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ABSTRACT
We present LibKit, the first approach and tool for detecting the

name and version of third-party libraries (TPLs) present in iOS apps.

LibKit automatically builds fingerprints for 86K library versions

available through the CocoaPods dependencymanager andmatches

them on the decrypted app executables to identify the TPLs (name

and version) an iOS app uses. LibKit supports apps written in Swift

and Objective-C, detects statically and dynamically linked libraries,

and addresses challenges such as partially included libraries and

different compiler versions and configurations producing variants

of the same library version. On a ground truth of 95 open-source

apps, LibKit identifies libraries with a precision of 0.911 and a recall
of 0.839. LibKit also significantly outperforms the state-of-the-art

CRiOS tool for identifying TPL boundaries. When applied to 1,500

apps from the iTunes Store, LibKit detects 47,015 library versions,

identifying popular apps that contain old library versions.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Security and privacy→Mobile platform security.
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1 INTRODUCTION
There exist many scenarios where entities other than the developer

may need to know the third-party libraries (TPLs) a mobile app uses.
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These include: (i) a company selecting among different proprietary

apps wants to knowwhether those apps contain vulnerable TPLs;(ii)

a malicious library has been identified and users want to know

whether the apps they use contain it; (iii) an app is observed to

perform some privacy-violating behavior and market auditors need

to establish if the behavior comes from the app or a TPL it uses; and

(iv) regulators need to measure the prevalence of advertisement

libraries to determine if a merger of ad companies may create a

dominant market position [23].

In both iOS and Android ecosystems, most mobile apps and

many TPLs are closed-source, so TPL identification approaches

need to operate on released app packages (IPAs for iOS, APKs for

Android) and should be able to identify TPLs even if the library

source code is not available. TPL identification comprises three

problems. The goal of boundary identification is to split the code of

an app (e.g., Mach-O executable for iOS, DEX bytecode for Android)

into components where one component corresponds to the app’s

code and there is one additional component for each TPL. The goal

of library identification is to output the names of all TPLs an app

uses. Finally, the goal of library version identification is to output

the name and version of all TPLs an app uses.

In this paper, we present the first TPL detection approach that

can identify the name and version of libraries present in an iOS

app, and a tool called LibKit that implements it. A few works have

proposed iOS TPL identification approaches [10, 31, 35]. However

those approaches either use clustering-based techniques that only

address the boundary identification problem (i.e., CriOS [31], Tang

et al. [35]) or are specific to TPLs that are available both in Android

and iOS [10].

LibKit follows prior Android TPL identification approaches that

operate in two phases: library fingerprint generation and library de-
tection [4, 5, 36, 38, 40, 42]. The main advantage over iOS clustering-

based techniques is that our approach can name a library and iden-

tify its version, beyond identifying the boundaries between the

app’s and TPL’s code. At a high level our approach works as fol-

lows: (1) It takes as input the library repository of CocoaPods, one of

the major dependency managers for Swift and Objective-C projects,

used by over 3M iOS apps [11]. (2) It generates a library version

fingerprint for each library version in the CocoaPods repository.

A library version fingerprint is a distinctive set of features that

capture the unique properties of a library version. In our approach,

a library version fingerprint comprises a set of class fingerprints,

each capturing syntactic features about a class that is part of the

library version. The fingerprints are extracted statically from the

https://doi.org/10.1145/3611643.3616344
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library version’s binary code. The generated fingerprints are then

stored in a database. (3) Given an app, LibKit decrypts the app’s

binary code, analyzes its binaries to obtain the class features, and

produces a set of class fingerprints, one for each class in the app.

Then, it looks for matching app’s class fingerprints in the library

class fingerprints in the database. LibKit outputs the list of library

names and versions identified in the app. Steps (1) and (2) only need

to be performed once for each library version. LibKit can incor-

porate new library versions as soon as they appear in CocoaPods,

repeating (1) and (2) only for new versions.

Existing fingerprint-basedAndroid TPL identification approaches

cannot be easily ported to iOS because they rely on Android’s pack-

age structure, which does not exist in iOS. The reliance on package

structure has been identified as a main limitation of Android TPL

identification approaches by a recent independent evaluation [41].

The only Android fingerprint-based approach that does not lever-

age the package structure is ORLIS [38]. However, ORLIS does not

support library version identification and it performs worst among

publicly available Android TPL identification tools [41].

We design an automated build pipeline for CocoaPods libraries,

which allows us to produce fingerprints for 86,597 TPL versions

belonging to 14,043 TPLs. This is the largest library database in

TPL identification works, seven times larger than the largest (12K

versions) used in Android TPL identification [40]. We design our

fingerprints to work on class information available in iOS native

code, regardless if the native code comes from compiling Objective-

C or Swift source code, and despite the class information not being

as rich as that in Android’s bytecode. Our fingerprints leverage a

similarity hash for matching class fingerprints that are similar, but

not identical. The matching algorithm aims for the highest possible

coverage of app classes and allows for partial library coverage, i.e.,

identifies TPLs even when, due to dead code elimination, only part

of the TPL code makes it into the app’s native code.

We evaluate LibKit according to its ability to identify the correct

name and version of libraries included in a set of iOS apps. For this,

we have created two ground truth datasets: one with the name of

1,066 libraries included in at least one of 95 open-source apps avail-

able in Github (GT95) and another one with 511 library versions

(name and version) that appear in at least one of 43 open-source

apps (GT43). For library identification on GT95, LibKit achieves

a precision of 0.911, recall of 0.839, and F1 score of 0.874. When

considering all libraries in our ground truth, including those not

present in our database, it achieves a precision of 0.911, recall of
0.524, and F1 score of 0.666. We also evaluate the accuracy of LibKit

for identifying not only the correct library name but also the correct

version. For library version identification on GT43, LibKit achieves

a precision of 0.721, recall of 0.716, and F1 score of 0.725.
We also evaluate LibKit against the state of the art. Since LibKit

is the first tool for library identification and library version identi-

fication in iOS, there is no perfect baseline to compare with. The

closest iOS work is CriOS because it is generic (i.e., targets any

TPL), but it only addresses the problem of boundary identification.

We obtained the original CriOS source code from its authors and

spent significant work updating it so that it could handle recent

iOS apps. We compare LibKit against CRiOS for the boundary iden-

tification problem. LibKit significantly outperforms CRiOS for this

task, achieving an F1 score of 0.722 compared to 0.307. As explained

above, fingerprint-based TPL identification tools for Android rely

on package structure or do not address the problem of library

version identification. We tried porting LibScout to iOS, but the

required changes were so significant that it no longer represented

the original approach and could not be used as a representative

baseline. Comparing LibKit’s accuracy with that reported in the

recent independent evaluation by Zhang et al. [41] is the best we

can do in this situation. In their evaluation, LibScout was the best-

performing tool for both library identification and library version

identification and LibKit achieves higher F1 scores on iOS apps

than those reported by Zhang et al. for LibScout on Android apps.

Finally, we apply LibKit on 1,500 apps from the iTunes Store

for which we do not have a ground truth. This experiment sim-

ulates how LibKit could support the work of a security analysis

that needs to identify which TPLs a set of applications include,

to either identify apps that include known malicious libraries or

known vulnerable library versions. LibKit detects 47,015 library

versions, with a median of 25.5 libraries per app. We report the

top 10 libraries identified and show that popular apps contain old

library versions.

