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ABSTRACT

Mobile apps interact with their environment extensively, and these
interactions can complicate testing activities because test cases
may need a complete environment to be executed. Interactions
with the environment can also introduce test flakiness, for instance
when the environment behaves in non-deterministic ways. For
these reasons, it is common to create test mocks that can eliminate
the need for (part of) the environment to be present during testing.
Manual mock creation, however, can be extremely time consuming
and error-prone. Moreover, the generated mocks can typically only
be used in the context of the specific tests for which they were
created. To address these issues, we propose MOKA, a general
framework for collecting and generating reusable test mocks in
an automated way. MOKA leverages the ability to observe a large
number of interactions between an application and its environment
and uses an iterative approach to generate two possible, alternative
types of mocks with different reusability characteristics: advanced
mocks generated through program synthesis (ideally) and basic
record-replay-based mocks (as a fallback solution). In this paper,
we describe the new ideas behind MOKA, its main characteristics,
a preliminary empirical study, and a set of possible applications
that could benefit from our framework.
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1 INTRODUCTION

Nowadays, we use mobile applications (or simply apps) for many of
our daily activities, including reading the news, streaming content,
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and communicating with friends and family. Because some of these
apps are used daily by millions of users, it is fundamental to thor-
oughly assess their quality and avoid failures due to undetected
bugs. Although testing has been shown to be effective in identify-
ing bugs, these apps typically have a large number of interactions
with their software environment (e.g., their underlying application
framework) that can affect and complicate testing activities [1].

Specifically, tests that involve interactions with the environment
might (1) suffer from flakiness [2, 3], need a complete (and often
complex to set up) execution environment, and/or require a long
time to complete. A common strategy to mitigate this kind of issues
during testing is to manually create test mocks1 for specific test
executions. Unfortunately, manual mock creation is typically a
time-consuming and a error-prone task. Moreover, usually these
mocks can not be reused across tests—let alone apps—as they are
specifically crafted for the specific context they target.

To address these issues with the creation and use of test mocks,
we propose a framework called MOKA. Our framework leverages
existing tests to generate general and reusable test mocks that can
also be used with new tests. More precisely, given an app under
test (AUT) and its test suite, MOKA collects mock data from test
executions, uses program synthesis to generate test mocks from
the data, and refines the mocks by repeating the synthesis task
while incrementally considering new mock data collected from
test executions of other apps and through input generation. Our
framework collects mock data at the AUT’s interaction points—code
entities used by the app to interact with external code (e.g., a method
of the application framework called by the app).

Although the problem of generating test mocks has been inves-
tigated before [6–9], to the best of our knowledge MOKA provides
the first comprehensive framework for generating test mocks across
mobile apps, and makes a leap forward toward having reusable test
mocks. In this paper, we also present a preliminary empirical study
based on 20 apps that highlights MOKA’s potential. In the study, we
analyzed more than 4000 tests and found that 30% of the developers’
defined mocks target the application framework, thus providing
evidence of the potential usefulness of our proposed approach. Fi-
nally, the paper discusses how MOKA’s test mocks can be useful
for automated input generation, test evolution, and cloud-based
testing. This paper makes the following contributions:

• The description of MOKA, our proposed framework for gen-
erating reusable test mocks.

• A preliminary empirical study based on 20 apps that high-
lights the framework’s potential.

• A discussion of how MOKA’s test mocks could be helpful in
multiple automated-testing scenarios.

1Although the terms test mock, test stub, and test fake are used to indicate slightly
different concepts [4, 5], in this paper we only use the term test mock for simplicity.
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Figure 1: High-level overview of the MOKA framework.

