
Inferring Invariants in Separation Logic for Imperative
List-processing Programs

Stephen Magill
Carnegie Mellon University

smagill@cs.cmu.edu

Aleksandar Nanevski
Harvard University

aleks@eecs.harvard.edu

Edmund Clarke Peter Lee
Carnegie Mellon University

emc@cs.cmu.edu petel@cs.cmu.edu

Abstract
An algorithm is presented for automatically inferring loop invari-
ants in separation logic for imperative list-processing programs. A
prototype implementation for a C-like language is shown to be suc-
cessful in generating loop invariants for a variety of sample pro-
grams. The programs, while relatively small, iteratively perform
destructive heap operations and hence pose problems more than
challenging enough to demonstrate the utility of the approach. The
invariants express information not only about the shape of the heap
but also conventional properties of the program data. This com-
bination makes it possible, in principle, to solve a wider range of
verification problems and makes it easier to incorporate separation
logic reasoning into static analysis systems, such as software model
checkers. It also can provide a component of a separation-logic-
based code certification system a la proof-carrying code.

1. Introduction
Automated program verification is a large and active field, with
substantial research devoted to static analysis tools. However, these
tools are based mostly on classical logic. This places a large bur-
den on the verification procedure, particularly in the practical case
of programs involving pointers. Because classical logic contains no
primitives for expressing non-aliasing, all aliasing patterns must be
considered when doing the program analysis. Computing weakest
preconditions and strongest postconditions becomes exponential in
the number of program variables. This can be ameliorated some-
what by utilizing a pointer analysis to rule out certain cases, but the
results are often unsatisfactorily weak, particularly when allocation
and deallocation are involved. Any program analysis must also take
into account the global context, since any two pointer variables, re-
gardless of scope, are potential aliases.

Contrast this with separation logic [18], a program logic with
connectives for expressing aliasing patterns and which provides
concise weakest preconditions even for pointer operations. Separa-
tion logic also supports compositional reasoning. As such, it seems
a promising foundation upon which to build all sorts of static anal-
ysis methods and tools.

In this paper we consider the problem of automatically inferring
loop invariants in separation logic for imperative list-processing
programs. Our primary motivation for doing this is to provide

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WXYZ ’05 date, City.
Copyright c© 2005 ACM [to be supplied]. . . $5.00.

a key component of a general verification system for imperative
programs that make use of pointers. Until recently, automated
reasoning in separation logic has been largely unexplored. How-
ever, Berdine, et. al. [2] have presented a decision procedure for
a fragment of separation logic that includes a list predicate. We-
ber [21] has developed an implementation of separation logic
in Isabelle/HOL with support for tactics-based reasoning. These
approaches allow for the automatic or semi-automatic verifica-
tion of programs annotated with loop invariants and pre-/post-
conditions. But what is missing is the generation of the loop in-
variants. Sims [20] has proposed an extension to separation logic
which allows for the representation of fixed points in the logic, and
thus the computation of strongest postconditions for while loops.
But the issue still remains of how to compute these fixed points.

We present a heuristic method for inferring loop invariants in
separation logic for iterative programs operating on integers and
linked lists. The invariants are obtained by applying symbolic eval-
uation [5] to the loop body and then applying a fold operation,
which weakens the result such that when this process is repeated,
it eventually converges. Our invariants are capable of expressing
both information about the shape of the heap as well as facts about
program data, both on the stack and in the heap. As we will show,
the ability to describe properties of data is desirable in certain pro-
grams. Once we have loop invariants, the way is paved for the adap-
tation of existing program analysis techniques (such as software
model checking [1, 4, 12]) to the separation logic framework. Ap-
plications to code certification, for example via proof-carrying code
[13, 14], would also be enabled by this.

We have implemented a prototype of our algorithm. Using it,
we are able to extract loop invariants automatically for a number of
pointer programs. These examples, while rather small, are iterative
and perform destructive heap operations. Thus, they are more than
challenging enough to demonstrate the utility of our algorithm.

There are many existing approaches to the treatment of shape
information in iterative programs [9, 19]. It is not our intent here
to try to beat these techniques. We do not attempt to quantify the
relative strength of our inference procedure versus others. We wish
merely to present an alternate approach, as we believe that the
development of a procedure based on separation logic has merit
on its own. In particular, the compositionality of separation logic
proofs is vital if such proofs are to be used in a proof-carrying
code system. In such systems, the proof is written by the code
producer, but the code runs on the client machine in a different
and unpredictable context. As such, the proofs cannot depend on
the global variables and aliasing patterns present on the client.
Separation logic allows us to specify and check this independence.

In section 2 we present a brief introduction to separation logic.
In section 3, we describe the algorithm, which consists of a sym-
bolic evaluation routine and heuristics for finding fixed points. In
section 4 we show the soundness of our approach, and in section

5, we discuss incompleteness and give an example on which our
algorithm fails. Finally, in section 6 we give the results of our tests
involving an SML implementation of the algorithm.

2. Separation Logic
Here we present a brief overview of separation logic. For a full
treatment, see [18]. The logic consists of all the connectives and
quantifiers from classical logic, plus two new connectives: a sep-
arating conjunction (written p ∗ q) and a separating implication
(p−∗ q). Only separating conjunction will be used for the mate-
rial in this paper. The models for separation logic are heaps cou-
pled with stores (which track the values of stack variables). Heaps
are partial functions from locations to values. Stores are mappings
from variables to values. The interpretation of p ∗ q is that the heap
can be split into two disjoint parts, one of which satisfies p while
the other satisfies q. The basic heap predicates are e1 7→ e2, which
indicates that the heap contains a single cell at location e1, con-
taining the value given by e2 and emp, which states that the heap
is empty (its domain is the empty set). There is a special syntactic
class of pure formulas, which are those formulas that do not con-
tain these heap predicates. Pure formulas are independent of the
heap. There is also a special value null, which is not in the domain
of any heap. We use the abbreviation e1 7→ (e2, e3) to stand for
e1 7→ e2 ∗ e1.1 7→ e3, where e1.1 is the location immediately after
e1. Thus, e1 7→ (e2, e3) can be read as saying that there is a pair of
values (e2, e3) in the heap at location e1.

Separation logic is an example of a bunched implication logic
[16], a type of substructural logic with tree-shaped contexts. These
contexts, called bunches, arise when ∧ and ∗ are interleaved, as in

(x = 5 ∧ y 7→ z) ∗ q 7→ null

which describes a heap containing two portions, one of which
satisfies both x = 5 and y 7→ z and the other of which satisfies
q 7→ null. The two types of conjunction (∗ and ∧) generally can
not be re-associated with each other. That is, it is not sound to re-
associate such that a p that was joined with ∗ is now joined with ∧.
However, in the special case where p is pure, we have the equality

(p ∧ q) ∗ r ⇔ p ∧ (q ∗ r)

This lets us pull pure assertions outside of bunches, making our
example above equivalent to

x = 5 ∧ (y 7→ z ∗ q 7→ null)

The above issue of purity has important consequences. Let H
be an impure formula and P be a pure formula. Then starting with
H ∧ P , we can join to this with ∧ any pure formula or join with
∗ any impure formula H ′ and the result will not contain bunches
provided that H and H ′ do not. This is a primary motivating factor
in our choice of annotation language. By avoiding bunches, we can
more easily leverage existing theorem-proving technology.

3. Description of the Algorithm
The algorithm consists of two mutually recursive parts. In the first
part, which applies to straight-line code, the program is evaluated
symbolically and lists are expanded on demand via an “unfold” op-
eration. In the second part, which applies to while loops, a fixed
point is computed by repeatedly evaluating the loop body and then
applying a “fold” operation, which attempts to extend existing lists
and create new ones. The fold operation is guided by a “name
check” which tests whether there is a program variable equal to
a given symbolic variable and the fixed point computation can be
characterized as a search for the most specific shape invariant ex-
pressible in terms of the program variables. The algorithm relies on
its own procedure to handle reasoning in the arithmetically simple

Program Vars x, y ∈ Ω
Symbolic Varis v ∈ Σ
Integers n ∈ Z

Integer Expns i ::= v | n | i1 + i2 | i1 − i2 | i1 × i2
Pointer Expns p, q, k ::= v | v.n | null

Boolean Expns b ::= i1 = i2 | p1 = p2 | p1 6= p2 |
i1 < i2 | ¬P | P1 ∧ P2 |
P1 ∨ P2 | > | ⊥

Symbolic Expns σ ::= p | i
Heap Entities h ::= p 7→ σ | ls(p1, p2) | ls1(p1, p2)
Heaps H ::= · | h ∗ H
Stacks S ::= · | x = σ, S
Predicates P ::= · | b, P
Memories m ::= (H; S; P) | ∃v. m
Memory Sets M ::= {m1, . . . , mn}

Figure 1. Definition of memories and memory sets.

domain of pointer expressions and makes use of a classical logic
theorem prover to handle reasoning involving integer expressions.

