
�

�

�

�

�

�

�

�

6

Dependent Type Theory for Verification of Information Flow and
Access Control Policies

ALEKSANDAR NANEVSKI and ANINDYA BANERJEE, IMDEA Software Institute
DEEPAK GARG, Max Planck Institute for Software Systems

Dedicated to the memory of John C. Reynolds (1935–2013).

We present Relational Hoare Type Theory (RHTT), a novel language and verification system capable of ex-
pressing and verifying rich information flow and access control policies via dependent types. We show that
a number of security policies which have been formalized separately in the literature can all be expressed
in RHTT using only standard type-theoretic constructions such as monads, higher-order functions, abstract
types, abstract predicates, and modules. Example security policies include conditional declassification, in-
formation erasure, and state-dependent information flow and access control. RHTT can reason about such
policies in the presence of dynamic memory allocation, deallocation, pointer aliasing and arithmetic.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory—
Semantics; D.4.6 [Operating System]: Security and Protection—Access Controls, Information Flow Con-
trols, Verification; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—Assertions, invariants, logics of programs, pre- and post-conditions

General Terms: Security, Verification, Languages

Additional Key Words and Phrases: Information flow, access control, type theory

ACM Reference Format:
Nanevski, A., Banerjee, A., and Garg, D. 2013. Dependent type theory for verification of information flow
and access control policies. ACM Trans. Program. Lang. Syst. 35, 2, Article 6 (July 2013), 41 pages.
DOI:http://dx.doi.org/10.1145/2491522.2491523

1. INTRODUCTION

Several challenges persist in existing work on specification and enforcement of
confidentiality policies. First, many practical applications require a combination of
a number of different classes of policies: authentication, authorization, conditional
declassification, erasure, etc. Yet, most existing systems are tailored for enforcing
specific classes of policies in isolation. Second, where policy combinations have been

This is an expanded and revised version of a paper originally appearing in Proceedings of the IEEE Sympo-
sium on Security and Privacy, 2011.
This research was partially supported by MINECO Projects TIN2009-14599-C03-02 Desafios, TIN2010-
20639 Paran10, and TIN2012-39391-C04-01 Strongsoft; EU Project NoE-256980 Nessos; Ramon y Cajal
grant RYC-2010-0743; AMAROUT grant PCOFUND-GA-2008-229599; U.S. NSF Trustworthy Computing
grant 1018061 “Compositional End-to-End Security for Systems,” and the U.S. AFOSR MURI “Collabora-
tive Policies and Assured Information Sharing.”
Authors’ addresses: A. Nanevski and A. Banerjee, IMDEA Software Institute, Edificio IMDEA Soft-
ware, Campus Montegancedo s/n, 28223 Pozuelo de Alarcón, Madrid, Spain; email: {aleks.nanevski,
anindya.banerjee}imdea.org; D. Garg, MPI-SWS, Campus E1 5, D-66123 Saarbrücken, Germany; email:
{dg@mpi-sws.org}.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0164-0925/2013/07-ART6 $15.00
DOI:http://dx.doi.org/10.1145/2491522.2491523

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:2 A. Nanevski et al.

considered (e.g., [Askarov and Myers 2010; Banerjee et al. 2008; Broberg and Sands
2010]), policy conformance is typically formalized for simple languages without
important programming features such as dynamic allocation, mutable state and
pointer aliasing, or without modern modularity mechanisms that aid programming in
the large. There has been little work on confidentiality policies pertaining to linked
data structures (lists, trees, graphs, etc.), and even less work exists for structures that
are heterogeneous; that is, data structures that contain mixed secret and public data
as well as mixed secret and public links. Third, despite their efficiency, enforcement
mechanisms are often imprecise in their handling of implicit information flow (that
arises due to program control structures such as conditionals or procedure calls) and
reject perfectly secure programs.

In this article we revisit the foundations of information flow—its specification as
well as its static enforcement—and address the given challenges of policy specificity,
language expressiveness and precision, simultaneously. The key insight of our work
is that all the three problems can be addressed using standard linguistic features
from dependent type theory [Martin-Löf 1984]: (a) higher-order functions, abstract
data types and modules, that provide for software engineering concepts such as ab-
straction and information hiding, and (b) a logic for higher-order assertions, including
quantification over predicates, that serves as the foundation for a rich policy speci-
fication language. We additionally consider an extension of dependent types with (c)
general recursion, mutable state, dynamic allocation, and pointer aliasing. We use the
dependent types as a policy specification language, and typechecking (i.e., program ver-
ification) to enforce conformance of programs to policy. As is standard in type theory,
we assume that programs are typechecked before they are executed.

As our first contribution, we show that a number of security policies which have been
previously considered in isolation, such as declassification [Chong and Myers 2004;
Sabelfeld and Sands 2009], information erasure [Chong and Myers 2005, 2008], state-
dependent access control [Borgström et al. 2011b; Broberg and Sands 2010] and state-
dependent information flow policies [Banerjee et al. 2008], can be combined in the
same system using the mentioned type-theoretic abstractions. We explain this point
further on, and illustrate it through several verified examples in the article.

As our second contribution, we show that these policies can be enforced in the pres-
ence of dynamic allocation, deallocation, and pointer aliasing, and in particular, over
programs involving linked, heterogeneous data structures. To achieve this, we employ
a semantic definition of what constitutes confidential (high) vs. public (low) data, in
contrast to most related work where variables are syntactically labeled with a desired
security level [Myers 1999; Volpano et al. 1996]. The semantic characterization allows
the same variable or pointer to contain data of different security levels at different
points in program execution, which gives us the needed flexibility of enforcement. The
semantic characterization also facilitates precise specification of programs with im-
plicit information flow such as procedure calls or (possibly nested) conditionals.

Our third and technically central contribution is a novel verification system,
Relational Hoare Type Theory (RHTT), that integrates a programming language and
a logic into a common substrate underlying all of (a)–(c) as presented. In more detail,
RHTT provides (a) and (b) by including the type theory of the Calculus of Inductive
Constructions (CiC) [Coq development team 2009, Chapter 4], as implemented in
the Coq proof assistant. To provide for (c), RHTT introduces a novel type constructor
STsec, which classifies side-effectful computations similar to Haskell monads [Peyton
Jones and Wadler 1993], except that the STsec monad is indexed with a precondition
and a postcondition, as in a Hoare triple. STsec types separate the imperative from
the purely functional fragment of the type theory, ensuring soundness of their
combination.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:3

RHTT’s preconditions specify constraints on the environment under which it is safe
to run a program, and can be used to enforce authentication and authorization policies,
even when they depend on state. RHTT’s postconditions are relational assertions;
they specify the behavior of two runs of a program [Amtoft et al. 2006]. The relational
formulation directly captures in the types the notion of noninterference [Goguen and
Meseguer 1982], a prominent semantic characterization of confidentiality. Together
with higher-order type theory, this provides an architecture for uniform treatment of
all the policies mentioned before.

For example, we show that the fundamental linguistic abstractions required to spec-
ify and implement declassification are STsec types, modules and abstract predicates.
Following standard literature on information flow [Goguen and Meseguer 1982], we
define a datum to be public or low if its value is known to be denotationally equal in
two runs of a program, and confidential or high otherwise. A module can be used to
delimit the scope in which data is considered public, by hiding the publicity of the data
from module clients via existential type abstraction [Mitchell and Plotkin 1988]. Then
declassification amounts to breaking the abstraction barrier by an exported interface
method that reveals this in-module publicity. This is orthogonal to revealing the data
itself. The latter can always be done even without declassification, but the clients will
have to use such data as if it were confidential. Declassification may be unconditional
or conditional [Banerjee et al. 2008], where the condition might be stateful and involve,
for instance, authentication.

In information erasure policies [Chong and Myers 2005, 2008] confidential data may
be released within a delimited scope, provided there is a guarantee that such data
will be erased upon exit from the scope. We show that such policies can be specified
using a combination of higher-order functions with local state, modules and abstract
predicates. The key facilitating component here is that STsec types may appear in
argument positions in function types, which is similar to having Hoare logic where one
can reason about Hoare triples hypothetically wrt. the truth of other Hoare triples. A
similar combination of features can be used to grant a method access to data only if
the method provably conforms with some desired confidentiality policy.

Finally, state-dependent information flow and access control policies require abstract
predicates combined with mutable state. This allows expressing security policies that
can change with time due to state updates [Swamy et al. 2006].

Our fourth contribution is the development of a logic for relational reasoning
about RHTT programs. Inference rules of the logic have been verified sound against
a semantic model (Sections 3 and 4), and are formally implemented as lemmas in
RHTT. The distinguishing characteristic of our work is that we can reason relationally
about structurally dissimilar programs. This is in contrast to previous relational
logics [Benton 2004; Yang 2007], which support reasoning only about programs with
similar control flow, and provide inference rules for conditionals and loops with only
low Boolean guards. The latter is known to be limiting in practice and prior work
proposes workarounds through dynamic checks [Austin and Flanagan 2010] and
testing [Birgisson et al. 2012], but not statically.

Our development of RHTT overcomes a number of technical challenges.

— The first challenge is that for relational reasoning to be applicable at all, the type
system must give special status to instantiations, in two runs, of a program e with
high values. The special status is needed so that the same postcondition of e can
relate e ’s instantiations with different high values in the two runs. Our solution is to
introduce new typing and programming primitives for abstraction and instantiation
wrt. a number of variables, simultaneously (Section 2): technically, this is done by
defining a new function space for functions that depend on high arguments.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:4 A. Nanevski et al.

— The second challenge concerns the semantic treatment of allocation and dealloca-
tion, pertaining to dynamic data structures. Existing techniques [Amtoft et al. 2006;
Banerjee and Naumann 2005] for modelling allocation in the relational security
setting cannot cope with deallocation; hence the need for two different allocators:
one for low and another for high addresses (Section 3).

The soundness of our program logic and the domain theoretic implementation of
our semantic model, as well as all of our examples, have been fully and formally ver-
ified in Coq.1 In the process we also addressed the following technical difficulties for
the purposes of scalability of reasoning: (a) Separation of reasoning about memory
safety from the conformance to the security policy. (b) Development of a library for
reasoning about complete partial orders in Coq, for treating general recursive func-
tions. The interested reader is invited to look at our Coq proofs which are available at
http://software.imdea.org/∼aleks/rhtt/. An online appendix containing all proof
rules is available at http://software.imdea.org/∼aleks/rhtt/proof rules.pdf.

Attack model. As demonstrated by our examples, many different attack models can
be encoded using RHTT preconditions and postconditions. In particular, we can estab-
lish standard noninterference for a program, by proving in RHTT’s logic that pointers
stipulated as public contain denotationally equal values in the output heap of the pro-
gram if they contain denotationally equal values in the input heap. We can also rep-
resent, and prove absence of attacks in, stronger attack models. For example, we can
represent an attack model where the adversary can observe the shape of the heap by
relying on the fact that pointers are simply Coq’s natural numbers in our denotational
model.

2. RHTT BY EXAMPLES

Overview. As suggested by the introduction, this article assumes understanding of
the following aspects of type theory: (1) Dependent function types used to specify how
the body of a function depends on the input arguments. To illustrate, consider the type
vector(n), of integer-storing arrays. This type is dependent on the size parameter n. A
function computing the inner product of two vectors can be typed as

�n : nat. vector(n) × vector(n) → nat

capturing the invariant that the argument vectors must be of equal size. In RHTT,
dependent function types naturally arise when specifying any kind of program behav-
ior. (2) Module systems (including abstract types and predicates), used for information
hiding, and as we show, declassification. (3) Inductive types, used for specifications of
programs that manipulate (possibly heterogeneous) data structures such as lists, trees,
etc.

To use RHTT in practice, it is further important to be familiar with some implemen-
tation of type theory (our chosen one is Coq [Coq development team 2009], but others
exist too), as one needs to interact with the system to discharge verification conditions.
Our presentation in this article does not include such interaction aspects, and hence
does not assume familiarity with Coq.

2.1. RHTT Basics: Types, Specifications, Opaque Sealing

To begin with, our types must be able to express at least noninterference: that low out-
puts of a computation are independent of high inputs. To illustrate, assume a function

1The semantic model (Section 3.3) and the logic for discharging verification conditions (Section 4) are ad-
ditional material not present in the conference version of the article [Nanevski et al. 2011]. A worked-out
example (Section 4.4) shows how the logic is used.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:5

f : A2→A2, where A2 =A×A. Also, let e.1 and e.2 denote resp. the first and the second
component of the ordered pair e. Then, mathematically, f ’s first output is independent
of f ’s second argument iff

∀x1 x2 y1 y2. x1 = x2 → f (x1, y1).1 = f (x2, y2).1

In other words, in two runs of f , equal x inputs, lead to equal f (x , y).1 outputs. This
relational statement of independence can be viewed as a definition of noninterference
in terms of f alone [Amtoft et al. 2006; Benton 2004], without recourse to outside con-
cepts such as security lattices [Bell and LaPadula 1973; Denning 1976]. Consequently,
inputs and outputs related by equality in the two runs of f are considered low (x and
f (x , y).1 above), and the unconstrained values (y and f (x , y).2) are by default consid-
ered high. So defined, the notions of low and high security are intrinsic to the con-
sidered specification, rather than to the code itself; one is free to consider statements
about f in which the inputs and outputs take other security levels.

In RHTT, program specifications are stated using a monadic type STsecA (p, q),
which classifies heap-manipulating, potentially diverging computations e whose re-
turn value has type A. e ’s precondition p is a predicate over heaps, that is, a function
of type heap→prop. The reader can roughly think of prop as type bool which in ad-
dition to the usual logical operations supports quantifiers as well. The precondition
selects a set of heaps from which e ’s execution will be memory-safe (e.g., there will be
no dangling-pointer dereferences or runtime type errors). This automatically provides
a mechanism for controlling access to heap locations, in a manner identical to that of
separation logic [Reynolds 2002]: e may only access those locations that are provably
in all the heaps satisfying e ’s precondition, or that e allocated itself. We will illustrate
access control via preconditions in subsequent examples (see, e.g., Example 2.5).

