\𝑡0)/O Set difference
= ({𝑡0} ·∪ nodes (𝛾\𝑡0)/O)\𝑡0 Def. of nodes
= (nodes (𝑡0 ↦→ (O, [𝑡𝑙 , 𝑡𝑟])) ·∪ nodes (𝛾\𝑡0)/O)\𝑡0 Def. of filter (10)
= (nodes (𝑡0 ↦→ (O, [𝑡𝑙 , 𝑡𝑟]))/O ·∪ nodes (𝛾\𝑡0)/O)\𝑡0 Lem. 3.1 (1) (distrib.)
= (nodes (𝑡0 ↦→ (O, [𝑡𝑙 , 𝑡𝑟]) • 𝛾\𝑡0)/O)\𝑡0 Def. of 𝛾
= (nodes 𝛾/O)\𝑡0 Assump. (33)
⊆ (Ð

𝛼
(reach 𝛾/O ◦ 𝛾𝑟) ∪ reach 𝛾/O 𝑡0)\𝑡0 Lem. 3.4 (2) & 3.4 (3)

= (Ð
𝛼
(reach (𝛾/O)\𝑡0 ◦ 𝛾𝑟) ∪ reach 𝛾/O 𝑡0)\𝑡0 Def. of reach (13)

= (Ð
𝛼
(reach (𝛾/O)\𝑡0 ◦ 𝛾𝑟) ∪ {𝑡0} ∪

Ð
{𝑡𝑙 ,𝑡𝑟 }

reach (𝛾/O))\𝑡0Set difference

=
Ð
𝛼
(reach (𝛾/O)\𝑡0 ◦ 𝛾𝑟) ∪

Ð
{𝑡𝑙 ,𝑡𝑟 }

reach (𝛾/O)\𝑡0 (𝛾/O)\𝑡0 = 𝛾 ′/O
=
Ð
𝛼
(reach 𝛾 ′/O) ◦ 𝛾𝑟) ∪

Ð
{𝑡𝑙 ,𝑡𝑟 }

reach 𝛾 ′/O 𝛾𝑟 = 𝛾 ′𝑟 on (𝛼 • 𝑡0)

=
Ð

(𝛼•𝑡0)
(reach 𝛾 ′/O ◦ 𝛾 ′𝑟) ∪ reach 𝛾 ′/O 𝑡𝑙

E Union-Find Data Structure
E.1 Non-spatial definitions

cycles 𝛾 b= {𝑥 | 𝑥 ∈ Ð
𝑦∈𝛾adj 𝑥

reach 𝛾 𝑦}

preacyclic 𝛾 b= cycles 𝛾 ⊆ loops 𝛾

dangls 𝛾 b= (sinks 𝛾)\nodes 𝛾
The function cycles computes the set of nodes that constitute a cycle in the graph. More precisely,
it identifies nodes that are reachable from one of their adjacent nodes. This avoids the trivial case
where every node is reachable from itself. Loops are cycles of size one—that is, nodes that explicitly
include themselves in their adjacency list. Then a preacyclic graph is one where every cycle is of
size one. Loops are given a special status as they are cycles that do not break under decomposition.
dangls 𝛾 selects the dangling nodes of a graph, those that are pointed at by a node in the graph but
are not themselves in the graph. Notice that null may be in this set.
Lemma E.1 (Union-find abstractions).
(1) dangls (𝛾1 • 𝛾2) = (dangls 𝛾1)\nodes 𝛾2 ∪ (dangls 𝛾2)\nodes 𝛾1
(2) loops 𝛾 ⊆ cycles 𝛾 ⊆ nodes 𝛾
(3) dangls 𝛾 ∩ nodes 𝛾 = ∅
Lemma E.2 (Summit characterization). Let 𝛾 be a graph and 𝑥 ∈ nodes 𝛾 . Then, 𝑧 ∈ summit 𝛾 𝑥

iff there exists a path from 𝑥 to 𝑦 in 𝛾 such that 𝑧 is a child of 𝑦, and either 𝑧 ∉ nodes 𝛾 (i.e., the edge
from 𝑦 to 𝑧 is dangling) or 𝑧 is already in the path from 𝑥 to 𝑦.

