
O!SNAP: Cost-Efficient Testing in the Cloud
Alessio Gambi

Saarland University, Germany
Email: gambi@st.cs.uni-saarland.de

Alessandra Gorla
IMDEA Software Institute, Spain

Email: alessandra.gorla@imdea.org

Andreas Zeller
Saarland University, Germany

Email: zeller@cs.uni-saarland.de

Abstract—Porting a testing environment to a cloud infras-
tructure is not straightforward. This paper presents O!SNAP,
an approach to generate test plans to cost-efficiently execute
tests in the cloud. O!SNAP automatically maximizes reuse of
existing virtual machines, and interleaves the creation of updated
test images with the execution of tests to minimize overall
test execution time and/or cost. In an evaluation involving
2,600+ packages and 24,900+ test jobs of the Debian continuous
integration environment, O!SNAP reduces test setup time by up
to 88% and test execution time by up to 43.3% without additional
costs.

I. INTRODUCTION AND MOTIVATION

Test early, test often: Modern software development pro-
cesses mandate frequent automated testing in order to get
timely feedback on the quality of a system. But what if
the automated tests run too long? As an example, consider
the Debian Linux distribution, where the current continuous
integration (CI) solution adopted by Debian presents test
results back to developers after their code changes. Developers
working on the pdns package for example have to wait for
over 13 hours on average for the test results.1

The more time testing takes, the longer it takes developers
to recognize and fix problems, and the longer it takes to deploy
well-tested patches to users [1]. Hence, techniques to speed up
test execution are very much needed in practice.

One way to speed up tests execution is to allocate several
machines for parallel execution, for instance using a cloud
infrastructure [2]. Testing in the cloud is a challenging problem
though: While one can, in principle, allocate N machines to
run N tests all in parallel, and thus run all tests in as little
time as possible, this would induce huge costs due to setting
up test environments on all N machines [1] and paying for
all cloud resources [3]. On the contrary, running all tests on
just one machine would bring down costs to a minimum, but
would not make test execution more efficient in terms of time.
The problem thus is to execute tests in a way that balances
out both cost and time.

In this paper, we present O!SNAP, a technique to automat-
ically generate plans to cost-efficiently execute tests in the
cloud. O!SNAP takes as input the list of tests to execute,
the list of available virtual machine images, and additional
configuration parameters, such as the cost model adopted by
the cloud provider. It produces as output a test execution plan
suggesting which virtual machines to use, how to schedule test
executions, and when to create more suitable virtual machines.

1Data extracted from the Debian continuous integration system, debci.

Available
Images

C B A

Test Execution Plan

Cloud model
Optimiz. goal Test Schedule

Planning Cloud
Test Jobs

{} B

lib{Z,X} A

lib{Z} C

lib{Z,X}lib{Z}

Snapshot Job

Res
1

{} B lib{Z} C

OnD
1 lib{Z,X} ASnapshot

lib{Z,X}

Opportunistic
Snapshotting

lib{Z}
{}

Input Test Jobs

Fig. 1. O!SNAP optimization pipeline to plan cost-efficient tests executions
in the cloud: 1) Opportunistic snapshotting identifies which new images are
worth creating (snapshot jobs), and maps test jobs to images (cloud test jobs).
2) Test schedule planning computes the test execution plan.

O!SNAP works as a two-staged pipeline, as Figure 1 illus-
trates. It starts with opportunistic snapshotting, which aims
to maximize the reuse of virtual machine images across test
executions and build new images that limit the effort of setting
up test environments. Next, test schedule planning computes
the test execution plan aiming to minimize the overall test
execution time and cost by interleaving the creation of new
images and the execution of tests.

Test plans generated by O!SNAP can lead to significant
savings. Compared to the current solution implemented in
the Debian development, for continuously testing 10 software
packages over a period of several days O!SNAP allows to
reduce test execution time by 56.7%. As O!SNAP allows users
to state cost versus time preferences, it also determines that
if one is willing to pay slightly higher costs (c.a. 3$ per
day),2 test execution time can be reduced to up to 65.9%.
And compared to a massively parallelized execution, O!SNAP
shows that execution costs can be reduced by more than 87%
if one is willing to increase execution time by only 5%.

Note that O!SNAP is orthogonal to other testing opti-
mization strategies such as reducing the size of the test
suite (e.g., [4]), prioritizing potentially more informative tests
(e.g., [5]), or reusing partial test results (e.g., [6]). Hence,

2We use the Amazon EC2 price for t2.medium general purpose instances
of EU (Ireland) Region.

