
Under consideration for publication in J. Functional Programming 1

Hoare Type Theory, Polymorphism and

Separation

ALEKSANDAR NANEVSKI and GREG MORRISETT

Harvard University

{aleks,greg}@eecs.harvard.edu

LARS BIRKEDAL

IT University of Copenhagen

birkedal@itu.dk

Abstract

We consider the problem of reconciling a dependently typed functional language with im-
perative features such as mutable higher-order state, pointer aliasing, and non-termination.
We propose Hoare Type Theory (HTT), which incorporates Hoare-style specifications into
types, making it possible to statically track and enforce correct use of side effects.

The main feature of HTT is the Hoare type {P}x:A{Q} specifying computations with
precondition P and postcondition Q that return a result of type A. Hoare types can be
nested, combined with other types, and abstracted, leading to a smooth integration with
higher-order functions and type polymorphism.

We further show that in the presence of type polymorphism, it becomes possible to
interpret the Hoare types in the “small footprint” manner, as advocated by Separation
Logic, whereby specifications tightly describe the state required by the computation.

We establish that HTT is sound and compositional, in the sense that separate verifica-
tions of individual program components suffice to ensure the correctness of the composite
program.

1 Introduction

The static type systems of today’s programming languages, such as Java, ML and

Haskell, provide a degree of lightweight specification and verification that has proven

remarkably effective at eliminating a class of coding errors. Equally important, these

type systems have scaled to cover and integrate with necessary linguistic features

such as higher-order functions, objects, and imperative references and arrays.

Nevertheless, there is a range of errors, such as array-index-out-of-bounds and

division-by-zero, which are not caught by today’s type systems. And of course, there

are higher-level correctness issues, such as invariants or protocols on mutable data

structures, that fall well outside the range where types are effective.

An alternative approach to address these issues is to utilize a form of dependent

A preliminary version of this paper was presented at the ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2006.

2 A. Nanevski, G. Morrisett and L. Birkedal

types to provide precise specifications of these requirements. For example, we can

specify that a vector has a certain length, by using the type vector(n) that depends

on the length n. Inner product can then be given the signature

inner prod : Πn:nat. vector(n)× vector(n)→ nat

signifying that the argument vectors must be of equal length.

Dependent types work well with higher-order features and are convenient for

capturing relations on functional data structures, but do not work so well in the

presence of side effects, such as state updates and non-termination. An alterna-

tive approach is to consider some form of program logic, such as Hoare’s original

logic (Hoare, 1969) or the more recent forms of Separation Logic (O’Hearn et al.,

2001; Reynolds, 2002; O’Hearn et al., 2004), which are tuned for specifying and

reasoning about imperative programs. However, these logics do not integrate into

the type system. Rather, specifications, such as invariants on data structures or

refinements on types, must be separately specified as pre- and postconditions on

expressions that manipulate these data. In turn, this makes it difficult to scale

the logics to support the abstraction mechanisms such as higher-order functions,

polymorphism, and modules.

In this paper, we propose a new approach that smoothly combines dependent

types and a Hoare-style logic for a language with higher-order functions and imper-

ative commands (i.e., core, polymorphic ML). The key mechanism is a distinguished

type constructor of Hoare (partial) triples {P}x:A{Q}, which serves to simultane-

ously isolate and describe the effects of imperative commands. Intuitively, such a

type can be ascribed to a stateful computation if when executed in a heap satis-

fying the precondition P , the computation diverges or results in a heap satisfying

the postcondition Q and returns a value of type A. Hoare types can be viewed as

a refinement of the concept of monad (Moggi, 1989; Moggi, 1991; Peyton Jones &

Wadler, 1993; Wadler, 1998), which is extensively used in simply-typed functional

programming to statically track the computational effects. In the dependent setting,

monadic isolation is crucial for ensuring soundness, as it prevents the effects from

polluting the logical properties of the underlying pure language. At the same time,

it makes it possible for encapsulated effectful terms to freely appear in type depen-

dencies and specifications. Furthermore, Hoare types can be nested, combined with

other types, and abstracted within terms, types and predicates alike, thus improv-

ing upon the data abstraction and information hiding mechanisms of the original

Hoare Logic, and leading to a unified system for programming, specification and

reasoning about programs.

As with any sufficiently rich specification system, checking that HTT programs

respect their types is generally undecidable. However, type-checking in HTT is

carefully designed to split into two independent phases. The first phase performs

a combination of basic type-checking and verification-condition generation, and is

completely automatic. The second phase must then show the validity of the gen-

erated verification-conditions. The conditions can be fed to an automated theorem

prover, discharged by hand, or even ignored, making it possible to use HTT in

Hoare Type Theory, Polymorphism and Separation 3

various ways, ranging from a simple bug-finding tool that can discover some, but

not necessarily all errors, to a full-scale verification and certification framework.

We believe that the HTT approach enjoys many of the benefits and few of the

drawbacks of the alternatives mentioned above. In particular, we believe HTT is

the right foundational framework for modeling emerging tools, such as ESC (Detlefs

et al., 1998; Leino et al., 2000), SPLint (Evans & Larochelle, 2002), Spec# (Barnett

et al., 2004), Cyclone (Jim et al., 2002) and JML (Leavens et al., 1999; Burdy et al.,

2005), that provide support for extended static checking of programs.

The semantics of program heaps in HTT combines the treatment of functional

arrays of McCarthy (1962) and Cartwright and Oppen (1978), with ideas from

Separation Logic.

In the functional-array approach, pre- and postconditions in Hoare triples usually

describe the whole heap, rather than just the heap fragment that any particular

program requires. Keeping track of whole heaps may be cumbersome as it requires

careful tracking of location inequalities (i.e., lack of aliasing). It is much better to

simply assert those properties of the beginning and the ending heap that are actually

influenced by the computation, and automatically assume that all the unspecified

heap portions remain invariant. This is known as the “small footprint” approach to

specification, and has been advocated recently by the work on Separation Logic.

We note that in the presence of type polymorphism, the connectives from Sep-

aration Logic can already be defined using functional arrays, so that the two ap-

proaches may be fruitfully combined. We thus endow the Hoare types with the

small-footprint interpretation, and show that the customary inference rules from

Separation Logic (e.g., the Frame rule) are admissible in HTT.

Moreover, an important example that becomes possible in HTT, but is formally

not admitted in Separation Logic, is naming and explicitly manipulating individual

fragments of the heap. We contend that it is useful to be able to do so directly.

In particular, it alleviates the need for an additional representation of heaps in

assertions as was used in the verification of Cheney’s garbage collection algorithm

in Separation Logic by Birkedal et al. (2004). An additional feature admitted by

polymorphism is that HTT can support strong updates, whereby a location can

point to values of different types in the course of the execution.

We prove that HTT is sound and compositional, in the sense that separate veri-

fications of individual program components suffice to ensure the correctness of the

composite program. In other words, the types of HTT are strong enough to serve

as adequate interfaces for program components, so that verification does not re-

quire whole-program reasoning. As customary in type theory, compositionality is

expressed via substitution principles. We contrast this to the statement of composi-

tionality for ESC/Modula-3 (Leino & Nelson, 2002), which requires a significantly

more involved statement and proof.

We start the presentation with the overview of the syntactic features of HTT

(Section 2), and then discuss the type system (Section 3), and the equational rea-

soning (Section 4). We establish the basic syntactic properties, like substitution

principles (Section 5), then define a call-by-value operational semantics (Section

6), and prove the soundness of HTT with respect to this operational semantics us-

4 A. Nanevski, G. Morrisett and L. Birkedal

ing denotational methods (Section 7). We close with the discussion of related and

future work.

2 Syntax and overview

A crucial operation in any type system is comparing types for equality. In the case

of dependent types, which we use in HTT to express Hoare-style partial correct-

ness, types can contain terms, so type equality must compare terms as well, which

is an undecidable problem in any Turing complete language (in fact, it is not even

recursively enumerable). It is therefore crucial for HTT that we select equations

on terms that strike the balance between the preciseness and decidability of the

equality relation. In this choice, we are guided by the decision to separate type-

checking and verification condition generation, from proving of program specifica-

tions. We introduce two different notions: definitional equality, which is coarse but

decidable, and is employed during typechecking, and propositional equality, which

is fine but undecidable and is used only in proving. The split into definitional and

propositional equalities is a customary way to organize equational reasoning in type

theories (Hofmann, 1995).

Most of the HTT design is geared towards facilitating a formulation of a decidable

definitional equality. Propositional equality can be arbitrarily complex, so it does

not require as much attention. For example, we split the HTT programs into two

fragments: pure and impure – precisely in order to separate the concerns about

equality. The pure fragment consists of higher-order functions, and constructs for

type polymorphism. It admits the usual term equations of beta reduction and eta

expansion. The impure fragment contains the constructs usually found in first-order

imperative languages: allocation, lookup, strong update, deallocation of memory,

conditionals and loops (in HTT formulated as recursion). All of these constructs

admit reasoning in the style of Hoare Logic by pre- and postconditions, so we use

the Hoare type {P}x:A{Q} to classify the impure programs. In the current paper,

conditionals are considered impure even though they are a customary component

of most pure functional languages. This design decision is justified by the well-

known complications in the equational reasoning about conditionals (Ghani, 1995;

Altenkirch et al., 2001), which are related to the laws for eta expansion. We plan to

address these issues in the future work, but for now, simply avoid them by placing

the conditionals into the impure fragment.

The split between pure and impure fragments is a familiar one in functional pro-

gramming. For example, the programming language Haskell (Peyton Jones, 2003)

uses monads to classify impure code. It should therefore not come as a surprise that

the Hoare type in HTT is a monad, and that we admit the usual generic monadic

laws (Moggi, 1991) for reasoning about the impure code.

It may be interesting that HTT monads take a slightly bigger role than to simply

serve as type markers for effects. The HTT monadic judgments actually formalize

the process of generating the verification conditions for an effectful computation by

calculating strongest postconditions. If the verification condition is provable, then

the computation matches its specification. The verification conditions are computed

Hoare Type Theory, Polymorphism and Separation 5

during the first phase of typechecking, in a process that is mutually recursive with

normalization and equational reasoning, as formalized in Section 3. However, the

conditions can be proved in the second phase, so that the complexity and unde-

cidability of proving does not have any bearing on normalization and equational

reasoning.

We next present the syntax of HTT and comment on the various constructors.

Types A, B, C ::= α | bool | nat | 1 | ∀α.A | Πx:A.B | Ψ.X.{P}x:A{Q}

Monotypes τ, σ ::= α | bool | nat | 1 | Πx:τ . σ | Ψ.X.{P}x:τ{Q}

Assertions P, Q, R ::= idA(M, N) | seleqτ (H, M, N) | > | ⊥ | P ∧Q |

P ∨Q | P ⊃ Q | ¬P | ∀x:A.P | ∀α.P | ∀h:heap.P |

∃x:A.P | ∃α.P | ∃h:heap.P

Heaps H, G ::= h | empty | updτ (H, M, N)

Elim terms K, L ::= x | K M | K τ |M : A

Intro terms M, N, O ::= K | etaα K | () | λx. M | Λα. M | do E | true | false |

z | succ M |M + N |M ×N |M == N

Commands c ::= allocτ M |!τ M |M :=τ N | dealloc M |

ifA M then E1 elseE2 | caseA M of z. E1 or succ x. E2 |

fix f(y:A):B = do E in eval f M

Computations E, F ::= return M | x← K; E | x⇐ c; E | x =A M ; E

Variable context ∆, Ψ ::= · | ∆, x:A | ∆, α

Heap context X ::= · | X, h

Assertion context Γ ::= · | Γ, P

Terms. Terms form the purely functional fragment of HTT. They are further split

into introduction (intro) terms and elimination (elim) terms, according to their

standard logical classification. For example, λx. M is an intro term for the depen-

dent function type, and K M is the corresponding elim term. Similarly, Λα. M and

K τ are the intro and elim terms for polymorphic quantification. The intro term for

the unit type is (), and, as customary, there is no corresponding elimination term.

The intro term for Hoare types is do E, which encapsulates the effectful computa-

tion E and suspends its evaluation. The name of the constructor is chosen to closely

resemble the familiar Haskell-style do-notation for writing effectful programs. The

corresponding elimination form x ← K; E activates a suspended computation de-

termined by K. However, this elim form is not a term, but a computation, and is

described in more detail below. We also list the intro term etaα K, which is not

supposed to be used in programming, but is needed internally during typechecking.

The reader can safely ignore this constructor for the time being; its significance will

become apparent in Section 3.

The separation into intro and elim terms facilitates bidirectional typecheck-

ing (Pierce & Turner, 2000), whereby most of the type information can be omitted

from the terms, and inferred automatically. When type information must be sup-

plied explicitly, the constructor M :A can be used. In the typing rules in Section 3,

M :A will indicate direction switch during bidirectional typechecking. More impor-

tantly for our purposes, this kind of formulation also facilitates equational reasoning

6 A. Nanevski, G. Morrisett and L. Birkedal

via hereditary substitutions (Section 4), as it admits a simple syntactic criterion

for normality with respect to beta reduction. For example, the reader may notice

that an HTT term which does not use the constructor M :A may not contain beta

redexes.

Computations. Computations form the effectful fragment of HTT, and can be de-

scribed intuitively as semicolon-separated lists of commands, terminated with a

return value. The commands are executed in the order in which they appear in

the list, and usually bind their result to a variable. For example, the computation

x⇐ c executes the command c and binds the result to x. As already described be-

fore, x ← K executes the computation encapsulated in K, thus performing all the

side effects that may have been suspended in K. The command x =A M does not

perform any side effects, but is simply a syntactic sugar for the usual let-binding of

M :A to x.

It is important that variables in HTT are immutable, as customary in functional

programming languages, but in contrast to the usual treatment of variables in Hoare

Logic. The scope of the variables bound in computations (x in the above examples)

extends to the right, until the end of the block enclosed by the nearest do.

The return value of a computation is specified by the construct return M . When

considered by itself, return M creates a trivial computation that does not perform

any side effects, but immediately returns the value M . The computations return M

and x← K; E correspond to the monadic operations of unit and bind, respectively.

We illustrate the commands of HTT with the following example. Consider the

simple ML-like function f :nat→unit, defined as λx:nat. if !y = 0 then y := x else (),

where y:ref nat. The HTT code that implements function f and then immediately

applies it to 1 can be written as the following effectful computation.

f =nat→unit λx. do (t1 ⇐ !nat y;

t2 ⇐ ifunit (t1 == z) then

t3 ⇐ (y :=nat x);

return t3
else return();

return t2);

t4 ← f (succ z);

return t4

The syntax of computations is very explicit and rather cumbersome, as every in-

termediate result must be named with a temporary variable (t1–t4 above). Shortly,

we will introduce a number of syntactic conventions to reduce the clutter. But first,

we describe the semantics of the HTT commands.

The commands !τ M and M :=τ N perform a read from and write into the mem-

ory location M , respectively. The index τ is the type of the value being read or

written. Unlike most statically typed functional languages, HTT supports strong

updates. That is, if x is a location storing a nat, then it can be updated with a value

of any type, not just another nat. Correspondingly, memory reads from one and

the same location may return differently typed values. To ensure safety, the type

Hoare Type Theory, Polymorphism and Separation 7

system must ensure statically, as a precondition, that the contents of the location

matches the expected index type τ . On the other hand, the precondition for an

update simply requires that the updated location exists (i.e., is allocated), but does

not say anything about the type of the old value. The command allocτ M allocates

a fresh memory location, initializes it with M :τ , and returns the address of the

location. Dually, dealloc M frees the location at address M , under the precondition

that the location exists. In the conditionals if and case, the index A is the type of

the branches. The fixpoint command fix f(y:A):B = doE in eval f M first obtains

the function f such that f(y) = do(E), and then evaluates the encapsulated com-

putation f M . Here f and y may appear in the body E. The types A and B are the

argument and result type of f , respectively, and B may depend on the variable y.

The type B must be a Hoare type, in order to capture that the recursive definition

of f may lead to divergence.

