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Abstract
From Owicki-Gries’ Resource Invariants and Jones’ Rely/Guarantee
to modern variants based on Separation Logic, axiomatic logics for
concurrency require auxiliary state to explicitly relate the effect
of all threads to the global invariant on the shared resource. Un-
fortunately, auxiliary state gives the proof of an individual thread
access to the auxiliaries of all other threads. This makes proofs
sensitive to the global context, which prevents local reasoning and
compositionality.

To tame this historical difficulty of auxiliary state, we propose
subjective auxiliary state, whereby each thread is verified using
a self view (i.e., the thread’s effect on the shared resource) and
an other view (i.e., the collective effect of all the other threads).
Subjectivity generalizes auxiliary state from stacks and heaps to
user-chosen partial commutative monoids, which can eliminate the
dependence on the global thread structure.

We employ subjectivity to formulate Subjective Concurrent
Separation Logic as a combination of subjective auxiliary state
and Concurrent Separation Logic. The logic yields simple, compo-
sitional proofs of coarse-grained concurrent programs that use aux-
iliary state, and scales to support higher-order recursive procedures
that can themselves fork new threads. We prove the soundness of
the logic with a novel denotational semantics of action trees and
a definition of safety using rely/guarantee transitions over a large
subjective footprint. We have mechanized the denotational seman-
tics, logic, metatheory, and a number of examples by a shallow
embedding in Coq.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Program Verification—Correctness proofs; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Concurrent
programming structures

Keywords concurrency, verification, local reasoning, rely-guarantee
thinking, dependent type theory

1. Introduction
Auxiliary state (a.k.a. ghost state) is a necessary evil that compen-
sates for the “expressive weakness” [13] of axiomatic program log-
ics for concurrency. It is necessary in proofs to partially expose
the internal behavior of threads in order to relate local program
assertions to global invariants, and in the metatheory to establish
completeness [20]. But it is evil because the proof of an individual
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{y 7⇀ α ∗ z 7⇀ β}
{y 7⇀ α}〈 {y 7⇀ α ∗ ∃β.I2(α, β)}

x := [x] + 1; y := [y] + 1;
{y 7⇀ α+1 ∗ ∃β.I2(α+1, β)}

〉
{y 7⇀ α+1}

{z 7⇀ β}〈 {z 7⇀ β ∗ ∃α.I2(α, β)}
x := [x] + 1; z := [z] + 1;
{z 7⇀ β+1 ∗ ∃α.I2(α, β+1)}

〉
{z 7⇀ β+1}

{y 7⇀ α+1 ∗ z 7⇀ β+1}

Figure 1. Two incr threads in Concurrent Separation Logic with
fractional permissions.

thread becomes sensitive to the global thread structure of the con-
text in which it is used. This prevents local reasoning and limits the
compositionality of all logics that use auxiliary state.

We illustrate the problem of auxiliary state through the classical
concurrent incrementor example of Owicki and Gries. The program
incr(n) =̂ 〈x := [x] + n〉 enters a critical section 〈−〉 to gain
access to the shared state x and increment it by n. We want to verify
incr with a compositional specification that can be used to deduce
the overall effect on x by several incr’s in parallel. For example,
if k threads concurrently call incr(1), we should be able to deduce
that the overall effect is for x to increment by k.

In Owicki and Gries’ Resource Invariants (RI) [21], the shared
state is specified by a resource invariant I that holds whenever all
threads are outside the critical section. By mutual exclusion, when
a thread enters a critical section it acquires exclusive access to
the shared state satisfying the invariant. It may mutate the shared
state and violate the invariant, but it must restore the invariant
before releasing the resource and leaving the critical section. RI is
notably useful for coarse-grained concurrency, where interference
is confined to critical sections. Because the invariant abstracts away
from having to reason explicitly about concurrent interference, RI
enables sequential reasoning about individual threads.

An invariant that only refers to x, however, has no way to
identify each thread’s effect on the total value, thus, at best it can
show that x increments by an unspecified amount. This suffices to
prove memory safety, but not to deduce a noninvariant property
such as x increments by k. Owicki and Gries’ solution (and most
axiomatic logics follow suit) is for each thread to have auxiliary
state that exposes its effect on the shared state to the invariant;
auxiliaries are updated for the sake of verification, but aren’t needed
for execution.

For two parallel incr threads, in Concurrent Separation Logic
(CSL) [19] with fractional permissions [1] (Figure 1), the binary
invariant I2(α, β) =̂ x 7→α+β∗y 7⇀α∗z 7⇀β says that the shared
state x contains the sum α+β, auxiliary state y captures the first
thread’s cumulative effect on (i.e., contribution to) x, and likewise
z for the second thread.1 Ownership of an auxiliary is split in half

1 We take Separation Logic heaps as our model of state. The separating
conjunction p∗qmeans that the heap splits into disjoint subheaps that satisfy



between the invariant and the owning thread, to ensure that only the
owner can update the auxiliary. The program is instrumented with
shaded code to update auxiliaries, and with {braced} assertions
that say what holds at specific program points. The final assertion
and the invariant imply that x increments by 2.

However, if instead we wanted to prove the effect of three par-
allel increments, we would have to use a different ternary invariant
I3(α, β, γ) =̂ x 7→α+β+γ ∗y 7⇀α∗z 7⇀β ∗w 7⇀γ. Even though
the two-thread program is a subprogram of the three-thread one, the
former’s proof is specific to the binary invariant I2 and cannot be
reused in the latter’s proof. Thus, in RI and its logical descendants
such as CSL, even a simple program as incrementation lacks a sin-
gle proof that can be reused in different contexts.

In this sense, axiomatic proofs with auxiliary state have limited
compositionality: it is not always possible to prove a subprogram
and reuse its proof directly in a larger context. The problem is that
when an invariant mentions auxiliary state, the auxiliaries reveal
thread identities (e.g., w in I3 identifies the new thread). There-
fore, when the verification of a thread sees the invariant in the
critical section, it becomes dependent on the global thread struc-
ture, which breaks local reasoning. Even worse, when threads are
forked dynamically (e.g., an iterator forks a separate thread to pro-
cess each element in a list), the invariant must be defined in terms of
dynamically-allocated auxiliary state that mirrors the forking pat-
tern, which makes the invariant even more context specific.

For fine-grained concurrency, where interference may occur
between any two memory operations, Jones’ Rely/Guarantee
(RG) [12] explicitly specifies thread and environment interference
on the shared state. This can reduce and sometimes even eliminate
the auxiliary state required in RI proofs. However, RG and most
of its logical descendants (e.g., RGSep [26], SAGL [9], Deny-
Guarantee [7]) still require noncompositional auxiliary state for the
incrementor. To our knowledge, the only exceptions are Concurrent
Abstract Predicates (CAP) [6] and HLRG [10], which can verify
the incrementor without auxiliary state. However, both logics use
RG-style specifications that impose complex reasoning about inter-
ference explicitly in the proof. We consider this should be avoided
for reasoning about any coarse-grained algorithm, because critical
sections are used exactly to abstract away from interference.

We present Subjective Concurrent Separation Logic (SCSL),
a prototype logic for a stateful language with higher-order recur-
sive procedures, fork-join concurrency, and a lock-protected criti-
cal section (Section 4). SCSL combines the classical techniques of
Resource Invariants and Separation Logic, and tames the difficul-
ties of auxiliary state with a novel subjective perspective.

Subjective auxiliary state gives two complementary thread-
oriented views on auxiliary state: a self view aS of the thread’s
own auxiliary contribution, and an other view aO that agglomerates
all other threads’ contributions. To eliminate the dependency on
the number of threads in the environment, subjective auxiliary
state generalizes from stack variables and heap locations to a user-
chosen partial commutative monoid (PCM). For various examples,
choosing an optimized PCM can blur the global thread structure,
in contrast to auxiliary stacks or heaps. Since stacks and heaps are
PCMs [4], subjective auxiliary state subsumes classical auxiliary
state. Thus, when a suitable auxiliary PCM cannot be found, a proof
can always fall back on using an auxiliary stack or heap.

p and q that are passed to each subthread of a parallel composition; ` 7⇀v
is a half fractional permission that allows dereferencing ` with contents v;
` 7⇀v ∗ ` 7⇀v is equivalent to ` 7→ v, which also allows updating `. Strictly
speaking, the invariant is the unparameterized assertion ∃α.∃β.I2(α, β)
where the auxiliary contributions α and β are existentially quantified; we
concentrate on the parameterized I2 to simplify the presentation and omit
the details of how fractional permissions relate the free and bound variables.

Intuitively, subjectivity synthesizes the thread/environment di-
chotomy espoused by Rely/Guarantee and the PCM structure of
state elucidated by Separation Logic. In contrast to the temporal
emphasis of Rely/Guarantee transitions, subjective auxiliary state
creates a spatial dichotomy between thread and environment aux-
iliaries. In contrast to the exclusively local, small footprint, view
of state in Separation Logic, the aO view of the environment em-
bodies non-local information about the run-time context, but the
PCM-agglomeration makes it abstract enough to retain the CSL-
style local reasoning.

The critical point concerns how to combine proofs of two
threads into a proof of their parallel composition. When one thread
updates its aS, then it implicitly also updates another thread’s aO.
How do we ensure that the proof of the other thread remains a valid
subproof in the combination, when it sees its aO view change?

We resolve this question by proving a CSL-style rule of parallel
composition with a novel subjective separating conjunction con-
nective ~ for splitting auxiliary views. The rule ensures that if the
initial views of two threads are coherent at the fork point, then there
exists a coherent combination of the views at the join point. This
suffices to use the proofs of threads as black boxes and establish the
combined verification of their parallel composition. We also prove
a frame rule with ~ that surprisingly does not require cancellativity
of the auxiliary PCM.

We show that SCSL yields simple, compositional proofs for a
few coarse-grained concurrent programs from the literature (Sec-
tions 2 and 3). Although the programs are relatively simple, their
proofs in existing logics either require auxiliaries which leads to
noncompositionality, or can avoid auxiliaries but are technically
complex. Moreover, we show that SCSL scales to higher-order re-
cursive procedures which can themselves fork new thread, depend-
ing on run time values; to our knowledge, this combination is not
supported by any existing logic2. Although we focus on RI proofs
for coarse-grained concurrency, we believe subjectivity will also
synergize well with RG for fine-grained concurrency.

We give SCSL a novel denotational model that represents com-
putations as action trees and establish soundness of the logic by
a definition of safety that crucially relies on subjectivity, not only
of the user-chosen auxiliary PCM, but also of heap and lock own-
ership (Section 5). We embed SCSL into the higher-order logic
Calculus of Inductive Constructions [18], and thus inherit a num-
ber of features from dependent type theory: abstraction over pro-
grams (i.e., higher-order procedures), types (i.e., polymorphism),
and predicates (i.e., datatypes, objects, modules). These features
are essential for modular programming and verification, but, aside
from abstract predicates [22, 6], have not been considered in the
axiomatic concurrency logic literature. The embedding allowed us
to mechanize the semantics, logic, soundness proof, and a number
of examples in Coq; the Coq sources are available online [16].

