
Automated Test Input Generation for Android:
Are We There Yet?

Shauvik Roy Choudhary
Georgia Institute of Technology, USA

Email: shauvik@cc.gatech.edu

Alessandra Gorla
IMDEA Software Institute, Spain

Email: alessandra.gorla@imdea.org

Alessandro Orso
Georgia Institute of Technology, USA

Email: orso@cc.gatech.edu

Abstract—Like all software, mobile applications (“apps”) must
be adequately tested to gain confidence that they behave correctly.
Therefore, in recent years, researchers and practitioners alike
have begun to investigate ways to automate apps testing. In
particular, because of Android’s open source nature and its large
share of the market, a great deal of research has been performed
on input generation techniques for apps that run on the Android
operating systems. At this point in time, there are in fact a number
of such techniques in the literature, which differ in the way they
generate inputs, the strategy they use to explore the behavior
of the app under test, and the specific heuristics they use. To
better understand the strengths and weaknesses of these existing
approaches, and get general insight on ways they could be made
more effective, in this paper we perform a thorough comparison
of the main existing test input generation tools for Android. In
our comparison, we evaluate the effectiveness of these tools, and
their corresponding techniques, according to four metrics: ease
of use, ability to work on multiple platforms, code coverage, and
ability to detect faults. Our results provide a clear picture of the
state of the art in input generation for Android apps and identify
future research directions that, if suitably investigated, could lead
to more effective and efficient testing tools for Android.

I. INTRODUCTION

In the past few years, we have witnessed an incredible
growth of the mobile applications (or simply, “apps”) business.
Apps, like all software, must be adequately tested to gain
confidence that they behave correctly. It is therefore not
surprising that, with such a growth, the demand for tools
for automatically testing mobile apps has also grown, and
with it the amount of research in this area. Most of the
researchers’ and practitioners’ efforts in this area target the
Android platform, for multiple reasons. First and foremost,
Android has the largest share of the mobile market at the
moment, which makes this platform extremely appealing for
industry practitioners. Second, due to the fragmentation of
devices and OS releases, Android apps often suffer from
cross-platform and cross-version incompatibilities, which makes
manual testing of these apps particularly expensive—and thus,
particularly worth automating. Third, the open-source nature
of the Android platform and its related technologies makes it
a more suitable target for academic researchers, who can get
complete access to both the apps and the underlying operating
system. In addition, Android apps are developed in Java. Even
if they are compiled into Dalvik bytecode, which significantly
differs from Java bytecode, there exist multiple frameworks
that can transform Dalvik bytecode into formats that are more
familiar and more amenable to analysis and instrumentation
(e.g., Java Bytecode [26], Jimple [7], and smali [29]). For all
these reasons, there has been a great deal of research in static

analysis and testing of Android apps. In the area of testing, in
particular, researchers have developed techniques and tools to
target one of the most expensive software testing activities: test
input generation. There are in fact a number of these techniques
in the literature nowadays, which differ in the way they generate
inputs, the strategy they use to explore the behavior of the app
under test, and the specific heuristics they use. It is however
still unclear what are the strengths and weaknesses of these
different approaches, how effective they are in general and with
respect to one another, and if and how they could be improved.

To answer these questions, in this paper we present a
comparative study of the main existing tool-supported test
input generation techniques for Android.1 The goal of the
study is twofold. The first goal is to assess these techniques
(and corresponding tools) to understand how they compare
to one another and which ones may be more suitable in
which context (e.g., type of apps). Our second goal is to get
a better understanding of the general tradeoffs involved in
test input generation for Android and identify ways in which
existing techniques can be improved or new techniques be
defined. In our comparison, we ran the tools considered on
over 60 real-world apps, while evaluating their usefulness
along several dimensions: ease of use, ability to work on
multiple platforms, code coverage, and fault detection. We
evaluated the ease of use of the tools by assessing how difficult
it was to install and run them and the amount of manual
work involved in their use. Although this is a very practical
aspect, and one that normally receives only limited attention
in research prototypes, (reasonable) ease of use can enable
replication studies and allow other researchers to build on
the existing technique and tool. Because of the fragmentation
of the Android ecosystem, another important characteristic
for the tools considered is their ability to work on different
hardware and software configurations. We therefore considered
and assessed also this aspect of the tools, by running them on
different versions of the Android environment. We considered
coverage because test input generation tools should be able to
explore as much behavior of the app under test as possible,
and code coverage is typically used as a proxy for that. We
therefore used the tools to generate test inputs for each of the
apps considered and measured the coverage achieved by the
different tools on each app. Although code coverage is a well
understood and commonly used measure, it is normally a gross
approximation of behavior. Ultimately, test input generation
tools should generate inputs that are effective at revealing faults
in the code under test. For this reason, in our study we also

1As discussed in Section III, we had to exclude some tools from our study.



measured how many of the inputs generated by a tool resulted
in one or more failures (identified as uncaught exceptions) in
the apps considered. We also performed additional manual and
automated checks to make sure that the thrown exceptions
represented actual failures.

Our results show that, although the existing techniques and
tools we studied are effective, they also have weaknesses and
limitations, and there is room for improvement. In our analysis
of the results, we discuss such limitations and identify future
research directions that, if suitably investigated, could lead to
more effective and efficient testing tools for Android. To allow
other researchers to replicate our studies and build on our work,
we made all of our experimental infrastructure and data publicly
available at http://www.cc.gatech.edu/∼orso/software/androtest.

The main contributions of this paper are:
• A survey of the main existing tool-supported test input

generation techniques for Android apps.
• An extensive comparative study of such techniques

and tools performed on over 60 real-world apps.
• An analysis of the results that discusses strengths and

weaknesses of the different techniques considered and
highlights possible future directions in the area.

• A set of artifacts, consisting of experimental infras-
tructure as well as data, that are freely available and
allow for replicating our work and building on it.

The remainder of the paper is structured as follows. Sec-
tion II provides background information on Android. Section III
discusses the test input generation techniques and tools that
we consider in our study. Section IV describes our study setup
and presents our results. Section V analyzes and discusses our
findings. Finally, Section VI concludes the paper.

II. THE ANDROID PLATFORM AND APPS

Android apps run on top of a stack of three other main
software layers. The Android framework provides an API such
that apps can access facilities without dealing with the low
level details of the operating system. So far, there have been
20 different framework releases and consequent changes in
the API. Framework versioning is the first element that causes
the fragmentation problem in Android. Since it takes several
months for a new framework release to become predominant
on Android devices, most of the devices in the field run older
versions of the framework. Android developers thus constantly
have to make an effort to make their apps compatible with
older framework versions.

At runtime, the Zygote daemon creates a separate Dalvik
Virtual Machine (Dalvik VM) for each running app, where a
Dalvik VM is a register-based VM that can interpret Dalvik
bytecode. The most recent version of Android includes radical
changes in the runtime layer, as it introduces ART (i.e., Android
Run-Time), a new runtime environment that dramatically
improves app performance and will eventually replace the
Dalvik VM. The custom Linux kernel, which stands at the
bottom of the Android software stack, provides the main
functionality of the system. A set of native code libraries,
such as WebKit, libc and SSL, communicate directly with the
kernel and provide basic hardware abstractions to the runtime
layer.