2 THE MOKA FRAMEWORK

This section presents MOKA, our envisioned framework for gen-
erating reusable test mocks (RTMs). Figure 1 provides a high-level
overview of MOKA. As the figure shows, the framework takes as
inputs an AUT and a set of tests for the AUT and produces RTMs
as its output. MOKA iterates through two main phases: mock data
collection and test mock generation. The mock data collection phase
starts by running the tests (provided as input) on the AUT and
collects mock data. The test mock generation phase creates RTMs
through program synthesis based on available mock data. In the
test mock generation process, the framework uses an iterative ap-
proach that incrementally considered newmock data gathered from
test executions of other apps (optional input represented with a
dashed line in Figure 1) and through input generation. The key idea
behind this approach is to generate RTMs that can also be used
for executions that are different from the ones considered in this
process. We now discuss MOKA’s phases in more detail.

2.1 Mock Data Collection

MOKA captures mock data at a predefined set of interaction points,
which include locations where the app interacts with its application
framework, and focuses on interactions that are common sources of
nondeterminism [10]. Specifically, the framework processes inter-
actions that generate network, location, audio, camera, and sensor
data. Users can extend this predefined set of interaction points
using code annotations. In particular, they can use annotations to
instruct MOKA to capture either complete or partial interactions
between an app and a third-party library. In the rest of the paper,
we generally refer to either framework or third-party library code
as external code.

At each interaction point, MOKA collects information about the
mocked entity, the mock input, the mock output, the mock compo-
nents, and the mock coverage. The mocked entity is the part of the
software system to be mocked. An example of mocked entity is a
method of the application framework called by the app. The data
that flows from the app through the interaction point corresponds
to the mock input. In the case of an HTTP-based network inter-
action, for instance, the mock input would consist of the HTTP
request (inclusive of its parameters). The mock output captures the
data that flows into the app through an interaction point. Using the
same HTTP-based network interaction example, the mock output
would consist of the HTTP response. The mock components are
the objects and methods involved in the execution of external code.
Finally, the mock coverage provides information about code cover-
age in external code. The framework captures mock data through
app-level instrumentation and external code tracing.

Algorithm 1:MOKA’s test mock generation process.
Input :AUT : app under test

tsAUT : test suite for the app under test
dbapp : database of apps
dbts : database of test suites for apps in dbapp
T1: developer defined timeout for the mock synthesis process
T2: developer defined timeout for the input generation process

Output : rtms: reusable test mocks
1 begin

2 rtms = ∅

3 mdts = Execute-Tests(AUT ,tsAUT )
4 mdMap = Group-By-Mocked-Entity(mdts )
5 foreachme ∈ mdMap.Key-Set() do
6 mdcurr =mdMap.Get(me)
7 rtmme = null

8 while True do
9 rtm = Perform-Test-Mock-Synthesis(mdcurr , T1)

10 if rtm == null then

11 if rtmme == null then
12 rtm = Create-Record-Replay-Mock(mdcurr )
13 rtms.Add(rtm)
14 break

15 else

16 rtms.Add(rtmme )
17 break

18 else

19 rtmme = rtm
20 mdi = Collect-New-Mock-Data(me,mdcurr , dbapp , dbts , T2)
21 if mdi == null then
22 rtms.Add(rtmme )
23 break

24 else

25 mdcurr .Add(mdi)
26 return rtms

2.2 Test Mock Generation

This phase processes mock data to generate reusable test mocks
(RTMs) by using an iterative process that relies on either program
synthesis or record and replay techniques. We describe MOKA’s
iterative approach with the help of Algorithm 1.

The algorithm takes as inputs (1) the app under test (AUT ), (2)
a test suite for the app under test (tsAUT ), (3) an optional data-
base of apps and an optional database of corresponding test suites
(dbapp and dbts), and (4) two timeout values (T1 and T2) that control
MOKA’s synthesis and input generation steps, respectively. The
output of the algorithm is a set of RTMs (rtms).

The algorithm starts by executing the test suite associated with
the AUT to collect the mock data (mdts) necessary to model inter-
action points exercised by the tests in the test suite (line 3). After
this initial step, MOKA groups mock data by their mocked entity
(Group-By-Mocked-Entity); that is, the algorithm groups together
mock data flowing to and from the same external code. At this point,
MOKA begins its mock generation process by processing the mock
data from each mocked entity (lines 5-25).