The postcondition q relates the output values, input heaps and output heaps of any
two terminating executions of e. Thus q has the type A2→heap2→heap2→prop. The
postcondition does not apply if one or both of the executions of e are diverging. In that
respect, our type system is termination insensitive [Sabelfeld and Sands 1999]. While p
controls access to locations x , we use q to implement information flow policies about x .
This is why q is a predicate over two runs. For example, q may specify that x is low, so
that e may freely propagate x ’s value. Or x may be high, requiring that all x -dependent
outputs of e must be high too. Or x may be high but q may require all of e ’s final heap
to be low, in which case e must deallocate or rewrite any portion of its final heap that
depends on x .

RHTT is implemented via shallow-embedding into Coq, which it extends with STsec
types. In the implementation of STsec types in Coq, we rely on the ability of Coq
modules to perform opaque sealing [Harper and Lillibridge 1994; Leroy 1994]; that is,
hiding the implementations of various values within a module, while only exposing
their types, thus forcing the clients of the module to be generic with respect to imple-
mentations of the module. Moreover, the actual implementations of opaquely sealed
functions, types and propositions cannot be recovered by clients, because RHTT does
not contain constructs for pattern-matching (i.e., making observations) on the struc-
tures of such values.

We stress that our types can only describe the properties of the input and output
states of the program (via pre- and postconditions), but not of intermediate states.
Although this is not a significant limitation for a sequential, nonreactive language like
RHTT, further work in this direction is left for future work.

Notation. Examples in the sequel will often use the following notation. Variables of
squared types, for instance, A2, will often be written, for instance, aa. We also write a1
and a2 for the two projections of the pair aa.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:6 A. Nanevski et al.

2.2. Syntax, Heaps, Implicit Flow

Consider the following program, P1, adapted from Terauchi and Aiken [2005], and
presented here in a Haskell-like notation. We use side-effecting primitives such as
write x y , which stores the value y into the location x ; read x , which returns the contents
of x ; and x ← e1; e2, which sequentially composes e1 and e2, binding the return value
of e1 to x . In future examples, we will also use alloc x , which returns a fresh memory
location initialized with x ; and dealloc x , which deallocates the location x from the
heap. Additionally, we use do to delimit the scope of the side-effectful computations.
Our actual syntax implemented in Coq differs somewhat from the one here in the
treatment of variable binding, an issue we ignore for the time being but to which we
return in Section 3. Further, we freely use all the constructors inherited from CiC and
Coq, such as for example, functions (fun), and dependent function type constructor (�).

P1 =̂ fun x y z lo hi : ptr.
do (write z 1; b ← read hi ;

if b then write x 1 else (w ← read z ; write x w);
u ← read x ; v ← read y ; write lo (u + (v mod 10)))

Pointers x , y , z , lo store integers, and hi stores a Boolean. The policy is: contents of
lo and y are low at program input and output, while contents of x , z , hi are high. P1
satisfies the policy because: (1) the value of y is not modified, and (2) the value of lo is
modified to store the sum of the contents of x and the contents of y modulo 10, but this
sum is independent of high data: at the time of writing lo, x has been rewritten by 1
in both branches of the conditional. Thus, P1 can be ascribed the following dependent
type U .

U =̂ �x y z lo hi : ptr. STsec unit
(fun i . ∃u v w c : nat, b : bool, j : heap.

i = x �→ u • y �→ v • z �→w • hi �→ b • lo �→ c • j ,
fun rr ii mm.

(i1 lo = i2 lo) → (i1 y = i2 y) →
(m1 lo = m2 lo ∧ m1 y = m2 y))

The precondition states that P1 must start in an initial heap i containing the five
pointers x , y , z , lo, hi , with appropriately typed contents. The heap i may be larger
still; this is stated by existentially quantifying over the heap variable j . Heaps are
(finite) maps from pointers to values; x �→ u is a singleton heap containing only the
location x storing value u; and • is disjoint heap union. The precondition insists that
i be a disjoint union of smaller singleton heaps; hence there be no aliasing between
the five pointers. The postcondition binds over three variables rr : unit2, ii ,mm : heap2

which are, respectively, the pair of return values, the pair of initial heaps and the pair
of ending heaps for the two runs of P1. The postcondition states that if the contents of
lo and y in the two initial heaps are equal (hence low), then they are low in the output
heaps too. (Notice our use of the notation mentioned earlier: rr , ii ,mm are variables of
squared types. Also i1, i2 refer to the first and second components of ii and m1,m2 refer
to the first and second components of mm.)

Other types for P1 are possible too. For example, we may specify that only the last
digit of y is low, by replacing i1 y with (i1 y) mod 10 in the postcondition, and similarly
with i2, m1, and m2. Or, the postcondition may state that the contents of x and z are
low at the end of P1, though not at the beginning. RHTT (like Amtoft et al. [2006]) can
deem arbitrary expressions as low, even though they may have high subparts. The only
requirement is that the values of the expressions in two runs be the same. Because we

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:7

are considering full functional verification, which STsec type a program should have is
a matter of programmer’s choice. The system merely issues a proof obligation that the
desired type is indeed valid, to be discharged interactively, using the logic we outline
in Section 4. This proof obligation not only may be about security but also may concern
full functional correctness.

2.3. Opaque Sealing

The ascription of STsec types in RHTT is opaque, as mentioned earlier in this section.
Clients of a program can use knowledge about low values in the output of the program
only if this knowledge is exposed in the program’s postcondition, even if the program’s
execution actually makes more values low. For example, using P1’s type U , program

P2 =̂ fun x y z lo hi . do (P1 x y z lo hi ; t ← read x ; return t),

cannot be given a type in which t is low, because the postcondition in U does not expose
the property that x is low at the end of P1, even though it actually is.

2.4. Local Contexts

While the STsec type of P1 classifies the security of the contents of x , y , z , lo, hi ,
it cannot classify the pointer addresses themselves, as the latter requires discerning
the address names in the two different runs (e.g., x1 and x2). We therefore extend
the STsec constructor with a local context, which is a list of types of the variables we
consider local to the computation. For example, the type for P1 in which the five pointer
addresses are high, even though the contents of lo and y are low, can be written as
follows, using the list [ptr, ptr, ptr, ptr, ptr] as the local context.

STsec [ptr, ptr, ptr, ptr, ptr] unit
(fun x y z lo hi : ptr, i : heap.

∃u v w c : nat, b : bool, j : heap.
i = x �→ u • y �→ v • z �→w • hi �→ b • lo �→ c • j ,

fun xx yy zz llo hh : ptr2, rr : unit2, ii mm : heap2.
(i1 llo1 = i2 llo2) → (i1 y1 = i2 y2) →
(m1 llo1 = m2 llo2) ∧ (m1 y1 = m2 y2))

The type of the precondition (and similarly for postconditions) now changes to
ptr5→heap→prop, so that we can bind additional names for the pointers x , y , . . . in
the precondition, and pairs of pointers xx , yy , . . . in the postcondition. The program
syntax changes too, as the local variables now have to be bound within the scope of do.
In other words, our program now looks like

P3 =̂ do (fun x y z lo hi . write z 1; . . .).

Remark 2.1. Ordinary function arguments, corresponding to the → and �-types,
can be viewed as a special kind of STsec-local arguments, where the security level is
low by default. Indeed, any function f : �x : A. STsec � B (p x , q x) can be transformed
into

do (fun x γ1 . . . γn . f x γ1 . . . γn) :
STsec (A::�) B

(fun x γ1 . . . γn i . p x γ1 . . . γn i ,
fun xx γ γ1 . . . γ γn yy ii mm.

x1 = x2 → q xx γ γ1 . . . yy ii mm)

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:8 A. Nanevski et al.

Here, the variables γ1, . . . , γn are typed with types from the local context �, and the
postcondition explicitly declares x to be low, by inserting the hypothesis x1 = x2. Thus
we are asserting that the output depends on the low argument x . Note that the trans-
formation says that the � type is equivalent to the STsec type; the proof appears in
file secmod.v of the Coq scripts.

In summary, function arguments are always low, whereas variables in local contexts
may be low, high, or subject to a more precise security specification, depending on the
postcondition.

Example 2.2 (Nested conditionals). The following program is adapted from
Simonet [2002]. It uses low arguments a, b, c, u, v , and a high argument x which is
declared in the local context but is unrestricted by the postcondition. It nests two con-
ditionals to compute the final result, but the result is independent of x , and hence is
low. Owing to the nontrivial implicit control flow, however, most security type systems
will not be able to establish this independence and typecheck the example accordingly.
Simonet’s type system for sum types can typecheck the example using types annotated
with matrices containing security levels. In contrast, in RHTT the type can precisely
describe the final result, y , as a function of the inputs: y =̂ (a = c) || (b = c) || u || v .
(Here || is Boolean disjunction.) Clearly y does not depend on x and we prove that y is
low by proving that y1 = y2 in the postcondition.

P4 : �a b c u v : bool. STsec [bool] bool
(fun x i . True,
fun xx yy ii mm. y1 = y2 ∧ mm = ii ∧

y1 = (a = c) || (b = c) || u || v) =̂
fun a b c u v .

do (fun x . t ←if u then
if x then return a else return b

else
if v then return a else return c;

return ((t = a) || (t = b)))

Example 2.3 (Access control through abstraction). What if we want to allow read
access, but not write access to some data (or vice-versa), or that access should be made
conditional upon successful authentication? To enforce this kind of access control, we
employ the standard abstraction mechanisms of type theory, such as abstract types,
predicates and modules. The data to be protected can be hidden behind module bound-
aries, so that it can be accessed only via dedicated methods that enforce access control.
For example, let A be a module storing some integer data, say salary, whose integrity
should be enforced: A allows the salary to be readable globally, but only the module it-
self can update it. Thus A exports unconstrained functions for creating new instances
and for reading the salary, but the function for writing requires a check against a
password that is also stored locally. The signature ASig in Figure 1 presents the speci-
fications exported by A. Figure 2 shows a possible ASig implementation that uses two
local pointers: one for the salary and one for the password.

Referring to Figure 2, the method new takes a nat salary and a string password,
and generates a new A instance initialized with this data; read salary takes a local-
context argument a and returns the current salary; write salary takes a new salary,
a password, a local-context argument a, and updates the salary only if the supplied
password matches the password stored in a. Referring back to Figure 1, ASig specifies
an abstract type α, abstract predicates sshape and shape, a relation srefl between

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:9

Fig. 1. ASig: access control via abstract predicates.

Fig. 2. Implementation of ASig.

shape and sshape, and the types of the methods. The local-context arguments of
read salary and write salary have type α. Although these figures may look complicated,
the reader should bear in mind that they are intended for full functional verification.
Also, the implementations of the various abstract predicates and types such as
sshape, shape and α, will be hidden from the clients, and do not contribute to the
complexity.

The sshape predicate is a relational invariant of the module’s local state, that is,
sshape is invariant over two runs. It is parametrized over pairs of α’s, nat salaries,
string passwords, and heaps that are current during execution. The parametrization
by all these values captures that different instances of A that may be allocated at
runtime all have different local states, which can potentially store different salaries
and passwords. If we were not interested in tracking the changes to salaries and
passwords, but only in restricting write access, then these can be omitted from sshape,
resulting in fewer quantifiers and hence simpler STsec types for the methods.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:10 A. Nanevski et al.

For use in preconditions for access control, we employ the nonrelational variant
shape which is a diagonal of sshape, as constrained by srefl. Recall that a computation
in RHTT can access locations only in those heaps that provably satisfy its precon-
dition. Correspondingly, a method that wants to access the local state of A, has to
describe the desired parts of that state in its own precondition. This is why ASig keeps
sshape and shape abstract. The abstraction hides the layout of A’s local state from the
clients, thus preventing them from describing the layout in their preconditions and
forcing them to access A’s local state exclusively via the exported methods. Apart from
giving code for the methods, the implementation also provides a proof of srefl (elided
here, but present in the Coq scripts). The proof essentially exhibits that shape is
indeed a diagonal of sshape, that is, the two predicates are not related arbitrarily. srefl
is used in the verification of the implementations of new, read salary and write salary.

The STsec types used in the methods of A describe several additional properties.
One such property is that the local state of each instance of A is disjoint from that of
another instance. For new, this is achieved by stating that the pair of ending heaps
mm extends the initial ones ii by newly allocated sections hh (mm = ii •• hh). Here •• is
defined as the generalization of the disjointness operator • to pairs of heaps, that is

(i1, i2) •• (h1, h2)= (i1 • h1, i2 • h2).

For read salary, we allow the state in which the function executes to be larger than
the module’s local state by allowing ii = jj •• hh where jj names A’s local state and
hh is the potential global part. For write salary we require that the global part, hh,
remains invariant, but the local part may be changed by storing the new salary: this
is reflected by the heap jj ′ in the postcondition.

The specifications expose that read salary does not change local state (mm = ii in
the postcondition). On the other hand, write salary may change the salary field, but
not the password field, as the sshape predicate changes from using the salary ss to
using ss ′, but pp persists.

The salary and password arguments in new and write salary are ordinary function
arguments, whereas α is in the local context of STsec in read salary and write salary.
Thus, within the scope of the methods of A, the salary and the password are low
(c.f. Remark 2.1) whereas the α argument is high because it is unconstrained by the
methods’ pre- and postconditions. Of course, as far as clients of ASig are concerned,
all three of these are high: the abstraction over sshape hides all relations between the
stored values.

One consequence of making salary and password internally low is that whenever
a new instance of A is allocated, or a salary of an existing instance is changed, the
salary and password have to be computed only out of low arguments – it is not possible
for A to store confidential data into its local fields. Additionally, the specifications of
new and write salary must hide that the stored salary and password are equal to the
supplied ones. The hiding is achieved by existential quantification over ss and pp in
the postcondition of new, and over ss ′ in the postcondition of write salary.