Android apps are mainly written in Java, although it is
often the case that developers include native code to improve
their performance. Java source code first gets compiled into
Java bytecode, then translated into Dalvik bytecode, and finally
stored into a machine executable file in .dex format. Apps
are finally distributed in the form of apk files, which are
compressed folders containing dex files, native code (whenever
present), and other application resources. Android apps declare
in the AndroidManifest.xml file their main components, which
can be of four different types:

Activities are the components in charge of an app’s user
interface. Each activity is a window containing various UI
elements, such as buttons and text areas. Developers can control
the behavior of each activity by implementing appropriate
callbacks for each life-cycle phase (i.e., created, paused,
resumed, and destroyed). Activities react to user input events
such as clicks, and consequently are the primary target of
testing tools for Android.

Services are application components that can perform long-
running operations in the background. Unlike activities, they do
not provide a user interface, and consequently they are usually
not a direct target of Android testing tools, although they might
be indirectly tested through some activities.

Broadcast Receivers and Intents allow inter-process com-
munication. Apps can register broadcast receivers to be notified,
by means of intents, about specific system events. Apps can
thus, for instance, react whenever a new SMS is received,
a new connection is available, or a new call is being made.
Broadcast receivers can either be declared in the manifest file
or at runtime, in the app’s code. In order to properly explore
the behavior of an app, testing tools should be aware of what
are the relevant broadcast receivers, so that they could trigger
the right intents.

Content Providers act as a structured interface to shared
data stores, such as contacts and calendar databases. Apps may
have their own content providers and may make them available
to other apps. Like all software, the behavior of an app may
depend on the state of such content providers (e.g., on whether
a list of contacts is empty or whether it contains duplicates). As
a consequence, testing tools should “mock” content providers
in an attempt to make tests deterministic and achieve higher
coverage of an app’s behavior.

Despite being GUI-based and mainly written in Java,
Android apps significantly differ from Java standalone GUI
applications and manifest somehow different kinds of bugs [14],
[15]. Existing test input generation tools for Java [12], [21],
[22] cannot therefore be straightforwardly used to test Android
apps, and custom tools must be created instead. For this reason,
a great deal of research has been performed in this area, and
several test input generation techniques and tools for Android
apps have been proposed. The next section provides an overview
of the main existing tools in this arena.

III. EXISTING ANDROID TESTING TOOLS: AN OVERVIEW

The primary goal of input generation tools for Android is
to detect existing faults in apps under test. App developers
are thus typically the main stakeholders for these tools, as by
using the tools they can automatically test their apps and fix
discovered issues before deploying them. The dynamic traces

http://www.cc.gatech.edu/~orso/software/androtest


TABLE I. OVERVIEW OF INPUT GENERATION TOOLS FOR ANDROID APPS. THE ROWS FOR TOOLS CONSIDERED IN OUR STUDY ARE HIGHLIGHTED.

Name Available Instrumentation Events Exploration
strategy

Needs source
code

Testing
strategy

Platform App UI System
Monkey [24] X × × X × Random × Black-box

Dynodroid [18] X X × X X Random × Black-box
DroidFuzzer [34] X × × × × Random × Black-box
IntentFuzzer [28] X × × × × Random × White-box

Null IntentFuzzer [25] X × × × × Random × Black-box
GUIRipper [1] Xa × X X × Model-based × Black-box
ORBIT [33] × ? ? X × Model-based X Grey-box

A3E-Depth-first [6] X × X X × Model-based × Black-box
SwiftHand [8] X × X X × Model-based × Black-box

PUMA [13] X × X X × Model-based × Black-box
A3E-Targeted [6] × × X X × Systematic × Grey-box

EvoDroid [19] × × X X × Systematic × White-box
ACTEve [3] X X X X X Systematic X White-box

JPF-Android [30] X × × X × Systematic X White-box
a) Not open source at the time of this study.

generated by these tools, however, can also be the starting
point of more specific analyses, which can be of primary
interest to Android market maintainers and final users. In
fact, Android apps heavily use features, such as native code,
reflection and code obfuscation, that hit the limitations of almost
every static analysis tool [4], [5], [11]. Thus, to explore the
behavior of Android apps and overcome such limitations, it
is common practice to resort to dynamic analysis and use test
input generation tools to explore enough behaviors for the
analysis [10], [32]. Google, for instance, is known to run every
app on its cloud infrastructure to simulate how it might work
on user devices and look for malicious behavior [17].

Test input generation tools can either analyze the app in
isolation or focus on the interaction between the app and other
apps and/or the underlying framework. Whatever is the final
usage of these tools, the challenge is to generate relevant inputs
to exercise as much behavior of the apps under test as possible.
As Android apps are event-driven, inputs are normally in the
form of events, which can either mimic user interactions (UI
events), such as clicks, scrolls, and text inputs, or system events,
such as the notification of a newly received SMS. Testing tools
can generate such inputs following different strategies. They
can generate them randomly or by following a systematic
exploration strategy. In this latter case, exploration can either
be guided by a model of the app, which can be constructed
statically or dynamically, or exploit techniques that aim to
achieve as much code coverage as possible. Along a different
dimension, testing tools can generate events by considering
Android apps as either a black box or a white box. In this
latter case, they would consider the code structure. Grey box
approaches are also possible, which typically extract high-level
properties of the app, such as the list of activities and the list
of UI elements contained in each activity, in order to generate
events that will likely expose unexplored behavior.

Table I provides an overview of the existing test input
generation tools for Android presented in the literature. To the
best of our knowledge, this list is complete. For our study,
we selected, among these tools, those that were available and
had as their main objective to cover the state space of the
app under test. We therefore ignored tools that only focus on
making an app crash (e.g., intent fuzzers) and tools whose goal

is to identify specific issues (e.g., deadlock detectors). The table
reports all these tools, highlights the ones we considered in our
study, and classifies them according to their characteristics. In
particular, the table reports whether a tool is publicly available,
distributed under restricted policies, or only presented in a
paper, whether it requires the source code of the app under
test, and whether it requires instrumentation, either of the app
itself or of the underlying Android framework. The following
sections provide more details on each of these tools, grouped
based on their exploration strategy, and explain why we could
not consider some of them in our study.

A. Random Exploration Strategy

The first class of test input generation tools we consider
employs a random strategy to generate inputs for Android
apps. In its simplest form, a random strategy generates only
UI events; randomly generating system events would be highly
inefficient, as there are too many such events, and apps usually
react to only a few of them, and only under specific conditions.

The advantage of input generators based on a random
exploration strategy is that they can efficiently generate events,
and this makes them particularly suitable for stress testing.
Their main drawback is that a random strategy would hardly
be able to generate highly specific inputs. Moreover, these
tools are not aware of how much behavior of the app has been
already covered and are thus likely to generate redundant events
that do not help the exploration. Finally, they do not have a
stopping criterion that indicates the success of the exploration,
but rather resort to a manually specified timeout.

Monkey [24] is the most frequently used tool to test
Android apps, partly because it is part of the Android developers
toolkit and does not require any additional installation effort.
Monkey implements the most basic random strategy, as it
considers the app under test a black-box and can only generate
UI events. Users have to specify the number of events they
want Monkey to generate. Once this upper bound has been
reached, Monkey stops.