To allow future work on iOS TPL identification to use LibKit as

a baseline, we have released the code, database, and ground truth

required to replicate this research [26, 27].

This paper makes the following contributions:

• It presents the first library identification and library version

identification approach for iOS apps.

• It automatically builds fingerprints for 86,597 versions of

14,043 TPLs available in the CocoaPods repository.

• It builds a ground truth of 95 apps with their libraries and

43 apps with their library versions.

• We release LibKit, our fingerprint database, and our ground

truth datasets [26, 27].

2 BACKGROUND
This section first explains how iOS apps are developed in Section 2.1

and then details how developers can integrate TPLs using the Co-

coaPods package manager in Section 2.2.

2.1 iOS App Development
The original official language for developing iOS appswasObjective-

C, a superset of the C language that adds an object-oriented layer

and runtime. In 2014, Apple released Swift, a new programming

language to replace Objective-C. Swift was designed to maintain

compatibility with Objective-C. For this reason, even a pure Swift

app contains parts of the Objective-C runtime and each Swift class

is also an Objective-C class.

Building. iOS app developers typically use the official Xcode IDE

as development environment. Xcode handles all steps for building

an app including compilation, linking, and post-build steps like

signing, and packaging. All executable code produced in the build

process is in Mach-O executable files. These include the app’s code,

dynamic libraries, statically linked libraries, and vendored libraries,

i.e., open-source libraries whose source code is directly copied into

the app’s source base. Dynamic libraries are distributed as Frame-

works comprising of the library code in a Mach-O executable and

any resources the library requires. Frameworks typically contain
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their name in the path to their executable, making their identifi-

cation easier. However, the Framework files may not be named

with the known library name and the version is not disclosed. The

binary code of statically linked libraries and vendored libraries will

instead be included into the main app executable. Nowadays, iOS

apps typically contain multiple Mach-O executables: one executable

for the main app (including the app’s code, vendored libraries, and

statically linked libraries) and one executable for each Framework

that is not a system library pre-installed in iOS.

Packaging. iOS apps are distributed as IPA containers, which are

ZIP files with a specific structure. At its top-level, an IPA file has

a Payload folder that contains all files necessary to run the app,

with the exception of system libraries. The Payload folder contains

one or more app bundles (i.e., .app subfolders). Each app bundle

contains an Info.plist configuration file, an executable, associated

resources (e.g., translations, assets, images), and its Frameworks.

Apps needs to be digitally signed. iOS will refuse to run apps not

properly signed. An alternative is to use a jailbroken device that

circumvents signature checks.

Distribution. To publish an app through the official iTunes Store, a

developer must create a developer account. Apps in the iTunes Store

are signed by Apple. The FairPlay DRM protection used by Apple

will encrypt the executable code using a developer-specific key

before publishing it in the store, leaving other files (e.g., resources)

unencrypted.

2.2 CocoaPods
iOS developers may use a package manager (PM) to handle their

app’s dependencies, e.g., download third-party libraries and add

them to the app’s project. There exist three iOS PMs: CocoaPods [11],
Carthage [8], and Swift Package Manager (Swift PM) [34]. All three

support libraries distributed as source code or precompiled. A key

difference between them is that CocoaPods uses a central reposi-

tory to store specifications (called Podspecs) of the available library
versions. This central repository allows library developers to make

their TPLs visible to app developers, who can easily find TPLs to use.

In contrast, Carthage and Swift PM do not have a central repository

and thus app developers must find libraries on their own.

When a developer wants to publish in CocoaPods a new library,

or a new version of an already available library, it submits a Podspec
file to the public repository. CocoaPods assumes semantic version-

ing for library versions (MAJOR.MINOR.PATCH). Figure 1 shows

an excerpt of the Podspec of Firebase, a popular Google library. The
Podspec first contains general information about the library such

as its name, version, and the source from where the library can be

downloaded (e.g., URL to a repository or an archive). Then, it lists

dependencies broken into modules, or subspecs in the CocoaPods

jargon. In the example, the library has two subspecs (Core, Ad-

Mob), but only the default Core subspec will be installed by default.

The Firebase/Core subspec depends on two other libraries (Fire-

baseAnalytics, FirebaseCore). The AdMob subspec depends on the

Firebase/Core module and the library Google-Mobile-Ads-SDK.

To include libraries in an app, the developer generates a Podfile
that states the libraries that the app depends on. CocoaPods uses

the Podfile to automatically download the specified libraries (and its

dependencies) and to incorporate them into the app’s Xcode project

{ "name": "Firebase",
"version": "4.7.0",
"source": {"http": "https://dl.google.com/.../Firebase-4.7.0.tar.gz"},
"default_subspecs": [ "Core" ],
"subspecs": [
{"name": "Core",
"dependencies": {"FirebaseAnalytics": "4.0.5", "FirebaseCore": "4.0.12"},},

{"name": "AdMob"
"dependencies": {"Firebase/Core": [], "Google-Mobile-Ads-SDK": "7.26.0"},},]

}

Figure 1: Simplified Podspec for Firebase 4.7.0.

platform :ios, '9.0'
target 'test' do
use_frameworks!
pod 'Firebase', '4.7.0'
pod 'Objection'
pod 'SSZipArchive', '~> 2.2'

end

Figure 2: Podfile for a test app requiring three libraries.

so that they are compiled (if distributed as source code) and linked

when building the app. Figure 2 shows an example Podfile for a test
app, which requires three libraries (or pods). In this case, the app

developer requests through the use_frameworks! statement that the

libraries are built (if possible) as separate Frameworks. This causes

the app to contain four Mach-O binaries, one with the test app code

and one for each library. For Firebase, the developer requires ver-

sion 4.7.0. Since the Podfile does not specify any Firebase subspec,

only the default Firebase/Core subspec will be included. For Objec-

tion, since the developer did not specify any version, CocoaPods

will install the latest version. For SSZipArchive, the developer used

the optimistic operator ∼> 2.2, which is equivalent to range [2.2.0,

2.3.0). Since developers may not specify a library version, or may

provide a range of valid versions, CocoaPods decides which library

versions are included among those satisfying the constraints. The

CocoaPods installation produces a Podfile.lock file that resolves the

dependencies into concrete library versions. In the example, the

Podfile.lock file will specify that Firebase 4.7.0, Objection 1.6.1, and

SSZipArchive 2.2.3 were included into the app’s project. Unfortu-

nately, the Podfile.lock file is not part of the built app. Thus, it is

only available when building the app from source code and cannot

be used for TPL detection in our scenario where the input is the

app’s binary code.

3 APPROACH
The key idea behind any fingerprint-based identification technique

lies in representing an analyzed artifact (e.g., a malware sample, a

TPL, a whole binary file, or a single compiled class) in a fingerprint

capturing the unique features present in such artifact. Such finger-

print can then be used for reliable identification based on these

distinctive features in other artifacts.

