
RepliComment: Identifying Clones in Code Comments

Arianna Blasi♣♠· Alessandra Gorla♠

♣Università della Svizzera italiana
(USI), Lugano, Switzerland

♠IMDEA Software Institute,
Madrid, Spain

ABSTRACT
Code comments are the primary means to document implementa-
tion and ease program comprehension. Thus, their quality should
be a primary concern to improve program maintenance. While a
lot of effort has been dedicated to detect bad smell in code, little
work focuses on comments. In this paper we start working in this
direction by detecting clones in comments. Our initial investiga-
tion shows that even well known projects have several comment
clones, and just as clones are bad smell in code, they may be for
comments. A manual analysis of the clones we identified revealed
several issues in real Java projects.

KEYWORDS
Code comments, Software quality, Clones, Bad smell
ACM Reference Format:
Arianna Blasi

♣♠
· Alessandra Gorla

♠
. 2018. RepliComment: Identifying

Clones in Code Comments. In Proceedings of ICPC ’18: 26th IEEE/ACM
International Confernece on Program Comprehension , Gothenburg, Sweden,
May 27–28, 2018 (ICPC ’18), 4 pages.
https://doi.org/10.1145/3196321.3196360

1 INTRODUCTION
It is standard practice for developers to document their projects by
means of informal documentation in natural language. The Javadoc
markup language, for instance, is the de-facto standard to document
procedures and classes in Java projects. Similar semi-structured
languages are available for other programming languages. Given
that many projects have code comments as the only documenta-
tion to ease program comprehension, their quality should be of
primary concern to improve code maintenance. The quality of code
comments is important also because there are many techniques
that use comments to automate software engineering tasks, such as
generating test cases and synthesizing code [3, 12, 13, 15]. Without
comments of high quality, the effectiveness of these techniques
cannot be guaranteed.

Our research roadmap is to develop techniques to support de-
velopers in identifying and fixing issues that affect the quality of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5714-2/18/05. . . $15.00
https://doi.org/10.1145/3196321.3196360

comments. As a starting point of our research, we aim to identify
and report comment clones. Our main hypothesis is that clones in
comments may be the result of bad practice, and just as clones in
code, they should be identified and fixed.

Comment clones can highlight different issues: They may be
instances of copy and paste errors, and therefore comments may
not match their corresponding implementation. Otherwise, they
may simply provide poor information, which may not be useful to
understand the semantic of the implementation. Although these
cases are not issues per se, our analysis shows that most of the
times these clones point to documentation that could be improved.

Corazza et al. conducted a manual assessment on the coher-
ence between the comments and the implementation, and found
instances of comment clones [2]. Similarly, Arnaoudova et al. [1]
found some comment clones in their study about Linguistic An-
tipatterns in software. 93% of interviewed developers considered
such issues as a poor/very poor practice. These studies show that
the comment clone problem exists and it is relevant for developers.

In this paper we present RepliComment, a technique that au-
tomatically identifies comment clones, which may be symptoms
of issues that developers want to fix. We used RepliComment to
analyze the code base of 10 well-established Java projects. Our
preliminary evaluation highlights that even solid and well known
projects contain comment clones, and several of them should be
analyzed and fixed by developers to improve the quality of docu-
mentation.

The remainder of this paper is structured as follows: Section 2
presents some real examples of comment clones, which may iden-
tify issues, or may be legitimate cases. Section 3 describes Repli-
Comment, our technique and corresponding prototype to identify
comment clones. Section 4 presents the results of our preliminary
evaluation. Section 5 discusses some related work, and Section 6
concludes and discusses the future research direction of this work.

2 COMMENT CLONES
We found that there exist very different types of comment clones.
In this section we try to highlight the most common scenarios. The
comment clones we are mostly interested in are the ones that are
misleading and do not match the implementation they document.

One example of this type of clone is the following, which we
found in the Google guava project in release 19:1

1 /∗∗
2 ∗ @return true if this matcher matches every character in the
3 ∗ sequence, including when the sequence is empty.