Lemma E.3 (Summits).
(1) summits 𝛾 = cycles 𝛾 ·∪ dangls 𝛾
(2) If summits 𝛾1 = summits 𝛾2 then summits (𝛾1 • 𝛾2) = summits 𝛾1
(3) If 𝑥 ∈ loops 𝛾 then summits 𝛾\𝑥 ⊆ summits 𝛾

Lemma E.4 (Summits of inverted forest). Let𝛾 = (𝛾1•𝛾2) be an an inverted forest (summits𝛾 ⊆
loops 𝛾) then

241:8 Marcos Grandury, Aleksandar Nanevski, and Alexander Gryzlov

(1) sinks 𝛾 ⊆ nodes 𝛾 (closed 𝛾)
(2) cycles 𝛾 ⊆ loops 𝛾 (preacyclic 𝛾)
(3) summits (𝛾1 • 𝛾2) = (summits 𝛾1)\nodes 𝛾2 ·∪ (summits 𝛾2)\nodes 𝛾1
(4) summit 𝛾 𝑥 = summit 𝛾 (𝛾 𝑥)
Lemma E.5 (Preacyclic mutation). Let𝛾 be a unary graph such that preacyclic𝛾 , and 𝑥 ∈ nodes 𝛾

and 𝑦 ∉ nodes 𝛾 . The graph 𝛾 ′ obtained by modifying 𝑥 ’s successor to 𝑦, also satisfies preacyclic 𝛾 ′.

E.2 Proof outline for NEW

1. {emp}
2. 𝑝 :=alloc null;
3. {𝑝 Z⇒ null}
4. 𝑝 .𝑛𝑒𝑥𝑡 :=𝑝;
5. {𝑝 Z⇒ 𝑝}
6. return 𝑝

7. {𝑝 Z⇒ 𝑝 ∧ result = 𝑝}
8.

�
graph1 (𝑝 ↦→ 𝑝) ∧ summits (𝑝 ↦→ 𝑝) = loops (𝑝 ↦→ 𝑝) = nodes (𝑝 ↦→ 𝑝) = {𝑝} ∧ result = 𝑝

	
9.

�∃𝛾 . graph1 𝛾 ∧ summits 𝛾 = loops 𝛾 = {𝑝} ∧ nodes 𝛾 = {𝑝} ∧ result = 𝑝
	

10. {set {result} result}
The first two commands are standard separation logic, the third command in line 6 corresponds to
a value returning function supported by Hoare Type Theory. The step from line 7 to line 8 lifts the
reasoning from the heap to the abstract graph and establishes that the singleton graph is indeed an
inverted tree with result as its representative. Finally the conjunct are folded into the set predicate.

E.3 Proof outline for FIND

1. {set 𝑆 𝑦 ∧ 𝑥 ∈ 𝑆}
2.

�∃𝛾 . graph1 𝛾 ∧ summits 𝛾 = loops 𝛾 = {𝑦} ∧ nodes 𝛾 = 𝑆 ∧ 𝑥 ∈ 𝑆
	

3.
�
graph1 𝛾 ∧ summits 𝛾 = loops 𝛾 = {𝑦} ∧ 𝑛𝑜𝑑𝑒𝑠 𝛾 = 𝑆 ∧ 𝑥 ∈ 𝑆

	
4.

�
graph1 (𝑥 ↦→ 𝛾 𝑥 • 𝛾\𝑥) ∧ 𝑥 ∈ 𝑆 ∧ summits 𝛾 = loops 𝛾 = {𝑦} ∧ 𝑛𝑜𝑑𝑒𝑠 𝛾 = 𝑆

	
5.

�
𝑥 Z⇒ 𝛾 𝑥 ∗ graph1 𝛾\𝑥 ∧ 𝑥 ∈ 𝑆

	
6. 𝑝 :=𝑥 .𝑛𝑒𝑥𝑡 ;
7.

�
𝑥 Z⇒ 𝛾 𝑥 ∗ graph1 𝛾\𝑥 ∧ 𝑥 ∈ 𝑆 ∧ 𝑝 = 𝛾 𝑥

	
8.

�
graph1 (𝑥 ↦→ 𝛾 𝑥 • 𝛾\𝑥) ∧ 𝑥 ∈ 𝑆 ∧ 𝑝 = 𝛾 𝑥

	
9.

�
graph1 𝛾 ∧ 𝑥 ∈ 𝑆 ∧ 𝑝 = 𝛾 𝑥

	
10. while 𝑝 ≠ 𝑥 do

11.
�
graph1 𝛾 ∧ 𝑥 ∈ 𝑆 ∧ 𝑝 = 𝛾 𝑥 ≠ 𝑥

	
12. 𝑥 :=𝑝;
13.

�
graph1 𝛾 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 = 𝑝

	
14.

�
graph1 (𝑥 ↦→ 𝛾 𝑥 • 𝛾\𝑥) ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 = 𝑝

	

Verifying Graph Algorithms in Separation Logic: A Case for an Algebraic Approach (Appendices) 241:9

15.
�
𝑥 Z⇒ 𝛾 𝑥 ∗ graph1 𝛾\𝑥 ∧ 𝑥 ∈ 𝑆 ∧ 𝑥 = 𝑝

	
16. 𝑝 :=𝑥 .𝑛𝑒𝑥𝑡 ;
17.