Returning to our example program, we now introduce the following abbrevia-

tions. First, we represent natural numbers in their decimal rather than unary form.

Second, we omit the variable x in x ⇐ (M :=τ N) and x ← dealloc M , as x is of

unit type. Third, computations of the form x⇐ c; return(x) are abbreviated simply

as c, to avoid the spurious variable x. Similarly, x← K; return(x) is abbreviated as

eval K. Fourth, we omit the index type in operations, when that type is clear from

the context. Under such conventions, the above program may be abbreviated as

f = λx. do (t1 ⇐ !y;

if (t1 == 0) then y := x else return());

eval(f 1)

Types. Types include the primitive types of booleans and natural numbers, unit

type 1, dependent functions Πx:A.B, and polymorphic types ∀α.A. We write A→ B

to abbreviate Πx:A. B when B does not depend on x.

The Hoare type Ψ.X.{P}x:A{Q} specifies an effectful computation with a pre-

condition P and a postcondition Q, returning a result of type A. The variable x

names the return value of the computation, and Q may depend on x. The contexts

Ψ and X list the variables and heap variables, respectively, that may appear in

both P and Q, thus helping relate the properties of the beginning and the ending

heap. In the literature on Hoare Logic, these are known under the name of ghost

variables or logic variables, and can appear only in the assertions, but not in the

programs. Similarly, in our setting, the type A cannot contain any variables from

Ψ and X .

The type ∀α.A polymorphically quantifies over the monotype variable α. For

our purposes, it suffices to define a monotype as any type that does not contain

polymorphic quantification, except in the assertions. For example, Ψ.X.{P}x:τ{Q}

is a monotype when τ is a monotype, even if Ψ, P and Q contain polymorphic types.

This kind of predicative polymorphism (quantification over monotypes) is sufficient

for modeling languages such as Standard ML, but not more recent languages such

as Haskell. However, extending HTT to support impredicative polymorphism seems

difficult as it significantly complicates the termination argument for normalization

8 A. Nanevski, G. Morrisett and L. Birkedal

(Section 4), which is a crucial component of type equality. Therefore, we leave the

treatment of impredicative polymorphism to future work.

Note that allowing polymorphic quantification in the assertions of the Hoare

types, or in the types of ghost variables, does not change the predicative nature of

HTT. The type system will be formulated so that ghost variables and the assertions

do not influence the computational behavior or equational properties of effectful

computations.

Heaps and locations. In this paper, we model memory locations as natural numbers.

One advantage of this approach is that it supports some forms of pointer arithmetic

which is needed for languages such as Cyclone. We model heaps as finite functions,

mapping a location N to a pair (τ, M) where τ is the monotype of M . In this case

we say that N points to M , or that M is the contents of location N .

We introduce the following syntax for heaps: empty denotes the empty heap, and

updτ (H, M, N) is the heap obtained from H by updating the location M so that it

points to N of type τ , while retaining all the other assignments of H .

Heap terms and variables play a prominent role in our encoding of assertions

about (propositional) equality and disjointness of heaps. If heaps could hold values

of polymorphic type, then encoding these properties would require impredicative

quantification. Consequently, we limit heaps to hold only values of monotype. Any

monotype is allowed, including higher-order function types, and computation types,

so that HTT heaps implement higher-order store.

Assertions. Assertions comprise the usual connectives of classical multi-sorted first-

order logic. The sorts include all the types of HTT, but also the domain of heaps.

We allow polymorphic quantification ∀α.P and ∃α.P over monotypes. idA(M, N)

denotes propositional equality between M and N at type A, and seleqτ (H, M, N)

states that the heap H at address M contains a term N :τ .

We now introduce some assertions that will frequently feature in Hoare types.

P ⊂⊃ Q = P ⊃ Q ∧Q ⊃ P

hid(H1, H2) = ∀α.∀x:nat.∀v:α. seleqα(H1, x, v) ⊂⊃ seleqα(H2, x, v)

M ∈ H = ∃α.∃v:α. seleqα(H, M, v)

M 6∈ H = ¬(M ∈ H)

share(H1, H2, M) = ∀α.∀v:α. seleqα(H1, M, v) ⊂⊃ seleqα(H2, M, v)

splits(H, H1, H2) = ∀x:nat. (x 6∈ H1 ∧ share(H, H2, x)) ∨

(x 6∈ H2 ∧ share(H, H1, x))

In English, ⊂⊃ is the logical equivalence (and ⊃ is the logical implication), hid is

the heap equality, M ∈ H iff the heap H assigns to the location M , share states

that H1 and H2 agree on the location M , and splits states that H can be split into

disjoint heaps H1 and H2.

We next define the assertions familiar from Separation Logic (O’Hearn et al.,

2001; Reynolds, 2002; O’Hearn et al., 2004). All of these are relative to the free

Hoare Type Theory, Polymorphism and Separation 9

variable mem, which denotes the current heap fragment of reference.

emp = hid(mem, empty)

M 7→τ N = hid(mem, updτ (empty, M, N))

M 7→τ − = ∃v:τ. M 7→τ v

M 7→ − = ∃α. M 7→α −

M ↪→τ N = seleqτ (mem, M, N)

M ↪→τ − = ∃v:τ. M ↪→τ v

M ↪→ − = ∃α. M ↪→α −

P ∗Q = ∃h1:heap.∃h2:heap. splits(mem, h1, h2) ∧

[h1/mem]P ∧ [h2/mem]Q

P —∗Q = ∀h1:heap.∀h2:heap. splits(h2, h1, mem) ⊃

[h1/mem]P ⊃ [h2/mem]Q

this(H) = hid(mem, H)

Here emp states that the current heap mem is empty; M 7→τ N iff mem consists

of a single location M which points to the term N :τ ; M ↪→τ N iff mem contains

at least the location M pointing to N :τ . Separating conjunction P ∗Q holds iff P

and Q hold of disjoint subheaps of mem. P —∗Q holds of mem if any extension by a

heap satisfying P , produces a heap satisfying Q. this(H) is true iff mem equals H .

We frequently write ∀Ψ.A and ∃Ψ.A for an iterated universal (resp. existential)

abstraction over the term and type variables of the context Ψ. Similarly, ∀X.A and

∃X.A stands for iterated quantification over heap variables of the context X . We

also abbreviate 3A instead of {>}x:A{>}.

2.1 Examples

Small and large footprints. In this example, we illustrate the “small footprint”

semantics of Hoare types by considering several different specifications that can be

ascribed to the HTT allocation primitive. The shortest one is the following.

alloc : ∀α. Πx:α. {emp}y:nat{y 7→α x}

It states that allocation does not touch any existing heap locations (precondition

emp), and returns an address y which is initialized with the supplied value x:α

(postcondition y 7→α x). Implicit in the specification is that y must be fresh, because

the precondition prohibits alloc from working with existing locations.

We point out that the definitions of the predicates emp and 7→ require a free

variable mem to denote the current heap. In other words, the precondition and the

postcondition of Hoare types are parametrized with respect to a heap variable mem.

In the precondition, mem denotes the beginning heap of the computation, and in

the postcondition, mem is the ending heap. The variable mem is bound in both the

preconditions and the postconditions of the Hoare type. That is, if we made the

scope of variables in Hoare types explicit, the syntax of Hoare types would be

{mem. P}x:A{mem. Q}.

10 A. Nanevski, G. Morrisett and L. Birkedal

However, to reduce clutter, we omit the bindings of mem, as they can be assumed

implicitly, and simply write {P}x:A{Q}.

Returning now to the function alloc, the precondition emp in its specification does

not mean that alloc can only work if the global heap is empty. Rather, the small

footprint specifications require that the global heap contains a subheap satisfying

the precondition. The subheap is then changed by the execution of the effectful

computation, so that it satisfies the postcondition. The remaining, unspecified,

part of the global heap is guaranteed to remain invariant. In the particular case of

alloc, the precondition emp means that alloc can be executed in any heap, since any

heap trivially contains an empty subheap.

For the sake of illustration, let us consider a slightly less permissive specification

for alloc, one which allows execution only in heaps with at least one boolean location.

alloc′ : ∀α. Πx:α. z:nat, v:bool. {z 7→bool v}y:nat{y 7→α x ∗ z 7→bool v}

The ghost variables z and v denote the assumed existing location and its contents,

respectively, and the specification insists that the contents of z is not changed by the

execution. Notice the use of separating conjunction in the postcondition to specify

that z and y belong to disjoint heap portions (i.e., are not aliased), and hence y is

fresh.

Instead of listing the pre-existing locations in the precondition, and then repeat-

ing them in the postcondition, as in alloc
′ above, we can simply name the heap

encountered before allocation by using a ghost heap variable (say h), and then

explicitly specify in the postcondition that h is not changed.

alloc′′ : ∀α. Πx:α. h:heap. {this(h)}y:nat{(y 7→α x) ∗ this(h)}

Thus heap variables allow us to express some of the invariance that one may express

in higher-order separation logic (Biering et al., 2005).

For comparison, let us now consider the specification of alloc in the classical

style (Cartwright & Oppen, 1978), which, by contrast, we can call large footprint

specifications. Since alloc can run in any initial heap h, the precondition is trivial.

The ending heap is obtained as updα(h, y, x), but we also know that y is fresh, that

is y 6∈ h. Using again ghost variables to name the initial heap, we can write this

specification as

alloc
′′′ : ∀α. Πx:α. h:heap. {this(h)}y:nat{this(updα(h, y, x)) ∧ y 6∈ h}.

By explicitly naming various heap fragments with ghost variables, HTT can freely

switch between the small and large footprint specifications. We believe this to be a

very desirable property. For example, it is obvious that the types for alloc, alloc′′ and

alloc′′′ are all equivalent, but the small footprint specification as in alloc is the most

convenient for programming, when we want to express non-aliasing and freshness of

locations. On the other hand, large footprint specification as in alloc′′′ may be more

parsimonious in cases where aliasing is allowed, as we will illustrate in subsequent

examples. Finally, it will turn out that the intermediate form of specification as in

alloc′′ is the easiest one to connect to the assertion logic of HTT, and we will adopt

this intermediate form to define the semantics of Hoare types. The small footprint

Hoare Type Theory, Polymorphism and Separation 11

specification can then be viewed as a simple syntactic variant, as we only need to

introduce a fresh ghost variable to name the untouched part of the heap.

Diverging computation. In HTT, the term language is pure. Non-termination is

an effect, and is relegated to the fragment of impure computations. Hence, any

recursive program in HTT will have a monadic type, which will prevent recursion

from unrolling during typechecking and normalization. We can write a diverging

computation of an arbitrary Hoare type {P}x:A{Q} as follows.

diverge : {P}x:A{Q}

= do (fix f(y : 1) : {P}x:A{Q} = do (eval (f y))

in eval f ())

diverge is a suspended computation which, when forced, first sets up a recursive

function f(y : 1) = do (eval (f y)). The function is applied to () to obtain another

suspended computation do (eval f ()), which is immediately forced by eval, to

trigger another application to (), another suspended computation, another forcing,

and so on, ad infinitum.

Polymorphism and higher-order functions. In this example we present a polymor-

phic function swap for swapping the contents of two locations. In a simply-typed lan-

guage like ML, with a type of references, swap can be given the type (ref α×ref α)→

1. This type is an underspecification, of course, as it does not describe what the

function does. In HTT, we can be more precise. Furthermore, we can use strong up-

dates to swap locations pointing to values of different types. One possible definition

of swap is presented below.

swap : ∀α. ∀β. Πx:nat. Πy:nat.

m:α, n:β. {x 7→α m ∗ y 7→β n}r:1{x 7→β n ∗ y 7→α m}

= Λα. Λβ. λx. λy. do (t1 ⇐ !α x; t2 ⇐ !β y;

y :=α t1; x :=β t2;

return())

The function takes two monotypes α and β, two locations x and y and produces a

computation which reads both locations, and then writes them back in a reversed

order. The precondition of this computation specifies a heap in which x and y point

to values m:α and n:β respectively, for some ghost variables m and n. The locations

must not be aliased, due to the use of spatial conjunction which forces x and y to

appear in disjoint portions of the heap. Similar specifications that insists on non-

aliasing are possible in several related systems, like Alias Types (Smith et al., 2000)

and ATS with stateful views (Zhu & Xi, 2005). However, in HTT, like in Separation

Logic, we can include the aliasing case as well.

One possible small-footprint specification which covers both aliasing and non-

aliasing is as follows.

swap′ : ∀α. ∀β. Πx:nat. Πy:nat.

m:α, n:β. {(x 7→α m ∗ y 7→β n) ∨ (x 7→α m ∧ y 7→β n)} r:1

{(x 7→β n ∗ y 7→α m) ∨ (x 7→β m ∧ y 7→α n)}

12 A. Nanevski, G. Morrisett and L. Birkedal

The second disjuncts in the pre- and post-condition of the above specification, use

∧ instead of spatial conjunction, and can be true only if the heap contains exactly

one location, thus forcing x = y. This specification is interesting because it precisely

describes the smallest heap needed for swap as the heap containing only x and y.

Another possibility is to switch to a large-footprint style and admit an arbitrary

heap in the assertions, but then explicitly state the invariance of the heap fragment

not containing x and y.

swap′′ : ∀α. ∀β. Πx:nat. Πy:nat.

m:α, n:β, h:heap. {(x ↪→α m) ∧ (y ↪→β n) ∧ this(h)} r:1

{this(updβ(updα(h, y, m), x, n))}

As mentioned before, the large footprint style may be less verbose in the case of

specifications that admit aliasing. For example, expressing that swapping the same

locations twice in a row does not change anything can be achieved as follows.

identity : ∀α. ∀β. Πx:nat. Πy:nat.

h:heap. {x ↪→α − ∧ y ↪→β − ∧ this(h)}r:1{this(h)}

= Λα. Λβ. λx. λy. do (t1 ← swap′′ α β x y;

t2 ← swap′′ β α x y;

return())

This function uses swap′′ to generate a computation for swapping x and y, and

then activates it twice using the monadic bind to the temporary variables t1 and

t2. A small footprint specification would have to explicitly repeat in the postcondi-

tion that the contents of x and y remains unchanged, whereas the large footprint

specification can simply postulate the equality with the initial heap.

We further note that identity is completely parametric in swap′′, in the sense

that any other function with the same specification as swap′′ could have been used

instead. Thus, it is possible to abstract the variable swap′′ from identity, and obtain

a function whose type combines Hoare specifications in a higher-order way.

As a further example of scoping in Hoare types, as well as the use of higher-order

abstraction over computations, let us consider the following specification that may

be ascribed to a standard looping constructor until. Here until is parametrized by

the loop invariant I , which is an assertion that depends on the current memory

mem in the pre- and post-conditions of the Hoare types. until takes as argument

the loop body which includes the computation of the loop guard as well.

untilI : {I(mem)}b:bool{I(mem)} → {I(mem)}b:bool{I(mem) ∧ b = true}

= λe. do(fix f(r : 1) : {I(mem)}b:bool{I(mem) ∧ b = true} =

do(b← e; if b then true else eval f())

in eval f())

Because currently HTT lacks the ability to polymorphically abstract over predi-

cates, like the loop invariant I above, we cannot create a generic until constructor.

Instead, a separate copy of until must be created for each specific loop invariant. A

similar requirement would also appear in the specification of the usual polymorphic

functionals like map and fold over inductively defined types.

Hoare Type Theory, Polymorphism and Separation 13

Thus, it is important to extend HTT with abstraction over predicates. Such

extension would not only allow for generic programs like until above, but would

also increase the expressive power of the assertion logic to higher order. We forego

a further discussion of this research direction here, but refer to (Nanevski et al.,

2007) for a description of some initial steps towards extending HTT to the full

power of the Extended Calculus of Constructions, and how this power can be used

to capture the local state of functions and modules in the specifications.