1http://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/
CharMatcher.html#matchesNoneOf(java.lang.CharSequence)

1

https://doi.org/10.1145/3196321.3196360
https://doi.org/10.1145/3196321.3196360
http://google.github.io/guava/releases/19.0/api/docs/com/google /common/base/CharMatcher.html#matchesNoneOf(java.lang.CharSequence)
http://google.github.io/guava/releases/19.0/api/docs/com/google /common/base/CharMatcher.html#matchesNoneOf(java.lang.CharSequence)

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden A. Blasi and A. Gorla

4 ∗/
5 public boolean matchesAllOf(CharSequence sequence)
6 { . . . }

1 /∗∗
2 ∗ @return true if this matcher matches every character in the
3 ∗ sequence, including when the sequence is empty.
4 ∗/
5 public boolean matchesNoneOf(CharSequence sequence)
6 { . . . }

Sample 1: Comment clone due to copy and paste error.

In this example, the Javadoc @return tag of method match-
esNoneOf() is a clone of method matchesAllOf(), offered by the
same class CharMatcher. It is easy to see that the return comment
of the second method does not match the semantic of its name,
while it does match the semantic of matchesAllOf(). This clone is
an example of a copy and paste error. It is likely that developers
first implemented method matchesAllOf(), and later implemented
matchesNoneOf() starting from a copy of the first method. The
two methods have a similar purpose, i.e., to filter a collection of
elements. However the filter they apply is different. In the first case
the filter returns all the elements matching a given pattern, while
in the second case it returns all the elements that do not match the
given pattern. Copying comments is not intrinsically bad practice,
unless developers forget to modify the pasted comment according
to the implementation, as in this case. This is a type of problem we
want to identify and report to developers, so they can fix it.

Comment clones may also be examples of poor information that
could be improved to offer a better understanding for developers.
See the following example in the Hadoop project, release 2.6.5:
1 /∗∗
2 ∗ @return true or false
3 ∗/
4 @InterfaceAudience.Public
5 @InterfaceStability.Evolving
6 public synchronized static boolean isLoginKeytabBased()

throws IOException {
7 { . . . }

1 /∗∗
2 ∗ @return true or false
3 ∗/
4 public static boolean isLoginTicketBased() throws IOException {
5 { . . . }

Sample 2: Comment clone of poor information.

These two methods offered by class UserGroupInformation have
exactly the same comment regarding the postcondition. It states that
the methods return either true or false, which is correct. However,
the documentation is little informative, since any boolean method
returns either true or false. A more useful documentation should
state what the boolean value represents. Such clones are symptoms
of documentation that could be improved, and thus we aim to report
them as well.

Finally, comment clones may occur for legitimate reasons, as
when two methods offer the same functionality. See the following
example:

1 /∗∗
2 ∗ Deletes a single document by unique ID
3 ∗ @param collection the Solr collection to delete the document from
4 ∗ @param id the ID of the document to delete
5 ∗/
6 public UpdateResponse deleteById(String collection, String id)
7 { . . . }

1 /∗∗
2 ∗ Deletes a single document by unique ID
3 ∗ @param id the ID of the document to delete
4 ∗/
5 public UpdateResponse deleteById(String id)
6 { . . . }

Sample 3: Legitimate comment clone due to method overloading.

This example can be found in class SolrClient of Apache solr, re-
lease 7.1.0. The clone in this case affects the free-text in the Javadoc
comments. Methods deleteById(), however, are an example of func-
tion overloading. Given that they have similar purposes, it is legiti-
mate that their method descriptions are identical. The difference
between these two methods, which lays in their parameter lists, is
properly documented through custom @param tags.

3 DETECTING COMMENT CLONES
The aim of RepliComment is to find comment clones and report
them to developers so they can provide a proper correction. Our
preliminary implementation focuses on Javadoc comments. They
may refer to classes ormethods, and usually include a short free-text
description followed by paragraphs semi-structured with tags. In
case of methods, the tags can describe parameters, return values and
exceptional behavior. Given their block structure, we believe they
are more susceptible to copy-paste practice than inline comments.

Our research work started by studying several projects. The
analysis identified the three main types of clones that we presented
in Section 2. While we are interested in reporting the first two
instances of clones, since developers should either fix them (Sample
1) or could provide better documentation (Sample 2), we do not
want to report clones of the last instance, since they are legitimate.
Beside overloading and overriding, which are obvious cases, there
are many reasons why a comment clone may be legitimate – a
parameter may be common to different methods, as well as thrown
exceptions, and these cases correctly share the same documentation.
With RepliComment we aim to exclude as many legitimate cases
of comment clones as possible, since we want developers to focus
on the critical comment clones. RepliComment takes the URL of
a project’s GIT repository, and reports comment clones in such
project working along the following steps:

(1) It clones the source code of the project, and identifies source
code files to analyze.