O!SNAP can be combined with other optimization strategies
to obtain even greater savings.

The remainder of this paper is organized as follows. After
discussing modern cloud infrastructures and their cost models
(Section II), we make the following contributions:

1) A characterization of the problem of planning cost-
efficient test executions in the context of cloud-based
testing environments (Section III).

2) The definition and assessment of O!SNAP, a novel tech-
nique to plan for test executions tailored to cloud-based
testing environments (Section IV).

3) An empirical study over 2,600+ packages and 24,900+
test jobs of the Debian distribution, showing that O!SNAP
can significantly speed up test executions while limiting
the costs of using a cloud infrastructure (Section V).

After discussing related work (Section VI), we conclude the
paper and present direction for future research (Section VII).

II. INFRASTRUCTURE AS A SERVICE

Cloud computing is the standard solution to effectively
leverage large pools of remote resources and services. Cloud
offerings come in three forms: as Software-as-a-Service
(SaaS), where users access (remote) desktop-like software
applications entirely managed by the cloud; as Platform-
as-a-Service (PaaS), where users deploy proprietary code
on cloud managed run-time execution environments; and as
Infrastructure-as-a-Service (IaaS), where users can access sys-
tem level virtualized resources.

In this paper, we focus on IaaS, which lets users program-
matically control running virtual machines, also called in-
stances. In the next sections we describe how to use instances
to cost-efficiently parallelize test executions.

Instances start from predefined disks called images, and
might resort to different combinations of computational power,
memory, and network resources which define their type and
size. For example, Amazon EC2, one of the main cloud
providers nowadays, offers instances of type t2 in different
sizes, such as nano with 1 CPU and 0.5GB of memory, and
medium with 2 CPUs and 4GB of memory.

Users can suspend instances and resume them later, or they
can terminate the instances for good. Termination of instances
frees physical resources, but comes at the price of loosing
all the data stored inside the instances. Additionally, users
can snapshot instances, that is, users can store the content
of instance disks as new images which can be used later to
start new instances with the backed up state.

Despite offering different resources and cost models, cloud
providers share similar pay-per-use business models. Cus-
tomers pay according to various parameters, which usually
relate to the amount, type and size of requested instances, and
the running time of each instance. Cloud providers metering
accounts for the running time of instances by atomic billing
time units (BTU). Thus, if a BTU amounts to one hour, the
cost of using an instance for one minute is equivalent to
the cost of using the instance for 59 minutes. Costs also

depend on how instances are accessed, either on-demand
or under a reservation. On-demand instances are requested
and terminated on-the-fly, and can be used without prior
investment; as a consequence, they do not incur fixed costs,
and users pay only for the amount of consumed BTU. On
the contrary, reserved instances are paid upfront a fixed fee
that covers a given time frame (e.g., one year). Customers can
then use them as much as they want without paying extra costs
within the reservation period, but cannot get rid of them.

III. TEST EXECUTIONS IN THE CLOUD

Running tests in a cloud-based infrastructure allows devel-
opers to execute tests in parallel across several instances, and
thus allows to consequently improve the overall efficiency
of the testing process. However, porting test executions to
the cloud may also incur several problems. First of all,
virtualization introduces some performance overhead during
the test execution. Then, using freshly allocated instances
might delay the actual execution of the tests since each
instance must be booted and suitably configured before tests
execution. For example, configuring an instance for testing
the libreoffice-1:5.1.3 rc1-1 package in Debian
requires the installation of 897 packages. Additionally, the
execution of tests in the cloud leads to costs that might be
hard to predict precisely. Thus, in practice, leveraging large
pools of instances to speed up test execution might result in
excessive high costs, given that instances are billed using BTU,
and the time to configure instances before test executions may
be significant and cannot be parallelized.

Our goal is to make test execution in the cloud cost-efficient.
In essence, this means to find the right balance between
parallelizing test executions, allocating multiple instances, and
reducing instance configuration costs by carefully selecting
which images run the tests.

Planning for cost-efficient test executions in the cloud can be
formalized as a multi-objective optimization problem: Given
the test jobs to execute with their dependencies, the available
images, and the available reserved instances, the goal is to find
a test execution plan that specifies the deployment and order
of execution of the test jobs, and the amount of additional
on-demand instances to use.