LibKit is a fingerprint-based technique to identify TPLs is iOS

apps, and therefore comprises two phases, described in Figure 3:

library fingerprint generation and library detection. Library finger-

print generation takes as input a large collection of known TPLs

to generate a database of library fingerprints. LibKit can automati-

cally collect and build fingerprints for libraries in the CocoaPods

repository, although its modular design allows to analyze TPLs

from other sources with some manual work. Specifically, library

fingerprint generation retrieves a library by getting its CocoaPods



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Daniel Domínguez-Álvarez, Alejandro de la Cruz, Alessandra Gorla, and Juan Caballero

Figure 3: LibKit comprises two phases: The library fingerprint generation phase, at the top, builds the database of fingerprints
of a set of knownTPLs. In the second phase (library detection, at the bottom) the information in the database is used to analyze
an app with unknown TPLs. LibKit builds fingerprints for each component of the app and aims to match them in the database
of known libraries in an attempt to identify the name and the version of each library.

Podspec and builds it with all its dependencies. Taking the Firebase

library in Figure 1 as an example, LibKit would retrieve the Firebase

source code from the specified location, and then would retrieve all

the dependencies (i.e. Firebase/Core, FirebaseAnalytics, FirebaseC-

ore, Google-Mobile-Ads-SDK) recursively from CocoaPods. LibKit

resorts to a template app that solely includes the Firebase library

as dependency to produce the executable MachO binary files of the

library. We use a template application because CocoaPods is meant

to be integrated with an application project, and this process can

produce the binary files to be analyzed regardless of whether the

library –or any of its dependencies– is distributed as source code

or pre-compiled as dynamic or static library.

Each MachO binary file is then analyzed by the Feature Ex-

traction module, which employs an automated lightweight static

analysis to extract syntactic code features. Such features are then

used to produce a fingerprint of the library to be stored in the

database. When extracting the features, LibKit uses a blacklist to

discard features that may negatively effect the quality of fingerprint

(Section 3.1 provides more details on this aspect). LibKit resorts to

simhash [9] to compute the fingerprints of the extracted features.

The advantage of simhash is that it uses a probabilistic method to

generate similar fingerprints for similar objects. Therefore thanks

to simhash the fingerprints of two consecutive minor versions (e.g.

Firebase 1.4.7 and Firebase 1.4.8) of the same library are expected to

have fingerprints closer in similarity than two versions of the same

library separated by a major release (e.g. Firebase 0.4 and Firebase

1.7) or two different libraries (e.g. Firebase and Protobuf).

The library fingerprint generation phase only needs to be done

once for each library version contained in the CocoaPods reposi-

tory. LibKit already comes with a database of 86K library version

fingerprints that we produced for our evaluation.

In the Library Detection phase (bottom part of Figure 3), LibKit

analyzes a closed source iOS apps aiming to identify any of the

knownTPL fingerprints in the app binaries. To this end, it first needs

to decrypt the executable code that comes encrypted due to Apple

policies as explained in Section 2.1. It then analyzes each binary file

with the same lightweight static analysis component used to extract

features and build fingerprints for libraries in the library fingerprint

generation phase. LibKit searches for TPL candidates having their

fingerprint matching the features found in the app. This step is

not as trivial as looking for exactly matching TPL fingerprints in

the database. The executable code of a TPL in an app may have

been produced following a different compilation process, which

may include dead code elimination and other optimizations. This

leads to have different fingerprints even for exactly the same library

version. Thanks to simhash, though, fingerprints of the same library

version are supposed to be at least similar, and therefore would

match anyway given a similarity tolerance threshold. All the details

of how LibKit searches and matches app features with candidate

TPLs are further explained in Section 3.2.
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3.1 Library Fingerprint Generation
The top part of Figure 3 describes the architecture of the library

fingerprint generation. It takes as input the CocoaPods library repos-

itory and produces a database of library version fingerprints. Given

the Podspec file of a specific version of a library in CocoaPods,

LibKit follows three steps for generating its library version finger-

print: building, feature extraction, and fingerprinting.

Building. Given a target library version in CocoaPods, LibKit

builds a template app that includes it. The template app contains

the bare minimum code to include the target library version with

all its dependencies and build a stand-alone app without any real

functionality. Using a template app is needed because CocoaPods

does not build stand-alone libraries, but rather includes them into

an app’s project. Using a template app also allows us to produce

the binary files of the library to be analyzed regardless of whether

the library –or any of its dependencies– is distributed as source

code or pre-compiled as dynamic or static library.

To build the template app, LibKit creates a new Xcode project

and produces a Podfile for the template app that requires the target

library version. The following code shows the Podfile created for

the Crashlytics 3.14.0 library.

platform :ios, '9.0'
target 'templateapp' do

use_frameworks!
pod 'Crashlytics', '3.14.0'

end

The Podfile sets iOS 9 as the target platform. The use_frameworks!
line tells CocoaPods to try to build the app dependencies as Frame-

works. However, some libraries such as Crashlytics are distributed

as pre-compiled .a archives, forcing Xcode to link them statically

into the app’s main binary. LibKit then uses CocoaPods to install

the target library version in the Podfile into the app’s project. Co-

coaPods includes the target library version and all its dependencies

into the build script of the template app project. The CocoaPods in-

stallation produces a Podfile.lock file that resolves the dependencies

in the Podspec of the target library version into concrete library

versions to be included into the app’s project.

Next, LibKit leverages Xcode to build the template app. Since

the template app only includes the library, but does not really use

it, LibKit uses Xcode’s debug mode to build it, which disables dead

code elimination. This guarantees that the produced template app

contains the complete target library version and its dependencies.

If the building process is successful, the template app will comprise

of a main Mach-O binary (templateapp) and another binary for each
library built as a Framework. As a last step, the built binaries and

the Podfile.lock file are processed to generate a build log, which
captures a mapping from each executable to the library versions

it corresponds to. It also includes a dependency tree with the de-

pendencies of the target library version declared in the Podspecs
of all installed libraries. The dependency tree will miss vendored

libraries since those are not declared in the Podspecs.

Feature extraction. The feature extraction process takes as input

the built binaries and the build log. For each Mach-O binary, it uses

the dsdump parser [15] for extracting the list of classes it contains.

During this process it filters out the skeleton classes that are known

to belong to the template app using a static class blacklist. For each

@interface NSDuck : NSObject {
BOOL flying;
}
- (void)quackWithVolume:(int)volume;
@end

(a) Objective-C source class.

class_name : NSDuck
class_language : objective-c
methods: {

method_name : quackWithVolume
method_type : class_method
method_interface : void,int }

variables: {
objc_ivar_name : flying
objc_ivar_type : bool }

(b) Extracted features.

Figure 4: Objective-C feature extraction example.

remaining class, 4 properties are extracted: class name, class lan-
guage (Swift or Objective-C), the list of instance variables (only for

Objective-C classes), and the list of class methods. For each class

method, 3 properties are extracted:method name,method type (class
or instance method), and its interface (for Objective-C methods, for

Swift methods the interface is encoded in the name). The interface

of a method is a mangled string that defines the return type and
the type of its parameters. For each Objective-C instance variable, 2

properties are extracted: name and type. Figure 4a shows a sample

Objective-C class NSDuck with one method named quackWithVol-
ume. Figure 4b shows the features extracted for that class.