3.1 Memory Descriptions

Both portions of the algorithm operate on sets of memories, defined
in Figure 1. A memory is a triple (H;S; P), where H is a list of
heap entities, S is a list of stack variable assignments, and P is
a predicate in classical logic augmented with arithmetic. H keeps
track of the values in the heap, S stores the symbolic values of the
program’s stack variables and P is used to record the conditional
expressions which are true along the current path. Depending on
where we are in the algorithm, a memory may have some or all of
its symbolic variables existentially quantified.

We use * to separate heap entities in H to stress that each en-
tity refers to a disjoint portion of the heap. However, we treat H
as an unordered list and freely apply commutativity of * to reorder
elements as necessary. The memory (H,S, P) is equivalent to the
separation logic formula H∧

V

S∧
V

P , where
V

S is the conjunc-
tion of all the equalities in S and

V

P is the conjunction of all the
formulas in P . We will sometimes use a memory in a place where
a formula would normally be expected, typically in discussions of
soundness, which require reasoning about memories in separation
logic. In such cases, the memory should be interpreted as just given.
For example, we would write (H; S; P) ⇒ (H ′; S′; P ′) to mean
that H∧

V

S∧
V

P ⇒ H ′∧
V

S′∧
V

P ′ is derivable in separation
logic. Similarly, sets of memories are treated disjunctively, so if a
set of memories {m1, . . . , mn} is used in a context where a for-
mula would be expected, this should be interpreted as the formula
m1 ∨ . . . ∨ mn.

In fact, our language of memories constitutes a streamlined
logic of assertions for imperative pointer programs. Memories cor-
respond to a fragment of separation logic formulas and the sym-
bolic evaluation rules that we present in section 3.3 are a special-
ization of the separation logic rules to formulas of this restricted
form. We choose this form as it simplifies the problem of deciding
entailment between formulas. In particular, it allows the heap rea-
soning to be handled relatively independently of the classical rea-
soning. This enables us to use a classical logic theorem prover such
as Simplify [15] or Vampyre [3] to decide implications in the clas-
sical domain and allows us to concentrate our efforts on reasoning
about the heap.

There are two classes of variable. Symbolic variables arise due
to existential quantifiers in the logic and so appear in assertions and
invariants, but not in the program itself. Program variables are those
that appear in the program. We maintain our memories in a form

such that program variables only appear in S. All variables in H
and P are symbolic variables. Symbolic expressions are built from
the standard connectives and symbolic variables and are denoted
by σ. Pointer expressions consist of a variable or a variable plus a
positive integer offset (denoted v.n).

Valid heap entities include the standard “points-to” relation
from separation logic (p 7→ e) along with the inductive list predi-
cate “ls.” We write ls(p, q) when there is a list segment starting at
cell p and ending (via a chain of dereferencing of “next” pointers)
at q. Each cell in the list is a pair (x, k), where x holds the data and
k is a pointer to the next cell. ls is defined inductively as:
Definition 1.

ls(p1, p2) ≡ (∃x, k. p1 7→ (x, k) ∗ ls(k, p2)) ∨
(p1 = p2) ∧ emp

Note our ls predicate describes lists which may be cyclic. If
we have a list ls(p, p), it may match either case in the definition
above. That is, it may be either empty or cyclic. This is in contrast
to Berdine et. al. [2] who adopt a non-cyclic version of ls for their
automated reasoning. The two versions of ls(p1, p2) are the same
when p2 = null, and are equally easy to work with when doing
symbolic evaluation on straight-line code. But when processing a
loop, the acyclic version of ls becomes problematic in certain cases.
We give more details and an example in section 3.6.

It is also necessary to keep track of whether a list is non-empty.
While ls describes a list that may or may not be empty, the predicate
“ls1” is used to describe lists that are known to be non-empty and
is defined as

ls1(p1, p2) ≡ ls(p1, p2) ∧ p1 6= p2

These facts could be maintained separately, but keeping them to-
gether in this form is more convenient from an implementation
standpoint. The reason this non-emptiness information is necessary
is because it allows us to infer more inequalities from the heap de-
scription. Suppose our heap looks like this:

ls(p1, p2) ∗ q 7→ x

Since the list segment from p1 to p2 may be empty, it may be the
case that q = p1 = p2. If, however, we know that the list segment
is non-empty

ls1(p1, p2) ∗ q 7→ x

we can conclude that p1 6= q. This sort of reasoning was necessary
in some of our test programs.

Our pointer expressions fall within Presburger arithmetic [8] (in
fact, they are much simpler, because only addition of constants is
allowed). Thus the validity of entailments involving pointer expres-
sions is decidable. We write m ` p = q (resp., m ` p 6= q) to mean
that p = q (resp., p 6= q) follows from the pointer equalities and
inequalities in m. These inequalities include those that are implicit
in the heap. For example, if the heap contains p 7→ v1 ∗q 7→ v2, we
can conclude that p 6= q. We also write m ` b to indicate that m
entails a general boolean expression b. If this entailment involves
integer arithmetic, it is not generally decidable, but we can use in-
complete heuristics, such as those in Simplify [15] and Vampyre
[3], to try to find an answer.

3.2 Programming Language

We present here a brief summary of the programming language
under consideration. For a full description of the language and its
semantics, see [18]1. Figure 2 gives the syntax of the language. It
includes pure expressions (e) as well as commands for assignment
(x := e), mutation of heap cells ([p] := e), lookup (x := [p]),

1 However, note that we use the version of the language without address
arithmetic.

Program Vars x ∈ Ω
Integers n ∈ Z

Integer Expns i ::= v | n | i1 + i2 | i1 − i2 | i1 ∗ i2
Pointer Expns p ::= v | v.n | null
Boolean Expns b ::= i1 = i2 | p1 = p2 | p1 <> p2 |

i1 < i2 | ¬P | P1 ∧ P2 |
P1 ∨ P2 | true | false

Expressions e ::= p | b
Commands c ::= x:=e | x:=[e] | [p]:=e | skip |

cons (e1, . . . , en) | dispose p | c1 ; c2 |
if b then c1 else c2 | while b do c end

Figure 2. Syntax for our simple imperative language

1: {ls(old,null)}
2: new := null;
3: curr := old;

4: while (curr <> null) do {
5: old := [old.1];
6: [curr.1] := new;
7: new := curr;
8: curr := old;
9: }

Figure 4. In-place list reversal

allocation (x := cons(e1, . . . , en)), which allocates and initializes
n consecutive heap cells, and disposal (dispose p), which frees the
heap cell at p. It also contains the standard conditional statement
and while loops. Note that square brackets are used to signify
dereference, in the same manner that C uses the asterisk. Pointer
expressions can contain an offset, and we use the same notation for
this that we did in Figure 1. So x := [y.1] means “assign to x the
value in the heap cell with address y + 1.”

The only values in our language are integers and pointers to
lists of integers, although there is nothing preventing the addition
of other value types. Boolean values and lists of Booleans could
be easily added. Lists of lists of integers and the like require more
thought, but it is our belief that they can also be added without sub-
stantially changing the symbolic evaluation and invariant inference
frameworks presented here.

3.3 Symbolic Evaluation

The symbolic evaluator takes a memory and a command and re-
turns the set of memories that can result from executing that com-
mand. The set of memories returned is treated disjunctively. That
is, the command may terminate in a state satisfying any one of the
returned memories.

Figure 4 gives a routine for in-place reversal of a linked list. We
will use this as a running example to demonstrate the operational
behavior of the algorithm.

