
Universidad Politécnica de Madrid

Escuela Técnica Superior de Ingenieros Informáticos

Proving consistency of concurrent data structures
and transactional memory systems

Ph.D Thesis

Artem Khyzha

2018

Departamento de Lenguajes y Sistemas Informáticos e Ingenieria
de Software

Escuela Técnica Superior de Ingenieros Informáticos

Proving consistency of concurrent data structures
and transactional memory systems

Submitted in partial fulfillment of the requirements for the degree of:
Doctor of Philosophy in Software, Systems and Computing

Author: Artem Khyzha
Master in Software and Systems

Universidad Politécnica de Madrid

Advised by Prof. Alexey Gotsman
IMDEA Software Institute

Thesis Committee:
Manuel Carro Liñares Universidad Politécnica de Madrid
Aleksandar Nanevski IMDEA Software Institute
Matthew Parkinson Microsoft Research
Ana Sokolova University of Salzburg
Viktor Vafeiadis Max Planck Institute for Software Systems

2018

Resumen

Los programadores pueden afrontar la complejidad de escribir software con-
currente con la ayuda de librerías de estructuras de datos concurrentes y, más
recientemente, memoria transaccional. Ambos enfoques facilitan el desarrollo de
software proporcionando al programador garantías de corrección, que abstraen
los detalles de la implementación de librerías y memoria transaccional: el pro-
gramador puede asumir que los métodos y transacciones se ejecutan atómica-
mente, aún cuando sus implementaciones en realidad sean concurrentes. Habit-
ualmente, los investigadores, para justificar estas garantías de correción, demues-
tran ciertos requisitos de consistencia: linearizabilidad en el caso de estructuras
de datos concurrentes, y opacidad en memoria transaccional.

Esta tesis se centra en demostrar formalmente requisitos de consistencia.
Proponemos una lógica modular y técnicas de demostración capaces de razonar
sobre implementaciones de estructuras de datos concurrentes de grano fino, y
sobre memoria transaccional. También proporcionamos fundamentos formales
para un modelo de programación en el que se puede acceder a la memoria tanto
desde dentro como desde fuera de una transacción.

Nuestra primera aportación es una lógica general para demostrar lineariz-
abilidad, basada en la lógica “Views framework” y puede ser instanciada con
diferentes métodos de razonamiento composicional sobre la concurrencia, tales
como la lógica de separación o la lógica “rely-guarantee”. Independientemente
de la elección que se haga acerca del método de razonamiento modular con
respecto a un hilo, la logica genérica aquí propuesta explica los principios de
demostración de la linearizabilidad, mediante el método de punto de lineariz-
abilidad, habitualmente utilizado. También demostramos la solidez de nuestra
logica general.

En nuestra segunda aportación, proponemos un método de demostración de
la linearizabilidad de ciertas estructuras de datos sobre las que es complicado
razonar usando el método de puntos de linearizabilidad (por ejemplo, la Herlihy-
Wing queue y la Time-Stamped queue). La idea clave de nuestro método es
la construcción incremental, no de un único orden lineal de operaciones, sino
de un orden parcial que describe múltiples linearizaciones que satisfacen la es-
pecificación secuencial. Esto permite retrasar las decisiones acerca del orden
de las operaciones, imitando el comportamiento de la implementación de las
estructuras de datos. Formalizamos nuestro método como una lógica basada
en “rely-guarantee”, y demostramos su efectividad verificando diferentes estruc-
turas de datos retadoras: las colas Herlihy-Wing y Time-Stamped, así como el
Optimistic set.

Por último, proponemos fundamentos para un modelo de programación,
donde el programador puede acceder los mismos datos tanto desde dentro como

i

desde fuera de una transacción. Idealmente, éstos accesos se ejecutan con
garantías atómicas fuertes. Desafortunadamente, muchas implementaciones de
memoria transaccional que satisfacen el criterio de opacidad no proporcionan
estas garantías, dado que en la práctica son prohibitivamente caras. Diversos
investigadores han propuesto garantizar atomicidad fuerte sólo para ciertos pro-
gramas libres de condiciones de carrera, y, en particular, para programas que
realizan accesos no transaccionales siguiendo el estilo de privatización. Nuestra
contribución es proponer una definición de condición de carrera que dé cabida a
la privatización. Demostramos que si tenemos una memoria transaccional que
satisface ciertos requisitos que generalizan la opacidad y un programa libres de
condiciones de carrera asumiendo atomicidad fuerte, entonces dicho programa,
en efecto, tiene una semántica de atomicidad fuerte. Mostramos que nuestra
definición de condición de carrera permite al programador seguir los estilos de
privatización. También proponemos un método para demostrar nuestra gener-
alización de opacidad y aplicarlo a la memoria transaccional TL2.

Abstract

Programmers can manage the complexity of constructing concurrent software
with the help of libraries of concurrent data structures and, more recently, trans-
actional memory. Both approaches facilitate software development by giving a
programmer correctness guarantees that abstract from the implementation de-
tails of libraries and transactional memory: the programmer can expect that
each library method or transaction execute atomically, even if in reality the
implementation executes them concurrently. To justify these correctness guar-
antees, researchers typically prove certain consistency conditions: linearizability
for concurrent data structures and opacity for transactional memory.

This dissertation is dedicated to proving consistency conditions formally. We
propose modular program logics and proof techniques capable of reasoning about
sophisticated fine-grained concurrent implementations of data structures and
transactional memory. We also provide formal foundations for the programming
model in which memory can be accesses both inside and outside of transactions.

Our first contribution is a generic logic for proving linearizability, which
builds on the Views framework and can be instantiated with different means
of compositional reasoning about concurrency, such as separation logic or rely-
guarantee. The proposed generic logic explicates principles of proving lineariz-
ability with commonly-used linearization-point method independently from a
particular choice of an approach to thread-modular reasoning. We also prove
our generic logic sound.

In our second contribution, we propose a proof method for linearizability of
data structures that are challenging to reason about using linearization points
(e.g., the Herlihy-Wing queue and the Time-Stamped queue). The key idea of
our method is to incrementally construct not a single linear order of operations,
but a partial order that describes multiple linearizations satisfying the sequen-
tial specification. This allows decisions about the ordering of operations to be
delayed, mirroring the behavior of data structure implementations. We for-
malize our method as a program logic based on rely-guarantee reasoning, and
demonstrate its effectiveness by verifying several challenging data structures:
the Herlihy-Wing queue, the Time-Stamped queue and the Optimistic set.

Finally, we provide foundations for a programming model where a program-
mer can access the same data both inside and outside of transactions. In this
model programmers would like to have strong atomicity guarantees from TM.
Unfortunately, many implementations satisfying opacity do not provide them,
since it is prohibitively expensive in practice. Researchers have suggested guar-
anteeing strong atomicity only for certain data-race free (DRF) programs and,
in particular, for programs performing non-transactional accesses according to
the privatization idiom. Our contribution is to propose a notion of DRF that

iii

supports privatization. We prove that, if a TM satisfies a certain condition
generalizing opacity and a program using it is DRF assuming strong atomicity,
then the program indeed has strongly atomic semantics. We show that our DRF
notion allows the programmer to use privatization idioms. We also propose a
method for proving our generalization of opacity and apply it to the TL2 TM.

Acknowledgments

First and foremost, I want to thank my advisor, Alexey Gotsman, for his support
and guidance during this research. He has provided incredibly helpful advice,
patient mentoring and a generous amount of his time for discussions of countless
research opportunities. Taking some of them has led to this dissertation.

I have been very fortunate to work with wonderful collaborators—Hagit
Attiya, Mike Dodds, Matthew Parkinson and Noam Rinetzky—whom I thank
for their guidance and assistance. Working with them was really inspiring and
rewarding.

I am grateful to IMDEA Software Institute, where this research was under-
taken. I am also grateful to Microsoft Research for providing me with Microsoft
Research European PhD Scholarship.

I would like to give special thanks to Ilya Sergey and Giovanni Bernardi for
many discussions about scientific ideas and research life, as well as an important
dose of encouragement in the time when it was most necessary.

I am grateful to the following people for useful discussions and comments
about this dissertation and the papers it is based on: Simon Doherty, Brijesh
Dongol, Xinyu Feng, Ori Lahav, Mohsen Lesani, Adam Morrison, Azalea Raad,
Ana Sokolova, Michael Spear, Tingzhe Zhou and everybody that I have forgotten
to mention, as well as the anonymous referees who were exposed to early drafts
of parts of my work.

I would like to thank the members of my thesis committee for taking time
to read my thesis and for providing valuable feedback.

I was also fortunate to make great friends, with whom we shared great mo-
ments in Madrid: Alvaro García, Bogdan Kulynych, Borja de Régil, Damir
Valput, German Delbianco, Goran Doychev, Julián Samborski, Mariam Nayem,
Miguel Ambrona, Miriam García, Platon Kotzias, Srdjan Matic, Vincent La-
porte, Yuri Meshman.

Finally, I am incredibly grateful to my family and my partner, Natalia, for
their love and support.

v

Contents

1 Introduction 1
1.1 Proving Linearizability of Concurrent Data Structures 3
1.2 Safe Privatization in Transactional Memory 4
1.3 List of Publications . 5

2 A Generic Logic for Proving Linearizability 6
2.1 Methods Syntax and Sequential Semantics 7
2.2 The Generic Logic . 9
2.3 Soundness . 19
2.4 The RGSep-based Logic . 25
2.5 Case Study: Flat Combining . 28
2.6 Summary and Related Work . 32

3 Proving Linearizability Using Partial Orders 34
3.1 Linearizability, Abstract Histories and Commitment Points . . . 36
3.2 Running Example: the Time-Stamped Queue 38
3.3 The TS Queue: Informal Development 42
3.4 Programming Language . 44
3.5 Logic . 47
3.6 The TS Queue: Proof Details . 57
3.7 The Optimistic Set: Informal Development 60
3.8 Summary and Related Work . 66

4 Safe Privatization in Transactional Memory 69
4.1 Programming Language . 73
4.2 Data-Race Freedom . 81
4.3 Strong Opacity . 84
4.4 The Fundamental Property . 85
4.5 Proving Strong Opacity . 88
4.6 Case Study: TL2 . 97
4.7 Related Work . 100

5 Conclusion 102
5.1 Future Directions . 103

Bibliography 105

vi

A Detailed Case Studies 111
A.1 Linearizability of the Time-Stamped Queue 111
A.2 Linearizability of the Optimistic Set 122
A.3 Linearizability of the Herlihy-Wing Queue 127
A.4 Strong Opacity of TL2 . 137

Chapter 1

Introduction

The wide-spread use of multicore processors has significantly influenced the way
we develop software. Modern software systems are often parallelized so that
multiple threads of control could work on a single task together and benefit
from parallelism of multicore architecture. To coordinate their work, threads
interact by performing activities on data they share in memory, which requires
synchronization to keep the data consistent.

Efficiency of synchronization of shared-memory accesses is critical for the
performance of concurrent programs. In principle, threads could synchronize
their accesses to data by protecting it with a single global lock so that only
one thread at any time could access it. Such implementation strategy would
be easy to reason about, but of limited use in practice, since it does not take
advantage of the parallelism enabled by modern multiprocessors. To maximize
performance, implementations of concurrent algorithms may use more elaborate
locking schemes (such as hand-over-hand locking) or non-blocking techniques
(based on using compare-and-swap and fetch-and-add instructions), allowing
multiple threads to operate on the data structure with minimum synchroniza-
tion. Unsurprisingly, efficient concurrent algorithms and data structures are
notoriously challenging to implement and reason about, since that requires con-
sidering all possible interleavings between concurrently executing threads. To
manage the complexity of constructing concurrent software, programmers can
use libraries of concurrent data structures or transactional memory.

Libraries of concurrent data structures contain often-used functionality
designed and implemented by expert programmers. These libraries (e.g.,
java.util.concurrent and Intel Threading Building Blocks) encapsulate highly-
optimized implementations of data structures, such as queues and lists, and
provide clients with a set of methods that can be called concurrently to operate
on these. Even though library implementations typically allow different threads
to modify data structures concurrently, they usually provide a guarantee to the
programmer that each method behaves as if it executes atomically. In principle,
the programmer using a concurrent data structure library can develop a program
and reason about its correctness without knowing the library implementation
details by relying on the atomicity guarantee.

Transactional memory (TM) [1, 2] offers an alternative programming model
that facilitates the development of concurrent software by letting the program-
mer designate blocks of code as transactions. The programmer can then expect

1

that each transaction executes atomically and without interleaving with other
transactions, even if a TM implementation actually executes transactions con-
currently. A TM can be implemented in hardware [3, 4], software [2] or a
combination of both [5, 6]. Analogously to concurrent data structure libraries,
the programmer is not required to know the details of a TM implementation, as
TM allows developing and reasoning about transactions as if they are atomic.

The guarantees of libraries and TM implementations can be formalized as ob-
servational refinement: every behavior a user can observe of any client program
using a library implementation (a TM implementation) can also be observed
when the program uses an abstract library (an abstract TM) that executes each
method (each transaction) atomically. Since proving observational refinement
directly requires considering every possible program using the implementation,
it is typically proven indirectly via consistency conditions, which can be verified
independently from client programs.

A commonly accepted consistency condition for concurrent data structures
is linearizability [7]. It implies observational refinement under an assumption
that client programs only interact with a data structure through its interface
operations [8]. This assumption, also known as interference freedom [9], is com-
mon in concurrent data structure design. In Chapters 2 and 3 we present our
contributions towards developing techniques for proving linearizability.

A commonly accepted consistency condition for transactional memory is
opacity [10]. Similarly to linearizability, it implies observational refinement [11]
under an assumption that memory accessed by transactions is never used out-
side of transactions in programs. However, programmers using a TM often
would like to access the same data both inside and outside transactions, e.g., to
improve performance or to support legacy code. One typical pattern for that
is privatization [12]: from some point on, threads agree that a given object can
be accessed only non-transactionally. A possibility of such non-transactional
accesses necessitates a new consistency condition for TMs that could be used to
guarantee atomicity of transactions in client programs.

When both transactional and non-transactional accesses to data are possible,
programmers would ideally like the TM to guarantee strong atomicity [13, 14],
which allows viewing transactions as executing atomically with respect to non-
transactional accesses as well as other transactions. This is equivalent to con-
sidering every non-transactional access as a single-instruction transaction. Un-
fortunately, providing strong atomicity in software TMs requires instrument-
ing non-transactional accesses with additional instructions for maintaining TM
metadata. This undermines scalability and makes it difficult to reuse legacy
code. Since most existing TMs are either software-based or rely on a software
fall-back, they do not perform such instrumentation and, hence, provide weaker
atomicity guarantees. In Chapter 4, we provide foundations for the program-
ming model mixing transactional and non-transactional accesses to data. To this
end, we propose a restriction on client programs and a consistency condition for
TMs, under which the programs get strong atomicity guarantees.

In the following, we give a more detailed overview of the contributions.

2

1.1 Proving Linearizability of Concurrent Data
Structures

Linearizability requires that any execution of the data structure is justified by
a linearization — a linear order on operations in the execution such that:

• the linearization respects the order of non-overlapping operations (the
real-time order); and

• operations in the linearization behave atomically according to the data
structure’s sequential specification.

A common approach to proving linearizability is to find a linearization point
for every method of the concrete library at which it can be thought of as taking
effect. This must occur somewhere between the start and end of the opera-
tion, to ensure that the linearization preserves the real-time order. Given an
execution of a data structure implementation, the matching linearization is con-
structed by executing an operation’s specification at the linearization point of
the operation’s implementation.

Recent years have seen a number of proposals of program logics for proving
linearizability. Although these logics differ in technical details, they embody
similar reasoning principles. To explicate these principles, we propose a logic for
proving linearizability that is generic: it can be instantiated with different means
of compositional reasoning about concurrency, such as separation logic [15] or
rely-guarantee [16]. To this end, we generalize the Views framework [17] for
reasoning about concurrency to handle relations between programs, required
for proving linearizability. We also consider sample instantiations of our generic
logic and show that it is powerful enough to handle concurrent algorithms with
challenging features, such as helping [9]. We present our generic logic for proving
linearizability in Chapter 2 of this dissertation.

The linearization-point method of establishing linearizability is very popu-
lar, to the extent that most papers proposing new concurrent data structures
include a placement of linearization points. For such algorithms, linearizabil-
ity can be proved by incrementally constructing a linearization as the program
executes. However, there are algorithms that cannot be proved linearizable
using the linearization point method, because an operation’s position in the lin-
earization order may depend on future operations. This makes it very difficult
to incrementally construct the linearization in a proof, because an operation’s
position in the linearization order may depend on future operations.

We propose a new proof method that can handle data structures with such
future-dependent linearizations. Our key idea is to incrementally construct not
a single linear order of operations, but a partial order that represents multi-
ple linearizations satisfying the sequential specification. This allows decisions
about the ordering of operations to be delayed, mirroring the behavior of data
structure implementations. We formalize our method as a program logic based
on rely-guarantee reasoning, and demonstrate its effectiveness by verifying sev-
eral challenging data structures: the Herlihy-Wing queue [7], the Time-Stamped
queue [18] and the Optimistic set [19]. We present our proof method for lin-
earizability using partial orders in Chapter 3 of this dissertation.

3

1.2 Safe Privatization in Transactional Memory
Many TM implementations in practice only guarantee weak atomicity [13, 14],
in which transactions are atomic only with respect to other transactions, but
their execution may be interleaved with non-transactional code. Since guar-
anteeing strong atomicity for arbitrary programs is prohibitively expensive in
software TMs, researchers have suggested guaranteeing strong atomicity only
for certain data-race free (DRF) programs [20, 21], which do not access the
same data concurrently inside and outside of transactions. For instance, in two
typical patterns of non-transactional accesses, privatization and publication, at
any point of time objects are accessed either only transactionally or only non-
transactionally. Hence, programs using privatization and publication should be
guaranteed strong atomicity.

Many TM implementations, when used out-of-the-box, do not guarantee
strong atomicity for seemingly well-behaved programs using privatization. Sup-
porting privatization safely in a TM with weaker atomicity guarantees is nontriv-
ial: it often requires correctly inserting transactional fences [12], which wait until
all active transactions complete. Thus, providing strong atomicity to DRF pro-
grams using privatization necessitates taking into account transactional fences.

In Chapter 4, we make the first proposal of DRF for transactional memory
that considers a flexible programming model (with transactional fences) and
comes with a formal justification of its appropriateness. We prove that, if a
TM satisfies a certain consistency condition generalizing opacity and a program
using it is DRF assuming strong atomicity, then the program indeed has strongly
atomic semantics. The key feature of our proposal is that the programmer
writing code without races according to our notion never needs to reason about
weakly atomic semantics. Finally, we also show that our notion of DRF allows
the programmer to use privatization idioms.

The new consistency condition that we require from TM implementations
is strong opacity. It extends the standard notion of opacity [10], which, simi-
larly to linearizability, requires that any execution of the TM is justified by a
linearization — a linear order on transactions in the execution such that:

• the linearization respects the order of non-overlapping transactions (the
real-time order); and

• transactions in the linearization behave as if they are executed atomically
without interleaving with each other.

Strong opacity imposes additional requirements on non-transactional operations
present in executions, because these can affect the behavior of the TM (e.g., via
the idiom of “privatize, modify non-transactionally, publish”).

To justify the appropriateness of requiring strong opacity from TMs, we
develop a proof method for it inspired by our technique for linearizability using
partial orders. We demonstrate the effectiveness of the method by applying it to
prove the strong opacity of a realistic TM, TL2 [22], enhanced with transactional
fences implemented using RCU. Our proof shows that this TM indeed guarantees
strong atomicity to programs satisfying our notion of DRF.

4

1.3 List of Publications
This thesis is based on the following three papers published in proceedings of
peer-reviewed academic conferences:

• Artem Khyzha, Alexey Gotsman, and Matthew Parkinson
A Generic Logic for Proving Linearizability
In Proceedings of International Symposium on Formal Methods (FM),
Limassol, Cyprus, 2016.

• Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew Parkinson
Proving Linearizability Using Partial Orders
In Proceedings of European Symposium on Programming (ESOP),
Uppsala, Sweden, 2017.

• Artem Khyzha, Hagit Attiya, Alexey Gotsman, and Noam Rinetzky
Safe Privatization for Transactional Memory
In Proceedings of ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP), Vienna, Austria, 2018.