Finding a cost-efficient test plan stands between two con-
flicting goals: Deploying test jobs on the available reserved
instances, which limits the costs but also limits parallelization;
and, scheduling test jobs to run on additional instances, which
might reduce test execution time but yields higher costs.

IV. THE O!SNAP APPROACH

To plan cost-efficient test executions in the cloud we adopt a
divide-and-conquer approach: We split the original optimiza-
tion problem in two simpler problems and solve them in a
pipeline, as Figure 1 depicts. First, opportunistic snapshotting
identifies the most appropriate images for running test jobs
such that test jobs share as many test dependencies as possible;
this reduces the test setup time, but might require the creation
of new images. Then, test schedule planning schedules test job

executions to minimize test execution time and cloud resources
cost.

A. Opportunistic Snapshotting

Opportunistic snapshotting takes place before executing the
test jobs, and aims to find suitable images for running them.
This includes a task to identify test dependencies (e.g., system
libraries) that different test jobs may share, and, potentially,
a task to create new cloud images to host such dependencies.
These images can thus be readily used to execute the test
jobs, with the advantage that the setup time diminishes since
the execution environment already provides some of —if not
all— the test dependencies.

As an example, given two hypothetical software packages
to test (A and B) and an empty image (IE), the parallel
execution of A and B in the cloud would: (i) start two
instances using IE ; (ii) download and install in both instances
all the test dependencies for A, resp. B; and, (iii) execute the
tests. The availability of an existing image (IA∪B), hosting
the test dependencies requested by both A and B, would
save execution time. In fact, the use of IA∪B instead of IE
would require no setup at all during test execution. However,
some dependencies required by A and B may not be co-
installable [11]. This would make it unfeasible to create IA∪B ,
and, in turns, would make the tests for packages A and B
impossible to run on the same instance. Nevertheless, it would
still be possible to create images that contain only the non-
conflicting dependencies of A and B, and use those images
to speed up test execution.

The standard practice to create customized images like
IA∪B is snapshotting. Snapshotting requires starting an in-
stance from a parent image, installing the dependencies in
that instance, and storing its disk as a new image. This process
has a cost that depends on which snapshot technology cloud
providers use, which images are available and can be used as
parent, and the amount of dependencies to install, among other
factors. For example, creating IA∪B starting from IE as parent
requires more effort than creating IA∪B from either IA or IB .
Consequently, choosing which snapshots to use has an impact
on the overall cost-efficiency of the test execution. The main
goal of opportunistic snapshotting is to find suitable snapshots
that, despite their cost, are worth creating.

Opportunistic snapshotting takes as inputs the test jobs (T)
with their required dependencies (Dt) and expected test exe-
cution time (pt); the available images (I) with their provided
dependencies (Di); and the data describing the cloud, such
as the time to create snapshots (TSN). Given such inputs,
opportunistic snapshotting computes a mapping associating
test jobs to images which shall execute them, and it identifies
new images to create, if necessary. To do so, opportunistic
snapshotting creates a network flow model that represents the
structural dependencies among the possible images that can be
snapshotted, and the potential deployments of test jobs onto
those images. Our intuition is that the flow distribution in the
network can model the execution of test jobs under different
configurations. Hence, opportunistic snapshotting can use this

model to estimate the time for setting up instances and creating
new images, and, by computing the flow distribution which
yields the minimum test setup time, it can find suitable images
to run test jobs and identify which images are worth creating.

More formally, the network flow model is a directed acyclic
graph in which edges have unlimited capacity and non-
negative cost, and vertices have integer demand. This graph
contains one special node, called source (S), which generates
all the flow; several image nodes (Ij) which represent available
and potential images; and, several test nodes (Ti) which
correspond to the input test jobs and absorb one unit of
flow each. The graph also contains three types of edges:
snapshot edges, which connect the source to image nodes
and model the creation of new images; installation edges,
which connect only image nodes and model the installation
of dependencies into instances; and, test deployment edges,
which connect image nodes to test nodes. Installation and
test deployment edges connect nodes according to the subset
relation of their dependencies: the dependencies declared in
the starting node must be entirely contained in the ones
declared in the target node. Additionally, installation edges
have proportional semantics, i.e., they incur a cost that is
proportional to the amount of flow traversing them, while
snapshot edges have take-or-leave semantics, i.e., they incur
a fixed cost only when flow traverses them.