The iterative mock generation process starts by assigning the
value null (no mock computed yet) to the mock (rtmme) associated
with the mocked entity under analysis (me). As we mentioned ear-
lier, MOKA can generate either one of two types of mocks: program-
synthesis-based mocks and record-and-replay-based mocks. At a
high level, MOKA tries first to generate a mock based on program
synthesis; if unsuccessful, it generates a mock based simply on
record and replay. The key idea behind favoring program-synthesis-
based mocks over record-and-replay-based mocks is that the former
can potentially account for mock inputs that were not considered
duringmock generation, thus creatingmocks that can also be reused
as the AUT and its test suite evolve.
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At each iteration (lines 8-25), MOKA uses the currently avail-
able mock data (mdcurr ) to create a test mock (rtm) through pro-
gram synthesis (Perform-Test-Mock-Synthesis). To do so, MOKA
leverages and extends a component-based program synthesis algo-
rithm [11]. In a nutshell, component-based program synthesis [12]
uses a database of provided components to assemble target pro-
grams that are valid in the target language and are consistent with
the input-output examples. The specific component-based program
synthesis algorithm used by MOKA employs an adaptive search
that reuses partial solutions identified in the previous steps of the
search process to identify the target program in the space of all
possible programs [11]. MOKA extends this algorithm by taking
advantage of the fact that the framework already has access to the
code that needs to be modeled. Specifically, MOKA reduces the
search space by (1) limiting the set of components used in the syn-
thesis process to the set of components associated with the mock
data (i.e., mock components from Section 2.1), (2) constraining the
search to find a programwhose size (in terms of AST nodes) is equal
to or less than the size of the method to model, and (3) restricting
the composition of components (i.e., composition of AST nodes) to
the set of compositions observed in the execution that generated the
mock data. The rationale behind these characteristics is to reduce
MOKA’s search space by disregarding “unlikely” solutions. Finally,
MOKA also allows its users to specify a blacklist of components
that should not be considered by the algorithm.

If Perform-Test-Mock-Synthesis does not return a valid mock,
but MOKA found a valid mock through program synthesis in a
previous iteration of the algorithm (line 15), the algorithm saves
the mock and proceeds to process the next mocked entity.

Conversely, if Perform-Test-Mock-Synthesis does not return
a valid mock (line 10), and a mock was not successfully created in
the previous iteration (which can happen only in the first iteration
of the algorithm), MOKA creates a simpler mock based on record
and replay. This type of mocks only work for inputs that were ob-
served during the mock data collection phase and return the same
mock output for a given mock input. They allow MOKA to account
for situations in which it is unable to establish a general relation-
ship between mock inputs and outputs, typically because the code
representing this relationship is too complex to be synthesized in
the provided time budged T1. As an example, record-replay-based
mocks would suitably model external code that retrieves the first
and last name of a student based on the student’s university ID.

When Perform-Test-Mock-Synthesis returns a valid test mock
(line 18), MOKA stores the mock as its most recent result (line 19),
and then proceed to collect new mock data (Collect-New-Mock-
Data). MOKA collects new mock data to improve the generality
of the mock, that is, its ability to compute the right output when
processing a previously unseen (mock) input. The algorithm collects
a new mock-data item for me per iteration.

MOKA collects new mock data items using two approaches. The
first approach runs test cases from a database of apps and corre-
sponding test suites, which are an optional input to the framework.
The second approach performs dynamic symbolic execution [13, 14]
on the external code based using the currently available mock data.
In both cases, MOKA considers a newly generated mock data item
as valid only when it increases external code coverage. The frame-
work does so to improve the generality of a mock by exercising

Table 1: Benchmarks used in the preliminary study.