5

Chapter 2

A Generic Logic for Proving
Linearizability

To manage the complexity of constructing concurrent software, programmers
package often-used functionality into libraries of concurrent algorithms. These
encapsulate data structures, such as queues and lists, and provide clients
with a set of methods that can be called concurrently to operate on these
(e.g., java.util.concurrent). To maximize performance, concurrent libraries may
use sophisticated non-blocking techniques, allowing multiple threads to operate
on the data structure with minimum synchronization. Despite this, each library
method is usually expected to behave as though it executes atomically. This
requirement is formalized by the standard notion of correctness for concurrent
libraries, linearizability [7], which establishes a form of a simulation between
the original concrete library and another abstract library, where each method is
implemented atomically.

A common approach to proving linearizability is to find a linearization point
for every method of the concrete library at which it can be thought of taking
effect. 1 Given an execution of a concrete library, the matching execution of the
abstract library, required to show the simulation, is constructed by executing
the atomic abstract method at the linearization point of the concrete method.
A difficulty in this approach is that linearization points are often not determined
by a statically chosen point in the method code. For example, in concurrent
algorithms with helping [9], a method may execute an operation originally re-
quested by another method, called in a different thread; then the linearization
point of the latter method is determined by an action of the former.

Recent years have seen a number of program logics for proving lineariz-
ability (see [23] for a survey). To avoid reasoning about the high number of
possible interleavings between concurrently executing threads, these logics of-
ten use thread-modular reasoning. They establish protocols that threads should
follow when operating on the shared data structure and reason separately about
every thread, assuming that the rest follow the protocols. The logics for proving
linearizability, such as [24, 25], usually borrow thread-modular reasoning rules
from logics originally designed for proving non-relational properties of concur-

1Some algorithms cannot be reasoned about using linearization points, which we discuss
in Section 2.6 and follow up on in Chapter 3.

6

rent programs, such as rely-guarantee [16], separation logic [15] or combinations
thereof [24, 26]. Although this leads the logics to differ in technical details,
they use similar methods for reasoning about linearizability, usually based on
linearization points. Despite this similarity, designing a logic for proving lin-
earizability that uses a particular thread-modular reasoning method currently
requires finding the proof rules and proving their soundness afresh.

To consolidate this design space of linearization-point-based reasoning, we
propose a logic for linearizability that is generic, i.e., can be instantiated with
different means of thread-modular reasoning about concurrency, such as sepa-
ration logic [15] or rely-guarantee [16]. To this end, we build on the recently-
proposed Views framework [17], which unifies thread-modular logics for con-
currency, such as the above-mentioned ones. Our contribution is to generalize
the framework to reason about relations between programs, required for prov-
ing linearizability. In more detail, assertions in our logic are interpreted over
a monoid of relational views, which describe relationships between the states
of the concrete and the abstract libraries and the protocol that threads should
follow in operating on these. The operation of the monoid, similar to the sepa-
rating conjunction in separation logic [15], combines the assertions in different
threads while ensuring that they agree on the protocols of access to the state.
The choice of a particular relational view monoid thus determines the thread-
modular reasoning method used by our logic.

To reason about linearization points, relational views additionally describe a
set of special tokens (as in [24, 25, 27]), each denoting a one-time permission to
execute a given atomic command on the state of the abstract library. The place
where this permission is used in the proof of a concrete library method deter-
mines its linearization point, with the abstract command recorded by the token
giving its specification. Crucially, reasoning about the tokens is subject to the
protocols established by the underlying thread-modular reasoning method; in
particular, their ownership can be transferred between different threads, which
allows us to deal with helping.

We prove the soundness of our generic logic under certain conditions on
its instantiations (Definition 2.2, §2.2). These conditions represent our key
technical contribution, as they capture the essential requirements for soundly
combining a given thread-modular method for reasoning about concurrency with
the linearization-point method for reasoning about linearizability.

To illustrate the use of our logic, we present its example instantiations where
thread-modular reasoning is done using disjoint concurrent separation logic [28]
and a combination of separation logic and rely-guarantee [24]. We then apply
the latter instantiation to prove the correctness of a sample concurrent algorithm
with helping. We expect that our results will make it possible to systematically
design logics using the plethora of other methods for thread-modular reasoning
that have been shown to be expressible in the Views framework [28, 29, 30].

2.1 Methods Syntax and Sequential Semantics
We consider concurrent programs that consist of two components, which we call
libraries and clients. Libraries provide clients with a set of methods, and clients
call them concurrently. We distinguish concrete and abstract libraries, as the
latter serve as specification for the former due to its methods being executed

7

−→ ⊆ Com× PCom× Com
C1 �α C

′
1

C1 ; C2 �α C
′
1 ; C2 C?�id C;C? α�α skip

i ∈ {1, 2}
C1 + C2 �id Ci skip ; C �id C C?�id skip

−−� ⊆ (Com× State)× (ThreadID× PCom)× (Com× State)
σ′ ∈ JαKt(σ) C �α C

′

〈C, σ〉
t,α
−−−−� 〈C ′, σ′〉

Figure 2.1: The operational semantics of sequential commands

atomically.

Syntax. Concrete methods are implemented as sequential commands having
the syntax:

C ∈ Com ::= α | C ; C | C + C | C? | skip, where α ∈ PCom

The grammar includes primitive commands α from a set PCom, sequential com-
position C ; C, non-deterministic choice C+C and a finite iteration C? (we are
interested only in terminating executions) and a termination marker skip. We
use + and (·)? instead of conditionals and while loops for theoretical simplicity:
as we show at the end of this section, given appropriate primitive commands the
conditionals and loops can be encoded. We also assume a set APCom of abstract
primitive commands, ranged over by A, with which we represent methods of an
abstract library.

Semantics. We assume a set State of concrete states of the memory, ranged
over by σ, and abstract states AState, ranged over by Σ. The memory is shared
among N threads with thread identifiers ThreadID = {1, 2, . . . , N}, ranged over
by t.

We assume that semantics of each primitive command α is given by a non-
deterministic state transformer JαKt : State → P(State), where t ∈ ThreadID.
For a state σ, the set of states JαKt(σ) is the set of possible resulting states for
α executed atomically in a state σ and a thread t. State transformers may have
different semantics depending on a thread identifier, which we use to introduce
thread-local memory cells later in the technical development. Analogously, we
assume semantics of abstract primitive commands with state transformers JAKt :
AState → P(AState), all of which update abstract states atomically. We also
assume a primitive command id ∈ PCom with the interpretation JidKt(σ) , {σ},
and its abstract counterpart id ∈ APCom.

The sets of primitive commands PCom and APCom as well as corresponding
state transformers are parameters of our framework. In Figure 2.1 we give
rules of operational semantics of sequential commands, which are parametrized
by semantics of primitive commands. That is, we define a transition relation

−−� ⊆ (Com×State)×(ThreadID×PCom)×(Com×State), so that 〈C, σ〉
t,α
−−−−�

〈C ′, σ′〉 indicates a transition from C to C ′ updating the state from σ to σ′ with
a primitive command α in a thread t. The rules of the operational semantics
are standard.

8

Let us show how to define traditional control flow primitives, such as an if-
statement and a while-loop, in our programming language. Assuming a language
for arithmetic expressions, ranged over by E, and a function JEKσ that evaluates
expressions in a given state σ, we define a primitive command assume(E) that
acts as a filter on states, choosing only those where E evaluates to non-zero
values.

Jassume(E)Kt(σ) , if JEKσ 6= 0 then {σ} else ∅.

Using assume(E) and the C-style negation !E in expressions, a conditional and
a while-loop can be implemented as the following commands:

if E then C1 else C2 , (assume(E);C1) + (assume(!E);C2)

while E do C , (assume(E);C)?; assume(!E)

2.2 The Generic Logic
In this section, we present our framework for designing program logics for lin-
earizability proofs. Given a concrete method and a corresponding abstract
method, we aim to demonstrate that the former has a linearization point ei-
ther within its code or in the code of another thread. The idea behind such
proofs is to establish simulation between concrete and abstract methods using
linearization points to determine when the abstract method has to make a tran-
sition to match a given execution of the concrete method. To facilitate such
simulation-based proofs, we design our relational logic so that formulas in it
denote relations between concrete states, abstract states and special tokens.

Tokens are our tool for reasoning about linearization points. At the begin-
ning of its execution in a thread t, each concrete method m is given a token
todo(Am) of the corresponding abstract primitive command Am. The token
represents a one-time permission for the method to take effect, i.e. to perform a
primitive command Am on an abstract machine. When the permission is used,
a token todo(Am) in a thread t is irreversibly replaced with done(Am). Thus, by
requiring that a method start its execution in a thread t with a token todo(Am)
and ends with done(Am), we ensure that it has in its code a linearization point.
The tokens of all threads are described by ∆ ∈ Tokens:

Tokens = ThreadID ⇀ ({todo(A) | A ∈ APCom} ∪ {done(A) | A ∈ APCom})

Reasoning about states and tokens in the framework is done with the help
of relational views. We assume a set Views, ranged over by p, q and r, as well as
a reification function b c : Views → P(State× AState× Tokens) that interprets
views as ternary relations on concrete states, abstract states and indexed sets
of tokens.

Definition 2.1. A relational view monoid is a commutative monoid
(Views, ∗, u), where Views is an underlying set of relational views, ∗ is a monoid
operation and u is a unit.

The monoid structure of relational views allows treating them as restrictions
on the environment of threads. Intuitively, each thread uses views to declare a
protocol that other threads should follow while operating with concrete states,

9

abstract states and tokens. Similarly to the separating conjunction from sep-
aration logic, the monoid operation ∗ (view composition) applied to a pair of
views combines protocols of access to the state and ensures that they do not
contradict each other.

Disjoint Concurrent Separation logic. To give an example of a view
monoid, we demonstrate the structure inspired by Disjoint Concurrent Sepa-
ration logic (DCSL). A distinctive feature of DCSL is that its assertions enforce
a protocol, according to which threads operate on disjoint pieces of memory.
We assume a set of values Val, of which a subset Loc ⊆ Val represents heap
addresses. By letting State = AState = (Loc ⇀fin Val) ∪ { } we represent a
state as either a finite partial function from locations to values or an excep-
tional faulting state , which denotes the result of an invalid memory access.
We define an operation • on states, which results in if either of the operands
is , or the union of partial functions if their domains are disjoint. Finally, we
assume that the set PCom consists of standard heap-manipulating commands
with usual semantics [15, 17].

We consider the following view monoid:

(P((State \ { })× (AState \ { })× Tokens), ∗SL, ([], [], [])),

where the unit is a triple of nowhere defined functions [], and the view compo-
sition defined as follows:

p ∗SL p′ , {(σ • σ′,Σ • Σ′,∆]∆′) | (σ,Σ,∆) ∈ p ∧ (σ′,Σ′,∆′) ∈ p′}.

In this monoid, the composition enforces a protocol of exclusive ownership of
parts of the heap: a pair of views can be composed only if they do not simulta-
neously describe the content of the same heap cell or a token. Since tokens are
exclusively owned in DCSL, they cannot be accessed by other threads, which
makes it impossible to express a helping mechanism with the DCSL views. In
§2.4, we present another instance of our framework and reason about helping in
it.

Reasoning about linearization points. We now introduce action judg-
ments, which formalize linearization-points-based approach to proving lineariz-
ability within our framework.

σ
bp∗rc

JαK

��

Σ

JAK

��
σ′

bq∗rc
Σ′

Let us assume that α is executed in a concrete state σ
with an abstract state Σ and a set of tokens ∆ satisfying
a precondition p. According to the action judgment α t
{p}{q}, for every update σ′ ∈ JαKt(σ) of the concrete state,
the abstract state may be changed to Σ′ ∈ JAKt′(Σ) in
order to satisfy the postcondition q, provided that there is
a token todo(A) in a thread t′. When the abstract state Σ is changed and the
token todo(A) of a thread t′ is used, the concrete state update corresponds to a
linearization point, or to a regular transition otherwise.

Definition 2.2. The action judgment α t {p}{q} holds, iff the following is
true:

∀r, σ, σ′,Σ,∆. (σ,Σ,∆) ∈ bp ∗ rc ∧ σ′ ∈ JαKt(σ) =⇒
∃Σ′,∆′. LP∗(Σ,∆,Σ′,∆′) ∧ (σ′,Σ′,∆′) ∈ bq ∗ rc,

10

where LP∗ is the transitive closure of the following relation:

LP(Σ,∆,Σ′,∆′) , ∃t′,A.Σ′ ∈ JAKt′(Σ)∧∆(t′) = todo(A)∧∆′ = ∆[t′ : done(A)],

and f [x : a] denotes the function such that f [x : a](x) = a and for any y 6= x,
f [x : a](y) = f(y).

Note that depending on pre- and postconditions p and q, α t {p}{q} may
encode a regular transition, a conditional or a standard linearization point.
It is easy to see that the latter is the case only when in all sets of tokens
∆ from bpc some thread t′ has a todo-token, and in all ∆′ from bqc it has
a done-token. Additionally, the action judgment may represent a conditional
linearization point of another thread, as the LP relation allows using tokens of
other threads.

Action judgments have a closure property that is important for thread-
modular reasoning: when α t {p}{q} holds, so does α t {p ∗ r}{q ∗ r} for
every view r. That is, execution of α and a corresponding linearization point
preserves every view r that p can be composed with. Consequently, when in
every thread action judgments hold of primitive commands and thread’s views,
all threads together mutually agree on each other’s protocols of the access to
the shared memory encoded in their views. This enables reasoning about every
thread in isolation with the assumption that its environment follows its proto-
col. Thus, the action judgments formalize the requirements that instances of our
framework need to satisfy in order to be sound. In this regard action judgments
are inspired by semantic judgments of the Views Framework [17]. Our technical
contribution is in formulating the essential requirements for thread-modular rea-
soning about linearizability of concurrent libraries with the linearization-point
method and in extending the semantic judgment with them.

We let a repartitioning implication of views p and q, written p V q, denote
the following:

pV q , ∀r. bp ∗ rc ⊆ bq ∗ rc. (2.3)

A repartitioning implication p V q ensures that states satisfying p also satisfy
q and additionally requires this property to preserve any view r.

Program logic. We are now in a position to present our generic logic for lin-
earizability proofs via the linearization-point method. Assuming a view monoid
and reification function as parameters, we define a minimal language Assn for
assertions P and Q denoting sets of views:

P,Q ∈ Assn ::= ρ | P ∗ Q | P ∨ Q | P V Q | ∃X.P | . . .

The grammar includes view assertions ρ, a syntax VAssn of which is a parameter
of the framework. Formulas of Assn may contain the standard connectives from
separation logic, the repartitioning implication and the existential quantification
over logical variables X, ranging over a set LVar.

Let us assume an interpretation of logical variables ` ∈ Int = LVar→ Val that
maps logical variables from LVar to values from a finite set Val. In Figure 2.2,
we define a function J·K· : Assn× Int→ Views that we use to interpret assertions.
Interpretation of assertions is parametrized by J·K· : VAssn × Int → Views. In

11

JP ∗ QK` = JPK` ∗ JQK` JP V QK` = JPK` V JQK`
JP ∨QK` = JPK` ∨ JQK` J∃X.PK` =

∨
n∈ValJPK`[X:n]

Figure 2.2: Satisfaction relation for the assertion language Assn

(Prim)
∀`. α t {JPK`}{JQK`}
`t {P} α {Q}

(Seq)
`t {P} C1 {P ′} `t {P ′} C2 {Q}

`t {P} C1 ; C2 {Q}

(Frame)
`t {P} C {Q}

`t {P ∗ R} C {Q ∗ R}

(Disj)
`t {P1} C {Q1} `t {P2} C {Q2}
`t {P1 ∨ P2} C {Q1 ∨Q2}

(Ex)
`t {P} C {Q}

`t {∃X.P} C {∃X.Q}
(Choice)

`t {P} C1 {Q} `t {P} C2 {Q}
`t {P} C1 + C2 {Q}

(Iter)
`t {P} C {P}
`t {P} C? {P}

(Conseq)
P ′ V P `t {P} C {Q} QV Q′

`t {P ′} C {Q′}

Figure 2.3: Proof rules

order to interpret disjunction, we introduce a corresponding operation on views
and require the following properties from it:

bp ∨ qc = bpc ∪ bqc (p ∨ q) ∗ r = (p ∗ r) ∨ (q ∗ r) (2.4)

The judgments of the program logic take the form `t {P} C {Q}. In Fig-
ure 2.3, we present the proof rules, which are mostly standard. Among them,
the Prim rule is noteworthy, since it incorporates the simulation-based approach
to reasoning about linearization points introduced by action judgments. The
Frame rule applies the idea of local reasoning from separation logic [15] to
views. The Conseq enables weakening a precondition or a postcondition in
a proof judgment and uses repartitioning implications to ensure the thread-
modularity of the weakened proof judgment.

Semantics of proof judgments. We give semantics to judgments of the
program logic by lifting the requirements of action judgments to sequential
commands.

Definition 2.5 (Safety judgment). We define safet as the greatest relation such
that the following holds whenever safet(p, C, q) does:

• if C 6= skip, then ∀C ′, α. C �α C
′ =⇒ ∃p′. α t {p}{p′}∧safet(p

′, C ′, q),

• if C = skip, then pV q.

Lemma 2.6. ∀t,P, C,Q.`t {P} C {Q} =⇒ ∀`. safet(JPK`, C, JQK`).

12

We can understand the safety judgment safet(JPK`, C, JQK`) as an obligation
to create a sequence of views JPK` = p1, p2, . . . , pn+1 = JQK` for each finite
trace α1, α2, . . . , αn of C to justify each transition with action judgments α1 t
{p1}{p2}, . . . , αn t {pn}{pn+1}. Thus, when safet(JPK`, C, JQK`) holds, it
ensures that every step of the machine correctly preserves a correspondence
between a concrete and abstract execution. Intuitively, the safety judgment lifts
the simulation between concrete and abstract primitive commands established
with action judgments to the implementation and specification of a method.

In Lemma 2.6, we establish that the proof judgments of the logic imply the
safety judgments. As a part of the proof, we show that each of the proof rules
of the logic holds of safety judgments. We summarize this observation in the
following auxiliary lemma.

Lemma 2.7. The safety relation safet has the following closure properties:

Seq: ∀t, C1, C2, p, p
′, q.

safet(p, C1, p
′) ∧ safet(p

′, C2, q) =⇒ safet(p, C1 ; C2, q);

Frame: ∀t, C, p, q, r. safet(p, C, q) =⇒ safet(p ∗ r, C, q ∗ r);

Disj: ∀t, C, p1, p2, q1, q2.

safet(p1, C, q1) ∧ safet(p2, C, q2) =⇒ safet(p1 ∨ p2, C, q1 ∨ q2).

Choice: ∀t, C1, C2, p, q.

safet(p, C1, q) ∧ safet(p, C2, q) =⇒ safet(p, C1 + C2, q);

Iter: ∀t, C, p. safet(p, C, p) =⇒ safet(p, C
?, p);

Conseq: ∀t, C, p, p′, q, q′.
p′ V p ∧ safet(p, C, q) ∧ q V q′ =⇒ safet(p

′, C, q′);

For convenience of presentation, we first show how Lemma 2.7 is used in the
the proof of Lemma 2.6, and then prove Lemma 2.7.

Proof of Lemma 2.6. We prove the lemma by rule induction. For that we choose
arbitrary thread identifier t and demonstrate that ∀`. safet(JPK`, C, JQK`) is
closed under the proof rules from Figure 2.3. The cases of Choice, Iter,
Seq, Conseq, Frame and Disj rules are straightforward: they trivially follow
from Lemma 2.7 after using the properties of J−K` from Figure 2.2. The Ex rule
uses the fact that Val, which is the range of i, is finite, which makes possible
proving it just like the Disj rule.

It remains to consider the Prim rule to conclude Lemma 2.6. Let us as-
sume that ∀`′. α t {JPK`′}{JQK`′} holds. We need to demonstrate that so
does ∀`. safet(JPK`, α, JQK`). To conclude that the latter holds, according Defi-
nition 2.5 we need to prove the following for every `:

∀C ′, α′. α�α′ C
′ =⇒ ∃p′. α′ t {JPK`}{p′} ∧ safet(p

′, C ′, JQK`) (2.8)

According to the operational semantics from Figure 2.1, the only transition
from a command α is α �α skip. Thus, in the formula above α′ = α and
C ′ = skip. Note that safet(JQK`, skip, JQK`) holds trivially. Additionally, by our
assumption, α t {JPK`′}{JQK`′} holds for any `′. Consequently, it holds for
`′ = `. We conclude that by letting p′ = JQK` we satisfy (2.8).