Given a feasible flow distribution, opportunistic snapshot-
ting recovers the mapping between test jobs and images, either
existing or potential, by following each flow backwards, i.e.,
from test nodes to the source node. If an image does not exist,
then opportunistic snapshotting finds the most convenient
parent image to use for creating it by computing the shortest
path passing only through already existing images from S to
that image node.

As our evaluation shows, opportunistically creating snap-
shots reduces the test setup time independently of how test jobs
are parallelized or scheduled. However, parallelization and
scheduling, as well as the allocation of computing resources
to test executions, strongly affect the cost-efficiency of testing
in the cloud. To deal with these limitations, we complement
opportunistic snapshotting with test schedule planning, which
we describe in the next section.

B. Test Schedule Planning

Test schedule planning computes test execution plans (S)
that fulfill the constraints about test jobs execution and creation
of new images defined by opportunistic snapshotting. We for-
mulate the test schedule planning as an optimization problem
by means of Integer Linear Programming (ILP), and because
of this, we refer to our test schedules as the ILP Scheduler.

The input of test schedule planning includes a set of jobs,
both cloud test jobs and snapshot jobs, to schedule (J); and, a
cloud cost model, which defines the resource usage costs and
the billing time unit (B). Additionally, test schedule planning
requires a goal model that specifies the objective function (O).

We model jobs using two integer variables that capture their
starting (t) and ending time (T) as follows:

Tj = tj + pj , ∀j ∈ J

where parameter pj represents jobs duration, and tj ≥ 0. We
represent the overall test execution time (Texec) and cost (Cexec)
by means of two integer variables, and define the objective
function O around them:

O = α · Texec + β · Cexec, α, β ∈ R+
0

where the weights α and β enable developers to express
the relative importance of test execution time and cost; for
example, the setting (α = 1, β = 0) states that developers aim
to “minimize the execution time no matter the costs.”

We define Texec indirectly as the largest value across jobs
ending time, and Cexec directly as cumulative cost for running
the test jobs on the instances:

Texec ≥ Tj , ∀j ∈ J

Cexec =
∑
j∈J

(cR

∑
m∈R

⌈pj
B

⌉
rj,m + cOD

∑
m∈OD

⌈pj
B

⌉
oj,m)

where
⌈ pj

B

⌉
is the ‘billable’ time for running the job j; cR and

cOD are the unitary costs for reserved (R) and on-demand (OD)
instances; and, the binary variables rj,m, resp. oj,m, model the
deployment of jobs to reserved, resp. on-demand, instances.
These variables hold true iff job j runs on instance m.

We subject rj,m and oj,m to the following constraints to
allow only feasible deployments:∑

j∈J
rj,m ≤ |J |,∀m ∈ R

∑
j∈J

oj,m ≤ 1,∀m ∈ OD

∑
m∈OD

oj,m +
∑
m∈R

rj,m = 1, ∀j ∈ J

These constraints state that reserved instances can run mul-
tiples jobs, but they cannot run more jobs than the available
ones; on-demand instances can run at most one job; and, jobs
can be deployed on one and only one instance.

We account for the relative order in which jobs are executed
using a binary variable yj,k for each pair of jobs as follow:

yj,k + yk,j ≤ 1, ∀j, k ∈ J yi,j = 1, ∀i, j ∈ J iff yi,j = 1

where yj,k holds true iff job j executes before job k, and the
binary parameter yj,k captures the order of execution imposed
by the creation of snapshots.

Finally, we express global constraints on the test execution
plan to enforce that only one job at a time can run on each
reserved instance, and that jobs can start only when previous
jobs have completed:

yj,k + yk,j ≥ rj,m + rk,m − 1, ∀j, k ∈ J , j > k,∀m ∈ R

tk≥tj+pj(
∑
m∈R

rj,m+
∑

m∈OD

oi,m)−K(1−yj,k),∀j, k∈J , j 6=k

where K is a large integer constant that implements the so-
called Big-M method, a standard method to translate “if-then-
else” logical constraints into integer linear constraints [12].

V. EVALUATION

This evaluation aims to quantify the improvements in terms
of cost-efficiency that O!SNAP achieves, and addresses the
following research questions:

RQ1 Do opportunistically created snapshots reduce the test
setup time?

RQ2 Does O!SNAP improve the cost-efficiency of testing in
the cloud compared to state-of-the art solutions?

We conduct our experiments on a PC with 8-core 4.00GHz
i7-6700K CPU and 64GB of RAM running Debian 8.4.