2. SCSL and Proving the Incrementor
2.1 Subjective Auxiliary State
Subjective Concurrent Separation Logic (SCSL) has a single lock
with global scope which is associated with a user-chosen partial
commutative monoid (PCM) (U,⊕,0) for auxiliary state and an
invariant I∗ indexed by U. A PCM is a set U with an associative and
commutative join operation ⊕ and unit element 0. Intuitively, the
unit 0 describes a null effect; the join⊕ combines the effects of two
parallel threads, which mirrors the associativity and commutativity
of parallel composition; and partiality indicates inconsistent views
(e.g., two threads owning a lock simultaneously).

2 We don’t, however, support higher-order heaps that can store procedures.



By working with an auxiliary PCM, we can take the ⊕-total
τ ∈ U of all threads’ combined contributions: if each thread i
contributes σi , then τ =

⊕
i σi . The single total auxiliary value

τ serves to define a unary invariant I∗(τ) that doesn’t depend on
the number of threads, in contrast to CSL proofs where auxiliaries
expose all threads in the invariant (e.g., y 7⇀ α identifies the left
thread and z 7⇀ β the right thread in the CSL proof from Section 1).

To preserve locality, however, assertions can’t directly refer to
the total τ , because all threads can interfere on its value. Instead,
each thread i has two complementary subjective views of τ : a self
view aS �⇀σi of the thread’s own auxiliary contribution, and an
other view aO ↪−⇀ ωi where ωi =

⊕
j 6=i σj is the ⊕-subtotal of

all other threads’ contributions.3 Although different threads i and j
may have different views (aS, aO), all views are mutually coherent
in that they yield the same⊕-total: σi⊕ωi = τ = σj ⊕ωj . We use
aS �⇀σi throughout the program to track the thread’s contribution
as it changes, but only use aO ↪−⇀ ωi in the critical section to track
that the environment’s contribution remains fixed when it can’t
access the shared resource (Section 2.4).

2.2 Parallel Composition and Subjective Separation
For the incrementor, we choose the PCM (N,+, 0) of natural num-
bers under addition and the unary invariant I∗(τ) =̂ x 7→ τ , which
hides the identity of threads and thus permits a compositional proof
of incr. The SCSL specification of incr(n) is:

∀n:nat.{aS �⇀σ}incr(n) : unit{aS �⇀σ + n}

incr takes an argument n and increments the thread’s contribution
aS from σ to σ + n,4 and returns unit.5 Since the value of aS

is thread-specific, the SCSL specification does not expose thread
identities (cf. how y identified the left thread in the CSL proof).

The environment’s contribution aO does not appear in the speci-
fication and is thus unconstrained, but it will show up in the proof of
incr. Since incr only mutates shared state, the local heap is implic-
itly empty in the pre and post. By framing, incr is safe to run in any
larger private heap, which remains unchanged upon termination.

To prove two parallel increments, we use the SCSL PAR rule:

{p1}C1{q1} {p2}C2{q2}
{p1 ~ p2}C1 ‖ C2{q1 ~ q2}

PAR

The subjective separating conjunction ~ connective splits the
heap into two disjoint subheaps; the novelty is that ~ also splits the
contents of aS: aS �⇀α~ aS �⇀β is equivalent to aS �⇀α⊕ β. For
comparison, the CSL PAR rule uses the separating conjunction ∗ to
split the heap and ownership of auxiliaries among parallel threads.

The SCSL proof of incr is compositional: we can instantiate σ
and n in the proof of incr, which is otherwise used as a black box,
to show that incr(i) ‖ incr(j ) increments x by i+j .

{aS �⇀α+β}
{aS �⇀α ~ aS �⇀β}

{aS �⇀α} {aS �⇀β}
incr(i) incr(j )

{aS �⇀α+i} {aS �⇀β+j}
{aS �⇀α+i ~ aS �⇀β+j}
{aS �⇀ (α+i)+(β+j )}

The parallel composition starts with a contribution aS �⇀α+β.
When the parent thread forks two child threads, the parent’s view

3 For the moment, aS �⇀σ and aO ↪−⇀ ω should be read as asserting the
contents of each auxiliary view, but don’t directly permit mutation; their
formal meaning is explained in Section 2.3.
4 We use Greek letters, such as σ, for logical variables that scope over the
pre- and postcondition to relate initial and final states.
5 The SCSL judgments include an explicit return type (Section 4). Hereafter
we omit the return type unless it requires commentary.

h;µ;σ;ω |= aS �⇀σ′ iff (h, µ, σ) = (empty,��Own, σ′)
h;µ;σ;ω |= mS �⇀µ′ iff (h, µ, σ) = (empty, µ′, 0)
h;µ;σ;ω |= ` 7→ v iff (h, µ, σ) = ([` Z⇒ v],��Own, 0)
h;µ;σ;ω |= aO ↪−⇀ ω′ iff ω = ω′

h;µ;σ;ω |= emp iff (h, µ, σ) = (empty,��Own, 0)
h;µ;σ;ω |= p1 ∗ p2 iff h1;µ1;σ1;ω |= p1 and

h2;µ2;σ2;ω |= p2 where
(h, µ, σ) = (h1 ⊕ h2, µ1 ⊕ µ2, σ1 ⊕ σ2)
for some hi , µi , σi

h;µ;σ;ω |= p1 ~ p2 iff h1;µ1;σ1;σ2 ⊕ ω |= p1 and
h2;µ2;σ2;σ1 ⊕ ω |= p2 where
(h, µ, σ) = (h1 ⊕ h2, µ1 ⊕ µ2, σ1 ⊕ σ2)
for some hi , µi , σi

w |= p1 ∧ p2 iff w |= p1 and w |= p2

[µ, σ, ω] p abbreviates (mS �⇀µ ∗ aS �⇀σ ∗ p) ∧ aO ↪−⇀ ω

Figure 2. Semantics of assertions h;µ;σ;ω |= p (fragment).

aS splits between its children, while the children’s aO’s are implic-
itly induced to preserve coherence (i.e., the left child’s environment
includes the right child, and vice versa). By coherence, the combi-
nation of views is the same irrespective of the viewer.6

viewer: parent⇔ child1 ~ child2

views: self aS (explicit) α+β α β
other aO (implicit) ω β+ω α+ω

combined views: aS+aO α+β+ω

The left thread instantiates the incr proof with α and i to show
that the overall contribution increments from α to α+i ; and analo-
gously for the right thread. The soundness of parallel composition
ensures that, dually, at the join point the children’s aS’s can be com-
bined back into the parent’s aS: the subthreads’ aS’s are added and
the parallel composition ends with aS incremented by i+j over the
initial value. aO is implicitly unconstrained and unknown in the
parent, and thus remains so in both child threads.

We can directly reuse the two-thread SCSL proof composition-
ally in a three-thread program without having to change the invari-
ant or subproof for the particular context. The three-thread pro-
gram increments the initial contribution α+β+γ by i+j+k with a
structurally similar proof as the two-thread program.

{aS �⇀α+β+γ}
{aS �⇀α+β ~ aS �⇀γ}

{aS �⇀α+β} {aS �⇀γ}
incr(i) ‖ incr(j ) incr(k)

{aS �⇀ (α+i)+(β+j )} {aS �⇀γ+k}
{aS �⇀ (α+i)+(β+j ) ~ aS �⇀γ+k}
{aS �⇀ (α+i)+(β+j )+(γ+k)}

Here, the initial (aS, aO) views are (α+β+γ, ω) for some ω, which
induce views for the three threads: (α, β+γ+ω), (β, α+γ+ω),
and (γ, α+β+ω); all have the coherent total α+β+γ+ω.

Furthermore, we can substitute programs with the same spec-
ification. For example, the parallel incr(i) ‖ incr(j ) and the se-
quential incr(i); incr(j ) with a different number of threads can be
given the same specification {aS �⇀α+β} − {aS �⇀α+β+i+j}.
Therefore we can use them interchangeably in the three-increment
program and the overall proof remains the same. In Section 3.2, we
show that this approach scales to prove a concurrent iterator, where
the number of threads depends on a run-time value.

2.3 Assertions
In SCSL, an assertion is a predicate over a world w of the form
h;µ;σ;ω. h is the thread’s private heap (a finite map from pointers
to values), which is a PCM with the empty heap as unit and disjoint

6 This pattern recurs in the semantics, not only for auxiliaries but also for
heaps and lock ownership (Section 5.5).



union ] as join (undefined if the heaps overlap). µ is an element of
the lock ownership PCM mtx, with elements Own (to indicate the
viewer owns the lock and is thus in a critical section) and ��Own;
the join ⊕ is defined with unit��Own, but Own⊕ Own is undefined
because two threads cannot enter a critical section simultaneously.
σ and ω are the thread and environment’s respective auxiliary
contributions from U.

In our subjective terminology, the components h , µ and σ are
the self views on the thread’s world, as they describe the state of the
thread itself. On the other hand, ω is the other view, as it describes
the abstract effect of the thread’s environment on the shared state.

Figure 2 gives the interpretation of assertions.7 The thread’s
auxiliary pointer assertion aS �⇀σ′ constrains the σ component of
the world to be σ′, and the h and µ components to be the respec-
tive PCM units, but the ω component is unconstrained because the
environment may enter the critical section and change its contribu-
tion in tandem with the shared state. Thus, the aS �⇀− assertions in
the specification of incr implicitly mean the private heap is empty
and the lock isn’t owned. The pointer assertion ` 7→ v and lock
(a.k.a. mutex) pointer assertion mS �⇀µ′ are defined analogously.
The environment’s auxiliary pointer assertion aO ↪−⇀ ω′ constrains
the ω component of the world to be ω′, but is intuitionistic in that it
doesn’t constrain the h , µ, or σ components. The auxiliary pointer
assertions use a half arrow tip to suggest that they can’t be mutated
directly (though we don’t use permissions).

The p1 ~ p2 assertion splits the self components h , µ, and σ
between p1 and p2, and induces the other component to maintain
coherence (i.e., σ2 ⊕ ω for p1, and dually for p2). The p1 ∗ p2

assertion also splits the self components h , µ, and σ, but doesn’t
change the other component ω.