13

2.2.1 Proof of Lemma 2.7
We now prove the compositionality properties of the safety relation. We prove
all of them by coinduction. To this end, we restate the definition of safet using
the fixed-point notation. We consider a function

Ft : P(Views× Com× Views)→ P(Views× Com× Views)

defined as follows:

Ft(X) , {(p, skip, q) | pV q} ∪
{(p, C, q) | ∀C ′, α. C �α C

′ =⇒ ∃p′. α t {p}{p′} ∧ (p′, C ′, q) ∈ X}

Note that a powerset domain ordered by inclusion is a complete lattice and F is
a mapping on it, which means that F is monotone. Consequently, by Knaster-
Tarski fixed-point theorem F has the greatest fixed-point. It is easy to see that
safet , gfpFt in Definition 2.5.

In the proof of Lemma 2.7 we use the following properties of the action
judgment and the V relation.

Proposition 2.9 (Locality).

∀p, q, r. pV q =⇒ p ∗ r V q ∗ r;
∀t, α, p, q, r. α t {p}{q} =⇒ α t {p ∗ r}{q ∗ r}.

Proposition 2.10 (Consequence).

∀t, α, p, q, p′, q′. p′ V p ∧ α t {p}{q} ∧ q V q′ =⇒ α t {p′}{q′}.

The proofs of Propositions 2.9 and 2.10 are straightforward: both properties
can be easily checked after unfolding definitions of action judgments.

Proposition 2.11 (Distributivity).

∀t, α, p1, p2, q1, q2. α t {p1}{q1}∧ α t {p2}{q2} =⇒ α t {p1∨p2}{q1∨ q2}.

Proof. According to the Definition 2.2 of the action judgment α t {p1∨p2}{q1∨
q2}, in order to prove the latter we need to demonstrate the following:

∀r, σ, σ′,Σ,∆. σ′ ∈ JαKt(σ) ∧ (σ,Σ,∆) ∈ b(p1 ∨ p2) ∗ rc =⇒
∃Σ′,∆′. LP∗(Σ,∆,Σ′,∆′) ∧ (σ′,Σ′,∆′) ∈ b(q1 ∨ q2) ∗ rc. (2.12)

Let us consider any view r, states σ, σ′,Σ and tokens ∆ such that both σ′ ∈
JαKt(σ) and (σ,Σ,∆) ∈ b(p1 ∨ p2) ∗ rc hold. According to the properties of
disjunction stated in equalities (2.4),

b(p1 ∨ p2) ∗ rc = b(p1 ∗ r) ∨ (p2 ∗ r)c = bp1 ∗ rc ∪ bp2 ∗ rc.

Consequently, (σ,Σ,∆) ∈ bp1 ∗ rc ∪ bp2 ∗ rc.
Let us assume that (σ,Σ,∆) ∈ bp1 ∗ rc (the other case is analogous). Then

according to the action judgment α t {p1}{q1}, there exist Σ′ and ∆′ such
that:

LP∗(Σ,∆,Σ′,∆′) ∧ (σ′,Σ′,∆′) ∈ bq1 ∗ rc. (2.13)

14

Once again, according to the properties (2.4) of disjunction:

bq1 ∗ rc ⊆ bq1 ∗ rc ∪ bq2 ∗ rc = b(q1 ∗ r) ∨ (q2 ∗ r)c = b(q1 ∨ q2) ∗ rc,

which together with (2.13) means that (σ′,Σ′,∆′) ∈ b(q1 ∨ q2) ∗ rc. Overall
we have shown that there exist Σ′ and ∆′ such that LP∗(Σ,∆,Σ′,∆′) and
(σ′,Σ′,∆′) ∈ b(q1 ∨ q2) ∗ rc, which concludes the proof of (2.12).

We now prove the closure properties from Lemma 2.7.

Proof of Seq. Let φ be defined as follows:

φ(X) , {(p, C1 ; C2, q) | ∃q′. (p, C1, q
′) ∈ X ∧ (q′, C2, q) ∈ X}.

Then our goal is to prove that φ(safet) ⊆ safet. For convenience, we prove an
equivalent inequality φ(safet) ∪ safet ⊆ safet instead.

Since safet = gfpFt, we can do a proof by coinduction: to conclude that
φ(safet) ∪ safet ⊆ safet holds, we demonstrate:

φ(safet) ∪ safet ⊆ Ft(φ(safet) ∪ safet).

Let us consider any (p, C, q) ∈ safet. Since safet = gfpFt, we know that
safet = Ft(safet) holds. Then by monotonicity of Ft, (p, C, q) ∈ Ft(safet) ⊆
Ft(φ(safet) ∪ safet).

Now let us consider any (p, C, q) ∈ φ(safet). There necessarily are C1, C2

and q′ such that:

C = C1 ; C2 ∧ (p, C1, q
′) ∈ safet ∧ (q′, C2, q) ∈ safet. (2.14)

For (p, C1 ; C2, q) to belong to Ft(φ(safet) ∪ safet), the following has to be the
case for every transition C1 ; C2 �α C

′:

∃p′. α t {p}{p′} ∧ (p′, C ′, q) ∈ φ(safet) ∪ safet. (2.15)

According to the rules of the operational semantics (Figure 2.1), when there is
a transition C1 ; C2 �α C

′, either of the following is true:

• there exists C ′1 such that C ′ = C ′1 ; C2 and C1 �α C
′
1; or

• C1 = skip, α = id and C ′ = C2.

Let us assume that the former is the case. From (2.14) we know that (p, C1, q
′) ∈

safet, which means that the following holds of C1 �α C
′
1:

∃p′′. α t {p}{p′′} ∧ (p′′, α′1, q
′) ∈ safet.

When (p′′, α′1, q
′) ∈ safet and (q′, α2, q) ∈ safet, it is the case that (p′′, α′1 ;

α2, q) ∈ φ(safet). Thus, by letting p′ = p′′ we satisfy (2.15).
We now consider the case when C1 = skip, α = id and C ′ = C2. From

(2.14) we know that (p, skip, q′) ∈ safet, meaning that p V q′, or, equivalently,
id t {p}{q′}. We also know from (2.14) that (q′, C2, q) ∈ safet. Thus, (2.15)
can be satisfied by letting p′ = q′.

15

Proof of Frame. Let us define an auxiliary function:

φ(X, r) , {(p ∗ r, C, q ∗ r) | (p, C, q) ∈ X}.

Then our goal is to prove that φ(safet, r) ⊆ safet. Since safet = gfpFt, we
can do a proof by coinduction: to conclude that φ(safet, r) ⊆ safet holds, we
demonstrate φ(safet, r) ⊆ Ft(φ(safet, r)).

Consider any (p′, C, q′) ∈ φ(safet, r). There necessarily are p, q, r such that
p′ = p ∗ r, q′ = q ∗ r and (p, C, q) ∈ safet. Let us assume that C = skip. Then
(p, C, q) ∈ safet implies that p V q. By Proposition 2.9, p ∗ r V q ∗ r, which
implies (p ∗ r, skip, q ∗ r) ∈ safet to hold.

Now let C 6= skip. Since (p, C, q) ∈ safet, by definition of the safety relation
the following holds of every α, C ′ and any transition C �α C

′:

∃p′. α t {p}{p′} ∧ (p′, C ′, q) ∈ safet.

By Proposition 2.9, α t {p}{p′} implies α t {p ∗ r}{p′ ∗ r}. Also, when
(p′, C ′, q) ∈ safet, it is the case that (p′ ∗ r, C ′, q ∗ r) ∈ φ(safet, r). Thus, we
have shown for every transition C �α C

′ that there exists p′′ = p′ ∗ r such that
α t {p ∗ r}{p′′} and (p′′, C ′, q ∗ r) ∈ φ(safet, r):

∀α,C.C �α C
′ =⇒ ∃p′′. α t {p ∗ r}{p′′} ∧ (p′′, C ′, q ∗ r) ∈ φ(safet, r),

which is sufficient to conclude that (p ∗ r, C, q ∗ r) ∈ Ft(φ(safet, r)).

Proof of Disj. Let φ be defined as follows:

φ(X) , {(p1 ∨ p2, C, q1 ∨ q2) | (p1, C, q1) ∈ X ∧ (p2, C, q2) ∈ X}.

Then our goal is to prove that φ(safet) ⊆ safet. Since safet = gfpFt, we can do
a proof by coinduction: to conclude that φ(safet) ⊆ safet holds, we demonstrate
φ(safet) ⊆ Ft(φ(safet)).

Let us consider (p, C, q) ∈ φ(safet). Then there necessarily are p1, q1, p2 and
q2 such that p = p1∨p2, q = q1∨q2, and (p1, C, q1), (p2, C, q2) ∈ safet. From the
latter we get that for any α,C ′ and a transition C �α C

′ the following holds:

∃p′1. α t {p1}{p′1} ∧ (p′1, C
′, q1) ∈ safet;

∃p′2. α t {p2}{p′2} ∧ (p′2, C
′, q2) ∈ safet.

Then it is the case that (p′1 ∨ p′2, C ′, q1 ∨ q2) ∈ φ(safet). Moreover, α t {p1 ∨
p2}{p′1∨p′2} holds by Proposition 2.11. Thus, we have shown for every transition
C �α C ′ that there exists p′ = p′1 ∨ p′2 such that α t {p1 ∨ p2}{p′} and
(p′, C ′, q1 ∨ q2) ∈ φ(safet):

∀α,C.C �α C
′ =⇒ ∃p′. α t {p1 ∨ p2}{p′} ∧ (p′, C ′, q1 ∨ q2) ∈ φ(safet).

which is sufficient to conclude that (p1 ∨ p2, C, q1 ∨ q2) ∈ Ft(φ(safet)).

Proof of Choice. Let us define an auxiliary function:

φ(X,Y) , {(p, C1 + C2, q) | (p, C1, q) ∈ X ∧ (p, C2, q) ∈ Y }.

16

Then our goal is to prove that φ(safet, safet) ⊆ safet. For convenience, we prove
an equivalent inequality φ(safet, safet) ∪ safet ⊆ safet instead.

Since safet = gfpFt, we can do a proof by coinduction: to conclude that
φ(safet, safet) ∪ safet ⊆ safet holds, we demonstrate φ(safet, safet) ∪ safet ⊆
Ft(φ(safet, safet) ∪ safet).

Let us consider (p, C, q) ∈ safet. Since safet = gfpFt, we know that
safet = Ft(safet) holds. Then by monotonicity of Ft, (p, C, q) ∈ Ft(safet) ⊆
Ft(φ(safet, safet) ∪ safet).

Now let us consider (p, C, q) ∈ φ(safet, safet). There necessarily are C1 and
C2 such that C = C1 +C2, (p, C1, q) ∈ safet, and (p, C2, q) ∈ safet. For (p, C1 +
C2, q) to belong to Ft(φ(safet, safet) ∪ safet), the following has to be proven for
every transition C1 + C2 �α C

′:

∃p′. α t {p}{p′} ∧ (p′, C ′, q) ∈ φ(safet, safet) ∪ safet. (2.16)

According to the rules of the operational semantics (Figure 2.1), whenever
C1 + C2 �α C ′, necessarily α = id and either C ′ = C1 or C ′ = C2. Let
us assume that C ′ = C1 (the other case is analogous). The action judg-
ment id t {p}{p} holds trivially. Knowing that (p, C1, q) ∈ safet, it is
easy to see that (2.16) can be satisfied by letting p′ = p. Consequently,
(p, C1 + C2, q) ∈ Ft(φ(safet, safet) ∪ safet), which concludes the proof.

Proof of Iter. To do a proof by coinduction, we strengthen Iter property
as follows:

∀p, C. ((p, C, p) ∈ safet =⇒ (p, C?, p) ∈ safet) ∧
(∀p1, C1. (p1, C1, p) ∈ safet ∧ (p, C, p) ∈ safet =⇒ (p1, C1 ; C?, p) ∈ safet).

(2.17)

Let us define auxiliary functions:

φ(X) , {(p, C?, p) | (p, C, p) ∈ X}
ψ(X) , {(p1, C1 ; C?2 , p2) | (p1, C1, p2), (p2, C2, p2) ∈ X}.

Using them, we rewrite (2.17) as φ(safet)∪ψ(safet) ⊆ safet. Let ξ = {(p, skip, p)}.
It is easy to see that φ(safet) ∪ ψ(safet) ∪ ξ ⊆ safet is also an equivalent refor-
mulation of (2.17), since ξ ⊆ safet always holds.

Since safet = gfpFt, we can do a proof by coinduction: to conclude that
φ(safet) ∪ ψ(safet) ∪ ξ ⊆ safet, we demonstrate φ(safet) ∪ ψ(safet) ∪ ξ ⊆
Ft(φ(safet) ∪ ψ(safet) ∪ ξ).

Consider any (p, C, q) ∈ ξ. Necessarily, C = skip and q = p. Note that
p V p always holds, which by definition of Ft is sufficient for (p, skip, p) ∈
Ft(φ(safet) ∪ ψ(safet) ∪ ξ). Thus, (p, C, q) ∈ Ft(φ(safet) ∪ ψ(safet) ∪ ξ).

Consider any (p, C ′, q) ∈ φ(safet). Necessarily, p = q and there exists a
sequential command C such that C ′ = C? and (p, C, p) ∈ safet. We need to
show that (p, C?, p) ∈ Ft(φ(safet) ∪ ψ(safet) ∪ ξ). For the latter to hold, by
definition of Ft it is sufficient that for every α, C ′′ and a transition C �α C

′′

the following be true:

∃p′′. α t {p}{p′′} ∧ (p′′, C ′′, p) ∈ φ(safet) ∪ ψ(safet) ∪ ξ. (2.18)

17

According to the operational semantics in Figure 2.1, when there is a transition
C �α C ′′, necessarily α = id and either C ′′ = skip or C ′′ = C ; C?. Let us
assume that C ′′ = skip. Since both (p, skip, p) ∈ ξ and α t {p}{p} always hold,
it is easy to see that letting p′′ = p satisfies (2.18). Now let us turn to the case
when C ′′ = C ; C?. Note that (p, C ; C?, p) ∈ ψ(safet) holds by definition of ψ.
Thus, by letting p′′ = p we satisfy (2.18).

Consider (p1, C0, p2) ∈ ψ(safet). Necessarily, there exist C1 and C2 such
that:

C0 = C1 ; C?2 ∧ (p1, C1, p2) ∈ safet ∧ (p2, C2, p2) ∈ safet. (2.19)

We need to show that (p1, C1 ; C?2 , p2) ∈ Ft(φ(safet) ∪ ψ(safet) ∪ ξ). For the
latter to hold, we need to prove the following for every α, C ′ and a transition
C1 ; C?2 �α C

′:

∃p′. α t {p1}{p′} ∧ (p′, C ′, p2) ∈ φ(safet) ∪ ψ(safet) ∪ ξ. (2.20)

According to the operational semantics in Figure 2.1, when there is a transition
C1 ; C?2 �α C

′, either of the following is true:

• there are C ′1 and a transition C1 �C C ′1 such that C ′ = C ′1 ; C?2 ;

• C1 = skip, C ′ = C2 and α = id.

Let us assume that the former is the case. From (2.19) we know that
(p1, C1, p2) ∈ safet, so by definition of the safety relation we get that:

∃p′1. α t {p1}{p′1} ∧ (p′1, C
′
1, p2) ∈ safet.

Consequently, (p′1, C
′
1 ; C?2 , p2) ∈ ψ(safet). Thus, by letting p′ = p′1 we can

satisfy (2.20).
Now let C1 = skip and α = id. From (2.19) we know that (p1, skip, p2) ∈ safet,

meaning that necessarily p1 V p2. It is easy to see that p1 V p2 holds if and
only if so does id t {p1}{p2}. Knowing that (p2, C2, p2) ∈ safet, we can satisfy
(2.20) by letting p′ = p2.

Proof of Conseq. Let us first show that safet(p
′, C, q) holds, when so do

p′ V p and safet(p, C, q). When C = skip, safet(p, C, q) gives us that p V q. It
is easy to see that p′ V p and p V q together imply p′ V q, which is sufficient
to conclude that safet(p

′, C, q) holds. Let us assume that C 6= skip. From
safet(p, C, q) we get that the following holds of every transition C �α C

′:

∃p′′. α t {p}{p′′} ∧ safet(p
′′, C ′, q)

However, by applying Proposition 2.10 about the Consequence property of ax-
iom judgments to p′ V p and α t {p}{p′′} we get that α t {p′}{p′′}. To-
gether with the formula above, it allows us to conclude that safet(p

′, C, q) holds.
Now let us prove that safet(p, C, q

′) holds, when so do q V q′ and
safet(p, C, q). We define an auxiliary function:

φ(X) , {(p, C, q′) | ∃q. (p, C, q) ∈ X ∧ q V q′}.

18

Our goal is to prove that φ(safet) ⊆ safet. Since safet = gfpFt, we can do a
proof by coinduction: to conclude that φ(safet) ⊆ safet holds, we demonstrate
φ(safet) ⊆ Ft(φ(safet)).

Let us consider any (p, C, q′) ∈ φ(safet). Necessarily, there exists q such
that (p, C, q) ∈ safet and q V q′. When C = skip, we need to show that
pV q′. Since (p, skip, q) ∈ safet, it is the case that pV q. It is easy to see that
p V q and q V q′ together imply p V q′, which is sufficient to conclude that
(p, C, q′) ∈ Ft(φ(safet)).

Now consider the case when C 6= skip. Since (p, α, q) ∈ safet, by definition of
the safety relation the following holds of every α, C ′ and a transition C �α C

′:

∃p′′. α t {p}{p′′} ∧ (p′′, C ′, q) ∈ safet

Knowing that q V q′ and (p′′, C ′, q) ∈ safet, it is easy to see that (p′′, C ′, q′) ∈
φ(safet). Thus, we have shown that:

∀α,C ′. C �α C
′ =⇒ ∃p′′. α t {p}{p′′} ∧ (p′′, C ′, q′) ∈ φ(safet),

which is sufficient for concluding that (p, C, q′) ∈ Ft(φ(safet)) holds.

2.3 Soundness
In this section, we formulate linearizability for libraries. We also formulate
and prove the soundness theorem, in which we state proof obligations that are
necessary to conclude linearizability.

Libraries. We assume a set of method names Method, ranged over by m,
and consider a concrete library ` : Method ⇀ ((Val × Val) → Com) that maps
method names to commands from C, which are parametrized by a pair of values
from Val. For a given method name m ∈ dom(`) and values a, v ∈ Val, a
command `(m, a, v) is an implementation of m, which accepts a as a method
argument and either returns v or does not terminate. Such an unusual way of
specifying method’s arguments and return values significantly simplifies further
development, since it does not require modeling a call stack.

Along with the library ` we consider its specification in the form of an ab-
stract library L ∈ Method ⇀ ((Val × Val) → APCom) implementing a set of
methods dom(L) atomically as abstract primitive commands {L(m, a, v) | m ∈
dom(L)} parametrized by an argument a and a return value v. Given a method
m ∈ Method, we assume that a parametrized abstract primitive command L(m)
is intended as a specification for `(m).

Linearizability. The linearizability assumes a complete isolation between a
library and its client, with interactions limited to passing values of a given data
type as parameters or return values of library methods. Consequently, we are
not interested in internal steps recorded in library computations, but only in
the interactions of the library with its client. We record such interactions using
histories, which are traces including only events call m(a) and ret m(v) that
indicate an invocation of a method m with a parameter a and returning from
m with a return value v, or formally:

h ::= ε | (t, call m(a)) :: h | (t, ret m(v)) :: h.

19

Given a library `, we generate all finite histories of ` by considering N threads
repeatedly invoking library methods in any order and with any possible argu-
ments. The execution of methods is described by semantics of commands from
§ 2.1.

We define a thread pool τ : ThreadID → (idle] (Com× Val)) to characterize
progress of methods execution in each thread. The case of τ(t) = idle corre-
sponds to no method running in a thread t. When τ(t) = (C, v), to finish some
method returning v it remains to execute C.

Definition 2.21. We let HJ`, σK =
⋃
n≥0HnJ`, (λt. idle), σK denote the set of all

possible histories of a library ` that start from a state σ, where for a given thread
pool τ , HnJ`, τ, σK is defined as a set of histories such that H0J`, τ, σK , {ε} and:

HnJ`, τ, σK , {((t, call m(a)) :: h) | a ∈ Val ∧m ∈ dom(`) ∧ τ(t) = idle ∧
∃v. h ∈ Hn−1J`, τ [t : (`(m, a, v), v)], σK}

∪ {h | ∃t, α, C,C ′, σ′, v. τ(t) = (C, v) ∧ 〈C, σ〉
t,α
−−−−� 〈C ′, σ′〉 ∧

h ∈ Hn−1J`, τ [t : (C ′, v)], σ′K}
∪ {((t, ret m(v)) :: h) | m ∈ dom(`) ∧ τ(t) = (skip, v) ∧

h ∈ Hn−1J`, τ [t : idle], σK}

Thus, we construct the set of all finite histories inductively with all threads
initially idling. At each step of generation, in any idling thread t any method
m ∈ dom(`) may be called with any argument a and an expected return value
v, which leads to adding a command `(m, a, v) to the thread pool of a thread

t. Also, any thread t, in which τ(t) = (C, v), may do a transition 〈C, σ〉
t,α
−−−−�

〈C ′, σ′〉 changing a command in the thread pool and the concrete state. Finally,
any thread that has finished execution of a method’s command (τ(t) = (skip, v))
may become idle by letting τ(t) = idle.