Class fingerprints.A class fingerprint is a 64-bit Simhash value [9].

Simhash is a similarity hash used in many fingerprint-based detec-

tion techniques because of its ability to generate similar fingerprints

for similar objects. Specifically, it takes as input a set of hashes and

produces a fixed size hash value with the property that similar in-

puts produce similar hash values (i.e., with low Hamming distance).

Simhash can approximate the Jaccard index between two sets of

hash values: a small Hamming distance between two Simhash val-

ues indicates a high Jaccard index, and a large Hamming distance

indicates a low Jaccard index.

In our case, the input to the Simhash function is variable num-

ber of 64-bit FNV1a hashes. One hash covers the concatenation

of the class name, class language, number of instance variables ,

and number of methods. An additional hash is produced for each

Objective-C method, for each Swift method, and for each Objective-

C instance variable. The hash of each method and instance variable

includes the class name to avoid spurious matches with unrelated

classes that may have similarly named methods and variables.

In Figure 4, the class fingerprint for the NSDuck class would be

the 64-bit Simhash of three hashes: one for the class name (NSDuck),
language (Objective-C), number of methods (1), and number of in-

stance variables (1); another one for the quackWithVolumemethod;

and a final one for the flying instance variable.
Class fingerprints capture class and method metadata. They do

not consider the code of the methods. The advantage of this design

is that it can identify the same class regardless of code changes

due to different compiler configurations. This is important because

LibKit generates the class fingerprints using compiler settings that

may not match those used by the developers of the apps that use

the library. One disadvantage is that two versions of the same

class with identical metadata but containing code differences e.g.,

a patch that only adds a NULL pointer check in one method, will

have the same class fingerprint and thus cannot be differentiated.

Another disadvantage is that our fingerprints are not resilient to

symbol renaming. However, Wang et al. [37] identified only 0.06%
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of one million iOS apps collected from the official iTunes Store

as being obfuscated using symbol renaming. While obfuscation

is an important problem, it is not an urgent issue in today’s iOS

landscape, and thus we plan to address it in future work.

The use of Simhash allows us to identify the same class despite

small changes in its metadata. The kind of changes that we want to

allow are those we would normally expect between minor versions

of a library. For example, the addition, removal, or renaming of

methods or attributes of a class would not greatly impact the class

fingerprint, while large changes like heavy refactoring, class renam-

ing, or the addition of a large number of methods would produce

significantly different class fingerprints. This is important because

the generated database of libraries may not be complete. For exam-

ple, the database may include some versions, but not all versions,

of a library. In this scenario, LibKit should still identify that the app

contains the library. While it cannot identify the correct library

version since it is not in the database, it aims to identify the closest

version of the library that is in the database. We evaluate library

version identification in Section 5.2.

Library version fingerprint. A library version fingerprint com-

prises of a set of class fingerprints, one for each of the library classes.

More specifically, the library version fingerprint comprises of the

set of class fingerprints for all classes in all binaries produced when

building the template app. For example, if the template app for a tar-

get library version comprises of two binaries (the main templateapp
binary and a Framework), then the library version fingerprint of

that library version would comprise a set of Simhashes whose size

is the sum of the number of classes in both binaries (minus those

classes in the blacklist).

It is possible for multiple library versions to have the same fin-

gerprint, which makes them indistinguishable from each other. This

happens for two main reasons: (i) close versions of the same library

that have identical class metadata and only differ in their code;

(ii) libraries that are forks or exact clones of each other. Once the

database has been populated, LibKit identifies the library versions

with the same fingerprint and puts them in an equivalence class.

For each equivalence class, it identifies a leader. The role of the

leader is to be the library version output in the results. The leader

selection counts how many times a library version depends on an-

other in the equivalence class. The library with the highest number

of dependants is selected as the leader. An alternative would be to

output all library versions in the equivalence class.

3.2 Library Detection
The bottom part of Figure 3 describes the library detection archi-

tecture. It takes as input an app’s IPA and outputs the list of library

versions the app uses. The first step is decrypting the app, which is

explained in Section 4.2. After decrypting the app, the next step is,

for each decrypted binary, to parse it, extract the class and method

features, and generate the class fingerprints, as described in Sec-

tion 3.1. The class fingerprints are input to the candidate search,
whose task is to find for each class fingerprint in the app, a set of

similar class fingerprints in the database, which we call candidates.

Candidates that do not pass certain selection criteria are removed.

Depending if the binary being processed is the main app binary

or a Framework, the candidate filtering or framework filtering take

care of the removal. The candidate selection then identifies the best

matching candidate libraries. Finally, the dependency inclusion adds

the dependencies between the detected library versions, selects

a leader for each equivalence class, and produces the final list of

library versions identified.

Candidate search. Each binary in the appA is composed of a set

of class fingerprints. For each class fingerprint 𝑐 in the app’s binary,

the candidate search function S returns as candidate 𝑣𝑙 any library

in the database containing at least one class fingerprint 𝑓 more

similar than a similarity threshold 𝑇𝑠 to the class fingerprint 𝑐 in

the app.

S(𝑐) = {𝑣𝑙 : (𝑣𝑙 , 𝑓 ) ∈ D, 𝑠𝑖𝑚𝑖𝑙 (𝑐, 𝑓 ) ≥ 𝑇𝑠 }

The 𝑠𝑖𝑚𝑖𝑙 function is the normalized similarity between two

class fingerprints, one coming from the app (𝑐) and the other from a

library in the database (𝑓 ). Since 𝑐 and 𝑓 are 64-bit Simhash values,

LibKit computes their similarity based on the Hamming distance

of their bitstrings, thus 𝑠𝑖𝑚𝑖𝑙(𝑐, 𝑓 ) =
64−ℎ𝑎𝑚𝑚𝑖𝑛𝑔(𝑐,𝑓 )

64
.

The similarity threshold 𝑇𝑠 captures the minimum similarity for

two class fingerprints to be considered a match. In Section 5, we

empirically determine that 𝑇𝑠 = 0.8 gives optimal results.

Candidate filtering. The candidate search selects any library ver-

sion that has at least one class in common with the app. Thus, it

may return hundreds or even thousands of candidates. It makes

little sense, though, to consider a library if the number of classes

found in the app is a very small ratio of the whole library (e.g., the

app contains only 1 class of the 100 in the candidate library). This

case is more likely a fingerprint collision, which might happen for

very small classes with very few features.

The second step therefore filters out from this list of candidates

the libraries that do not match a significant part of the classes. For

each 𝑣𝑙 identified during the previous step, LibKit keeps only the

ones that satisfy
L(𝑣𝑙 )−M(𝑣𝑙 )

L(𝑣𝑙 ) ≥ 𝑇𝑚 , being L(𝑣𝑙 ) the number of

class fingerprints the library version has andM(𝑣𝑙 ) the number of

classes in 𝑣𝑙 that could not be found in A by name. This filtering

removes library versions that match very few classes of the total

classes the app lib contains, since it is unlikely that dead code

elimination would remove the majority of the classes. In Section 5,

we empirically evaluate different 𝑇𝑚 values and select 𝑇𝑚 = 0.35.
Thus, the candidate filtering function as follows:

F = {𝑣𝑙 : 𝑣𝑙 ∈ S(𝑐), 𝑐 ∈ A,
L(𝑣𝑙 ) − M(𝑣𝑙 )

L(𝑣𝑙 )
≥ 𝑇𝑚 }

Framework filtering. Libraries compiled as Frameworks have

their name in the path of the application bundle. For all library ver-

sions distributed as source, the database keeps a mapping between

the library version and the Framework binaries produced during its

processing in the library fingerprint generation. When the binary

under analysis is a Framework, LibKit thus directly extracts its

name from the path and matches it against the mapping. LibKit

keeps in F only those library versions that match. If no library

candidate matches, instead, LibKit does not remove any library ver-

sions from F , and keeps it as is. Thus, if a Framework was renamed,

no library candidate will match it, and the detection will proceed

without this optimization.
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Candidate selection. F contains library version candidates that

may cover class fingerprints in common with other candidates.