The SCSL rules for memory and locking commands typically
use the assertion [µ′, σ′, ω′] p, which abbreviates (mS �⇀µ′ ∗
aS �⇀σ′ ∗ p) ∧ aO ↪−⇀ ω′ and holds in a world h;µ;σ;ω if
(µ, σ, ω) = (µ′, σ′, ω′) and h satisfies the heap predicate p. The
asymmetry between the aS �⇀− and aO ↪−⇀ − assertions stems
from the fact that aS must be tracked throughout the program, in
particular when it is split at forking points, but aO is implicitly in-
duced to preserve coherence at forking points and is only tracked
in the critical section.

2.4 Critical Sections and Local Auxiliary Functions
The following proof outline of incr is parametric in σi and n. In
SCSL, we enter and exit critical sections using explicit lock and
unlock commands, which illustrates how lock ownership works in
tandem with auxiliaries.
{aS �⇀σi} precondition
{[��Own, σi ,−] emp} by CONSEQ

1 lock;
{∃ωi .[Own, σi , ωi ] I∗(σi + ωi )} by lock

2 tmp ← read x ;
{∃ωi .[Own, σi , ωi ]x 7→ (σi + ωi ) ∧ tmp = σi + ωi} by read

3 write x (tmp + n);
{∃ωi .[Own, σi , ωi ]x 7→ ((σi + ωi ) + n)} by write
{∃ωi .[Own, σi , ωi ] I∗((σi + n) + ωi )} by CONSEQ

4 unlockΦn

{∃ωi .[��Own,Φn(σi ),−] emp} by unlock
{aS �⇀σi + n} by CONSEQ

First, the precondition aS �⇀σi is turned into the equivalent explicit
assertion [��Own, σi ,−] emp, where “−” indicates that the environ-
ment’s contribution is existentially quantified and thus unknown.

7 We write [` Z⇒ v] for the singleton heap that maps ` to v, [h|` Z⇒ v] for the
heap that maps ` to v and behaves like h on other locations, and h \` for the
heap h without `. By taking the lock and auxiliary units h;��Own; 0; 0 |= p
we recover the standard Separation Logic relation h |=SL p .

The lock operation (line 1) uses the SCSL rule:

{[��Own, σi ,−] emp}lock{∃ωi .[Own, σi , ωi ] I∗ (σi ⊕ ωi )}

where the PCM operation ⊕ is instantiated with +. Locking
changes the ownership status from ��Own to Own and preserves
the thread’s contribution σi . Prior to locking, the environment may
enter the critical section and change its contribution in tandem
with the shared state, thus aO is unconstrained in the precondition
and existentially named ωi in the postcondition. The thread also
acquires the shared state satisfying I∗(τ), which is equivalent to
I∗(σi ⊕ ωi) by the coherence of views.

By mutual exclusion, other threads j can’t access or change
the shared resource, so their contributions σj and consequently
aO ↪−⇀ ωi(=

⊕
j 6=i σj ) remain fixed throughout the critical section.

This invariance is explicitly specified by the commands in the
critical section. For example, the SCSL read rule:

{[µi , σi , ωi ] x 7→ ν}read x

{
[µi , σi , if µ = Own then ωi else −]
x 7→ ν ∧ res = ν

}
includes the standard Separation Logic specification that initial
heap contains a pointer x with value ν; in the postcondition, the
heap is preserved and ν is bound to the dedicated result variable.
Moreover, the lock status µi and thread contribution σi may be
arbitrary and are preserved across the read. However, the environ-
ment’s contribution is subject to a conditional on the lock owner-
ship: if the thread Owns the lock because it’s in a critical section,
then aO remains fixed at ωi , otherwise aO is undetermined in the
postcondition. The other memory commands determine the heap
as in Separation Logic and preserve the auxiliaries just like read.

By sequential composition, the read (line 2) binds the contents
of x (i.e., σi + ωi by the invariant) to the local variable tmp, and
extends the assertion with an equation that describes tmp. The
write (line 3) increments x by n, which is reflected in the assertion
about the contents of x. Since the thread Owns the lock, the read
and write preserve the auxiliaries as σi and ωi .

That the environment’s auxiliary aO ↪−⇀ ωi is fixed throughout
the critical section becomes crucial at the unlock command when
the invariant I∗(σ′i ⊕ ωi) must be restored for some new thread
contribution σ′i and the same environment contribution ωi from the
moment of locking. This emulates the Owicki-Gries discipline that
an auxiliary is only updated by its owner in the critical section.

Since we generalize auxiliary state from heap to PCM U, we
must also generalize from stack- and heap-mutating auxiliary code
to auxiliary functions Φ on U. The unlock rule:

{[Own, σi , ωi ] I∗ (Φ(σi )⊕ ωi )}unlockΦ{[��Own,Φ(σi ),−] emp}

requires the unlock command to be decorated by a mathemati-
cal function Φ such that the heap initially satisfies the invariant
I∗(Φ(σi)⊕ ωi) relative to a new thread contribution Φ(σi), rather
than the former thread contribution σi . In the postcondition, lock
ownership and the invariant heap are released, the thread’s auxil-
iary is updated from σi to σ′i =̂ Φ(σi) (which implicitly changes
other threads’ ωj ). The environment’s auxiliary again becomes un-
determined, because the thread is no longer in the critical section
and the environment can change its contribution at will.

In the incrementor proof, the auxiliary function on unlock
(line 4) is Φn(σ) =̂ σ+n, which corresponds to the auxiliary up-
date code used in Section 1 to increment the auxiliaries y and
z. By unlocking, the thread’s auxiliary aS is updated from σi to
Φn(σi) = σi+n and the invariant subheap is released. Finally, the
existential ωi can be eliminated because it doesn’t appear in the
assertion, and we return to the more succinct aS �⇀σi + n.

The structured form of auxiliary update via unlockΦ has several
advantages when compared to the classical auxiliary code from
Section 1. First, since Φ is a pure function, it can’t perform side



effects to leak the contents of auxiliary state into the heap and thus
change the program’s semantics.

Second, Φ doesn’t directly name aS. Instead, the proof implic-
itly applies Φ to the aS value of the viewing thread. Thus, Φ can’t
possibly mutate other threads’ auxiliary contributions. In this sense,
SCSL differs from a number of related systems [2, 23, 24] which re-
quire ownership-tracking permissions to control which auxiliaries
can be changed by what auxiliary code (e.g., how the left thread
updates y and the right thread updates z in Section 1).

Most importantly, Φ can update the appropriate aS without
knowing the viewing thread’s identity, whereas the CSL proof up-
dates specific auxiliaries in each thread (e.g., y in the left thread,
and z in the right thread in Section 1). The independence from the
thread’s identity facilitates reusability: the same invariant, auxil-
iary code, and proof of incr can be used without any change, in con-
texts with two or three concurrent threads (Section 2.2), or with any
number of threads as we illustrate with the iterator (Section 3.2).

To ensure the soundness of parallel composition and framing,
however, the auxiliary function Φ must be local in the following
formal sense, where valid(α) means α is a defined PCM element.
Obviously, the incrementor’s Φn is local.

Definition 1. A partial function Φ on a PCM U is local, written
Φ :U ⇀L U, if for all α, β ∈ U, valid (α ⊕ β) and valid (Φ(α))
imply Φ (α⊕ β) = Φ(α)⊕ β.

Intuitively, Φ can be applied to aS with aO “framed” on by ⊕-
combination: it will act on aS but simply propagate aO without
change. This property makes Φ appropriate for modeling auxiliary
code for a thread to modify its auxiliary aS, but is unaffected by and
doesn’t affect the auxiliary aO of other threads running in parallel.

3. More Examples
3.1 Coarse-Grained Set with Disjoint Interference
We adapt a coarse-grained set example from Concurrent Abstract
Predicates [6] (in Section 6 we compare with this approach). If
threads perform logically disjoint operations (i.e., add or remove
distinct elements), then we can prove their parallel composition
with local reasoning. This is possible even if the operations in-
terfere physically on the data structure; for example, if the set is
implemented with a splay tree, the memory shape will depend on
the order of operations. Fortunately, at the level of abstraction of
set membership, the proof isn’t sensitive to the noncommutativity
of physical operations. Alternatively, we could specify the logical
disjointness using classical auxiliary state, but it leads to the same
problems as in the incrementor.

We assume a set library, whose procedures sadd and sremove
are sequential and can be run in a critical section preserving the
auxiliaries:
{v /∈ Σ ∧ [Own, σ, ω] set(x,Σ)} {[Own, σ, ω] set(x,Σ ] {v})}

sadd(x, v) sremove(x, v)
{[Own, σ, ω] set(x,Σ ] {v})} {[Own, σ, ω] set(x,Σ)}

Here v is drawn from some universe V of values, and set(x,Σ) is a
spatial predicate that means the finite subset Σ ⊆ V is represented
at pointer x. We can obtain a coarse-grained concurrent library by
wrapping each procedure in a critical section:

cadd(v) =̂ lock; sadd(x, v) ; unlock
cremove(v) =̂ lock; sremove(x, v); unlock

Although the coarse-grained implementation is inefficient because
threads must contend for the entire data structure, we can choose
suitable auxiliaries in(v) and out(v) to specify the procedures in a
local manner that only depends on the element being manipulated:

{aS �⇀ out(v)} cadd(x, v) {aS �⇀ in(v)}
{aS �⇀ in(v)} cremove(x, v) {aS �⇀ out(v)}

We can thus reason locally in each thread to prove the effect of
concurrently adding or removing three distinct elements:

{aS �⇀ (in(a)⊕ out(b)⊕ in(c))}
{aS �⇀ in(a)}
cremove(a)
{aS �⇀ out(a)}

{aS �⇀ out(b)}
cadd(b)

{aS �⇀ in(b)}

{aS �⇀ in(c)}
cremove(c)
{aS �⇀ out(c)}

{aS �⇀ (out(a)⊕ in(b)⊕ out(c))}

To verify the concurrent library in SCSL, the auxiliaries should
maintain the distributed, partitioned knowledge of which elements
are in or out of the data structure. We pick the auxiliary PCM
(V −⇀fin bool,], ∅) of finite partial maps from V to bool, with the
join] taking the union of maps with disjoint domain, and the empty
map ∅ as unit. Given such a finite map ϕ, the invariant I∗ (ϕ) =̂
set(x, ϕ−1[true]) states that the set contains exactly the elements
that ϕ maps to true. We define in(v), out(v) : V −⇀fin bool to map
v to true and false, respectively, and be undefined elsewhere.