�
𝑥 Z⇒ 𝛾 𝑥 ∗ graph1 𝛾\𝑥 ∧ 𝑥 ∈ 𝑆 ∧ 𝑝 = 𝛾 𝑥

	
18.

�
graph1 (𝑥 ↦→ 𝑛𝑥 • 𝛾\𝑥) ∧ 𝑥 ∈ 𝑆 ∧ 𝑝 = 𝛾 𝑥

	
19.

�
graph1 𝛾 ∧ 𝑥 ∈ 𝑆 ∧ 𝑝 = 𝛾 𝑥

	
20. end while

21.
�
graph1 𝛾 ∧ 𝑥 ∈ 𝑆 ∧ 𝑝 = 𝛾 𝑥 = 𝑥

	
22. return 𝑥

23.
�
graph1 𝛾 ∧ 𝑥 ∈ 𝑆 ∧ 𝑝 = 𝛾 𝑥 = 𝑥 = result

	
24.

�
graph1 𝛾 ∧ result = 𝑦 ∧ summits 𝛾 = loops 𝛾 = {𝑦} ∧ 𝑛𝑜𝑑𝑒𝑠 𝛾 = 𝑆

	
25.

�∃𝛾 . graph1 𝛾 ∧ summits 𝛾 = loops 𝛾 = {𝑦} ∧ nodes 𝛾 = 𝑆 ∧ result = 𝑦
	

26. {set 𝑆 𝑦 ∧ result = 𝑦}
The first five lines of the proof outline unfold the spatial predicates, first set, then graph, to

reveal the node corresponding to the argument 𝑥 . The non-spatial conjuncts involving 𝛾 and 𝑦
are framed early on, as these values remain unchanged throughout the execution and will later be
reintroduced without modification. The command at line 6 assigns to 𝑝 the successor of 𝑥 . In line
10, 𝑝 is compared to 𝑥 . A mismatch implies that the root node, which points to itself, has not yet
been found, and thus the loop must be entered. Within the loop, the first command advances 𝑥
to its parent node. Line 13 requires showing that the new value of 𝑥 remains within 𝑆 . This holds
because 𝑥 is guaranteed to be in nodes 𝛾 , given that closed 𝛾 holds by lemma E.4 (1) and nodes 𝛾 = 𝑆 .
Next, 𝑝 is updated to be the parent of the current 𝑥 . By the end of the loop in line 19, its invariant
from line 9 is reestablished. When the loop terminates, the invariant together with the negation of
the loop guard leads to the conclusion in line 21: 𝑥 is a node in 𝑆 and points to itself in 𝛾 . Line 22
sets the result of the program to be x, which by the non-spatial conjunct framed at the beginning
we know must be 𝑦, as it is established to be the only self-pointing node in 𝛾 .

E.4 Proof outline for UNION

1. {set 𝑆1 𝑥1 ∗ set 𝑆2 𝑥2}
2. {graph1 𝛾1 ∗ graph1 𝛾2
3. ∧ summits 𝛾1 = loops 𝛾1 = {𝑥1} ∧ 𝑛𝑜𝑑𝑒𝑠 𝛾1 = 𝑆1

4. ∧ summits 𝛾2 = loops 𝛾2 = {𝑥2} ∧ 𝑛𝑜𝑑𝑒𝑠 𝛾2 = 𝑆2}
5.

�
graph1 (𝑥1 ↦→ 𝑥1 • 𝛾1\𝑥1)

	
6.

�
𝑥1 Z⇒ 𝑥1 ∗ graph1 (𝛾1\𝑥1)

	
7. 𝑥1.𝑛𝑒𝑥𝑡 :=𝑥2;
8.

�
𝑥1 Z⇒ 𝑥2 ∗ graph1 (𝛾1\𝑥1)

	
9. return 𝑥2

10.
�
𝑥1 Z⇒ 𝑥2 ∗ graph1 (𝛾1\𝑥1) ∧ result = 𝑥2

	
11.