Thus, while the integer s and the string p are themselves low, it is the act of writing
them into A’s local state that makes them private to A. A well-typed client that gains
access to s and p will not be able to establish that these are equal to what is stored into
A’s local state, as that fact does not follow from the specs of new and write salary. This
inability of the client relies on absence of side-channel information. Since we do not
model absence of side-channels in RHTT, we also cannot prove this inability within
RHTT. We are currently working on supporting this kind of reasoning, by extending
RHTT with internalized reasoning about parametricity, as in the work of Bernardy
et al. [2012] and Bernardy and Moulin [2012] (see also Section 8).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:11

Example 2.4 (Declassification). Module A can use the internal knowledge that
salary and password are low, to implement and export an additional function which
declassifies salary; that is, reveals the internal knowledge that salary is low. This de-
classification can be based on arbitrary conditions; say, it is only granted if a correct
password has been supplied.

declassify : �p : string. STsec [α] bool
(fun a i . ∃s q j h . i = j • h ∧ shape a s q j ,
fun aa yy ii mm. ∀ss qq jj hh .
ii = jj •• hh → sshape aa ss qq jj →
∃jj ′ . mm = jj ′ •• hh ∧ sshape aa ss qq jj ′ ∧

y1 = y2 ∧ yy = (p = q1, p = q2) ∧
y1 → s1 = s2) =̂

fun p. do (fun a. x ← read (passwd a); return (p = x))

The code of declassify checks if the supplied password equals the stored one, and re-
turns the corresponding Boolean. declassify does not return the value of the salary;
for that, one has to use read salary, but the postcondition of declassify shows that the
salary is low if declassify returned true (y1 → s1 = s2). This is possible because the low-
status of the salary has been hardwired into the implementation of sshape, and there-
fore can be revealed at will.

Example 2.5 (State-based policies). Module A can support policies that change de-
pending on local state. For example, it may control the granting of read access with
functions grant and revoke, as specified in Figure 3. These enable and disable reading
by, respectively, adding and removing a new abstract predicate – rreadable – from the
knowledge exposed about A’s local state. Typically, such functions require authentica-
tion, but for simplicity, we forgo that aspect. The postcondition of grant exposes that
the newly obtained state jj ′ is readable, while revoke omits this property, thus revoking
the read access. To associate the predicate with reading, the specification of read salary
has to require a proof of readable.

The signature keeps rreadable abstract, so that the only way readable can be derived
is if rreadable has been placed into the proof context by a previous call to grant, without
an intervening revoke. The signature can be implemented by extending A’s state with
an additional Boolean pointer that is set and reset by grant and revoke: rreadable is in
force once the Boolean is set true. Our Coq scripts provide several different implemen-
tations of this interface.

Example 2.6 (Conditional access and erasure policies). Consider the scenario
where A is prepared to share the (confidential) salary information in its local state
with a client module B in order for it to compute A’s taxes using method B.compute tax.
While A permits such sharing, it wants to prevent compute tax from stealing the salary
by copying it into B’s local state. A may insist that B not have any local state, or that it
deallocate all of the local state before compute tax terminates. This requirement is too
restrictive, for it precludes B from maintaining persistent, but innocuous, local state
such as a count of how many times compute tax has executed. In general any client
local state not derived from the confidential data, should be allowed to escape the
function call. In RHTT, one can formulate such a permissive policy using higher-order
STsec types.

Our goal then is to export at A’s interface a function ratify which grants a client access
to salary provided the client furnishes a proof that it erases salary and all information
derived from salary when it terminates. Such a function will be parametric over the

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:12 A. Nanevski et al.

Fig. 3. Extension of ASig with state-based read access.

Fig. 4. Some definitions for conditional access and erasure policies.

client’s local state—denoted by the abstract type β—and G , defining the values stored
in the client’s local state, as well as function bcmp and relational predicate bbshape.
(Signature ASig must be augmented with these four items.) bcmp defines how the
values given by G evolve after each call to ratify. The relational predicate bbshape :
β2 → G2 → heap2 → prop defines the heap representation over two runs of the client’s
local state β2 and local values G2. The initial heap i on which the client method will
operate can be split in three ways: j belonging to A, t belonging to B, and the remainder
h that is untouched. Predicate epre in Figure 4 describes this situation.

On the other hand, epost states that B’s local state tt ′ at the end stores the correct
statistics (bcmp of k1 and k2). Moreover if B’s initial local state tt is assumed low, then
tt ′ is low as well. In other words, the client method did not copy into tt ′ any of the high

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:13

values that it may have read from A’s local state. A program that requests read access
to A’s local state, and respects the described policy has the type

T =̂ STsec [α, β] nat
(fun a b i . ∃j . readable a j ∧ epre a b j i ,
fun aa bb yy ii mm. ∀jj .

rreadable aa jj → epost aa bb jj yy ii mm)

Module A can now ratify a program such as compute tax. Provided this program has
type T , A can grant it read access to salary. The function ratify removes readable from
T , much like the grant program would. After that, a client method such as compute tax
can execute without needing special reading privileges. In this respect, ratify is a
higher-order function because in its type, STsec appears in a negative (argument) posi-
tion. ratify can be said to implement a conditional access policy, because it grants access
only after a proof that compute tax satisfies type T , that is, it does not leak salary.

ratify : T →
STsec [α, β] nat

(fun a b i . ∃j . epre a b j i ,
fun aa bb yy ii mm.

∀jj . epost aa bb jj yy ii mm) =̂
fun e : T . do (fun a b. e a b)

This specification of ratify can be instantiated in several ways, by choosing different
values for β, G , bbshape and bcmp. For example, if β =̂ unit, G =̂ unit, and bbshape
states that B’s local heap is empty, then compute tax does not keep any local state, and
A, correctly, ratifies it. Alternatively, if

β =̂ ptr G =̂ nat bcmp =̂ succ
bbshape bb kk tt =̂ (t1 = b1 �→ k1 ∧ t2 = b2 �→ k2)

then compute tax keeps a single pointer whose content is incremented by 1 after every
execution.

Suppose compute tax computes the tax of 24% of the salary, while also keeping its
invocation count. It can be implemented and then immediately ratified by the following
function call. Notice that by the type of ratify, the return value of compute tax is high as
there is no requirement y1 = y2 in epost. Hence, the fact that this value is a function
of salary, is not a security leak.

ratify (do (fun a : α b : β.
x ← read salary a; k ← read b;
write b (k + 1); return (x ∗ 24%)))

Suppose compute tax keeps the count with two nat pointers, whose contents p and q
are both increased at every call, so that the overall count is the difference between the
two. This is represented by taking

β =̂ ptr × ptr (*one ptr for p and one for q*)
G =̂ nat bcmp =̂ succ
bbshape bb kk tt =̂

∃pp qq : nat2 . t1 = fst (b1) �→ p1 • snd (b1) �→ q1 ∧
t2 = fst (b2) �→ p2 • snd (b2) �→ q2 ∧
kk = (p1 − q1, p2 − q2)

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:14 A. Nanevski et al.

Now compute tax can read salary, then increment p and q by amount of the salary,
and additionally, increment p by 1. In terms of required specifications for B’s local
state, the program still keeps the invocation count. However, the program is actually
stealing salary, because the salary can be inferred by deducting the old value of q from
the new one. Such a program will fail to be ratified. If ratify is called with the argument

do (fun a : α b : β.
x ← read salary a; p ← read (fst b); q ← read (snd b);
write (fst b) (p + x + 1); write (snd b) (q + x);
return (x ∗ 24%))

ratify forces compute tax to prove that its ending state is low (t ′1 = t ′2) as defined in
epost, but this is not provable if tt ′ stores the salary x . Indeed, as x is high, compute tax
lacks the information that x is equal in the two runs, so it cannot prove that his point-
ers store equal values in two runs. For ratification, compute tax must erase salary,
perhaps by mutating pointers to store p + 1 and q instead of p + x + 1 and q + x . ratify
may thus be said to implement an erasure policy, similar to those of Chong and Myers
[2005, 2008].

3. TYPING RULES AND SEMANTIC MODEL

3.1. Typing Rules

Each command of the stateful fragment of RHTT comes with a dependent STsec type
that captures the command’s specification using pre- and postconditions. We start our
description with the types of the primitive commands; descriptions of the other com-
mands appear later in the section.

Typing rules for primitive commands.

return : STsec [A] A

(fun x i . True,
fun xx yy ii mm. mm = ii ∧ yy = xx)

read : STsec [ptr] A

(fun � i . ∃h : heap v : A . i = � �→ v • h,
fun �� yy ii mm.mm = ii ∧ ∀hh vv .

ii = (�1 �→ v1, �2 �→ v2) •• hh → yy = vv)

write : STsec [ptr,A] unit
(fun � v i . ∃h B : typew : B . i = � �→w • h,
fun �� vv yy ii mm. ∀hh B1 B2 w1 : B1 w2 : B2 .

ii = (�1 �→w1, �2 �→w2) •• hh →
mm = (�1 �→ v1, �2 �→ v2) •• hh)

dealloc : STsec [ptr] unit
(fun � i . ∃h B : typew : B . i = � �→w • h,
fun �� yy ii mm. ∀hh B1 B2 w1 : B1 w2 : B2 .
ii = (�1 �→w1, �2 �→w2) •• hh → mm = hh)

return immediately terminates with the value that was supplied as a local argument.
Its STsec constructor records the argument type in the local context, and the type of

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:15

the returned value (here, both types are A). The precondition states that return can
execute in any heap, as it performs no heap operations. The postcondition states that
return does not change the input heaps (mm = ii) and passes the input argument to
the output (yy = xx). The precondition of read, write, and dealloc all require that the
initial heaps contain at least the pointer � to be read from, written to or deallocated.
In the case of read, the contents of the pointer must have the expected return type A.
For write and dealloc, this type is irrelevant and is hence existentially quantified. The
postconditions of all three commands explicitly describe the layout of the new heap
and, in particular, state that parts of the input heaps that are disjoint from � (hh here)
remain invariant.

Typing rules for allocation. Allocation presents the following challenge. If under a
high guard, a pointer is allocated in one branch of a conditional, but not in the other,
this may constitute a leak of the high guard, if the pointer itself is of low security. Such
“unmatched” allocations should therefore always produce high pointers. This is why
we provide two allocation primitives: lalloc for allocating low pointer addresses, and
alloc, for allocating high ones.

lalloc : STsec [A] ptr
(fun v i . True,
fun vv yy ii mm.
mm = (y1 �→ v1, y2 �→ v2) •• ii ∧
(i1 ∼= i2 → y1 = y2 ∧ m1 ∼= m2))

alloc : STsec [A] ptr
(fun v i . True,
fun vv yy ii mm.
mm = (y1 �→ v1, y2 �→ v2) •• ii ∧
even y1 ∧ even y2)

Both commands take a local argument v : A, and return a fresh pointer initialized
with v . The freshness is captured in the postcondition by demanding that the initial
heaps ii be disjoint from the returned pointers yy in the equation for the ending heaps
mm. However, alloc chooses the returned location nondeterministically, while lalloc is
deterministic; that is, lalloc returns equal (and hence low) pointers, when invoked un-
der appropriate conditions. Denotationally, the two allocators operate on disjoint pools
of locations: alloc always returns a randomly chosen unallocated even pointer, while
lalloc returns the next unallocated odd pointer (although we did not reflect that the
low pointers are odd in the specification of lalloc, as we explain). Here we rely on the
property that type ptr is isomorphic to nat in our model.

Definition 3.1 (Low-Equivalent Heaps). Heaps h1 and h2 are low-equivalent, writ-
ten h1 ∼= h2, iff their domains contain the same odd pointers. The content of the pointers
is irrelevant.

The postconditions of lalloc and alloc further capture the behavior of the two commands
with respect to the ∼= relation. In the case of lalloc, we expose that if invoked in low-
equivalent input heaps (i1 ∼= i2), the command returns equal pointers (y1 = y2), and
low-equivalent output heaps (m1 ∼=m2). In the case of alloc, we expose the evenness of
y1 and y2, and provide a number of lemmas, that can be used to relate evenness with∼=. For example, the lemma

∀x : ptr . even x → (x �→ v • h1 ∼= h2) ↔ (h1 ∼= h2)

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:16 A. Nanevski et al.

when iterated, can show that low equivalence of h1 and h2 is preserved after arbitrary
number of high allocations. This lemma, as well as a few other lemmas in our library,
uses even-ness to argue that adding a pointer to a heap preserves low equivalence.
This is why the type of alloc exposes that the returned pointers are even. On the other
hand, we do not need similar lemmas about odd pointers and low equivalence, which
is why we decided not to expose that returned pointers are odd in the type of lalloc.

Example 3.2 (The need for both allocators). The following program can be given a
type in which the returned pointer y is low, no matter what the Boolean h is.

do (fun h. if h then y ← lalloc 2; return y else
x ← alloc 1; y ← lalloc 2; dealloc x ; return y) :

STsec [bool] ptr
(fun h i . True,
fun hh yy ii mm.mm = ii •• (y1 �→ 2, y2 �→ 2) ∧

(i1 ∼= i2 → y1 = y2))

The program does not typecheck if the high allocation of x is replaced by lalloc. In that
case, it is possible that the two executions of the program select different branches of
the conditional (depending on h). If we started with low-equivalent heaps i1 ∼= i2, then
at the point of allocation of y , the heaps will not be low-equivalent anymore, since
only one of them would have been extended with an odd location x . Thus, we cannot
conclude y1 = y2, that is, the returned pointer is low.

Remark 3.3. Deterministic allocation forces STsec to use large-footprint specifica-
tions, whereby specifications describe the full heaps in which commands operate. This
is in contrast to separation logic, where specifications describe only those heap parts
that commands touch, and implicitly assume invariance of the remaining heap. The
latter style is more succinct, but cannot support deterministic allocation [Yang and
O’Hearn 2002]. With large footprints, we can specify lalloc (specifically, the antecedent
i1 ∼= i2 in the postcondition), but the invariance of untouched parts of heaps has to
be stated explicitly for every program, as witnessed by the quantification over hh in
the postconditions of write and dealloc. Note that the concrete layouts of untouched
parts of heaps do not need to appear in the specifications, thus alleviating concerns
of scalability of specifications. Moreover, the overhead between large and small foot-
print specifications is constant, as we discuss in Section 7. The two styles also lead to
similar proofs. What matters in proofs is the ability to effectively reason about heap
disjointness, and we can do that equally well in both styles by relying on the operator
• [Nanevski et al. 2010].