Our symbolic evaluation routine starts with an annotation H∧P
provided by the programmer, describing the shape of the heap and
any initial facts about the stack variables. This is given on line
1 in our example program. We convert this to an initial memory,
∃v̄. (H ′; S; P ′), where S is a list of equalities of the form x = v,
with x a program variable and v a new symbolic variable. H ′ is
then H with each such x replaced by the corresponding v. P ′ is the
result of the same replacements applied to P . Thus, S becomes the
only place where program variables occur, an important invariant
which is key to keeping the evaluation rules simple. The annotation
for our example is ls(old ,null), so the initial memory would be

(H; S, x = σ;P) [x=e] {(H; S, x = [[e]]S ; P)}
assign

(H,p′ 7→ σ;S; P) ` p = p′

(H,p′ 7→ σ; S; P) [[p] := e] {(H,p′ 7→ [[e]]S ; S; P)}
mutate

(H,p′ 7→ σ2; S, x = σ1; P) ` p = p′

(H,p′ 7→ σ2; S, x = σ1; P) [x := [p]] {(H,p′ 7→ σ2; S, x = σ2; P)}
lookup

(H; S, x = σ1; P) [x := cons (e0, . . . , en)] {∃v. (H, v.0 7→ e0, . . . , v.n 7→ en; S, x = v; P)}
alloc (v fresh)

(H,p′ 7→ σ; S; P) ` p = p′

(H,p′ 7→ σ; S; P) [dispose p] {(H; S; P)}
dispose

(S; H; P) [skip] {(S; H;P)}
skip

(H;S; P) ` [[b]]S (H;S; P) [c1] M

(H; S; P) [if b then c1 else c2] M
ift

(H; S; P) ` ¬[[b]]S (H; S; P) [c2] M

(H;S; P) [if b then c1 else c2] M
iff

(H; S; P, [[b]]S) [c1] M1 (H;S; P,¬[[b]]S) [c2] M2

(H; S; P) [if b then c1 else c2] M1 ∪ M2

ifn
m [c1] M ′ M ′ [c2] M

m [c1; c2] M
seq

m1 [c] M1 . . . mn [c] Mn

{m1, . . . , mn} [c]
`
S

i Mi

´

sets
m [c] {m′

1, . . . , m
′

n}

∃v. m [c] {∃v. m′

1, . . . , ∃v. m′

n}
exists

unfold(m, p) [c] M ′

m [c] M ′

unfold

Figure 3. Symbolic evaluation rules for straight-line code.

∃v1, v2, v3. (ls(v1, null); old = v1, new = v2, curr = v3;).
Note that the initial memory is equivalent to the original annotation
since F ⇔ ∃v. F [x/v]∧x = v, where F is an arbitrary separation
logic formula. (we use F [x/e] to mean F with x replaced by e)

After we have obtained the initial memory ∃v̄. m0, we sym-
bolically evaluate the program c starting from m0 and com-
puting a postcondition M ′, such that the separation logic triple
{m0} c {M ′} holds. Of course, if the program contains loops, part
of computing this postcondition will involve inferring invariants
for the loops, an issue we address in section 3.4.

We chose the given form for memories both to avoid theorem
proving in full separation logic and also to simplify the evaluation
rules. If the precondition matches the form of our memories, it
eliminates the quantifiers in almost all of the separation logic rules
(the exception is allocation, which is described later). To see how
this works, we first need to define a function [[e]]S , which returns
the result of taking each equality, x = σ, in S and substituting σ
for x in e. This has the effect of translating a program expression
to a symbolic expression. An inductive definition of [[e]]S is given
below (e[x/σ] stands for e with instances of x replaced by σ).

Definition 2.

[[e]]S,x=σ = [[e[x/σ]]]S

[[e]]· = e

Now, note that a memory, (H, S, P), interpreted in separation
logic as H ∧

V

S ∧
V

P , has the property that each program
variable occurs only once, on the left-hand side of an equality in
S. Thus, for any program variable x, it can be written in the form
H ∧ S0 ∧ x = σ ∧ P , and x does not occur in H , S0, P or σ.
Furthermore, for any program expression e, the expression [[e]]S is
free of program variables, so it also does not contain x. These facts
combine to simplify the forward rule for assignment. The standard

rule would give us:

{H ∧ S0 ∧ x = σ ∧ P} x = e

(

∃x′. H ′ ∧ S′

0 ∧ x′ = σ′∧

P ′ ∧ x = e′

)

Where H ′ is H[x/x′], P ′ is P [x/x′], etc. Since P , H , S, and
σ do not contain x, and e can be rewritten to [[e]]S , which does not
contain x, the postcondition is equivalent to H∧S0∧x = [[e]]S∧P .
Note that the existential quantifier has disappeared. Essentially,
since we already have a representation of the previous value of x in
terms of symbolic variables (σ), we do not have to use the quantifier
to give a name to its old value. The details of this simplification are
presented in section 4, which concerns soundness.

Figure 3 gives the rules for symbolic evaluation. These are all
derived by considering how the restricted form of our memories
simplifies the separation logic rules. The only rule that retains a
quantifier is allocation. The quantifiers in the other separation logic
rules can be eliminated by much the same reasoning as that used
in the previous discussion of the allocation rule. This is not the
case for the alloc rule. However, the quantifier that appears in the
consequent can be dealt with by chaining alloc together with seq
and exists as shown in Figure 5.

Our judgments have two forms. m [c] M ′ holds if executing
the command c starting in memory m always yields a memory in
M ′. The form M [c] M ′ is similar except that we start in the set of
memories M . So for every m ∈ M , executing c starting from m
must yield a memory in M ′.

We can now process the first two commands in our example
program (Figure 4). Recall that the initial memory was

(ls(v1, null); old = v1, new = v2, curr = v3; ·)

After evaluating new := null, we get

(ls(v1, null); old = v1, new = null, curr = v3; ·)

(H;S; P) [x := const e] ∃v. (H, v 7→ e; S, x = v; P)

(H, v 7→ e; S, x = v; P)cM

∃v. (H, v 7→ e; S, x = v; P) [c] ∃v. M

(H;S; P) [x := cons (e); c] ∃v. M

Figure 5. Handling the quantifier in alloc

unfold((H ∗ ls(p1, p2); S; P), p)

= ∃v1, v2. (H ∗ p1 7→ v1 ∗ p1.1 7→ v2 ∗ ls(v2, p2); S; P)

if S, P ` p = p1 or S, P ` p = p1.1

unfold((H;S; P), p) = (H; S; P) otherwise

unfold(∃v. m, p) = ∃v. unfold(m, p)

Figure 6. Definition of unfold

And after curr := old we have

(ls(v1, null); old = v1, new = null, curr = v1; ·)

To continue with the example, we need to describe how loops
are handled. This is the topic of the next section, so we will delay a
full discussion of loops until then. At the moment we shall just state
that the first step in processing a loop is to add the loop condition to
P and process the body. This is enough to let us continue. So after
the loop header at line 4, we have

(ls(v1, null); old = v1, new = null, curr = v1; v1 6= null)

We then reach old := [old.1], which looks up the value of
old.1 in the heap and assigns it to old. Our heap does not ex-
plicitly contain a cell corresponding to old.1 (such a cell would
have the form old .1 7→ σ). However, we know that ls(v1, null)
and v1 6= null, which allows us to unfold the recursively-defined ls
predicate according to definition 1. This gives us v1 7→ v2∗v1.1 7→
v3 ∗ ls(v3,null) in the heap. Since old .1 = v1.1, we now have
old .1 explicitly in the heap and can look up its value (v3).

The function unfold handles the unrolling of inductive defini-
tions (so far, this is just ls). It takes a memory m and a pointer
expression p and tries to unroll definitions such that the heap cell
corresponding to p is exposed. Thus, if we have:

(ls(v,null); S; v 6= null)

then unfold(m,v) will produce the following (v1 and v2 are fresh
variables)

∃v1, v2. (v 7→ (v1, v2) ∗ ls(v2,null); S; v 6= null)

A full definition of the unfold function is given in Figure 6. Note
that since the unfold function just applies the definition of the ls
predicate, we have that unfold(m, p) ⇔ m.

The unfold rule in Figure 3 handles application the unfold func-
tion. It is only applied when the derivation is otherwise stuck.
Choosing the p that appears in the precondition of unfold is
straightforward, as it comes from the command we are trying to
process. For example, if we have the memory (H;S; P) and are
trying to evaluate x := [p1], and are otherwise stuck, we apply the
unfold rule with p = [[p1]]S .

Proceeding with our example, we have unrolled

(ls(v1, null); old = v1, new = null, curr = v1; v1 6= null)

Mpre ∧ b [c] M ′ M ′ ⇒ M ′′

M ′′ ∪ Mpre [while b do c end] Mpost

Mpre [while b do c end] Mpost

whilerec

M [c] M ′ M ′ ⇒ M

M [while b do c end] M ∧ ¬b
whilefix

Figure 7. Symbolic execution rules for while

to

(v1 7→ v2 ∗ v1.1 7→ v3 ∗ ls(v3, null);

old = v1, new = null, curr = v1; v1 6= null)

and we can now finish processing old := [old.1] to get

(v1 7→ v2 ∗ v1.1 7→ v3 ∗ ls(v3, null);

old = v3, new = null, curr = v1; v1 6= null)

We then evaluate [curr.1] := new yielding

(v1 7→ v2 ∗ v1.1 7→ null ∗ ls(v3, null);

old = v3, new = null, curr = v1; v1 6= null)

and finally the two assignments new := curr

(v1 7→ v2 ∗ v1.1 7→ null ∗ ls(v3, null);

old = v3, new = v1, curr = v1; v1 6= null)

and curr := old

(v1 7→ v2 ∗ v1.1 7→ null ∗ ls(v3, null);

old = v3, new = v1, curr = v3; v1 6= null)

3.4 Invariant Inference

The symbolic evaluation procedure described in the previous sec-
tion allows us to get a postcondition from a supplied precondition
for straight-line code. If c is a straight-line piece of code, we can
start with memory m and find some set of memories M ′ such that
m [c] M ′. The postcondition for c is then the disjunction of the
memories in M ′. One approach to dealing with loops is to iter-
ate this process. In Figure 7 we define symbolic evaluation of the
while command in a recursive manner.