However, at the end of the library detection phase each class fin-

gerprint found in the app should be assigned to at most one library

version candidate. Keeping in mind that Frameworks contain only

one library per binary, while the main binary may contain many

statically linked libraries, beside the app code, LibKit resorts to two

different algorithms to select the best match.

In both cases, LibKit first ranks the list of filtered library version

candidate F according to a score 𝑝(𝑣𝑙 ). This score is computed

as a multiplication of three values. The first value is the coverage
score, defined as the number of classes the candidate matches times

the ratio of classes the candidate matched in app A and the total

number of classes in the library version fingerprint. The second

value is the average normalized similarity of the classes matched

by the candidate. The last value is the number of different versions

of the library the candidate contained in F , which we call the

popularity of the library. The intuition behind this popularity score

is that since close versions of a library do not differ much, they

will have similar library version fingerprints. Thus, it is common

that many versions of the libraries that most likely are the best

matching ones appear in F .

𝑝(𝑣𝑙 ) =
|C(𝑣𝑙 ) |2

L(𝑣𝑙 )
× 𝑠𝑖𝑚𝑖𝑙 (𝑣𝑙 ) × 𝑝𝑜𝑝(𝑣𝑙 )

In the case of the main binary, LibKit solves the set cover prob-

lem in a greedy fashion, as shown in Algorithm 1. 𝑐𝑜𝑣 at line 2 is

initialized with all the classes in the app that need to be covered

by a library candidate in F . Starting from the candidate with the

highest 𝑝(𝑣𝑙 ), LibKit removes from 𝑐𝑜𝑣 the classes that 𝑣𝑙 covers,

it adds 𝑣𝑙 to the selected libraries, and finally removes from F the

libraries that do not cover any remaining class in 𝑐𝑜𝑣 . This pro-

cess continues until the list in F is empty. When the binary is a

Algorithm 1Algorithm for selecting candidates in the main binary

1: procedure SolveMainBinary(F) ⊲ F is sorted by 𝑝(𝑣𝑙 )

2: 𝑐𝑜𝑣 ← {𝑐 : 𝑐 ∈ A, S(𝑐) ̸= ∅}
3: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ← ∅
4: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← ∅
5: for 𝑣𝑙 ∈ F do
6: if 𝑣𝑙 ∈ 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 then
7: continue ⊲ Ignore 𝑣𝑙

8: end if
9: if 𝑐𝑜𝑣 = ∅ then
10: break ⊲ We are out of classes to cover

11: end if
12: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∪ {𝑣𝑙 }
13: 𝑐𝑜𝑣 ← 𝑐𝑜𝑣 \ C(𝑣𝑙 )
14: for 𝑐 ∈ C(𝑣𝑙 ) do
15: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ← 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 ∪ S(𝑐)
16: end for
17: end for
18: return 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

19: end procedure

Framework, instead, LibKit first picks the candidates with the best

coverage score. From this subset it picks the candidate with the best

average normalized similarity, and adds it to the list of selected

libraries.

Table 1: Library database summary.

Item Count
Libraries 14,043

Library versions 86,597

Classes 8,714,001

Objective-C classes 63.7%

Swift classes 36.3%

Methods 106,993,407

Dependency inclusion. Finally, for each selected library, LibKit

reports all its dependencies in the final list of libraries found in the

app, since these are implicitly included in the bundle.

4 DATASETS
To evaluate our approach we need libraries and apps, as well as

ground truth to evaluate accuracy. In Section 4.1 we describe how

we build fingerprints for a large number of libraries available

through CocoaPods. In Section 4.2 we describe how we collect

popular apps from the iTunes Store. Finally, in Section 4.3 we de-

scribe how we build a ground truth for a small number of apps to

evaluate the library detection.

4.1 Library Database
The seeds for the library database construction were the 188,129

library versions belonging to 17,302 libraries targeting iOS 9 or

later available in the CocoaPods repository on April 28th, 2021. iOS

9 is the lowest SDK our Xcode version supports. We managed to

compile 99,877 (53.1%) of those library versions. The most common

compilation failures were that a dependency targeted iOS 8 and

that the library used an old Swift version (e.g., Swift 3) that our

Xcode version no longer supports. We were able to extract finger-

prints from 86.7% of the compiled versions (46% of the original

seeds). The most common failure to build a fingerprint was pure C

libraries because they do not contain classes. Table 1 summarizes

the produced library database, which contains 86,597 library ver-

sions belonging to 14,043 libraries. The total number of classes is

8,714,001, of which 63.7% are Objective-C classes and 36.3% Swift

classes. Those 8,714,001 classes contain 106,993,407 methods, an

average of 10.2 methods per class.

4.2 App Collection
Our app collection pipeline replicates the one proposed byCriOS [31].

It downloads apps by instrumenting the iTunes Windows client,

installs them on an iPhone device, and dumps the memory using

Frida [17] after decryption has completed. We use the app collec-

tion pipeline to download and decrypt 1,500 randomly chosen apps

from the list of popular apps in the Italian market of the iTunes

Store. The download took 1.2 days using a single Windows VM and

the decryption rate was 100 apps/hour using two devices.

4.3 Ground Truth
We have created two ground truth datasets: one with 43 apps for

which we have identified the library versions they use (GT43) and
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another with 95 apps for which we have only identified the names

of the libraries they use, but not their version (GT95).

GT43. To build our ground truth datasets, we started by search-

ing GitHub for open-source iOS apps, which yielded 140 apps. To

obtain the desired ground truth for an app, we need to obtain its

Podfile.lock file, which states the library versions that CocoaPods

included when building the app. For example, if the app’s podfile

defines a range of compatible library versions, the Podfile.lock file

will state the specific version CocoaPods chose in that range (i.e.,

the one LibKit should detect). Unfortunately, Podfile.lock is only

available when building the app from source, or if the developers

commited it to the app’s source repository after building the app.

It is not available for proprietary apps in the iTunes Store, even if

they were built using CocoaPods.

Compiling an iOS open-source app is most often a painful pro-

cess due to limited documentation and the need to set up required

dependencies. Thus, we only managed to compile 10 of the 140 apps.