3 Type system

Typechecking judgments in HTT (as in any other type theory) require testing

if two terms are definitionally equal. In HTT, the tests for definitional equality

involve normalization. Two terms are reduced by normalization into their respective

canonical forms and are deemed equal only if the canonical forms are syntactically

the same, modulo α-conversion. The formulation of HTT is somewhat unusual,

however, as normalization is undertaken simultaneously with type checking. That

is, each typing judgment not only decides if some expression has a required type, but

also computes as output the canonical form of the expression. That way, whenever

two well-typed expressions must be checked for definitional equality, their canonical

forms are readily available for syntactic comparison.

In the following section, we introduce the equations and operations that are used

in the normalization algorithm of HTT; a more thorough discussion of this process

will be given in Section 4. We then proceed with the definition of HTT typing rules.

3.1 Equational reasoning

The most important equations in the definitional equality of HTT are the beta and

eta equalities associated with each type constructor. We orient the equations, to

emphasize their use as rewriting rules in the normalization algorithm. As customary,

beta equality is used as a reduction, and eta equality as an expansion.

For example, the function type Πx:A. B gives rise to the following familiar beta

reduction and eta expansion.

(λx. M : Πx:A. B) N −→β [N :A/x]M

K −→η λx. K x choosing x 6∈ FV(K)

Here, of course, the notation [T/x]M denotes a capture-avoiding substitution of

the expression T for the variable x in the expression M . In the above equations,

the participating terms are decorated with type annotations, because otherwise the

results may not be well-formed with respect to the HTT syntax from Section 2.

Equations associated with the type ∀α. A are also standard.

(Λα. M : ∀α. A) τ −→β [τ/α]M

K −→η Λα. K α choosing α 6∈ FTV(K)

where FTV(K) denotes the free monotype variables of K.

In the case of the unit type, we do not have any beta reduction (as there are no

14 A. Nanevski, G. Morrisett and L. Birkedal

elimination constructors associated with this type), but only one eta expansion.

K −→η ()

The equations for the Hoare type require an auxiliary operation of monadic sub-

stitution, 〈E/x:A〉F , which sequentially composes the computations E and F . The

result is a computation which should, intuitively, evaluate as E followed by F ,

where the free variable x:A in F is bound to the value of E. Monadic substitution

is defined by induction on the structure of E, as follows.

〈return M/x:A〉F = [M :A/x]F

〈y ← K; E/x:A〉F = y ← K; 〈E/x:A〉F choosing y 6∈ FV(F)

〈y ⇐ c; E/x:A〉F = y ⇐ c; 〈E/x:A〉F choosing y 6∈ FV(F)

〈y =B M ; E/x:A〉F = y =B M ; 〈E/x:A〉F choosing y 6∈ FV(F)

Now the equations associated with Hoare types can be defined as follows.

x← (do E : {P}x:A{Q}); F −→β 〈E/x:A〉F

K −→η do (x← K; return x)

The monadic substitution is modeled directly after the operation introduced by

Pfenning and Davies (2001), who also show that the beta and eta equations above

are equivalent to the unit and associativity laws for a generic monad (Moggi, 1991).

The normalization algorithm of HTT does not use the described eta expansions

in an arbitrary way, but relies on a very specific strategy. To capture this strategy,

we define an auxiliary function expandA, which iterates over the type A and ex-

pands the given argument (elim or intro term), according to each encountered type

constructor.

expanda(K) = K if a is nat or bool

expandα(K) = etaα K if α is a monotype variable

expand
1
(K) = ()

expand∀α. A(K) = Λα. expandA(K α) choosing α 6∈ FTV(K)

expand
Πx:A1. A2

(K) = λx. expandA2
(K M) where M = expandA1

(x)

choosing x 6∈ FV(K)

expand{P}x:A{Q}(K) = do (x← K; E) where E = return(expandA(x))

expandA(N) = N if N is not elim

The definition of expand exposes the significance of the constructor etaα K. This

constructor records that, once the type variable α is instantiated with some concrete

type, then K should be expanded, on-the-fly, with respect to this type.

Beta reductions too are used in the normalization algorithm according to a very

specific strategy, implemented via a set of auxiliary functions called hereditary sub-

stitutions (Watkins et al., 2004) that operate on canonical terms only. For exam-

ple, in places where an ordinary capture-avoiding substitution creates a redex like

(λx. M) N , a hereditary substitution continues by immediately substituting N

for x in M . This may produce another redex, which is immediately reduced by

initiating another hereditary substitution and so on.

The definition and properties of hereditary substitutions are discussed in more

detail in Section 4. Here we only note that hereditary substitutions have the form

Hoare Type Theory, Polymorphism and Separation 15

[M/x]∗A(−), and they substitute the canonical form M for a variable x into a given

argument. The superscript ∗ ranges over {k, m, e, a, p, h} and determines the syn-

tactic domains of the argument (elim terms, intro terms, computations, types, as-

sertions and heaps, respectively). The subscript A is a putative type of M , and is

used as termination metric for the substitution. We also need a monadic hereditary

substitution 〈E/x〉A(−), and a monotype hereditary substitution [τ/α]∗(−). The

latter performs an on-the-fly eta expansion with respect to τ of any subterms of

the form etaα K in the argument.

We mention two more capture-avoiding substitutions, [H/h]G and [H/h]P , which

substitute the heap H for the variable h in the heap G and assertion P , respectively.

We will never substitute heaps into other kinds of expressions, so we do not define

similar operations for other syntactic domains. The substitutions simply commute

with all the constructors, leaving intact the subexpressions which are not heaps or

assertions, as illustrated in the definitional clause below (which is typical).

[H/h](updτ (G, M, N)) = updτ ([H/h]G, M, N)

Not substituting into τ , M and N is justified because HTT types, terms and com-

putations are not allowed to contain free heap variables.

There are several more reductions that factor into definitional equality. For ex-

ample, (succ M) + N is not canonical, as it can be simplified into succ (M + N).

The latter is simpler, because it makes more of the structure apparent (e.g., just by

looking at the head constructor of succ (M + N), we know that the expression must

be non-zero). Similarly, addition z + N reduces to N , multiplication (succ M)×N

reduces to N + (M ×N), and multiplication z×N reduces to z. These reductions

are required in order for the normalization to agree with the evaluation of nat ex-

pressions, so that the actual numerals are the only closed canonical forms of type

nat.

We close this section with the comment that the rules described here certainly

do not constitute a reasoning system that is complete in any sense. For example, al-

gebraic laws like commutativity or associativity of addition, or reasoning principles

like induction, cannot be inferred. We will make such reasoning principles available

in the propositional equality defined in the following section.

3.2 Typing rules

The type system of HTT consists of the following judgments.

∆ ` K ⇒ A [N ′] ∆ ` Ψ⇐ ctx [Ψ′]

∆ ` N ⇐ A [N ′] ∆; X ` Γ pctx

∆; P ` E ⇒ x:A. Q [E′] ∆; X ` P ⇐ prop [P ′]

∆; P ` E ⇐ x:A. Q [E′] ∆ ` A⇐ type [A′]

∆; X ; Γ1 =⇒Γ2 ∆ ` τ ⇐ mono [τ ′]

∆; X ` H ⇐ heap [H ′]

The judgments on the right deal with formation and canonicity of variable contexts,

assertion contexts, assertions, types, monotypes and heaps. In these judgments, the

16 A. Nanevski, G. Morrisett and L. Birkedal

output is always the canonical version of the main input (Ψ′ is canonical for Ψ, P ′

is canonical for P , etc). When checking assertion contexts (Γ pctx), Γ is required

to be canonical, so there is no need to return the output.

The judgments on the left are the main ones, and are explicitly oriented to

symbolize whether the type or the assertion are given as input or are synthesized

as output. This is a characteristic feature of bidirectional typechecking (Pierce &

Turner, 2000), which we here employ for both terms and computations.

The judgment ∆ ` K ⇒ A [N ′] takes an elim form K and outputs the type A

of K and the canonical form N ′. For example, we can derive f :nat→nat ` f ⇒

nat→nat [λx. f x], as the type of f can be inferred from the context. The canonical

form of f is its eta expanded form, as described previously.

On the other hand, intro forms must be supplied a type against which to check.

The judgment ∆ ` N ⇐ A [N ′] takes an intro form N and outputs the canoni-

cal form N ′ if N matches A. We supply the checking type, as otherwise N may

typecheck against many different types, producing potentially different canonical

forms. For example, ` λx. x ⇐ nat→nat [λx. x], but, in contrast, ` λx. x ⇐

(nat→nat)→(nat→nat) [λf. λy. f y].

The judgment ∆; P ` E ⇒ x:A. Q [E ′] takes a computation E, input assertion

P , and input type A, and outputs the strongest postcondition Q for E with respect

to the precondition P , and the canonical form E ′ of E. Symmetrically, ∆; P `

E ⇐ x:A. Q [E′] takes computation E and outputs the canonical form E ′, if Q is a

postcondition (not necessarily the strongest) for E with respect to P , and A is the

type of the return value of E.

The judgment ∆; X ; Γ1 =⇒Γ2 formalizes the sequent calculus for the assertion

logic, which is a classical multi-sorted logic with polymorphism. Here ∆ is a vari-

able context, X is a heap context, and Γ1, Γ2 are sets of assertions. As usual, the

sequent is valid if for every instantiation of the variables in ∆ and X such that

the conjunction of assertions in Γ1 holds, the disjunction of assertions in Γ2 holds

as well. The input and output contexts and types in all the above judgments are

assumed canonical.

Terms. We need two auxiliary functions to compute canonical forms of application

and type specialization. The functions applyA(M, N) and spec(M, τ) reduce the

applications M N and M τ , if M is a function or type abstraction, respectively.

Here, M , N and τ are assumed to be canonical.

applyA(K, M) = K M if K is an elim term

applyA(λx. N, M) = N ′ where N ′ = [M/x]mA (N)

applyA(N, M) fails otherwise

spec(K, τ) = K τ if K is an elim term

spec(Λα. M, τ) = [τ/α]m(M)

spec(N, τ) fails otherwise

The typing rules now formalize the intuition that intro terms can be checked against

a supplied type, and elim terms can synthesize their type. The latter holds because

Hoare Type Theory, Polymorphism and Separation 17

elim terms are generally of the form x T1 T2 · · ·Tn, applying a variable x to a

sequence of intro terms or types Ti. Since the type of x can be read from the

context, the type of the whole application can always be inferred by instantiating

the type of x with Ti.

∆, x:A, ∆1 ` x⇒ A [x]
var

∆ ` ()⇐ 1 [()]
unit

∆, x:A `M ⇐ B [M ′]

∆ ` λx. M ⇐ Πx:A. B [λx. M ′]
ΠIx

∆ ` K ⇒ Πx:A. B [N ′] ∆ `M ⇐ A [M ′]

∆ ` K M ⇒ [M ′/x]aA(B) [applyA(N ′, M ′)]
ΠE

∆, α `M ⇐ A [M ′]

∆ ` Λα. M ⇐ ∀α. A [Λα. M ′]
∀Iα

∆ ` K ⇒ ∀α. B [N ′] ∆ ` τ ⇐ mono [τ ′]

∆ ` K τ ⇒ [τ ′/α]a(B) [spec(N ′, τ ′)]
∀E

∆ ` A⇐ type [A′] ∆ `M ⇐ A′ [M ′]

∆ `M : A⇒ A′ [M ′]
⇐⇒

∆ ` K ⇒ A [N ′] A = B

∆ ` K ⇐ B [expandB(N ′)]
⇒⇐

∆ ` K ⇒ α [K]

∆ ` etaα K ⇐ α [etaα K]
eta

For example, ΠI checks that term λx. M has the given function type, and if so,

returns the canonical form λx. M ′. In ΠE we first synthesize the canonical type

Πx:A. B and the canonical form N ′ of the function part of the application. Then

the synthesized type is used in checking the argument part of the application. The

result type of the whole application is synthesized using hereditary substitutions

in order to remove the dependency of the type B on the variable x. Finally, we

compute the canonical form of the whole application, using the auxiliary function

apply to reduce the term N ′ M ′ should N ′ actually be a lambda abstraction. A

similar description applies to the rules for polymorphic quantification.

In the rule⇐⇒, we need to synthesize the canonical type for the ascription M :A.

This type should clearly be the canonical version of A, under the condition that M

actually has this type. Thus, we first test that A is well-formed and compute its

canonical form A′, and then proceed to check M against A′. If M and A′ match,

we obtained the canonical version M ′ of M . Then M ′ and A′ are returned as the

output of the judgment.

In the rule⇒⇐, we are checking an elim term K against a canonical type B. But

K can already synthesize its canonical type A, so we simply need to check that A

and B are actually syntactically equal. The canonical form synthesized from K in

the premise, may be an elim term (because it is generated by a judgment for elim

18 A. Nanevski, G. Morrisett and L. Birkedal

terms), but we need to use it in the conclusion as an intro term. The switch from

an elim term to the equivalent intro term is achieved by eta expansion with respect

to the supplied type B. For example, if x:nat→nat is a variable in context, then its

canonical form is λy. x y, and we could use the rule ⇒⇐ to derive the judgment

x:nat→nat ` x⇐ nat→nat [λy. x y].

When the types A and B in the rule ⇒⇐ are equal to some type variable α, we

cannot eta expand the canonical forms, so we use the constructor eta to remember

that expansion must be done as soon as α is instantiated with a concrete monotype.

The constructor eta is applicable only to canonical forms; notice how its typing rule

insists that the argument K equals its own canonical form. Thus, eta is never used

in the source programs, but is only required internally, for equational reasoning.

Computations. The judgment ∆; P ` E ⇒ x:A. Q [E ′] generates the strongest

postcondition Q for the program E with respect to the precondition P (although

approaches based on other kinds of predicate transformers, like the weakest pre-

conditions, are possible). However, unlike in the Hoare type, where pre- and post-

conditions are unary relations over the heap mem, here the assertions P and Q

are binary relations on heaps, and the typing rule for introduction of Hoare types

will mediate the switch from unary to binary relations. Since P and Q are binary

relations, we make them depend on two free heap variables: init, which denotes a

specific heap in the past of the computation, and mem, which denotes the current

heap. The computation E describes how the heap mem from the precondition is

modified into the heap mem in the postcondition, one effectful step at a time, while

init is a fixed heap of reference, shared by both P and Q. In other words, P describes

how mem relates to init before the execution of E, and Q describes how mem relates

to init after the execution of E.

Alternatively, the computation E may be viewed semantically as a relation be-

tween the input and output heaps. Then the typing judgment simply serves to

translate the computational syntax of E into the corresponding binary relation

(here, the postcondition Q). Intuitively, P is a relation that the translation starts

with, and Q is the relation that the translation ends with, thus capturing the seman-

tics of E. In addition, P has to be strong enough to guarantee that the execution of

E will never get stuck. Translating programs into relations on heaps is a well-known

approach to formulating Hoare Logic (Greif & Meyer, 1979), and we adapt it here

to a type-based system.

In order to define the small footprint semantics of the Hoare types, we first need

two new connectives. The relational composition

P ◦Q = ∃h:heap. [h/mem]P ∧ [h/init]Q,

expresses temporal sequencing of heaps. The informal reading of P ◦ Q is that Q

holds of the current heap, which is itself obtained from another past heap of which

P holds.

The difference operator on assertions is defined as

R1 (R2 = ∀h:heap. ([init/mem](R1 ∗ this(h))) ⊃ R2 ∗ this(h)

Hoare Type Theory, Polymorphism and Separation 19

where Ri are assumed to have a free variable mem, but not init. The informal reading

of R1 (R2 is that the heap mem is obtained from the initial heap init by replacing

a fragment satisfying R1 with a new fragment which satisfies R2. The rest of the

heaps init and mem agrees. It is not specified, however, which particular fragment of

init is replaced. If there are several fragments satisfying R1, then each of them could

be replaced, but the replacement is always such that the result satisfies R2. The

operator (is used in the typing judgments to describe a difference between two

successive heaps of the computation. For example, R1 (R2 captures the transfor-

mation incurred on the heap by the execution of an unspecified computation with

type {R1}x:A{R2}. Notice how the definition of (relies on naming the heap h by

means of universal quantification in order to state its invariance. This corresponds

to the equivalence of types {R1}x:A{R2} and h:heap.{R1∗this(h)}x:A{R2 ∗ this(h)}

that we commented on in Section 2.1.