Dynodroid [18] is also based on random exploration, but
it has several features that make its exploration more efficient
compared to Monkey. First of all, it can generate system events,



and it does so by checking which ones are relevant for the
app. Dynodroid gets this information by monitoring when an
app registers a listener within the Android framework. For this
reason it needs to instrument the framework. The random event
generation strategy of Dynodroid is smarter than the one that
Monkey implements. It can either select the events that have
been least frequently selected (Frequency strategy) and can
keep into account the context (BiasedRandom strategy), that is,
events that are relevant in more contexts will be selected more
often. For our study, we only considered the BiasedRandom
strategy, which is the default one. An additional improvement
of Dynodroid is the ability to let users manually provide inputs
(e.g., for authentication) when the exploration is stalling.

Most of the other tools that fall into this category are
input fuzzers that aim to test inter-app communication by
randomly generating values for intents. These tools are test
input generators with a very specific purpose: they mainly
aim to generate invalid inputs that make the app under test
crash, thus testing the robustness of the app, rather than trying
to cover its behavior. These fuzzers are also quite effective
at revealing security vulnerabilities, such as denial-of-service
vulnerabilities. Given the different purpose of these tools, we
decided to exclude them from our study. In particular, we
excluded the following three tools.

Null intent fuzzer [25] is an open-source basic intent fuzzer
that aims to reveal crashes of activities that do not properly
check input intents. While quite effective at revealing this type
of problems, it is fairly specialized and not effective at detecting
other issues.

Intent Fuzzer [28] mainly tests how an app can interact
with other apps installed on the same device. It includes a
static analysis component, built on top of FlowDroid [4], for
identifying the expected structure of intents, so that the fuzzer
can generate them accordingly. This tool has shown to be
effective at revealing security issues. Maji et al. worked on a
similar intent fuzzer [20], but their tool has more limitations
than Intent Fuzzer.

DroidFuzzer [34] is different from other tools that mainly
generate UI events or intents. It solely generates inputs for
activities that accept MIME data types such as AVI, MP3, and
HTML files. The authors of the paper show how this tool could
make some video player apps crash. DroidFuzzer is supposed to
be implemented as an Android app. However, it is not available,
and the authors did not reply to our request for the tool.

B. Model-Based Exploration Strategy

Following the example of several Web crawlers [9], [23],
[27] and GUI testing tools for stand alone applications [12],
[21], [22], some Android testing tools build and use a GUI
model of the app to generate events and systematically explore
the behavior of the app. These models are usually finite state
machines that have activities as states and events as transitions.
Some tools build precise models by differentiating activity
states (e.g., the same activity with a button enabled and disabled
would be represented as two separate states). Most tools build
such model dynamically and terminate when all the events that
can be triggered from all the discovered states lead to already
explored states.

Using a model of the app should intuitively lead to more
effective results in terms of code coverage, as it can limit
the number of redundant inputs that a random approach
generates. The main limitation of these tools stands in the state
representation they use, as they all represent new states only
when some event triggers changes in the GUI. Some events,
however, may change the internal state of the app without
affecting the GUI. In such situations, these algorithm would
miss the change, consider the event irrelevant, and continue
the exploration in a different direction. A common scenario in
which this problem occurs is in the presence of services, as
services do not have any user interface (see Section II).

GUIRipper [1], which later became MobiGUITAR [2],
dynamically builds a model of the app under test by crawling it
from a starting state. When visiting a new state, it keeps a list of
events that can be generated on the current state of the activity
and systematically triggers them. GUIRipper implements a
DFS strategy and restarts the exploration from the starting
state when it cannot detect new states during the exploration.
It generates only UI events, thus it cannot expose behavior of
the app that depends on system events. GUIRipper has two
characteristics that make it unique among model-based tools.
First, it allows for exploring an app from different starting
states (although not in an automated fashion.) Second, it allows
testers to provide a set of input values that can be used during
the exploration. GUIRipper is publicly available and is now
open source under the name AndroidRipper (https://github.com/
reverse-unina/AndroidRipper). At the time of our comparative
study, however, it was only available (close source) on Windows.
We managed to include it in the study by porting the Windows
scripts that interact with the Java core system to the Linux
platform.

ORBIT [33] implements the same exploration strategy of
GUIRipper, but statically analyzes the app’s source code to
understand which UI events are relevant for a specific activity.
It is thus supposed to be more efficient than GUIRipper, as
it should generate only relevant inputs. However, the tool is
unfortunately not available, as it is propriety of Fujitsu Labs.
It is unclear whether ORBIT requires any instrumentation of
the platform or of the app to run, but we believe that this is
not the case.

A3E-Depth-First [6]: A3E is an open source tool that
implements two distinct and complementary strategies. The
first one performs a depth first search on the dynamic model of
the app. (In essence, it implements the exact same exploration
strategy of the previous tools.) Its dynamic model representation
is more abstract than the one used by other tools, as it represents
each activity as a single state, without considering different
states of the elements of the activity. This abstraction may lead
to missing some behavior that would be easy to exercise if a
more accurate model were to be used. We discuss the second
strategy of A3E, A3E-Targeted, in Section III-C.

SwiftHand [8] aims to maximize the coverage of the
app under test. Similarly to the previous tools, it uses a
dynamic finite state machine model of the app, and one of its
main characteristics is to optimize the exploration strategy to
minimize the restarts of the app while crawling. SwiftHand
generates only touching and scrolling UI events and cannot
generate system events.

https://github.com/reverse-unina/AndroidRipper
https://github.com/reverse-unina/AndroidRipper


PUMA [13] includes a generic UI automator that imple-
ments the same basic random exploration as Monkey. The
novelty of this tool is, in fact, not in its exploration strategy,
but rather in its design. PUMA is a framework that can be
easily extended to implement any dynamic analysis on Android
apps based on its basic exploration strategy. Moreover, PUMA
also allows for (1) implementing different exploration strategies,
as the framework provides a finite state machine representation
of the app, and (2) redefining the state representation and the
logic to generate events. PUMA is publicly available and open
source. It is, however, only compatible with the most recent
releases of the Android framework.

C. Systematic Exploration Strategy

Some application behavior can only be revealed upon provid-
ing specific inputs. This is the reason why some Android testing
tools use more sophisticated techniques, such as symbolic
execution and evolutionary algorithms, to guide the exploration
towards previously uncovered code. Implementing a systematic
strategy leads to clear benefits in exploring behavior that would
be hard to reach with random techniques. Compared to random
techniques, however, these tools are considerably less scalable.

A3E-Targeted [6] provides an alternative exploration strat-
egy that complements the one described in Section III-B. The
targeted approach relies on a component that, by means of taint
analysis, can build the Static Activity Transition Graph of the
app. Such graph is an alternative to the dynamic finite state
machine model used by A3E-Depth-First and allows the tool
to cover activities more efficiently by generating intents. While
A3E is available on a public repository, this strategy does not
seems to be, so we could not include it in our study.

EvoDroid [19] relies on evolutionary algorithms to generate
relevant inputs. In the evolutionary algorithms framework,
EvoDroid represents individuals as sequences of test inputs and
implements the fitness function so as to maximize coverage.
EvoDroid used to be publicly available on its project website,
and we tried to install and run it. We also contacted the authors
after we ran into some problems with missing dependencies,
but despite their willingness to help, we never managed to get
all the files we needed and the tool to work. Obtaining the
source code and fixing the issues ourselves was unfortunately
not an option, due to the contractual agreements with their
funding agencies. Moreover, at the time of this writing, the
tool is no longer available, even as a closed-source package.

ACTEve [3] is a concolic-testing tool that symbolically
tracks events from the point in the framework where they are
generated up to the point where they are handled in the app. For
this reasons, ACTEve needs to instrument both the framework
and the app under test. ACTEve handles both system and UI
events.