Another way of treating allocation in the relational setting is to model its nondeter-
minism by means of partial bijections between pointers [Amtoft et al. 2006; Banerjee
and Naumann 2005]. Then one can avoid using two different allocators, albeit at a
price of increasing the complexity of reasoning. Such proposals, however, only work in
the absence of deallocation. For example, the definition of noninterference of Amtoft
et al. [2006] allows the input heaps to the computation to be related by some bijec-
tion between pointers, and requires the ending heaps also to be related by a bijection.
However, the ending bijection has to be an extension of the initial one. Obviously, such
a definition cannot support deallocation, as deallocation produces smaller, not larger
heaps. Alternatively, one can omit the extension requirement; but that leads to coun-
terexamples which satisfy the weakened requirement even though they actually leak
information. For example, consider a 2-node, acyclic, singly linked list, with the usual
implementation: Each node has a data field and a nxt pointer that points to the next

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:17

node in the list. Let p be the list header, and let p.data = 0, p ′ = p.nxt and p ′.data = 0.
Suppose also that all data are low and all nxt pointers are low. Now consider the
conditional

if high then flip else skip

where flip reverses the list, so that now the list header is p ′. Suppose the first run of the
program takes the then branch and the second run takes the else branch. In this case
there exists a bijection {(p ′, p), (p ′.nxt , p.nxt), (p ′.data, p.data)}. Yet by observing that p
and p ′ are different addresses, an attacker gains information about the high guard.

Typing rule for sequential composition. We proceed to describe our constructor for
sequential composition, but first we need some notational conventions. Let � be
a list of types. We denote by � the product of all the types in �, for instance,
nil = unit and [A,B ,C] = A×B×C . We further conflate the function types �→T
and �1→�2→ · · · →T , and their corresponding terms. For example, we freely inter-
change fun γ : [A,B ,C] . . ., or fun γ . . . if the types are clear from the context, with
fun x : A y : B z : C Similarly, we interchange e (x , y , z) with e x y z . We hope that
no confusion arises due to this abuse of notation; all of our exposition has been checked
in Coq, where the notation is formally resolved.

For sequential composition e1; e2, let

e1 : STsec �A (p1, q1) and e2 : STsec (A::�)B (p2, q2)

Then e1; e2 first executes e1, passing the returned value as the first local argument to
e2. Assuming

γ : � and γ γ : �
2

p1 : � → heap → prop
p2 : A × � → heap → prop

q1 : �
2 → A2 → heap2 → heap2 → prop

q2 : (A × �)
2 → B2 → heap2 → heap2 → prop

the STsec type for e1; e2 is

STsec � B

(fun γ i . p1 γ i ∧
∀y m . q1 (γ , γ) (y , y) (i , i) (m,m) → p2 (y , γ) m,

fun γ γ yy ii mm.
∃vv : A2, hh : heap2 . q1 γ γ vv ii hh ∧

q2 ((v1, γ1), (v2, γ2)) yy hh mm)

In English: (a) the precondition requires e1 to be safe in the initial heap i of the se-
quential composition —thus the p1 γ i ; and (b) any value y and heap m obtained as
output of e1 – and which thus satisfy e1’s “squared” postcondition – make e2 safe,
that is, p2 (y , γ) m holds. The satisfaction of e1’s squared postcondition is reflected by
q1 (γ , γ) (y , y) (i , i) (m,m) above.

The postcondition states that intermediate values vv and heaps hh exist, obtained
after running e1 but before running e2.

3.2. Combinators

Because e1’s output is bound in the local context of e2, it could be low or high; so we
cannot treat this output as an ordinary functional variable, despite our suggestive

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:18 A. Nanevski et al.

notation in Section 2. Indeed, as discussed previously in Section 2, ordinary variables
are always low, whereas the ones in the local context may be high, depending on the
specification. Thus, we must rely on variable-free representation via combinators, as
described next.

The combinator @. Our first combinator is for changing the local context of an STsec
type. Given �1, �2, f : �1→�2, and e : STsec �2 A (p, q), we can instantiate the local
variables of e according to f , to produce a computation with context �1. In the follow-
ing, with γ : �1 and γ γ : �

2
1, we have

e @ f : STsec �1 A

(fun γ i . p (f γ) i , fun γ γ yy ii mm. q (f γ1, f γ2) yy ii mm)

When �1 = nil, then �1 = unit and f is isomorphic to a tuple γ̂ : �2. In these situations
we will write e @0 γ̂ instead of the longer e @ (fun : unit. γ̂). Note that e @0 γ̂ has
empty local context as its type

STsec nil A (fun i . p γ̂ i , fun yy ii mm. q (γ̂ , γ̂) yy ii mm)

indicates. We refer to e in e @ f as the head of the instantiation, and to f as the explicit
substitution.

Example 3.4. In Example 2.3, we implemented new as

fun s p. do (x ← alloc s; y ← alloc p; return (x , y))

The actual implementation using combinators is

fun s p. do (alloc @0 s;
alloc @ (fun x . p);
return @ (fun y x . (x , y)))

Programs thus become lists of commands instantiated with explicit substitutions,
where the domains of substitutions grow with each command to provide names for the
results of previous commands. In the example, the domain of the substitution for the
first alloc is empty, and we only instantiate alloc with the salary variable s, to allocate
a new location storing A’s salary. For the second alloc, the domain of the substitution
includes the variable x , which names the result of the previous alloc. In principle, x
could be used in computing the value passed to alloc, though we do not do that here,
and just allocate the second location and store into it A’s password p. The domain of
the substitution for return includes an additional y , which names the output of the
preceding alloc, and the program returns the pair (x , y).

Similarly, the function read salary is reimplemented as

read salary =̂ do (read @ (fun a. salary a))

The combinator do. The combinator do mediates between the semantics of types,
and the logic of assertions. The role of do is to change the type of e : STsec � A (p1, q1)
into STsec � A (p2, q2), if a proof can be constructed, possibly interactively, that e can
be ascribed the precondition p2 and postcondition q2. This ascription can be made if
two properties are proved.

First, e should be safe to execute in any heap satisfying p2; that is, it should be
possible to strengthen the precondition and prove ∀γ : �. i : heap. p2 γ i → p1 γ i .
We will use a somewhat different proposition, C1(e), which exposes that safety can

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:19

be proved by syntax-directed reasoning on the structure of the involved program, a
property we exploit in our verification rules (Section 4).

C1(e) =̂ ∀γ : �. i : heap. p2 γ i → safe (e @0 γ) i

where safe e is defined as the precondition given by e ’s type. That is, if e ′ :
STsec nil A (p, q) with empty local context, then:

safe (e ′) =̂ p

Second, it should be possible to change the postcondition q1 of e into q2. Seman-
tically we prove that two executions of e result in heaps and values satisfying q2.
We capture this property via the following predicate, which formalizes the reasoning
in a relational Hoare logic over two programs [Benton 2004; Yang 2007]. Assuming
e1 : STsec nil A (r1, t1) and e2 : STsec nil A (r2, t2), a pair of input heaps ii , and a
predicate q : A2→heap2→prop, we define

verify2 ii e1 e2 q =̂
∀yy : A2,mm : heap2 .

(i1, y1,m1) ∈ runs of e1 →
(i2, y2,m2) ∈ runs of e2 → q yy mm

Here, runs of coerces programs into relations between input heaps, output values and
output heaps. We will define it later, for our particular model. verify2 is almost like a
Hoare quadruple from relational Hoare logic except that it lacks the preconditions. We
add the preconditions by the following definition, noting from earlier that e @0 γ1 and
e @0 γ2 have empty local contexts.

C2(e) =̂ ∀γ γ : �
2, ii : heap2 .

p2 γ1 i1 → p2 γ2 i2 →
verify2 ii (e @0 γ1) (e @0 γ2)

(fun yy mm. q2 γ γ yy ii mm)

In other words, if the input heaps are assumed to satisfy the new precondition p2,
then the two instantiations of e satisfy the new postcondition q2. Notice how the two
instantiations of e are actually different programs, which is why verify2 had to take
two program arguments.

We now allow changing the type of e only if proofs of both C1(e) and C2(e) are pro-
vided as arguments to the constructor do, corresponding to the typing rule:

do : �e : STsec � A (p1, q1).
C1(e) → C2(e) → STsec � A (p2, q2).

Remark 3.5. In practice, our implementation in Coq allows that the proofs of C1(e)
and C2(e) can be left out when using do. In such cases, the system emits the appro-
priate proof obligations, to be discharged at some later point, possibly interactively.
For this reason, we consider do to have only one explicit argument e; the arguments
standing for proofs of C1(e) and C2(e) can be ignored as they merely serve to guide the
generation of verification conditions for e.

The combinator cond. Finally, a development similar to the one for do has to be car-
ried out for conditionals as well. Given programs ei : STsec � A (pi , qi) for i=1, 2,
corresponding to branches of a conditional, and a Boolean guard b : �→bool (here
parametrized over a context), which type should we ascribe to the conditional? We

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:20 A. Nanevski et al.

would like to be precise, and ascribe the weakest precondition sufficient for the safety,
and the strongest postcondition sound wrt. the expected semantics. Unfortunately,
computing that postcondition seems impossible in the case when the Boolean guard
is high. Indeed, we know that q1 (resp. q2) relates the output heaps if both runs of
the conditional choose the same branch e1 (resp. e2), but nothing can be said if the
branches chosen in the two runs are different. Since the principal specification cannot
be computed, the best we can do is ask the programmer for the desired precondition p
and postcondition q , and emit proof obligations for checking that (p, q) is valid for the
conditional.

cond : �b : �→bool.
�e1 : STsec � A (p1, q1). �e2 : STsec � A (p2, q2).
D1 (b, e1, e2) → D2 (b, e1, e2) → STsec � A (p, q).

Here D1 captures the safety of the conditional, and D2 the Hoare-style correctness.

D1(b, e1, e2) =̂ ∀γ i . p γ i →
safe (if b γ then e1 @0 γ else e2 @0 γ) i

D2(b, e1, e2) =̂
∀γ γ ii .p γ1 i1 → p γ2 i2 →

verify2 ii (if b γ1 then e1 @0 γ1 else e2 @0 γ1)

(if b γ2 then e1 @0 γ2 else e2 @0 γ2)

(fun yy mm. q γ γ yy ii mm)

The definitions of D1 and D2 make use of the purely functional conditional if to define
when each of the branches is taken. In this article, we conflate cond and if and use if for
both. Note that, in contrast to other relational Hoare logics [Benton 2004; Yang 2007],
we do not restrict the reasoning to only the situation where the same branch of the
conditional is taken in both runs; nor do we need side conditions, as needed by Amtoft
et al. [2006], that prohibit updates of low variables under a high guard (which would
prevent verification of P1 in Section 2).

Example 3.6. The function write salary from Example 2.3 is implemented with com-
binators (omitting annotations and proofs) as follows. Notice that the guard of the
conditional is a term with a local context consisting of a : α and x : string.

write salary s p =̂
do (read @ (fun a. passwd a);

if (fun x a. x = p) then
write @ (fun x a. (salary a, s))

else return @ (fun x a. ()))

3.3. Semantic Model

We justify the soundness of our type system by building a denotational model for STsec
types. This development can be fully carried out as a shallow embedding in CiC that we
have formalized in Coq. The model is based on predicate transformers [Dijkstra 1975].
In the first step, we temporarily ignore the local context � and the postcondition q , and
build the type prog A p of stateful programs that return values of type A and are safe
to execute in heaps satisfying p.

We make each element of prog A p be a function taking a set of heaps satisfying
p (not just a single heap), and producing a set of possible output values and output
heaps. By manipulating sets of heaps, as opposed to singleton heaps, we immediately

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:21

obtain the right denotational structure needed for modeling fixed points. In particular,
prog A p will be a complete partial order, under the subset ordering (pointwise lifted
to functions on sets), with the bottom of the ordering being the function that always
returns the empty set. However, we must ensure that such functions are coherent, in
the sense that when applied to sets of heaps, they behave as if they were applied to
singleton heaps. To set the stage formally,

prog A p =̂ {f : ideal p→A→heap→prop | coherent f }
where

ideal p =̂ {r : heap→prop | r � p}
r � p =̂ ∀x : heap. x ∈ r → x ∈ p

and where, for instance, x ∈ p is shorthand for the application p x . Now, f :
ideal p→A→heap→prop is coherent iff f ’s action on a set of heaps is a union of f ’s
actions on the elements of the set:

∀r : ideal p. ∀x : A. ∀m : heap.m ∈ f r x ↔ m ∈
⋃

i :heap,i∈r
f {i} x

By making f : prog A p apply only to (sets of) heaps satisfying p, as opposed to all heaps,
we avoid the need to model programs that go wrong during their execution, perhaps
because of memory errors (reading a dangling pointer) or type errors (reading a pointer
storing a Boolean, when an integer is expected). The RHTT typechecker will reject such
applications as ill-typed expressions which do not need to be given semantics.

We now define the relation runs of f : heap×A×heap→prop, mentioned previously
in this section, which relates input heaps, output values and output heaps produced
by executions of f where f : prog A p.

runs of f =̂ {(i , y ,m) | i ∈ p ∧ m ∈ f {i} y}
Next, we restore the type list �. Given parametrized precondition p : � → heap →

prop, parametrized programs, pprog, are defined inductively on the structure of �.

pprog � A p =̂
{

prog A p if � = nil
�x : B . pprog �′ A (p x) if � = B ::�′

Now, STsec � A (p, q) is defined as a subset of pprog � A p, consisting of those programs
whose two executions satisfy the postcondition q .

STsec � A (p, q) =̂
{c : pprog � A p | ∀γ γ ii yy mm.

(i1, y1,m1) ∈ runs of (c γ1) →
(i2, y2,m2) ∈ runs of (c γ2) → q γ γ yy ii mm}

Because satisfaction of q is part of the definition of the STsec type, any program that
can be ascribed an STsec type must automatically satisfy q . In particular, if q asserts
noninterference, then it is immediate the program is noninterferent; there is no need
for a separate proof of this fact as in a type system such as DCC [Abadi et al. 1999,
Theorem 4.2], Fine [Swamy et al. 2010, Theorem 2], or Fable [Swamy et al. 2008,
Theorem 25 in the full version].

We further prove in our Coq scripts the following:

LEMMA 3.7. STsec � A (p, q), with the ordering inherited from prog A p and
pprog � A p, is a complete partial order.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:22 A. Nanevski et al.

Thus our model supports a combinator for least fixed points of continuous functions
between STsec types:

fix : �f : STsec � A (p, q) → STsec � A (p, q).
continuous f → STsec � A (p, q)

In the Coq script secmod.v, we have implemented denotations for all the combinators
presented in this section. Here we discuss only the denotations for sequential composi-
tion and do, and omit the denotations of other constructors as they are straightforward.