In addition, another 33 apps (disjoint from the 10 we managed to

compile) had their Podfile.lock file available in their repository. For

these 43 apps we know the library versions CocoaPods included

in the app. However, the app could also include some vendored

libraries, i.e., the library source was copied into the app’s source

and thus is compiled as part of the app. Podfile.lock does not con-

tain vendored libraries since CocoaPods is not aware of those. To

identify vendored libraries, we manually examined the app’s source

code in the repository. Overall, the 43 apps contain 511 library ver-

sions belonging to 347 libraries, with a total of 26,160 classes. We

use GT43 to measure how accurately LibKit detects library versions.

GT95. Among the 140 apps, there were 95 apps (the 33 with a

Podfile.lock in their repository and another 62 not in GT43) that

were available in the iTunes Store. This allowed us to download

the most recent app version at the time from the iTunes Store. For

these 95 apps, we cannot get the library versions used as we do

not have access to their Podfile.lock. However, we can parse the

podfile in the source repo to identify the names of the TPLs the

app uses. Since the podfile is needed to build the open-source app,

the developers generally add it to the repository, in contrast to

the optional Podfile.lock. Note that the podfile is only available for

open-source apps using CocoaPods, but not for proprietary apps in

the iTunes Store. Thus, it cannot be used for library detection. For

these 95 apps we only know the names of the libraries the apps use,

but not the library version. We use GT95 to measure how accurately

LibKit detects libraries. The 95 apps contain 1,066 libraries with

37,283 classes.

This process shows that building a ground truth of library ver-

sions an app uses is challenging, even for open-source apps. Unfor-

tunately, we could not select the apps we wanted for the ground

truth, but rather the GT datasets include all apps for which we

could obtain data. However, we believe the resulting datasets are

representative as they contain apps of different sizes ranging from

small (e.g., KeePassium) to very large (e.g., Firefox).

5 EVALUATION
Our evaluation addresses the following research questions: RQ1:
What is the accuracy of LibKit for detecting libraries? RQ2: How

does LibKit compare to the state of the art? RQ3:What is the accu-

racy of LibKit for detecting library versions? RQ4:What libraries

does LibKit detect on apps from the iTunes Store?

5.1 RQ1: Library Identification
To evaluate the accuracy of LibKit for detecting libraries, we run

LibKit on GT95 multiple times using different parameters. For each

run, we compare the identified libraries (ignoring the identified

version) with the list of libraries in the GT. In particular, we compute

the number of detected libraries in the GT (True Positives), the

number of detected libraries not in the GT (False Positives), and

the number of undetected libraries in the GT (False Negatives). We

split the false negatives into those due to libraries present and not

present in our library database, so that we can separate database

coverage from the accuracy of the detection. From these values we

derive three standard metrics: Precision, Recall, and F1 score.
Library detection has two parameters: the similarity threshold

(𝑇𝑠 ) and the coverage threshold (𝑇𝑚). To identify optimal values for

these parameters we run the library detection varying their values

in the ranges 0.8 ≤ 𝑇𝑠 ≤ 0.95 and 0.2 ≤ 𝑇𝑚 ≤ 0.5, in increments

of 5%. The best results are achieved using a similarity threshold

𝑇𝑠 = 0.8. Interestingly, the 𝑇𝑚 coverage threshold does not affect

the results within these value ranges. This is due to the greedy

algorithm selecting candidate libraries that cover the most, so the

coverage threshold only applies to whatever remains after high

coverage classes have been selected. Based on this evaluation, we

select𝑇𝑠 = 0.8 and𝑇𝑚 = 0.35 as parameter values for the rest of the

evaluation.

Using those parameter values, we first measure the accuracy

excluding the impact of the library database, i.e., excluding FNs of

libraries not in our database. The library detection results are: Preci-
sion of 0.911, Recall of 0.839, and F1 score of 0.874. We next estimate

the impact of the library database coverage. In GT95, 248 (22%) of

the libraries are not in CocoaPods. These libraries are distributed

through other means. To cover such libraries we could incorporate

other library sources such as GitHub. Another 164 (15%) libraries

are in CocoaPods, but LibKit could not generate a fingerprint for

them. Covering these libraries would require improvements to our

automated build pipeline, e.g., supporting older iOS frameworks. If

we include FNs from missing libraries the library detection results

are: Precision of 0.911, Recall of 0.524, and F1 score of 0.666. The im-

pact of database coverage is significant, despite our library database

being the largest of its kind with 86K library versions. In contrast,

the largest database in Android TPL detection works contains 12K

library versions [40].

Even when including these FNs, the results from LibKit are com-

parable to the best Android tools. In particular, Zhang et al. [41]

evaluated the accuracy of 5 Android TPL detection tools, observing

that most tools achieve high precision (i.e., above 0.84) but all have

low recall (i.e., below 0.50). In their evaluation, the best library

identification tool was LibScout with a precision of 0.974, recall of
0.490, and F1 score of 0.652, slightly worse than LibKit.

False negatives. Next, we analyze the false negatives where the
library is present in our database. More than half of these FNs are

limitations on our GT that does not capture dependencies due to

vendored libraries. For example, one app includes the UserExperior



LibKit: Detecting Third-Party Libraries in iOS Apps ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

library, which embeds SSZipArchive as a vendored library. Our

GT generation correctly identified the vendored library and both

libraries are in the GT, but the GT does not capture the dependency

between them. LibKit correctly identifies UserExperior, but does

not identify SSZipArchive because it is (correctly) considered part

of UserExperior. Thus, SSZipArchive is counted as a FN, despite

the detection being arguably correct. Adding dependencies to the

GT is in our future work plan, but it requires significant manual

work. The similarity threshold is behind 33% of the FNs. In these

cases, the highest similarity between a class from the library in the

app and the corresponding library class in the database is below 0.8.

One explanation for these cases is that our database contains far

away versions of the library compared to the version the app uses,

so the similarity is low. Reducing the similarity threshold could

help remove some of these FNs, but it would introduce FPs and

hamper scalability by largely increasing the number of candidates.

The coverage threshold is behind 8% of the FNs. These are cases

where the library in the app does not cover at least 35% of the full

library in the database. These may be due to aggressive dead code

elimination while building the app, or again to low coverage of the

library versions in our database.

False positives. A common reason for false positives are actually

false negatives, what we call FN-FP pairs. It often happens that when

LibKit misses a library, it introduces a FP by selecting a different

library that contains the missing library. For example, one app uses

the Reachability library. LibKit misses Reachability and instead

flags geekSDK, which vendors Reachability. In this case, LibKit is

correctly capturing Reachability, but the fact is hidden in the results,

introducing both a FN and a FP. Another case, responsible for 48%

of FPs, are small libraries in the database that may contain very few

classes (often only one). Apps may contain similar small classes

creating collisions that make the small library to be included in the

results. We also found a handful of cases caused by the usage of

other languages in app development. For example, there are two

React Native apps that contain the React Native runtime, which is

not in our database. Instead, LibKit identifies a particular library

that contains the React Native runtime. This case is analogous to a

FN-FP pair, but with a FN due to a library not in the database.

Our analysis confirms results by Zhang et al. [41] that identified

library dependencies as one of the most challenging aspects of TPL

detection.

5.2 RQ2: Comparison with State of the Art
We compare LibKit against CRiOS, which we consider the state of

the art in iOS TPL detection. The approach by Tang et al. [35] is

specific to network libraries, and also requires dynamic analysis.