In the following, we define HnJL, T ,ΣK analogously with the help of an
abstract thread pool T : ThreadID→ (idle] (APCom× Val)).

Definition 2.22. We let HJL,ΣK ,
⋃
n≥0HnJL, (λt. idle),ΣK denote the set

of all possible histories of a library L that start from a state Σ, where for
a given thread pool T , HnJL, T ,ΣK is defined as a set of histories such that
H0JL, T ,ΣK , {ε} and:

HnJL, T ,ΣK , {((t, call m(a)) :: h) | m ∈ dom(L) ∧ T (t) = idle ∧
∃r. h ∈ Hn−1JL, T [t : (L(m, a, r), r)],ΣK}

∪ {h | ∃t,A,Σ′, r. T (t) = (A, r) ∧ Σ′ ∈ JAKt(Σ) ∧
h ∈ Hn−1JL, T [t : (skip, r)],Σ′K}

∪ {((t, ret m(r)) :: h) | m ∈ dom(L) ∧ T (t) = (skip, r) ∧
h ∈ Hn−1JL, T [t : idle],ΣK}

Definition 2.23. For libraries ` and L such that dom(`) = dom(L), we say
that L linearizes ` in the states σ and Σ, written (`, σ) v (L,Σ), if HJ`, σK ⊆
HJL,ΣK.

That is, an abstract library L linearizes ` in the states σ and Σ, if every
history of ` can be reproduced by L. The definition is different from the standard
one [7]: we use the result obtained by Gotsman and Yang [31] stating that the
plain subset inclusion on the sets of histories produced by concrete and abstract
libraries is equivalent to the original definition of linearizability.

20

Soundness w.r.t. linearizability. We now explain proof obligations that
we need to show for every method m of a concrete library ` to conclude its
linearizability. Particularly, for every thread t, argument a, return value v, and
a command `(m, a, v) we require that there exist assertions P(t,L(m, a, v)) and
Q(t,L(m, a, v)), for which the following Hoare-style specification holds:

`t {P(t,L(m, a, v))} `(m, a, v) {Q(t,L(m, a, v))} (2.24)

In the specification of `(m, a, v), P(t,L(m, a, v)) and Q(t,L(m, a, v)) are as-
sertions parametrized by a thread t and an abstract command L(m, a, v).
We require that in a thread t of all states satisfying P(t,L(m, a, v)) and
Q(t,L(m, a, v)) there be only tokens todo(L(m, a, v)) and done(L(m, a, v)) re-
spectively:

∀`, t, σ,Σ,∆, r.
((σ,Σ,∆) ∈ bJP(t,L(m, a, v))K` ∗ rc =⇒ ∆(t) = todo(L(m, a, v)))
∧ ((σ,Σ,∆) ∈ bJQ(t,L(m, a, v))K` ∗ rc =⇒ ∆(t) = done(L(m, a, v)))

(2.25)

Together, (2.24) and (2.25) impose a requirement that a concrete and an abstract
method return the same return value v. We also require that the states satisfying
the assertions only differ by a token of a thread t:

∀`, t,A,A′, r,∆. (σ,Σ,∆[t : done(A)]) ∈ bJQ(t,A)K` ∗ rc ⇐⇒
(σ,Σ,∆[t : todo(A′)]) ∈ bJP(t,A′)K` ∗ rc. (2.26)

Theorem 2.27. For given libraries ` and L together with states σ and Σ,
(`, σ) v (L,Σ) holds, if dom(`) = dom(L) and (2.24), (2.25) and (2.26) hold
for every method m, thread t and values a and v.

Proof of Theorem 2.27. We further refer to the assumptions of Theo-
rem 2.27 as a relation safelib(`,L,P,Q) defined as follows.

Definition 2.28. Given a concrete library `, an abstract library L and P,Q :
ThreadID × APCom → VAssn, we say that a relation safelib(`,L,P,Q) holds if
and only if the following requirements are met:

1. dom(`) = dom(L);

2. ∀`, t,A, σ,Σ,∆, r. (σ,Σ,∆) ∈ bJP(t,A)K` ∗ rc =⇒ ∆(t) = todo(A);

3. ∀`, t,A, σ,Σ,∆, r. (σ,Σ,∆) ∈ bJQ(t,A)K` ∗ rc =⇒ ∆(t) = done(A);

4. ∀`, t,A,A′, r,∆. ((σ,Σ,∆[t : todo(A)]) ∈ bJP(t,A)K` ∗ rc ⇐⇒
(σ,Σ,∆[t : done(A′)]) ∈ bJQ(t,A′)K` ∗ rc).

5. ∀m, a, r, t.m ∈ dom(`) ∧ a, r ∈ Val ∧ t ∈ ThreadID =⇒
`t {P(t,L(m, a, r))} `(m, a, r) {Q(t,L(m, a, r))} ;

To strengthen the statement of Theorem 2.27 as necessary for its proof,
we define an auxiliary relation, a thread pool invariant. With this relation we
establish a correspondence between the information about LP in a thread t from
a given view vt and sequential commands in a thread t of a concrete thread pool
τ and abstract thread pool T .

21

Definition 2.29. Given a concrete library `, an abstract library L, predicates
P,Q : ThreadID×APCom→ VAssn, a concrete thread pool τ , an abstract thread
pool T , a view vt and an interpretation of logical variables `, we say that a
thread pool invariant cinvt(`, τ, T , vt,∆) holds in a thread t if and only if the
following requirements are met:

• if τ(t) = idle, then T (t) = idle and vt V JQ(t,_)K`, or

• there exist C, r,m, a such that τ(t) = (C, r) and the following holds:

safet(vt, C,Q(t,L(m, a, r))) ∧
((∆(t) = todo(L(m, a, r)) ∧ T (t) = (L(m, a, r), r)) ∨

(∆(t) = done(L(m, a, r)) ∧ T (t) = (skip, r))).

We are now ready to prove Theorem 2.27.

Proof of Theorem 2.27. Let us consider any `,L,P,Q such that
safelib(`,L,P,Q) holds. Let us explain how we strengthen the statement
of the theorem in this proof. We prove that ∀n. φ(n) holds with φ(n)
formulated as follows:

φ(n) = ∀`, σ,Σ,∆, τ, T . (∃v1, . . . , vN . (∀k. cinvk(`, τ, T , vk,∆)) ∧
(σ,Σ,∆) ∈ b~t∈ThreadIDvtc) =⇒ HnJ`, τ, σK ⊆ HJL, T ,ΣK. (2.30)

Note that according to the semantics of the assertion language Assn (Figure 2.2):

J~k∈ThreadID(∃A.Q(k,A))K` = ~k∈ThreadIDJ(∃A.Q(k,A))K`.

With that in mind, it is easy to see that letting vk = J(∃A.Q(k,A))K` for all
k ∈ ThreadID, τ = (λt. idle) and T = (λt. idle) in (2.30) yields the formula:

(∀`, σ,Σ,∆. (σ,Σ,∆) ∈ bJ~k∈ThreadID(∃A.Q(k,A))K`c =⇒⋃
n≥0

HnJ`, λt. idle, σK ⊆ HJL, λt. idle,ΣK),

which coincides with the statement of the theorem.
We prove ∀n. φ(n) by induction on n. Let us take any `, σ,Σ,∆, τ and T ,

and consider v1, . . . , vN such that the premisses of φ(n) hold:

(∀k. cinvk(`, τ, T , vk,∆)) ∧ (σ,Σ,∆) ∈ b~k∈ThreadIDvkc (2.31)

We need to demonstrate that every history h of the concrete library ` from the
set HnJ`, τ, σK is also a history of the abstract library L: h ∈ HJL, T ,ΣK.

By Definition 2.21 of HnJ`, τ, σK, if n = 0, then h is an empty history that
is trivially present in HJL, T ,ΣK. Let us now consider n > 0 and assume that
φ(n − 1) holds. By definition of HnJ`, τ, σK, h corresponds to one of the three
events in a thread t: a call of an arbitrary method m with an argument a in a
thread t, a return from a method m with a return value r or a transition in a
thread t. We consider each case separately.

22

Case #1. There is a history h′, a thread t, a method m ∈ dom(`), its ar-
gument a and a return value r such that h = (t, call m(a)) :: h′, τ(t) = idle
and h′ ∈ Hn−1J`, τ [t : (`(m, a, r), r), σ]K. By Definition 2.22, to conclude that
h = (t, call m(a)) :: h′ ∈ HJL, T ,ΣK it is necessary to show that T (t) = idle and
h′ ∈ HJL, T [t : (L(m, a, r), r)],ΣK, which we further do in the proof of Case #1.

According to (2.31), cinvt(`, τ, T , vt,∆) and (σ,Σ,∆) ∈ b~k∈ThreadIDvkc hold.
Then necessarily T (t) = idle and vt V JQ(t,_)K`, which corresponds to the
only case when τ(t) = idle in the thread pool invariant. By Definition 2.3 of
repartitioning implication, vt V JQ(t,_)K`, (σ,Σ,∆) ∈ b~k∈ThreadIDvkc implies
(σ,Σ,∆) ∈ bJQ(t,_)K` ∗~k∈ThreadID\{t}vkc. From requirements to predicates P
and Q in safelib(`,L,P,Q) we obtain that the following holds of (σ,Σ,∆):

• ∆(t) = done(_), and

• (σ,Σ,∆[t : todo(L(m, a, r))]) ∈ bJP(t,L(m, a, r))K` ∗~k∈ThreadID\{t}vkc.

Let v′t = JP(t,L(m, a, r))K` and v′k = vk for all k 6= t. Obviously, (σ,Σ,∆[t :
todo(L(m, a, r))]) ∈ b~kv′kc.

Also, by Lemma 2.6, safet(JP(t,L(m, a, r))K`, `(m, a, r), JQ(t,L(m, a, r))K`)
holds. This allows us to conclude that in a thread t a thread pool invari-
ant cinvt(`, τ [t : (`(m, a, r), r)], T [t : (L(m, a, r), r)], v′t,∆[t : L(m, a, r)]) holds.
Moreover, according to (2.31), thread pool invariants hold in all other threads
as well.

We have shown that there exist v′1, . . . , v′N such that:

(∀k. cinvk(`, τ [t : (`(m, a, r), r)], T [t : (L(m, a, r), r)], v′k,∆[t : L(m, a, r)])) ∧
(σ,Σ,∆[t : todo(L(m, a, r))]) ∈ b~k∈ThreadIDv′kc,

which by the induction hypothesis φ(n − 1) implies that h′ ∈ Hn−1J`, τ [t :
(`(m, a, r), r)], σK ⊆ HJL, T [t : (L(m, a, r), r)],ΣK. We have also show that
T (t) = idle. By Definition 2.22, h = (t, call m(a)) :: h′ ∈ HJL, T ,ΣK, which
concludes the proof of Case #1.

Case #2. There is a history h′, a thread t, a methodm ∈ dom(`), its argument
a and a return value r such that h = (t, ret m(r)) :: h′, τ(t) = (skip, r) and h′ ∈
Hn−1J`, τ [t : idle], σK. By Definition 2.22, to conclude that h = (t, ret m(r))::h′ ∈
HJL, T ,ΣK it is necessary to show that T (t) = (skip, r) and h′ ∈ HJL, T [t :
idle],ΣK, which we further do in this proof of Case #2.

According to (2.31), a thread invariant cinvt(`, τ, T , vt,∆) holds. Then the
following is true:

safet(vt, skip, JQ(t,L(m, a, r))K`) ∧
((∆(t) = todo(L(m, a, r)) ∧ T (t) = (L(m, a, r), r)) ∨

(∆(t) = done(L(m, a, r)) ∧ T (t) = (skip, r))). (2.32)

By Definition 2.5 of safet(vt, skip, JQ(t,L(m, a, r))K`), vt V
JQ(t,L(m, a, r))K` holds. Consequently, by Definition 2.3:

(σ,Σ,∆) ∈ bvt ∗~k∈ThreadID\{t}vkc ⊆ bJQ(t,L(m, a, r))K` ∗~k∈ThreadID\{t}vkc.

23

From the third requirement to Q in Definition 2.28:

(σ,Σ,∆) ∈ bJQ(t,L(m, a, r))K` ∗~kvkc =⇒ ∆(t) = done(L(m, a, r)).

Consequently, from (2.32) we get that ∆(t) = done(L(m, a, r)) and T (t) =
(skip, r).

Let v′t = JQ(t,L(m, a, r))K` and v′k = vk for k 6= t. It is easy to see that
cinvt(`, τ [t : idle], T [t : idle], v′t,∆) holds trivially by Definition 2.29. Moreover,
according to (2.31), thread pool invariants hold in other threads as well.

We have shown that there exist v′1, . . . , v′N such that:

(∀k. cinvk(`, τ [t : idle], T [t : idle], v′k,∆)) ∧ (σ,Σ,∆) ∈ b~k∈ThreadIDv′kc,

which by the induction hypothesis φ(n − 1) implies that h′ ∈ Hn−1J`, τ [t :
idle], σK ⊆ HJL, T [t : idle],ΣK. We have also show that T (t) = (skip, r). By
Definition 2.22, h = (t, ret m(r)) :: h′ ∈ HJL, T ,ΣK, which concludes the proof
of Case #2.

Case #3. There is a thread t, sequential commands C and C ′, a primitive
command α, concrete states σ and σ′ and a return value r such that τ(t) =

(C, r), 〈C, σ〉
t,α
−−−−� 〈C ′, σ′〉 and h ∈ Hn−1J`, τ [t : (C ′, r)], σ′K.

According to (2.31), cinvt(`, τ, T , vt,∆) holds. Consequently, there exist a
method m with its argument a such that C = L(m, a, r) and:

safet(vt, C, JQ(t,L(m, a, r))K`) ∧
((∆(t) = todo(L(m, a, r)) ∧ T (t) = (L(m, a, r), r)) ∨

(∆(t) = done(L(m, a, r)) ∧ T (t) = (skip, r))). (2.33)

It is easy to see that whenever there is a transition 〈C, σ〉
t,α
−−−−� 〈C ′, σ′〉, there

also is a stateless transition C �α C
′. By Definition 2.5 of the safety judgment

safet(vt, C, JQ(t,L(m, a, r))K`), if C �α C ′, then there exists a view v′t such
that α t {vt}{v′t} and safet(v

′
t, C
′, JQ(t,L(m, a, r))K`).

Let v′k = vk for any k 6= t. By Definition 2.2 of the action judgment α t
{vt}{v′t}, for (σ,Σ,∆) ∈ bvt ∗~k 6=tvkc and any σ′ ∈ JαKt(σ), there exist Σ′,∆′

such that:
LP∗(Σ,∆,Σ′,∆′) ∧ (σ′,Σ′,∆′) ∈ bv′t ∗~k 6=tvkc. (2.34)

Let us assume that ∆ = ∆′. Note that safet(v
′
t, C
′, JQ(t,L(m, a, r))K`) holds,

and according to (2.33) the following holds too:

(∆(t) = todo(L(m, a, r)) ∧ T (t) = (L(m, a, r), r)) ∨
(∆(t) = done(L(m, a, r)) ∧ T (t) = (skip, r))

Thus, it is easy to see that cinvt(`, τ [t : (C ′, r)], T , v′t,∆) holds. Combining this
observation with (2.34), we conclude that we have demonstrated existence of
v′1, . . . , v

′
N such that:

(∀k. cinvk(`, τ [t : (C ′, r)], T , v′k,∆)) ∧ (σ′,Σ′,∆) ∈ b~k∈ThreadIDv′kc,

which by the induction hypothesis φ(n − 1) implies that h ∈ Hn−1J`, τ [t :
(C ′, r)], σ′K ⊆ HJL, T ,ΣK. This concludes the proof of the case when ∆ = ∆′.

24

We now return to the case when ∆ 6= ∆′. According to (2.34),
LP∗(Σ,∆,Σ′,∆′) holds, meaning that linearization points of one or more threads
have been passed. Without loss of generality, we assume the case of exactly one
linearization point, i.e. that LP(Σ,∆,Σ′,∆′) holds. Consequently, according to
Definition 2.2 there exist t′ and A′ such that:

Σ′ ∈ JA′Kt′(Σ) ∧∆(t′) = todo(A′) ∧∆′ = ∆[t′ : done(A′) (2.35)

Let us consider the thread pool invariant cinvt′(`, τ, T , vt′ ,∆), which holds
according to (2.31). We show that τ(t′) 6= idle. From (2.35) we know that
∆(t′) = todo(A′). Since the third requirement to Q in Definition 2.28 requires
that ∆(t) = done(L(m, a, r)) hold, by Definition 2.29 it can only be the case
that there exist C ′′,m′, a′, r′ such that τ(t′) = (C ′′, r′) and the following is true:

safet′(vt, C
′′, JQ(t′,L(m′, a′, r′))K`) ∧

((∆(t′) = todo(L(m′, a′, r′)) ∧ T (t′) = (L(m′, a′, r′), r′)) ∨
(∆(t′) = done(L(m′, a′, r′)) ∧ T (t′) = (skip, r′))). (2.36)

From formula (2.35) we know that A′ = L(m′, a′, r′). Consequently, ∆′(t′) =
done(L(m′, a′, r′)) ∧ T [t′ : (skip, r′)](t′) = (skip, r′) holds, which allows us to
conclude the thread pool invariant cinvt′(`, τ [t : (C ′, r)], T [t′ : (skip, r′)], v′t′ ,∆

′)
in case of t′ 6= t.

We now show that cinvt(`, τ [t : (C ′, r)], T [t′ : (skip, r′)], v′t,∆
′) hold, both

when t = t′ and t 6= t′. Let us first assume t = t′ (r = r′). Then from (2.33)
we get that A = L(m, a, r) and ∆′(t) = done(L(m, a, r)) hold. When t 6= t′, no
abstract transition is made in t, so ∆(t) = ∆′(t) and T (t) = T [t′ : (skip, r′)](t).
Consequently, the following is true in both cases:

((∆′(t) = todo(L(m, a, r)) ∧ T [t′ : (skip, r′)](t) = (L(m, a, r), r)) ∨
(∆′(t) = done(L(m, a, r)) ∧ T [t′ : (skip, r′)](t) = (skip, r′))). (2.37)

Together with safet(v
′
t, C
′, JQ(t,L(m, a, r))K`) , those observations imply

cinvt(`, τ [t : (C ′, r)], T [t′ : (skip, r′)], v′t,∆
′).

Combining these observations with (σ′,Σ′,∆′) ∈ bv′t ∗~k 6=tvkc following
from (2.34), we conclude that we have demonstrated existence of v′1, . . . , v′N
such that:

(∀k. cinvk(`, τ [t : (C ′, r)], T [t′ : (skip, r′)], v′k,∆
′))∧(σ′,Σ′,∆′) ∈ b~k∈ThreadIDv′kc,

which by the induction hypothesis φ(n − 1) implies that h ∈ Hn−1J`, τ [t :
(C ′, r)], σ′K ⊆ HJL, T [t : (skip, r′)],Σ′K. Now that we demonstrated that T (t′) =
(L(m′, a′, r′), r′), Σ′ ∈ JL(m′, a′, r′)Kt(Σ) and h ∈ HJL, T [t : (skip, r′)],Σ′K all
hold, by Definition 2.22 we can conclude that h ∈ HJL, T ,ΣK.

2.4 The RGSep-based Logic
In this section, we demonstrate an instance of the generic proof system that is
capable of handling algorithms with helping. This instance is based on RGSep
[24], which combines rely-guarantee reasoning [16] with separation logic [15].

25

The main idea of the logic is to partition the state into several thread-local
parts (which can only be accessed by corresponding threads) and the shared
part (which can be accessed by all threads). The partitioning is defined by
proofs in the logic: an assertion in the code of a thread restricts its local state
and the shared state. In addition, the partitioning is dynamic, meaning that
resources, such as a part of a heap or a token, can be moved from the local state
of a thread into the shared state and vice versa. By transferring a token to
the shared state, a thread gives to its environment a permission to change the
abstract state. This allows us to reason about environment helping that thread.

The RGSep-based view monoid. Similarly to DCSL, we assume that states
represent heaps, i.e. that State = AState = Loc ⇀fin Val] { }, and we denote
all states but a faulting one with StateH = AStateH = Loc ⇀fin Val. We also
assume a standard set of heap-manipulating primitive commands with usual
semantics.