Now consider a suspended computation do E : Ψ.X.{R1}x:A{R2}. Intuitively,

the computation and the type should correspond if the following three requirements

are satisfied: (1) Assuming that the initial heap can be split into two disjoint parts

h1 and h2 such that R1 holds of h1, then E does not get stuck if executed in this

initial heap. Moreover, E never touches h2 (not even for a lookup); in other words,

h2 is not in the footprint of E. (2) Upon termination of E, the fragment h1 is

replaced with a new fragment which satisfies R2, while h2 remains unchanged. (3)

The split into h1 and h2 is not decided upon before E executes, and need not be

unique. We only know that if a split is possible, then the execution of E defines

one such split, but which split is chosen may depend on the run-time conditions.

Whichever values h1 and h2 end up taking, however, we know that (2) holds.

The above requirements define what it means for the specification in the form of

Hoare type Ψ.X.{R1}x:A{R2} to possess the small footprint property. We argue

next that the requirements are satisfied by E if we can establish that ∆; P ` E ⇐

x:A. Q, where P = this(init) ∧ ∃Ψ.X.(R1 ∗ >) and Q = ∀Ψ.X.R1 (R2.

The assertion P is related to the requirements (1) and (3). Indeed, P states that

the initial heap can be split into h1 and h2 so that h1 satisfies R1 and h2 satisfies

>, as required. In order to ensure progress, the typing judgment will allow E to

touch only locations whose existence can be proved. Because there is no information

available about h2 and its locations (knowing > amounts to knowing nothing), E

will be restricted to working with h1 only. The split into h1 and h2 is arbitrary,

satisfying an aspect of (3).

The assertion Q is related to the requirements (2) and (3). After unraveling the

definition of the (operator, Q essentially states that any split into h1 and h2

that E may have induced on init results in a final heap where h1 is replaced with

a fragment satisfying R2, while h2 remains unchanged. The invariance of h2 is

precisely what (2) requires, and the parametricity of R2 with respect to the split is

the remaining aspect of (3).

Before we can state the inference rules of the computation judgments, we need

an auxiliary function reduceA(M, x. E) which reduces the term x←M ; E, if M is

20 A. Nanevski, G. Morrisett and L. Birkedal

a do-suspended computation. Here A, M and E are assumed canonical.

reduceA(K, x. E) = x← K; E if K is an elim term

reduceA(do F, x. E) = E′ where E′ = 〈F/x〉A(E)

reduceA(N, x. E) fails otherwise

We start with the rules for the general monadic operations, and then proceed

with the individual effectful commands.

∆; P ` E ⇒ x:A. R [E′] ∆, x:A; init, mem; R =⇒Q

∆; P ` E ⇐ x:A. Q [E′]
consq

∆ `M ⇐ A [M ′]

∆; P ` return M ⇒ x:A. P ∧ idA(expandA(x), M ′) [return M ′]
return

∆; this(init) ∧ ∃Ψ.X.(R1 ∗ >) ` E ⇐ x:A. ∀Ψ.X.R1 (R2 [E′]

∆ ` do E ⇐ Ψ.X.{R1}x:A{R2} [do E′]
{ }I

∆ ` K ⇒ Ψ.X.{R1}x:A{R2} [N ′] ∆; init, mem; P =⇒∃Ψ.X.(R1 ∗ >)

∆, x:A; P ◦ (∀Ψ.X.R1 (R2) ` E ⇒ y:B. Q [E′]

∆; P ` x← K; E ⇒ y:B. (∃x:A. Q) [reduceA(N ′, x. E′)]
{ }E

The rule consq allows the weakening of the strongest postcondition R into an arbi-

trary postcondition Q, assuming that R implies Q. The rule return types the trivial

computation that immediately returns the result x = M and performs no changes

to the heap. The precondition is simply propagated into the postcondition, but the

postcondition must also assert the equality between M and (the canonical form

of) x. The rule { }I defines the small footprint semantics of Hoare types. This is

achieved with the premise ∆; P ` E ⇐ x:A. Q, for P and Q as discussed before.

The rule { }E describes how a suspended computation K ⇒ Ψ.X.{R1}x:A{R2}

can be sequentially composed with another computation E. The composition is

meaningful if the following are satisfied. First, the assertion logic must establish

that P ensures that the current heap contains a fragment satisfying R1, as required

by K. In other words, we need to show that P =⇒∃Ψ.X.(R1 ∗ >). Second, the

computation E needs to check against the postcondition obtained after executing

K. The latter is taken to be P ◦ ∀Ψ.X.R1 (R2, expressing that the execution of

K changed the heap P by replacing a fragment satisfying R1 with a new fragment

satisfying R2. The normal form of the whole computation is obtained by invoking

the auxiliary function reduce. We emphasize that the type B in the conclusion of the

{ }E rule is an input of the typing judgments, and is by assumption well-formed in

the context ∆. In particular, x does not appear in B, so no special considerations are

needed passing from the premise of the rule to the conclusion. No such assumptions

are made about the postcondition Q, which is an output of the judgment, so we

need to existentially abstract x in the postcondition of the conclusions, to avoid

dangling variables. A similar remark applies to the rules for the specific effectful

constructs for allocation, lookup, strong update and deallocation that we present

Hoare Type Theory, Polymorphism and Separation 21

next.

∆ ` τ ⇐ mono [τ ′]

∆ `M ⇐ τ ′ [M ′] ∆, x:nat; P ∗ (x 7→τ ′ M ′) ` E ⇒ y:B. Q [E′]

∆; P ` x = allocτ (M); E ⇒ y:B. (∃x:nat. Q) [x = allocτ ′(M ′); E′]

∆ `M ⇐ nat [M ′] ∆ ` τ ⇐ mono [τ ′] ∆; init, mem; P =⇒M ′ ↪→τ ′ −

∆, x:τ ′; P ∧ (M ′ ↪→τ ′ expandτ ′(x)) ` E ⇒ y:B. Q [E′]

∆; P ` x = !τ M ; E ⇒ y:B. (∃x:τ ′. Q) [x = !τ ′ M ′; E′]

∆ `M ⇐ nat [M ′]

∆ ` τ ⇐ mono [τ ′] ∆ ` N ⇐ τ ′ [N ′] ∆; init, mem; P =⇒M ′ ↪→ −

∆; P ◦ ((M ′ 7→ −) ((M ′ 7→τ ′ N ′)) ` E ⇒ y:B. Q [E′]

∆; P `M :=τ N ; E ⇒ y:B. Q [M ′ :=τ ′ N ′; E′]

∆ `M ⇐ nat [M ′]

∆; init, mem; P =⇒M ′ ↪→ − ∆; P ◦ ((M ′ 7→ −) (emp) ` E ⇒ y:B. Q [E ′]

∆; P ` dealloc(M); E ⇒ y:B. Q [dealloc(M ′); E′]

∆ ` A⇐ type [A′] ∆ `M ⇐ A′ [M ′] ∆; P ` [M :A/x]E ⇒ y:B. Q [E ′]

∆; P ` x =A M ; E ⇒ y:B. Q [E′]

In the case of allocation, E is checked against the assertion P ∗ (x 7→τ ′ M ′), which

describes the state after the allocation, and is the strongest postcondition for al-

location with respect to P . The assertion simply states that the newly allocated

memory whose address is stored in x is disjoint from any already allocated memory

described in P .

In the case of lookup, the strongest postcondition states that the heap has not

changed (i.e., P still holds) but we have the additional knowledge that the variable

x stores the looked up value. The variable x is expanded because we only consider

assertions in canonical form. In order to ensure progress, we must prove the sequent

P =⇒M ′ ↪→τ ′ − showing that the location M ′ actually exists in the current heap,

and points to a value of an appropriate type. It is important to notice that proving

the sequent P =⇒M ′ ↪→τ ′ − may be postponed, as it does not influence the other

premises. The sequent can be seen as part of the verification condition which is

generated during typechecking.

The strongest postcondition for update states that the heap has changed by

replacing some assignment M ′ 7→ − with an assignment M ′ 7→τ ′ N ′. A prerequisite

is to prove the sequent P =⇒M ′ ↪→ −, thus showing that M ′ was allocated with

an arbitrary type (hence the update is strong).

The strongest postcondition for deallocation states that the heap has changed

by replacing the assignment M ′ 7→ − with emp. The side condition is the sequent

P =⇒M ′ ↪→ − showing that M ′ was allocated.

Typechecking the command x =A M ; E reduces to typechecking the substitution

[M :A/x]E, reflecting that assignment is just a syntactic sugar for substitution.

22 A. Nanevski, G. Morrisett and L. Birkedal

The typing rule for x = ifA M then E1 elseE2 first checks the two branches E1

and E2 against the preconditions stating the two possible outcomes of the boolean

expression M . The respective postconditions P1 and P2 are generated, and their

disjunction is taken as a precondition for the subsequent computation E.

∆ ` A⇐ type [A′]

∆ `M ⇐ bool [M ′] ∆; P ∧ idbool(M
′, true) ` E1 ⇒ x:A′. P1 [E′

1
]

∆; P ∧ idbool(M
′, false) ` E2 ⇒ x:A′. P2 [E′

2
]

∆, x:A′; P1 ∨ P2 ` E ⇒ y:B. Q [E′]

∆; P ` x = ifA M then E1 elseE2; E ⇒

y:B. (∃x:A′. Q) [x = ifA′ M ′ then E′
1
elseE′

2
; E′]

A similar rule is used for case.

Finally, we present the rule for recursion. The body do E of the recursive func-

tion may depend on the function itself (variable f) and one argument (variable x).

We also require an initial value M to which the recursive function is immediately

applied. As an annotation, we also need to present the type of f , which is a depen-

dent function type Πx:A.Ψ.X.{R1}y:B{R2}, expressing that f is a function whose

range is a computation with precondition R1 and postcondition R2.

∆ ` A⇐ type [A′] ∆, x:A′ ` T ⇐ type [Ψ.X.{R1}y:B{R2}]

∆ `M ⇐ A [M ′] ∆; init, mem; P =⇒[M ′/x]pA(∃Ψ.X.(R1 ∗ >))

∆, f :Πx:A′.Ψ.X.{R1}y:B{R2}, x:A′; this(init) ∧ ∃Ψ.X.(R1 ∗ >) ` E

⇐ y:B. (∀Ψ.X.R1 (R2) [E′]

∆, y:[M ′/x]pA(B); P ◦ [M ′/x]pA(∀Ψ.X.R1 (R2) ` F ⇒ z:C. Q [F ′]

∆; P ` y = fix f(x:A):T = do E in eval f M ; F ⇒ z:C. (∃y:[M ′/x]pA(B).Q)

[y = fix f(x:A′):Ψ.X.{R1}y:B{R2} = do E′ in eval f M ′; F ′]

Before M can be applied to the recursive function, and the obtained computation

executed, we need to check that the main precondition P implies ∃Ψ.X.(R1 ∗ >),

so that the heap contains a fragment that satisfies R1. After the recursive call

we are in a heap that is changed according to the proposition ∀Ψ.X.R1 (R2,

so the computation F following the recursive call is checked with a precondition

P ◦ (∀Ψ.X.R1 (R2). Of course, because the recursive calls are started using M

for the argument x, we need to substitute the canonical M ′ for x everywhere.

Sequents. The sequent calculus is a standard formulation of first-order classical

multi-sorted logic with equality and universal and existential polymorphic quantifi-

cation over monotypes. The sorts include bools, nats, functions and type functions

with extensionality, effectful computations and heaps. The calculus includes the

rules of cut, initial sequents, structural rules of weakening, contraction and ex-

change, and left and right rules for each propositional connective; all of these are

standard (Girard et al., 1989) so we do not present them here.

Definitional equality is embedded into propositional equality by postulating the

Hoare Type Theory, Polymorphism and Separation 23

following rules.

∆; X ; Γ1 =⇒ idA(M, M), Γ2

∆, x:A; X ` P ⇐ prop [P] ∆; X ; Γ1, idA(M, N) =⇒[M/x]pA(P), [N/x]pA(P), Γ2

∆; X ; Γ1, idA(M, N) =⇒[M/x]pA(P), Γ2

The first rule postulates that propositional equality is reflexive. In combination with

the requirement that all terms appearing in sequents are in canonical form, this

rule in effect embeds definitional equality as a subrelation of propositional equality.

The second rule axiomatizes that equal terms can be substituted in an arbitrary

context P .

The last equality rule does not admit extensionality of functions. The terms M

and N must depend only on the variables in ∆ and X , while functions require an

additional variable. Hence, we introduce a separate rule for function extensionality,

and similarly, a separate rule for type abstraction.

∆, x:A; X ; Γ1 =⇒ idB(M, N), Γ2

∆; X ; Γ1 =⇒ idΠx:A. B(λx. M, λx. N), Γ2

∆, α; X ; Γ1 =⇒ idB(M, N), Γ2

∆; X ; Γ1 =⇒ id∀α. B(Λα. M, Λα. N), Γ2

In the above rules, it is assumed that the bound variables x and α do not appear

free in the involved contexts.

Heaps are axiomatized as partial functions from nats to values as follows.

∆; X ; Γ1, seleqτ (empty, M, N) =⇒Γ2

∆; X ; Γ1 =⇒ seleqτ (updτ (H, M, N), M, N), Γ2

∆; X ; Γ1, seleqτ (updσ(H, M1, N1), M2, N2) =⇒ idnat(M1, M2), seleqτ (H, M2, N2), Γ2

∆; X ; Γ1, seleqτ (H, M, N1), seleqτ (H, M, N2) =⇒ idτ (N1, N2), Γ2

The first rule states that an empty heap does not contain any assignments. The sec-

ond and the third rule implement the McCarthy axioms for functional arrays (Mc-

Carthy, 1962), relating the seleq and upd functions. The fourth axiom asserts a

version of heap functionality: a heap may assign at most one value to a location,

for each given type.

We would prefer a slightly stronger fourth axiom here, which would state that a

heap assigns at most one type and value to a location, instead of at most one value

for each type. As an illustration, in our previous example we used the assertion

P = x 7→α m ∧ y 7→β n to specify a heap which contains exactly one location

thus forcing x and y to be aliases. While x = y could be derived from P , we

cannot derive that α = β and m = n with our weak fourth axiom. Stating the full

24 A. Nanevski, G. Morrisett and L. Birkedal

functionality of heaps requires a new assertion for heterogeneous equality (aka. John

Major equality, as introduced by McBride (1999)), which allows equating terms at

different underlying types. We leave this extension for future work.

Finally, the rules for the primitive types include the standard Peano axioms for

natural numbers, including the induction principle, and a similar set of rules for

booleans.

∆; X ; Γ1, idnat(succ M, z) =⇒Γ2

∆; X ; Γ1, idnat(succ M, succ N) =⇒ idnat(M, N), Γ2

∆, x:nat; X ` P ⇐ prop [P]

∆ `M ⇐ nat [M] ∆, x:nat; X ; Γ1, P =⇒[succ x/x]pnat(P), Γ2

∆; X ; Γ1, [z/x]pnat(P) =⇒[M/x]pnat(P), Γ2

∆; X ; Γ1, idbool(true, false) =⇒Γ2

∆, x:bool; X ` P ⇐ prop [P] ∆ `M ⇐ bool [M]

∆; X ; Γ1, [true/x]p
bool

(P), [false/x]p
bool

(P) =⇒[M/x]p
bool

(P), Γ2

Peano axioms usually include equations on primitive operations like + and ×. Such

equations are not required here, as they are already incorporated into definitional

equality. Similarly, we do not postulate any specific equations over effectful compu-

tations. Currently, HTT only supports the generic monadic unit and associativity

laws (Moggi, 1991), and these too are already a part of definitional equality.

Example. Here we consider the function sumfunc that takes an argument n and

computes the sum 1 + · · · + n. The function first allocates a which will store the

partial sums, then increments the contents of a with successive nats in a loop, until

n is reached. Then a is deallocated before its contents is returned as the final result.