We start with a set of memories Mpre . It is important for con-
vergence and the soundness of our approach that the only free vari-
ables in these memories be program variables. This is an easy re-
quirement to satisfy since we can simply take each m ∈ Mpre and
weaken it to ∃v̄. m, where v̄ is the list of free symbolic variables in
m. This is sound as it follows from the rule of consequence.

We add to each of these memories the loop condition b. The no-
tation M ∧b means that we add b to each of the memories in M , re-
sulting in the set {∃v̄. (H; S; P, [[b]]S) | ∃v̄. (H;S; P) ∈ M}. This
may seem questionable since [[b]]S contains free variables which be-
come bound when it is moved inside the quantifier. However, the

p 7→ (v, k) ∗ ls(k, q) ⇒ ls1(p, q)

ls(p, k) ∗ k 7→ (v, q) ⇒ ls1(p, q)

p 7→ (v1, k) ∗ k 7→ (v2, q) ⇒ ls1(p, q)

Figure 8. Rewrite rules for fold. In order to apply them to a
memory (H;S; P), it must be the case that ¬hasname(S, k).

process is sound as can be seen by the following progression. We
start with

(∃v̄. (H; S; P)) ∧ b

Since b contains only program variables, we can move it inside the
existential.

∃v̄. (H; S; P) ∧ b

And since S ∧ b ⇔ S ∧ [[b]]S , the above formula is equivalent to
∃v̄. (H; S; P) ∧ [[b]]S

which is equivalent to
∃v̄. (H; S; P, [[b]]S)

Once we have added the loop condition, we symbolically ex-
ecute the loop body c. We then weaken the result and repeat this
process. The process terminates when the set of memories obtained
reaches a fixed point. Whether or not we reach this fixed point de-
pends crucially on the weakening that is performed in each rule.
The weakening in rule whilerec guides us toward a fixed point,
while the weakening in whilefix enables us to notice when we have
arrived there. In this section we describe a procedure for performing
the weakening in rule whilerec which allows us to find a fixed point
for many list programs. The fixed point includes an exact descrip-
tion of the shape of the heap and selected facts about data values.

3.4.1 Fold

In this section, we describe how we perform the weakening in
the whilerec rule. The core of this transformation is a function
fold , which is the inverse of the unfold operation used by the
symbolic evaluation routine. fold performs a weakening of the heap
which helps the search for a fixed point converge. It does this by
examining the heap and trying to extend existing lists and create
new lists using the rewrite rules given in Figure 8. Additionally, we
allow the procedure to weaken ls1 predicates to ls predicates if this
is necessary to apply one of the above rules. Note however, that we
cannot simply apply these rules in an unrestricted manner or we
will end up with a heap that is too weak to continue processing the
loop. Consider a loop that iterates through a list:

while(curr <> null) do {
curr := [curr.1];

}

We would start with a memory like
(ls(v1,null); l = v1, curr = v1; ·)

and after one iteration would produce the following memory
(v1 7→ v2 ∗ v1.1 7→ v3 ∗ ls(v3, null); l = v1, curr = v3; ·)

If we apply the rewrites in Figure 8 indiscriminately, we obtain
ls(v1,null) for the heap and have lost track of where in the list
curr points. The next attempt to evaluate curr := [curr.1] will
cause the symbolic evaluation routine to get stuck.

So we need a restriction on when to apply fold . Applying it too
often results in weak descriptions of the heap that cause evaluation
to get stuck. Applying it too little keeps the fixed point computation

from terminating. The restriction that we have adopted is to fold up
a list only when the intermediate pointer does not correspond to a
variable in the program. Using the values of the program variables
to guide the selection of which heap cells to fold seems natural in
the sense that if a memory cell is important, the program probably
maintains a pointer to it. It is certainly the case that refusing to
fold any cell to which a program variable still points will prevent
us from getting immediately stuck. That these are the only cells
we need to keep separate is not as clear and, in fact, is not always
the case. However, for loop invariants that are expressible solely in
terms of the program variables this heuristic has proven successful
for typical programs (though it is by no means complete).

We introduce a new function hasname to perform this check. It
takes as arguments the list of equalities S and the symbolic variable
to check. It returns true if there is a program variable equal to the
symbolic variable provided.

hasname((H;S; P), v) iff ∃x. (H;S; P) ` x = v

This can be decided by repeatedly querying our decision proce-
dure for pointer expressions, although there are also more ef-
ficient approaches. We then only fold a memory cell v when
¬hasname(S, v). So, for example, the memory

(ls(v1, v2) ∗ v2 7→ v3 ∗ v2.1 7→ v4 ∗ ls(v4,null);

l = v1, curr = v4; ·)

would be folded to
(ls(v1, v4) ∗ ls(v4,null); l = v1, curr = v4;)

because there is no program variable corresponding to v2. However,
the memory

(ls(v1, v2) ∗ v2 7→ v3 ∗ v2.1 7→ v4 ∗ ls(v4,null);

l = v1, curr = v4, prev = v2; ·)

which is the same as above except for the presence of prev = v2,
would not change since v2 now has a name.

We compute fold(m) by repeatedly applying the rewrite rules
in Figure 8, subject to the hasname check, until no more rules are
applicable. Note that these rules do produce a valid weakening of
the input memory. If we have

(H, v1 7→ v2, v1.1 7→ v3, ls(v3, v4); S; P)

This can be weakened to
∃v2, v3. (H, v1 7→ v2, v1.1 7→ v3, ls(v3, v4); S; P)

which, by Definition 1 is equivalent to
(H, ls(v1, v4); S; P)

3.4.2 Deciding Weakening

The previous section described how to compute fold(m), a mem-
ory which is, by construction, a weakening of m. This gives us
a memory M ′′ to use in the whilerec rule. In this section, we ad-
dress the weakening present in the whilefix rule. In this case, we are
given two sets of memories M and M ′ and must decide whether
M ⇒ M ′. It is sufficient for our purposes (though not complete
in general) to check this by checking that for each m ∈ M there
is some m′ ∈ M ′ such that m ⇒ m′. To check this last condi-
tion would be easy if we had access to a separation logic theorem
prover, as we could simply ask the prover to settle this question.
But since we lack such a prover (and in fact are unaware of the
existence of such a system), we must do our own reasoning about
the heap. We adopt a rather coarse approach in this case, essentially
requiring the heap portions of the memories to be equal. We then
use a classical prover to decide entailment between the classical
portions of the memories. We now present this approach in detail.

pv(∃v̄. (H;S; P)) = pv (H;S; P)

pv(H; S, x = f(v); P) =

pv(H[v/f−1(x)]; S; P)

pv(H; S, x = i; P) = pv(H; S; P)

pv(H; ·; P) = H

Figure 9. Definition of pv

We check that ∃v̄. (H;S; P) implies ∃v̄′. (H ′; S′; P ′) by
searching for a formula Hc, which contains only program variables,
such that ∃v̄. (H;S; P) = ∃v̄. (Hc; S; P) and ∃v̄′. (H ′; S′; P ′) =
∃v̄′. (Hc; S

′; P ′). We then must show that
∃v̄. (Hc; S; P) ⇒ ∃v̄′. (Hc; S

′; P ′)

which, since Hc contains only program variables, is equivalent to
Hc ∧ (∃v̄. S ∧ P) ⇒ Hc ∧ (∃v̄′. S′ ∧ P ′)

which is true if
∃v̄. S ∧ P ⇒ ∃v̄′. S′ ∧ P ′

This formula can then be checked by a classical theorem prover. In
general, it may contain integer arithmetic and thus be undecidable.
However, in section 3.4.4 we present a technique for separating out
the portions of the memory that refer to data, which then ensures
that we can decide this implication.