(2) For each source, RepliComment identifies the list of methods,
and for each method it parses the Javadoc classifying each
paragraph as:
• free-text, which is the paragraph that may be present at
the beginning of the block comment.
• @param tags, which are the comment blocks that describe
parameters.

2

RepliComment: Identifying Clones in Code Comments ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

• @return tag, which is a block of comment that describes
the return value of the method.
• @throws tags, which are comment blocks describing pos-
sible exceptional behaviors.

RepliComment extracts and parses each Javadoc comment
block by means of the JavaParser library.2

(3) RepliComment compares each separate block with the same
type of comment of other methods of the same source file. So,
it compares each @param tag comment with other @param
comments and so on. RepliComment currently only works
at the file granularity level, but in the future we plan to
extend it to other granularity levels (e.g. package or project).
However, we believe that most copy and paste errors for
comments occur within the same file.

(4) When RepliComment finds that two ormore blocks of Javadoc
comment are clones, it runs automatic checks to decide
whether the clone might be legitimate or not. RepliCom-
ment considers a clone as potentially legitimate, and thus
does not report it, if it falls in one of the following cases: 1)
the clones belong to methods with equal names (as it is the
case for function overload and override), 2) the comment
describes the same exception type, and 3) the clones affect
parameters that have the same name. Notice that when devel-
opers clone an entire block of Javadoc (e.g. free-text together
with all the tags), they will copy also parameters names. A
trivial automated check would think that @param tags clone
are legitimate, even if they refer to non-existing parameters
for a method. We avoid this problem by checking the co-
herence between @param tags and the list of parameters of
the documented method. When incoherent, RepliComment
reports the clone as non-legitimate.

(5) Clones that are classified as potentially problematic, i.e. those
that do not fall in the previously mentioned cases, are stored
in a CSV file with the following information: 1) fully qual-
ified name of the class; 2) signature of the first method; 3)
signature of the second method; 4) type of cloned Javadoc
comment (i.e., free-text, @param, @return or @throws); and
5) cloned text.

The CSV file that RepliComment generates must then be manually
inspected, as it may contain other legitimate clones which should
be ignored. In the next section we present a preliminary empirical
evaluation of using RepliComment on real Java projects.

4 EARLY EMPIRICAL EVALUATION
For our empirical evaluation we selected and analyzed 10 projects
among the most popular and largest repositories on GitHub. We
used RepliComment to analyze the whole set of Java source files,
and for the purpose of the study we keep track of any comment
clone that it reported, whether legitimate or not.

For each project we manually analyzed every clone stored in
the CSV. We mostly focused our attention on cases that RepliCom-
ment reports as non-legitimate, since they likely indicate an issue.
We manually analyzed the clones that RepliComment report as
“legitimate”, to assure the correctness of their classification. We
could easily confirm some non-legitimate clones as potential issues
2https://github.com/javaparser/javaparser

Table 1: List of analyzed projects with corresponding com-
ment clones identified by RepliComment

Project Legit C&P Poor info Unclear Total

elasticsearch-6.1.1 877 12 8 1 898
hadoop-common-2.6.5 297 7 19 0 312
vertx-core-3.5.0 5559 7 0 2 5568
spring-core-5.0.2 270 4 3 1 278
hadoop-hdfs-2.6.5 76 3 23 0 102
log4j-1.2.17 3757 2 0 0 3759
guava-19.0 267 1 0 0 268
rxjava-1.3.5 2301 0 0 0 2301
lucene-core-7.2.1 182 0 0 0 182
solr-7.1.0 539 0 0 0 539

Total 14141 36 53 4

by reading the method signatures. In most cases it was easy to
understand which method was correctly associated to a comment
and which one is the result of a copy-paste error. For other cases,
instead, it was necessary to look at the source code. In rare cases,
it was not possible to establish which comment was the right one
and which one was the clone.