We present the code for sumfunc in Figure 1, and annotate it with assertions

(preceded by “−−”) that are generated during typechecking at the various control

points. In the code, we assume given the ordering ≤, and introduce the following

abbreviations: (1) sum(r, n) = idnat(2× r, n× (n + 1)) denotes that r = 1 + · · ·+ n;

(2) I = i ≤ n ∧ ∃t:nat. a 7→nat t ∧ sum(t, i) denotes the loop invariant during the

summation; (3) Q = a 7→nat − ∧ sum(x, n) asserts what holds upon the exit from

the loop. The specification for sumfunc states that the function starts and ends

with an empty heap. The most interesting part of the code is the recursive loop. It

introduces the fixpoint variable f , whose type we take to be f :Πi:nat. {I}x:nat{Q},

giving the loop invariant in the precondition. The variable i is the counter which

drives the loop. The initial value for i is 0, as specified in eval f 0, and the loop

terminates when i reaches n.

The following sequents are generated during typechecking, and they constitute

the verification conditions that should be discharged in order to validate the pro-

gram: (1) P2 =⇒a ↪→nat −, so that a can be looked up, (2) P5 =⇒a ↪→ − so that

Hoare Type Theory, Polymorphism and Separation 25

sumfunc : Πn:nat. {emp}r:nat{emp ∧ sum(r, n)}
= λn. do (−− P0 : {this(init)}

a = allocnat(0);
−− P1 : {this(init) ∗ (a 7→nat 0)}
x = fix f(i : nat) : {I}x:nat{Q} =

do (−− P2 : {this(init) ∧ (I ∗ >)}
s = !nat a;
−− P3 : {P2 ∧ a ↪→nat s}
t = ifnat(i == n) then

−− P4 : {P3 ∧ idnat(i, n)}
return(s)

else

−− P5 : {P3 ∧ ¬idnat(i, n)}
a :=nat s + i + 1;
−− P6 : {P5 ◦ (a 7→nat −(a 7→nat s + i + 1)}
x← f (i + 1);
−− P7 : {P6 ◦ ([i + 1/i]I (Q)}
return(x)

−− P8 : {(P4 ∧ idnat(t, s)) ∨ (∃x:nat.P7 ∧ idnat(t, x))}
return(t))

in eval f 0;
−− P9 : {P1 ◦ ([0/i]I (Q)}
dealloc(a);
−− P10 : {P9 ◦ (a 7→nat −(emp)}
return(x))

Fig. 1. Annotated code for summation. Lines preceded by “−−” describe what is true at
the respective program points.

a can be updated, (3) P6 =⇒[i + 1/i]I ∗ >, so that the computation obtained from

f(i+1) can be executed, (4) P8∧ idnat(x, t) =⇒ I (Q, so that the fixpoint satisfies

the prescribed postcondition, (5) P9 =⇒ a ↪→ − so that a can be deallocated, and

(6) P10 ∧ idnat(r, x) =⇒ emp ((emp ∧ sum(r, n)), so that sumfunc has the required

postcondition. It is not too hard to see that all these sequents are valid.

4 Hereditary substitutions

In Section 3.1 we briefly sketched how equational reasoning is organized in the

typing judgments of HTT: to compare two terms for equality, we first normalize each

of them to a canonical form, and then check the canonical forms for α-equivalence.

In this section, we describe the details of the normalization operation.

An HTT term is in canonical form if it is beta-normal (i.e. it contains no beta

redexes), and eta-long (i.e., all of its intro subterms are eta expanded). For example,

if f :(nat→nat)→(nat→nat)→nat and g:nat→nat, then the canonical version of the

term f g is λh. f (λy. g y) (λx. h x). This definition of canonicity accounts for

both beta and eta equations.

The main insight, due to Watkins et al. (2004), is that conversion to canonical

26 A. Nanevski, G. Morrisett and L. Birkedal

forms (i.e., normalization) can be defined on possibly ill-typed terms, and can be

shown to terminate using a simple syntactic argument. The current section is a self-

contained presentation of these ideas, augmented with a treatment of predicative

polymorphism (which is not a difficult extension).

At the center of the development are hereditary substitutions, which are capture-

avoiding substitutions defined only on canonical terms. Hereditary substitutions

must avoid producing results with beta redexes, so whenever an ordinary substitu-

tion would create a beta redex, hereditary substitution must immediately reduce it.

This reduction may create another redex that must be reduced as well, and so on.

Hereditary substitutions may therefore be viewed as implementing a very specific

normalization strategy, which lends itself to a simple proof of termination.

In the current paper, the definitional equality of HTT terms does not depend

on the full HTT type, but only on its dependency-free version. For example, two

terms that are equal at some Hoare type are equal at any other Hoare type that

they belong to. Thus, when computing with canonical forms, we can ignore the

assertions from the Hoare types. With this in mind, given an HTT type A, we

define the shape A− to be the simple type obtained by erasing the dependencies.

(α)− = α

(nat)− = nat

(bool)− = bool

(1)− = 1

(∀α. A) = ∀α. A−

(Πx:A. B)− = A− → B−

(Ψ.X.{P}x:A{Q})− = 3(A−)

We impose an ordering on shapes and write S1 ≤ S2 and S1 < S2, if S1 is a

subexpression of S2 (proper subexpression in the second case). Here we consider

that proper subexpressions of a quantified type also include all the substitution

instances obtained by replacing the bound type variable with a simple monotype.

This is clearly a well-founded ordering, as instantiating a type quantifier with a

simple monotype decreases the overall number of quantifiers.

We define the following hereditary substitutions: (1) [M/x]∗S(−) substitute the

canonical term M for x in the argument. Here ∗ ∈ {k, m, e, a, p, h} ranges over

elim terms, intro terms, computations, types, assertions and heaps, respectively,

and determines the domain of the argument of the substitution. The index S is the

putative shape of the type of M , and will serve as the termination metric for the

substitution; (2) 〈E/x〉S(F) is the hereditary version of the monadic substitution,

and (3) [τ/α]∗(−) is the hereditary type substitution. To reduce clutter, we will fre-

quently write [M/x]∗A(−) and 〈E/x〉A(F), instead of [M/x]∗
A−(−) and 〈E/x〉A−(F),

correspondingly.

The substitutions are defined by nested induction, first on the structure of S, and

then on the structure of the term being substituted into (in case of the monadic

substitution, we use the substituted computation instead). In other words, we either

go to a smaller shape, in which case the expressions may become larger, or the shape

remains the same, but the expressions decrease.

Hoare Type Theory, Polymorphism and Separation 27

We note that the hereditary substitutions are partial functions. If the involved

expressions are not well-typed, the substitution, while terminating, may fail to

return a meaningful result. As conventional when working with expressions that

may fail to be defined, whenever we state an equality T1 = T2, we imply that T1

and T2 are also defined.

We next present the characteristic cases of the definitions of hereditary substitu-

tions. The substitution into elim terms may return either another elim term K, or

an intro term N . In the latter case, N is annotated with the shape S of its putative

type.

[M/x]kS(x) = M :: S

[M/x]kS(y) = y if y 6= x

[M/x]kS(K N) = K ′ N ′ if [M/x]kS(K) = K ′ and [M/x]kS(N) = N ′

[M/x]kS(K N) = O′ :: S2 if [M/x]kS(K) = λy. M ′ :: S1 → S2, where

[M/x]kS(N) = N ′ and O′ = [N ′/y]mS1
(M ′)

[M/x]kS(K τ) = K ′ τ ′ if [M/x]kS(K) = K ′ and [M/x]kS(τ) = τ ′

[M/x]kS(K τ) = N ′ :: [τ−/α]S2 if [M/x]kS(K) = Λα. M ′ :: ∀α. S2, where

[M/x]aS(τ) = τ ′ and N ′ = [τ ′/α]m(M ′)

[M/x]kS(K ′) fails otherwise

Notice that the substitution into K N and K τ may fail to be defined depending

on what is returned as a result of substituting into K. For example, a failure will

appear if [M/x]kS(K) returns an intro term which is not a lambda abstraction, or

if the returned shape is not a function type. We also note that the definition does

not require a case for substitution into elim terms N :A, because this kind of terms

cannot appear in a canonical form.

Next we present several cases from the hereditary substitution into intro terms.

[M/x]mS (K) = K ′ if [M/x]kS(K) = K ′

[M/x]mS (K) = N ′ if [M/x]kS(K) = N ′ :: S′

[M/x]mS (etaα K) = etaα K ′ if [M/x]kS(K) = K ′

[M/x]mS (etaα K) = etaα K ′ if [M/x]kS(K) = etaα K ′ :: α

[M/x]mS (()) = ()

[M/x]mS (λy. N) = λy. N ′ where [M/x]mS (N) = N ′

choosing y 6∈ FV(M) and y 6= x

[M/x]mS (Λα. N) = Λα. N ′ where [M/x]mS (N) = N ′

choosing α 6∈ FTV(M) and α 6= x

[M/x]mS (do E) = do E′ if [M/x]eS(E) = E′

We omit the clauses for substitution into primitive operations, as they are not

particularly interesting. In fact, the only interesting case here is substituting into

etaα K, which fails if substituting into the subterm K does not return etaα K ′ in-

dexed by the same type variable α. Any other intro term would restrict which types

could be substituted for α, thus violating the parametricity of type abstraction.

28 A. Nanevski, G. Morrisett and L. Birkedal

The characteristic cases of hereditary substitution into computations follow.

[M/x]eS(return N) = return N ′ if [M/x]mS (N) = N ′

[M/x]eS(y ← K; E) = y ← K ′; E′ if [M/x]kS(K) = K ′ and [M/x]eS(E) = E′

choosing y 6∈ FV(M) and y 6= x

[M/x]eS(y ← K; E) = F ′ if [M/x]kS(K) = do F :: 3S1

and [M/x]eS(E) = E′ and F ′ = 〈F/y〉S1
(E′)

choosing y 6∈ FV(M) and y 6= x

We omit the clauses for primitive computations as they are straightforward. Also, we

do not require a clause for substitution into y =A N ; E, because this computation

is not canonical (indeed it reduces to [N/y]eA(E)). The only interesting case arises

when the substitution into the branch K of y ← K; E returns a do-suspended

computation. That creates a redex which is immediately reduced by invoking a

monadic hereditary substitution.

Hereditary monadic substitution is a simple adaptation of the ordinary monadic

substitution defined in Section 3.1.

〈return M/x〉A(F) = F ′ if [M/x]eA(F) = F ′

〈y ← K; E/x〉A(F) = y ← K; F ′ if 〈E/x〉A(F) = F ′, choosing y 6∈ FV(F)

〈y ⇐ c; E/x〉A(F) = y ⇐ c; F ′ if 〈E/x〉A(F) = F ′, choosing y 6∈ FV(F)

〈E/x〉A(F) fails otherwise

Hereditary (mono)type substitutions [τ/α]∗(−) in most cases simply commute

with the constructors, and the only interesting case is:

[τ/α]m(etaα K) = expandτ (K ′) if [τ/α]k(K) = K ′

which expands out the argument expression with respect to τ . Notice that the

result must itself be a canonical intro term, as expansion cannot create new redexes

(please see the definition of expand in Section 3.1).

We omit the hereditary substitutions into types, propositions and heaps, as they

simply commute with all the connectives.

Theorem 1 (Termination of hereditary substitutions)

1. If [M/x]kS(K) = N ′ :: S1, then S1 ≤ S.

2. [M/x]∗S(−), 〈E/x〉S(−) and [τ/α]∗(−) terminate, either by returning a result,

or failing in a finite number of steps.

Proof

The first part is by induction on K. The second part is trivial in the case of type

substitutions, as type substitutions cannot create new redexes, and are hence ter-

minating. In the case of [M/x]∗S and 〈E/x〉S , we proceed by nested induction, first

on the index shape S (under the ordering ≤) , and second on the structure of the

argument we apply the substitution to. In each case of the definition, we either

decrease S, or failing that, we apply the function to strict subexpressions of the

input. Since ≤ is well-founded, this process must terminate.

Note that without the restriction to predicative polymorphism, types could actu-

ally grow after a substitution into the elim form K τ , and hereditary substitutions

Hoare Type Theory, Polymorphism and Separation 29

may fail to terminate if applied to ill-typed terms. Hence our restriction to pred-

icative polymorphism insists that τ must be a monotype.

In the future work, we plan to extend HTT with impredicative polymorphism.

The extension will require a significantly more involved proof of termination, prob-

ably based on logical relations, unlike the present case where a simple syntactic

argument suffices.

5 Properties

In this section we present the most characteristic properties of HTT, leading up to

the substitution principles.

Theorem 2 (Relative decidability of type checking)

Given an oracle for deciding the validity of assertion logic sequents, all the typing

judgments of the HTT are decidable.

Proof

The typing judgments of HTT are syntax directed; their premises always involve

typechecking smaller expressions, or deciding syntactic equality of types, or comput-

ing hereditary substitutions, or deciding sequents of the assertion logic. Checking

syntactic equality is obviously a terminating algorithm, and as shown in Theo-

rem 1, hereditary substitutions are terminating as well. Thus, if the validity of each

assertion logic sequent can be decided, so too can the typing judgments.

The proof of Theorem 2 essentially shows that typechecking of HTT can be divided

into the two phases described at the beginning of Section 2. Whenever a sequent

is encountered during typechecking, we can use the oracle to decide its validity, or

simply view the sequent as a verification condition, and postpone calling the oracle

(that is, proving the sequent) until later. The proof of Theorem 2 guarantees that if

deciding sequents is postponed, then typechecking terminates. Thus, we can divide

typechecking into two phases. The first phase checks the underlying simple types,

and generates the verification conditions. Since HTT is a higher-order language,

this process is non-trivial, as it involves normalization. However, by Theorem 2, it

is terminating. In the second phase the verification conditions are discharged.

It should be possible to remove the assumption about the oracle in Theorem 2,

by extending HTT with certificates for the sequents, in the style of Proof-Carrying

Code (Necula, 1997). With this extension, a computation judgment of HTT will

contain all the information needed to establish its own derivation, as the deriva-

tion is completely guided by the syntax of the computation. In the terminology of

Martin-Löf (1996), the judgments become analytic, or self-evident. Alternatively,

we can say that an HTT computation can be viewed as a proof of its own spec-

ification, and thus the effectful fragment of HTT establishes a correspondence in

the style of Curry-Howard isomorphism (Howard, 1980) between computations and

specification proofs.

30 A. Nanevski, G. Morrisett and L. Birkedal

The next lemma connects the elim term K with its eta expansion.

Lemma 3 (Identity principle)

If ∆ ` K ⇒ A [K], then ∆ ` expandA(K)⇐ A [expandA(K)].

Proof

By induction on the structure of A, using an auxiliary lemma about expansion of

variables (omitted here), which roughly states that if x:A is a free variable in a well-

typed expression N , then hereditarily substituting expandA(x) for x does not change

N . Intuitively, the latter holds because typing ensures that x is correctly used in

N , so that when expandA(x) is substituted, the created redexes are immediately

hereditarily reduced, preserving the syntactic form of N .

We proceed to restate in the context of HTT the usual properties of Hoare Logic,

such as weakening of the consequent and strengthening of the precedent. Also in-

cluded is the property of relational composition, which states that a computation

does not depend on how the heap in which it executes has been obtained; what

matters is only the current state of the heap. In other words, if a computation has

a precondition P and postcondition Q (which, in the typing judgments are binary

relations on heaps), these can be composed with an arbitrary relation R into a new

precondition R ◦ P and a new postcondition R ◦Q. This property is important for

the meta-theory of HTT, because the typing rules compute strongest postcondition

by composing binary relations.

Lemma 4 (Properties of computations)

Suppose that ∆; P ` E ⇐ x:A. Q [E ′]. Then:

1. Weakening Consequent. If ∆, x:A; init, mem; Q =⇒R, then ∆; P ` E ⇐

x:A. R [E′].