JPF-Android [31] extends Java PathFinder (JPF), a popular
model checking tool for Java, to support Android apps. This
would allow to verify apps against specific properties. Liu and
colleagues were the first who investigated the possibility of
extending JPF to work with Android apps [16]. What they
present, however, is mainly a feasibility study. They themselves
admit that developing the necessary components would require
much additional engineering efforts. Van Der Merwe and
colleagues went beyond that and properly implemented and

open sourced the necessary extensions to use JPF with Android.
JPF-Android aims to explore all paths in an Android app
and can identify deadlocks and runtime exceptions. The tool,
however, requires its users to manually specify the sequence
of input events to be used for the exploration. For this reason,
the tool cannot be automatically run on an app, and we thus
decided to exclude it from our study.

IV. EMPIRICAL STUDY

To evaluate the test input generation tools that we considered
(highlighted in Table I), we deployed them along with a group
of Android apps on a common virtualized infrastructure. Such
infrastructure aims to ease tool comparisons, and we made it
available so that researchers and practitioners can more easily
evaluate new Android testing tools against existing ones. Our
study evaluated tools according to four main criteria:

C1: Ease of use. We believe that usability should be a
primary concern for all tool developers, even when tools are
just research prototypes, as it highly affects reuse, research
collaboration, and ultimately research impact. We evaluated the
usability of each tool by considering how much effort it took
us to install and use it.

C2: Android framework compatibility. One of the major
problems in the Android ecosystem is fragmentation. Test input
generation tools for Android should therefore ideally run on
multiple versions of the Android framework, so that developers
could assess how their app behaves in different environments.

C3: Code coverage achieved. The inputs that these tools
generate should ideally cover as much behavior as possible
of the app under test. Since code coverage is a commonly
used proxy for behavior coverage, we measured the statement
coverage that each tool achieved on each benchmark and then
compared the results of the different tools.

C4: Fault detection ability. The primary goal of test input
generators is to expose existing faults. We therefore assessed,
for each tool, how many failures it triggered for each app. We
then compared the effectiveness of different tools in terms of
failure detection.

Each of these research questions is addressed separately in
Sections IV-B (C1), IV-B (C2), IV-B (C3), and IV-B (C4).

A. Mobile App Benchmarks

We selected a common set of benchmarks to evaluate
the tools. Since some of these tools are not maintained, and
therefore may not be able to handle apps that utilize cutting-
edge features, for our experiments we combined all the open
source mobile app benchmarks that were used in the evaluation
of at least one considered tool. We retrieved the same version
of the benchmarks as they were reported in each paper. PUMA
and A3E were originally evaluated on a set of apps downloaded
from the Google Play market. We excluded these apps from
our dataset because some tools need the app source code, and
therefore it would have been impossible to run them on these
benchmarks.

We collected 68 apps in total. Among those, 50 are from
the Dynodroid paper [18], 3 from GUIRipper [1], 5 from
ACTEve [3], and 10 from SwiftHand [8]. We are aware that
the number of benchmarks is quite unbalanced in favor of



Dynodroid, and this may represent a threat to the validity of
our study. However, such apps were randomly selected for the
original Dynodroid study, and are quite diverse, which should
alleviate such threat. Table II reports the whole list of apps
that we collected, together with the corresponding version and
category. For each app we report whether it was part of the
original evaluation benchmarks for a specific tool and whether,
during our evaluation, the tool crashed when attempting to
exercise the app.

B. Experimental Setup

We ran our experiments on a set of Ubuntu 14.04 virtual
machines running on a Linux server. We used Oracle
VirtualBox (http://virtualbox.org) as our virtualization soft-
ware and vagrant (http://vagrantup.com) to manage these
virtual machines. Each virtual machine was configured with 2
cores and 6GB of RAM. Inside the virtual machine, we installed
the test input generation tools, the Android apps, and three
versions of the Android SDK: Versions 10 (Gingerbread), 16
(Ice-cream sandwich), and 19 (Kitkat). We chose these versions
mainly to satisfy tool dependencies, and we selected the most
recent and most popular at the time of the experiment. We
evaluated each tool on the SDK version that it officially
supported and then tried to run it on all three versions to
assess framework compatibility. The emulator was configured
to use 4GB of RAM, and each tool was allowed to run for 1
hour on each benchmark app. For every run, our infrastructure
created a new emulator with necessary tool configuration to
avoid side-effects between tools and apps. Given that many
testing tools and apps are non-deterministic, we repeated each
experiment 10 times and computed the mean values across all
runs. Finally, to avoid bias, we ran each tool with its default
configuration, that is, without tuning any available parameter.

For each run, we collected the code coverage for the app
under test with Emma (http://emma.sourceforge.net/) and parsed
the HTML coverage reports to extract line coverage information
for tools comparison. In particular, we used this information
to compute, for each tool pair, the number of statements
covered by both tools and the number of statements covered
by each of them separately. We added to each benchmark a
broadcast receiver to save intermediate coverage results to disk
(Dynodroid uses a similar strategy). This was necessary to
collect coverage from the apps before they were restarted by
the test input generation tools and also to track the progress
of the tools at regular intervals. SwiftHand is an exception
to this protocol. This tool, in fact, internally instruments
the app under test to collect branch coverage and keep
track of the app’s lifecycle. This instrumentation, which is
critical to the tool’s functionality, conflicts with Emma’s own
instrumentation. We tried to resolve such conflict and even
to map SwiftHand’s to Emma’s coverage, but we were not
successful. We therefore do not compare the statement coverage
information of SwiftHand with others. We nevertheless made
the branch coverage information collected by SwiftHand on
the benchmark apps available with our dataset.

To gather app failures, we collected the entire system log
(also called logcat), from the emulator running the app
under test. From these logs, we extracted failures that occurred
while the app was being tested in a semi-automated fashion.
Specifically, we wrote a script to find patterns of exceptions or
errors in the log file and extract them along with their available

TABLE II. LIST OF APPS USED IN OUR STUDY. (X INDICATES THAT THE
APP WAS USED ORIGINALLY IN THE TOOL’S EVALUATION AND ⊗ INDICATES

THAT THE TOOL CRASHED WHEN ATTEMPTING TO EXERCISE THE APP.)