We define views as triples consisting of three components: a predicate P and
binary relations R and G. A predicate P ∈ P((StateH × AStateH × Tokens)2)
is a set of pairs (l, s) of local and shared parts of the state, where each part
consists of concrete state, abstract state and tokens. Guarantee G and rely R are
relations from P((State× AState× Tokens)2), which summarize how individual
primitive commands executed by the method’s thread (in case of G) and the
environment (in case of R) may change the shared state. Together guarantee
and rely establish a protocol that views of the method and its environment
respectively must agree on each other’s transitions, which allows us to reason
about every thread separately without considering local state of other threads,
assuming that they follow the protocol. The agreement is expressed with the
help of a well-formedness condition on views of the RGSep-based monoid that
their predicates must be stable under rely, meaning that their predicates take
into account whatever changes their environment can make:

stable(P,R) , ∀l, s, s′. (l, s) ∈ P ∧ (s, s′) ∈ R =⇒ (l, s′) ∈ P,

where we use l as a shorthand for (σl,Σl,∆l), and s as a shorthand for
(σs,Σs,∆s).

A predicate that is stable under rely cannot be invalidated by any state
transition from rely. Stable predicates with rely and guarantee relations form
the view monoid with the underlying set of views:

ViewsRGsep , {(P,R,G) | stable(P,R)} ∪ {⊥},

where ⊥ denotes a special inconsistent view with the empty reification. The
reification of other views simply joins shared and local parts of the state:

b(P,R,G)c = {(σl • σs,Σl • Σs,∆l]∆s) | ((σl,Σl,∆l), (σs,Σs,∆s)) ∈ P}.

Let an operation · be defined on states analogously to DCSL. Given pred-
icates P and P ′, we let P ∗ P ′ be a predicate denoting the pairs of local and
shared states in which the local state can be divided into two substates such that
one of them together with the shared state satisfies P and the other together
with the shared state satisfies P ′:

P ∗ P ′ , {((σl • σ′l,Σl • Σ′l,∆l]∆′l), s) | ((σl,Σl,∆l), s) ∈ P ∧
((σ′l,Σ

′
l,∆
′
l), s) ∈ P ′}

26

�: (State× AState× Tokens)× (State× AState× Tokens)× Int× Assn

(l, s, `) |= E 7→ F, iff σl = [JEK` : JF K`],Σl = [], and ∆l = []

(l, s, `) |= E Z⇒ F, iff σl = [],Σl = [JEK` : JF K`], and ∆l = []

(l, s, `) |= [todo(A)]t , iff σl = [],Σl = [], and ∆l = [t : todo(A)]

(l, s, `) |= [done(A)]t , iff σl = [],Σl = [], and ∆l = [t : done(A)]

(l, s, `) |= π , iff σl = [],Σl = [],∆l = [], and
(s, ([], [], []), `) |= π

(l, s, `) |= π ∗ π′, iff there exist σ′l, σ
′′
l ,Σ

′
l,Σ
′′
l ,∆

′
l,∆
′′
l such that

l = (σ′l • σ′′l ,Σ′l • Σ′′l ,∆
′
l]∆′′l),

((σ′l,Σ
′
l,∆
′
l), s, `) |= π, and

((σ′′l ,Σ
′′
l ,∆

′′
l), s, `) |= π′

Figure 2.4: Satisfaction relation for a fragment of the assertion language VAssn
(for brevity, we let l = (σl,Σl,∆l) and s = (σs,Σs,∆s) in each case)

We now define the monoid operation ∗, which we use to compose views of dif-
ferent threads. When composing views (P,R,G) and (P ′, R′, G′) of the parallel
threads, we require predicates of both to be immune to interference by all other
threads and each other. Otherwise, the result is inconsistent:

(P,R,G)∗(P ′, R′, G′) , if G ⊆ R′∧G′ ⊆ R then (P ∗P ′, R∩R′, G∪G′) else ⊥.

That is, we let the composition of views be consistently defined when the state
transitions allowed in a guarantee of one thread are treated as environment
transitions in the other thread, i.e. G ⊆ R′ and G′ ⊆ R. The rely of the
composition is R∩R′, since the predicate P ∗P ′ is guaranteed to be stable only
under environment transitions described by both R and R′. The guarantee of
the composition is G ∪G′, since other views need to take into account all state
transitions either from G or from G′.

Finally, the unit uRGsep is a view that does not restrict states and the allowed
state transitions of the environment, while disallowing any action in the current
thread:

uRGsep = ({([], [], [])}× (State×AState×Tokens), (State×AState×Tokens)2, ∅)

The RGSep-based program logic. We define the view assertion language
VAssn that is a parameter of the proof system. Each view assertion ρ takes form
of a triple (π,R,G), and the syntax for π is:

E ::= a | X | E + E | . . . , where X ∈ LVar, a ∈ Val
π ::= E = E | E 7→ E | E Z⇒ E | [todo(A)]t | [done(A)]t | π | π ∗ π | ¬π | . . .

Formula π denotes a predicate of a view as defined by a satisfaction relation |=
in Figure 2.4. There E 7→E and E Z⇒E denote a concrete and an abstract state
describing singleton heaps. A non-boxed formula π denotes the view with the
local state satisfying π and shared state unrestricted; π denotes the view with
the empty local state and the shared state satisfying π; π∗π′ the composition of
predicates corresponding to π and π′. The semantics of the rest of connectives is
standard. Additionally, for simplicity of presentation of the syntax, we require

27

that boxed assertions π be not nested (as opposed to preventing that in the
definition).

The other components R and G of a view assertion are sets of rely/guarantee
actions A with the syntax: A ::=π π′. An action π π′ denotes a change of
a part of the shared state that satisfies π into one that satisfies π′, while leaving
the rest of the shared state unchanged. We associate with an action π π′ all
state transitions from the following set:

Jπ π′K = {((σs • σ′′s ,Σs • Σ′′s ,∆s]∆′′s), (σ′s • σ′′s ,Σ′s • Σ′′s ,∆
′
s]∆′′s)) |

∃`. (([], [], []), (σs,Σs,∆s), `) |= π ∧ (([], [], []), (σ′s,Σ
′
s,∆

′
s), `) |= π′ }

We give semantics to view assertions with the function J·K· that is defined
as follows:

J(π,R,G)K` , ({(l, s) | (l, s, `) |= π},
⋃
A∈R

JAK,
⋃
A∈G

JAK).

Refined action judgments for RGSep-based logic. Since action judgments
are essential for reasoning about primitive commands in our logic, we further
refine conditions under which it holds of views from the RGSep-based view
monoid.

Proposition 2.38. The action judgment α t {(P,R,G)}{(Q,R,G)} holds, if
it is true that:

• ∀σl, σs, σ′l, σ′s,Σl,Σs,∆l,∆s.

((σl,Σl,∆l), (σs,Σs,∆s)) ∈ P ∧ σ′l • σ′s ∈ JαKt(σl • σs) =⇒
∃Σ′l,Σ′s,∆′l,∆′s. ((σ′l,Σ′l,∆′l), (σ′s,Σ′s,∆′s)) ∈ Q ∧

((σs,Σs,∆s), (σ
′
s,Σ
′
s,∆

′
s)) ∈ G ∧

LP∗(Σl • Σs,∆l]∆s,Σ
′
l • Σ′s,∆

′
l]∆′s);

• JαKt(σ) 6= =⇒ ∀σ′. JαKt(σ • σ′) = {σ′′ • σ′ | σ′′ ∈ JαKt(σ)}.

The requirement to primitive commands in Proposition 2.38 is similar to
that of the action judgments. The difference is that in the RG-based proof sys-
tem it is not necessary to require α to preserve any view r of the environment:
since a predicate Pr of any view (Pr, Rr, Gr) in another thread is stable under
Rr, it is also stable under G ⊆ Rr whenever (P,R,G) ∗ (Pr, Rr, Gr) is defined.
Consequently, views of the environment are never invalidated by local transi-
tions. Using the premise of Proposition 2.38 in Prim rule makes it closer to the
standard proof rule for the atomic step in Rely/Guarantee.

2.5 Case Study: Flat Combining
In this section, we demonstrate how to reason about algorithms with helping
using relational views. We choose a simple library ` implementing a concurrent
increment and prove its linearizability with the RGSep-based logic.

The concrete library ` has one method inc, which increments the value of
a shared counter k by the argument of the method. The specification of ` is
given by an abstract library L. The abstract command, provided by L as an

28

implementation of inc, operates with an abstract counter K as follows (assuming
that K is initialized by zero):

void L(inc, a, r) {
atomic {
K := K + a;
assume(K == r);

}
}

That is, L(inc, a, r) atomically increments a counter and a command
assume(K == r), which terminates only if the return value r chosen at the
invocation equals to the resulting value of K. This corresponds to how we spec-
ify methods’ return values in §2.3.

In Figure 2.5, we show the pseudo-code of the implementation of a method
inc in a C-style language along with a proof outline. The method `(inc, a, r)
takes one argument, increments a shared counter k by it and returns the in-
creased value of the counter. Since k is shared among threads, they follow a
protocol regulating the access to the counter. This protocol is based on flat com-
bining [32], which is a synchronization technique enabling a parallel execution
of sequential operations.

The protocol is the following. When a thread t executes `(inc, a, r), it first
makes the argument of the method visible to other threads by storing it in
an array arg, and lets res[t] = nil to signal to other threads its intention to
execute an increment with that argument. It then spins in the loop on line 8,
trying to write its thread identifier into a variable L with a compare-and-swap
(CAS). Out of all threads spinning in the loop, the one that succeeds in writing
into L becomes a combiner: it performs the increments requested by all threads
with arguments stored in arg and writes the results into corresponding cells of
the array res. The other threads keep spinning and periodically checking the
value of their cells in res until a non-nil value appears in it, meaning that
a combiner has performed the operation requested and marked it as finished.
The protocol relies on the assumption that nil is a value that is never returned
by the method. Similarly to the specification of the increment method, the
implementation in Figure 2.5 ends with a command assume(res[mytid()] = r).

The proof outline features auxiliary assertions defined in Figure 2.6. In the
assertions we let _ denote a value or a logical variable whose name is irrelevant.
We assume that each program variable var has a unique location in the heap
and denote it with &var. Values a, r and t are used in the formulas and the
code as constants.

We prove the following specification for `(inc, a, r):

Rt,Gt `t
{

global ∗M(t)∗
[todo(L(inc, a, r))]t

}
`(inc, a, r)

{
global ∗M(t)∗

[done(L(inc, a, r))]t

}
In the specification, M(t) asserts the presence of arg[t] and res[t] in the shared
state, and global is an assertion describing the shared state of all the threads.
Thus, the pre- and postcondition of the specification differ only by the kind of
token given to t.

The main idea of the proof is in allowing a thread t to share the ownership of
its token [todo(L(inc, a, r))]t with the other threads. This enables two possibili-
ties for t. Firstly, t may become a combiner. Then t has a linearization point on

29

line 17 (when the loop index i equals to t). In this case t also helps other con-
current threads by performing their linearization points on line 17 (when i 6= t).
The alternative possibility is that some other thread becomes a combiner and
does a linearization point of t. Thus, the method has a non-fixed linearization
point, as it may occur in the code of a different thread.

We further explain how the tokens are transferred. On line 6 the method per-
forms the assignment res[mytid()] := nil, signaling to other threads about
a task this thread is performing. At this step, the method transfers its to-
ken [todo(L(inc, a, r))]t to the shared state, as represented by the assertion
true ∗ tasktodo(t, a, r) . In order to take into consideration other threads inter-
fering with t and possibly helping it, here and further we stabilize the assertion
by adding a disjunct taskdone(t, a, r).

If a thread t gets help from other threads, then taskdone(t, a, r) holds, which
implies that res[t] 6= nil and t cannot enter the loop on line 8. Otherwise, if t
becomes a combiner, it transfers INV(_) from the shared state to the local state
of t to take over the ownership of the counters k and K and thus ensure that
the access to the counter is governed by the mutual exclusion protocol. At each
iteration i of the forall loop, res[i] = nil implies that tasktodo(i,_,_) holds,
meaning that there is a token of a thread i in the shared state. Consequently,
on line 17 a thread t may use it to perform a linearization point of i.

The actions defining the guarantee relation Gt of a thread t′ are the following:

1. &arg[t] 7→_ ∗&res[t] 67→ nil &arg[t] 7→ a ∗&res[t] 67→ nil;

2. &arg[t] 7→ a ∗&res[t] 67→ nil tasktodo(t, a, r);

3. &L 7→ 0 ∗ INV(_) &L 7→ t;

4. &L 7→ t ∗ tasktodo(T,A,R) &L 7→ t ∗ taskdone(T,A,R)

5. &L 7→ t &L 7→ 0 ∗ INV(_)

6. taskdone(t, a, r) &arg[t] 7→ a ∗&res[t] 7→ r

Out of them, conditions 2 and 6 specify transferring the token of a thread t
to and from the shared state, and condition 4 describes using the shared token
of a thread T . The rely relation of a thread t is then defined as the union of
all actions from guarantee relations of other threads and an additional action
for each thread t′ ∈ ThreadID \ {t} allowing the client to prepare a thread
t′ for a new method call by giving it a new token: [done(L(inc, A,R))]t′
[todo(L(inc, A′, R′))]t′ .

30

1 int L = 0, k = 0, arg[N], res[N]; \\ initially all res[i] 6= nil

2

3 void `(inc, a, r) {
4

{
global ∗M(t) ∗ [todo(L(inc, a, r))]t

}
5 arg[mytid()] := a;
6 res[mytid()] := nil;

7

{
global ∗ true ∗ (tasktodo(t, a, r) ∨ taskdone(t, a, r))

}
8 while (res[mytid()] = nil) {
9 if (CAS(&L, 0, mytid())) {

10

 &L 7→ t ∗~j∈ThreadID tinv(j) ∗

true ∗ (tasktodo(t, a, r) ∨ taskdone(t, a, r)) ∗ INV(_)

11 for (i := 1; i ≤ N; ++i) {

12

{
&L 7→ t ∗~j∈ThreadID tinv(j) ∗ INV(_) ∗ LI(i, t, a, r)

}
13 if (res[i] = nil) {

14

{
∃V,A,R. INV(V) ∗ LI(i, t, a, r) ∗
&L 7→ t ∗~j∈ThreadID tinv(j) ∗ true ∗ tasktodo(i, A,R)

}
15 k := k + arg[i];

16

{
∃V,A,R.&k 7→ V +A ∗&K Z⇒ V ∗ LI(i, t, a, r) ∗
&L 7→ t ∗~j∈ThreadID tinv(j) ∗ true ∗ tasktodo(i, A,R)

}
17 res[i] := k;

18

{
∃V,A,R. INV(V +A) ∗ LI(i+ 1, t, a, r) ∗
&L 7→ t ∗~j∈ThreadID tinv(j) ∗ true ∗ taskdone(i, A,R)

}
19 }

20

{
&L 7→ t ∗~j∈ThreadID tinv(j) ∗ true ∗ taskdone(t, a, r) ∗ INV(_)

}
21 }
22 L = 0;
23 }
24 }
25 assume(res[mytid()] = r);
26

{
global ∗M(t) ∗ [done(L(inc, a, r))]t

}
27 }

Figure 2.5: Proof outline for a flat combiner of a concurrent increment.

X 67→ Y , ∃Y ′. X 7→ Y ′ ∗ Y 6= Y ′

M(t) , true ∗ (&arg[t] 7→_ ∗&res[t] 67→ nil)

tasktodo(t, a, r) , &arg[t] 7→ a ∗&res[t] 7→ nil ∗ [todo(L(inc, a, r))]t ;

taskdone(t, a, r) , &arg[t] 7→ a ∗&res[t] 7→ r ∗ r 6= nil ∗ [done(L(inc, a, r))]t ;

INV(V) , &k 7→ V ∗&K Z⇒ V

LI(i, t, a, r) , true ∗ ((t < i ∧ taskdone(t, a, r)) ∨
(t ≥ i ∧ (tasktodo(t, a, r) ∨ taskdone(t, a, r))))

tinv(i) , &arg[i] 7→_ ∗&res[i] Z⇒_ ∨ tasktodo(i,_,_) ∨ taskdone(i,_,_)

global , (&L 7→ 0 ∗ INV(_) ∨&L 67→ 0) ∗~j∈ThreadID tinv(j) ,

Figure 2.6: Auxiliary predicates. ~j∈ThreadID tinv(j) denotes tinv(1) ∗ tinv(2) ∗ · ∗
tinv(N)

31

2.6 Summary and Related Work
There has been a significant amount of research on methods for proving lin-
earizability. We do not attempt a comprehensive survey here (see [23]) and only
describe the most closely related work.

The existing logics for linearizability that use linearization points differ in the
thread-modular reasoning method used and, hence, in the range of concurrent
algorithms that they can handle. Our goal in this chapter was to propose a
uniform basis for designing such logics and to formalize the method they use for
reasoning about linearizability in a way independent of the particular thread-
modular reasoning method used. We have only shown instantiations of our logic
based on disjoint concurrent separation logic [28] and RGSep [24]. However, we
expect that our logic can also be instantiated with more complex thread-modular
reasoning methods, such as those based on concurrent abstract predicates [29]
or islands and protocols [33].

Our notion of tokens is based on the idea of treating method specifications
as resources when proving atomicity, which has appeared in various guises in
several logics [24, 25, 27]. Our contribution is to formalize this method of
handling linearization points independently from the underlying thread-modular
reasoning method and to formulate the conditions for soundly combining the
two (Definition 2.2, §2.2).

We have presented a logic that unifies the various logics based on lineariza-
tion points with helping. However, much work still remains as this reasoning
method cannot handle all algorithms. Some logics have introduced speculative
linearization points to increase their applicability [33, 25]; our approach to help-
ing is closely related to this, and we hope could be extended to speculation. But
there are still examples beyond this form of reasoning: for instance there are
no proofs of the Herlihy-Wing queue [7] using linearization points (with helping
and/or speculation). This algorithm can be shown linearizable using forward-
s/backwards simulation [7] and more recently has been shown to only require
a backwards simulation [34]. But integrating this form of simulation with the
more intricate notions of interference expressible in the Views framework re-
mains an open problem. In Chapter 3, we propose a method of using partial
orders in forward simulation proofs of linearizability that is applicable to the
Herlihy-Wing queue. We conjecture that the Views framework can be extended
to support the latter style of reasoning.

Another approach to proving linearizability is the aspect-oriented method.
This gives a series of properties of a queue [35] (or a stack [36]) implementation
which imply that the implementation is linearizable. This method been applied
to algorithms that cannot be handled with standard linearization-point-based
methods. However, the aspect-oriented approach requires a custom theorem per
data structure, which limits its applicability.

In this chapter we concentrated on linearizability in its original form [7],
which considers only finite computations and, hence, specifies only safety prop-
erties of the library. Linearizability has since been generalized to also specify
liveness properties [37]. Another direction of future work is to generalize our
logic to handle liveness, possibly building on ideas from [38].

When a library is linearizable, one can use its atomic specification instead of
the actual implementation to reason about its clients [8]. Some logics achieve the
same effect without using linearizability, by expressing library specifications as

32

judgments in the logic rather than as the code of an abstract library [39, 40, 41].
It is an interesting direction of future work to determine a precise relationship
between this method of specification and linearizability, and to propose a generic
logic unifying the two.

2.6.1 Summary
We have presented a logic for proving the linearizability of concurrent libraries
that can be instantiated with different methods for thread-modular reasoning.
To this end, we have extended the Views framework [17] to reason about rela-
tions between programs. Our main technical contribution in this regard was to
propose the requirement for axiom soundness (Definition 2.2, §2.2) that ensures
a correct interaction between the treatment of linearization points and the un-
derlying thread-modular reasoning. We have shown that our logic is powerful
enough to handle concurrent algorithms with challenging features, such as help-
ing. More generally, our work marks the first step towards unifying the logics
for proving relational properties of concurrent programs.

33

Chapter 3

Proving Linearizability Using
Partial Orders

Linearizability is a commonly accepted notion of correctness of concurrent
data structures. It matters for programmers using such data structures be-
cause it implies contextual refinement: any behavior of a program using
a concurrent data structure can be reproduced if the program uses its se-
quential implementation where all operations are executed atomically [8].
This allows the programmer to soundly reason about the behavior of the
program assuming a simple sequential specification of the data structure.

Enq(1)

Enq(2)

Enq(3)

Deq(): x

Time

t1

t2

t3

A B
Figure 3.1: Example execution.