Table 1 shows the results of our manual examination of the
automatically produced reports. The “Legit” column shows the
amount of comment clones that turned out to be legitimate after our
manual evaluation. The “C&P” column stands for "Copy and paste",
and it contains the number of clones that are probably the results of
a comment copied from one method and then just pasted to another
one without further corrections. The “Poor Info” column contains
the amount of comment clones that give generic information that
could potentially document a large number of methods at the same
time. Most of these cases represent documentation that could be
improved with more specific information. A comment clone that
we often found was “throws Exception on error”. Such a comment
can describe any kind of documented exception. Still, it is not useful
for a developer, since it does not describe the conditions that raise
the exception. The last column reports the comment clones that we
could not properly classify. We found only 4 of such cases.

Overall, we found 89 relevant issues across the 10 projects, plus
4 clones for which the classification was not sure. The 89 issues
include 36 copy and paste errors, which we consider critical issues
that should be fixed, and 53 instances of comments that could be
improved. Copy and paste issues are present in 7 projects out of
the 10 we analyzed, while the poor information issues are only in 4
out of 10. An interesting finding is that 79% of the 53 cases of poor
information belong to a single project (Hadoop). It is reasonable to
suppose that developers maintain the same documentation style
within the same project, and probably Hadoop developers do not
mind having generic information documenting their code. It is also
interesting to notice that only 3 projects out of the 10 we analyzed
do not contain any issue: rxjava, lucene-core and solr.

5 RELATEDWORK
A lot of work on clone detection focuses on code [10]. Typically,
code clone detection techniques remove comments, as well as
whitespaces and tabs, from the source code to eliminate spurious

3

https://github.com/javaparser/javaparser

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden A. Blasi and A. Gorla

information [4, 6, 10]. Indeed, considering comments while search-
ing for code clones could lead to miss some relevant code clones
that differ in their comment descriptions. The work by Marcus et
al. is an exception to this practice [8]. Their code clone detection
technique actually performs better with comments, since comments
carry relevant information, as the authors themselves acknowledge.
Marcus et al., however, do not report comment clones per se, as
RepliComment does. Mayrand et al. also recognize the value of
code comments, since metrics such as code volume identify similar
layouts (i.e. possible code clones) inside the source code, and com-
ments help in this respect [9]. Nonetheless, the aim of our work is
different from general code clone detection. The Javadoc clones that
RepliComment report typically do not identify similar nor equal
method implementations. The problem we tackle is actually the
opposite: two methods, with properly different implementations,
may erroneously have the same comment because it was copied
and pasted from another method.

Our long term aim is to address low quality documentation issues,
and somework on this respect has been done. Steidl et al. have some
purposes in common with our work [11]. They study techniques to
assess the coherence between comment and code. They compare the
lexical similarity of comment and code to verify if the same terms
are used, with an edit distance of 2. Their work could identify some
copy-paste issues. However, most of the legitimate clones we found
in our experiment would be wrongly reported as non-legitimate
by such a technique. We believe this problem can be addressed
more precisely, for example, via a more comprehensive semantic
analysis. Khamis et al. developed JavadocMiner [5], a tool that
assesses the overall quality of Javadoc comments. They measure the
comment quality through classic NLP metrics (such as readability
index). However their main purpose is to verify that the Javadoc
standard is correctly used - e.g., @param tags comment should
start with the name of the documented parameter. Another work
about comment quality by Zhong et al. [14] focuses on detecting
syntax errors and broken code names. These techniques nicely
complement RepliComment.

6 CONCLUSIONS AND FUTUREWORK
The purpose of our work is to help developers to identify and fix
issues in code documentation. We started working in this direction
by focusing on comment clones. We implemented RepliComment, a
prototype to automate the identification and classification of source
comment clones that may be worth attention.