Then we can prove cadd (and cremove similarly) as follows:

{aS �⇀ out(v)} precondition
{[��Own, out(v),−] emp} by CONSEQ
lock;
{∃ϕO.[��Own, out(v), ϕO] I∗(out(v) ] ϕO)} by LOCK
sadd(x, v);
{∃ϕO.[��Own, out(v), ϕO] I∗(in(v) ] ϕO)} by sadd
unlockΦv

;

{[��Own, in(v),−] emp} by UNLOCK
{aS �⇀ in(v)} by CONSEQ

When the program locks, the environment’s auxiliary ϕO comes
into scope. The initial invariant I∗(out(v) ] ϕO) is equivalent to
sadd’s precondition with Σ=(out(v) ] ϕO)−1[true]=ϕ−1

O [true];
sadd’s postcondition set(x, ϕ−1

O [true]]{v}) restores the invariant
I∗(in(v)]ϕO). Unlocking turns aS into Φv(out(v))=in(v), where

Φv(ϕ) =̂ λu.

true u = v and v ∈ dom ϕ
ϕ(u) u 6= v and u, v ∈ dom ϕ
undefined otherwise

Φv turns a finite map ϕ with v ∈ dom ϕ into a ϕ′ that behaves like
ϕ on all elements, except that it maps v to true; if v /∈ dom ϕ, then
Φv(ϕ) is undefined. It is straightforward to check that Φv is local.

3.2 Higher-order Iterator
We can prove a higher-order iterator that dynamically forks a
procedure f (itself possibly concurrent) to process each element
in a list.8 In SCSL, we can prove the iterator with a hypothetical f :

∀n:A. {aS �⇀ψ(n)}f (n):unit{aS �⇀φ(n)}
` ∀ns:list A. {aS �⇀ψ(ns)}iter(ns):unit{aS �⇀φ(ns)}

which assumes f (n) changes the local auxiliary contribution from
ψ(n) to φ(n), relative to some ambient type A, PCM (U,⊕, 0),
invariant I∗, and functions ψ, φ : A → U. The overall effect of
iter f ns is to change the local auxiliary contribution from ψ(ns)
to φ(ns), where ψ(ns) is

⊕
n∈ns ψ(n) and similarly for φ.

By embedding SCSL into the type theory of the Calculus of In-
ductive Constructions (CiC) (Section 5), however, we can explicitly
λ-abstract over f and give iter the specification (i.e., CiC type):

iter : ∀f :(∀n:A. {|aS �⇀ψ(n)|}unit{|aS �⇀φ(n)|}).
∀ns:list A. {|aS �⇀ψ(ns)|}unit{|aS �⇀φ(ns)|}

8 We use pure lists and pattern-matching for clarity, although we can also
prove the iterator for heap-allocated lists.



The proof outline for iter is:
iter =̂ λf . fix loop. ns.

match ns with
| nil ⇒ {aS �⇀ψ(nil)} ret () {aS �⇀φ(nil)}
| n′::ns′ ⇒

{aS �⇀ψ(n′::ns′)}
{aS �⇀ (ψ(n′)⊕ ψ(ns′))}
{aS �⇀ψ(n′) ~ aS �⇀ψ(ns′)}
{aS �⇀ψ(n′)} {aS �⇀ψ(ns′)}

f n′ loop ns′

{aS �⇀φ(n′)} {aS �⇀φ(ns′)}
{aS �⇀φ(n′) ~ aS �⇀φ(ns′)}
{aS �⇀ (φ(n′)⊕ φ(ns′))}
{aS �⇀φ(n′::ns′)}

ret ()

{aS �⇀φ(n′::ns′)}




iter is defined recursively by fix with two arguments: loop for recur-
sive calls and the list ns. The body pattern-matches the list: for nil,
it returns unit and the overall effect preserves the local contribution
ψ(nil) = 0 = φ(nil); otherwise for n′::ns′, it concurrently applies
f to the head element n′ and recurses on the tail ns′, then returns
unit, so the contribution changes from ψ(n′::ns′) to φ(n′::ns′).

Defining xincr2 to be either the sincr2 =̂ λn.(incr(n); incr(n))
or cincr2 =̂ λn.(incr(n) ‖ incr(n)) has the same effect of in-
crementing by twice the argument (Section 2.2), independently of
whether the program is sequential or concurrent:

∀n:N.{aS �⇀ 0} xincr2(n) {aS �⇀ 2× n}

Then, we can show that iterating xincr2 increments by twice the
sum of the list, using ψ( ) = 0 and φ(n) = 2× n:

∀ns:list N.{aS �⇀ 0} iter xincr2 ns {aS �⇀ 2×
∑
n∈ns n}

Finally, we can iterate again to add up a list of lists of numbers,
using ψ( ) = 0 and φ(ns) =

∑
n∈ns n for the outer iter:

∀nss:list (list N).{aS �⇀ 0} iter (iter xincr2) nss {aS �⇀ 2×
∑

n∈ns∈nss
n}

We can also iterate the concurrent set cadd procedure to show
that if initially none of the elements of the list are in the set, then
afterwards all of the elements are in the list, using ψ(v) = out(v)
and φ(v) = in(v):

∀vs:list V.{aS �⇀ out(vs)} iter cadd vs {aS �⇀ in(vs)}

Although iter has a dynamic forking pattern that depends on
the list argument and although f may spawn multiple threads,
subjective auxiliary state gives the iterator a robust specification.
We can use the same proof of iter for different types of list el-
ements (e.g., N, list N, and V ), different lists (e.g., any number
of elements), and procedures with different internal concurrency
(e.g., one thread in sincr2, two threads in cincr2, and argument-
dependent in (iter xincr2)).

4. Language and Logic
Language In the tradition of axiomatic program logics, the lan-
guage of SCSL splits into purely-functional expressions e (v when
the expression is a value), and commands C with effects of di-
vergence, state, and concurrency, and procedures F for commands
with arguments. Expressions are classified by types A, which, for
the purposes of this section, range over base types unit, nat, bool,
and pointers ptr (isomorphic to nat), all with the usual values.

The syntax of commands and procedures is:
C ::= lock | unlockΦ | x ← C1;C2 | C1 ‖ C2

| if e then C1 else C2 | F (e)
F ::= f | alloc | dealloc | read | write | ret | fix f .x .C

Commands and procedures include memory and locking opera-
tions, a monadic unit ret v that returns v and terminates, a monadic
bind (i.e., sequential composition) x←C1; C2 runs C1 then sub-
stitutes its result v1 for x to run C2 (we write C1;C2 when x /∈
FV(C2)), fork-join parallel composition C1 ‖ C2, a conditional, a
procedure application F (e), a procedure variable f , or a fixed-point
fix f .x.C for recursive procedures. Note that memory operations
and ret are technically procedures because they take arguments.

Like in a monadic functional language, such as Haskell, com-
mands return values. This enables avoiding mutable variables (i.e.,
a stack) in favor of immutable variables, which can be substituted
with expressions. A stack imposes a number of technical difficulties
in a Hoare-style logic [2, 23, 24], especially for supporting proce-
dures [14], so we prefer to avoid it.

In Section 5, we embed SCSL into the Calculus of Inductive
Constructions (CiC), which immediately provides us with a pure
language of expressions and specifications-level objects such as
assertions and auxiliary functions. The embedding also gives us
access to arbitrary CiC inductive types (e.g., list) and constructs
for pattern-matching against them. We can also write procedures
that abstract over commands and procedures (cf. the iterator in
Section 3.2). Presenting the full syntax of CiC is beyond the scope
of this paper, so we only present the fragment relevant to effectful
programs and Hoare-style reasoning about them.

Specifications SCSL is parametrized in the auxiliary PCM U and
a resource invariant I∗ index by U that describes the single, global
resource protected by the lock and unlock commands.

A command C satisfies the Hoare triple {p}C :A{q} if it
respects mutual exclusion and is memory-safe when executed from
a world satisfying p, and concurrently with any environment that
respects mutual exclusion. Furthermore, if C terminates, it returns
a value of type A in a world satisfying q. q may use a dedicated
variable res of type A to name the return result.

We use a procedure triple, ∀x:B . {p}F (x) :A{q}, to specify a
potentially recursive procedure F taking an argument x of type B
to a result of type A. The assertions p and q may depend on x. We
use Cartesian products A1×A2 for functions with more than one
argument, but curry the function for readability.

The SCSL judgments are hypothetical under a context Γ that
maps program variables x to their type and procedure variables f
to their specification. Each specification is allowed to depend on
the variables declared to the left.

Γ ::= · | Γ, x :A | Γ,∀x :B .{p}f (x) : A{q}

Γ does not bind logical variables. In first-order Hoare logics, logi-
cal variables are implicitly universally quantified with global scope.
In SCSL, we limit their scope to the Hoare triple in which they ap-
pear. This is required for specifying recursive procedures, where
a logical variable may be instantiated differently in each recursive
call [14]. We also assume a formation requirement on Hoare triples
FLV(p) ⊇ FLV(q), i.e., that all free logical variables of the post-
condition also appear in the precondition.

Figure 3 presents the inference rules for the SCSL judgments for
Hoare triples Γ ` {p}C :A {q} and Γ ` ∀x :B .{p}F (x) :A{q}.
We have discussed the memory and locking commands in Sec-
tion 2, so we proceed to describe the remaining inference rules.

Parallel composition The parallel composition C1 ‖ C2 forks
into two children threads for C1 and C2, and when they terminate
with return values vi of type Ai , the threads are joined into a single
return of the pair (v1, v2) of type A1 × A2. The rule reads as fol-
lows: (1) the parallel composition precondition p1 ~p2 can be split
into p1 and p2, (2) each thread Ci must be verified separately with
precondition pi and postcondition qi , and (3) the postconditions q1
and q2 can be recombined into the parallel composition postcondi-



Γ ` ∀x :A. {[µ, σ, ω] emp} alloc x : ptr {[µ, σ, if µ = Own then ω else −] res 7→ x}
Γ ` ∀x :ptr. {[µ, σ, ω] x 7→ −} dealloc x : unit {[µ, σ, if µ = Own then ω else −] emp}
Γ ` ∀x :ptr. {[µ, σ, ω] x 7→ ν} read x : A {[µ, σ, if µ = Own then ω else −] x 7→ ν ∧ res = ν}
Γ ` ∀x :ptr.∀y:A. {[µ, σ, ω] x 7→ −} write x y : unit {[µ, σ, if µ = Own then ω else −] x 7→ y}
Γ ` {[��Own, σ,−] emp} lock : unit {∃ω.[Own, σ, ω] I∗ (σ ⊕ ω)}
Γ ` {[Own, σ, ω] I∗ (Φ(σ)⊕ ω)} unlockΦ : unit {[��Own,Φ(σ),−] emp}
Γ ` ∀x :A. {[µ, σ, ω] emp} ret x : A {[µ, σ, if µ = Own then ω else −] emp ∧ res = x}

Γ ` {e = true ∧ p}C1 : A{q}
Γ ` {e = false ∧ p}C2 : A{q}

Γ ` {p}if e then C1 else C2 : A{q}
IF

Γ ` {p1}C : A{q1} Γ ` {p2}C : A{q2}
Γ ` {p1 ∧ p2}C : A{q1 ∧ q2}

CONJ
Γ ` {p}C : A{q} α /∈ dom Γ

Γ ` {∃α:A.p}C : A{∃α:A.q}
EXIST

Γ ` {p1}C : A{q1} Γ ` (p1, q1) v (p2, q2)

Γ ` {p2}C : A{q2}
CONSEQ

Γ ` {p}C : A{q}
Γ ` {p ~ r}C : A{q ~ r}

FRAME

Γ ` {p}C1 : B{q} Γ, x :B ` {[x/res]q}C2 : A{r} x 6∈ FV(r)

Γ ` {p}x ← C1;C2 : A{r}
SEQ

Γ ` {p1}C1 : A1{q1} Γ ` {p2}C2 : A2{q2}
Γ ` {p1 ~ p2}C1 ‖ C2 : A1 ×A2{[res.1/res]q1 ~ [res.2/res]q2}

PAR

∀x :B .{p}f (x) : A{q} ∈ Γ

Γ ` ∀x :B .{p}f (x) : A{q}
HYP

Γ, ∀x :B .{p}f (x) : A{q}, x :B ` {p}C : A{q}
Γ ` ∀x :B .{p}(fix f .x .C )(x) : A{q}

FIX
Γ ` ∀x :B .{p}F (x) : A{q} Γ ` e : B

Γ ` {[e/x ]p}F (e) : A{[e/x ]q}
APP

Figure 3. Subjective CSL rules Γ ` {p}C : A{q} and Γ ` ∀x :B .{p}F (x ) : A{q}.

tion q1~q2, with the projections from the resulting pair substituted
for the dedicated variable res.