2. Strengthening Precedent. If ∆; init, mem; R =⇒P , then ∆; R ` E ⇐ x:A. Q [E ′].

3. Relational Composition. If ∆; init, mem ` R⇐ prop [R], then ∆; R ◦P ` E ⇐

x:A. (R ◦Q) [E′].

Proof

Weakening of consequent is straightforward. From ∆; P ` E ⇐ x:A. Q [E ′] we

know that there exists an assertion S, such that ∆; P ` E ⇒ x:A. S where

∆, x:A; init, mem; S =⇒Q. Applying the rule of cut, we get ∆, x:A; init, mem; S =⇒R,

and thus ∆; P ` E ⇐ x:A. R [E′].

Strengthening precedent and relational composition are proved by induction on

the structure of E, using the identity principles.

We next use the properties of computations to prove that the Frame Rule from

Separation Logic is admissible. The Frame Rule captures the essence of small foot-

prints, and guarantees that a computation cannot touch the portion of the heap

that is not described by its precondition.

Lemma 5 (Frame)

If ∆ ` do E ⇐ Ψ.X.{P}x:A{Q} [E ′], and ∆, Ψ; X, mem ` R ⇐ prop [R], then

∆ ` do E ⇐ Ψ.X.{P ∗R}x:A{Q ∗R} [E ′].

Hoare Type Theory, Polymorphism and Separation 31

Proof

From the assumption on the typing of do E, we obtain ∆; this(init)∧∃Ψ.X.(P ∗>) `

E ⇐ x:A. ∀Ψ.X.(P (Q).

Notice that that following sequents are derivable.

1. this(init) ∧ ∃Ψ.X.(P ∗R ∗ >) =⇒ this(init) ∧ ∃Ψ.X.(P ∗ >), and

2. ∀Ψ.X.(P (Q) =⇒∀Ψ.X.(P ∗R (Q ∗R).

Both are proved easily, in the second case after expanding the definition of (. Now

the result follows from the typing of E, by strengthening the precedent using (1)

and weakening the consequent using (2).

We close this section with the statement of the substitution principles, which

formalize the interplay between the ordinary substitutions on general terms, and

hereditary substitutions on the canonical versions of the same terms. Intuitively,

substitution commutes with normalization. That is, ordinary substitution followed

by normalization, produces the same result as computing the canonical forms first,

and then employing hereditary substitutions.

Thus, unlike in most other works on dependent types, where proving sound-

ness usually requires proving strong normalization, here we establish a somewhat

weaker, but sufficient, result. Instead of showing that every reduction order yields

the same canonical form, we only need to know that the particular reduction order

implemented by the typechecker is stable under substitution.

Lemma 6 (Type substitution principles)

Suppose that ∆ ` τ ⇐ mono [τ ′], and denote by T the operation of hereditary type

substitution [τ ′/α]∗(T), for any kind of expression T . Then the following hold.

1. If ∆, α, ∆1 ` K ⇒ B [O], then ∆, ∆1 ` [τ/α]K ⇒ B [O].

2. If ∆, α, ∆1 ` N ⇐ B [O], then ∆, ∆1 ` [τ/α]N ⇐ B [O].

3. If ∆, α, ∆1; P ` E ⇐ y:B. Q [F], and y 6∈ FV(M), then ∆, ∆1; P ` [τ/α]E ⇐

y:B. Q [F].

4. If ∆, α, ∆1; X ; Γ1 =⇒Γ2, then ∆, ∆1; X ; Γ1 =⇒Γ2.

Lemma 7 (Term substitution principles)

Suppose that ∆ ` A ⇐ type [A′] and ∆ ` M ⇐ A′ [M ′], and denote by T the

operation of hereditary substitution [M ′/x]∗A′(T), for any kind of expression T .

Then the following hold.

1. If ∆, x:A′, ∆1 ` K ⇒ B [O], then ∆, ∆1 ` [M :A/x]K ⇒ B [O].

2. If ∆, x:A′, ∆1 ` N ⇐ B [O], then ∆, ∆1 ` [M :A/x]N ⇐ B [O].

3. If ∆, x:A′, ∆1; P ` E ⇐ y:B. Q [F], and y 6∈ FV(M), then ∆, ∆1; P `

[M :A/x]E ⇐ y:B. Q [F].

4. If ∆, x:A, ∆1; X ; Γ1 =⇒Γ2, then ∆, ∆1; Ψ; Γ1 =⇒Γ2.

5. If ∆; P ` E ⇐ x:A′. Q [E′] and ∆, x:A′; Q ` F ⇐ y:B. R [F ′], where x 6∈

FV(B, R), then ∆; P ` 〈E/x:A〉F ⇐ y:B. R [〈E ′/x〉A(F ′)].

32 A. Nanevski, G. Morrisett and L. Birkedal

Most of the substitution principles are simple adaptations of the fairly standard

principles encountered in any dependent type theory. However, it may be interest-

ing to point out here that the monadic substitution principle (Lemma 7.5) actually

states that the sequential composition rule usually encountered in Hoare logics is

admissible in HTT. Indeed, Lemma 7.5 states that a computation E with a post-

condition Q can be sequentially composed with another computation F , if F has a

precondition Q.

Both type and term substitution principles are proved by simultaneous induction

of the main derivations, after generalizing to include the formation judgments of

HTT. The proofs makes essential use of auxiliary hereditary substitution principles

(omitted here), which have similar statement as the lemmas above, but involve only

canonical forms.

6 Operational semantics

In this section we define the call-by-value, left-to-right operational semantics for

HTT and prove that the type system is sound with respect to the operational

semantics. In particular, we argue that if ∆; P ` E ⇐ x:A. Q is derivable in the

type system, then it is indeed the case that evaluating E in a heap in which P holds

produces a heap in which Q holds (if E terminates).

The operational semantics is only defined for well-typed terms. Since HTT types

correspond to specifications, our approach is different from the traditional approach

of Hoare Logic but it is similar to the approach in (Birkedal et al., 2005), which

also only gives semantics to well-specified programs.

Syntax. The syntactic domains required by the operational semantics are as follows.

Values v, l ::= () | λx. M | Λα. M | do E | true | false | z | succ v

Value heaps χ ::= · | χ, l 7→τ v

Continuations κ ::= · | x:A. E; κ

Control expressions ρ ::= κ . E

Abstract machines µ ::= χ, κ . E

The definition of values is standard from mostly functional programming languages.

We use l to range over nats when they are used as pointers. Value heaps are assign-

ments from nats to values, where each assignment is indexed by a type. Value heaps

are a run-time concept – and are used in the evaluation judgments to describe the

state in which programs execute. This is in contrast to heaps from Section 2 which

are used for reasoning in the assertion logic. That the two notions correspond to

each other is expressed by our definition of heap soundness that will be given later

in this section. We will need to convert a value heap into a heap canonical form, so

we introduce the following conversion function.

[[·]] = empty

[[χ, l 7→τ v]] = updτ ([[χ]], l, M), where · ` v ⇐ τ [M]

A continuation is a sequence of computations of the form x:A.E, where E may

Hoare Type Theory, Polymorphism and Separation 33

depend on the bound variable x:A. The continuation is executed by passing a value

to the variable x in the first computation E. If that computation terminates, its

return value is passed to the second computation, and so on.

A control expression κ . E pairs up a computation E and a continuation κ, so

that E provides the initial value with which the execution of κ can start. Thus, a

control expression is in a sense a self-contained computation. Control expressions

are introduced because they make the call-by-value semantics of the computation

x← do E; F explicit. Evaluation of this computation is carried out by creating the

control expression x. F .E; or in other words, first push x. F onto the continuation,

and proceed to evaluate E.

An abstract machine µ is a pair of a value heap χ and a control expression κ.E.

The control expression is evaluated against the heap, to eventually produce a result

and possibly change the heap.

Our theorems require a typing judgment for abstract machines, in order to specify

the type of the return value and the properties of the heap in which the abstract

machine terminates (if it does). Given µ = χ, κ . E, we write ` µ ⇐ x:A. Q if

we can prove that Q is a postcondition for κ . E with respect to the assertion [[χ]]

generated from χ.

Evaluation. There are three evaluation judgments in HTT; one for elimination

terms K ↪→k K ′, one for introduction terms M ↪→m M ′ and one for abstract

machines χ, κ . E ↪→e χ′, κ′ . E′. Each judgment relates an expression with its

one-step reduct. We present selected rules in Figure 2.

For example, in the evaluation of intro terms, if the intro term is obtained by

coercion from an elim term, we invoke the judgment for elim terms. If the returned

result is of the form v:A, we remove the type annotation. This prevents accumulation

of type annotations, as in v:A1: · · · :An. In the evaluation of the abstract machine

χ, κ . E, we first reduce E to a value, which is plugged into the continuation κ

to proceed. Occasionally we must check that the types given at the input abstract

machine are well-formed, so that the output abstract machine is well-formed as well.

The outcome of the evaluation, however, does not depend on type information, if

we assume that the input to evaluation is well formed.

Soundness. Perhaps somewhat surprisingly for a program logic like HTT, we for-

mulate soundness via Preservation and Progress theorems as often used for sim-

pler type systems. This is a consequence of our decision to formulate HTT as a

type theory, rather than as an ordinary Hoare Logic. Of course, our Preservation

and Progress theorems are significantly stronger (and also harder to prove) than

corresponding theorems for simpler type systems since our types are much more

expressive.

Theorem 8 (Preservation)

1. if K0 ↪→k K1 and · ` K0 ⇒ A [N ′], then · ` K1 ⇒ A [N ′].

2. if M0 ↪→m M1 and · `M0 ⇐ A [M ′], then · `M1 ⇐ A [M ′].

3. if µ0 ↪→e µ1 and ` µ0 ⇐ x:A. Q, then ` µ1 ⇐ x:A. Q.

34 A. Nanevski, G. Morrisett and L. Birkedal

Evaluation of elim terms

K ↪→k K′

K N ↪→k K′ N

N ↪→m N ′

(v : A) N ↪→k (v : A) N ′

K ↪→k K′

K τ ↪→k K′ τ

(λx. M : Πx:A1. A2) v ↪→k [v : A1/x]M : [v : A1/x]A2

(Λα. M : ∀α. A) τ ↪→k [τ/α]M : [τ/α]A

M ↪→m M ′

M : A ↪→k M ′ : A

Evaluation of intro terms

K ↪→k K′ K′ 6= v : A

K ↪→m K′

K ↪→k v : A

K ↪→m v

Evaluation of abstract machines

χ, x:A. E; κ . v ↪→e χ, κ . [v : A/x]E

χ, κ . x← (do F) : Ψ.X.{P}x:A{Q}; E ↪→e χ, (x:A. E; κ) . F

· ` τ ⇐ mono [τ ′] l 6∈ dom(χ)

χ, κ . x = allocτ (v); E ↪→e (χ, l 7→τ ′ v), κ . [l:nat/x]E

· ` τ ⇐ mono [τ ′] l 7→τ ′ v ∈ χ

χ, κ . x =!τ l; E ↪→e χ, κ . [v : τ/x]E

· ` τ ⇐ mono [τ ′]

(χ1, l 7→σ v′, χ2), κ . l :=τ v; E ↪→e (χ1, l 7→τ ′ v, χ2), κ . E

(χ1, l 7→σ v, χ2), κ . dealloc(l); E ↪→e (χ1, χ2), κ . E

χ, κ . x =A v; E ↪→e χ, κ . [v:A/x]E

χ, κ . x = ifA (true) thenE1 else E2; E ↪→e χ, x:A. E; κ . E1

χ, κ . x = ifA (false) thenE1 else E2; E ↪→e χ, x:A. E; κ . E2

χ, κ . x = caseA (z) of z.E1 or s y.E2; E ↪→e χ, x:A. E; κ . E1

χ, κ . x = caseA (s v) of z.E1 or s y.E2; E ↪→e χ, x:A. E; κ . [v:nat/y]E2

N = λz. do (y = fix f(x:A):B = do E in eval f z; y) B = Ψ.X.{R1}y:C{R2}

χ, κ . y = fix f(x:A):B = do E in eval f v; F ↪→e

χ, (y:[v:A/x]C. F ; κ) . [v:A/x,N :Πx:A.B/f]E

Fig. 2. Selected evaluation rules (omitted are primitive arithmetic operations and
non-redex cases of abstract machines).

Hoare Type Theory, Polymorphism and Separation 35

Proof

The first two statements are proved by simultaneous induction on the evaluation

judgment, using inversion on the typing derivation, and substitution principles. The

third statement is proved by case analysis on the evaluation judgment, using the first

two statements. We also tacitly use an auxiliary replacement lemma (omitted here),

which roughly states that replacing the computation E in the control expression

κ . E with another computation F preserves the typing of the control expression,

as long as E and F have the same postconditions, and thus both provide the same

precondition for the execution of κ.

The preservation theorem states that the evaluation step on a well-specified

term/abstract machine does not change the specification of the result. In the case

of abstract machines, after taking the step, the evaluation is still on its way to pro-

duce a value of type A, and to terminate in a heap satisfying Q. In the case of pure

terms, there is an additional claim that evaluation preserves the canonical form

— and thus the equational properties — of the evaluated term. In other words,

normalization is adequate for the operational semantics.

Before we can state the progress theorem, we need to define a property of the

assertion logic which we call heap soundness.

Definition 9 (Heap soundness)

The assertion logic of HTT is heap sound iff for every value heap χ,

1. if ·; mem; this([[χ]]) =⇒ l ↪→τ −, then l 7→τ v ∈ χ, for some value v, and

2. if ·; mem; this([[χ]]) =⇒ l ↪→ −, then l 7→τ v ∈ χ for some monotype τ and a

value v.

Heap soundness essentially shows that the assertion logic correctly reasons about

value heaps, so that facts established in the assertion logic will be true during

evaluation. The clauses of the definition of heap soundness correspond to the side

conditions that need to be derived in the typing rules for the primitive commands

of lookup, update and deallocation. If the assertion logic proves that l ↪→τ −, then

the evaluation will be able to associate a value v with this location, and carry out

the lookup. If the assertion logic proves that l ↪→ −, then the evaluation will be

able to associate a monotype τ and a value v:τ with this location, and carry out

the update or deallocation.

Now we can state the Progress theorem, under the assumption of heap soundness;

in the following section we prove that the assertion logic of HTT is indeed heap

sound.

Theorem 10 (Progress)

Suppose that the assertion logic of HTT is heap sound. Then the following hold.

1. If · ` K0 ⇒ A [N ′], then either K0 = v : A or K0 ↪→k K1, for some K1.

2. If · `M0 ⇐ A [M ′], then either M0 = v or M0 ↪→m M1, for some M1.

3. If ` χ0, κ0 . E0 ⇐ x:A. Q, then either E0 = v and κ0 = ·, or χ0, κ0 . E0 ↪→e

χ1, κ1 . E1, for some χ1, κ1, E1.

Proof

36 A. Nanevski, G. Morrisett and L. Birkedal

By straightforward case analysis on the involved expressions, employing inversion

on the typing derivations. In addition, the proof of the third statement requires

heap soundness in order to discharge the cases involving the primitive commands

for allocation, lookup and update.

Example. From Progress and Preservation theorems it is now clear that sumfunc 10

produces a computation that, if it terminates when executed in an empty heap,

returns the value 55 and an empty heap.

7 Heap soundness

In this section we sketch a proof that the assertion logic is heap sound. For the most

part, the assertion logic is a standard first-order logic with polymorphism. However,

it also admits reasoning about heaps and monadic computations. We need to show

that the presence of heaps and computations does not cause unsoundness, and we

do so by means of a simple, and somewhat crude set-theoretic model of HTT.

Our model depends on the observation that the assertion logic does not include

axioms for computations; reasoning about computations is formalized via the typing

rules and soundness of those is proved above via progress and preservation assuming

soundness of the assertion logic (heap soundness).