Subject M
on

ke
y

A
C

T
E

ve

D
yn

oD
ro

id

A
3
E

G
ui

R
ip

pe
r

PU
M

A

Sw
ift

H
an

d

Name Ver. Category
Amazed 2.0.2 Casual ⊗ X ⊗
AnyCut 0.5 Productiv. X
Divide&Conquer 1.4 Casual X ⊗
LolcatBuilder 2 Entertain. X
MunchLife 1.4.2 Entertain. X
PasswordMakerPro 1.1.7 Tools X
Photostream 1.1 Media X
QuickSettings 1.9.9.3 Tools X
RandomMusicPlay 1 Music X X
SpriteText - Sample X
SyncMyPix 0.15 Media X
Triangle - Sample X
A2DP Volume 2.8.11 Transport X
aLogCat 2.6.1 Tools X
AardDictionary 1.4.1 Reference X
BaterryDog 0.1.1 Tools X
FTP Server 2.2 Tools X
Bites 1.3 Lifestyle X
Battery Circle 1.81 Tools X
Addi 1.98 Tools X
Manpages 1.7 Tools X
Alarm Clock 1.51 Productiv. X
Auto Answer 1.5 Tools X
HNDroid 0.2.1 News X
Multi SMS 2.3 Comm. X
World Clock 0.6 Tools X ⊗
Nectroid 1.2.4 Media X
aCal 1.6 Productiv. X
Jamendo 1.0.6 Music X
AndroidomaticK. 1.0 Comm. ⊗ X
Yahtzee 1 Casual X
aagtl 1.0.31 Tools X
Mirrored 0.2.3 News X
Dialer2 2.9 Productiv. X
FileExplorer 1 Productiv. X
Gestures 1 Sample X
HotDeath 1.0.7 Card X
ADSdroid 1.2 Reference ⊗ X
myLock 42 Tools X
LockPatternGen. 2 Tools X
aGrep 0.2.1 Tools ⊗ ⊗ X ⊗ ⊗ ⊗
K-9Mail 3.512 Comm. X
NetCounter 0.14.1 Tools X ⊗
Bomber 1 Casual X
FrozenBubble 1.12 Puzzle ⊗ X ⊗ ⊗ ⊗
AnyMemo 8.3.1 Education ⊗ X ⊗ X ⊗
Blokish 2 Puzzle X
ZooBorns 1.4.4 Entertain. X ⊗
ImportContacts 1.1 Tools X
Wikipedia 1.2.1 Reference ⊗ X
KeePassDroid 1.9.8 Tools X
SoundBoard 1 Sample X
CountdownTimer 1.1.0 Tools X
Ringdroid 2.6 Media ⊗ X ⊗ ⊗ ⊗
SpriteMethodTest 1.0 Sample X
BookCatalogue 1.6 Tools X
Translate 3.8 Productiv. X
TomdroidNotes 2.0a Social X
Wordpress 0.5.0 Productiv. X ⊗
Mileage 3.1.1 Finance X
Sanity 2.11 Comm. X ⊗
DalvikExplorer 3.4 Tools ⊗ X
MiniNoteViewer 0.4 Productiv. X
MyExpenses 1.6.0 Finance X ⊗
LearnMusicNotes 1.2 Puzzle X
TippyTipper 1.1.3 Finance X
WeightChart 1.0.4 Health X ⊗
WhoHasMyStuff 1.0.7 Productiv. X

stack traces. We manually analyzed them to ignore any failures
not related to the app’s execution (e.g., failures of the tool
themselves or initialization errors of other apps in the Android
emulator). All unique instances of remaining failures were
considered for our results.

http://virtualbox.org
http://vagrantup.com
http://emma.sourceforge.net/


TABLE III. EASE OF USE AND COMPATIBILITY OF EACH TOOL WITH
THE MOST COMMON ANDROID FRAMEWORK VERSIONS.

Name Ease Use Compatibility
Monkey [24] NO EFFORT any
Dynodroid [18] NO EFFORT v.2.3
GUIRipper [1] MAJOR EFFORT any
A3E-Depth-first [6] LITTLE EFFORT any
SwiftHand [8] MAJOR EFFORT v.4.1+
PUMA [13] LITTLE EFFORT v.4.3+
ACTEve [3] MAJOR EFFORT v.2.3

C1: Ease of Use

Tools should ideally work out of the box, and should not re-
quire extra effort of the user in terms of configuration. Table III
reports whether the tool worked out of the box (NO EFFORT),
whether it required some effort (LITTLE EFFORT), either
to properly configure it or to fix minor issues, or whether
it required a major effort (MAJOR EFFORT) to make it
work. This is based on our judgment and experience, and
the evaluation does not have the value of a user study, mainly
because most of these tools are just early prototypes. In future
we would like to assess the ease of use of each tool through
a proper user study, but as of now, we simply report our
experience with installing each tool, and we describe the
required fixes to make each of them work. Some of the changes
were required to make the tools run on our infrastructure.

Monkey: We used the vanilla Monkey from the Android
distribution for our experimentation. The tool was configured to
ignore any crash, system timeout, and security exceptions during
the experiment and to continue till the experiment timeout was
reached. In addition, we configured it to wait 200 milliseconds
between actions, as this same delay value was also used in
other tools. Configuring Monkey for our infrastructure required
no extra effort.

ACTEve: We consulted the authors to apply minor fixes to
the instrumentation component of ACTEve, which instruments
both the Android SDK and the app under test. While generating
tests ACTEve often restarts the app. To ensure that we did not
lose coverage information, we modified ACTEve to save the
intermediate coverage before app restarts.

GUIRipper: As discussed in Section III-B, at the time of
this study GUIRipper was available only as a Windows binary
distribution, so we had to put some effort into porting it to our
Linux based infrastructure. We configured the tool to use its
systematic ripping strategy instead of the default random one.
Because GUIRipper often restarts the Android emulator from
a snapshot to return to the initial state of an app, we modified
the tool to save intermediate coverage before such restarts.

Dynodroid: We obtained a running version of Dynodroid
from the virtual machine provided on the tool’s page. Dynodroid
is tightly coupled with the Android emulator, for which the
tool includes an instrumented system image. In addition, the
tool performs an extensive setup of the device after boot
before starting the exploration. We configured our timer to
start counting at the start of the actual exploration to account
for this one-time setup time.

A3E: We updated A3E’s dependencies to make it work
with the latest version of the Android SDK. The public release
only supports the depth-first exploration strategy for systematic
testing, so this is what we used in our experiments. In addition,
we modified the tool to report verbose results for Android

commands invoked, and to not shutdown the emulator after
input generation to allow us to collect reports from it.

SwiftHand: The SwiftHand tool consists of two compo-
nents: front-end, which performs bytecode instrumentation
of the app under test, and back-end, which performs test
input generation. We fixed the dependencies of the front-end
tool by obtaining an older version of the asmdex library
(http://asm.ow2.org/asmdex-index.html) and wrote a wrapper shell
script to connect the two components in our infrastructure.

PUMA: To get PUMA running, we applied a minor patch
to use an alternate API for taking device screenshots. We
also altered the different timeouts in the tool to match our
experimental settings.

In summary, we found Monkey and Dynodroid straight-
forward to configure and use, while GUIRipper, ACTEve and
A3E required major efforts for their configuration.

C2: Android Framework Compatibility

Android developers have to constantly deal with the
fragmentation problem, that is, their apps must run on devices
that have different hardware characteristics and use different
versions of the Android framework. It is thus desirable, for
a test input generator tool, to be compatible with multiple
releases of the Android framework. Therefore, we ran each
tool on three popular Android framework releases, as described
in Section IV-B, and assessed whether it could work correctly.

Table III reports the results of this study. The table shows
that 4 out of 7 tools do not offer this kind of compatibility.
Some tools (PUMA and SwiftHand) are compatible only with
the most recent releases of the Android Framework, while
others (ACTEve and Dynodroid) are bound to a very old one.
ACTEve and Dynodroid may be compatible with other versions
of the Android framework, but this would require to instrument
these versions first. SwiftHand and PUMA, conversely, are not
compatible with older versions of Android because they use
features of the underlying framework that were not available
in previous releases.