The precondition p1 ~ p2 expresses that the initial world for
the parent thread has the form h1⊕ h2;µ1⊕µ2;σ1⊕σ2;ω. The
left child receives the world h1;µ1;σ1;σ2⊕ω in its precondition
p1, and dually for the right child and p2. The splitting of h , µ
and σ components reflects that the children divide the local heap
and contribution of the parent thread. The left child’s environment
contribution σ2⊕ω reflects that upon forking C2 becomes part of
C1’s environment, and a dual remark applies to the right child.

The parallel composition rule thus states that if a partition sat-
isfying the preconditions can be found of the initial world, then a
partition satisfying both postconditions can be found of the end-
ing world. Intuitively, the rule is sound because the required parti-
tion of the ending state can be obtained by executing C1, C2, and
their common environment in an interleaved manner, while updat-
ing their respective values of aS and aO. Whenever one thread’s
aS �⇀σi is updated, the aO ↪−⇀ωj’s of the other two threads must
be updated correspondingly in order to preserve the coherence
between views, that is, that every thread i sees the same total
τ = σi ⊕ ωi .

Fixed points We support a combinator fix for general recursion,
rather than just while-loops. The iterator (Section 3.2) requires fix
because of its dynamic forking structure; it isn’t tail recursive and
thus difficult to write using a while-loop. The inference rule re-
quires proving a Hoare triple for the procedure body, under a hy-
pothesis that the recursive calls satisfy the same triple. In practice,
when writing recursive programs, the assertions p and q have to be
supplied by hand (they cannot be inferred automatically), and they
essentially correspond to a loop invariant.

Framing The FRAME rule allows splitting the world into p ~ r,
verifying the command with precondition p and postcondition q,
then recombining the postcondition with the framed world into
q ~ r. Note that the rule uses ~ which allows auxiliaries to also
be framed. Somewhat surprisingly, the auxiliary PCM U need not
be cancellative.9 This allows us to prove a concurrent maximum
program (not shown) that uses the PCM (N,max, 0) which is not
cancellative, yet we can frame the thread’s auxiliary contribution.

9 Cancellativity means that if α⊕ β = β ⊕ γ, then β = γ; a property that
the heap PCM satisfies and is often associated with the FRAME rule.

Cancellativity for heaps is required in the soundness proofs for
CSL (and SCSL) in order to uniquely determine the heap trans-
fered between the thread and the shared resource upon locking and
unlocking [19, 3]. In SCSL, the auxiliary PCM need not be can-
cellative, because there is no analogous transfer of auxiliaries.

Other Rules The procedure APPlication rule uses the typing
judgment for expressions Γ` e :A, which is the customary one
from a typed λ-calculus, so we omit its rules; in Section 5, this
judgment will correspond to CiC’s typing judgment.

The CONSEQ rule uses the judgment Γ` (p1, q1)v (p2, q2),
which generalizes the customary side conditions p2⇒ p1 for
strengthening the precondition and q1⇒ q2 for weakening the
postcondition, to deal with the local scope of logical variables (cf.
Section 5.4). The other rules are standard from Hoare logic.

5. Semantics
We define semantic objects of actions for heap mutation and ac-
tion trees for control flow, which yield finite, partial approxima-
tions of the behavior of SCSL commands; their operational seman-
tics gives the low-level execution relative to the full heap (Sec-
tion 5.1). We define the high-level notions of coherent configu-
ration to maintain an explicit partition between the shared state
heaplet and the thread’s and environment’s private heaplets and
auxiliaries, and subjective rely/guarantee transitions between con-
figurations for environment and thread interference that respect mu-
tual exclusion (Section 5.2). Both the operational semantics and
subjective rely/guarantee transitions use a large footprint, although
SCSL enjoys small footprint specifications.

We relate the low-level operational semantics to the high-level
subjective rely/guarantee transitions by a modal always predicate
(Section 5.3) that ensures a tree is resilient to any amount of sub-
jective rely interference, and that all operational steps by a tree are
memory-safe and correspond to subjective guarantee interference.

The denotational semantics (Section 5.4) interprets judgments
by the monadic Hoare type {|p|}A{|q|}, which is a complete lat-
tice of trees that are always-safe to run from any initial configu-
ration that satisfies precondition p and if they terminate produce
a final configuration that satisfies postcondition q. The complete
lattice structure makes the semantic domain suitable for modeling
recursion. A command is denoted by the set of its tree approxima-
tions, and a procedure is denoted by a function into a set of trees.



` /∈ domh

h; Alloc v ;a [h|` Z⇒ v]; `

` ∈ domh

h; Dealloc `;a h \ `; ()

h(`) = v : A

h; ReadA `;a h; v

` ∈ domh

h; Write ` v ;a [h|` Z⇒ v]; () h; Idle ;a h; ()

h(`) = v1

h; CAS ` v1 v2 ;a [h|` Z⇒ v2]; true

h(`) = v v 6= v1

h; CAS x v1 v2 ;a h; false

h; a ;a h ′; v

h; Cons a Φ k
nil
;t h

′; (k v) h; Par (Ret v1) (Ret v2) k
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π
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π
;t h
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R::π
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′
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Figure 4. Action stepping h; a ;a h ′; v (top) and tree stepping
h; t

π
;t h

′; t′ (bottom).

The soundness of SCSL (Section 5.5) follows from showing that
the denotation of memory operations satisfy the appropriate always
predicate, and that always satisfies certain closure conditions. In
Section 6, we discuss the relationship of our denotational seman-
tics to existing semantics for CSL.

We choose the Calculus of Inductive Constructions (CiC) [18]
as our meta logic. This has several important benefits. First, we
can define a shallow embedding of SCSL into CiC that allows us
to program and prove directly with the semantic objects, thus im-
mediately lifting SCSL to a full-blown programming language and
verification system with higher-order functions, abstract types, ab-
stract predicates, and a module system. We also gain a powerful
dependently-typed λ-calculus, which we use to formalize all se-
mantic definitions and metatheory, including the definition of ac-
tion trees by iterated inductive definitions [17, 18], specification-
level functions (e.g., auxiliary functions Φ), and programming-
level higher-order procedures (e.g., the iterator). Finally, we were
able to mechanize the entire semantics and metatheory [16] in the
Coq proof assistant implementation of CiC.

We use set-theoretic and type-theoretic notation as appropriate.
The reader unconcerned with the fine points of the type theory, may
read a typing judgment x:A as a set membership predicate x ∈ A.

5.1 Actions, Trees, and Operational Semantics
The type family action A of A-returning actions includes construc-
tors for the SCSL memory commands, an idle action returning unit,
and a compare-and-swap CAS used to implement locking:

Alloc (v:B) : action ptr
Dealloc (x:ptr) : action unit

ReadA (x:ptr) : action A
Write (x:ptr) (v:B) : action unit

Idle : action unit
CAS (x:ptr) (v1:B) (v2:B) : action bool

The operational semantics of actions h; a ;a h ′; v (Figure 4,
top) steps an A-returning action a relative to an initial heap h , and
produces an ending heap h ′ and result v of type A. The operational
semantics of the basic memory operations is standard. The CAS
action takes a pointer ` and two values v1 and v2, it atomically
checks whether ` contains v1 and, if so, replaces it with v2 and
returns true; otherwise, it preserves the heap and returns false.

The type family tree A of A-returning trees is defined by an
iterated inductive definition:

Bottom : tree A
Ret (v:A) : tree A
Cons (a:action B) (Φ:U⇀L U)(k:B → tree A) : tree A
Par (t1:tree B1) (t2:tree B2) (k:B1 × B2 → tree A) : tree A

Since trees have finite depth, they can only approximate divergent
computations, thus the Bottom tree indicates an incomplete ap-
proximation. Ret v is a terminal computation that returns value
v :A. Cons a Φ k sequentially composes a B -returning action a
with a continuation k that takes a’s return value and generates
the rest of the approximation; the tree also carries a local auxil-
iary function Φ:U⇀L U for mutating auxiliary state (Section 5.2).
Par t1 t2 k is the parallel composition of trees t1 and t2, and a con-
tinuation k that takes the pair of their results when they join. CiC’s
iterated inductive definition permits the recursive occurrences of
tree to be nonuniform (e.g., tree Bi in Par) and nested (e.g., the
positive occurrence of tree A in the continuation). Since the CiC
function space → includes case-analysis, the continuation may
branch upon the argument, which captures the pure computation of
conditionals. This closely corresponds to the operational intuition
and leads to a straightforward denotational semantics.

To explicitly quantify over the nondeterminism of concurrent
interleaving, we define a schedule ζ to be a list of paths, where a
path π is a list of L or R symbols that traverse the Left or Right
branches of Par trees and select a β-redex (i.e., an action or the
parallel composition of two Ret trees).

The small-step operational semantics of trees h; t
π
;t h ′, t′

(Figure 4, bottom) is defined inductively on π to step tree t from
initial heap h to a reduced tree t′ in ending heap h ′. Stepping is
undefined for the Bottom and Ret trees. For the Cons and Par
trees, the path π selects a β-redex and performs the appropriate
reduction. Note that only the heap and action in the tree are needed
to define stepping, which captures the intuition that auxiliary state
U and auxiliary functions Φ have no bearing on the operational
semantics.