Thus in our set-theoretic model, we chose to simply interpret the computation

types Ψ.X.{P}x:A{Q} and Ψ.X.{P}x:τ{Q} as one-element sets, emphasizing that

the assertion logic cannot distinguish between different computations. Given this

basic decision we are really just left with interpreting a type theory similar to the

Extended Calculus of Constructions with a (assertion) logic on top. The type theory

has two universes (mono and other types) and is similar to the Extended Calculus

of Construction (ECC), except that the mono universe is not impredicative. Hence

we can use a simplified version of Luo’s model of ECC (Luo, 1990) for the types.

Thus our model is really fairly standard and hence we only include a sketch of it

here.

As in (Luo, 1990) our model takes place in ZFC set theory with infinite inaccessi-

ble cardinals κ0, κ1, . . . (see loc. cit. for details). The universe mono is the set of all

sets of cardinality smaller than κ0. The type nat is interpreted as the set of natural

numbers, bool as the set of booleans, Πx:A. B and Πx:τ . σ as dependent product

in sets, Σx:A. B and Σx:τ . σ as dependent sum in sets. Heaps are interpreted as

finite partial functions from the set of natural numbers to Σα:mono. α. Predicates

P on a type are interpreted as subsets in the classical way.

Thus we clearly get a sound model of classical higher-order logic and the assertion

logic is heap sound.

Theorem 11 (Heap Soundness)

The assertion logic of HTT is heap sound.

Proof

Let χ be a value heap. Here we only sketch the argument for case (1) of heap

soundness (Definition 9); case (2) is proved analogously.

Hoare Type Theory, Polymorphism and Separation 37

By assumption ·; mem; this([[χ]]) =⇒ l ↪→τ − is derivable. By soundness of the

assertion logic we have that ·; mem; this([[χ]]) =⇒ l ↪→τ − is true. By definition of

the interpretation of ↪→τ this means that ∃v ∈ [[τ]] . [[[[χ]]]](l) = v. By the definition

of [[χ]] and the semantics of heaps, we have that l 7→A v0 ∈ χ, for some value v0, as

required (and [[v0]] is the v that exists).

Note that the denotational model above does not model predicates as admissible1

subsets, but rather as all subsets. One might have expected admissibility to show

up since HTT contains a rule for fixed points (see Section 3) but because the deno-

tational model is so crude and since it is only used to show heap soundness, while

operational methods are used to show soundness of the typing rule for fixed points,

we do not need to restrict attention to admissible predicates in the denotational

model. We are not aware of similar combinations of models and proof methods for

models of higher-order store in the literature.

8 Related work

We divide the related work into three groups: (1) Hoare Logics for higher-order

effectful programs, (2) dependent type systems for pure and impure functional

programming, and (3) languages and tools for extended static checking of effectful

programs.

Hoare Logics for higher-order programs. Honda, Berger and Yoshida in (Honda

et al., 2005; Berger et al., 2005) present several Hoare Logics for total correctness

of PCF with references, where specifications in the form of Hoare triples are taken as

propositions. Krishnaswami (2006) proposes a version of Separation Logic for a core

monomorphic ML-like language. Similarly to HTT, Krishnaswami bases his logic on

a monadic presentation of the underlying programming language. Both proposals

do not support polymorphism, strong updates, deallocation or pointer arithmetic.

Both are Hoare-like logics, rather than type theories, and do not integrate expressive

specifications into types.

Dependent types for programming. The work on dependently typed systems with

stateful features has mostly focused on how to appropriately restrict the effects

from appearing in the language of types. If types only depend on pure terms, it

becomes possible to use logical reasoning about them. Such systems have mostly

employed singleton types to enforce purity. Examples include Dependent ML by Xi

and Pfenning (1998; 1999), Applied type systems by Chen and Xi (2005) and Zhu

and Xi (2005), and a type system for certified binaries by Shao et al. (2005). HTT

differs from these approaches, because types are allowed to depend on monadically

encapsulated effectful computations. We also mention the theory of type refine-

ments by Mandelbaum et al. (2003), which reasons about programs with effects, by

employing a restricted fragment of linear logic. The restriction on the logic limits the

1 A subset of a pointed cpo is admissible if it is pointed and closed under sups of chains.

38 A. Nanevski, G. Morrisett and L. Birkedal

class of properties that can be described, but is undertaken to preserve decidability

of typechecking.

There are also several recent proposals for purely functional languages with de-

pendent types. Examples include Cayenne (Augustsson, 1998), Epigram (McBride

& McKinna, 2005), Omega (Sheard, 2004) and Sage (Flanagan, 2006).

Cayenne is an extension of Haskell that allows arbitrary values to occur in types.

Like Haskell, Cayenne considers diverging computations to be pure, and admits

them into type dependencies. As commented in (Augustsson, 1998), this makes it

possible to construct a proof for every proposition that appears in a Cayenne type,

by simply building a diverging program whose type equals the required proposition.

Hence, Cayenne, as a logic, is unsound. From the computational perspective, this is

not necessarily bad, as long as unsoundness is manifested as divergence, rather than

a run-time type error. But, it would seem to imply that all program transformations

must preserve diverging behavior of the underlying code, which may complicate

some optimizations (Gill et al., 1993). Thus, we believe that it is much better if

divergence is considered to be an effect, and is appropriately isolated by the type

system, as done in HTT.

Epigram is based closely on Luo’s UTT (Luo, 1994), and supports a number of

practical programming features, like inference of implicit arguments, non-uniform

families of types, sophisticated forms of pattern matching, and the use of explicit

proofs within programs. Epigram does not currently support imperative features.

Omega (Sheard, 2004) employs singleton types, in a way similar to DML and

ATS, to refine the type system of the underlying language. It allows the use of

explicit proofs within programs, in order to discharge the various conditions that

arise during typechecking.

Sage (Flanagan, 2006) makes typechecking of expressive specifications manage-

able by combining proving and run-time checks. When the Sage typechecker cannot

automatically discharge some verification condition, it inserts an explicit test in the

code. If the test fails at run-time, the program is forced into an error state, and the

failing test instance is remembered as a falsehood for future use in theorem proving.

We believe that a similar functionality can easily be built into HTT, at least for

those properties that can actually be computationally verified (this excludes any

non-trivial use of quantifiers).

In addition to the purely functional languages described above, we list RSP1 (West-

brook et al., 2005), and Deputy (Condit et al., 2007), as two proposal for using

dependent types for specification and reasoning about state in first-order and low-

level languages, respectively. HTT differs from these approaches, as we support

fully higher-order, as well as polymorphic, imperative programs and stores.

Extended static checking. There are also a number of languages and tools that

integrate Hoare-style specifications into the type system and provide a mode of

extended static checking of imperative programs. Examples include ESC/Modula-

3 (Detlefs et al., 1998), ESC/Java (Leino et al., 2000), JML (Leavens et al., 1999;

Burdy et al., 2005), Spec# (Barnett et al., 2004), SPLint (Evans & Larochelle, 2002)

and SPARK/Ada (Barnes, 2003). All these systems use the annotations to statically

Hoare Type Theory, Polymorphism and Separation 39

generate the appropriate verification conditions, which are then discharged by an

automated theorem prover, or by inserting a run-time check.

For example, SPARK/Ada syntactically limits the programming language, so

that the assertions are always decidable. This makes it inapplicable in many situa-

tions, but provides a desired guarantee that well-typed programs do not go wrong.

Spec# inserts a run-time check whenever it cannot prove a certain condition (with

similar restrictions as described above for Sage). In contrast, ESC/Java is designed

simply to warn the programmer of a potential error, but does not offer any sound-

ness guarantees.

Finally, we mention two theoretical frameworks for programming with expressive

specifications. Abadi and Leino (2004) describe a logic for object-oriented programs

where specifications, like in HTT, are treated as types. One of the problems that

the authors describe concerns the scoping of variables; certain specifications cannot

be proved because the inference rule for let val x = E in F does not allow sufficient

interaction between the specifications of E and F . Such problems do not appear

in HTT. Birkedal et al. (2005) describe a dependent type system for well-specified

programs in idealized Algol extended with heaps. The type system includes a wide

collection of higher-order frame rules, which are shown sound by a denotational

model. A serious limitation of the type system compared to HTT is that the heap

in loc. cit. can only contain simple integer values.

9 Future work

We briefly sketch several ideas that we plan to carry out in the future: scaling HTT

to include quantification over propositions, capturing locality and ownership of state

in the type system, investigation of reasoning principles for effectful computations,

addition of inductive and recursive types, and stateful types like references and

arrays, and other applications of type systems with Hoare types.

Higher-order quantification and local state. The type system presented in this paper

does not provide any constructs for quantification over assertions. Yet, this clearly is

an important operation. For example, abstracting a proposition at the level of terms

and types makes it possible to hide certain details about a function or a module,

so that different implementations may share the same signature. This is crucial for

modular programming and code reuse. Abstracting a proposition at the level of

assertions increases the power of the assertion logic to higher-order, thus providing

internal means for defining new predicates (including inductive and coinductive

ones) and for reasoning about a large class of types (Church, 1940; Paulson, 1990;

SRI International & DSTO, 1991).

In (Nanevski et al., 2007), we have already carried out preliminary investigations

into the higher-order extensions, and scaled HTT to include a significant fragment

of the Extended Calculus of Constructions (Luo, 1990). It turns out that when com-

bined with Hoare types, abstraction over predicates can represent the local state of

modules within the type system. Local state is shared by several functions of the

module, but can be hidden from the clients. The precision of the abstracted pred-

40 A. Nanevski, G. Morrisett and L. Birkedal

icate controls how much information about local state is revealed. By judiciously

choosing this predicate, modules may completely protect their local state, or grant

a partial or total access to, or even ownership of portions of local state to the clients.

We also believe that higher-order assertion logic is the appropriate framework

for studying type and annotation inference for HTT, as higher-order logic should

be strong enough to represent any pre- and postcondition that may appear during

program verification. This is directly related to the property of Cook complete-

ness (Cook, 1978), which we would also like to prove for HTT.

Reasoning about effectful code. One of the main obstacles in the design of languages

for integrated programming and reasoning, as for example outlined in (Burdy et al.,

2005), is that effectful code usually cannot appear in specifications. This is prob-

lematic from the software engineering point of view, as it leads to code duplication.

Almost every functionality must be implemented once purely, to be used in speci-

fication and reasoning, and once impurely, for efficient execution.

In HTT, we admit effectful code in specifications, but that is only the first step

towards solving the above problem, as the degree to which such code can be reasoned

about is determined by the available equational laws. Currently, HTT admits only

the generic monadic laws, which do not capture all the semantic properties of

computations. In the future, we plan to investigate which additional equations can

be soundly added. This might require developing more refined denotational models

than the one described in this paper, and formalizing them in the assertion logic of

HTT, so that the equalities between computations can be certified when required.

Incorporating other notions of effects. In this paper, we applied HTT to the prob-

lem of reasoning about state with aliasing. But other computational effects and

applications seem possible too. For example, we would like HTT to support control

effects like exceptions and continuations. Some related work in this direction may

be (Tan & Appel, 2006), which extends Hoare Logic with compositional reasoning

about programs with labels and goto commands. We also plan for HTT to support

concurrency. Separation Logic has been used recently to reason about concurrent

programs (O’Hearn et al., 2004; Feng et al., 2007) and we hope that these ideas may

be embedded into HTT as well. On the other hand, an approach to concurrency

based on software transactional memory, as recently implemented in Haskell (Har-

ris et al., 2005), may be particularly well-suited to the monadic nature of Hoare

types. Another interesting extension may involve reasoning through Hoare types

about information flow and security (Amtoft et al., 2006).

Stateful types. The types of HTT are currently all pure, in the sense that we abstract

away from their actual layout in memory. It is possible to describe the layout of the

memory and reason about it using assertions, but it is not possible to capture the

memory into a type, such as the type of references or arrays, which are inherently

stateful.

Yet, such stateful types are important because they can lead to a higher degree

of automation of the reasoning principles, as well as to a significant reduction in

Hoare Type Theory, Polymorphism and Separation 41

the size and number of verification conditions. Indeed, in the current paper, we

must prove before every location access that the location at the given address

exists. On the other hand, if locations were a separate type, rather than natural

numbers, we could have a more fine-grained control over them. For example, we

could make locations persistent, as in ML and Haskell. Then simple typechecking

would guarantee access safety, with no need for additional verification conditions.

One of the challenges in adding stateful types is deciding which axioms they

should satisfy. For example, we can always consider references to simply be natural

numbers (as currently in HTT), but references are often expected to exhibit a

certain recursive behavior, and thus may need to be defined as some sort of recursive

type (please see below).

The extension with stateful types may be related to the recent substructural

type systems for state, such as the work of Ahmed, Fluet and Morrisett (2005; 2005;

2006), Collinson and Pym (2006), and the logic of Reus and Schwinghammer (2006).

Recursive types. Inductive types have been extensively studied in dependent type

theories (Dybjer, 1994; Dybjer & Setzer, 2006), including pattern-matching against

them (McBride & McKinna, 2005). However, general recursive types have not re-

ceived as much attention, possibly because recursive types introduce divergence

into the term language, and thus destroy the logical properties of the theory.

In HTT, it should be possible to add recursive types safely, as long as divergence is

monadically encapsulated within the Hoare types. This may be achieved by pushing

the elimination construct for the recursive type into the effectful fragment. Typing

rules for the introduction and elimination of recursive types may be roughly as

follows.

∆ `M ⇐ [µα.A/α]a(A)

∆ ` foldµα.A M ⇒ µα.A

∆ ` K ⇒ µα.A ∆, x:[µα.A/α]a(A); P ∧ idµα.A(foldx, K) ` E ⇒ y:B. Q

∆; P ` x = unfoldK; E ⇒ y:B. (∃x:[µα.A/α]a(A).Q)

We believe that recursive types are also the correct way of controlling the re-

cursive behavior that arises in the presence of higher-order store and the type of

references (known in the literature as “tying the Landin’s knot”). The store in

HTT is higher-order, as locations may point to arbitrary higher-order functions

and stateful computations, but HTT does not admit this kind of recursion through

the store. Our typing rules require that each computation specifies all the locations

that it may touch. Thus, such locations must be created before the computation

and its type. It is not possible to create a location of a Hoare type that depends on

the very same location, thus potentially creating a loop. If a loop in the store is re-

quired, it should be specified either using assertions in the pre- and postconditions

of computations (already available in HTT), or using recursive types.

We consider this to be an advantage of HTT over other stateful languages. It

seems to us as a good design to delegate all the concerns about recursion to explicit

42 A. Nanevski, G. Morrisett and L. Birkedal

fixpoint constructs, rather than allow implicit recursive behavior to arise through

interaction of otherwise unrelated programming features.

10 Conclusions

We have presented Hoare Type Theory (HTT), which is a novel framework for

extending a dependently typed functional language with imperative programming

features like state and non-termination. The supported operations on state involve

allocation, deallocation, lookup and strong update, so that a location may be up-

dated with values of varying types. The store in HTT is higher-order, in the sense

that locations may point to arbitrary higher-order functions and effectful compu-

tations. We also admit pointer arithmetic.

The main idea that allows for safe combination of dependent types and effects fol-

lows the familiar “specifications-as-types” principle of type theory (Howard, 1980).

We introduce the distinguished Hoare type {P}x:A{Q}, which classifies effectful

programs with a precondition P , postcondition Q and return value x:A, thus in-

ternalizing into the type system the well-known specification methodology from

Hoare Logic (Hoare, 1969). The addition of Hoare types makes it possible to stat-

ically track the use of stateful operations, and make sure they are performed only

if the required preconditions are satisfied. Hoare types also generalize the notion of

monads, used extensively in modern simply-typed functional programming (Peyton

Jones, 2003).

Embedding specifications into types has significant advantages over the original

Hoare Logic. In particular, if specifications are treated as types, then it becomes

possible to combine the specifications with the source code, allowing for nesting,

combination with other types, abstraction and packaging of a specification with

the data whose properties it describes. All of these operations are essential from

the point of view of modularity, information hiding and data abstraction, but are

not available in Hoare Logic. For example, we are able to seamlessly incorporate

Hoare types with other higher-order features like higher-order functions and poly-

morphism, which were traditionally a difficult extension in Hoare Logic (Cartwright

& Oppen, 1978; O’Donnell, 1982).