A. Test Subjects

As test subjects we consider 42,867 software packages of
the Debian amd64 architecture ecosystem [13]. We selected
the Debian ecosystem because Debian periodically releases
information about past test executions, such as the test exe-
cution time and the list of test dependencies, which O!SNAP
requires as input.

For this evaluation, we consider the software packages
which are currently managed by Debian’s continuous integra-
tion system, debci [14]. In particular, we extracted the tests
data of the last trimester of 2015, a period of normal operation
which gives us an intuition of the potential benefits of O!SNAP
in typical working conditions. From the available data on all
the 28,286 test jobs, we removed data about broken packages,
packages with missing test execution information, and outliers.
We consider as outliers those packages that declare either too
few (less than thirty) or too many (more than a thousand) test
dependencies. Our final dataset contains data about 24,901 test
jobs, which test 2,619 packages and involve 12,444 unique
dependencies.

We implemented custom scripts to measure the time to setup
each and every package in the dataset, and we compute the
costs of using cloud resources in USD ($) by utilizing the
Amazon EC2 pricing schema [15]. In particular, we considered
the price for using t2.medium instances in the EU Region
(Ireland). According to Amazon, such instances are meant for
general purpose workloads such as running software tests.

While conducting our study, we make the following simpli-
fying assumptions about cloud instances: instances can run one
test job at the time, and they are only of type t2.medium.

B. RQ1: Test Setup Time Reduction

We start our evaluation with RQ1: Do opportunistically
created snapshots reduce the test setup time? Table I shows the
average reduction of the test setup time (col. I%) by applying
the opportunistic snapshotting technique to randomly selected
software packages in the Debian dataset (col. Tests). For the
sake of completeness, the table also reports statistics about
the dependencies among these packages, such as the average
amount of Unique and Shared dependencies.

First, we randomly draw n packages and compute their test
setup time, i.e., the overall time to download and install all
the required dependencies. Next, we compute the opportunistic
snapshots for the packages under test. Then, we compute the

TABLE I
REDUCTION IN THE AVERAGE TEST SETUP TIME

Tests Dependencies I%
n Unique # Shared # %

5 597 75 78.98
10 1013 65 81.77
20 1452 24 85.65
50 2015 5 88.08

test setup time when these snapshots are in place. Finally, we
compute I% according to the following equation:

I% = (1/N)

N∑
i=1

(T (i) − T (i)
O!SNAP)/T

(i) × 100 (1)

where T and TO!SNAP identify the cumulative setup time,
without and with snapshots respectively, for the n tests, and N
is the number of repetitions of the experiment. We set N = 30
to increase the statistical significance of the result.

We can observe that I% has always positive values. This
means that opportunistic snapshots always speed up the test
setup. Additionally, we observe that the average speed up
increases as the number of input tests and the number
of unique dependencies increase. Interestingly, opportunistic
snapshotting achieves this result despite the number of shared
dependencies diminishes as the number of tests increases. Our
answer to RQ1 is thus clear:

Opportunistic snapshotting strongly reduces the time to
setup tests in the cloud,

and makes test setup up to 88% faster.

C. RQ2: Cost-Benefit Analysis of O!SNAP

Our next research question is RQ2: Does O!SNAP improve
the cost-efficiency of testing in the cloud compared to state-of-
the art solutions? The use of snapshots is beneficial since it
reduces the time to setup tests in the cloud; however, creating
snapshots takes time. This might delay the test execution,
especially if snapshots are created on-line, i.e, on the critical
execution path, since all the tests depending on a given
snapshot would be delayed until such snapshot is ready. In
the context of continuous testing, snapshots can be reused in
subsequent test executions, and this allows to reduce overall
snapshotting costs. Therefore, we study costs and benefits of
opportunistic snapshotting over an extended period of time.

Table II shows the average test execution time to run all the
test jobs, i.e., the makespan (Time), average usage of reserved
(r) and on-demand (o) instances, and the additional costs for
using on-demand instances (Add. Cost) over the observation
period. In particular, r measures the average utilization of the
reserved resources that are already paid for: Better schedulers
fully utilize these resources. Instead, o assesses the ability
of schedulers to burst-out [3] the test execution for a price:
Better schedulers use additional resources wisely to reduce
the execution time while keeping execution costs as small as
possible.

TABLE II
COMPARISON OF THE AVERAGE EXECUTION TIME, RESOURCE USAGE,

AND ADDITIONAL COSTS FOR EXECUTING TESTS IN THE CLOUD.