Linearizability requires that for any
execution of operations on the data
structure there exists a linear order
of these operations, called a lineariza-
tion, such that: (i) the linearization
respects the order of non-overlapping
operations (the real-time order); and
(ii) the behavior of operations in the
linearization matches the sequential
specification of the data structure. To illustrate this, consider an execution
in Figure 3.1, where three threads are accessing a queue. Linearizability deter-
mines which values x the dequeue operation is allowed to return by considering
the possible linearizations of this execution. Given (i), we know that in any
linearization the enqueues must be ordered before the dequeue, and Enq(1)
must be ordered before Enq(3). Given (ii), a linearization must satisfy the
sequential specification of a queue, so the dequeue must return the oldest en-
queued value. Hence, the execution in Figure 3.1 has three possible lineariza-
tions: [Enq(1); Enq(2); Enq(3); Deq():1], [Enq(1); Enq(3); Enq(2); Deq():1] and
[Enq(2); Enq(1); Enq(3); Deq():2]. This means that the dequeue is allowed to
return 1 or 2, but not 3.

For a large class of algorithms, linearizability can be proved by incrementally
constructing a linearization as the program executes. Effectively, one shows that
the program execution and its linearization stay in correspondence under each
program step (this is formally known as a forward simulation). The point in the
execution of an operation at which it is appended to the linearization is called

34

its linearization point. This must occur somewhere between the start and end
of the operation, to ensure that the linearization preserves the real-time order.
For example, when applying the linearization point method to the execution
in Figure 3.1, by point (A) we must have decided if Enq(1) occurs before or
after Enq(2) in the linearization. Thus, by this point, we know which of the
three possible linearizations matches the execution. This method of establishing
linearizability is very popular, to the extent that most papers proposing new
concurrent data structures include a placement of linearization points. However,
there are algorithms that cannot be proved linearizable using the linearization
point method.

In this chapter we consider several examples of such algorithms, including
the time-stamped (TS) queue [18, 36]—a recent high-performance data structure
with an extremely subtle correctness argument. Its key idea is for enqueues to
attach timestamps to values, and for these to determine the order in which
values are dequeued. As illustrated by the above analysis of Figure 3.1, lin-
earizability allows concurrent operations, such as Enq(1) and Enq(2), to take
effect in any order. The TS queue exploits this by allowing values from con-
current enqueues to receive incomparable timestamps; only pairs of timestamps
for non-overlapping enqueue operations must be ordered. Hence, a dequeue can
potentially have a choice of the “earliest” enqueue to take values from. This al-
lows concurrent dequeues to go after different values, thus reducing contention
and improving performance.

The linearization point method simply does not apply to the TS queue. In
the execution in Figure 3.1, values 1 and 2 could receive incomparable times-
tamps. Thus, at point (A) we do not know which of them will be dequeued first
and, hence, in which order their enqueues should go in the linearization: this
is only determined by the behavior of dequeues later in the execution. Similar
challenges exist for other queue algorithms such as the baskets queue [42], LCR
queue [43] and Herlihy-Wing queue [7]. In all of these algorithms, when an en-
queue operation returns, the precise linearization of earlier enqueue operations
is not necessarily known.

In this chapter, we propose a new proof method that can handle algorithms
where incremental construction of linearizations is not possible. We formal-
ize it as a program logic, based on Rely-Guarantee [16], and apply it to give
simple proofs to the TS queue [36], the Herlihy-Wing queue [7] and the Opti-
mistic Set [19]. The key idea of our method is to incrementally construct not a
single linearization of an algorithm execution, but an abstract history—a par-
tially ordered history of operations such that it contains the real-time order of
the original execution and all its linearizations satisfy the sequential specifica-
tion. By embracing partiality, we enable decisions about order to be delayed,
mirroring the behavior of the algorithms. At the same time, we maintain the
simple inductive style of the standard linearization-point method: the proof of
linearizability of an algorithm establishes a simulation between its execution
and a growing abstract history. By analogy with linearization points, we call
the points in the execution where the abstract history is extended commitment
points.

Consider again the TS queue execution in Figure 3.1. By point (A) we con-
struct the abstract history in Figure 3.2(a). The edge in the figure is mandated
by the real-time order in the original execution; Enq(1) and Enq(2) are left
unordered, and so are Enq(2) and Enq(3). At the start of the execution of the

35

(a)

(b)

(c)

Deq(): 2

Enq(3)

Enq(2)

Enq(1)

Deq():?

Enq(3)

Enq(2)

Enq(1)

Enq(3)

Enq(2)

Enq(1)

Figure 3.2: Abstract histories constructed for prefixes of the execution in Fig-
ure 3.1: (a) is at point (A); (b) is at the start of the dequeue operation; and (c)
is at point (B). We omit the transitive consequences of the edges shown.

dequeue, we update the history to the one in Figure 3.2(b). A dashed ellipse
represents an operation that is not yet completed, but we have committed to
performing it (case 1 above). When the dequeue successfully removes a value,
e.g., 2, we update the history to the one in Figure 3.2(c). To this end, we
complete the dequeue by recording its result (case 3). We also commit to an
order between the Enq(1) and Enq(2) operations (case 2). This is needed to
ensure that all linearizations of the resulting history satisfy the sequential queue
specification, which requires a dequeue to remove the oldest value in the queue.

We demonstrate the simplicity of our method by giving proofs to challeng-
ing algorithms that match the intuition for why they work. Our method is
also similar in spirit to the standard linearization point method. Thus, even
though in this chapter we formulate the method as a program logic, we believe
that algorithm designers can also benefit from it in informal reasoning, using
abstract histories and commitment points instead of single linearizations and
linearization points.

3.1 Linearizability, Abstract Histories and Com-
mitment Points

Preliminaries. We consider a data structure that can be accessed concurrently
via operations op ∈ Op in several threads, identified by t ∈ ThreadID. Each
operation takes one argument and returns one value, both from a set Val; we
use a special value ⊥ ∈ Val to model operations that take no argument or return
no value. Linearizability relates the observable behavior of an implementation of
such a concurrent data structure to its sequential specification [7]. We formalize
both of these by sets of histories, which are partially ordered sets of events,
recording operations invoked on the data structure. Formally, an event is of the
form e = [i : (t, op, a, r)]. It includes a unique identifier i ∈ EventID and records
an operation op ∈ Op called by a thread t ∈ ThreadID with an argument a ∈ Val,

36

which returns a value r ∈ Val]{todo}. We use the special return value todo for
events describing operations that have not yet terminated, and call such events
uncompleted. We denote the set of all events by Event. Given a set E ⊆ Event,
we write E(i) = (t, op, a, r) if [i : (t, op, a, r)] ∈ E and let bEc consist of all
completed events from E. We let id(E) denote the set of all identifiers of events
from E. Given an event identifier i, we also use E(i).tid, E(i).op, E(i).arg and
E(i).rval to refer to the corresponding components of the tuple E(i).

Definition 3.1. A history1 is a pair H = (E,R), where E ⊆ Event is a finite
set of events with distinct identifiers and R ⊆ id(E) × id(E) is a strict partial
order (i.e., transitive and irreflexive), called the real-time order. We require that
for each t ∈ ThreadID:

• events in t are totally ordered by R:
∀i, j ∈ id(E). i 6= j ∧ E(i).tid = E(j).tid = t =⇒ (i

R−→ j ∨ j R−→ i);

• only maximal events in R can be uncompleted:
∀i∈ id(E).∀t∈ThreadID. E(i).rval = todo =⇒ ¬∃j ∈ id(E). i

R−→ j;

• R is an interval order:
∀i1, i2, i3, i4. i1

R−→ i2 ∧ i3
R−→ i4 =⇒ i1

R−→ i4 ∨ i2
R−→ i3.

We let History be the set of all histories. A history (E,R) is sequential, written
seq(E,R), if id(E) = bEc and R is total on E.

Informally, i R−→ j means that the operation recorded by E(i) completed be-
fore the one recorded by E(j) started. The real-time order in histories produced
by concurrent data structure implementations may be partial, since in this case
the execution of operations may overlap in time; in contrast, specifications are
defined using sequential histories, where the real-time order is total.

Linearizability. Assume we are given a set of histories that can be produced by
a given data structure implementation (we introduce a programming language
for implementations and formally define the set of histories an implementation
produces in §3.4). Linearizability requires all of these histories to be matched
by a similar history of the data structure specification (its linearization) that, in
particular, preserves the real-time order between events in the following sense:
the real-time order of a history H = (E,R) is preserved in a history H ′ =
(E′, R′), written H v H ′, if E = E′ and R ⊆ R′.

The full definition of linearizability is slightly more complicated due to the
need to handle uncompleted events: since operations they denote have not
terminated, we do not know whether they have made a change to the data
structure or not. To account for this, the definition makes all events in the
implementation history complete by discarding some uncompleted events and
completing the remaining ones with an arbitrary return value. Formally, an
event e = [i : (t, op, a, r)] can be completed to an event e′ = [i′ : (t′, op′, a′, r′)],
written e E e′, if i = i′, t = t′, op = op′, a = a′ and either r = r′ 6= todo or

1 For technical convenience, our notion of a history is different from the one in the classical
linearizability definition [7], which uses separate events to denote the start and the end of an
operation. We require that R be an interval order, we ensure that our notion is consistent with
an interpretation of events as segments of time during which the corresponding operations are
executed, with R ordering i1 before i2 if i1 finishes before i2 starts [44].

37

r′ = todo. A history H = (E,R) can be completed to a history H ′ = (E′, R′),
written H EH ′, if id(E′) ⊆ id(E), bEc ⊆ bE′c, R ∩ (id(E′)× id(E′)) = R′ and
∀i ∈ id(E′). [i :E(i)]E [i :E′(i)].

Definition 3.2. A set of histories H1 (defining the data structure implementa-
tion) is linearized by a set of sequential histories H2 (defining its specification),
written H1 v H2, if ∀H1 ∈ H1.∃H2 ∈ H2.∃H ′1. H1 EH ′1 ∧H ′1 v H2.

Let Hqueue be the set of sequential histories defining the behavior of a queue
with Op = {Enq,Deq}. We defer its formal definition until §3.4, but for exam-
ple, [Enq(2); Enq(1); Enq(3); Deq():2] ∈ Hqueue and [Enq(1); Enq(2); Enq(3);
Deq():2] 6∈ Hqueue.

Proof method. In general, a history of a data structure (H1 in Definition 3.2)
may have multiple linearizations (H2) satisfying a given specification H. In our
proof method, we use this observation and construct a partially ordered history,
an abstract history, all linearizations of which belong to H.

Definition 3.3. A history H is an abstract history of a specification given by
the set of sequential histories H if {H ′ | bHc v H ′ ∧ seq(H ′)} ⊆ H, where
b(E,R)c = (bEc , R ∩ (id(bEc)× id(bEc))). We denote this by abs(H,H).

We define the construction of an abstract history H = (E,R) by instrument-
ing the data structure operations with auxiliary code that updates the history
at certain commitment points during operation execution. There are three kinds
of commitment points:

1. When an operation op with an argument a starts executing in a thread t, we
extend E by a fresh event [i : (t, op, a, todo)], which we order in R after all
events in bEc.

2. At any time, we can add more edges to R.

3. By the time an operation finishes, we have to assign its return value to its
event in E.

Note that, unlike Definition 3.2, Definition 3.3 uses a particular way of com-
pleting an abstract history H, which just discards all uncompleted events using
b−c. This does not limit generality because, when constructing an abstract
history, we can complete an event (item 3) right after the corresponding opera-
tion makes a change to the data structure, without waiting for the operation to
finish.

In §3.5 we formalize our proof method as a program logic and show that it
indeed establishes linearizability. Before this, we demonstrate informally how
the obligations of our proof method are discharged on an example.

3.2 Running Example: the Time-Stamped
Queue

We use the TS queue [18] as our running example. Values in the queue are
stored in per-thread single-producer (SP) multi-consumer pools, and we begin
by describing this auxiliary data structure.

38

1 PoolID insert(ThreadID t, Val v) {
2 p := new PoolID();
3 pools(t) := pools(t) · (p, v,>);
4 return p;
5 }
6

7 setTimestamp(ThreadID t, PoolID p, TS τ) {
8 if (∃Σ,Σ′, v. pools(t) = Σ · (p, v, _) · Σ′)
9 pools(t) := Σ · (p, v, τ) · Σ′;

10 }
11

12 Val remove(ThreadID t, PoolID p) {
13 if (∃Σ,Σ′, v, τ. pools(t) = Σ · (p, v, τ) · Σ′) {
14 pools(t) := Σ · Σ′;
15 return v;
16 } else return NULL;
17 }
18

19 (PoolID× TS) getOldest(ThreadID t) {
20 if (∃p, τ. pools(t) = (p, _, τ) · _)
21 return (p, τ);
22 else
23 return (NULL, NULL);
24 }

Figure 3.3: Operations on abstract SP pools pools : ThreadID → Pool. All
operations are atomic.

SP pools. SP pools have well-known linearizable implementations [18], so we
simplify our presentation by using abstract pools with the atomic operations
given in Figure 3.3. This does not limit generality: since linearizability implies
contextual refinement [8] properties proved using the abstract pools will stay
valid for their linearizable implementations. In the figure and in the following
we denote irrelevant expressions by _.

The SP pool of a thread contains a sequence of triples (p, v, τ), each consist-
ing of a unique identifier p ∈ PoolID, a value v ∈ Val enqueued into the TS queue
by the thread and the associated timestamp τ ∈ TS. The set of timestamps TS
is partially ordered by <TS , with a distinguished timestamp > that is greater
than all others. We let pool be the set of states of an abstract SP pool. Initially
all pools are empty. The operations on SP pools are as follows:

• insert(t,v) appends a value v to the back of the pool of thread t and
associates it with the special timestamp >; it returns an identifier for the
added element.

• setTimestamp(t,p,τ) sets to τ the timestamp of the element identified
by p in the pool of thread t.

• getOldest(t) returns the identifier and timestamp of the value from the
front of the pool of thread t, or (NULL,NULL) if the pool is empty.

• remove(t,p) tries to remove a value identified by p from the pool of thread
t. Note this can fail if some other thread removes the value first.

39

25 enqueue(Val v) {
26 atomic {
27 PoolID node := insert(myTid(), v);
28 Gts[myEid()] := >;
29 }
30 TS timestamp := newTimestamp();
31 atomic {
32 setTimestamp(myTid(), node, timestamp);
33 Gts[myEid()] := timestamp;
34 E(myEid()).rval := ⊥;
35 }
36 return ⊥;
37 }

Figure 3.4: The TS queue: enqueue. Shaded portions are auxiliary code used
in the proof.

Separating insert from setTimestamp and getOldest from remove in the SP
pool interface reduces the atomicity granularity, and permits more efficient im-
plementations.

Core TS queue algorithm. Figures 3.4 and 3.5 give the code for our version
of the TS queue. Shaded portions are auxiliary code needed in the linearizability
proof to update the abstract history at commitment points; it can be ignored for
now. In the overall TS queue, enqueuing means adding a value with a certain
timestamp to the pool of the current thread, while dequeuing means searching
for the value with the minimal timestamp across per-thread pools and removing
it.

In more detail, the enqueue(v) operation first inserts the value v into the pool
of the current thread, defined by myTid (line 27). At this point the value v has
the default, maximal timestamp >. The code then generates a new timestamp
using newTimestamp and sets the timestamp of the new value to it (lines 30-32).
We describe an implementation of newTimestamp later in this section. The key
property that it ensures is that out of two non-overlapping calls to this function,
the latter returns a higher timestamp than the former; only concurrent calls may
generate incomparable timestamps. Hence, timestamps in each pool appear in
the ascending order.

The dequeue operation first generates a timestamp start_ts at line 42,
which it further uses to determine a consistent snapshot of the data structure.
After generating start_ts, the operation iterates through per-thread pools,
searching for a value with a minimal timestamp (lines 46–56). The search starts
from a random pool, to make different threads more likely to pick different
elements for removal and thus reduce contention. The pool identifier of the
current candidate for removal is stored in cand_pid, its timestamp in cand_ts
and the thread that inserted it in cand_tid. On each iteration of the loop, the
code fetches the earliest value enqueued by thread k (line 48) and checks whether
its timestamp is smaller than the current candidate’s cand_ts (line 52). If the
timestamps are incomparable, the algorithm keeps the first one (either would be
legitimate). Additionally, the algorithm never chooses a value as a candidate if
its timestamp is greater than start_ts, because such values are not guaranteed
to be read in a consistent manner.

40

38 Val dequeue() {
39 Val ret := NULL;
40 EventID CAND;
41 do {
42 TS start_ts := newTimestamp();
43 PoolID pid, cand_pid := NULL;
44 TS ts, cand_ts := >;
45 ThreadID cand_tid;
46 for each k in 1..NThreads do {
47 atomic {
48 (pid, ts) := getOldest(k);
49 R := (R ∪ {(e, myEid()) | e ∈ id(bEc) ∩ inQ(pools, E,Gts)
50 ∧ ¬(start_ts <TS Gts(e))})+;
51 }
52 if (pid 6= NULL && ts <TS cand_ts && ¬(start_ts <TS ts)) {
53 (cand_pid, cand_ts, cand_tid) := (pid, ts, k);
54 CAND := enqOf(E, Gts, cand_tid, cand_ts);
55 }
56 }
57 if (cand_pid 6= NULL)
58 atomic {
59 ret := remove(cand_tid, cand_pid);
60 if (ret 6= NULL) {
61 E(myEid()).rval := ret;
62 R := (R ∪ {(CAND, e) | e ∈ inQ(pools, E,Gts)}
63 ∪ {(myEid(), d) | E(d).op = Deq ∧ d ∈ id(E \ bEc)})+;
64 }
65 }
66 } while (ret = NULL);
67 return ret;
68 }

Figure 3.5: The TS queue: dequeue. Shaded portions are auxiliary code used
in the proof.

If a candidate has been chosen once the iteration has completed, the code
tries to remove it (line 58). This may fail if some other thread got there first,
in which case the operation restarts. Likewise, the algorithm restarts if no
candidate was identified (the full algorithm in [18] includes an emptiness check,
which we omit for simplicity).

Timestamp generation. The TS queue requires that sequential calls to
newTimestamp generate ordered timestamps. This ensures that the two sequen-
tially enqueued values cannot be dequeued out of order. However, concurrent
calls to newTimestamp may generate incomparable timestamps. This is desir-
able because it increases flexibility in choosing which value to dequeue, reducing
contention.

There are a number of implementations of newTimestamp satisfying the
above requirements [36]. For concreteness, we consider the implementation given
in Figure 3.6. Here a timestamp is either > or a pair of integers (b, e), repre-
senting a time interval. In every timestamp (b, e), b ≤ e. Two timestamps are
considered ordered (b1, e1) <TS (b2, e2) if e1 < b2, i.e., if the time intervals do

41

69 int counter = 1;
70

71 TS newTimestamp() {
72 int ts = counter;
73 TS result;
74 if (CAS(counter, ts, ts+1))
75 result = (ts, ts);
76 else
77 result = (ts, counter-1);
78 return result;
79 }

Figure 3.6: Timestamp generation algorithm.

not overlap. Intervals are generated with the help of a shared counter. The al-
gorithm reads the counter as the start of the interval and attempts to atomically
increment it with a CAS (lines 72-74), which is a well-known atomic compare-
and-swap operation. It atomically reads the counter and, if it still contains the
previously read value ts, updates it with the new timestamp ts+1 and returns
true; otherwise, it does nothing and returns false. If CAS succeeds, then the
algorithm takes the interval start and end values as equal (line 75). If not, some
other thread(s) increased the counter. The algorithm reads the counter again
and subtracts 1 to give the end of the interval (line 77). Thus, either the current
call to newTimestamp increases the counter, or some other thread does so. In
either case, subsequent calls will generate timestamps greater than the current
one.

This timestamping algorithm allows concurrent enqueue operations in Fig-
ure 3.1 to get incomparable timestamps. Then the dequeue may remove either
1 or 2 depending on where it starts traversing the pools2 (line 46). As we ex-
plained in the beginning of the chapter, this makes the standard method of
linearization point inapplicable for verifying the TS queue.

3.3 The TS Queue: Informal Development
In this section we explain how the abstract history is updated at the commitment
points of the TS Queue and justify informally why these updates preserve the
key property of this history—that all its linearizations satisfy the sequential
queue specification. We present the details of the proof of the TS queue in §3.6.

Ghost state and auxiliary definitions. To aid in constructing the abstract
history (E,R), we instrument the code of the algorithm to maintain a piece
of ghost state—a partial function Gts : EventID ⇀ TS. Given the identifier i
of an event E(i) denoting an enqueue that has inserted its value into a pool,
Gts(i) gives the timestamp currently associated with the value. The statements
in lines 28 and 33 in Figure 3.4 update Gts accordingly. These statements use
a special command myEid() that returns the identifier of the event associated
with the current operation.