We find the above-mentioned heap Hc by rewriting H accord-
ing to the equalities in S. For each equality x = f(v) in S, we solve
for v, obtaining v = f−1(x). Since pointer expressions are either
the constant null or a variable plus an offset, we can always find
such a solution.2 If there are multiple such equalities for the same
v, we try all substitutions. Equalities in S involving integer expres-
sions are ignored. We call the result of this substitution pv (m) and
present a full definition in Figure 9.

As an example, consider the following memories

m1 ≡
∃v1, v2. (ls(v1, v2) ∗ ls(v2, null);

l = v1, curr = v2; v1 <> v2)

m2 ≡
∃v1, v2. (ls(v2, v1) ∗ ls(v1, null);

l = v2, curr = v1; ·)

Applying pv to either memory gives us
ls(l, curr) ∗ ls(curr,null)

Since the heaps match, we go on to test whether

∃v1, v2. l = v1 ∧ curr = v2 ∧ v1 <> v2

⇒ ∃v1, v2. l = v2 ∧ curr = v1

As this is true, we conclude that m1 ⇒ m2.

3.4.3 Fixed Points

We now return to our example of in-place list reversal. We start
with the memory
∃v1. (ls(v1,null); curr = v1, newl = null, old = v1); ·) (1)

After one iteration through the loop, we have

∃v1, v2, v3. (v1 7→ v2, v1.1 7→ null, ls(v3, null);

curr = v3, newl = v1, old = v3; v1 6= null) (2)

2 This does force us to add v − n as an allowable pointer expression.
However, this causes no issues with the decidability of pointer equalities
and inequalities.

Applying fold at this point has no effect, so we continue processing
with the memory above. After iteration #2, we obtain

∃v1, v2, v3, v4. (v3 7→ v4 ∗ v3.1 7→ v1

∗ v1 7→ v2 ∗ v1.1 7→ null ∗ lseg(v5,null);

curr = v5, newl = v3, old = v5;

v3 6= null ∧ v1 6= null)

Since there is no program variable corresponding to v1, this gets
folded to

∃v1, v3, v5. (ls1(v3,null) ∗ ls(v5,null);

curr = v5, newl = v3, old = v5;

v3 6= null ∧ v1 6= null) (3)
And this is a fixed point, as can be verified by evaluating the loop
body one more time, yielding

∃v1, v3, v5, v7. (ls1(v5,null) ∗ ls(v7,null);

curr = v7, newl = v5, old = v7;

v5 6= null ∧ v3 6= null ∧ v1 6= null) (4)

Let (H; S; P) = (4) and (H ′; S′; P ′) = (3). To verify that we
have reached a fixed point, we must show the following

∃v1, v3, v5, v7. H ∧ S ∧ P ⇒ ∃v1, v3, v5. H ′ ∧ S′ ∧ P ′

To check this, we compute pv(H; S; P), which is ls(curr ,null)∗
ls(old ,null). This is the same as pv (H ′; S′; P ′). Thus,

∃v1, v3, v5, v7. H ∧ S ∧ P =

ls(curr ,null) ∗ ls(old ,null) ∧ ∃v1, v3, v5, v7. S ∧ P

and

∃v1, v3, v5. H ′ ∧ S′ ∧ P ′ =

ls(curr ,null) ∗ ls(old ,null) ∧ ∃v1, v3, v5. S′ ∧ P ′

Since the heaps are now clearly equal, all that remains is to check
that

(∃v1, v3, v5, v7. curr = v7 ∧ new = v3 ∧ old = v7 ∧

v5 6= null ∧ v3 6= null ∧ v1 6= null) ⇒

(∃v1, v3, v5. curr = v5, new = v3, old = v5 ∧

v3 6= null ∧ v1 6= null)

This is easily proved since first-order formulas involving pointer
expressions are decidable (using, for example, the decision proce-
dure for Presburger arithmetic [8]).

Finally, recall that the actual loop invariant is the disjunction of
every memory leading up to the fixed point. Thus, the full invariant
is (1) ∨ (2) ∨ (3).

3.4.4 Integer Arithmetic

So far, we have described how to compare memories in our quest
for a fixed point. We also mentioned that in order for ∃v̄. (H;S; P)
to imply ∃v̄′. (H ′; S′; P ′), the implication ∃v̄. S∧P ⇒ ∃v̄′. S′ ∧
P ′ must hold. In our example, this implication contained only
pointer expressions and so was decidable. In general, S and P
may contain information about integer variables, whose arithmetic
is sufficiently complex that this question becomes undecidable. To
keep our inability to decide this implication from affecting conver-
gence of the algorithm, we weaken the memory after each evalua-
tion of the loop body in such a way that we force S and P to con-
verge. One such approach is to simply drop all information about
integer data. After each iteration we replace integer expressions in

S with new symbolic variables, so x = v3×v2 +v7 would become
simply x = v9. Similarly, we can just drop from P any predicates
involving integer expressions. This eliminates the arithmetic and
returns our formulas to the realm of decidability. However, it re-
quires us to forget all facts about integers after every iteration. In
section 3.5 we describe the use of predicate abstraction for carry-
ing some of this information over.

The same issue arises with heaps. Consider the following pro-
gram, which adds the elements in a list using a heap cell to store
the intermediate values.

[accum] := 0
curr := hd;
while(curr <> null) do {
s := [curr];
t := [accum];
[accum] := s + t;
curr := [curr.1];

}

The memories computed for this program (after applying fold and
pv) will follow the progression:

∃v1. ls(hd , curr) ∗ ls(curr,null) ∗ accum 7→ v1

∃v1, v2. ls(hd , curr) ∗ ls(curr,null) ∗ accum 7→ v1 + v2

∃v1, v2, v3. ls(hd , curr) ∗ ls(curr,null)∗
accum 7→ v1 + v2 + v3 . . .

We will never converge if we keep track of the exact value of
accum . Since we are primarily interested in shape information,
we can simply abstract out the data, just as we did for S. We can
“forget” what accum points to after each iteration by replacing its
contents with a fresh symbolic variable. This is equivalent to using
the following formula as our candidate invariant

∃v. ls(hd , curr) ∗ ls(curr,null) ∗ accum 7→ v

Again, we present a more sophisticated approach in section 3.5.

3.4.5 Summary

To summarize, we compute a loop invariant by searching for a fixed
point of the symbolic evaluation function plus weakening. We find
this fixed point by repeated evaluation of the loop body, starting
from the precondition of the loop and weakening the resulting post-
condition by applying the fold operation and eliminating integer
expressions. Convergence is detected by checking that if M [c] M ′

then every memory in M ′ can be weakened to some memory in M .
This check involves 1) comparing the heaps for equality after trans-
forming them according to pv and 2) checking that ∃v̄. S ∧ P for
the stronger memory implies ∃v̄′. S′ ∧ P ′ for the weaker memory.
Once a fixed point is found, the loop invariant is the disjunction of
the fixed point, the loop precondition, and all the memories com-
puted during the search.

3.5 Predicate Abstraction

In the previous section, we presented a method, fold , for weakening
the heap in order to help guide toward convergence the heaps
obtained by repeated symbolic evaluation of a loop body. This
did nothing to help the classical portion of the memory converge
though, and we ended up just removing all integer formulas from P
and S. However, we would like to infer post-conditions that record
properties of integer data and doing so requires a better method of
approximating P that still assures convergence. One such approach
is predicate abstraction [10].

Predicate abstraction is an abstract interpretation [7] procedure
for the verification of software. The idea is that a set of predicates
P1, . . . , Pn are provided and the abstraction function finds the
conjunction of (possibly negated) predicates which most closely

matches the program state. For example, if the predicates are {x >
5, y = x} and the state is x = 3 ∧ y = 3 ∧ z = 2 then the
combination would be

¬(x > 5) ∧ y = x

We lose information about z and about the exact values of x and
y, but if we provide the right set of predicates, we can often
maintain whatever information is important for the verification of
the program. Also, the predicates and their negations, together with
∧ and ∨, form a finite lattice. So if we have a series of abstractions
A1, A2, A3 . . ., which we have obtained from a loop, then the
sequence of loop invariant approximations A1, A1∨A2, A1∨A2∨
A3, . . . is guaranteed to converge.

Computing an abstraction AP of a classical logic formula P is
accomplished by asking a theorem prover whether P ⇒ Pi for
each predicate Pi. If this is true, we include Pi in the conjunction.
If, on the other hand, the theorem prover can prove P ⇒ ¬Pi,
then we include ¬Pi in the conjunction. If neither is provable (a
possibility since classical logic plus arithmetic is undecidable), then
neither Pi nor its negation appear in AP .