C3: Code Coverage Achieved

Test input generation tools for Android implement different
strategies to explore as much behavior as possible of the app
under test. Section III presented an overview of the three
main strategies used by these tools: random, model-based, and
systematic. Although some of these tools have been already
evaluated according to how much code coverage they can
achieve, it is still unclear whether there is any strategy that
is better than others in practice. Previous evaluations were
either incomplete because they did not include comparisons
with other tools, or somehow biased (in our opinion). Since we
believe that the most critical resource, when generating inputs,
is time, tools should evaluate how much coverage they can
achieve within a certain time limit. Tools such as Dynodroid
and EvoDroid, however, have been compared to Monkey by
comparing the coverage achieved given the same number of
generated events. In addition, most studies did not account
for the non-determinisms of the Android environment and ran
the tools only once. To address these shortcomings, in our
experiment, we ran each tool on each app of Table II for
the same amount of time and for 10 times, as described in
Section IV-B.

http://asm.ow2.org/asmdex-index.html


monkey acteve dynodroid a3e guiripper puma
Android Test Input Generation Tools

0

20

40

60

80

100
C

o
v
e
ra

g
e

Fig. 1. Variance of coverage achieved across apps and over 10 runs.

0 5 10 15 20 25 30 35 40 45 50 55 60
Time in minutes

0

20

40

60

80

100

C
o
v
e
ra

g
e

monkey

acteve

dynodroid

a3e

guiripper

puma

Fig. 2. Progressive coverage.

Figure 1 reports the variance of the mean coverage of 10
runs that each tool achieved on the considered benchmarks. We
can see that, on average, Dynodroid and Monkey performed
better than other tools, followed by ACTEve. The other three
tools (i.e., A3E, GUIRipper and PUMA) achieved a fairly
low coverage level. Despite this, even those tools that on
average achieved low coverage could reach very high coverage
(approximately 80%) for a few apps. We manually investigated
these apps and found that they are, as expected, the simplest
ones. The two outliers, for which every tool achieved very high
coverage, are DivideAndConquer and RandomMusicPlayer. The
first one is a game that accepts only touches and swipes as
events, which can be provided without much logic in order
to proceed with the game. Also for RandomMusicPlayer, the
possible user actions are quite limited, as there is only one
activity with four buttons. Similarly, there are some apps for
which every tool, even the ones that performed best, achieved
very low coverage (i.e., lower than 5%). Two of these apps,
K9mail (a mail client) and PasswordMakerPro (an app to
generate and store authentication data), highly depend on
external factors, such as the availability of a valid account.
Such inputs are nearly impossible to generate automatically,
and therefore every tool stalls at the beginning of the exploration.
A few tools do provide an option to manually interact with
an app initially, and then use the tool to perform subsequent
test input generation. However, we did not use this feature for
scalability reasons and concerns of giving such tools an unfair
advantage.

monkey acteve dynodroid a3e guiripper puma swifthand
Android Test Input Generation Tools

0

10

20

30

40

50

60

70

80

90

Fa
ilu

re
s

java.io
java.net
java.lang
library
custom
android.database
android.content

Fig. 3. Distribution of the failures triggered by the tools.

Figure 2 reports the progressive coverage of each tool
over the time threshold we used (i.e., 60 minutes). The plot
reports the mean coverage achieved across all apps over 10
runs. This plot shows that all tools hit their maximum coverage
within a few minutes (between 5 and 10), with the only
exception of GUIRipper. The likely reason for this difference
is that GUIRipper frequently restarts the exploration from its
initial state, and this operation takes time. (This is in fact the
main problem that SwiftHand addresses by implementing an
exploration strategy that limits the number of restarts.)

C4: Fault Detection Ability

The main goal of test input generation tools is to expose
faults in the app under test. Therefore, beside code coverage,
we checked how many failures each tool could reveal within a
one-hour per app time budget. None of the Android tools can
identify failures other than runtime exceptions, although there
is some promising work that goes in that direction [35].

Figure 3 reports the results of this study. The y axis
represents the number of cumulative unique failures across the
10 runs across all apps. We consider a failure unique when its
stack trace differs from the stack trace of other failures. The plot
also reports some high level statistics about the most frequent
failures (we report the package name of the corresponding
runtime exception). Only a few of these failures involved
custom exceptions (i.e., exceptions that are declared in the
app under test). The vast majority of them resulted in standard
Java exceptions, among which the most frequent ones are null
pointer exceptions.

Because SwiftHand is the tool with the worst performance
in this part of the evaluation, we looked into its results in more
detail to understand the reasons behind that. We found that
SwiftHand crashes on many of our benchmarks, which prevents
it from producing useful results in these cases. Further analysis
revealed that the crashes are most likely due to SwiftHand’s use
of asmdex to instrument the apps it is testing. The asmdex
framework is in fact not well maintained and notoriously crash-
prone.

Figure 4 reports a pairwise comparison of each tool
according to coverage (upper part of the figure—boxes with



monkey acteve0

25

50

75

100
acteve

29.6%
45.9%
31.5%

monkey dynodroid
0

25

50

75

100
dynodroid

43.1%
48.9%
52.1%

monkey a3e0

25

50

75

100
a3e

25.1%
48.9%
26.5%

monkey guiripper
0

25

50

75

100
guiripper

26.1%
47.1%
28.3%

monkey puma0

25

50

75

100
puma

26.9%
48.4%
28.8%

acteve dynodroid
0

25

50

75

100
33.7%
34.3%
53.7%

acteve a3e0

25

50

75

100
25.4%
33.3%
28.1%

acteve guiripper
0

25

50

75

100
25.1%
31.2%
28.6%

acteve puma0

25

50

75

100
25.6%
33.3%
29.7%

dynodroid a3e0

25

50

75

100
26.3%
50.8%
26.9%

dynodroid guiripper
0

25

50

75

100
26.1%
48.0%
27.1%

dynodroid puma0

25

50

75

100
27.2%
50.4%
28.0%

a3e guiripper
0

25

50

75

100
22.5%
26.0%
28.3%

a3e puma0

25

50

75

100
21.6%
27.8%
29.2%

guiripper puma0

25

50

75

100
21.6%
29.3%
28.5%

acteve monkey
0

25

50

75

100

ac
te
ve

1
36
83

dynodroid monkey
0

25

50

75

100

dy
no

dr
oi
d 1

73
83

dynodroid acteve0

25

50

75

100
0
73
36

a3e monkey
0

25

50

75

100

a3
e

3
24
83

a3e acteve0

25

50

75

100
3
24
36

a3e dynodroid
0

25

50

75

100
1
24
73

guiripper monkey
0

25

50

75

100

gu
iri
pp

er

4
40
83

guiripper acteve0

25

50

75

100
3
40
36

guiripper dynodroid
0

25

50

75

100
1
40
73

guiripper a3e0

25

50

75

100
6
40
24

puma monkey
0

25

50

75

100

pu
m
a

0
32
83

puma acteve0

25

50

75

100
0
32
36

puma dynodroid
0

25

50

75

100
0
32
73

puma a3e0

25

50

75

100
0
32
24

puma guiripper
0

25

50

75

100
0
32
40

swifthand monkey
0

25

50

75

100

sw
ift
ha

nd

0
15
83

swifthand acteve0

25

50

75

100
0
15
36

swifthand dynodroid
0

25

50

75

100
0
15
73

swifthand a3e0

25

50

75

100
0
15
24

swifthand guiripper
0

25

50

75

100
0
15
40

swifthand puma0

25

50

75

100
0
15
32

m
on

ke
y

monkey

Fig. 4. Pairwise comparison of tools in terms of coverage and failures triggered. The plots on the top right section show percent statement coverage of the tools,
whereas the ones in the bottom left section show absolute number of failures triggered. The gray bars in all plots show commonalities between the results of the
corresponding two tools.

white background) and fault detection ability (lower part of
the figure—boxes with yellow background). In the figure, we
compare the coverage of the best out of the 10 runs of each
tool, whereas the number of failures reported are the cumulative

failures with the same stack trace across the 10 runs. The figure
shows both which lines are covered (and which failures are
reported) by both tools (in grey) and which lines are covered
by only one of the two tools. These results show that tools do



not complement each other in terms of code coverage, whereas
they do in terms of fault detection. In fact, while for coverage
the common parts are significant, it is almost the opposite in
terms of failures.

V. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

The experiments presented in Section IV produced a
somehow unexpected result, as they show that the random
exploration strategies implemented by Monkey and Dynodroid
achieved higher coverage than more sophisticated strategies in
other tools. These may indicate that Android apps are different
from Java stand-alone application, where random strategies
tend to be inefficient compared to more systematic strategies
(e.g., [12], [21], [22]). In fact, our results seem to indicate that
(1) app behavior can be suitably exercised by generating only
UI events, and (2) a random approach may be effective enough
in this context.

Considering the four criteria considered in the study, Mon-
key would be a clear winner among the test input generation
tools considered: it achieved the best coverage on average,
reported the largest number of failures, was easy to use, and
worked on every platform. This does not mean, however, that
the other tools should not be considered—every tool showed
strengths that, if properly leveraged and combined, may lead
to significant overall improvements. In this spirit, we discuss
some of the features provided by these tools that seemed to
make a difference in their performance and should therefore
be considered by other tools as well.

Generating system events. Dynodroid and ACTEve can
generate system events beside standard UI events. Even if
the behavior of an app may depend only partially on system
events, generating them can reveal failures that would be hard
to uncover otherwise.

Minimizing restarts. Progressive coverage shows that tools
frequently restart their exploration from scratch need more
time to achieve their maximum coverage. The search algorithm
that Swifthand implements aims to minimize such restarts and
allows it to achieve higher coverage in less time.

Allowing for manually provided inputs. Specific behaviors
can sometimes only be explored by specific inputs (e.g., logins
and passwords), which may be hard to generate randomly or by
means of systematic techniques. Some tools, such as Dynodroid
and GUIRipper, let users manually provide values that the tool
can later use during the analysis.

Considering multiple starting states. The behavior of many
apps depends on the underlying content providers. An email
client, for instance, would show an empty inbox, unless the
content provider contains some messages. GUIRipper starts
exploring the app from different starting states (e.g., when the
content provider is empty and when it has some entries). Even
if this has to be done manually by the user, by properly creating
snapshots of the app, it allows a tool to potentially explore
behavior that would be hard to explore otherwise.

Avoiding side effects among different runs. Although in
our experiments we used a fresh emulator instance between
runs, we realized that some tools, such as Dynodroid and A3E,
provided the ability to (partially) clean up the environment
by uninstalling the app under test and deleting its data. Input

generation tools should reuse the environment for efficiency
reasons but should do it in a way that does not introduce side
effects.

In our study, we also identified limitations that can sig-
nificantly affect the effectiveness of a tool. We report these
limitations, together with desirable and missing features, such
that they could be the focus of future research in this area:

Reproducibility. None of the tools studied allowed for easily
reproducing the failures they identified. Although they reported
uncaught runtime exceptions on their logfiles, they did not
generate test cases that could be later rerun. We believe that
this is an essential feature that every input generation tool
should provide.

Mocking. Most apps for which tools had low coverage
highly depended on environment elements, such as content
providers. GUIRipper alleviates this problem by letting users
prepare different snapshots of the app. We believe that working
on a proper, more general mocking infrastructure for Android
apps would be a significant contribution and could lead to
drastic code coverage improvements.

Sandboxing. Input generation tools should also provide
proper sandboxing, that is, they should block potentially harmful
operations (e.g., sending messages or deleting files). None of
the tools considered took this problem into account.

Addressing the fragmentation problem. While our evaluation
showed that some tools can run on multiple versions of the
Android framework, none of them is specifically designed for
cross-device testing. While this is a somehow specific testing
problem, we believe that testing tools for Android should also
consider this aspect, as fragmentation is arguably one of the
major problems that Android developers have to face.

VI. CONCLUSION

In this paper, we presented a comparative study of the
main existing test input generation tools (and corresponding
techniques) for Android. We evaluated these tools according
to four criteria: ease of use, Android framework compatibility,
code coverage achieved, and fault detection ability. Based on the
results of this comparison, we identified and discussed strengths
and weaknesses of the different techniques and highlighted
potential venues for future research in this area. To facilitate
reproduction of our results and facilitate empirical studies of this
kind, all of our experimental infrastructure and data are publicly
available at http://www.cc.gatech.edu/∼orso/software/androtest.

In future work, we will extend our empirical comparison
of input generation tools for Android apps by (1) considering
additional benchmarks and (2) possibly including to the set of
tools considered also the intent fuzzers that we excluded from
the current study.

ACKNOWLEDGMENTS

We thank the authors of the tools we studied for making
their tools available and helping with the tools setup. This
work was supported in part by NSF grants CCF-1161821 and
CCF-1320783 and by funding from Google, IBM Research,
and Microsoft Research to Georgia Tech.

http://www.cc.gatech.edu/~orso/software/androtest


REFERENCES

[1] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using GUI Ripping for Automated Testing of Android
Applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2012.
New York, NY, USA: ACM, 2012, pp. 258–261. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351717

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.
Memon, “MobiGUITAR – a tool for automated model-based testing of
mobile apps,” IEEE Software, vol. PP, no. 99, pp. NN–NN, 2014.

[3] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated Concolic
Testing of Smartphone Apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 59:1–59:11.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393666

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 259–269. [Online]. Available:
http://www.bodden.de/pubs/far+14flowdroid.pdf

[5] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in Proceedings of the 37th International Conference on Software
Engineering, ser. ICSE ’15. ACM, May 2015, pp. 426–436.

[6] T. Azim and I. Neamtiu, “Targeted and Depth-first Exploration
for Systematic Testing of Android Apps,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA ’13.
New York, NY, USA: ACM, 2013, pp. 641–660. [Online]. Available:
http://doi.acm.org/10.1145/2509136.2509549

[7] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, “Dexpler:
Converting Android Dalvik Bytecode to Jimple for Static Analysis with
Soot,” in Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program Analysis, ser. SOAP ’12.
New York, NY, USA: ACM, 2012, pp. 27–38. [Online]. Available:
http://doi.acm.org/10.1145/2259051.2259056

[8] W. Choi, G. Necula, and K. Sen, “Guided GUI Testing of Android Apps
with Minimal Restart and Approximate Learning,” in Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA ’13.
New York, NY, USA: ACM, 2013, pp. 623–640. [Online]. Available:
http://doi.acm.org/10.1145/2509136.2509552

[9] V. Dallmeier, M. Burger, T. Orth, and A. Zeller, “WebMate: Generating
Test Cases for Web 2.0,” in Software Quality. Increasing Value in
Software and Systems Development. Springer, 2013, pp. 55–69.