And, the approach by Chen et al. [10] only applies to libraries

released for both Android and iOS. We do not try porting any

Android approach to iOS because most use the Android-specific

package structure. ORLIS [38] is the only Android approach that

operates solely on classes, but it has been shown to perform worst

amongst publicly available Android tools [41], so it does not seem

worth the porting effort.

CRiOS is a clustering-based approach that takes as input a set of

apps and identifies groups of classes that appear together in more

than one app, share a name prefix, and have class cohesion. For each

Table 2: Comparison between LibKit and CRiOS for identi-
fying the class boundaries of TPLs on the GT95 apps.

All Apps Pure Objective-C Apps
Tool Prec. Recall F1 Prec. Recall F1
CRiOS 92.6% 18.4% 30.7% 87.9% 35.9% 51.0%

LibKit 94.0% 58.6% 72.2% 92.9% 70.5% 80.1%

app, it outputs the unlabeled clusters of apps, where each cluster

supposedly represents a TPL. Since CRiOS does not output library

names and versions, the comparison focuses on the identification

of the class boundaries between the TPLs and the app classes.

GT95 contains the TPLs in each app and the list of app classes

belonging to each TPL, which can be used as a reference cluster-

ing. We can compare this reference clustering to the clustering

produced by CRiOS using external clustering validity metrics [20],

which compare the input clustering to the reference one based only

on the cluster agreement, without considering the cluster labels.
In particular, we use a version of Precision, Recall, and F1 often

used in malware clustering approaches [6, 33]. Other external valid-

ity metrics like Rand Statistic, Jaccard Coefficient, and Folkes and

Mallows Index could equally be used. We can similarly compare

LibKit to the reference clustering since its output includes the list

of app classes belonging to each identified TPL.

Since the release of CRiOS, many changes have happened in

iOS, which cause CRiOS to fail on 72 of the GT95 apps (45 apps

that contain Swift and 27 apps using newer Objective-C versions).

To address this issue, we modified CRiOS to replace its class-dump
Mach-O parser with the dsdump parser LibKit uses. With this fix

we could run CRiOS on all apps in GT95.

Table 2 reports the comparison results over all apps in GT95,

as well as only on the 50 pure Objective-C apps since CRiOS was

not designed to support Swift. The results show that LibKit beats

CRiOS in both datasets in all metrics. The recall for CRiOS is very

low as it misses Swift libraries, libraries that only appear in one app,

and classes that appear in one library version but not in another

version of the same library. When removing apps that use Swift,

CRiOS results improve, but the F1 score of LibKit remains 29 points

higher. Thus, LibKit clearly improves on CRiOS for identifying TPL

boundaries in an app. Furthermore, LibKit is able to automatically

label the libraries (and versions) in the app.

We also run CRiOS on the 1,500 apps collected from the iTunes

Store. CRiOS outputs 5 clusters in two applications. In one app,

it outputs 3 clusters that correspond to the Crashlytics, Firebase,

and Answers libraries. In the other app, it outputs 2 clusters that

correspond to the Fabric and AdMob libraries. For the other 1,498

it outputs no clusters, i.e., it does not identify any TPLs. In contrast,

Section 5.4 shows that on the same 1,500 apps, LibKit identifies

47,015 library versions. The results indicate that as the number of

apps increases, it becomes increasingly hard for CRiOS to identify

TPLs in the input apps.

5.3 RQ3: Library Version Identification
To evaluate the detection of library versions we run LibKit on

the GT43 dataset using the parameter values determined in RQ1.

LibKit detects 421 library versions: 370 that exactly match the one
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Table 3: Top 10 most prevalent libraries detected among the
47,015 different library versions identified

Library Publisher Apps Ver.
Google-Mobile-Ads-SDK Google 494 78

GoogleUtilities/AppDelegateSwizzler Google 493 44

FBSDKCoreKit Facebook 445 46

PromisesObjC Google 413 23

Protobuf Google 271 27

Crashlytics Google 236 25

FirebaseInstanceID Google 232 25

GoogleDataTransport Google 216 30

Alamofire Alamofire 198 20

GoogleAnalytics Google 183 6

in the GT (TPs) and 51 that differ from the GT (FPs). It misses

84 library versions (FNs). Thus, the accuracy metrics for library

version detection are: Precision of 0.879, Recall of 0.815, and F1 score
of 0.846.

Zhang et al. evaluated three Android tools for library version

identification, observing that the best one was LibScout with an

F1 score of 64.47% in a dataset of similar versions and 22.25% on

another dataset where versions had higher differences. Thus, LibKit

achieves a higher F1 score on version identification than the best-

performing Android tool.

5.4 RQ4: Library Detection on Store Apps
We run the library detection on the 1,500 apps collected from the

iTunes Store. LibKit detects 47,015 library versions across all 1,500

apps. Of those, 31,041 (66%) are statically linked (or vendored), while

the remaining 34% are Frameworks. This highlights the utility of

LibKit for the analysis of iOS apps. Simply examining the name of

the Framework files in the App bundles would miss two thirds of the

libraries. In addition, for the Frameworks, LibKit is able to provide

the version, which is not part of the Framework name. Among

the 47,015 detections, there are 11,704 unique library versions (i.e.,

13.5% of those in our DB) and 1,592 unique library names (11.3% of

those in our DB). Each app has a median of 25.5 libraries, mean of

26.4, with an standard deviation of 19.9. In 131 apps, LibKit did not

detect any libraries and the largest number of libraries detected in

one app is 106.

Table 3 shows the top 10most prevalent libraries identified on the

1,500 apps. Of those, 8 are published by Google, one by Facebook,

and another one by the Alamofire Software Foundation. The table

highlights Google’s efforts to have a wide presence in the iOS

advertisement ecosystem since iOS has a 27% mobile OS market

share [29]. The most popular library is Google’s AdMob advertising

library, present in 494 apps, Second is the AppDelegateSwizzler
subspec of the GoogleUtilities library present in 493 apps. Third

comes FBSDKCoreKit, which allows to integrate Facebook into an

iOS app and is found in 445 apps.

The rightmost column in Table 3 shows that the apps contain a

large number of versions for the same library. Except for Google-

Analytics, the number of unique versions for each library ranges

from 20 in Alamofire up to 78 for AdMob. Given that the apps

were collected within 1.2 days, this indicates that many apps were

running old versions of the libraries. One example is the Documents
(Office Docs) app by Savy Soda, with 4.6K ratings in the Italian

market. The version we crawled was 12.2, released on August 28th,

2019. However, among the 8 library versions LibKit detects, five

were released between 2014 and 2018. For example, LibKit detects

FirebaseInstanceID 1.0.10, which was released on 2017, two years

earlier than the app release. LibKit also detects OneDriveSDK, a
library that Microsoft has recently deprecated and has not received

code updates since February 2019. None of the recent app releases

(latest from February 2022) mention the deprecation of the library

in their release notes. Furthermore, the app only gets 1-4 updates

each year over the last five years and stayed 1.5 years without an

update around our collection date. These results highlight that old li-

brary versions are common among popular apps in the iTunes Store

and how LibKit can be used to identify apps with such outdated

dependencies.