Denotation of sequential composition. Sequential composition e1; e2 is modeled es-
sentially by the relational composition of the runs of relations induced by e1 and e2. In
other words, assume we are given a context value γ , ideal r denoting the set of possible
input heaps i for the sequential composition, and the ending value y : A and ending
heap m. Then the denotation �e1; e2� relates these values iff there exists an initial heap
i ∈ r , and an intermediate heap h and value x obtained after executing e1 but before
executing e2, such that the denotation of e1 relates (i , x , h) and denotation of e2 relates
(h, y ,m). More formally:

m ∈ �e1; e2� r y ↔ ∃i h x .
i ∈ r ∧ (i , x , h) ∈ runs of (�e1� γ) ∧ (h, y ,m) ∈ runs of (�e2� (x , γ))

Notice how we pass the context value γ to the denotation of e1, but the denotation of e2
receives γ cons’d with the intermediate result x computed by e1, thus capturing that
the output value of e1 is bound to the first local variable of e2.

Denotation of do. The do command strengthens the precondition and weakens the
postcondition of e. It does not change the behavior of e, but merely restricts that e
can only be applied to input heaps that satisfy the strengthened precondition. Thus
do e is modeled as a restriction of the denotation �e� to input heaps that satisfy the
strengthened precondition. If p is a strengthened precondition, and r : ideal p, then:

m ∈ �do e� r y ↔ ∃i . i ∈ r ∧ (i , y ,m) ∈ runs of (�e� γ)

We have also shown that all our program constructors are modeled by continuous
functions. Such continuity lemmas are useful for discharging the continuity obligations
required by fix as we show in the next section.

4. LOGIC FOR DISCHARGING VERIFICATION CONDITIONS

As illustrated in Section 3, our program semantics relies on two main predicates:
safe e i establishing that e is safe in the heap i , and verify2 ii e1 e2 r establishing that
r holds after the execution of e1 and e2 in heaps i1 and i2, respectively. The proof
obligations that RHTT generates are mostly of this form. For example, in the case
of a program with conditionals, the system will issue proof obligations in the form of
appropriate D1 and D2 predicates, to be discharged in interaction with the system.
When proving programs involving recursion, the system also issues obligations about
domain-theoretic continuity. In this section, we illustrate how we reason about obliga-
tions with safe (Section 4.1), verify2 (Section 4.2) and continuous (Section 4.3). Proving
obligations is largely directed by the syntax of the programs that appear as arguments
to these three predicates. The inference rules of RHTT used in discharging the proof
obligations related to safe and verify are proved sound in the Coq script seclog.v. The
inference rules related to continuity are in secmod.v. The online appendix gives the
full set of proof rules for safety.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:23

4.1. Establishing Safety

The first case to consider is when the programs in the proof obligation are instantia-
tions of the form e @0 γ . The type system only issues instantiation containing @0 at
the top level, rather than the more general @, because the program e must be fully
instantiated before it can be considered for execution against a heap.

Our strategy in such situations is to push @0 further into the program, to eventually
reveal some primitive command at the top level of e. In the case of safe we have the
following proof rules for dealing with @0. Application of any of the proof rules replaces
the goal in the conclusion with a premise in which @0 has been pushed inside.

SVAL INST
safe (e @0 (f γ)) i

safe ((e @ f) @0 γ) i
SBND PUSH

safe ((e1 @0 γ); (e2 @ (fun y . (y , γ)))) i

safe ((e1; e2) @0 γ) i

SBND INST
safe ((e1 @0 (f γ)); e2) i

safe ((e1 @ f @0 γ); e2) i

Note that in the Coq scripts, the inference rules are implemented as (proved) lemmas
in the CiC meta logic. For example, the rules SVAL INST and SBND PUSH are imple-
mented as lemmas sval inst and sbnd push.

sval inst : safe (e @0 (f γ)) i → safe ((e @ f) @0 γ) i

sbnd push : safe ((e1 @0 γ); (e2 @ (fun y . (y , γ)))) i → safe ((e1; e2) @0 γ) i

The second case to consider in the proofs of safety is when the verification of e cannot
be reduced to verification of simpler subprograms, but e is not a primitive command.
Such cases arise, for example, if e is a call to a previously verified program, if e is a
conditional, or if e is a variable standing for an unknown program. If the type of e is
STsec � A (p, q), we reason using p and q .

SVAL DO
e : STsec � A (p, q) p γ i

safe (e @0 γ) i

SBND DO

e : STsec � A (p, q)
(p γ i) ⇒ (∀ y m. q (γ , γ) (y , y) (i , i) (m,m) ⇒ safe (e2 @0 y)m)

safe ((e @0 γ); e2) i

To prove the safety of e @0 γ in the heap i , SVAL DO merely issues a proof obligation
that the precondition of p holds for γ and i . Similarly, SBND DO issues a proof obliga-
tion that the safety of the continuation e2 can be infered out of the precondition p and
postcondition q of e.

The third case to consider in the proofs of safety is when e is one of the primitive
commands. Then SVAL DO and SBND DO can be specialized to utilize the knowledge
of p and q of the particular commands. For example, we show the specialization of
SVAL DO to return and to write, and of SBND DO to alloc.

SVAL RET
safe (return @0 x) i

SVAL WRITE
safe (write @0 (x , v)) (x �→w • i)

SBND ALLOC
∀� : ptr . safe (e @0 �) (� �→ v • i)

safe ((alloc @0 v); e) i

In SVAL RET, x is the value that is being immediately returned (see the type of return
in Section 3). As the precondition of return is always True, return is always trivially

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:24 A. Nanevski et al.

safe. In the case of SVAL WRITE, writing a value v into the location x is safe in heaps
that do contain x , possibly initialized with some w . In SBND ALLOC, allocating a fresh
high pointer � initialized with v is always safe. Thus, if e is a continuation of alloc, the
whole composition is safe if e can be proved safe in the heap in which the existing heap
i has been extended with � �→ v . A similar rule SBND LALLOC exists for allocating low
pointers, but is omitted here.

Sometimes, even though the top primitive command is revealed, the corresponding
proof rule does not apply because the heap expression is not in the expected form.
For example, sval write applies to the heap x �→w • i , but not to i • x �→w . In those
situations, we have to first rearrange the heap expressions using the commutativity
and associativity of •.

unC : h1 • h2 = h2 • h1
unA : h1 • (h2 • h3) = (h1 • h2) • h3

4.2. Establishing Postconditions

A similar strategy as in establishing safety applies when reasoning about
verify2 ii e1 e2 r . However now we have two kinds of proof rules: those that apply to
both programs simultaneously, and those that apply to only one of them. The first kind
is used when reasoning relationally. Typically, relational verification starts with the
same command, say e : STsec � A (p, q), which is instantiated with two different ex-
plicit substitutions to obtain e1 and e2. Since q relates two runs of e in different heaps,
we can advance the verification in both i1 and i2 simultaneously, and strip e from the
residual goal. In case e is a return, or alloc, the appropriate lemmas are as follows.

VAL RET
r(v1, v2)(i1, i2)

verify2 i1 i2 (return @0 v1) (return @0 v2) r

BND ALLOC

∀�1, �2 : ptr . verify2 (�1 �→ v1 • i1) (�2 �→ v2 • i2) (e1 @0 �1) (e2 @0 �2) r ′
r ′ = fun yy mm. (even �1 ∧ even �2) ⇒ r yy mm

verify2 i1 i2 ((alloc @0 v1); e1) ((alloc @0 v2); e2) r

In VAL RET, for example, when both programs are returns of (possibly different)
values v1 and v2, a proof of verify2 proceeds by proving that the postcondition r holds
of (v1, v2). In BND ALLOC, we change the goal about high allocation to a goal about
continuation, where the considered heaps are extended appropriately with fresh, even,
locations.

We can continue to perform relational verification until we reach a stage when
the two programs in verify2 do not start with the same command, for example, when
the two programs are obtained from different branches of a high conditional. In this
situation we need the second kind of lemmas. We advance the verification of the
programs separately, until some common structure is revealed (when we can again
perform relational verification) or until the verification is over. This is the purpose of
proof rules VRFS1 and VRFS2. In these rules verify is a unary, that is, nonrelational
version of verify2 that operates on single programs rather than pairs of programs.
VRFS1 advances the verification by starting from the left while VRFS2 advances the
verification by starting from the right. Note that these rules are generalized versions
of self-composition [Barthe et al. 2004; de Roever and Engelhardt 1998; Gries 1993;
Reynolds 1981]. Self-composition converts relational reasoning about two runs of one
and the same program e1 = e2 = e, to the twice-iterated ordinary verification of that
program. Here, however, we allow for two different programs e1 and e2. The rules are
bidirectional, which we emphasize with the doubled rule line. One can apply the rules

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:25

to transform a verify2 goal into a verify goal, advance the verification, and once a com-
mon structure of the programs has been uncovered, move back to relational reasoning.

VRFS1
verify i1 e1 (fun y1 m1. verify i2 e2 (fun y2 m2. r y1 y2 m1 m2))

verify2 i1 i2 e1 e2 r
==

VRFS2
verify i2 e2 (fun y2 m2. verify i1 e1 (fun y1 m1. r y1 y2 m1 m2))

verify2 i1 i2 e1 e2 r
==

To point out the similarity between proof rules for verify and verify2 we present the
following proof rules that are analogues of VAL RET and BND ALLOC presented earlier.

VAL RETV
r v i

verify i (return @0 v) r

BND ALLOCV
∀� : ptr . verify (� �→ v • i) (e @0 �) (fun y m. even � ⇒ r y m)

verify i ((alloc @0 v); e) r

Apart from these rules we have structural rules such as the rules of conjunction.

VRF2 CONJ
verify2 i1 i2 e1 e2 r1 verify2 i1 i2 e1 e2 r2

verify2 i1 i2 e1 e2 (fun y m. r1 y m ∧ r2 y m)

VRF CONJ
verify i e r1 verify i e r2

verify i e (fun y m. r1 y m ∧ r2 y m)

The next two structural rules implement relational and unary versions of the usual
Hoare-style rule for sequential composition, whereby the postcondition q of e is used
as the precondition for the verification of the continuation e1 in the first run and e2
in the second run. They can be seen as rules for symbolic evaluation of a sequential
composition of e, where e is unknown, except for its specification.

BND DO

e : STsec � A (p, q) p γ i1 p γ i2 ej : STsec [A] B (pj , qj), j ∈ {1, 2}
∀y1 y2 m1 m2 . q (γ , γ) (y1, y2) (i1, i2) (m1,m2) ⇒

verify2m1 m2 (e1 @0 y1) (e2 @0 y2) r

verify2 i1 i2 (x ← (e @0 γ); e1) (y ← (e @0 γ); e2) r

BND DOV

e : STsec � A (p, q) p γ i e2 : STsec [A] B (p2, q2)
∀y m . q (γ , γ) (y , y) (i , i) (m,m) ⇒ verifym (e2 @0 y) r

verify i (x ← (e @0 γ); e2) r

The next two structural rules implement relational and unary versions of the Hoare-
style rule of consequence which asserts that postcondition q of e can be weakened to r
provided q implies r .

VAL DO

e : STsec � A (p, q) p γ i1 p γ i2
∀y1 y2 m1 m2 . q (γ , γ) (y1, y2) (i1, i2) (m1,m2) ⇒ r (y1, y2) (m1,m2)

verify2 i1 i2 (e @0 γ) (e @0 γ) r

VAL DOV
e : STsec � A (p, q) p γ i ∀y m . q (γ , γ) (y , y) (i , i) (m,m) ⇒ r y m

verify i (e @0 γ) r

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:26 A. Nanevski et al.

4.3. Establishing Continuity

When typechecking a recursive program, in addition to the proof obligations for safe
and verify, RHTT will emit a proof obligation for establishing continuity of the function
that the program represents. Such proof obligations arise out of the type of the program
combinator fix shown in Section 3.3, which is explicitly parametrized by the obligation
continuous f , where f is the function that is being recursed over.

Typically, the function over which we are recursing will be in an expanded form;
that is, it will look like fun e. e ′, where e ′ is the body of recursive function, and e is
the name for the recursive call. Both e and e ′ have the type STsec � A (p, q). Dis-
charging proof obligations about continuity for such functions follows the structure of
e ′, and is always straightforward. We merely apply the rules stating that the program
constructors such as instantiation and sequential composition preserve continuity (the
rules INST STCONT and BND STCONT shown further on). This strips off the program
constructors. Once a recursive call to e is reached the rule ID STCONT applies and
concludes the proof. If some primitive command such as read or write is reached, then
the rule CONST STCONT applies and concludes the proof. No other cases can appear in
programs written using our combinators, which make the following rules sufficient for
proving continuity.

INST STCONT
continuous (fun e. e ′)

continuous (fun e. e ′ @ γ)

BND STCONT
continuous (fun e. e1) continuous (fun e. e2)

continuous (fun e. e1; e2)

ID STCONT
continuous (fun e. e)

CONST STCONT
e /∈ FV(e ′)

continuous (fun e. e ′)

4.4. Using the Proof Rules

In this section we illustrate the working of the RHTT logic by sketching how to verify
that the implementation of new in Figure 2 matches its specification from Figure 1,
that is,

new : nat → string →
STsec nil alice (fun i . True,

fun aa ii mm. ∃ss pp hh.mm = ii •• hh ∧ sshape aa ss pp hh),

where the implementation of new, using combinators is as follows:

new s p = do (alloc @0 s;
alloc @ (fun x . p);
return @ (fun y x . (x , y))).

The code of new says: allocate new locations, x , y containing s, p respectively. The al-
locations are done by the high allocator, so x , y are high pointers. Return the pair
(x , y).

When the type system encounters the do command in the preceding code, it issues
two proof obligations, corresponding to the predicates C1 and C2 from the typing rule

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:27

of do in Section 3.2. The first obligation requires showing that the program within do
is safe, and thereby has the following form.

∀i : heap. safe((alloc @0 s;
alloc @ (fun x . p);
return @ (fun y x . (x , y))) @0 ()) i

The second obligation requires showing that two runs of the program within do satisfy
the provided relational postcondition. Thus, we have the following.

∀i1 i2 : heap.
verify2 i1 i2

((alloc @0 s; alloc @ (fun x . p); return @ (fun y x . (x , y))) @0 ())

((alloc @0 s; alloc @ (fun x . p); return @ (fun y x . (x , y))) @0 ())

(fun (yy : alice2) (m : heap2).
∃ss : nat2. ∃pp : nat2. ∃hh : heap2.m = (i1, i2) •• hh ∧ sshape yy ss pp hh)

Both obligations require instantiating the do-enclosed program with a unit element (),
which signifies an empty explicit substitution, corresponding to the empty local context
of the STsec type of new.