As explained in §3.2, the timestamps of values in each pool appear in strictly
2Recall that the randomness is required to reduce contention

42

Enq(1)

Enq(2)

Enq(3)

Time

t1

t2

t3
A

Deq(): 2

Deq(): 1

B
Figure 3.7: Example execution extending Figure 3.1. Dotted lines indicate
commitment points at lines 58–65 of the dequeues.

(c)

(d)

Deq(): 2

Deq(): ?

Enq(3)

Enq(2)

Enq(1)

Deq(): ?

Enq(3)

Enq(2)

Enq(1)

Deq(): ?

(a)

(b)

Enq(3)

Enq(2)

Enq(1)

Enq(3)

Enq(2)

Enq(1)

Figure 3.8: Changes to the abstract history of the execution in Figure 3.7.

ascending order. As a consequence, all timestamps assigned by Gts to events of
a given thread t are distinct, which is formalized by the following property:

∀i, j. i 6= j ∧ E(i).tid = E(j).tid ∧ i, j ∈ dom(Gts) =⇒ Gts(i) 6= Gts(j)

Hence, for a given thread t and a timestamp τ , there is at most one enqueue
event in E that inserted a value with the timestamp τ in the pool of a thread t.
In the following, we denote the identifier of this event by enqOf(E,Gts, t, τ) and
let the set of the identifiers of such events for all values currently in the pools
be inQ(pools, E,Gts):

inQ(pools, E,Gts) , {enqOf(E,Gts, t, τ) | ∃p. pools(t) = _ · (p,_, τ) ·_}

Commitment points and history updates. We further instrument the code
with statements that update the abstract history at commitment points, which
we now explain. As a running example, we use the execution in Figure 3.7,
extending that in Figure 3.1. As we noted in §3.1, when an operations starts,
we automatically add a new uncompleted event to E to represent this operation
and order it after all completed events in R. For example, before the start of
Enq(3) in the execution of Figure 3.7, the abstract history contains two events
Enq(1) and Enq(2) and no edges in the real-time order. At the start of Enq(3)
the history gets transformed to that in Figure 3.8(a). The commitment point
at line 32 in Figure 3.4 completes the enqueue by giving it a return value ⊥,
which results in the abstract history in Figure 3.8(b).

Upon a dequeue’s start, we similarly add an event representing it. Thus,
by point (A) in Figure 3.7, the abstract history is as shown in Figure 3.8(c).
At every iteration k of the loop, the dequeue performs a commitment point at
lines 49–50, where we order enqueue events of values currently present in the
pool of a thread k before the current dequeue event. Specifically, we add an
edge (e, myEid()) for each identifier e of an enqueue event whose value is in the

43

k’s pool and whose timestamp is not greater than the dequeue’s own times-
tamp start_ts. Such ordering ensures that in all linearizations of the abstract
history, the values that the current dequeue observes in the pool according to
the algorithm are also enqueued in the sequential queue prior to the dequeue.
In particular, this also ensures that in all linearizations, the dequeue returns a
value that has already been inserted.

The key commitment point in dequeue occurs in lines 58–65, where the
abstract history is updated if the dequeue successfully removes a value from
a pool. The ghost code at line 54 stores the event identifier for the enqueue
that inserted this value in CAND. At the commitment point we first complete
the current dequeue event by assigning the value removed from a pool as its
return value. This ensures that the dequeue returns the same value in the
concrete execution and the abstract history. Finally, we order events in the
abstract history to ensure that all linearizations of the abstract history satisfy
the sequential queue specification. To this end, we add the following edges to
R and then transitively close it:

1. (CAND, e) for each identifier e of an enqueue event whose value is still in
the pools. This ensures that the dequeue removes the oldest value in the
queue.

2. (myEid(), d) for each identifier d of an uncompleted dequeue event. This
ensures that dequeues occur in the same order as they remove values from
the queue.

At the commitment point (A) in Figure 3.7 the abstract history gets transformed
from the one in Figure 3.8(c) to the one in Figure 3.8(d).

3.4 Programming Language
To formalize our proof method, we first introduce a programming language for
data structure implementations. This defines such implementations by func-
tions D : Op → Com mapping operations to commands from a set Com. The
commands, ranged over by C, are written in a simple while-language, which we
further define.

Operation syntax. Data structures implement every operation op ∈ Op as
sequential commands with the following syntax:

C ∈ Com ::= α | C ; C | C + C | C∗ | skip, where α ∈ PCom

The grammar includes primitive commands α from a set PCom (assignment,
CAS, etc.) and standard control-flow constructs: sequential composition C ;C,
non-deterministic choice C + C, finite iteration C∗ (we are interested only in
terminating executions) and a termination marker skip. We use + and ()∗

instead of conditionals and while loops for theoretical simplicity: as we show
further, given appropriate primitive commands conditionals and loops can be
encoded.

44

� ⊆ Com× PCom× Com :
C1 �α C

′
1

C ′1 ; C2 �α C
′
1 ; C2 C∗�id C;C∗ α�α skip

skip ; C �id C C∗�id skip
i ∈ {1, 2}

C1 + C2 �id Ci

−→ ⊆ (Com× State)× ThreadID× (Com× State) :
s′ ∈ JαKt(s) C �α C

′

〈C, s〉 −→t 〈C ′, s′〉

Figure 3.9: The operational semantics of sequential commands

Operations semantics. Let Loc ⊆ Val be the set of all memory locations.
We let State = Loc→ Val be the set of all states of the data structure implemen-
tation, ranged over by s. Recall from §3.1 that operations of a data structure
can be called concurrently in multiple threads from ThreadID, and thats tates
are shared among threads from ThreadID. For every thread t, we use distin-
guished locations arg[t], res[t] ∈ Loc to store an argument, respectively, the
return value of an operation called in this thread.

We assume the semantics of each atomic command α ∈ PCom given by a
non-deterministic state transformers JαKt : State → P(State), t ∈ ThreadID.
For a state s, JαKt(s) is the set of states resulting from thread t executing α
atomically in s. We also assume a primitive command id ∈ PCom with the
interpretation JidKt(s) , {s}.

State transformers may have different semantics depending on a thread iden-
tifier, which we use to restrict access to thread-local memory locations such as
arg[t] and res[t] for each thread t.

We lift the semantics of state transformers to a sequential small-step oper-
ational semantics of arbitrary commands from Com. Figure 3.9 gives selected
rules of operational semantics; 〈C, s〉 −→t 〈C ′, s′〉 indicates a transition from
C to C ′ by performing a primitive command α in a thread t that updates the
state from s to s′. The rules of the operational semantics are standard.

Let us show how to define traditional control flow primitives, such as an if-
statement and a while-loop, in our programming language. Assuming a language
for arithmetic expressions, ranged over by E , and a function JEKs that evaluates
expressions in a given state s, we define a primitive command assume(E) that
acts as a filter on states, choosing only those where E evaluates to non-zero
values.

Jassume(E)Kt(s) , (if JEKs 6= 0 then {s} else ∅).

Using assume(E) and the C-style negation !E in expressions, a conditional and
a while-loop can be implemented as the following commands:

if E then C1 else C2 , (assume(E);C1) + (assume(!E);C2)

while E do C , (assume(E);C)∗; assume(!E)

Data structure histories. We now define the set of histories produced by
a data structure implementation D, which is required by the definition of lin-
earizability (Definition 3.2, §3.1). Informally, these are the histories produced
by threads repeatedly invoking data structure operations in any order and with

45

any possible arguments (this can be thought of as running the data struc-
ture implementation under its most general client [31]). We define this for-
mally using a concurrent small-step semantics of the data structure D that
also constructs corresponding histories: �D ⊆ (Cont× State×History)2, where
Cont = ThreadID→ (Com] {idle}). Here a function τ ∈ Cont characterises the
progress of an operation execution in each thread t: τ(t) gives the continuation
of the code of the operation executing in thread t, or idle if no operation is
executing. The relation �D defines how a step of an operation in some thread
transforms the data structure state and the history:

i /∈ id(E) a ∈ Val E′ = E[i : (t, op, a, todo)] R′ = R ∪ {(j, i) | j ∈ bEc}
〈τ [t : idle], s, (E,R)〉�D 〈τ [t :D(op)], s[arg[t] : a], (E′, R′)〉

〈C, s〉 −→t 〈C ′, s′〉
〈τ [t :C], s, (E,R)〉�D 〈τ [t :C ′], s′, (E,R)〉

i = last(t, (E,R)) E(i) = (t, op, a, todo) E′ = E[i : (t, op, a, s(res[t]))]
〈τ [t : skip], s, (E,R)〉�D 〈τ [t : idle], s, (E′, R)〉

First, an idle thread t may call any operation op ∈ Op with any argument a.
This sets the continuation of thread t to D(op), stores a into arg[t] and adds a
new event i to the history, ordered after all completed events.

Second, a thread t executing an operation may do a transition allowed by
the sequential semantics of the operation’s implementation. Finally, when a
thread t finishes executing an operation, as denoted by a continuation skip, the
corresponding event is completed with the return value in res[t]. The identi-
fier last(t, (E,R)) of this event is determined as the last one in E by thread t
according to R: as per Definition 3.1, events by each thread are totally ordered
in a history, ensuring that last(t,H) is well-defined.

last(t, (E,R)) ,

i, such that E(i).tid = t

and (∀j. j 6= i ∧ E(j).tid = t =⇒ j
R−→ i)

⊥, if ∀i. E(i).tid 6= t

Now given an initial state s0 ∈ State, we define the set of histories of a
data structure D as HJD, s0K = {H | 〈(λt. idle), s0, (∅, ∅)〉�∗D 〈_, H〉}. We say
that a data structure (D, s0) is linearizable with respect to a set of sequential
histories H if HJD, s0K v H (Definition 3.2).

Specification histories. We assume a set of specification states SState,
ranged over by σ, and a specification D of a data structure that interprets every
operation op ∈ Op as a sequential state transformer LopMD : (SState × Val) →
P(SState× Val). When (σ′, r) ∈ LopMD(σ, a), we say that sequential execution
of op with an argument a leads to a state σ′ with a return value r.

We generate all sets of histories of a specification D starting from an initial
state σ0 as follows:

HJD, σ0K , {H | seq(H) ∧ 〈(σ0, (∅, ∅)〉�∗D 〈_, H〉},

where�D is a relation constraining a single step in the generation of sequential

46

histories (similarly to �D):

i /∈ id(E) a ∈ Val t ∈ ThreadID (σ′, r) ∈ LopMD(σ, a)
E′ = E[i : (t, op, a, r)] R′ = R ∪ {(j, i) | j ∈ bEc}

〈σ, (E,R)〉�D 〈σ′, (E′, R′)〉

Having generated all histories H = HJD, σ0K of a data structure specification
D, we can use Theorem 3.6 to conclude that HJD, s0K v HJD, σ0K.

3.5 Logic
We now formalize our proof method as a Hoare logic based on rely-
guarantee [16]. We make this choice to keep presentation simple; our method is
general and can be combined with more advanced methods for reasoning about
concurrency [24, 29, 45].

Assertions P,Q ∈ Assn in our logic denote sets of configurations κ ∈ Config =
State × History × Ghost, relating the data structure state, the abstract history
and the ghost state from a set Ghost. The latter can be chosen separately for
each proof; e.g., in the proof of the TS queue in §3.3 we used Ghost = EventID→
TS. We do not prescribe a particular syntax for assertions, but assume that it
includes at least the first-order logic, with a set LVars of special logical variables
used in specifications and not in programs.

Formally, assertions P,Q ∈ Assn are described with the following grammar:

E,F ::= a | X | E + F | . . . , where X ∈ LVars, a ∈ Val
p ∈ Pred ::= E = F | E 7→ F | ...
P,Q ∈ Assn ::= p | P ∨Q | P ∧Q | P ⇒ Q | ∃X.P | ∀X.P

Thus, assertions from Assn contain the standard logical connectives, and among
them the existential and universal quantification over logical variables X, rang-
ing over a set LVars. We assume a set Pred of predicates, which includes a
predicate E 7→ F denoting a concrete state that describes a singleton heap. We
also assume a function ` : LVars ⇀ Val denoting an interpretation of logical
variables.

In Figure 3.10, we define a satisfaction relation |= that defines sets of con-
figurations denoted by assertions from Assn. Additionally, we define a function
J−K− : Assn × (LVars → Val) → P(Config) such that JP K` gives the denotation
of an assertion P with respect to an interpretation ` : LVars → Val of logical
variables:

JP K` = {(s,H,G) | s,H,G, ` |= P}

Rely-guarantee is a compositional verification method: it allows reasoning
about the code executing in each thread separately under some assumption on
its environment, specified by a rely. In exchange, the thread has to ensure that
its behavior conforms to a guarantee. Accordingly, judgments of our logic take
the form R,G `t {P} C {Q}, where C is a command executing in thread t, P
and Q are Hoare pre- and post-conditions from Assn, and R,G ⊆ Config2 are
relations defining the rely and the guarantee. Informally, the judgment states
that C satisfies the Hoare specification {P}_{Q} and changes program con-
figurations according to G, assuming that concurrent threads change program
configurations according to R.

47

(s,H,G, `) |= E 7→ F , iff s(JEK`) = JF K`
(s,H,G, `) |= E = F , iff JEK` = JF K`
(s,H,G, `) |= P ∨Q, iff either (s,H,G, `) |= P or (s,H,G, `) |= Q holds
(s,H,G, `) |= P ∧Q, iff both (s,H,G, `) |= P and (s,H,G, `) |= Q hold
(s,H,G, `) |= P ⇒ Q, iff (s,H,G, `) |= Q holds, when so does (s,H,G, `) |= P
(s,H,G, `) |= ∃X.P , iff there is a ∈ Val such that (s,H,G, `[X : a]) |= P holds
(s,H,G, `) |= ∀X.P , iff for any a ∈ Val, (s,H,G, `[X : a]) |= P holds

Figure 3.10: Semantics of the assertion language Assn. Here we assume a func-
tion J−K` : Expr×(LVars→ Val)→ Val substitutes logical variables in expressions
with their interpretation and evaluates the result.

(RG-Weaken)
R,G `t {P} C {Q} P ′ ⇒ P R′ ⊆ R G ⊆ G′ Q⇒ Q′

R′, G′ `t {P ′} C {Q′}
(Skip)

R,G `t {P} skip {P}

(Seq)
R,G `t {P} C {P ′} R,G `t {P ′} C ′ {Q}

R,G `t {P} C ; C ′ {Q}

(Choice)
R,G `t {P} C {Q} R,G `t {P} C ′ {Q}

R,G `t {P} C + C ′ {Q}

(Iter)
R,G `t {P} C {P}
R,G `t {P} C∗ {P}

Figure 3.11: Proof rules of Rely/Guarantee

Our logic includes the standard Hoare proof rules for reasoning about se-
quential control-flow constructs, which we list in Figure 3.11 and Figure 3.12.
We focus on explaining the rule for atomic commands in Figure 3.12, which
plays a crucial role in formalizing our proof method. The proof rule derives
judgments of the form R,G `t {P} α {Q}. The rule takes into account possible
interference from concurrent threads by requiring the denotations of P and Q
to be stable under the rely R, meaning that they are preserved under transitions
the latter allows. The rest of the requirements are expressed by the judgment
G �t {p} α {q}. This requires that for any configuration (s,H,G) from the
precondition denotation p and any data structure state s′ resulting from thread
t executing α in s, we can find a history H ′ and a ghost state G′ such that the
new configuration (s′, H ′, G′) belongs to the postcondition denotation q. This
allows updating the history and the ghost state (almost) arbitrarily, since these
are only part of the proof and not of the actual data structure implementation;
the shaded code in Figures 3.4 and 3.5 indicates how we perform these updates
in the proof of the TS queue. Updates to the history, performed when α is
a commitment point, are constrained by a relation ⊆ History2, which only
allows adding new edges to the real-time order or completing events with a re-
turn value. This corresponds to commitment points of kinds 2 and 3 from §3.1.
Finally, as is usual in rely-guarantee, the judgment G �t {p} α {q} requires that
the change to the program configuration be allowed by the guarantee G.

Note that does not allow adding new events into histories (commitment
point of kind 1): this happens automatically when an operation is invoked. In
the following, we use a relation 99Kt ⊆ Config2 to constrain the change to the

48

∀`.G �t {JP K`} α {JQK`} ∧ stable(JP K`, R) ∧ stable(JQK`, R)

R,G `t {P} α {Q}
where for p, q ∈ P(Config):

stable(p,R) , ∀κ, κ′. κ ∈ p ∧ (κ, κ′) ∈ R =⇒ κ′ ∈ p

G �t {p} α {q} , ∀s, s′, H,G. (s,H,G) ∈ p ∧ s′ ∈ JαKt(s) =⇒
∃H ′, G′. (s′, H ′, G′) ∈ q ∧H ∗ H ′ ∧ ((s,H,G), (s′, H ′, G′)) ∈ G

and for (E,R), (E′, R′) ∈ History:

(E,R) (E′, R′) , (E = E′ ∧R ⊆ R′) ∨
(∃i, t, op, a, r. (∀j. j 6= i =⇒ E(j) =E′(j)) ∧

E(i) = (t, op, a, todo) ∧ E′(i) = (t, op, a, r))

Figure 3.12: Proof rule for primitive commands.

program configuration upon an operation invocation in thread t:

〈s, (E,R), G〉 99Kt 〈s′, (E′, R′), G′〉 ⇐⇒ (∀l ∈ Loc. l 6= arg[t] =⇒ s(l) = s′(l))
∧ ∃i /∈ id(E). E′ = E] {[i : t,_,_, todo]}
∧R′ = (R ∪ {(j, i) | j ∈ bEc}) ∧G = G′

Thus, when an operation is invoked in thread t, arg[t] is overwritten by the
operation argument and an uncompleted event associated with thread t and a
new identifier i is added to the history; this event is ordered after all completed
events, as required by our proof method (§3.1).

Semantics of Hoare specifications. For every set of configurations p ∈
P(Config) and each rely R, let ssw(p,R) be the strongest stable weaker set of
configurations:

ssw(p,R) = p ∪ {κ′ | κ ∈ p ∧ (κ, κ′) ∈ R}

Definition 3.4 (Safety Judgment). We define safet as the greatest relation such
that the following holds whenever safet(R,G, p, C, q) does:

• if C 6= skip, then ∀C ′, α. C �α C
′ =⇒ ∃p′. stable(p′, R)

∧G �t {ssw(p,R)} α {p′} ∧ safet(R,G, p
′, C ′, q),

• if C = skip, then ssw(p,R) ⊆ q.

Lemma 3.5. For any t, P, C, op, a and Q, if R,G `t {P} C {Q} holds then
∀`. safet(R,G, JP K`, C, JlQK`)

Proof method for linearizability. The rule for primitive commands and
the standard Hoare logic proof rules allow deriving judgments about the imple-
mentations D(op) of every operation op in a data structure D. The following
theorem formalizes the requirements on these judgments sufficient to conclude
the linearizability of D with respect to a given set of sequential histories H.

49

The theorem uses the following auxiliary assertions, describing the event corre-
sponding to the current operation op in a thread t at the start and end of its
execution (last is defined in §3.4):

JstartedI(t, op)K` = {(s, (E,R), G) | E(last(t, (E,R))) = (t, op, s(arg[t]), todo)
∧ ∃κ ∈ JIK`. 〈κ〉 99Kt 〈s, (E,R), G〉};

Jended(t, op)K` = {(s, (E,R), G) | E(last(t, (E,R))) = (t, op,_, s(res[t]))}.

The assertion startedI(t, op) is parametrized by a global invariant I used in
the proof. With the help of it, startedI(t, op) requires that configurations in its
denotation be results of adding a new event into histories satisfying I.

Theorem 3.6. Given a data structure D, its initial state s0 ∈ State and a set
of sequential histories H, we have (D, s0) linearizable with respect to H if there
exists an assertion I and relations Rt, Gt ⊆ Config2 for each t ∈ ThreadID such
that:

1. ∃G0.∀`. (s0, (∅, ∅), G0) ∈ JIK`;

2. ∀t, `. stable(JIK`, Rt);

3. ∀H, `. (_, H,_) ∈ JIK` =⇒ abs(H,H);

4. ∀t, op. (Rt, Gt `t
{
I ∧ startedI(t, op)

}
D(op)

{
I ∧ ended(t, op)

}
);

5. ∀t, t′. t 6= t′ =⇒ Gt ∪ 99Kt ⊆ Rt′ .