The denotation of SCSL Hoare triples will establish that “well-
specified programs don’t go wrong”. We follow a Milner-style
approach where only well-typed (i.e., well-specified) programs are
given meaning and ensure that every action and tree encountered in
the operational semantics is memory-safe relative to the given heap;
thus we can avoid explicit fault states in the operational semantics
and defining the semantics of unsafe programs.

Definition 2 (Action and auxiliary function at a path). Given a tree
t and path π, the action a and local auxiliary function Φ appear in
t at path π, written (a,Φ) = t @ π, iff

π = nil and t = Cons a Φ k
or π = nil and t = Par (Ret ) (Ret ) k and (a,Φ) = (Idle, id)
or π = L::π′ and t = Par t1 and (a,Φ) = t1 @ π′

or π = R::π′ and t = Par t2 and (a,Φ) = t2 @ π′

We write a = t @ π instead of (a,−) = t @ π when we are
interested only in the action a , and likewise for Φ.

Definition 3 (Safety). 1. Action a is safe for the heap h , if there
exist h ′ and v such that h; a ;a h ′, v.

2. Tree t is safe for a heap h and path π, if a = t@π implies that
a is safe for h .

3. Tree t is safe for a heap h and a schedule ζ if either (1) ζ = nil,
or (2) if ζ = π::ζ′ then t is safe for h and π, and t′ is safe for
h ′ and ζ′ for all h ′ and t′ such that h; t

π
;t h

′; t′.
4. Tree t is safe for a heap h , written memsafe h t, if it is safe for

h , for any schedule ζ.

Intuitively, t is memory-safe for heap h if no matter which steps
one takes through t starting from h , the actions in the tree will not
attempt to dereference a non-existent or ill-typed memory cell, or
deallocate an unallocated cell. Bottom and Ret trees are trivially
safe because they don’t step. A Cons tree is safe if it’s head action
is safe and the continuation is safe. A Par tree is safe if both of it’s
subtrees are safe, and when they return the continuation is safe.



5.2 Coherent Configurations and Subjective Rely/Guarantee
The operational semantics yields execution over the full heap, but
doesn’t contain enough information for enforcing SCSL specifica-
tions regarding mutual exclusion for critical sections over the re-
source invariant and auxiliaries. We need to extend heaps with ad-
ditional information which is the logical state of SCSL.

We define coherent configurations (hS;µS;σS | hR | hO;µO;σO)
consisting of the thread’s private heap hS, lock ownership status µS,
and auxiliary σS; the shared heap hR containing the dedicated lock
location lk and the shared resource satisfying the resource invariant
I∗; and the environment’s private state hO, µO, and σO. Subjectiv-
ity thus appears in the semantics as the logical partition of heaps,
lock ownership status, and auxiliaries from the point of view of the
thread being specified. Although environment threads have their
own private states, the configuration conflates them into a single
private state for the environment as a whole.

Coherent configurations are defined relative to the user-chosen
auxiliary PCM U and resource invariant I∗ over U and heap such
that I∗ (α) is precise10 for all α ∈ U. As in CSL, precision is re-
quired to uniquely determine the invariant heaplet to be transferred
between the shared and private heaplets. Moreover, we assume a
reserved location lk for implementing the lock.

Definition 4 (Coherent Configuration). A coherent configuration
is a 7-tuple c = (hS;µO;σO | hR | hO;µO;σO) such that:

1. valid (hS ⊕ hR ⊕ hO), valid (µS ⊕ µO), valid (σS ⊕ σO)

2. µS ⊕ µO =��Own⇒ hR |=SL lk 7→ false ∗ I∗ (σS ⊕ σO)

3. µS ⊕ µO = Own⇒ hR |=SL lk 7→ true

Intuitively, all components of a configuration join in a valid
way (1). Mutual exclusion means that (2) when nobody owns lk
(µS ⊕ µO = ��Own), then the shared heap contains the lock lk set
to false and a heaplet satisfying I∗(σS ⊕ σO) relative to the total
auxiliary; and (3) if either the thread or its environment owns lk
(µS ⊕ µO = Own), then the shared heap only contains the lock lk
set to true because the owner has acquired the invariant heaplet.

The large footprint configuration is needed to define the transi-
tions and establish the soundness of the logic. However, the opera-
tional semantics only uses the full heap hS ⊕ hR ⊕ hO, and the as-
sertions only require the small footprint of the world hS;µS;σS;σO.
Recall that the environment’s auxiliary σO is needed in the critical
section to establish its invariance and prove that I∗ is preserved (cf.
the proof of incr in Section 2.4); but the environment’s components
hO and µO are omitted from assertions because they are not needed
for local verification of a thread.

Definition 5. A configuration c = (hS;µS;σS | hR | hO;µO;σO)
has heap hp(c) =̂ hS⊕hR⊕hO and world wd(c) =̂ hS;µS;σS;σO.

Given the spatial description of configurations, we can define
the temporal notions of subjective rely/guarantee transitions ;∗R

and Φ
;G for environment and thread interference on a configuration

that respect mutual exclusion and auxiliary updates.

Definition 6 (Subjective guarantee). The subjective guarantee
transition c

Φ
;G c′ holds relative to Φ :U ⇀L U if the config-

urations c and c′ have one of the forms (where dO = hO;µO;σO):

10 A heap predicate p is precise if it determines a unique subheap: for every
heap h with subheaps h1, h2, if h1 |=SL p and h2 |=SL p then h1 = h2.

Priv c = (hS ;µS ;σS | hR | dO)
c′= (h ′S ;µS ;σS | hR | dO)

Acq c = (hS ;��Own ;σS | [lk Z⇒ false]⊕ hinv | dO)
c′= (hS ⊕ hinv; Own ;σS | [lk Z⇒ true] | dO)

Rel c = (hS ⊕ hinv; Own ;σS | [lk Z⇒ true] | dO)
c′= (hS ;��Own ; Φ(σS) | [lk Z⇒ false]⊕ hinv | dO)

Subjective guarantee transitions correspond to the changes that
a thread can perform: mutation on the thread’s Private heap,
Acquiring the resource by locking and transferring the invariant
heaplet from the shared state to the thread’s private heap, and du-
ally Releasing the resource. In the last case, the auxiliary function
Φ uniquely determines how to change the thread’s view σS. Note
that in any case, the environment’s private state is preserved.

The environment threads make complementary transitions on
the shared state and the environment’s private state. However, as
we will define Hoare triples to abstract over arbitrary environment
interference, a coarser view suffices to describe mutual exclusion.

Definition 7 (Subjective rely). The subjective rely transition c ;∗R
c′ holds if the configurations have the form c = (hS;µS;σS |
hR | hO;µO;σO) and c′ = (hS;µS;σS | h ′R | h ′O;µ′O;σ′O), and if
µS = Own then σ′O = σO.

A subjective rely transition represents arbitrary environment
interference that respects mutual exclusion. The environment can
mutate its private state and the shared state arbitrarily as long
as coherence is preserved. If the thread Owns the lock, then the
environment’s auxiliary must remain fixed. Intuitively, ;∗R is the
reflexive-transitive closure of the transpose of ;G, i.e., where
mutation is done on the environment’s private state instead of the
thread’s private state, and with any possible auxiliary function Φ.
Note that in any case, the thread’s private state is preserved.

5.3 Modal Predicates
We next define a number of modal predicates over all possible steps
of execution to relate the operational semantics over heaps and the
subjective rely/guarantee transitions over coherent configurations.

Definition 8 (Modal predicates). The predicates alwaysζ c t p,
always c t P , and after c t Q are defined relative to a schedule ζ,
configuration c, A-returning tree t, and predicates
P : config→ tree A→ prop and Q : config→A→ prop:

alwaysζ c t P =̂
∀cR. c ;∗R cR ⇒

memsafe (hp(cR)) t ∧ P cR t ∧
∀π ζ′ hG t

′. ζ = π::ζ′ ∧ hp(cR); t
π
;t hG; t′ ⇒(∃cG Φ. hp(cG) = hG ∧ Φ = t @ π ∧

cR
Φ
;G cG ∧ alwaysζ

′
cG t
′ P

)


always c t P =̂ ∀ζ. alwaysζ c t P
after c t Q =̂ always c t (λc′ t′. ∀v′. t′ = Ret v′ ⇒ Q c′ v′)

always c t P expresses the fact that starting from configuration
c, the tree t remains memory-safe and the user-chosen predicate P
holds of all intermediate configurations and trees, for any sched-
ule ζ and under any environment interference. The helper predicate
alwaysζ c t P is defined by induction on ζ: the environment is al-
lowed to make arbitrary subjective rely interference from c to cR,
the resulting configuration must have a heap that’s memory safe for
t and the predicate P cR t holds; moreover, if the schedule is π::ζ′

and t steps to hG and t′, then there must be a subjective guarantee
transition from cR to cG whose heap is hG, and the predicate re-
curses on ζ′, cG, and t′. Mutual exclusion is thus ensured because
all transitions conform to subjective rely/guarantee transitions.

after c t Q encodes that t is memory safe and respects mutual
exclusion; however, Q c′ v′ only holds if t steps completely to
Ret v′ in configuration c′.



5.4 SCSL Denotational Semantics
The denotational semantics of SCSL commands and judgments
are defined simultaneously. The mutual recursion is neccessary
because the denotation of judgments depends on the denotation of
commands and procedures, while the denotation of a fixed point
procedure depends on the denotation of its procedure triple to
determine the lattice in which to take the fixed point.

We denote SCSL programs as sets T of trees of increasing
precision including the Bottom tree, which is the coarsest possible
approximation of any program:

prog A =̂ {T ⊆ P(tree A) | Bottom ∈ T}.
To model recursion, we construct a complete lattice of Hoare

types to get fixed points. We use the after predicate to ensure the
tree approximations are memory safe, respect mutual exclusion,
and satisfy their SCSL specifications.

Definition 9 (Hoare types). Fix precondition p : world→ prop
postcondition q :A→world→ prop, with free logical variables
FLV(p, q). The Hoare type {|p|}A{|q|} is defined as follows.

{|p|}A{|q|} =̂ {T ∈ prog A | ∀FLV(p, q) (c :config) (t ∈ T ).
(wd(c) |= p)⇒ after c t (λc′ v′.wd(c′) |= q v′)}

Intuitively, the denotation of a SCSL judgment {p}C :A{q} is
the set of trees T denoting the command C , together with a proof
that for any initial configuration c whose world wd(c) satisfies
the precondition p, then after executing any tree t ∈ T from c
produces some result value v′ and final configuration c′ whose
world wd(c′) satisfies postcondition q. The definition quantifies
over the free logical variables of p and q in order to give these
variables local scope, as stipulated in Section 4.