We now focus on discharging the safety obligation. We first apply the SBND PUSH
lemma, to push the instantiation with the empty explicit substitution inside the pro-
gram. This transforms the original safety obligation into the following.

safe ((alloc @0 s) @0 ();
(alloc @ (fun x . p);
return @ (fun y x . (x , y))) @ (fun z . (z , ()))) i

Now SBND INST applies to reassociate the instantiations in the first alloc command,
causing the first command to be transformed into alloc @0 (s ()). In our notational con-
vention about explicit substitutions from Section 3.2, s is isomorphic to fun x : unit. s.
Hence, the application s () simply transforms into s, and the subgoal becomes the
following.

safe (alloc @0 s;
(alloc @ (fun x . p);
return @ (fun y x . (x , y))) @ (fun z . (z , ()))) i

Next, we apply SBND ALLOC, to symbolically execute the first command, and reduce
the goal to what follows.

∀l : ptr. safe (((alloc @ (fun x . p);
return @ (fun y x . (x , y))) @ (fun z . (z , ()))) @0 l) (� �→ s • i)

Picking a fresh l for the quantified variable, we can apply SVAL INST to push in the
instantiation with l . This changes the term fun z . (z , ()) into (fun z . (z , ())) l , which
itself beta reduces to (l , ()), transforming our goal into the following

safe((alloc @ (fun x . p);
return @ (fun y x . (x , y))) @0 (l , ())) (� �→ s • i)

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:28 A. Nanevski et al.

After this we apply SBND PUSH to push the instantiation with (l , ()) into the sequential
composition, and so on. We can continue applying such lemmas till the proof obligation
for safety is discharged. The actual explicit proof carried out in Coq looks like this.

move ⇒ i .
apply : sbnd push; apply : sbnd inst; apply : sbnd alloc ⇒ l .
apply : sval inst; apply : sbnd push; apply : sbnd inst; apply : sbnd alloc ⇒ l ′.
apply : sval inst; apply : sval inst; apply : sval ret.

At each point in the proof, there is only one lemma that can apply. Hence the proof
can be constructed fully automatically. We have implemented an automated procedure
sstep, to do just that, simplifying the previous proof to the following.

move ⇒ i ; do ! [sstep ⇒?] .

To discharge the subgoal corresponding to the verify2 obligation, we must show that
with a pair of input heaps i1, i2, and two copies of the code (inside do), the postcon-
dition is satisfied. First we massage the subgoal using applications of several lemmas
for pushing explicit substitutions into the programs. (We have another automation
routine, called vstep, which applies the lemmas as appropriate.) At the end of the exe-
cution of vstep, we will have variables l1 and l2 for the pointers storing the salaries in
the two runs, and l ′1 and l ′2 for the pointers storing the passwords in the two runs. The
subgoal looks as follows.

∃ss : nat2. ∃pp : nat2. ∃hh : heap2.
(l ′1 �→ p • (l1 �→ s • i1), l ′2 �→ p • (l2 �→ s • i2)) = (i1, i2) •• hh ∧
sshape ((l1, l ′1), (l2, l ′2)) ss pp hh

Now we instantiate the existentially bound variables ss , pp with (s , s) and (p, p) re-
spectively, so that the proof obligation becomes the following.

∃hh : heap2.
(l ′1 �→ p • (l1 �→ s • i1), l ′2 �→ p • (l2 �→ s • i2)) = (i1, i2) •• hh ∧
sshape ((l1, l ′1), (l2, l ′2)) (s , s) (p, p) hh

Now we use associative and commutative laws to rewrite the left-hand side of the
equality so that the proof obligation becomes the following.

∃hh : heap2.
(i1 • (l ′1 �→ p • l1 �→ s), i2 • (l ′2 �→ p • l2 �→ s)) = (i1, i2) •• hh ∧
sshape ((l1, l ′1), (l2, l ′2)) (s , s) (p, p) hh

Next, we let the system pick logical variables to instantiate the existential with; let us
call these variables α and β – they will be instantiated with concrete values further
on. Now there are two subgoals that need to be discharged corresponding to the two
conjuncts. They are the following.

(i1 • (l ′1 �→ p • l1 �→ s), i2 • (l ′2 �→ p • l2 �→ s)) = (i1, i2) •• (α, β) and
sshape ((l1, l ′1), (l2, l ′2)) (s , s) (p, p) (α, β)

The first conjunct is discharged by noting that

(i1, i2) •• (α, β) = i1 • α, i2 • β

so that there are unique solutions for α and β:

α = l ′1 �→ p • l1 �→ s and β = l ′2 �→ p • l2 �→ s.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:29

The second subgoal is easy to discharge by appealing to the definition of sshape (see
Figure 2). Our actual proof in Coq is the following.

move ⇒ i1 i2; vstep ⇒ l1 l2; vstep ⇒ l ′1 l ′2; vstep.
rewrite −(unC i1) −(unCA i1) −(unC i2) −(unCA i2) /plus2.
eexists (s , s), (p, p), (,); do ! split⇒/=; rewrite unC.

5. LINKED DATA STRUCTURES

In this section we develop a small library for linked lists to illustrate RHTT’s support
for stateful abstract data types (ADTs), and their interaction with information flow.
Working with ADTs essentially requires a number of higher-order features. For exam-
ple, to support linked lists in a reasonable way, it has to be possible to: (1) describe
the layout of the lists in the heap (is the list singly linked, doubly linked, etc?). This
requires quantification in the assertion logic, definition of predicates by recursion, and
inductive definitions of types; (2) abstract the definition of the heap layout from the
specification of the ADT, so that the ADT clients can freely interchange implementa-
tions with different layouts (hence the need for abstract predicates); (3) parametrize
the ADT with respect to the type of list elements (hence the need for type polymor-
phism in both programs and the assertion logic). All of these features are present in
RHTT, and used in Figures 5 and 6, which show one possible interface, ListSig, and a
module, List, implementing ListSig. The interface exports methods that create a new
empty list, insert an element to the head of a list, and remove the head element, should
one exist.

Both ListSig and List are parametrized in the type of list elements T . The interface
declares the abstract predicate shape p w i , capturing that the heap i stores a valid
singly-linked list whose content is the mathematical (i.e., purely functional) sequence
w of type list T . The pointer p stores the address of the list head, so that adding new
elements at the head can be done by updating p. The linkage between the elements is
described by the predicate lseq x w which recurses over the contents w and states that
each node, starting from the head x , contains a single pointer z to the next node in the
linked list. The interface hides the details of shape, however, and can thus be ascribed
to other implementations of shape, such as ones describing doubly linked lists.

The interface in Figure 5 contains one more abstract predicate low links pp ii , which
we use in combination with sshape pp ww ii , to describe that the linkage of the list
stored in the heap ii is of low security, no matter the security levels of the contents ww .
The latter may be heterogeneous; that is, some elements of ww may be of low security,
while others are high. Similar to lseq, low links recurses over the linked lists, declaring
that each node is stored at a low address; that is, an address which is equal in the two
heap instances, i1 and i2. (The formal definition of low links is elided here but appears
in file llist3.v of the Coq scripts.)

The types of the methods declare how the methods modify the contents of the list
as well as the linkage. For example, the shape predicate in the preconditions of insert
and remove requires that the initial heaps j of these methods store valid linked lists.
The sshape predicate in the postconditions guarantees that valid linked lists are pro-
duced at the end. The postconditions additionally contain conjuncts describing that the
methods preserve the low security level of the linkage. For example, new will allocate a
fresh pointer p, and initialize it with null. If the deterministic allocator is used to obtain
p, then p will be low only if the allocator is executed in low-equivalent initial heaps.
Thus, in order to get low links pp jj , we require an antecedent i1 ∼= i2. Similarly, insert
specifies that low links pp jj → h1 ∼= h2 → low links pp jj ′. In other words, if the initial
lists have low linkage, and the remainders of the global heaps are low equivalent, then

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:30 A. Nanevski et al.

Fig. 5. ListSig: signature for linked lists (excerpts).

we can allocate a list node with low linkage. This is so, because the initial heaps must
be low equivalent under the described conditions.

The implementations of the methods are standard (Figure 6), but due to the combi-
nator syntax, we describe them in prose. new returns a fresh pointer, initialized with
null. This will be the pointer p in the shape predicate. insert takes the pointer p to the
list, and a value v to insert. It reads the address of the first element (bound to vari-
able hd), and allocates a node x whose contents field is v and next pointer field is hd .
Finally, x is written to p. remove reads the address of the first element of the list p
into the variable hd . If hd is null, then the list is empty, and the function terminates.
Otherwise, it reads the contents of the node at hd , binding it to the variable e. p is
made to point to next e, before hd is deallocated.

To establish that the implementation satisfies the signature, we need a number of
helper lemmas about lseq and linked list, which are kept local to the module. For exam-
ple, for lseq, we need properties that describe the behavior of lseq x w i , in case x is null
(then the whole list is empty: note that empty denotes the empty heap), and nonnull
(then x points to the head).

lseq null : ∀w i . lseq null w i → w = nil ∧ i = empty
lseq pos : ∀w x i . x �= null → lseq x w i →

∃ z j . i = x �→ node (head w , z) • j ∧ lseq z (tail w) j

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:31

Fig. 6. Module List: implementation of singly linked lists (excerpts). empty denotes the empty heap.

For low links, we show that if two heaps store lists with low linkage and equal contents,
then the heaps themselves are equal.

low linkR : ∀w pp ii .sshape pp (w ,w) ii →
low links pp ii → i1 = i2

Example 5.1. The program P5 in Figure 7 illustrates heterogeneous lists, that is,
lists that contain both high and low values. It takes a high Boolean argument b, creates
a new linked list, and inserts 0 (a constant, hence low) at the head. Then, depending
on b, it inserts either 1 or 2, resulting in a heterogeneous list with a high first element
and low second element. This is described in the postcondition by conditionals over the
values of b in the two different runs (b1 and b2). Irrespective of the contents, the ending
linkage is low, assuming we started with low-equivalent input heaps.

Example 5.2. The program P6 in Figure 7 is similar to P5, but branches on b to
decide whether to remove the head element. Therefore, the length of the resulting list
may differ in the two runs, depending on b. We can specify it with the type shown in
the Figure. Notice however that we cannot prove that low links yy jj holds at the end of
P6. The length of the produced list is dependent on b, which implies that the resulting
linkage may differ in two runs of P6, and hence cannot be low itself.

Our Coq scripts implement other interfaces for linked list, where the sshape pred-
icates are parametrized by the linkage as well. This exposes more implementation

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:32 A. Nanevski et al.

Fig. 7. Programs with heterogeneous lists.

details (e.g., that the list is singly linked), but allows more precise reasoning about
linkage. For example, we may prove that executing one more conditional over b, with
a call to remove in the else branch, will restore the low linkage.

We are not aware of any other system in literature that can reason statically about
heterogeneous structures except the work of Beringer [2010] which considers rela-
tional reasoning about information flow for bytecode. In the dynamic setting, a recent
example is the work of Russo et al. [2009], which tracks information-flow through
DOM trees, with the goal of preventing information leakage via node deletion or nav-
igation. The system works by assigning to each node two security labels: one for the
contents, and another for the existence of the node. These annotations are very spe-
cific to DOM trees, however, and it seems that the label assignment would have to be
designed differently for different data structures and enforced properties. Thus, if one
wants to work with a number of structures simultaneously, one must employ a very
rich specification logic, just as we do.

We close with an example which combines linked lists with the module A from
Section 2.

Example 5.3. In Example 2.6, A ratifies the client program (such as B.compute tax)
which may keep local state, as long as its final state does not steal A’s salary. Now
we instantiate B’s local state to a linked list, which dynamically grows as various in-
stances of A executes the client but the values stored in the linked list are always
independent of any instance’s salary and the list’s linkage is always low. Observe from
the specifications of new and insert that newly allocated nodes during client execu-
tion will be low only if they can be generated in low-equivalent heaps. To express this

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:33

low equivalence the specification of epost used in ratify’s specification must change as
emphasized in the following.

epost aa bb jj yy ii mm =̂
∀ss pp kk tt hh.
ii = jj •• tt •• hh → sshape aa ss pp jj →

bbshape bb kk tt →
∃jj ′ tt ′.mm = jj ′ •• tt ′ •• hh ∧ sshape aa ss pp jj ′ ∧

bbshape bb (bcmp k1, bcmp k2) tt ′ ∧
j1 • h1 ∼= j2 • h2 →
t1 = t2 → t ′1 = t ′2

The client can now be granted access to A’s salary and can keep the count in a linked
list. For example, the following implementation defines B’s local state as a linked list
which counts the number of times the client program has been called by linking in new
nodes into its list. The nodes are filled with 1 for simplicity, but arbitrary values would
do, including dynamically computed ones, as long as they are independent of salary.

β =̂ linked list
G =̂ list nat
bbshape (bb : β2) (kk : G2) (ii : heap2) =̂

List.sshape bb kk ii ∧ b1 = b2
bcmp : G → G =̂ fun k . 1 :: k

The client program, which reads salary, allocates a new node in its list, and then re-
turns the computed tax for the salary, can then be created and ratified as follows.

linked client =̂
ratify (do (read salary @ (fun a b. a);

insert @ (fun x a b. (b, 1));
return @ (fun x a b. x ∗ 24%)))

6. RELATED WORK

Banerjee et al. [2008] specify expressive declassification policies using Hoare style
specifications (termed flowspecs); preconditions thereof are conjunctions of ordinary
state conditions based on first-order logic (for specifying conditions when declassifica-
tion can happen) as well as relational predicates (that specify what is being declas-
sified) [Sabelfeld and Sands 2009]. We extend the ideas of Banerjee et al. [2008] and
consider a higher-order imperative language and also a policy specification language
based on higher-order logic, where Hoare-style specifications may appear in negative
(i.e., argument) positions, which is required for conditional access and erasure policies.

A recent line of work [Li and Zdancewic 2010; Russo et al. 2008] uses type-theoretic
technology, namely Haskell, to specify and enforce information-flow properties in a
non-dependently-typed setting. While Haskell already provides the important higher-
order constructs for abstraction and modularity, nondependent types by definition
cannot specify behaviors that are dependent on some condition such as authorization,
conformance to a policy, or local state. Thus, we do not think they can be used directly
to enforce involved security policies such as the ones considered in this article.