Name Category Stars LOC (K) Tests TMs AFTMs ATMs TPLTMs
CineLog Multimedia 20 13 152 285 23 210 52
Eventyay Internet 1342 46 477 268 111 146 11
WiFiAnalyzer Connectivity 1068 22 708 206 91 85 30
K-9 Mail Internet 4960 123 536 135 20 104 11
Materialistic Internet 2010 96 312 97 24 49 24
SMS Backup+ Phone 1499 18 217 75 11 53 11
DNS66 Internet 1447 8 66 60 45 15 0
AnkiDroid Science 2620 220 248 38 26 11 1
SMSsync Phone 843 27 23 32 2 16 14
Loop Habit Sports 3121 39 277 32 0 32 0
Commons Internet 584 76 21 32 30 2 0
OpenKeychain Security 1358 130 217 30 15 15 0
Wikipedia Internet 1171 157 365 24 0 24 0
Web Opac Reading 118 27 16 23 8 14 1
PageTurner Reading 451 19 24 20 1 19 0
OpenFoodFacts Sports 466 251 155 20 2 18 0
FreeOTP System 653 3 28 19 19 0 0
oandbackup System 425 14 57 18 3 15 0
Calculate! Phone 199 18 101 17 9 8 0
AnyMemo Science 117 34 139 15 1 14 0

4139 1446 441 850 155

new behaviors of external code. If MOKA is not able to find a new
mock data item within the time budget T2, the framework saves
the latest computed mock as the result associated with me (line 22).
Otherwise, it proceeds to the next iteration of the algorithm and
attempts to refine the mock (line 9).

When the algorithm is done processing all the mocked entities,
it terminates by returning the computed set of RTMs (rtms).

3 PRELIMINARY EMPIRICAL STUDY

To assess the potential usefulness of MOKA, we conducted a pre-
liminary study in which we investigated how developers use test
mocks when testing their apps. Specifically, we investigated how
many test mocks are used to model the Android framework, the app
code, or third-party libraries. To perform the study, we selected the
20 apps with the highest number of test mocks from F-Droid [15]
that are also available on GitHub [16]. In order to identify test
mocks, we parsed the source code of all apps looking for uses of
Mockito [17]—a popularly used framework to manually create test
mocks for Android apps [18].

Table 1 lists the apps we used in the study, ordered by their
number of tests mocks (column TMs). For each app, the table reports
the app’s name (Name), category on F-Droid (Category), number
of stars on GitHub (Stars), size (LOC (K)), number of tests (Tests),
overall number of test mocks (TMs), number of test mocks modeling
the Android framework (AFTMs), number of test mocks modeling
code in the app (ATMs), and number of test mocks modeling third-
party libraries (TPLTMs). The table also reports total numbers of
Tests, TMs, AFTMs, ATMs, and TPLTMs.

As the table shows, there are 441 test mocks used to model
the Android framework overall, which accounts for 30% of all test
mocks. If we also consider test mocks for third-party libraries, the
percentage increases to 41%. We believe that these figures provide
initial evidence that MOKA has the potential to significantly help
developers if it were successful in generating these mocks, or at
least part of them, automatically.

In the study, we also assessed how many tests are publicly avail-
able for the 1, 220 apps that are on both F-Droid and GitHub and
found that about 20% of these apps have tests, for a total of 11, 487
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tests. The fact that a large number of tests is available in public
repositories, albeit for a relatively small percentage of apps, is con-
sistent with the findings of other related studies [19, 20] and is
encouraging; these tests (and their apps) can be used as inputs to
MOKA for its test-mock generation process.

3.1 Future Evaluation Plan

We plan to implement MOKA as a tool for the Android platform,
by leveraging and extending existing tools that perform app instru-
mentation [21], record and replay [10], and program slicing [22].
We will then evaluate the framework on real-world apps, starting
from the ones considered in our preliminary study. We will use our
tool to create RTMs and evaluate whether they can be reused across
revisions and with new tests. We will also measure the savings in
terms of test running time achieved using MOKA’s mocks and as-
sess howmanymocks of a given type (i.e., program-synthesis-based
vs. record-and-replay-based) MOKA generates.