[10] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “TaintDroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp. 1–6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.1924971

[11] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE ’14. New York,
NY, USA: ACM, June 2014, pp. 1025–1035. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568276

[12] F. Gross, G. Fraser, and A. Zeller, “EXSYST: Search-based GUI
Testing,” in Proceedings of the 34th International Conference
on Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA:
IEEE Press, 2012, pp. 1423–1426. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2337223.2337435

[13] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:
Programmable UI-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’14.
New York, NY, USA: ACM, 2014, pp. 204–217. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594390

[14] C. Hu and I. Neamtiu, “Automating GUI Testing for Android
Applications,” in Proceedings of the 6th International Workshop

on Automation of Software Test, ser. AST ’11. New York,
NY, USA: ACM, 2011, pp. 77–83. [Online]. Available: http:
//doi.acm.org/10.1145/1982595.1982612

[15] M. Kechagia, D. Mitropoulos, and D. Spinellis, “Charting the
API minefield using software telemetry data,” Empirical Software
Engineering, pp. 1–46, 2014. [Online]. Available: http://dx.doi.org/10.
1007/s10664-014-9343-7

[16] Y. Liu, C. Xu, and S. Cheung, “Verifying android applications using
java pathfinder,” The Hong Kong University of Science and Technology,
Tech. Rep., 2012.

[17] H. Lockheimer, “Google bouncer,” http://googlemobile.blogspot.com.es/
2012/02/android-and-security.html.

[18] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An Input
Generation System for Android Apps,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2013. New York, NY, USA: ACM, 2013, pp. 224–234. [Online].
Available: http://doi.acm.org/10.1145/2491411.2491450

[19] R. Mahmood, N. Mirzaei, and S. Malek, “EvoDroid: Segmented
Evolutionary Testing of Android Apps,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. New York, NY, USA: ACM, 2014.

[20] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer, “An empirical
study of the robustness of inter-component communication in android,”
in Proceedings of the 2012 42nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, ser. DSN ’12, 2012,
pp. 1–12.

[21] L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro, “AutoBlackTest:
Automatic Black-Box Testing of Interactive Applications,” in
Proceedings of the 2012 IEEE Fifth International Conference
on Software Testing, Verification and Validation, ser. ICST ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 81–90.
[Online]. Available: http://dx.doi.org/10.1109/ICST.2012.88

[22] A. Memon, I. Banerjee, and A. Nagarajan, “GUI Ripping: Reverse
Engineering of Graphical User Interfaces for Testing,” in Proceedings
of the 10th Working Conference on Reverse Engineering, ser. WCRE
’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 260–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=950792.951350

[23] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based
Web Applications through Dynamic Analysis of User Interface State
Changes,” ACM Transactions on the Web (TWEB), vol. 6, no. 1, pp.
3:1–3:30, 2012.

[24] “The Monkey UI android testing tool,” http://developer.android.com/
tools/help/monkey.html.

[25] “Intent fuzzer,” 2009, http://www.isecpartners.com/tools/mobile-security/
intent-fuzzer.aspx.

[26] D. Octeau, S. Jha, and P. McDaniel, “Retargeting Android Applications
to Java Bytecode,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 6:1–6:11.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393600

[27] S. Roy Choudhary, M. R. Prasad, and A. Orso, “X-PERT: Accurate
Identification of Cross-browser Issues in Web Applications,” in
Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013,
pp. 702–711. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2486788.2486881

[28] R. Sasnauskas and J. Regehr, “Intent Fuzzer: Crafting Intents of
Death,” in Proceedings of the 2014 Joint International Workshop on
Dynamic Analysis (WODA) and Software and System Performance
Testing, Debugging, and Analytics (PERTEA), ser. WODA+PERTEA
2014. New York, NY, USA: ACM, 2014, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/2632168.2632169

[29] “Smali/baksmali, an assembler/disassembler for the dex format used by
Dalvik,” https://code.google.com/p/smali.

[30] H. van der Merwe, B. van der Merwe, and W. Visser, “Verifying
Android Applications Using Java PathFinder,” SIGSOFT Softw. Eng.
Notes, vol. 37, no. 6, pp. 1–5, Nov. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2382756.2382797

[31] ——, “Execution and Property Specifications for JPF-android,”
SIGSOFT Softw. Eng. Notes, vol. 39, no. 1, pp. 1–5, Feb. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2557833.2560576

http://doi.acm.org/10.1145/2351676.2351717
http://doi.acm.org/10.1145/2393596.2393666
http://www.bodden.de/pubs/far+14flowdroid.pdf
http://doi.acm.org/10.1145/2509136.2509549
http://doi.acm.org/10.1145/2259051.2259056
http://doi.acm.org/10.1145/2509136.2509552
http://dl.acm.org/citation.cfm?id=1924943.1924971
http://doi.acm.org/10.1145/2568225.2568276
http://dl.acm.org/citation.cfm?id=2337223.2337435
http://dl.acm.org/citation.cfm?id=2337223.2337435
http://doi.acm.org/10.1145/2594368.2594390
http://doi.acm.org/10.1145/1982595.1982612
http://doi.acm.org/10.1145/1982595.1982612
http://dx.doi.org/10.1007/s10664-014-9343-7
http://dx.doi.org/10.1007/s10664-014-9343-7
http://googlemobile.blogspot.com.es/2012/02/android-and-security.html
http://googlemobile.blogspot.com.es/2012/02/android-and-security.html
http://doi.acm.org/10.1145/2491411.2491450
http://dx.doi.org/10.1109/ICST.2012.88
http://dl.acm.org/citation.cfm?id=950792.951350
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
http://www.isecpartners.com/tools/mobile-security/intent-fuzzer.aspx
http://www.isecpartners.com/tools/mobile-security/intent-fuzzer.aspx
http://doi.acm.org/10.1145/2393596.2393600
http://dl.acm.org/citation.cfm?id=2486788.2486881
http://dl.acm.org/citation.cfm?id=2486788.2486881
http://doi.acm.org/10.1145/2632168.2632169
https://code.google.com/p/smali
http://doi.acm.org/10.1145/2382756.2382797
http://doi.acm.org/10.1145/2557833.2560576


[32] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “ProfileDroid: Multi-
layer Profiling of Android Applications,” in Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking,
ser. Mobicom ’12. New York, NY, USA: ACM, 2012, pp. 137–148.
[Online]. Available: http://doi.acm.org/10.1145/2348543.2348563

[33] W. Yang, M. R. Prasad, and T. Xie, “A Grey-box Approach
for Automated GUI-model Generation of Mobile Applications,” in
Proceedings of the 16th International Conference on Fundamental
Approaches to Software Engineering, ser. FASE’13. Berlin, Heidelberg:
Springer-Verlag, 2013, pp. 250–265. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-37057-1 19

[34] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “DroidFuzzer: Fuzzing the
Android Apps with Intent-Filter Tag,” in Proceedings of International
Conference on Advances in Mobile Computing &#38; Multimedia, ser.
MoMM ’13. New York, NY, USA: ACM, 2013, pp. 68:68–68:74.
[Online]. Available: http://doi.acm.org/10.1145/2536853.2536881

[35] R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated generation
of oracles for testing user-interaction features of mobile apps,” in
Proceedings of the 2014 IEEE International Conference on Software
Testing, Verification, and Validation, ser. ICST ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 183–192. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2014.31

http://doi.acm.org/10.1145/2348543.2348563
http://dx.doi.org/10.1007/978-3-642-37057-1_19
http://dx.doi.org/10.1007/978-3-642-37057-1_19
http://doi.acm.org/10.1145/2536853.2536881
http://dx.doi.org/10.1109/ICST.2014.31