Some other recent languages, with somewhat similar high-level goals to ours, and
which use some form of dependent types are Fine [Swamy et al. 2010], Fable [Swamy

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:34 A. Nanevski et al.

et al. 2008], FX [Borgström et al. 2011a], Aglet [Morgenstern and Licata 2010], F7
[Bengtson et al. 2011] and Aura [Jia et al. 2008]. They all support some, but not all
features that we provide in RHTT.

In Swamy et al.’s purely functional programming language Fine [Swamy et al. 2010],
access and information flow policies can mention attributes like high and low, that
statically label data. The type system enforces these policies by tracking flows of at-
tributes. Unlike RHTT, Fine’s type system does not track changes to the state (heap),
so the effect of state in policies must be simulated through ghost variables, whose
(static) updates are governed by specifications of primitive functions. A token passing
mechanism based on affine kinds ensures that at most one static state is valid at each
program point, but it makes programming in Fine inconvenient. Fine includes a sim-
ple module system which allows a programmer to hide type definitions, but does not
allow abstraction over predicates as RHTT does. In an earlier language, Fable [Swamy
et al. 2008], data can be statically labelled with attributes that can be used to en-
force both access control and information flow policies. However, Fable’s type system
lacks the affine kinds of Fine as well as Fine’s logic-based sublanguage for policies and,
therefore, cannot be used to reason about state-dependent policies.

The language F� [Swamy et al. 2011] combines Fine’s affine types with F7’s path-
sensitive assertions and automatic discharge of verification conditions using the SMT
solver Z3. Verification of information flow properties in F� is similar to that in Fine and
differs from our work in ways described before. Like F7, the use of path-sensitive asser-
tions allows verification of some trace properties, which are beyond the scope of RHTT.
Use of an SMT solver allows for automatic discharge of verification conditions and the
authors report success with approximately 20,000 lines of code, but it is unclear how
much additional manual work is needed to guide the SMT solver.

The language FX [Borgström et al. 2011a] succeeds Fine with the purpose of veri-
fying stateful programs that permit object allocation, mutation and deallocation. The
type system of FX admits computation (Hoare) types and caters to the verification of
safety properties of FX programs by translating into Fine programs and typechecking
the latter. The translation is a simulation under strong bisimilarity. The verification of
security policies, particularly, of nonsafety properties such as noninterference, is not
the overarching goal of FX’s type system, although a lattice of labels can be encoded
and used to prove, for instance, an integrity property that untrusted data does not get
consumed at trusted sinks. A proof of noninterference is not supplied; as in most label-
based security type systems, such a proof cannot be carried out in FX’s (or Fine’s) type
system directly (in contrast to our work) but rather must be established as a metatheo-
rem of the type system by reasoning about two runs of programs. As regards reasoning
about stateful higher-order programs, the formalization is left for future work and we
expect that it will elucidate how the type system reasons about (security properties of)
unbounded dynamic data structures, for instance, linked lists, trees with back point-
ers etc., that contain significant use of aliased mutable objects. In particular, because
FX proposes to reason about aliasing using a library of permissions the formalization
might be delicate.

Morgenstern and Licata [2010] have recently proposed a type system called Aglet,
for enforcement of state-dependent access control policies. Aglet is an extension of
Agda [Norell 2007] with a computation monad similar to our STsec types. However,
Aglet’s computation monad lacks semantics and, consequently, the soundness of its
inference rules has to be taken on faith (in contrast, the RHTT model is formalized
in Coq). Moreover, the pre- and postconditions of Aglet’s computation monad can only
mention a restricted form of state, namely, a mutable list of authorization-relevant cre-
dentials, which can be used to discharge authorization obligations at various program
points. Due to this restriction, Aglet cannot be used to reason about data structures

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:35

written in Agda. Also, Aglet’s postconditions do not consider simultaneous runs of pro-
grams. As a result of these limitations, Aglet cannot be used to represent many of our
examples. On the other hand, we believe that examples from the paper on Aglet can
be expressed in RHTT easily.

Borgström et al. [2011b] reason about access control behavior of programs in an ex-
tension of F7 that has a state monad with pre- and postconditions. Although the state
monads in their work and ours are technically similar, that work differs from ours in
two significant ways. First, the goals are different: whereas we consider enforcement
of information flow properties and declassification in addition to access control prop-
erties, Borgström et al. consider access control and show how the state monad can be
used to enforce different flavors of it, viz. role-based, stack-based, and history-based.
Second, in common with other work based in F7, a priori evidence for discharging veri-
fication conditions in Borgström et al’s work is programmer specified assumptions that
are not necessarily semantically grounded, and verification is correct only to the extent
that these assumptions are correct. In contrast to their axiomatic approach, we verify
the soundness of our type theory on a semantic model. Nonetheless, due to the common
state-monad based approach, and RHTT’s more general type system, we believe that
Borgström et al’s work can be encoded in RHTT without much change. As a first step
in this direction, our Coq scripts contain an example that shows how RHTT supports
reasoning about principals and roles.

The languages Aura [Jia et al. 2008], PCML5 [Avijit et al. 2010], and PCAL
[Chaudhuri and Garg 2009], based on the proof-as-authorization paradigm [Appel and
Felten 1999], enforce logic-represented access policies by statically ensuring that each
call to a protected interface is accompanied by proper authorization. Although work
in the context of Aura shows that noninterference can be encoded [Jia and Zdancewic
2009], Aura currently does not handle state in the form that we consider in this article.
However, it is conceivable that mutable state can be added to Aura along the lines of
the STsec monad.

The Paralocks language [Broberg and Sands 2010] also allows logic-based access
control policies that are enforced statically in the type system. Information flow poli-
cies can be encoded as a specific mode of access control as, for instance, is demonstrated
through an encoding of Myers’ and Liskov’s Decentralized Label Model. Like Fine, Par-
alocks includes two kinds of state, of which, one, called locks, is tracked through the
type system, while the other is not. Locks are Boolean variables that can be used to
encode a wide range of policies. The semantics of Paralocks is trace-based and, like
gradual release [Askarov and Sabelfeld 2007], uses a knowledge-based definition of
information leaks. A meta-theorem guarantees that access policies of a well-typed pro-
gram are respected at all program points during the program’s execution.

Finally, RHTT extends the work on Hoare Type Theory and Ynot [Nanevski et al.
2008] with the ability to reason relationally about security. The addition caused signif-
icant changes in the semantics and the usage of the language. For example, because
of the reasoning about two-runs, the modeling of STsec deals with CPO’s, whereas
for HTT complete lattices sufficed. The logic for discharging verification conditions
in RHTT has to reason separately about safety and correctness, whereas in HTT,
safety and correctness could be captured in one judgment, corresponding to the separa-
tion logic triple. In RHTT we use large footprint specification and combinator syntax,
whereas HTT used small footprints for programming monadically. On the other hand,
we were able to reuse from HTT the library for reasoning about heap disjointness, to
keep RHTT proofs relatively short.

7. DISCUSSION

This section discusses design choices, limitations, and additional aspects of RHTT.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:36 A. Nanevski et al.

Small vs. large footprint specifications. In one of the previous iterations of RHTT,
we had small footprint specifications, before we realized that deterministic allocation
is important. In that iteration of the system, the method new from Figure 1, had the
following type.

nat → string →STsec nil alice (fun i . i = empty, fun aa ii mm. ∃ss pp. sshape aa ss pp mm)

When we switched to large footprint specification, this became the following.

nat → string → STsec nil alice
(fun i . True, fun aa ii mm. ∃ss pp hh.mm = ii •• hh ∧ sshape aa ss pp hh)

In other words, the postcondition is extended with one more existentially quantified
variable (hh) and one more assertion expressing disjointness between the initial and
allocated heap (mm = ii •• hh). In other examples, where the preconditions were not
simply True as here, we needed one more variable and one more equation for the pre-
condition too. As parts of the precondition sometimes have to appear in the postcondi-
tion, for the purposes of correct scoping, this may add one more variable and one more
equation in the postcondition as well. Altogether we needed to add at most three new
variables, and three more disjointness equations between those variables. This pattern
applied throughout the development and caused minimal refactoring on our already
written proofs.

Completeness. We have informally justified the completeness of our system through
several examples, covering a wide range of security relevant policies including access
control, information flow, declassification, erasure, and their combinations. Unfortu-
nately we are not aware of a clear and exhaustive formal definition of what constitutes,
say, an erasure, or access-control policy, or a combination thereof. Therefore, we do not
know how to state a formal completeness result.

If we focus on Cook completeness for RHTT, then, as we have argued in Section 3,
our specifications for all of the primitive effectful combinators compute weakest pre-
conditions and strongest postconditions using the specifications of the components.
The exception are the conditionals, for which this cannot be done when the Boolean
guard is high. However, RHTT is still capable of checking high conditionals against
programmer-supplied postconditions. The lack of Cook completeness therefore results
in an increase in code annotations that the programmer has to supply, but does not
decrease the reasoning power of the logic. In particular, the programmer-supplied an-
notations are also in higher-order logic, and therefore can be as expressive as needed.

Noninterference for finite security lattices. Consider variables x : H , y : M and z : L
where H represents high, M represents medium and L represents low in a security
lattice with L ≤ M ≤ H . The security policy is that (a) z is independent of both x and y
and (b) y is independent of x . We can encode this policy in our setting with, for instance,
zz representing the pair of input values of z in the two runs and zz ′ representing the
pair of output values, as the conjunction of

z1 = z2 → z ′
1 = z ′

2 (a)
z1 = z2 → y1 = y2 → y ′

1 = y ′
2 (b).

Instead of a conjunct for each level L, M , of the security lattice, we can nest these
formulas to obtain the equivalent

z1 = z2 →
(z ′

1 = z ′
2 ∧ (y1 = y2 → y ′

1 = y ′
2)).

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:37

This encoding can be generalized to express noninterference like properties on
contents of variables drawn from an arbitrary finite security lattice. However, RHTT
cannot be used to reason about noninterference properties of pointer addresses if the
security lattice contains more than two elements (i.e., low and high) and dynamic al-
location is used. This is because reasoning about noninterference of pointer addresses
requires separate allocators for each level of the lattice, with the property that the
pointers returned by an allocator call at a level l be influenced only by prior allocations
at levels lower than l . In its current form, RHTT has only two allocators, so it can be
used to reason about two levels of pointer addresses only. Given any finite security
lattice, it seems straightforward to design a different version of RHTT with enough al-
locators to reason about noninterference of pointer addresses in that lattice, but we do
not know of a method to combine more than one lattice within a single version of RHTT.

Ultimately the requirement of two allocators is not fully satisfactory because it goes
against our desire to prevent security levels from permeating specifications. As pointed
out in Remark 3.3, one can work with abstract pointers at the cost of introducing
partial bijections and removing deallocation. Moreover, one must change the definition
of equality on the type ptr in RHTT: it cannot be the equality inherited from nat, but
must be a different relation, which is baked into the semantic model.

Such a design has not been implemented in this article for two reasons. First, the
model for such a setting cannot be prototyped in Coq as a shallow embedding. It
requires introducing Kripke semantics for Coq (where the possible world keeps the
currently allocated pointers), and thus, it requires reproving soundness of Coq from
scratch, on paper.

Second, as a general approach, the use of abstract pointers and partial bijections
merely dismisses attackers that can inspect pointers. We would prefer, in the future,
to guarantee that allocation does not leak information on the grounds that the al-
locator is fully random, no matter what the attacker can do with the pointer. This
randomness cannot be captured in the current RHTT specifications, where we only de-
scribe the properties of final values in two runs, rather than final sets of values, or final
probability distributions. In a setting where specifications can describe probability dis-
tributions, pointers returned by an allocator in two runs may be considered low if they
are chosen at random from two equal distributions, even if the pointers themselves
may be different.

Proof sizes. We have found that the size of interactive proofs is not too overwhelming
in general. However, the amount of interaction varies with programs. Programs with
complex loop invariants usually require large proofs, whereas simpler programs can
be verified in just a number of lines proportional to the size of the program.

Programs that branch on high Boolean guards invariably have larger proofs than
programs that branch only on low: the latter always choose the same branches of
conditionals in two runs, so the verification of the two runs proceeds in lockstep.
High-branching programs can choose branches asymmetrically, thus doubling the
number of proof obligations. In addition, when branches are chosen asymmetrically,
the proofs usually require some mathematical insight from the programmer (for
example, algebraic simplification of expressions) in order to argue that the high secret
has not been leaked. The latter, however, seems unavoidable, and inherent to the
nature of programs branching on high guards.

To substantiate, consider the programs from Examples 2.3 and 2.4, our first ex-
amples that do not branch on high. We have the following statistics given as the pair
(code+spec size, proof size). For new, we have (7, 5); for read salary (7, 4); for write salary
(18, 15) and for declassify (11, 5). These proofs share common definitions and lemmas
which are altogether 10 lines long.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:38 A. Nanevski et al.

The program P2 in Example 2.2, which contains nested conditionals and branching
on high, is implemented using 36 lines of code, most of which are inlined user-supplied
annotations. The corresponding proof is 44 lines long.

We have also implemented examples that iterate over linked data structures (not
presented in the article, but available in the accompanying Coq scripts). In a program
for in-place list reversal, in which the linkage of the list is high, the code and an-
notations together take 43 lines. The proof is 94 lines long, because there is a high
conditional branching on a null-pointer check.

RHTT in context. RHTT is geared to proving both full functional correctness as well
as security properties, so it is in the same arena as other logics such as those of Amtoft
et al. [2006] and Yang [2007]. On the other hand, type systems such as Jif and F�

are focused on decidable type checking, but then impose restrictions on admissible
programs. The restrictions take many forms. A common restriction is to disallow low
assignments (and low allocation) under high guards. Another restriction is to allow
only homogenous data structures in programs (e.g., all-high lists or all-low trees).

State of the art case studies do not convincingly confirm whether the restrictions are
reasonable in practice. For example, Austin and Flanagan [2010] and Birgisson et al.
[2012] argue that disallowing low updates under high guards is a serious limitation
and propose workarounds through dynamic checks and testing respectively. In a static
setting such as ours, these checks amount to building a flow-sensitive type system
(which is subsumed by RHTT’s type system).