Now that we can compute AP , we can describe a refinement of
the loop invariant inference procedure that maintains more infor-
mation about the state of integer values in the program. We start
with a set of predicates provided by the programmer. These are
statements about program variables, such as x > 0 or y = x. It is
this predicate set that forms the basis for our abstraction function.
At each step, we take a set of memories M and find the set M ′

such that M [c] M ′, where c is the loop body. For each memory
m′

i ∈ M ′, with components H ′

i , S′

i and P ′

i , we perform the fold
operation and replace symbolic pointer variables in H ′

i according
to pv , as described in the previous section. However, now before
dropping integer formulas from P ′

i and S′

i, we compute the ab-
straction AS′

i
∧P ′

i
. We add this to the candidate invariant so that it

has the form v̄. (H;S; P, A), where A is the abstraction obtained
from S and P .

To detect convergence, we have to be able to decide implication
between these memories. To decide whether ∃v̄. (H; S; P, A) im-
plies ∃v̄′. (H ′; S′; P ′, A′), we compare H and H ′ for equality as
before (by rewriting according to pv). S and P are still free of inte-
ger expressions, so the implication (∃v̄. S∧P) ⇒ (∃v̄′. S′∧P ′) is
decidable. Finally, since A and A′ contain only program variables,
they can be moved outside the existential and checked separately.
And since they form a finite lattice, it is easy to check whether
A ⇒ A′, for example by checking that A ∧ A′ = A.

So now that we can check implication between memories of
this form, we can ask whether for each m′

i ∈ M ′ there is some
mi ∈ M such that m′

i implies mi. If this holds, we have reached a
fixed point and are done. If this is not the case, we merge candidate
invariants and continue processing the loop body. The merge op-
eration searches for pairs of candidate invariants ∃v̄. (H;S; P, A)
and ∃v̄′. (H ′; S′; P ′, A′) such that H = H ′ and (∃v̄. S ∧ P) ⇒
(∃v̄′. S′∧P ′). It then merges these memories into the single mem-
ory ∃v̄. (H; S; P, A ∨ A′). This has the effect that once the shape
information is fixed, the formulas obtained via predicate abstrac-
tion get progressively weaker, ensuring that they will not keep the
algorithm from terminating. However, other factors can still impede
termination, as we shall see in section 5.

As an example, consider the program below, which adds up the
positive elements of a list.

curr := hd;
x := 0;
while(curr <> null) {

t := [curr];
if(t > 0) then x := x + t;

else skip;

curr := [curr.1];
}

We will take our set of predicates to be {x > 0, x = 0, x < 0}.
We start with the memory

(ls(v1,null); hd = v1, curr = v2, x = v3, t = v4; ·)

When we reach the “if” statement, we have the memory

(v1 7→ v5 ∗ v1.1 7→ v6 ∗ ls(v6,null);

hd = v1, curr = v1, x = 0, t = v5; ·)

We can’t decide the branch condition, so we evaluate both branches,
resulting in two memories at the end of the loop

(v1 7→ v5 ∗ v1.1 7→ v6 ∗ ls(v6,null);

hd = v1, curr = v6, x = 0, t = v5;¬(v5 > 0))

and

(v1 7→ v5 ∗ v1.1 7→ v6 ∗ ls(v6,null);

hd = v1, curr = v6, x = 0 + v5, t = v5; v5 > 0)

We then find the conjunction of predicates implied by these memo-
ries. In this case, each memory only implies a single predicate. The
first memory implies x = 0, while the second implies x > 0. We
then erase the integer data from the memories and keep only these
predicates. For example, the memory in the second case becomes

(v1 7→ v5 ∗ v1.1 7→ v6 ∗ ls(v6,null);

hd = v1, curr = v6, x = v7, t = v5; v7 > 0)

while the first is the same, except that v7 = 0 appears in the P
portion. Since we have not reached a fixed point yet, and the heap
portion of these two memories are equivalent, we merge them:

(v1 7→ v5 ∗ v1.1 7→ v6 ∗ ls(v6,null);

hd = v1, curr = v6, x = v7, t = v5; v7 = 0 ∨ v7 > 0)

Another pass through the loop results in two memories, which, after
being folded are again merged to form

(ls(v1, v9) ∗ ls(v9,null);

hd = v1, curr = v9, x = v10, t = v9; v10 = 0 ∨ v10 > 0)

This is a fixed point and because of the information we are main-
taining about x, the corresponding loop invariant is strong enough
to let us conclude the following postcondition for the program.

ls(hd ,null) ∧ x ≥ 0

3.5.1 Data in the Heap

The technique just presented allows us to preserve information
about stack variables between iterations of the symbolic evaluation
loop. However, there is also data in the heap that we might like to
say something about. To enable this, we introduce a new integer
expression c(p). The function c returns the contents of memory
cell p and can be used by the programmer when he specifies the set
of predicates for predicate abstraction. We then alter what we do
when producing candidate invariants. Rather than replacing integer
expressions in the heap with arbitrary fresh variables, we replace
them with the appropriate instances of c, and record the substitution
as follows. If we start with the memory

(v1 7→ 5 ∗ ls(v2,null); accum = v1, curr = v2;)

Then when we abstract out the data, rather than obtaining
∃v3. (v1 7→ v3 ∗ ls(v2,null); accum = v1, curr = v2;)

as we previously would, we instead obtain
(v1 7→ c(v1) ∗ ls(v2,null); accum = v1, curr = v2; c(v1) = 5)

If one of our predicates of interest is c(accum) > 0, we can ask
any theorem prover that can handle uninterpreted functions whether
accum = v1 ∧ curr = v2 ∧ c(v1) = 5 ⇒ c(accum) > 0.

In general, for every heap statement of the form p 7→ i, where
i is an integer expression, we replace i by c(p) and record the fact
that c(p) = i. That is, we apply the following transformation to the
memory until it fails to match.

(H,p 7→ i; S; P) =⇒ (H,p 7→ c(p); S; P, c(p) = i)

We then perform predicate abstraction exactly as outlined in the
previous section.

3.6 Cycles

We mentioned in section 3.1 that our lists may be cyclic. Here, we
explain the reason for this decision. In order to enforce acyclicity,
we must insist that the final pointer in a list segment be dangling.
That is, whatever segment of the heap satisfies ls(p, q) cannot have
q in its domain. To maintain this property of list segments, we
must check that whenever we perform the fold operation, we do
not create cycles. Unfortunately, we do not usually have enough
information about the heap to guarantee this.

Consider a loop that starts with the list segment ls(p, q) and
iterates through it. At some point in our search for an invariant, we
will reach a state like the following:
(ls(v1, v2) ∗ ls(v2, v3); p = v1, curr = v2, q = v3; v2 6= null)

We will then hit the command that advances curr (curr :=
[curr.1]) and expand the second ls, producing

(ls(v1, v2) ∗ v2 7→ v4 ∗ v2.1 7→ v5 ∗ ls(v5, v3);

p = v1, curr = v5, q = v3; v2 6= null)

We then wish to fold the cell at v2 into the first ls since v2 does
not have a name. But in order to do this and maintain acyclicity,
we have to prove that v5 does not point into the portion of heap
described by ls(v1, v2) and we simply do not have enough infor-
mation to prove this. It is certainly true if ls(v5, v3) is non-empty,
but otherwise we could have v5 = v3 = v1 which would violate
acyclicity.

Of course, simply iterating through a non-cyclic list does not
alter its non-cyclicity and this would be a desirable property to
prove. To do this, we need to figure out what information should
be carried around between iterations of a loop in order to recognize
when it is safe to fold without violating acyclicity. We save this
issue for future work.

4. Soundness
To be more explicit in the statement of soundness, we let M sep

stand for the conversion of the set of memories M to a separation
logic formula. This is defined as

{m1, . . . , mn}
sep = m1

sep ∨ . . . ∨ m2

sep

(∃v. m)sep = ∃v. msep

(H;S; P)sep = H ∧ Ssep ∧ P sep

(S, x = σ)sep = Ssep ∧ x = σ

(P, b)sep = P sep ∧ b

(·)sep = >

Soundness. If M [c] M ′ is derivable in our symbolic evaluation
framework, then {M sep} c {(M ′)

sep
} is derivable in separation

logic.

To prove soundness we proceed by induction on the structure of
the symbolic evaluation. There is one case for each rule. We handle
the easy cases first. Since unfold(m,p) ⇔ m, the soundness of
the unfold rule is immediate. The seq rule is exactly its counter-
part from Hoare logic (plus the restriction that the pre- and post-
conditions be memories), so its soundness is also immediate. The
sets rule is just an application of the disjunction rule from Hoare
logic.