As future work we foresee many tasks. First and foremost, we
aim to introduce new heuristics to better classify comment clones.
Secondly, we plan to further automate the analysis after the clas-
sification of a comment clone. In presence of copy-paste issues,
for instance, we could automatically identify which method is the
source, and thus which comment should be fixed by developers. We
could employ natural language analysis on the cloned comment and
their corresponding method signatures, and report the mismatch-
ing cases. There are different techniques in the state of the art to
asses document similarities, such as Word Embedding [7]. We could
compare the semantic of method names with the semantic of their
corresponding comments. We would report as likely to fix the com-
ment clone whose method name is less similar to the comment. The

analysis for “poor information” clones could benefit from additional
metrics. There exist different metrics to assess text characteristics,
such as its complexity, its quality and the quantity of information it
describes. The example reported in Section 4 “@throws exception
on error” would likely be classified by these metrics as poor text,
and thus not informative. We could integrate these metrics into
RepliComment to improve its ability to classify comment clones.
Last but not least, we would like RepliComment to be properly in-
tegrated into an IDE to automatically notify developers while they
write code and corresponding comments with warning messages
such as “This comment seems to belong to method X, and not to
method Y. Verify this clone and correct the comment for method
Y if necessary”, or “This comment includes generic information.
Please provide better description”.

The code of RepliComment is open source and available at:
https://github.com/ariannab/replicomment

ACKNOWLEDGMENTS
This work was supported by the EU FP7-PEOPLE-COFUND project
AMAROUT II (n. 291803), by the Spanish project DEDETIS, and
by the Madrid Regional project N-Greens Software (n. S2013/ICE-
2731).

REFERENCES
[1] V. Arnaoudova, L. Eshkevari, R. Oliveto, Y.-G. Gueheneuc, and G. Antoniol. Physi-

cal and conceptual identifier dispersion: Measures and relation to fault proneness.
In ICSM 2010: 26th IEEE International Conference on Software Maintenance, pages
1–5, 2010.

[2] A. Corazza, V. Maggio, and G. Scanniello. Coherence of comments and method
implementations: a dataset and an empirical investigation. SQJ, pages 1–27, 2016.

[3] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè. Automatic generation of oracles
for exceptional behaviors. In ISSTA 2016, Proceedings of the 2016 International
Symposium on Software Testing and Analysis, pages 213–224, 2016.

[4] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. TSE, 28(7):654–670, 2002.

[5] N. Khamis, R. Witte, and J. Rilling. Automatic quality assessment of source code
comments: the JavadocMiner. In NLDB 2010: 15th International Conference on
Natural Language & Information Systems, pages 68–79. Springer, 2010.

[6] J. Krinke. A study of consistent and inconsistent changes to code clones. In
WCRE 2007: 14th Working Conference on Reverse Engineering, pages 170–178, 2007.

[7] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger. From word embeddings
to document distances. In ICML 2015: Proceedings of the 32nd International
Conference on Machine Learning, pages 957–966, 2015.

[8] A. Marcus and J. I. Maletic. Identification of high-level concept clones in source
code. In ASE 2011: Proceedings of the 26th Annual International Conference on
Automated Software Engineering, pages 107–114, 2011.

[9] J. Mayrand, C. Leblanc, and E. M. Merlo. Experiment on the automatic detection
of function clones in a software system using metrics. In ICSM ’96: Proceedings
of the International Conference on Software Maintenance, 1996.

[10] C. K. Roy and J. R. Cordy. A survey on software clone detection research. Tech-
nical Report 2007-541, Queen’s University, School of Computing, 2007.

[11] D. Steidl, B. Hummel, and E. Juergens. Quality analysis of source code comments.
In ICPC 2013: Proceedings of the 21st IEEE International Conference on Program
Comprehension, pages 83–92, 2013.

[12] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @tComment: Testing Javadoc
comments to detect comment-code inconsistencies. In ICST 2012: 5th International
Conference on Software Testing, Verification and Validation, pages 260–269, 2012.

[13] J. Zhai, J. Huang, S. Ma, X. Zhang, L. Tan, J. Zhao, and F. Qin. Automatic model
generation from documentation for Java API functions. In ICSE 2016: Proceedings
of the 38th International Conference on Software Engineering, pages 380–391, 2016.

[14] H. Zhong and Z. Su. Detecting api documentation errors. In OOPSLA 2013,
Object-Oriented Programming Systems, Languages, and Applications, pages 803–
816, 2013.

[15] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall. Analyzing APIs
documentation and code to detect directive defects. In ICSE 2017: Proceedings of
the 39th International Conference on Software Engineering, pages 27–37, 2017.

4

https://github.com/ariannab/replicomment

	Abstract
	1 Introduction
	2 Comment Clones
	3 Detecting comment clones
	4 Early empirical evaluation
	5 Related work
	6 Conclusions and future work
	References