�
graph1 (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) ∧ result = 𝑥2

	
12. {graph1 (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) ∧ result = 𝑥2 ∗ graph1 𝛾2

241:10 Marcos Grandury, Aleksandar Nanevski, and Alexander Gryzlov

13. ∧ summits 𝛾1 = loops 𝛾1 = {𝑥1} ∧ 𝑛𝑜𝑑𝑒𝑠 𝛾1 = 𝑆1

14. ∧ summits 𝛾2 = loops 𝛾2 = {𝑥2} ∧ 𝑛𝑜𝑑𝑒𝑠 𝛾2 = 𝑆2}
15. {graph1 (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) ∗ graph1 𝛾2 ∧ result = 𝑥2

16. ∧ summits (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) = {𝑥2}
17. ∧ loops (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) = ∅
18. ∧ 𝑛𝑜𝑑𝑒𝑠 (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) = 𝑆1

19. ∧ summits 𝛾2 = loops 𝛾2 = {𝑥2} ∧ 𝑛𝑜𝑑𝑒𝑠 𝛾2 = 𝑆2}
20. {graph1 (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1 • 𝛾2) ∧ result = 𝑥2

21. ∧ summits (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1 • 𝛾2) = {𝑥2}
22. ∧ loops (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1 • 𝛾2) = {𝑥2}
23. ∧ 𝑛𝑜𝑑𝑒𝑠 (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1 • 𝛾2) = 𝑆1 • 𝑆2}
24. {set (𝑆1 • 𝑆2) result ∧ result ∈ {𝑥1, 𝑥2}}

Similar to the FIND proof, the initial lines of the proof outline (lines 1-6) unfold the spatial
predicates isolating the node corresponding to the argument 𝑥1. Line 2 unfolds the set predicate,
instantiates the existentially quantified graphs as 𝛾1 and 𝛾2 and frames out graph1 𝛾2 as well as the
non-spatial facts about the initial disjoint graphs. Line 5 rewrites by the equality𝛾1 = 𝑥1 ↦→ 𝑥1•𝛾1\𝑥1
which follows from 𝑥1 ∈ loops 𝛾1. The command in line 7 makes 𝑥1 point to 𝑥2. The second and
final command sets 𝑥2 as the result of the program. After the final command, in line 11 reasoning
is lifted from the heap level and in line 12 the spatial conjuncts initially framed are reintroduced.
In line 15 the abstractions that constitute the specification are recomputed for the mutated graph
𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1, exploiting their distributivity. Before applying the distributivity of summits,
preacyclicity is proved for the mutated graph by application of lemma E.5.

summits (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) =
= (summits (𝑥1 ↦→ 𝑥2))\nodes (𝛾1\𝑥1) Distrib. of summits
∪ (summits 𝛾1\𝑥1)\nodes (𝑥1 ↦→ 𝑥2)
= {𝑥2}\nodes (𝛾1\𝑥1) ∪ (summits 𝛾1\𝑥1)\𝑥1 Def. of summits and nodes
= {𝑥2} ∪ (summits 𝛾1\𝑥1)\𝑥1 𝑥2 ∈ nodes 𝛾2 and

nodes 𝛾1\𝑥1 ∩ nodes 𝛾2 = ∅
= {𝑥2} Lem. E.3 (3) and Assump. in lines 12-14

loops (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) =
= loops (𝑥1 ↦→ 𝑥2) ·∪ loops (𝛾1\𝑥1) Distrib. of loops
= loops (𝛾1\𝑥1) Def. of loops
= ∅ Assump. in lines 12-14

nodes (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) =
= nodes (𝑥1 ↦→ 𝑥2) ·∪ nodes (𝛾1\𝑥1) Distrib. of nodes
= {𝑥} ·∪ nodes (𝛾1\𝑥1) Def. of nodes
= nodes (𝑥1 ↦→ 𝑥1) ·∪ nodes (𝛾1\𝑥1) Def. of nodes
= nodes (𝑥1 ↦→ 𝑥1 • 𝛾1\𝑥1) Distrib. of nodes
= 𝑆1 Assump. in lines 12-14

The last step in the proof outline starting in line 20 is joining both subgraphs 𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1
and 𝛾2. Both loops and nodes use plain distributivity. In contrast, for summits, instead of proving
that the joined graph is preacyclic in order to apply distributivity, we exploit the fact that both

Verifying Graph Algorithms in Separation Logic: A Case for an Algebraic Approach (Appendices) 241:11

subgraphs have the same summits and apply lemma E.3 (2) directly.
loops (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1 • 𝛾2) =

= loops (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) ·∪ loops 𝛾2 Distrib. of loops
= {𝑥2} Assump. in lines 12-14

nodes (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1 • 𝛾2) =
= nodes (𝑥1 ↦→ 𝑥2 • 𝛾1\𝑥1) ·∪ nodes 𝛾2 Distrib. of nodes
= 𝑆1 ·∪ 𝑆2 Assump. in lines 12-14

The proof concludes in line 24 by folding the desired spatial predicate.