Scheduler Time Instance # Add. Cost
name sec r o $

Sequential 10104.74 1.00 0.00 0.00

Min Load 10104.74 1.00 0.00 0.00
5895.33 2.00 0.00 0.00
4088.15 4.00 0.00 0.00
3456.16 8.00 0.00 0.00

O!SNAP-cost 4373.97 1.00 0.00 0.00
3562.48 2.00 0.00 0.00
3477.62 4.00 0.00 0.00
3451.00 8.00 0.00 0.00

O!SNAP-time 3449.42 1.00 3.47 91.00
3450.06 2.00 1.03 21.30
3448.85 4.00 0.41 8.38
3450.21 8.00 0.03 0.26

Max Parallelism 3303.88 1.00 4.51 713.51
3303.88 1.80 3.71 560.34
3303.88 3.04 2.48 355.75
3303.88 4.98 0.54 75.17

The results reported in the tables refer to the case n = 10.

First, we randomly draw n packages under test and replay
the submission of the corresponding test jobs over the ob-
servation period. Next, for each test submission we compute
a test schedule according to the scheduling algorithm and a
given amount of reserved instances. Then, we measure the
makespan, resources usage, and additional costs of the test
execution, and aggregate them across all the submissions in
the observation period and across multiple runs (N = 30).

We repeat the experiment for different amount of packages
under test (n ∈ {5, 10, 20}) and allocated reserved instances
(r ∈ {1, 2, 4, 8}), but report only the results for n = 10
since we noted that other values of n resulted in similar
results. To better contextualize the results, we consider dif-
ferent schedulers and opposite configurations of O!SNAP. As
schedulers we consider: Sequential, which executes all the
test jobs on the same reserved instance; Min Load, which
dispatches test jobs to the least loaded instances; and, Max
Parallelism, which deploys test jobs on either free or new
instances. As O!SNAP configurations we consider: O!SNAP-
cost, which privileges execution costs over time (α = 0,
β = 1); and, O!SNAP-time, which privileges execution time
over cost (α = 1, β = 0).

We observe that O!SNAP can effectively trade execution
time for costs and vice-versa: O!SNAP-cost achieves lower
costs but longer test execution time, while O!SNAP-time
achieves faster executions at higher costs. Additionally, we
observe that, compared to schedulers which do not burst-out,
O!SNAP achieves faster test executions at moderate costs;
moreover, compared to massively parallelized test executions,
it achieves similar test execution times but at lower costs. We
thus conclude with the answer to RQ2:

Compared to standard solutions, O!SNAP can reduce test
execution time by up to 56.7%,

and test execution costs by more than 87%.

D. Threats to Validity

Where external validity is concerned, our technique uses
real data about previous test executions to predict test exe-
cution time and costs under varying execution settings (i.e.,
schedules and resource allocation); and, the predicted per-
formance may not translate to actual one. To guard against
these threats, we used the official Debian data about past test
executions, and we empirically measured tests’ setup time on
a system similar to the one currently in use by Debian.

Where internal validity is concerned, bugs in the Java
prototype could cause problems with our results. To guard
against these threats, we tested our prototype using small
datasets, on which results could be manually verified.

Where construction validity is concerned, our measure-
ments include the total execution time and the cost for ex-
ecuting the entire set of test jobs to define the cost-efficiency
of each technique. Other factors, such as the cost for storing
snapshots and the execution of test jobs under different cloud
setups are not considered, and may be relevant.

VI. RELATED WORK

O!SNAP enables the effective reuse of test setups among
different test executions in the cloud by leveraging oppor-
tunistic snapshots, an idea initially introduced by Gambi et
al. [16]. This paper builds on top of that initial idea and
shows how opportunistic snapshotting can be combined with
ILP scheduling, a standard solution in cloud computing, to
achieve cost-efficient test executions.

Zhi et al. [17] propose hierarchical virtual machines fork
a novel type of virtual machines that can be forked dur-
ing test execution to run concurrently other tests from the
same state of execution. Like O!SNAP, hierarchical virtual
machines improve the efficiency of test execution; however,
unlike O!SNAP, they require the availability of a non-standard
virtualization technology and hierarchical test cases, which
strongly limit the applicability of the approach in practice.