The derivation of exists starts with an application of the exists
rule from Hoare logic

{msep} c {m′

1

sep
∨ . . . ∨ m′

n
sep

}

{∃v. msep} c {∃v. m′

1

sep
∨ . . . ∨ m′

n
sep

}

The postcondition implies (∃v. m′

1

sep
)∨ . . .∨ (∃v. m′

n
sep

), which
is the translation to separation logic of the postcondition from our
exists rule.

The ifn rule is completely standard and the ift and iff variants
follow from ifn plus the fact that if [[b]]S holds then (H;S; P,¬[[b]]S)
is equivalent to ⊥ and the triple {⊥} c {q} holds for any q. The
soundness of skip is also straightforward.

The assign rule provides a general template for the other cases,
as it demonstrates how we are able to remove quantifiers in the
postcondition. The original Hoare assignment axiom is:

{p} x := e {∃x′. p[x/x′] ∧ x = e[x/x′]}

We apply this to the precondition in our assignment rule, which
is Hsep∧S0

sep∧x = σ∧P sep to obtain ∃x′. H ′sep∧S′

0

sep
∧x′ =

σ′ ∧ P ′sep ∧ x = e′, where H ′ is H[x/x′], P ′ is P [x/x′], etc.
Since P , H , S, and σ do not contain x, they are not affected by
the substitution, so the postcondition is equivalent to ∃x′. Hsep ∧
S0

sep ∧ x′ = σ ∧ P sep ∧ x = e′. Furthermore, since [[e]]S0

just applies the equalities in S0, this is equivalent to ∃x′. Hsep ∧
S0

sep ∧ x′ = σ ∧ P sep ∧ x = [[e]]′S0
. And since [[e]]S0

does
not contain x, it is also unaffected by the substitution [x/x′]. We
can pull terms not containing x′ outside the quantifier, obtaining
(∃x′. x′ = σ)∧Hsep ∧S0

sep ∧P sep ∧x = [[e]]S . We then use the
fact that ∃x′. x′ = σ ⇔ > to reduce this to Hsep ∧ S0

sep ∧ x =
[[e]]S ∧ P sep , which is the translation to separation logic of the
memory (H;S0, x = [[e]]S ; P).

This use of [[e]]S to convert e to an equivalent form that does not
involve the quantified variable, followed by pulling terms outside
the quantifier until we can eliminate it, is a common theme in the
proofs for the remaining rules.

We handle mutate next. We have to show that
{(H, p′ 7→ σ; S; P)

sep
} [p] := e {(H,p′ 7→ [[e]]S ; S; P)

sep
}

follows from
(H,p′ 7→ σ;S; P) ` p = p′ (5)

We start with (H,p′ 7→ σ;S; P)
sep , which is equal to H ∗p′ 7→

σ ∧ Ssep ∧ P sep . Since Ssep ∧ P sep is pure (does not involve
the heap), we can commute and re-associate to get the equivalent
formula

p′ 7→ σ ∗ (H ∧ Ssep ∧ P sep)

Due to our assumption, (5), we can replace p′ with p

p 7→ σ ∗ (H ∧ Ssep ∧ P sep)

We can apply then apply the standard separation logic mutation rule
to this precondition to yield

p 7→ e ∗ (H ∧ Ssep ∧ P sep)

To finish, we show that this formula implies our desired postcondi-
tion {(H,p′ 7→ [[e]]S ; S; P)}

sep . The equalities in S together with

(5) give us
p′ 7→ [[e]]S ∗ (H ∧ Ssep ∧ P sep)

and re-associating and commuting gives us
H ∗ p′ 7→ [[e]]S ∧ Ssep ∧ P sep)

which is the desired formula.
The derivations for dispose and alloc are very similar. They in-

volve rewriting our precondition into a form to which we can ap-
ply the corresponding separation logic rule. This rewriting involves
only commutativity and associatively of pure expressions and, in
the case of dispose the assumption we get from the antecedent of
the rule. The derivation of alloc also involves some reasoning about
variable renaming, as we did previously with assignment. The most
difficult case is lookup, which we handle now.

We must show that we can derive

{(H,p′ 7→ σ2; S, x = σ1; P)
sep

}

x := [p] {(H,p′ 7→ σ2; S, x = σ2; P)
sep

}

from the assumption
(H,p′ 7→ σ2; S, x = σ1; P) ` p = p′ (6)

First, we rewrite the precondition and postcondition according to
our assumption and the definition of M sep . This gives us

p 7→ σ2 ∗ (H ∧ Ssep ∧ x = σ1 ∧ P sep) (7)
and

p 7→ σ2 ∗ (H ∧ Ssep ∧ x = σ2 ∧ P sep) (8)
which we must show to be valid pre- and post-conditions of the
command x := [p].

We will do this using the global form of the separation logic rule
for lookup, given below (p′ stands for p[x/x′])

{∃x′′. p 7→ x′′ ∗ (r[x′/x])} x := [p] {∃x′. p′ 7→ x ∗ (r[x′′/x])}

We choose r to be H ∧ Ssep ∧ x′ = σ1 ∧ x′′ = σ2 ∧ P sep . This
makes the precondition in the rule above

∃x′′.p 7→ x′′ ∗ (H ∧ Ssep ∧ x = σ1 ∧ x′′ = σ2 ∧ P sep)

which is implied by (7). We then turn our attention to showing that
the postcondition in the rule above implies (8). The postcondition
is

∃x′. p[x/x′] 7→ x ∗ (H ∧ Ssep ∧ x′ = σ1 ∧ x = σ2 ∧ P sep)

We use our standard reasoning about [[p]]S being free of program
variables to rewrite this to

∃x′. [[p]]S 7→ x ∗ (H ∧ Ssep ∧ x′ = σ1 ∧ x = σ2 ∧ P sep)

We can then weaken by removing x′ = σ1, drop the existential
(since this equality is the only place x′ occurs), and rewrite accord-
ing to our assumption (6).

p 7→ x ∗ (H ∧ Ssep ∧ x = σ2 ∧ P sep)

Finally, since we have x = σ2 in the formula, we can replace x by
σ in p 7→ x to obtain formula (8).

5. Completeness
While our algorithm works on many interesting examples, it is not
complete. One issue is that the search for a loop invariant may not
converge. Consider the program below, which allocates n cells on
the heap, each initialized to zero.

while(x > 0) do {
t := cons(0);
x := x - 1;

}

The heap portion of the memories we obtain while evaluating
this loop proceed as follows

t 7→ 0
t 7→ 0 ∗ v1 7→ 0
t 7→ 0 ∗ v2 7→ 0 ∗ v1 7→ 0
. . .

We have no means in our assertion language of finitely representing
the union of these heaps, so there is no way we can compute a
loop invariant. We could add a fixed point operator to our assertion
language as in [20] or hard-code additional inductive definitions
in order to handle this, but we would then have the problem of
deciding entailments between these new assertions. This is also
incompatible with our approach of keeping the assertions simple
in order to simplify the inference rules.

However, even when an invariant would be expressible in our
annotation language, our algorithm can still be tricked by certain
loops. Consider a loop that walks through a list, maintaining a
pointer to its current position and also a pointer that points two
cells back. Part of the invariant for such a loop would be

ls(l, twoback) ∗ twoback 7→ (v1, v2)

∗ v2 7→ (v3, curr) ∗ ls(curr ,null)

But our loop invariant algorithm would fold this to

ls(l, twoback) ∗ ls1(twoback , curr) ∗ ls(curr ,null)

which is not strong enough if the program makes use of the fact
that twoback and curr are two cells apart. For example, if the loop
exits when curr = null, then the program could safety do

twoback := [twoback.1];
twoback := [twoback.1];

which would cause our symbolic evaluation routine to get stuck.

6. Results
We have implemented a prototype of our algorithm in about 4,000
lines of SML code. It does it own reasoning about pointers and uses
calls to Vampyre [3] when it needs to prove a fact about integers. It
implements everything described up to, but not including, the sec-
tion on predicate abstraction (3.5). We have used this implementa-
tion to test the algorithm on several examples, including routines
for computing the length of a list, summing the elements in a list,
destructively concatenating two lists, deleting a list and freeing its
storage, destructive reversal of a list, and destructive partition. The
implementation was successful in generating loop invariants fully
automatically for all of these examples. We have also worked by
hand a number of examples involving predicate abstraction. In this
section, we give an example of the invariants produced by our im-
plementation and comment on the issues that arose during testing.