SCSL assertions (Section 2.3) are arbitrary CiC predicates
of type world → prop over worlds, where world =̂ heap ×
mtx × U × U. For example, the predicate aS �⇀σ′ is defined as
λw:world. (∃h µ ω.w = h;µ;σ′;ω). We retain the w |= p nota-
tion for the application p w.

Lemma 1. The type {|p|}A{|q|} is a complete lattice, with set union
as the join operator, and {Bottom} as the unit element.

The type ∀x:B . {|p|}A{|q|} of functions mapping x :B into
{|p|}A{|q|}, where A, p, q may depend on x, is also a complete
lattice, with the join operator on functions defined pointwise, and
the constant {Bottom} function as the unit element.

The denotation of judgments [[Γ ` J ]] (Figure 5, top) turns
SCSL judgments into CiC typing judgments (`CiC). A command
specification {p} − :A{q} is denoted by the CiC type {|p|}A{|q|},
and a procedure specification ∀x:B . {p}− :A{q} is denoted by the
CiC monadic function type ∀x:B . {|p|}A{|q|}.

The (p1, q1) v (p2, q2) judgment generalizes the usual side
conditions on the rule of CONSEQuence: (1) p2 ⇒ p1 for strength-
ening the precondition and (2) q1 ⇒ q2 for weakening the postcon-
dition, and adapts them to the local interpretation of logical vari-
ables. The first conjunct in the denotation existentially quantifies
the respective logic variables of p2 and of p1 to generalize (1); the
quantification is existential to match the definition of Hoare types,
which quantify universally over FLV(p, q) and have a negative oc-
currence of the precondition. The second conjunct generalizes (2)
by universally quantifying the respective logic variables, taking into
account that the logic variables of qi are constrained by the precon-
dition pi .

The denotation of commands and procedures (Figure 5, bot-
tom) is subsidiary to that of judgments because the fixed-point con-
struction is indexed by the argument and return types, and the pre-
and postconditions. An A-returning command C is denoted by a set
of approximating trees in prog A, and an A-returning procedure F
with argument B is denoted by a set of trees in B → prog A.

[[·]] =̂ ·
[[Γ, x:A]] =̂ [[Γ]], x : A
[[Γ, ∀x:B . {p} f (x):A {q}]] =̂ [[Γ]], f : ∀x:B . {|p|}A{|q|}

[[Γ ` {p}C :A {q}]] =̂ [[Γ]] `CiC [[C ]] : {|p|}A{|q|}
[[Γ ` ∀x :B .{p}F (x) : A{q}]] =̂ [[Γ]] `CiC [[F ]] : ∀x:B . {|p|}A{|q|}
[[Γ ` e : A]] =̂ [[Γ]] `CiC e : A
[[Γ ` (p1, q1) v (p2, q2)]] =̂

[[Γ]] `CiC ∀w w′:world. (w |= (∃v̄2. p2)⇒ (∃v̄1. p1)) ∧
((∀v̄1. w |= p1 ⇒ w′ |= q1)⇒ (∀v̄2. w |= p2 ⇒ w′ |= q2))

where v̄i =̂ FLV(pi , qi )

[[allocA]] (x:A) =̂ {Bottom,Cons (Alloc x) id Ret}
[[dealloc]] (x:ptr) =̂ {Bottom,Cons (Dealloc x) id Ret}
[[readA]] (x:ptr) =̂ {Bottom,Cons (ReadA x) id Ret}

[[writeA]] (x:ptr) (y:A) =̂ {Bottom,Cons (Write x y) id Ret}
[[lock]] =̂ {tk | k ∈ N}
where t0 =̂ Bottom,

tk+1 =̂ Cons (CAS lk false true) id
(λx. if x then Ret () else tk)

[[unlockΦ]] =̂ {Bottom,Cons (Write lk false) Φ Ret}
[[retA]] (x:A) =̂ {Bottom,Ret x}

[[x← C1;C2]] =̂ [[C1]]; (λx. [[C2]])
[[C1 ‖ C2]] =̂ [[C1]] ‖ [[C2]]

[[if e then C1 else C2]] =̂ if e then [[C1]] else [[C2]]
[[F (e)]] =̂ [[F ]] (e)

[[fix f B,A,p,q . x.C ]] =̂ lfp∀x:B. {|p|}A{|q|} (λf .λx. [[C ]])

Figure 5. Denotational semantics of SCSL judgments (top), and
commands and procedures (bottom).

Each SCSL memory command is denoted by a pair of approxi-
mations: Bottom, and a Cons tree with the appropriate action and
a Ret continuation. We use the identity function on U as our aux-
iliary function (which is obviously local) because memory com-
mands don’t change auxiliary state.

The lock command is denoted by the set of approximations of
a loop around a CAS to atomically change the contents of the ded-
icated lock lk from false to true, until it succeeds. Intuitively, this
is an explicit least fixed point construction. The unlockΦ command
writes false into the dedicated pointer lk and updates the auxiliary
state according to the user-provided local auxiliary function Φ.

The sequential composition of commands uses the sequential
composition (T1;K2) ∈ prog B of a set of trees T1 ∈ prog A and
a function into a set of trees K2 ∈ A→prog B , which concatenates
t1 ./ K2 each tree t1 ∈ T1 with a continuation in K2.

T1;K2 =̂
⋃
{t1 ./ K2 | t1 ∈ T1}

where Ret v ./ K =̂ K v
Par t1 t2 k ./ K =̂ {Par t1 t2 k′ | ∀x. k′ x ∈ (k x ./ K )}
Cons a Φ k ./ K =̂ {Cons a Φ k′ | ∀x. k′ x ∈ (k x ./ K )}

Bottom ./ K =̂ {Bottom}

The definition is well-founded because the continuation k′ approx-
imates trees in k x ./ K for every x, as permitted by the iterated
inductive definition.

The parallel composition of commands uses the parallel com-
position T1 ‖ T2 ∈ prog (A1×A2) of sets of trees T1 ∈ prog A1

and T2 ∈ prog A2, which includes Bottom and all the pairwise
parallel compositions of trees in T1 and T2.

T1 ‖ T2 =̂ {Bottom} ∪ {Par t1 t2 Ret | t1 ∈ T1 ∧ t2 ∈ T2}

Since all SCSL program constructors preserve monotonicity, the
fix f .x.C procedure can take the least fixed point lfp of the function
λf . λx. [[C ]] by the Knaster-Tarski theorem.



5.5 Modal Lemmas and Soundness Theorem
We culminate with the proof of soundness of the interpretation. We
have carried all of these proofs in Coq [16], they usually proceed
by an induction on the schedule ζ.

The Determinacy lemma means subjective guarantee transitions
from a configuration that result in equal heaps, also result in equal
configurations (i.e., with equal auxiliaries and heap partitions).
Thus, stepping a tree in always uniquely determines the auxiliary
state, which is crucial for the soundness of the CONJunction rule.

Lemma 2 (Determinacy of Subjective Guarantee transitions). If
c

Φ
;G c1, c Φ

;G c2, and hp(c1) = hp(c2), then c1 = c2.

The Universal lemma states that the modal always commutes
with universal quantification, which yields to the soundness of an
infinitary CONJunction rule. The assumption always c t (λc′ t′.True)
makes the lemma hold when the quantification over x is vacuous.

Lemma 3 (Universal). If always c t (λc′ t′.True), then always
commutes with universal quantification:

always c t (λc′ t′.∀x.P x c′ t′) iff ∀x. always c t (λc′ t′.P x c′ t′).

The Normality lemma corresponds to weakening the postcondi-
tion, which is needed for the proof of the CONSEQ rule.

Lemma 4 (Normality for after). If after c t Q1 and Q1 c′ v′ ⇒
Q2 c′ v′ for all c′ and v′, then after c t Q2.

Closure under sequential composition justifies the SEQ rule: q
holds at the end of a concatenated tree if the final configuration of
the prefix can be used as an initial configuration for the suffix to
show q holds after.

Lemma 5 (Closure under sequential composition). If t12 ∈ t1 ./
T2 and after c t1 (λc′ v′.∀t′. t′ ∈ T2 v

′ ⇒ after c′ t′ Q), then
after c t12 Q .

Closure under parallel composition justifies the PAR rule. Intu-
itively, it holds because when (an approximation t2 of) C2 takes a
step over its private and shared state, it amounts to ;∗R environ-
ment interference on (an approximation t1 of) C1, and vice versa.
Note that the pattern of rearranging subjective thread/environment
components recurs at the level of triples d = h;µ;σ: the parallel
composition uses (d1 ⊕ d2, dO) and the left and right child threads
use (d1, d2 ⊕ dO) and (d2, d1 ⊕ dO), respectively.

Lemma 6 (Closure under parallel composition). If after (d1 | hR |
d2 ⊕ dO) t1 Q1 and after (d2 | hR | d1 ⊕ dO) t2 Q2, then
after (d1 ⊕ d2 | hR | dO) (Par t1 t2 Ret) (Q1 ~Q2), where

Q1 ~Q2 =̂ λc′ v′. ∃d ′1 d ′2 h ′R d ′O. c
′ = (d ′1 ⊕ d ′2 | h ′R | d

′
O) ∧

Q1 (d ′1 | h ′R | d
′
2 ⊕ d ′O) (v′.1) ∧

Q2 (d ′2 | h ′R | d
′
1 ⊕ d ′O) (v′.2)

Finally, the Frame lemma can be viewed as an instance of the
Parallel lemma, by taking C2 to be the idle thread that does not
change the heap or auxiliaries.

Lemma 7 (Frame). If after (d1 | hR | d2 ⊕ dO) t Q , then
after (d1 ⊕ d2 | hR | dO) t Q ′, where

Q ′ =̂ λc′ v′. ∃d ′1 h ′R d ′O. c
′ = (d ′1 ⊕ d2, h ′R, d

′
O) ∧

Q (d ′1 | h ′R | d2 ⊕ d ′O) v

Theorem 1 (Soundness). If Γ ` J , then [[Γ ` J ]].

Proof. By induction on the derivation of J . Each basic command
is sound because the pre- and postconditions are stable under en-
vironment interference, the precondition implies the command is
memsafe, and the resulting configuration satisfies the postcondi-
tion. The SEQ, PAR and FRAME rules are sound by Lemmas 5,
6, and 7. The fix rule is sound by the Knaster-Tarski theorem.

The CONJ rule is sound by Lemma 3, and the CONSEQ rule by
Lemma 4. The EXISTential rule and IF rules are derivable. Since
SCSL procedures are interpreted as (monadic) CiC functions. the
procedure APPlication and HYPothesis rules are sound by the func-
tion application and hypothesis rules of CiC.

6. Related Work
Owicki and Gries’ Resource Invariants (RI) [21] emphasizes a
spatial specification of shared state that usually suffices for coarse-
grained concurrency. Jones’ Rely/Guarantee (RG) [12] emphasizes
a temporal specification of thread and environment interference on
shared state that is appropriate for fine-grained concurrency and can
avoid some of the auxiliary state that appears in RI proofs.