4 PRACTICAL ADVANTAGES OF MOKA

We believe that MOKA’s RTMs will be useful in multiple automated
testing scenarios. In particular, MOKA’s RTMs could be used to
assist automated input generation, as they can generate valid mock
outputs for previously unseen mock inputs and may allow input-
generation techniques to explore the program space efficiently.
The ability of handling previously unseen inputs could also help
reduce the number of false positives generated by new flaky test
executions [2]. For similar reasons, RTMs are expected to be less
brittle than traditional mocks, which should allow for (re)using
them even as test suites evolve. RTMs could also enable the use of
real-world data (which can be collected through record-and-replay-
based testing [23]) in cloud-based app testing [24–27]. Additionally,
RTMs may be able to make system tests faster and more reliable
(e.g., less flaky), thus addressing a significant problem in automated
app testing [2, 3].

5 RELATEDWORK

Although MOKA is not the first attempt at automating test-mock
generation, we believe that it represents a significant leap forward
toward having reusable test mocks. In this section, we discuss the
work that is most closely related to ours.

AUTOMOCK integrates the creation of mock components with
the generation of test cases for various testing goal (e.g., tomaximize
coverage [6]). Their technique traces post-conditions of mocked
methods through symbolic execution to generate new return values
for mocked methods. MOKA’s approach and goals are different.
Our framework uses program synthesis to generate generate mocks
that can handle new inputs to mocked entities.

MODA [28] is an extension to PEX that allows for automatically
testing applications that use a database by replacing the database
with mocks generated through symbolic execution. Given an appli-
cation and a database schema, MODA produces a parameterized
mock that captures the database behavior. Although useful, MODA
is tailored to creating database mocks, while our proposed frame-
work can also deal with additional elements of the environment.

Arcuri and colleagues extended Evosuite, a test-input generator,
with the ability to generate mock objects for private API calls, so

as to improve the coverage of the unit under test [7]. Although
using their mocks does improve code coverage, it can also result in
a significant number of false alarms. Tillmann and colleagues [29]
developed a prototype tool based on symbolic execution that gener-
ates mock objects by analyzing all uses of the mock object in a given
unit test. Also in this case, because the tool under-approximates
the program state, it can result in false positives during testing.
MOKA aims to mitigate the problem of false positives by using
multiple sources of mock data combined with program synthesis.
In addition, MOKA also proposes a solution for generating mocks
that can suitably handle previously unseen inputs.

Saff and Ernst [8, 30], Joshi and Orso [31], and Elbaum and
colleagues [32] presented variations on the idea of factoring tests
to speed up system test executions [30]. They discuss the idea of
tracing values across system boundaries to extract tests that can be
run in isolation together with their necessary scaffolding. Although
MOKA is related to these approaches, it goes one step forward by
generating, when possible, general mocks that can also be used in
the presence of previously unseen mock inputs.

Qi and colleagues [9] developed a technique to construct models
for library and system call functions using program synthesis and a
set of predefined components. MOKA leverages program synthesis
as well, but it automatically identifies the set of components for the
synthesis task, making the approach more generally applicable.

Samimi and colleagues proposed the idea of declarative mock-
ing [33], in which developers write method specifications for the
API being mocked in a high-level logical language, and a constraint
solver dynamically executes these specifications upon method in-
vocation. Similarly, Galler and colleagues presented an approach
for automatically deriving the behavior of mock objects from given
design-by-contract specifications [34]. Finally, Android Studio (https:
//developer.android.com/studio/) offers some support for manually
configuring mocks for mobile apps [35]. MOKA aims to overcome
the main limitation of these techniques, that is, that developers
have to write method specifications or manually design mock con-
figurations in order to generate and use test mocks.

6 CONCLUSIONS

We proposed MOKA, a framework for generating reusable test
mocks for mobile apps by leveraging existing test executions. Our
framework analyzes the input-output relationships at the interface
between the app under test and its environment and tries to gen-
erate test mocks that are highly reusable, yet accurate. We also
presented a preliminary study showing MOKA’s potential impact,
described our plan to evaluate our envisioned framework, and dis-
cussed how multiple automated testing scenarios could benefit
from the test mocks generated by MOKA. Our immediate next
steps towards the realization of our vision involve exploring trade-
offs between reusability and accuracy of the generated mocks and
investigating the use of MOKA in the context of program evolution.
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