We also show that in the presence of polymorphism, we can define the proposi-

tional connectives from Separation Logic, which has been recently proposed as an

extension to Hoare Logic, particularly suited for reasoning about pointer aliasing.

In addition, HTT specifications can quantify over heap variables to name the partic-

ular heap fragments of interest. This ability is not directly available in Separation

Logic, but in HTT we can use it to freely combine the Separation Logic specifi-

cations in the so-called “small-footprint” style, with the classical “large-footprint”

approach. We believe that the former is preferable when specifying the lack of alias-

ing or freshness of newly-generated locations, but the latter may be more compact

in the cases when aliasing is allowed. Also, explicit naming comes handy when spec-

ifying the invariance of a subheap which the computation may read from during

execution. Such a subheap is in the footprint of the computation, so that its in-

Hoare Type Theory, Polymorphism and Separation 43

variance cannot be inferred using the Frame Rule of Separation Logic, but must

instead be explicitly stated in the specification.

We further establish that HTT is sound, in the usual sense of Preservation and

Progress theorems. That is, evaluation of HTT terms preserves the type informa-

tion, and well-typed terms never get stuck. Furthermore, we establish that HTT

satisfies the customary substitution principles of dependent type theories, and also

show that the usual Hoare-style rule for sequential composition is admissible. It

may be interesting that the latter admissible rule also takes the form of a substi-

tution principle, associated with the operation of monadic substitution of effectful

programs.

The substitution principles formally establish the modular nature of HTT, and

guarantee that separate verifications of program modules suffice to verify the com-

posite program. Crucial in proving the substitution principles was the syntax-

directed nature of HTT typechecking, ensuring that the verification conditions for

any given computation depend on the computation alone, rather than on an un-

predictable global context in which the computation may execute. This property

is achieved by organizing the typing rules so as to compute the strongest postcon-

ditions for effectful code, following the general idea of predicate transformers (Di-

jkstra, 1975). Thus, in addition to the “specifications-as-types” principle which we

adopted by introducing Hoare types, we believe that HTT also provides a form of

“proofs-as-programs” principle for effectful code (Howard, 1980).

References

Abadi, Martin, & Leino, K. Rustan M. (2004). A logic of object-oriented programs. Pages
11–41 of: Verification: Theory and practice. Lecture Notes in Computer Science, vol.
2772. Springer.

Ahmed, Amal, Fluet, Matthew, & Morrisett, Greg. (2005). A step-indexed model of sub-
structural state. Pages 78–91 of: International Conference on Functional Programming,
ICFP’05.

Altenkirch, Thorsten, Dybjer, Peter, Hofmann, Martin, & Scott, Phil. (2001). Normal-
ization by evaluation for typed lambda calculus with coproducts. Pages 303–310 of:
Symposium on Logic in Computer Science, LICS’01.

Amtoft, Torben, Bandhakavi, Sruthi, & Banerjee, Anindya. (2006). A logic for informa-
tion flow in object-oriented programs. Pages 91–102 of: Symposium on Principles of
Programming Languages, POPL’06.

Augustsson, Lennart. (1998). Cayenne – a language with dependent types. Pages 239–250
of: International Conference on Functional Programming, ICFP’98.

Barnes, John. (2003). High integrity software: The SPARK approach to safety and security.
Addison-Wesley.

Barnett, Mike, Leino, K. Rustan M., & Schulte, Wolfram. (2004). The Spec# program-
ming system: An overview. International Workshop on Construction and Analysis of
Safe, Secure and Interoperable Smart Devices, CASSIS’04. Lecture Notes in Computer
Science, vol. 3362. Springer.

Berger, Martin, Honda, Kohei, & Yoshida, Nobuko. (2005). A logical analysis of aliasing
in imperative higher-order functions. Pages 280–293 of: International Conference on
Functional Programming, ICFP’05.

44 A. Nanevski, G. Morrisett and L. Birkedal

Biering, B., Birkedal, L., & Torp-Smith, N. 2005 (July). BI hyperdoctrines, higher-order
Separation logic, and abstraction. Tech. rept. ITU-TR-2005-69. IT University of Copen-
hagen.

Birkedal, Lars, Torp-Smith, Noah, & Reynolds, John C. (2004). Local reasoning about a
copying garbage collector. Pages 220–231 of: Symposium on Principles of Programming
Languages, POPL’04.

Birkedal, Lars, Torp-Smith, Noah, & Yang, Hongseok. (2005). Semantics of Separation-
logic typing and higher-order frame rules. Pages 260–269 of: Symposium on Logic in
Computer Science, LICS’05.

Burdy, Lilian, Cheon, Yoonsik, Cok, David, Ernst, Michael, Kiniry, Joe, Leavens, Gary T.,
Leino, K. Rustan M., & Poll, Erik. (2005). An overview of JML tools and applications.
International Journal on Software Tools for Technology Transfer, 7(3), 212–232.

Cartwright, Robert, & Oppen, Derek C. (1978). Unrestricted procedure calls in Hoare’s
logic. Pages 131–140 of: Symposium on Principles of Programming Languages,
POPL’78.

Chen, Chiyan, & Xi, Hongwei. (2005). Combining programming with theorem proving.
Pages 66–77 of: International Conference on Functional Programming, ICFP’05.

Church, Alonzo. (1940). A formulation of the simple theory of types. Journal of Symbolic
Logic, 5(2), 56–68.

Collinson, Matthew, & Pym, David J. (2006). Bunching for regions and locations. Elec-
tronic Notes in Theoretical Computer Science, 158, 171–197.

Condit, Jeremy, Harren, Matthew, Anderson, Zachary, Gay, David, & Necula, George.
(2007). Dependent types for low-level programming. Pages 520–535 of: European Sym-
posium on Programming, ESOP’07. Lecture Notes in Computer Science, vol. 4421.
Springer.

Cook, Stephen A. (1978). Soundness and completeness of an axiom system for program
verification. SIAM Journal of Computing, 7(1), 70–90.

Detlefs, David L., Leino, K. Rustan M., Nelson, Greg, & Saxe, James B. 1998 (December).
Extended static checking. Compaq Systems Research Center, Research Report 159.

Dijkstra, Edsger W. (1975). Guarded commands, nondeterminacy and formal derivation
of programs. Communications of the ACM, 18(8), 453–457.

Dybjer, Peter. (1994). Inductive families. Formal Aspects of Computing, 6(4), 440–465.

Dybjer, Peter, & Setzer, Anton. (2006). Indexed induction-recursion. Journal of Logic
and Algebraic Programming, 66(1), 1–49.

Evans, David, & Larochelle, David. (2002). Improving security using extensible lightweight
static analysis. IEEE Software, 19(1), 42–51.

Feng, Xinyu, Ferreira, Rodrigo, & Shao, Zhong. (2007). On the relationship between con-
current Separation logic and assume-guarantee reasoning. Pages 173–188 of: European
Symposium on Programming, ESOP’07. Lecture Notes in Computer Science, vol. 4421.
Springer.

Flanagan, Cormac. (2006). Hybrid type checking. Pages 245–256 of: Symposium on
Principles of Programming Languages, POPL’06.

Fluet, Matthew, Morrisett, Greg, & Ahmed, Amal. (2006). Linear regions are all you
need. Pages 7–21 of: European Symposium on Programming, ESOP’06.

Ghani, N. (1995). Beta-eta equality for coproducts. Pages 171–185 of: International
Conference on Typed Lambda Calculus and Applications, TLCA’95. Lecture Notes in
Computer Science, vol. 902. Springer.

Gill, Andrew, Launchbury, John, & Peyton Jones, Simon L. (1993). A short cut to de-

Hoare Type Theory, Polymorphism and Separation 45

forestation. Pages 223–232 of: International Conference on Functional Programming
Languages and Computer Architecture, FPCA’93.

Girard, Jean-Yves, Lafont, Yves, & Taylor, Paul. (1989). Proofs and types. Cambridge
University Press.

Greif, I., & Meyer, A. (1979). Specifying programming language semantics: a tutorial and
critique of a paper by Hoare and Lauer. Pages 180–189 of: Symposium on Principles
of Programming Languages, POPL’79.

Harris, Tim, Marlow, Simon, Peyton Jones, Simon, & Herlihy, Maurice. (2005). Compos-
able memory transactions. Pages 48–60 of: Symposium on Principles and Practice of
Parallel Programming, PPoPP’05.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications
of the ACM, 12(10), 576–580.

Hofmann, Martin. 1995 (July). Extensional concepts in intensional type theory. Ph.D. the-
sis, Department of Computer Science, University of Edinburgh. Avaliable as Technical
Report ECS-LFCS-95-327.

Honda, Kohei, Yoshida, Nobuko, & Berger, Martin. (2005). An observationally complete
program logic for imperative higher-order functions. Pages 270–279 of: Symposium on
Logic in Computer Science, LICS’05.

Howard, W. A. (1980). The formulae-as-types notion of construction. Pages 479–490
of: To H.B.Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism.
Academic Press.

Jim, Trevor, Morrisett, Greg, Grossman, Dan, Hicks, Michael, Cheney, James, & Wang,
Yanling. (2002). Cyclone: A safe dialect of C. Pages 275–288 of: USENIX Annual
Technical Conference, USENIX’02.

Krishnaswami, Neelakantan. (2006). Separation logic for a higher-order typed language.
Pages 73–82 of: Workshop on Semantics, Program Analysis and Computing Environ-
ments for Memory Management, SPACE’06.

Leavens, Gary T., Baker, Albert L., & Ruby, Clyde. (1999). JML: A notation for de-
tailed design. Pages 175–188 of: Behavioral specifications of businesses and systems.
International Series in Engineering and Computer Science, vol. 523. Kluwer Academic
Publishers.

Leino, K. R. M., & Nelson, G. (2002). Data abstraction and information hiding. ACM
Transactions on Programming Languages and Systems, 24(5), 491–553.

Leino, K. Rustan M., Nelson, Greg, & Saxe, James B. 2000 (October). ESC/Java user’s
manual. Compaq Systems Research Center. Technical Note 2000-002.

Luo, Zhaohui. (1990). An extended calculus of constructions. Ph.D. thesis, University of
Edinburgh. Avaliable as Technical Report ECS-LFCS-90-118.

Luo, Zhaohui. (1994). Computation and reasoning: A type theory for computer science.
Oxford University Press.

Mandelbaum, Yitzhak, Walker, David, & Harper, Robert. (2003). An effective theory of
type refinements. Pages 213–226 of: International Conference on Functional Program-
ming, ICFP’03.

Martin-Löf, Per. (1996). On the meanings of the logical constants and the justifications
of the logical laws. Nordic Journal of Philosophical Logic, 1(1), 11–60.

McBride, Conor. (1999). Dependently typed functional programs and their proofs. Ph.D.
thesis, University of Edinburgh. Available as Technical Report ECS-LFCS-00-419.

McBride, Conor, & McKinna, James. (2005). The view from the left. Journal of Functional
Programming, 14(1), 69–111.

46 A. Nanevski, G. Morrisett and L. Birkedal

McCarthy, John L. (1962). Towards a mathematical science of computation. Pages 21–28
of: Congress of the International Federation for Information Processing, IFIP’62.

Moggi, Eugenio. (1989). Computational lambda-calculus and monads. Pages 14–23 of:
Symposium on Logic in Computer Science, LICS’89.

Moggi, Eugenio. (1991). Notions of computation and monads. Information and Compu-
tation, 93(1), 55–92.

Morrisett, Greg, Ahmed, Amal, & Fluet, Matthew. (2005). L3: A linear language with
locations. Pages 293–307 of: International Conference on Typed Lambda Calculus and
Applications, TLCA’05. Lecture Notes in Computer Science, vol. 3461. Springer.

Nanevski, Aleksandar, Ahmed, Amal, Morrisett, Greg, & Birkedal, Lars. (2007). Abstract
Predicates and Mutable ADTs in Hoare Type Theory. Pages 189–204 of: European
Symposium on Programming, ESOP’07. Lecture Notes in Computer Science, vol. 4421.
Springer.

Necula, George C. 1997 (January). Proof-carrying code. Pages 106–119 of: Symposium
on Principles of Programming Languages, POPL’97.

O’Donnell, Michael J. (1982). A critique of the foundations of Hoare style programming
logics. Communications of the ACM, 25(12), 927–935.

O’Hearn, Peter, Reynolds, John, & Yang, Hongseok. (2001). Local reasoning about pro-
grams that alter data structures. Pages 1–19 of: International Workshop on Computer
Science Logic, CSL’01. Lecture Notes in Computer Science, vol. 2142. Springer.

O’Hearn, Peter W., Yang, Hongseok, & Reynolds, John C. (2004). Separation and infor-
mation hiding. Pages 268–280 of: Symposium on Principles of Programming Languages,
POPL’04.

Paulson, Lawrence C. (1990). A formulation of the simple theory of types (for Isabelle).
Pages 246–274 of: International Conference in Computer Logic, COLOG’88. Lecture
Notes in Computer Science, vol. 417. Springer.

Peyton Jones, Simon (ed). (2003). Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press.

Peyton Jones, Simon L, & Wadler, Philip. (1993). Imperative functional programming.
Pages 71–84 of: Symposium on Principles of Programming Languages, POPL’93.

Pfenning, Frank, & Davies, Rowan. (2001). A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4), 511–540.

Pierce, Benjamin C., & Turner, David N. (2000). Local type inference. ACM Transactions
on Programming Languages and Systems, 22(1), 1–44.

Reus, Bernhard, & Schwinghammer, Jan. (2006). Separation logic for higher-order store.
International Workshop on Computer Science Logic, CSL’06.

Reynolds, John C. (2002). Separation logic: A logic for shared mutable data structures.
Pages 55–74 of: Symposium on Logic in Computer Science, LICS’02.

Shao, Zhong, Trifonov, Valery, Saha, Bratin, & Papaspyrou, Nikolaos. (2005). A type sys-
tem for certified binaries. ACM Transactions on Programming Languages and Systems,
27(1), 1–45.

Sheard, Tim. (2004). Languages of the future. Pages 116–119 of: International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA’04.

Smith, Frederick, Walker, David, & Morrisett, Greg. (2000). Alias types. Pages 366–
381 of: European Symposium on Programming, ESOP’00. Lecture Notes in Computer
Science, vol. 1782. Springer.

SRI International, & DSTO. 1991 (July). The HOL system: Description. University of
Cambridge Computer Laboratory.

Tan, Gang, & Appel, Andrew W. (2006). A compositional logic for control flow. Pages

Hoare Type Theory, Polymorphism and Separation 47

80–94 of: International Conference on Verification, Model Checking and Abstract Inter-
pretation, VMCAI’06. Lecture Notes in Computer Science, vol. 3855. Springer.

Wadler, Philip. (1998). The marriage of effects and monads. Pages 63–74 of: International
Conference on Functional Programming, ICFP’98.

Watkins, Kevin, Cervesato, Iliano, Pfenning, Frank, & Walker, David. (2004). A concur-
rent logical framework: The propositional fragment. Pages 355–377 of: Types for proofs
and programs. Lecture Notes in Computer Science, vol. 3085. Springer.

Westbrook, Edwin, Stump, Aaron, & Wehrman, Ian. (2005). A language-based approach
to functionally correct imperative programming. Pages 268–279 of: International Con-
ference on Functional Programming, ICFP’05.

Xi, Hongwei, & Pfenning, Frank. (1998). Eliminating array bound checking through de-
pendent types. Pages 249–257 of: Conference on Programming Language Design and
Implementation, PLDI’98.

Xi, Hongwei, & Pfenning, Frank. (1999). Dependent types in practical programming.
Pages 214–227 of: Symposium on Principles of Programming Languages, POPL’99.

Zhu, Dengping, & Xi, Hongwei. (2005). Safe programming with pointers through stateful
views. Pages 83–97 of: Practical Aspects of Declarative Languages, PADL’05. Lecture
Notes in Computer Science, vol. 3350. Springer.