The combination of RI or RG with Separation Logic in Concur-
rent Separation Logic (CSL) [19], RGSep [26], SAGL [9, 8], and
Deny-Guarantee [7] has proved fruitful for the compositional veri-
fication of stateful, concurrent programs. However, to prove nonin-
variant properties as in the incrementor example, those logics still
require auxiliary state to relate local program assertions to global
(spatial or temporal) invariants. Auxiliary state makes the proof of a
single thread sensitive to the global thread structure, which prevents
local reasoning and leads to noncompositionality. In SCSL, subjec-
tive auxiliary state suffices to overcome this noncompositionality
and recovers local reasoning in a CSL-style logic. On the other
hand, RG specifications give fine-grained descriptions of possible
interference, which to our knowledge isn’t possible with subjective
auxiliary state and RI alone.

Whereas CSL and existing variants use local specifications that
only refer to the program’s private state, SCSL gains expressivity
through the aO view to provide non-local information about the
environment’s auxiliary contribution, but retains CSL-style local
reasoning by leveraging the PCM structure of auxiliaries to avoid
sensitivity to the environment’s thread structure.

Concurrent Abstract Predicates (CAP) [6] by Dinsdale-
Young et al.’s is an axiomatic logic that can prove the incrementor
and coarse-grained set without auxiliary state. A CAP proof in-
volves defining a set of actions, which are RG-style transitions on
private and shared state, which includes concrete heap and abstract
capabilities that identify enabled actions (thus there is a subtle
mutual recursion between an action and the capability to perform
the action). Deductions in a proof use the actions to move heap
and capabilities between the private and shared states. Intermediate
assertions must be checked to be stable under the environment’s
action interference, which is standard in RG-style proofs. Whereas
our prototype SCSL only provides one lock with global scope,
CAP provides multiple shared regions each with an associated set
of protocols (i.e., RG interference specifications).

Although CAP overcomes the need for auxiliary state, in our
opinion the corresponding proofs of the incrementor and coarse-
grained set are more indirect than the noncompositional RI proofs
based on auxiliary state. Moreover, we consider the complexity
of fine-grained interference reasoning should be unnecessary for
coarse-grained concurrency, where critical sections are meant to
abstract away from interference. To achieve compositional proofs
of the same programs in SCSL, it suffices to pick a PCM and
resource invariant, and to conduct RI-style sequential reasoning in
the critical section. Although SCSL assertions go beyond private
state in mentioning the environment’s contribution aO, it is only
tracked in the critical section where it is known to remain fixed, so
we can avoid reasoning about stability under interference.

Since SCSL follows the RI tradition, it is best suited for coarse-
grained concurrency; by contrast, CAP is more general because
the interference specifications yield compositional proofs for both
coarse- and fine-grained concurrency. Moreover, abstract predi-
cates enable modularity by giving different library implementa-



tions the same specification, thus hiding their internal concurrency.
Since the SCSL embedding into CiC gives us access to abstraction
over predicates (as well as over types and higher-order modules),
SCSL already supports this kind of modularity. However, to reach
the expressive power of CAP, we have to investigate how to com-
bine subjectivity with RG for fine-grained concurrency.

Jacobs and Piessens’ fine-grained concurrency specifica-
tions [11] provide an alternative means for modularity: a procedure
can be verified parametrically in the caller’s invariant, auxiliary
state and code, which are then instantiated by each call site. This
allows verifying the increment procedure once, but the two- and
three-thread programs must use different invariants and each pro-
cedure call must use different auxiliary state and update code. In
SCSL, we can also parametrize a procedure in the caller’s invariant
and auxiliaries as illustrated by the iterator. Moreover, subjectivity
overcomes the need for different invariants and auxiliary state, and
local auxiliary functions can update the auxiliary without sensitiv-
ity to the thread’s identity.

To our knowledge, SCSL is the first axiomatic concurrency
logic to support higher-order procedures, which is necessary to
prove the iterator where the argument procedure exposes its effects
and is general enough to support polymorphic instantiation (e.g.,
iter (iter xincr2) in Section 3.2). A first-order iterator has been
proved in CAP [5], where the procedure applied to each element is
hard-coded and doesn’t expose any state or concurrency effects.

Fu et al.’s HLRG logic [10] combines rely/guarantee and tem-
poral reasoning over explicit history traces. This eliminates the
need for auxiliary state, but, as in CAP, at the expense of more
involved reasoning than necessary in the case of coarse-grained al-
gorithms. HLRG only handles a single top-level parallel composi-
tion of a fixed number of threads; by contrast, SCSL allows parallel
composition in any command and the number of forked threads can
vary dynamically, which is necessary to prove the iterator.

The denotational semantics of SCSL is inspired by Brookes’
domain-theoretic model for CSL [3], but differs in several cru-
cial respects. Brookes uses store (a.k.a. stack), heap, and resource
(a.k.a. lock) actions to represent the operation and its result. We use
actions to represent heap operations, and only by stepping an action
do we obtain its result. We can avoid a stack altogether because our
commands return values which are bound to immutable variables
(a.k.a. identifiers). Since we implement the lock with a dedicated
heap location, we avoid a separate notion of resource actions.

Brookes denotes a command as a set of action traces, which are
finite or infinite sequences of actions including all possible results.
For example, reading ` has the denotation {(Read `,m)}m∈Z. We
avoid enumerating all possible results by shifting to action trees:
the Cons tree pairs an action (in our sense) with a continuation that
takes the result of the operation and generates a tree for the rest of
the computation. Since we are concerned with safety properties, it
suffices to consider finite tree approximations.

Brookes’ parallel composition is given by a fairmerge interleav-
ing of traces. For example, reading ` in parallel has the denota-
tion {(Read `,m) (Read `, n)}m,n∈Z, the case m 6= n is a non-
sequential trace that accounts for the environment mutating ` be-
tween the two reads and is needed for compositionality. We avoid
dealing with non-sequential traces by including a Parallel tree con-
structor and unfolding the execution in the always predicate.

Brookes includes a fault state to account for races (i.e., one
thread writes to a location while another thread also reads or
writes), accessing a nonexistent location, and unlocking without
restoring the resource invariant. We avoid an explicit fault state
by ensuring that “well-specified programs don’t go wrong”: every
heap operation encountered during an execution is safe to execute.
We do not identify races because threads must interfere on the im-
plicit lock location, but it is immediate from the interpretation of

Hoare triples that parallel threads can otherwise only mutate their
private heaps, which are disjoint.

Besides Brookes’ denotational model, Vafeiadis [25] and Feng
et al. [9] give operational proofs of CSL’s soundness. We are sim-
ilar to those approaches in two ways: (1) the explicit use of RG-
style specifications in the semantics to describe interference over
the shared resource, and (2) the use of step-indexing in the defini-
tion of safety, although we use tree paths whereas they use natural
numbers. Since we interpret SCSL Hoare triples as monadic func-
tions in CiC, however, operational methods do not suffice and we
must resort to a semantic proof of soundness.

Existing approaches to the soundness of CSL use a small foot-
print in the sense that their semantic definitions of safety only
refer to the thread’s private state and (in some cases) the shared
state. Similarly, the combination of RG and Separation Logic in
RGSep [26] and SAGL [9, 8] only describe interference over
the shared state. By contrast, our subjective rely/guarantee tran-
sitions use a large footprint, which encompasses the shared state
as well as the thread and environment’s private state of heap, lock
ownership, and user-chosen auxiliary state. While our subjective
rely/guarantee transitions are hard-coded for RI, we expect that the
logic can be generalized to user-chosen RG interference and thus
we will be able to verify fine-grained concurrency.

The concept of local action appears in Abstract Separation
Logic [4] to model stateful, non-deterministic programs. A local
action is a function f : Σ → P(Σ)> where Σ is a separation
algebra (i.e., a cancellative PCM) of states σ. The codomain is a
set of possible next-states to express nondeterminism or an error
marker > to indicate that the action faults. The function must
satisfy the locality condition: if valid (σ1⊕σ2), then f (σ1⊕σ2) v
{σ′1 ⊕ σ2 | σ′1 ∈ f (σ1)}. By contrast, our local auxiliary functions
Φ are deterministic because there is at most one possible next-
state and we implicitly avoid the error marker by using the validity
conditions. Since auxiliary functions can be noncomputable, we
conjecture they will enable more expressive specifications than the
traditional use of (computable) auxiliary code.

Krishnaswami et al. [15] use a PCM to abstractly represent
the states of various program modules in a setting of a sequential
higher-order language. Similar to our resource invariant, their mod-
ule invariants are also predicates over the combined abstract states
of all the modules.

7. Conclusion and Future Work
We propose Subjective Concurrent Separation Logic (SCSL) as a
combination of Resource Invariants and Separation Logic with sub-
jective auxiliary state, which tames the objective thread structure
exposed by classical auxiliary state. The approach is enabled by
generalizing auxiliaries from stack and heap to user-chosen par-
tial commutative monoids (PCM), and from auxiliary code to local
auxiliary functions. Each thread has a subjective perspective that
splits auxiliary state into contributions by the self (the thread itself)
and the other (its environment). The auxiliary PCM crucially per-
mits agglomerating all environment thread’s contributions, which
makes proofs insensitive to the internal concurrency of the envi-
ronment. SCSL provides parallel composition and frame rules that
use the subjective separating conjunction to split auxiliary contri-
butions in a coherent manner; surprisingly, the rules are sound even
if the auxiliary PCM is not cancellative.

For an incrementor and a coarse-grained set with logically dis-
joint interference, we show that suitable choice of auxiliary PCM
yields simple, compositional proofs independent of the number
of parallel threads; by contrast, existing logics either use aux-
iliary state which makes proofs sensitive to the global thread
structure, or achieve compositionality at the expense of complex
Rely/Guarantee reasoning. We also prove a higher-order iterator



with dynamic thread creation, whose verification is independent of
the internal concurrency of the function applied to each element. In
future work, we will study how subjective auxiliary state scales to
more complex, real-world programs.

We prove the soundness of SCSL by a shallow embedding
into the Calculus of Inductive Constructions using a novel denota-
tional semantics of action trees and a definition of safety that uses
rely/guarantee transitions over a large subjective footprint encom-
passing heaps, lock ownership, and user-chosen auxiliaries.

Since SCSL provides a single lock with global scope, a proof is
committed to a single auxiliary PCM and resource invariant. In fu-
ture work, we will scale the logic to multiple locks with delimited
scope and refinement across auxiliary PCMs and resource invari-
ants. We will also study the combination of subjective auxiliary
state Rely/Guarantee reasoning for fine-grained programs in the
presence of richer language constructs such as separate fork and
join commands.
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