Runtime.On average, LibKit takes 8 minutes to detect the libraries

in an app. Zhan et al. [41] measured the runtime of five publicly

available Android TPL detection tools. Compared with those, LibKit

would be slower than LibRadar (6 seconds on average per app)

and LibScout (1.4 minutes), but faster than ORLIS (24 minutes),

LibPecker (5.11 hours), and LibID (23.12 hours). Similar to our num-

ber, those numbers do not include the clustering time for LibRadar

or the library generation time for the other tools. Note that Zhan

et al. used a database of 59 libraries and 2,115 library versions for

all tools except LibRadar. In contrast, LibKit’s database is 40 times

larger, comprising of 14,043 libraries and 86,597 library versions.

This negatively affects LibKit in the comparison, as the detection

time for all tools is at least linear on the size of the database [41].

6 RELATEDWORK
TPL detection approaches for mobile apps can be split between

clustering-based approaches that infer libraries by identifying code

components shared by multiple input apps (e.g., [24, 28, 31, 43]) and

those that build a database of library fingerprints directly from the

library code (e.g., [4, 5, 36, 38, 40, 42]). Clustering-based approaches

have the advantage that they can identify previously unknown

TPLs, but they cannot name the specific library or library version

a cluster represents, unless a separate mapping is built (typically

manually). Also, they may fail to identify niche or emerging TPLs.

Furthermore, they have been shown to have problems separating

versions of the same library and identifying partially included li-

braries (e.g., due to dead code elimination) [41]. To avoid those

limitations, our approach builds fingerprints from known libraries.

To address the problem of library database coverage we leverage

the repository of the CocoaPods PM, unique to the iOS ecosystem,

which allows us to build the largest library version database so far

with 86K libraries versions from 14K libraries.

The majority of TPL identification approaches focus on An-

droid apps and cannot be applied to iOS because they leverage the

Android-specific package structure. The only Android TPL detec-

tion work that operates at the class-level is ORLIS [38], but previous

work has shown ORLIS to perform worst amongst publicly avail-

able Android tools [41]. A few works address TPL identification

on iOS apps. CriOS [31] first proposed a clustering-based approach

that groups classes with the same name prefix and class cohesion

into libraries. As part of their approach to identify vulnerabilities in

iOS network services, Tang et al. [35] proposed a clustering-based

technique that dynamically obtains the callstack of an app when it
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invokes the bind function and identifies the TPL wrapping bind by

grouping similar callstacks. However, their approach only applies

to network libraries. A different approach was used by Chen et

al. [10] who applied TPL detection to Android apps and then built

constant string invariants of the Android TPLs to identify them in

iOS apps. Unfortunately, their approach only applies to libraries

available both in Android and iOS. The limitations of clustering-

based approaches and the fact that the only Android approach that

could be ported to iOS had low accuracy motivated us to design a

novel iOS TPL detection approach.

Several works have proposed iOS analysis techniques for other

applications. PiOS [16] statically identifies the methods used by

an Objective-C binary to detect privacy violations. Joorabchi and

Mesbah [22] apply image recognition for detecting when the user

interface of an iOS app has changed during execution. Other works

identify vulnerabilities in iOS apps such as those introduced by the

misuse of cryptographic APIs [25] and credentials [39]. Other works

study iOS dependencies in CocoaPods [13, 32]. Another research

line compares the Android and iOS platforms. Some studies focus

on the development model [12, 18, 19]. Others compare the security

and privacy features and issues of both platforms [1, 2, 7, 10, 14, 21,

23, 30].

7 DISCUSSION
This section discusses limitations and avenues for improvement.

Fingerprint uniqueness. Library versions with the same finger-

print (i.e., same class metadata) cannot be differentiated and are

added to an equivalence class. Those cases are largely due to consec-

utive library versions, with roughly two-thirds due to consecutive

patch-level versions, and another 25% due to consecutive minor ver-

sions. We also observe our fingerprints producing higher collisions

in Swift libraries compared to Objective-C libraries. This is due

to compiled Swift code containing less information than compiled

Objective-C code, e.g., it does not contain instance variables, which

are only included in our fingerprints for Objective-C.

To make the fingerprints more unique we could add more fea-

tures extracted from the binary code, e.g., from functions and vari-

ables that do not belong to classes and from the code of the methods

and functions. There are two main reasons why we left such fea-

tures for our future work. First, there is limited tooling for analyzing

iOS native code. Popular binary analysis platforms such as Angr [3]

have little support for iOS and Mach-O binaries, e.g., to enable

disassembly, function identification, CFG reconstruction, and type

inference. We may need to implement much of that analysis our-

selves, a very significant endeavor on top of the work we already

performed. Second, some problems where code analysis would be

very useful such as handling obfuscation are still not prevalent in

iOS, i.e., Wang et al. [37] showed only 0.06% of apps in the iTunes

Store are obfuscated. It is also worth noting that additional code

features would not solve all collisions since we observe consecutive

library versions with identical code where changes happen only in

data files or in auxiliary code not included in the app.

Database coverage. While code analysis would help to distin-

guish some close library versions, our results show that low recall

is mostly due to limited coverage in the library version database.

This happens even if our library version database comprises 86K

library versions, seven times larger than those used in Android TPL

detection. The limited coverage is due to multiple reasons includ-

ing libraries not distributed through CocoaPods, library versions

that we could not compile, and limitations of the analysis (e.g.,

lack of support for old Swift versions). In future work, we plan

to increase the coverage of our library database by incorporating

GitHub projects that use other package managers like Carthage

and Swift PM and examine if they use any libraries not present in

CocoaPods. We also plan to improve our automated compilation

pipeline to increase the successful compilation rate.

Ground truth size.One threat to the validity of the library version
identification results is the limited size of GT43 with 511 TPLs

present in 43 open-source apps. It is possible that a larger ground

truth would reveal harder cases that would lower the overall library

version identification accuracy. As explained in Section 4, building

library version ground truth is painful since it requires successfully

compiling the apps and manually examining their source code to

identify vendored libraries. We are releasing our ground truth to

foster future work in the area and plan to explore approaches to

automate the ground truth construction in future work.

8 CONCLUSION
We presented LibKit, a fully automated TPL identification tool that

is the first to identify the name and version of TPLs present in iOS

apps. LibKit supports apps developed in Swift, Objective-C, or a

combination of both; detects statically and dynamically linked li-

braries; and addresses the challenges of partially included libraries,

and that different compiler versions and configurations can produce

different outputs for the same library. LibKit automatically builds

fingerprints for 86K library versions available through CocoaPods

and matches them on the decrypted app executables. We evaluate

LibKit for the problems of library identification and library version

identification, showing that its accuracy positively compares with

the best performing Android tools. LibKit also significantly outper-

forms CRiOS, the previous state-of-the-art tool for iOS apps, for

the problem of detecting TPL class boundaries in iOS apps.

As future work we would like to address some of the limitations

of LibKit such as adding support for code written in other languages

(e.g., C/C++); strengthening the fingerprints against obfuscation by

incorporating instruction-level or CFG-level features; increasing

the coverage of our library database; and increasing the success rate

of the compilation pipeline (e.g., by supporting older iOS versions).

We would also like to perform a user study to quantify the benefits

for human analysts when using LibKit.
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