Beside cloud-computing, several authors show how the
reuse of partial test results improves the efficiency of test
execution. At the unit test level, Khalek and Kurshid [6]
propose abstract undo operations as a mechanism to effec-
tively share common initial executions among tests, while Bell
and Kaiser [7] propose VMVM, a lightweight virtualization
container that avoids to execute test initialization code by
directly setting the application state to the one required by
the test.

VII. CONCLUSIONS

During software development, there is a time for continuous
testing, running and re-running tests at low cost, and a time
for fast testing, getting results in a short time frame. With
O!SNAP, developers can choose at any time whether they want
to optimize for time, for cost, or a mix of the two. As our

evaluation shows, O!SNAP can achieve significant cost and/or
time savings over naive serial or parallel executions.

O!SNAP is a preliminary work and, despite the positive
initial results it achieved, there are some relevant aspects of
this research that we plan to address next. In particular, our
ongoing work includes extending the empirical evaluation to
include real test runs and widely used continuous integration
systems, such as Travis CI [18]. Additionally, we plan to
investigate alternative techniques, such as evolutionary algo-
rithms and Pareto-based techniques, to solve the optimization
problems at the core of O!SNAP.

VIII. ACKNOWLEDGMENT

This work was supported by the ERC Advanced Grant SPEC-
MATE, by the EU FP7-PEOPLE-COFUND project AMAROUT II
(n. 291803), by the Spanish project DEDETIS, and by the Madrid
Regional project N-Greens Software (n. S2013/ICE-2731).

REFERENCES

[1] M. Hilton et al., “Usage, costs, and benefits of continuous integration in
open-source projects,” in Proceedings of the International Conference
on Automated Software Engineering, ser. ASE 2016, 2016, pp. 426–437.

[2] J. Penix, “Large-scale test automation in the cloud (invited industrial
talk),” in Proceedings of the International Conference on Software
Engineering, ser. ICSE 2012, 2012, pp. 1122–1122.

[3] M. Armbrust et al., “A view of cloud computing,” Communications of
the ACM, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[4] S. Elbaum et al., “Techniques for improving regression testing in
continuous integration development environments,” in Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’14, 2014, pp. 235–245.

[5] D. Marijan et al., “Test case prioritization for continuous regression
testing: An industrial case study,” in Proceedings of the IEEE Interna-
tional Conference on Software Maintenance, ser. ICSM ’13, 2013, pp.
540–543.

[6] S. Khalek and S. Khurshid, “Efficiently running test suites using abstract
undo operations,” in Proceedings of the International Symposium on
Software Reliability Engineering, ser. ISSRE ’11, 2011, pp. 110–119.

[7] J. Bell and G. Kaiser, “Unit test virtualization with VMVM,” in
Proceedings of the International Conference on Software Engineering,
ser. ICSE ’14, 2014, pp. 550–561.

[8] M. Mao and M. Humphrey, “A performance study on the vm startup
time in the cloud,” in Proceedings of the International Conference on
Cloud Computing, ser. CLOUD ’12, 2012, pp. 423–430.

[9] Amazon Web Services, “Amazon EC2 purchasing options,”
https://aws.amazon.com/ec2/purchasing-options.

[10] P. Leitner and J. Cito, “Patterns in the Chaos – study of performance
variation and predictability in public IaaS clouds,” ACM Transactions
on Internet Technology, vol. 16, no. 3, pp. 15:1–15:23, Apr. 2016.

[11] J. Vouillon and R. D. Cosmo, “On software component co-installability,”
ACM Transactions on Software Engineering and Methodology, vol. 22,
no. 4, pp. 34:1–34:35, Oct. 2013.

[12] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization,
1st ed. Athena Scientific, 1997.

[13] A. Terceiro, “An introduction to the Debian continuous inte-
gration project,” http://softwarelivre.org/terceiro/blog/an-introduction-to-
the-debian-continuous-integration-project.

[14] “Debian continuous integration,” http://ci.debian.net.
[15] “Amazon EC2 pricing,” https://aws.amazon.com/ec2/pricing/.
[16] A. Gambi et al., “Improving cloud-based continuous integration envi-

ronments,” in Proceedings of the International Conference on Software
Engineering - Volume 2, ser. ICSE ’15, 2015, pp. 797–798.

[17] J. Zhi et al., “The case for system testing with swift hierarchical
VM fork,” in Proceedings of the Workshop on Hot Topics in Cloud
Computing, ser. HotCloud ’14, 2014.

[18] “Travis CI - test and deploy with confidence,” https://travis-ci.com/.

http://ci.debian.net