8. CONCLUSION

We have presented RHTT, a system implemented in Coq that is targeted for full
interactive verification of state-based access control and information flow policies via
dependent types. Examples of such security policies include declassification, informa-
tion erasure and state-based access control and information flow. We have presented
typing rules for the stateful fragment of RHTT and implemented a semantic model
that provides a denotation to every well-typed RHTT program. We have also developed
a logic for discharging verification conditions that arise in the verification process.

Beyond what has been achieved in this article, much remains to be done. While
we can specify expressive program properties, and verify that programs comply with
them, it is currently impossible to reason about specifications themselves. For exam-
ple, we cannot reason that indirect inference (say using aggregation operators such as
average) do not lead to unwanted leaks. For that, one might need to reason about quan-
titative information flow and apply knowledge-based reasoning [Fagin et al. 1995].

Currently, RHTT does not support reasoning about trace-based, temporal properties.
(Thus RHTT cannot express arbitrary hyperproperties [Clarkson and Schneider 2010]
over a pair of traces. RHTT’s model only relates states at the beginning and end of a
trace.) For example, while it is intuitively clear that our specification of functions grant,
revoke, read salary (Example 2.5) indeed encodes a temporal discipline on the usage of
read salary (e.g., “no reads occur unless a grant has occurred and no revoke has oc-
curred after the grant”) this cannot be formally proved in our logic itself. We note that
very little is known on how enforcement of trace-based properties, in security or other
areas such as concurrency, interacts with type theoretic constructions such as higher-
order functions, abstract types or modules. The type systems of F7 and its successors
have taken steps towards proving trace properties like injective and noninjective cor-
respondence assertions in the context of message passing concurrency. We intend to
extend RHTT for trace-based properties in the context of reactive, nondeterministic
and concurrent higher-order languages.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:39

A related property is parametricity of the type system of Coq: that opaque sealing
does not divulge the actual implementation of the sealed data. This property has re-
cently been proved for a class of pure type systems (including the calculus of construc-
tions) by Bernardy et al. [2012]. The closest related proofs in the imperative world of
which we are aware, are the recent ones for ML with references [Ahmed et al. 2009]
and for separation logic [Birkedal and Yang 2008; Thamsborg et al. 2012]. The para-
metricity property can even be internalized into a pure type system [Bernardy and
Moulin 2012], enabling a form of reasoning similar to the logic of Plotkin and Abadi
[1993]. We intend to investigate in the future if and how this proof can be extended to
mutable state and our STsec types.

We also intend to investigate the use of relations other than equality, such as dis-
tance metrics and continuity (small changes to the distance of inputs cause small
changes to the distance of outputs), in the postconditions of STsec types. Such def-
initions may be particularly useful in the context of differential privacy guarantees
[Dwork et al. 2006; Reed and Pierce 2010].

ACKNOWLEDGMENTS

Thanks to Gilles Barthe, Alexey Gotsman, Boris Köpf, Jamie Morgenstern, Greg Morrisett, David Naumann
and Gordon Stewart for their comments on earlier drafts. We thank Trent Jaeger for his advice on improving
the presentation of the article. We thank the anonymous referees for their detailed comments on the article.

REFERENCES

Abadi, M., Banerjee, A., Heintze, N., and Riecke, J. G. 1999. A core calculus of dependency. In Proceedings of
the ACM Symposium on Principles of Programming Languages. 147–160.

Ahmed, A., Dreyer, D., and Rossberg, A. 2009. State-dependent representation independence. In Proceedings
of the ACM Symposium on Principles of Programming Languages. 340–353.

Amtoft, T., Bandhakavi, S., and Banerjee, A. 2006. A logic for information flow in object-oriented programs.
In Proceedings of the ACM Symposium on Principles of Programming Languages. 91–102.

Appel, A. W. and Felten, E. W. 1999. Proof-carrying authentication. In Proceedings of the ACM Conference
on Computer and Communications Security. 52–62.

Askarov, A. and Myers, A. 2010. A semantic framework for declassification and endorsement. In Proceedings
of the European Symposium on Programming. 64–84.

Askarov, A. and Sabelfeld, A. 2007. Gradual release: Unifying declassification, encryption and key release
policies. In Proceedings of the IEEE Symposium on Security and Privacy. 207–221.

Austin, T. H. and Flanagan, C. 2010. Permissive dynamic information flow analysis. In Proceedings of the
ACM Workshop on Programming Languages and Analysis for Security. 3:1–3:12.

Avijit, K., Datta, A., and Harper, R. 2010. Distributed programming with distributed authorization. In Pro-
ceedings of the ACM SIGPLAN International Workshop on Types in Languages Design and Implemen-
tation. 27–38.

Banerjee, A. and Naumann, D. A. 2005. Stack-based access control and secure information flow. J. Funct.
Program. 15, 2, 131–177.

Banerjee, A., Naumann, D. A., and Rosenberg, S. 2008. Expressive declassification policies and their modular
static enforcement. In Proceedings of the IEEE Symposium on Security and Privacy. 339–353.

Barthe, G., D’Argenio, P. R., and Rezk, T. 2004. Secure information flow by self-composition. In Proceedings
of the IEEE Computer Security Foundations Workshop. 100–114.

Bell, D. and LaPadula, L. 1973. Secure computer systems: Mathematical foundations. Tech. rep. MTR-2547,
MITRE Corp.

Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A. D., and Maffeis, S. 2011. Refinement types for secure
implementations. ACM Trans. Program. Lang. Syst. 33, 2, 8:1–8:45.

Benton, N. 2004. Simple relational correctness proofs for static analyses and program transformations. In
Proceedings of the ACM Symposium on Principles of Programming Languages. 14–25.

Beringer, L. 2010. Relational bytecode correlations. J. Logic. Algebr. Program. 79, 7, 483–514.
Bernardy, J.-P. and Moulin, G. 2012. A computational interpretation of parametricity. In Proceedings of the

IEEE Symposium on Logic in Computer Science. 135–144.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

6:40 A. Nanevski et al.

Bernardy, J.-P., Jansson, P., and Paterson, R. 2012. Proofs for free | parametricity for dependent types.
J. Funct. Program. 22, 2, 107–152.

Birgisson, A., Hedin, D., and Sabelfeld, A. 2012. Boosting the permissiveness of dynamic information-flow
tracking by testing. In Proceedings of the European Symposium on Research in Computer Security.
55–72.

Birkedal, L. and Yang, H. 2008. Relational parametricity and separation logic. Logical Meth. Comput. Sci.
4, 2:6, 1–27.

Borgström, J., Chen, J., and Swamy, N. 2011a. Verifying stateful programs with substructural state and
Hoare types. In Proceedings of the ACM SIGPLAN Workshop on Programming Languages Meets Pro-
gram Verification. 15–26.

Borgström, Gordon, A. D., and Pucella, R. 2011b. Roles, stacks, histories: A triple for Hoare. J. Funct. Pro-
gram. 21, 2, 159–207.

Broberg, N. and Sands, D. 2010. Paralocks: Role-based information flow control and beyond. In Proceedings
of the ACM Symposium on Principles of Programming Languages. 431–444.

Chaudhuri, A. and Garg, D. 2009. PCAL: Language support for proof-carrying authorization systems. In
Proceedings of the European Symposium on Research in Computer Security. 184–199.

Chong, S. and Myers, A. C. 2004. Security policies for downgrading. In Proceedings of the ACM Conference
on Computer and Communications Security. 198–209.

Chong, S. and Myers, A. C. 2005. Language-based information erasure. In Proceedings of the IEEE Computer
Security Foundations Workshop. 241–254.

Chong, S. and Myers, A. C. 2008. End-to-end enforcement of erasure and declassification. In Proceedings of
the IEEE Computer Security Foundations Symposium. 98–111.

Clarkson, M. R. and Schneider, F. B. 2010. Hyperproperties. J. Comput. Security 18, 6, 1157–1210.
Coq development team. 2009. The Coq proof assistant reference manual. LogiCal project, INRIA. Version 8.2.
de Roever, W.-P. and Engelhardt, K. 1998. Data Refinement: Model-Oriented Proof Methods and their Com-

parison. Cambridge University Press.
Denning, D. 1976. A lattice model of secure information flow. Commun. ACM 19, 5, 236–242.
Dijkstra, E. W. 1975. Guarded commands, nondeterminacy and formal derivation of program. Commun.

ACM 18, 8, 453–457.
Dwork, C., McSherry, F., Nissim, K., and Smith, A. 2006. Calibrating noise to sensitivity in private data

analysis. In Proceedings of the Theory of Cryptography Conference. 265–284.
Fagin, R., Halpern, J. Y., Moses, Y., and Vardi, M. Y. 1995. Reasoning About Knowledge. MIT Press.
Goguen, J. and Meseguer, J. 1982. Security policies and security models. In Proceedings of the IEEE Sympo-

sium on Security and Privacy. 11–20.
Gries, D. 1993. Data refinement and the transform. In Program Design Calculi, M. Broy Ed., Springer.
Harper, R. and Lillibridge, M. 1994. A type-theoretic approach to higher-order modules with sharing. In

Proceedings of the ACM Symposium on Principles of Programming Languages. 123–137.
Jia, L. and Zdancewic, S. 2009. Encoding information flow in Aura. In Proceedings of the ACM Workshopon

Programming Languages and Analysis for Security. 17–29.
Jia, L., Vaughan, J. A., Mazurak, K., Zhao, J., Zarko, L., Schorr, J., and Zdancewic, S. 2008. AURA: A pro-

gramming language for authorization and audit. In Proceedings of the International Conference on Func-
tional Programming. 27–38.

Leroy, X. 1994. Manifest types, modules, and separate compilation. In Proceedings of the ACM Symposium
on Principles of Programming Languages. 109–122.

Li, P. and Zdancewic, S. 2010. Arrows for secure information flow. Theor. Comput. Sci. 411, 19, 1974–1994.
Martin-Löf, P. 1984. Intuitionistic Type Theory. Bibliopolis.
Mitchell, J. C. and Plotkin, G. D. 1988. Abstract types have existential type. ACM Trans. Program. Lang.

Syst. 10, 3, 470–502.
Morgenstern, J. and Licata, D. 2010. Security-typed programming within dependently-typed programming.

In Proceedings of the International Conference on Functional Programming. 169–180.
Myers, A. C. 1999. JFlow: Practical mostly-static information flow control. In Proceedings of the ACM Sym-

posium on Principles of Programming Languages. 228–241.
Nanevski, A., Morrisett, J. G., and Birkedal, L. 2008. Hoare type theory, polymorphism and separation. J.

Funct. Program. 18, 5–6, 865–911.
Nanevski, A., Banerjee, A., and Garg, D. 2011. Verification of information flow and access control policies

via dependent types. In Proceedings of the IEEE Symposium on Security and Privacy. 165–179.

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

�

�

�

�

�

�

�

�

Dependent Type Theory for Verification of Information Flow and Access Control Policies 6:41

Nanevski, A., Vafeiadis, V., and Berdine, J. 2010. Structuring the verification of heap-manipulating pro-
grams. In Proceedings of the ACM Symposium on Principles of Programming Languages. 261–274.

Norell, U. 2007. Towards a practical programming language based on dependent type theory. Ph.D. thesis,
Chalmers University of Technology.

Peyton Jones, S. L. and Wadler, P. 1993. Imperative functional programming. In Proceedings of the ACM
Symposium on Principles of Programming Languages. 71–84.

Plotkin, G. D. and Abadi, M. 1993. A logic for parametric polymorphism. In Typed Lambda Calculus and
Applications. 361–375.

Reed, J. and Pierce, B. C. 2010. Distance makes the types grow stronger. In Proceedings of the International
Conference on Functional Programming. 157–168.

Reynolds, J. C. 1981. The Craft of Programming. Prentice-Hall.
Reynolds, J. C. 2002. Separation logic: A logic for shared mutable data structures. In Proceedings of the

IEEE Symposium on Logic in Computer Science. 55–74.
Russo, A., Claessen, K., and Hughes, J. 2008. A library for light-weight information-flow security in Haskell.

In Proceedings of the Haskell Symposium. 13–24.
Russo, A., Sabelfeld, A., and Chudnov, A. 2009. Tracking information flow in dynamic tree structures. In

Proceedings of the European Symposium on Research in Computer Security. 86–103.
Sabelfeld, A. and Sands, D. 1999. A PER model of secure information flow in sequential programs. In Pro-

ceedings of the European Symposium on Programming. 40–58.
Sabelfeld, A. and Sands, D. 2009. Declassification: Dimensions and principles. J. Computer Security 17, 5,

517–548.
Simonet, V. 2002. Fine-grained information flow analysis for a λ-calculus with sum types. In Proceedings of

the IEEE Computer Security Foundations Workshop. 223–237.
Swamy, N., Hicks, M., Tse, S., and Zdancewic, S. 2006. Managing policy updates in security-typed languages.

In Proceedings of the IEEE Computer Security Foundations Workshop. 202–216.
Swamy, N., Corcoran, B. J., and Hicks, M. 2008. Fable: A language for enforcing user-defined security policies.

In Proceedings of the IEEE Symposium on Security and Privacy. 369–383.
Swamy, N., Chen, J., and Chugh, R. 2010. Enforcing stateful authorization and information flow policies in

Fine. In Proceedings of the European Symposium on Programming. 529–549.
Swamy, N., Chen, J., Fournet, C., Strub, P.-Y., Bhargavan, K., and Yang, J. 2011. Secure distributed pro-

gramming with value-dependent types. In Proceedings of the International Conference on Functional
Programming. 266–278.

Terauchi, T. and Aiken, A. 2005. Secure information flow as a safety problem. In Proceedings of the Static
Analysis Symposium. 352–367.

Thamsborg, J., Birkedal, L., and Yang, H. 2012. Two for the price of one: Lifting separation logic assertions.
Logical Meth. Comput. Sci. 8, 3.

Volpano, D. M., Irvine, C. E., and Smith, G. 1996. A sound type system for secure flow analysis. J. Computer
Security 4, 2/3, 167–188.

Yang, H. 2007. Relational separation logic. Theor. Comput. Sci. 375, 308–334.
Yang, H. and O’Hearn, P. W. 2002. A semantic basis for local reasoning. In Proceedings of the International

Conference on Foundations of Software Science and Computational Structures. 402–416.

Received May 2012; revised January 2013; accepted March 2013

ACM Transactions on Programming Languages and Systems, Vol. 35, No. 2, Article 6, Publication date: July 2013.