The most difficult program to handle was partition. This routine
takes a threshold value v and a list pointer hd . It operates by
scanning through the list at hd , passing over elements that are ≥ v
and shuffling elements that are less than v over to the list at newl .
The program text is given below.

curr := hd;
prev := null;

while (curr <> null) do {
nextCurr := [curr.1];
t := [curr];

if (t < v) {
if (prev <> null) [prev.1] := nextCurr;

else skip;
if (curr = hd) hd := nextCurr; else skip;
[curr.1] := newl;
newl := curr;

}
else prev := curr;

curr := nextCurr;
}

The difficulty in handling this example comes from the many
branches inside the loop body and the interplay between them. For
example, note that when prev = null, then curr = hd . Thus,
there is a relationship between the two innermost “if” statements.
Being able to decide branch conditions involving pointers and avoid
executing impossible branches (the ift and iff rules) were crucial in
allowing us to handle this example without generating an invariant
containing impossible states.

This example also highlights the importance of keeping track of
which lists are known to be non-empty (the ls1 predicate). When
evaluating the loop, after several iterations we arrive at a memory
equivalent to the following separation logic formula

∃k. ls(hd , prev)∗(prev 7→ nextCurr)∗curr 7→ (t,nextCurr)

∗ ls(nextCurr ,null) ∗ ls(newl , null)

This is what holds immediately before executing if (curr =
hd). Since prev 6= null it should be the case that curr 6= hd ,
but this fact does not follow from the formula above. However, if
we track the non-emptiness of the list between hd and prev , we get
a formula of the form

ls1(hd , prev) ∗ . . . ∗ curr 7→ (t, nextCurr) ∗ . . .

Since ls1(hd , prev) is non-empty, the portion of the heap which
satisfies this list predicate has hd in its domain. And since ∗ sep-
arates disjoint pieces of heap, we can conclude that curr 6= hd .
If we fail to recognize this, we end up erroneously advancing hd ,
which results in a state in which we have lost the pointer to the
head of the list (hd now points somewhere in the middle). Since
the program cannot actually reach such a state and it would be quite
disturbing to see such a state in an invariant, it is important that we
can rule this out.

In the end, the loop invariant inferred for this program is equiv-
alent to the following separation logic formula

(ls(hd ,null) ∧ newl = null ∧ prev = null)

∨ (ls(hd ,null) ∗ ls(newl ,null) ∧ prev = null)

∨ (∃v1. hd 7→ (v1, curr) ∗ ls(curr ,null) ∗ ls(newl , null))

∨ (∃v1. ls(hd , prev) ∗ prev 7→ (v1, curr)

∗ ls(curr ,null) ∗ ls(newl , null))

The first case in this disjunction corresponds to the loop entry
point. The second case is the state after we have put some elements
in newl , but have not kept any in the list at hd . In the third case, we
have kept one element in hd . And in the fourth case, we are in the
middle of iterating through the list at hd , with different prev and
curr pointers.

We also confirmed a result of Colby et al. [6], which is that
failure of the symbolic evaluator can often be helpful in finding
bugs. When our symbolic execution algorithm gets stuck, it usually
indicates a pointer error of some sort. In such cases, the program
path leading up to the failure, combined with the symbolic state at
that point, can be a great debugging aid.

7. Conclusion
In this paper, we have presented a technique for inferring loop in-
variants in separation logic [18] for imperative list-processing pro-
grams. These invariants are capable of describing both the shape of
the heap and its contents. The invariants can also express informa-
tion about data values both on the heap and in the stack. We have
implemented the method and run it on interesting examples.

The examples we have been able to handle are quite encour-
aging. Still, we are aware of a number of important limitations,
some of which have been highlighted in Sections 3.6 and 5. Chief
among them is the inability to reason effectively about acyclic lists.
Acyclic lists, as discussed in [2], have the desirable property that
they describe a unique piece of the heap. However, as we explain
in section 3.6, we cannot apply our fold operation to them. In the
future, we would like to find better approximations of lists that
capture properties such as acyclicity but still allow automation.
We would also like to move beyond lists and allow other induc-
tive predicates, ideally allowing for programmer-defined recursive
predicates.

Ultimately, it is our intention that such an inference procedure
form the foundation for further program verification, using tech-
niques such as software model checking [1, 4, 12] and other static
analyses. For example, we would like to incorporate this invariant
inference into a software model checker to enable checking of tem-
poral safety and liveness properties of pointer programs.

This framework also makes an ideal starting point for a proof-
carrying code system [13, 14]. Since it is based on separation logic,
the proofs corresponding to the inference procedure presented here
are compositional. A certificate can be generated for code in isola-
tion and it remains a valid proof when the code is run in a different
context. However, generation of such certificates requires a proof
theory for separation logic, something we are currently lacking.
While a proof theory exists for the logic of bunched implications
[17], we are not aware of such a system for the special case of
separation logic. We would also like to explore the combination of
model checking and certification in this framework, as described
in [11].

Since detecting convergence of our invariant inference proce-
dure requires checking separation logic implications, we can bene-
fit from any work in separation logic theorem proving and decision
procedures for fragments of the logic, such as that given in [2]. It
is our hope that the recent surge of interest in separation logic will
lead to advances in these areas.

References
[1] Thomas Ball and Sriram K. Rajamani. Automatically validating tem-

poral safety properties of interfaces. In SPIN ’01: 8th international
SPIN workshop on Model checking of software, pages 103–122, New
York, NY, USA, 2001. Springer-Verlag New York, Inc.

[2] Berdine, Calcagno, and O’Hearn. A decidable fragment of separation
logic. FSTTCS: Foundations of Software Technology and Theoretical
Computer Science, 24, 2004.

[3] David Blei, George Necula, Ranjit Jhala, Rupak Majumdar, et al.
Vampyre. http://www-cad.eecs.berkeley.edu/ rupak/Vampyre/.

[4] Sagar Chaki, Edmund Clarke, A. Groce, S. Jha, and H. Veith. Modular
verification of software components in C. IEEE Transactions on
Software Engineering (TSE), 30(6):388–402, June 2004.

[5] L. A. Clarke and D. J. Richardson. Symbolic evaluation methods for
program analysis. Prentice-Hall, 1981.

[6] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark
Plesko, and Kenneth Cline. A certifying compiler for java. In
PLDI ’00: Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation, pages 95–107,
New York, NY, USA, 2000. ACM Press.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In 4th Annual ACM Symposium on
Principles of Programming Languages, pages 238–252, 1977.

[8] Jeanne Ferrante and Charles W. Rackoff. The Computational
Complexity of Logical Theories. Lecture Notes in Mathematics.
Springer, 1979.

[9] Rakesh Ghiya and L. J. Hendren. Is it a tree, a DAG, or a cyclic
graph? A shape analysis for heap-directed pointers in C. In ACM
Symposium on Principles of Programming Languages (POPL ’96),
pages 1–15, 1996.

[10] Susanne Graf and Hassen Saidi. Construction of abstract state graphs
with PVS. In 9th International Conference on Computer Aided
Verification (CAV), pages 72–83, London, UK, 1997. Springer-Verlag.

[11] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, George C.
Necula, Gregoire Sutre, and Westley Weimer. Temporal-safety proofs
for systems code. In 14th International Conference on Computer
Aided Verification (CAV), pages 526–538. Springer-Verlag, 2002.

[12] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire
Sutre. Lazy abstraction. In ACM Symposium on Principles of
programming languages (POPL), pages 58–70, New York, NY, USA,
2002. ACM Press.

[13] George C. Necula. Proof-carrying code. In ACM Symposium on
Principles of Programming Langauges (POPL), pages 106–119,
Paris, January 1997.

[14] George C. Necula and Peter Lee. Safe Kernel extensions without
run-time checking. In Proceedings of the 2nd USENIX Symposium
on Operating Systems Design and Implementation, pages 229–244,
Berkeley, October 28–31 1996. USENIX Association.

[15] Charles Gregory Nelson. Techniques for program verification. PhD
thesis, Stanford University, 1980.

[16] Peter O’Hearn and David Pym. The logic of bunched implications.
Bulletin of Symbolic Logic, 5(2):215–244, 1999.

[17] D.J. Pym. The Semantics and Proof Theory of the Logic of the Logic
of Bunched Implications, volume 26 of Applied Logic Series. Kluwer
Academic Publishers, 2002.

[18] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. Proceedings of the 17th Annual IEEE Symposium on Logic
in Computer Science, pages 55–74, 2002.

[19] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via
3-valued logic. In ACM Transactions on Programming Languages
and Systems, 2002.

[20] Élodie-Jane Sims. Extending separation logic with fixpoints and
postponed substitution. In AMAST: Algebraic Methodology and
Software Technology, 10th International Conference, pages 475–490.
Springer, 2004.

[21] T. Weber. Towards mechanized program verification with separation
logic. In CSL: 18th Workshop on Computer Science Logic. LNCS,
Springer-Verlag, 2004.