Here I is the invariant used in the proof, which item 1 requires to hold of the
initial data structure state s0, the empty history and some some initial ghost
state G0. Item 2 then ensures that the invariant holds at all times. Item 3 re-
quires any history satisfying the invariant to be an abstract history of the given
specification H (Definition 3.3, §3.1). Item 4 constraints the judgment about
an operation op executed in a thread t: the operation is executed from a con-
figuration satisfying the invariant and with a corresponding event added to the
history; by the end of the operation’s execution, we need to complete the event
with the return value matching the one produced by the code. Finally, item 5
formalizes a usual requirement in rely-guarantee reasoning: actions allowed by
the guarantee of a thread t have to be included into the rely of any other thread
t′. We also include the relation 99Kt, describing the automatic creation of a new
event upon an operation invocation in thread t.

Proof of Theorem 3.6
For convenience, we further refer to the assumptions of Theorem 3.6 as a relation
safelib defined as follows.

Definition 3.7. Given a data structure D, its initial state s0 ∈ State and a set
of sequential histories H, we say that safelib(D,D,H) holds, if there exists an
assertion I and relations Rt, Gt ⊆ Config2 for each t ∈ ThreadID such that:

1. ∃G0.∀`. (s0, (∅, ∅), G0) ∈ JIK`;

2. ∀t, `. stable(JIK`, Rt);

3. ∀H, `. (_, H,_) ∈ JIK` =⇒ abs(H,H);

50

4. ∀t, op. (Rt, Gt `t
{
I ∧ startedI(t, op)

}
D(op)

{
I ∧ ended(t, op)

}
);

5. ∀t, t′. t 6= t′ =⇒ Gt ∪ 99Kt ⊆ Rt′ .

Proposition 3.8. If H ∗ H ′, then there exists H ′′ such that H EH ′′ ∧H ′′ v
H ′

The proof is straightforward: when (E,R) ∗ (E′, R′) holds, (E,R) E
(E′, R) and (E′, R) v (E′, R′).

In the following theorem, we prove that the relation is the correspondence
established between a concrete history of a data structure and a matching ab-
stract history under conditions of Theorem 3.6.

Theorem 3.9. Given a data structure D, its initial state s0 ∈ State and a set
of sequential histories H, if safelib(D,D,H) holds, then the following is true:

∀h. h ∈ HJD, s0K =⇒ ∃H.h ∗ H ∧ abs(H,H)

Intuitively, Theorem 3.9 describes the main idea of our method: for every
concrete history h ∈ HJD, s0K, we build a matching abstract history H such
that all of its linearizations are sequential histories from H.

Proof. Proof of Theorem 3.6 We show that Theorem 3.9 is a corollary of The-
orem 3.6: given a data structure D, its initial state s0 ∈ State and a set of
sequential histories H, we have (D, s0) linearizable with respect to H if the
following holds:

∀H1. H1 ∈ HJD, s0K =⇒ ∃H.H1
∗ H ∧ abs(H,H) (3.10)

Let us consider every history H1 ∈ HJD, s0K. To conclude linearizability
w.r.t. H, we need to show the following:

∃H2 ∈ H.∃H ′1. H1 EH
′
1 ∧H ′1 v H2 (3.11)

According to (3.10), there exists H such that abs(H,H) and H1 ∗ H both
hold. By Definition 3.3, the former gives the followings:

{H ′ | bHc v H ′ ∧ seq(H ′)} ⊆ H (3.12)

Note that the set above is not empty, since H is acyclic and thus has at least
one linearization H ′. Thus, H ′ ∈ H holds.

By Proposition 3.8, there exists a history H ′′ such that history1 EH ′′ and
H ′′ v H. It is easy to see that the following two observations can be made for
H1, H and H ′′:

• since H ′′ v H holds, so does bH ′′c v bHc, and

• since H1 EH ′′ holds, so does H1 E bH ′′c.

By combining these two observations with (3.12), we conclude that there exist
H2 = H ′ and H ′1 = bH ′′c such that H1 EH ′1 and H ′1 v H2. This concludes the
proof of (3.11).

Thus, we reduced the proof of Theorem 3.6 to proving Theorem 3.9. We
now introduce auxiliary definitions necessary for the proof of Theorem 3.9, and
then present the proof itself.

51

Definition 3.13. We let isIdle(t) ∈ Assn be an assertion satisfying the follow-
ing:

JisIdle(t)K` = {(s,H,G) | last(t,H) = ⊥ ∨ last(t,H) ∈ bHc}.

The assertion isIdle(t) represents the set of configurations, in which abstract
histories do not have uncompleted events in a thread t.

Definition 3.14. We let cinv be a relation such that cinv(t, τ, pt, Rt, Gt, I) holds
whenever the following is true:

• stable(pt, Rt) and pt ⊆ JIK` holds;

• if τ(t) = idle then pt ⊆ JisIdle(t)K` holds;

• if τ(t) 6= idle then there is op such that
safet(Rt, Gt, pt, τ(t), JI ∧ ended(t, op)K`).

Proof of Theorem 3.9. Let us consider a data structure D, its initial state s0 ∈
State and the set of specification historiesH. Let us assume that safelib(D,D,H)
holds. In particular, there exist Rt, Gt and I satisfying the constraints in
safelib(D,D,H). We prove that (D, s0) is linearizable with respect to H, i.e.,
HJD, s0K v H. To this end, we strengthen the statement of the theorem as
follows:

∀τ, s, h. 〈(λt. idle), s0, (∅, ∅)〉�∗D 〈τ, s, h〉 =⇒
∃H,G. h ∗ H ∧ abs(H,H) ∧

(∀`, t.∃pt. (s,H,G) ∈ JptK` ∧ cinv(`, t, τ, pt, Rt, Gt, I))

The proof is done by induction on the length n of executions in HJD, s0K.
We define the following formula:

φ(n) , ∀τ, s, h. 〈(λt. idle), s0, (∅, ∅)〉�n
D 〈τ, s, h〉 =⇒

∃H,G. h ∗ H ∧
(∀`, t.∃pt. (s,H,G) ∈ pt ∧ cinv(`, t, τ, pt, Rt, Gt, I))

and prove that ∀n ≥ 0. φ(n) holds. Note that in φ(n) we omit the requirement
abs(H,H), since it is implied by the other requirements. Specifically, when
cinv holds of each thread t, the configuration (s,H,G) satisfies the invariant I.
Consequently, by safelib(D, s0,H), abs(H,H) holds.
Base of the induction. We need to show that φ(n) holds when n = 0. In
this case, τ = (λt. idle), s = s0 and h = (∅, ∅). According to Definition 3.7.1 of
safelib(D,D,H), there exists a ghost state G0 such that:

∀`. (s0, (∅, ∅), G0) ∈ JIK`

It is easy to see that φ(0) holds for H = (∅, ∅) and G = G0 when pt = I for
each thread t.
Induction step. We need to show that ∀n. φ(n) =⇒ φ(n+ 1). Let us choose
any n and assume that φ(n) holds. We need to prove that so does φ(n+ 1), i.e.,
for every τ ′, s′ and h′ such that 〈(λt. idle), s0, (∅, ∅)〉 �n+1

D 〈τ ′, s′, h′〉 holds, the
following is true:

∃H ′, G′. h′ ∗ H ′ ∧ abs(H ′,H) ∧
(∀`, t.∃p′t. (s′, H ′, G′) ∈ p′t ∧ cinv(`, t, τ ′, p′t, Rt, Gt, I)) (3.15)

52

When 〈(λt. idle), s0, (∅, ∅)〉�n+1
D 〈τ ′, s′, h′〉, there exist τ , s and H such that:

〈(λt. idle), s0, (∅, ∅)〉�n
D 〈τ, s, h〉 ∧ 〈τ, s, h〉�D 〈τ ′, s′, h′〉

According to the induction hypothesis φ(n), for τ, s and h there exist H and G
such that:

h ∗ H ∧ abs(H,H) ∧
(∀`, t.∃pt. (s,H,G) ∈ JptK` ∧ cinv(`, t, τ, pt, Rt, Gt, I)) (3.16)

By definition of the transition relation �D, a transition 〈τ, s, h〉 �D

〈τ ′, s′, h′〉 corresponds to one of the three cases for a continuation τ(T) of some
thread T : an invocation of an arbitrary new operation in T , a return from the
current operation of T , or a transition in T . We consider each case separately.

Let E′ and R′ be such that h′ = (E′, R′), and let E and R be such that
h = (E,R).
Case #1. There exists a thread T such that τ(T) = idle, an operation op ∈
Op, its arguments a, its event identifier i /∈ id(E) such that 〈τ, s, (E,R)〉 �D

〈τ ′, s′, (E′, R′)〉 holds and the following is true:

• τ ′ = τ [T :D(op)],

• s′ = s[arg[T] : a],

• E′ = E[i : (T, op, a, todo)],

• R′ = R ∪ {(j, i) | j ∈ bEc}.

Let us consider any `. According to (3.16), for a thread T there exists pT such
that cinv(`, T, τ, pT , RT , GT , I) and (s,H,G) ∈ pT both hold.

From the former we learn that κ ∈ pT ⊆ JI ∧ isIdle(T)K`, since τ(T) = idle.
It is easy to see that under this condition, for every abstract history H ′ such
that 〈s,H,G〉 99KT 〈s′, H ′, G〉 holds, the following is true:

• h′ ∗ H ′ holds, since the new event [i : (T, op, a, todo)] and the new edges
added into h = (E,R) can also be added into H,

• (s′, H ′, G) ∈ JI ∧ started(T, op)K` holds.

According to safelib(D, s0,H), the command D(op) fulfills the following specifi-
cation:

RT , GT `T
{
I ∧ startedI(T, op)

}
D(op)

{
I ∧ ended(T, op)

}
)

Hence, safeT (RT , GT , JI ∧ startedI(T, op)K`, D(op), JI ∧ ended(T, op)K`) holds
by Lemma 3.5. Let p′T = ssw(JI ∧ startedI(T, op)K`, RT). It is easy to
see that safeT (RT , GT , p

′
T , D(op), JI ∧ ended(T, op)K`) holds as well. Thus,

cinv(`, T, τ ′, p′T , RT , GT , I) holds. For a thread T , we have found p′T such that:

(s′, H ′, G) ∈ p′T ∧ cinv(`, t, τ, p′T , RT , GT , I)

Let us consider every thread t 6= T . By the hypothesis (3.16), there exists pt
such that (s,H,G) ∈ pt and cinv(`, t, τ, pt, Rt, Gt, I) hold. According to the

53

latter, pt is stable under Rt. By safelib(D, s0,H), Rt includes 99KT , so pt is
stable under 99KT as well. Consequently, (s′, H ′, G) ∈ pt holds.

Thus, we have found H ′, G′ = G and a new set of configurations pT for a
thread T such that (3.15) holds.
Case #2. There exists a thread T such that τ(T) = skip, an operation op ∈ Op,
its arguments a, its event identifier i = last(t, (E,R)) such that 〈τ, s, (E,R)〉�D

〈τ ′, s′, (E′, R′)〉 holds and the following is true:

• τ ′ = τ [T : idle],

• E(i) = (t, op, a, todo)

• E′ = E[i : (t, op, a, s(res[t]))],

• s′ = s and R = R′

Let us consider any `. According to (3.16), for a thread T there exists pT
such that cinv(`, T, τ, pT , RT , GT , I) and (s,H,G) ∈ pT both hold. From the
former we learn that safeT (RT , GT , pT , skip, JI ∧ ended(T, op)K`) holds. Then
the following is true:

(s,H,G) ∈ pT ⊆ JI ∧ ended(T, op)K` ⊆ JI ∧ isIdle(T)K`

Hence, the abstract history H does not have uncompleted events in a thread T .
By the induction hypothesis, h ∗ H holds. Since h′ completes the event that
is already completed in H, we can conclude that h′ ∗ H holds too.

Also, when pT ⊆ JI ∧ isIdle(T)K` holds, so does cinv(`, T, τ ′, pT , RT , GT , I).
Thus, for a thread T , we have found p′T = pT such that:

(s′, H,G) ∈ p′T ∧ cinv(`, t, τ ′, p′T , RT , GT , I)

Overall, we have found H ′ = H and G′ = G such that (3.11) holds.
Case #3. There exists a thread T , a primitive command α, commands C and
C ′ such that C �α C

′, s′ ∈ JαKT (s) and the following is true:

• τ(T) = C and τ ′ = τ [T :C ′],

• E′ = E and R = R′

Let us consider any `. According to (3.16), for a thread T there ex-
ists pT such that cinv(`, T, τ, pT , RT , GT , I) and (s,H,G) ∈ pT both hold.
According to the former, safeT (RT , GT , pT , C, JI ∧ ended(T,_)K`). By Def-
inition 3.4, there exists a stable p′T such that GT �T {pT } α {p′T } and
safeT (RT , GT , p

′
T , C

′, JI ∧ ended(T,_)K`). Also, the following holds:

• By definition of GT �T {pT } α {p′T }, there exist H ′ and G′ such that
(s′, H ′, G′) ∈ p′T . Also, GT �T {pT } α {p′T } implies that h′ = h ∗

H ∗ H ′.

• By safelib(D, s0,H), JIK` is stable under GT , meaning that p′T ⊆ JIK`
holds.

54

It is easy to see that cinv(`, T, τ ′, p′T , RT , GT , I) holds. Thus, for a thread T ,
we have found p′T such that:

(s′, H ′, G′) ∈ p′T ∧ cinv(`, t, τ ′, p′T , RT , GT , I)

Let us consider every thread t 6= T . By the hypothesis (3.16), there exists
pt such that (s,H,G) ∈ pt and cinv(`, t, τ, pt, Rt, Gt, I) hold. According to the
latter, pt is stable under GT ⊆ Rt. Consequently, (s′, H ′, G′) ∈ pt holds.

Thus, we have found H ′, G′ and a new set of configurations p′T for a thread
T such that (3.15) holds.

55

(INVLIN) all linearizations of completed events of the abstract history satisfy the
queue specification:

∀H ′. bHc v H ′ ∧ seq(H ′) =⇒ H ′ ∈ Hqueue ∧ same_data(s,H,Gts, H
′)

(INVORD) properties of the partial order of the abstract history:

(i) completed dequeues precede uncompleted ones:

∀i ∈ id(bEc).∀j ∈ id(E \ bEc). E(i).op = E(j).op = Deq =⇒ i
R−→ j

(ii) enqueues of already dequeued values precede enqueues of values in the
pools:

∀i ∈ id(bEc) \ inQ(s(pools), E,Gts).∀j ∈ inQ(s(pools), E,Gts). i
R−→ j

(INVALG) properties of the algorithm used to build the loop invariant:

(i) enqueues of values in the pools are ordered only if so are their timestamps:

∀i, j ∈ inQ(s(pools), E,Gts). i
R−→ j =⇒ Gts(i) <TS Gts(j)

(ii) values in each pool appear in the order of enqueues that inserted them:

∀t, τ1, τ2. pools(t) = _ · (_,_, τ1) ·_ · (_,_, τ2) ·_ =⇒

enqOf(E,Gts, t, τ1)
R−→ enqOf(E,Gts, t, τ2)

(iii) the timestamps of values are smaller than the global counter:

∀i, a, b.Gts(i) = (a, b) =⇒ b < s(counter)

(iv) the pools contain the values of uncompleted enqueue events:

∀i ∈ id(E \ bEc). E(i).op = Enq =⇒ i ∈ inQ(s(pools), E,Gts)

(INVWF) properties of ghost state:

(i) Gts associates timestamps with enqueue events:

∀i. i ∈ dom(Gts) =⇒ E(i).op = Enq

(ii) each value in a pool has a matching event for the enqueue that inserted
it:

∀t, v, τ. pools(t) = _·(_, v, τ)·_ =⇒ ∃i. E(i) = (t,Enq, v,_)∧Gts(i) = τ

(iii) all timestamps assigned by Gts to events of a given thread are distinct:

∀i, j. i 6= j ∧ E(i).tid = E(j).tid ∧ i, j ∈ dom(Gts) =⇒ Gts(i) 6= Gts(j)

(iv) Gts associates uncompleted enqueue events with the timestamp >:
∀i. E(i).op = Enq =⇒ (i 6∈ id(bEc) ⇐⇒ i /∈ dom(Gts) ∨Gts(i) = >)

Figure 3.13: The invariant INV = INVLIN ∧ INVORD ∧ INVALG ∧ INVWF

56

3.6 The TS Queue: Proof Details
In this section, we present some of the details of the proof of the TS Queue. We
provide additional details in Appendix A.1.

Invariant. We satisfy the obligation 4 from Theorem 3.6 by proving the invari-
ant INV defined in Figure 3.13. The invariant is an assertion consisting of four
parts: INVLIN, INVORD, INVALG and INVWF. Each of them denotes a set of con-
figurations satisfying the listed constraints for a given interpretation of logical
variables `. The first part of the invariant, INVLIN, ensures that every history
satisfying the invariant is an abstract history of the queue, which discharges
the obligation 3 from Theorem 3.6. In addition to that, INVLIN requires that
a relation same_data hold of a configuration (s,H,Gts) and every linearization
H ′. In this way, we ensure that the pools and the final state of the sequential
queue after H ′ contain values inserted by the same enqueue events (we formalize
same_data in Appendix A.1). The second part, INVORD, asserts ordering prop-
erties of events in the partial order that hold by construction. The third part,
INVALG, is a collection of properties relating the order on timestamps to the par-
tial order in abstract history. Finally, INVWF is a collection of well-formedness
properties of the ghost state.

Loop invariant. We now present the key verification condition that arises
in the dequeue operation: demonstrating that the ordering enforced at the
commitment points at lines 49–50 and 58–65 does not invalidate acyclicity of
the abstract history. To this end, for the foreach loop (lines 46–56) we build
a loop invariant based on distinguishing certain values in the pools as seen by
the dequeue operation. With the help of the loop invariant we establish that
acyclicity is preserved at the commitment points.

Recall from §3.2, that the foreach loop starts iterating from a random pool.
In the proof, we assume that the loop uses a thread-local variable A for storing
a set of identifiers of threads that have been iterated over in the loop. We also
assume that at the end of each iteration the set A is extended with the current
loop index k.

Note also that for each thread k, the commitment point of a dequeue d at
lines 49–50 ensures that enqueue events of values the operation sees in k’s pool
precede d in the abstract history. Based on that, during the foreach loop we
can we distinguish enqueue events with values in the pools that a dequeue d has
seen after looking into pools of threads from A. We define the set of all such
enqueue events as follows:

seen((s, (E,R), Gts), d) , {e | e ∈ id(bEc) ∩ inQ(s(pools), E,Gts)

∧ e R−→ d ∧ ¬(s(start_ts) <TS Gts(e)) ∧ E(e).tid ∈ A} (3.17)

A loop invariant LI is simply a disjunction of two auxiliary assertions, isCand
and noCand, which are defined in Figure 3.14 (given an interpretation of log-
ical variables `, each of assertions denotes a set of configurations satisfying
the listed constraints). The assertion noCand denotes a set of configurations
κ = (s, (E,R), Gts), in which the dequeue operation has not chosen a candidate
for removal after having iterated over the pools of threads from A. In this case,
s(cand_pid) = NULL, and the current dequeue has not seen any enqueue event
in the pools of threads from A.

57

(noCand): seen((s,H,Gts), myEid()) = ∅ ∧ s(cand_pid) = NULL

(minTS(e)): ∀e′ ∈ seen((s,H,Gts), myEid()).¬(Gts(e
′) <TS Gts(e))

(isCand): ∃CAND. CAND = enqOf(E,Gts, s(cand_tid), s(cand_ts))

∧minTS(CAND) ∧ (CAND ∈ inQ(s(pools), E,Gts) =⇒
CAND ∈ seen((s,H,Gts), myEid())) ∧ s(cand_pid) 6= NULL

Figure 3.14: Auxiliary assertions for the loop invariant

The assertion isCand denotes a set of configurations κ = (s, (E,R), Gts), in
which an enqueue event CAND = enqOf(E,Gts, cand_tid, cand_ts) has been
chosen as a candidate for removal out of the enqueues seen in the pools of
threads from A. As CAND may be removed by a concurrent dequeue, isCand
requires that CAND remain in the set seen(κ, myEid()) as long as CAND’s value
remains in the pools. Additionally, by requiring minTS(CAND), isCand asserts
that the timestamp of CAND is minimal among other enqueues seen by myEid().

In the following lemma, we prove that the assertion isCand implies mini-
mality of CAND in the abstract history among enqueue events with values in the
pools of threads from A. The proof is based on the observation that enqueues of
values seen in the pools by a dequeue are never preceded by unseen enqueues.

Lemma 3.18. For every ` : LVars → Val and configuration (s, (E,R), Gts) ∈
JisCandK`, if CAND = enqOf(E,Gts, cand_tid, cand_ts) and CAND ∈
inQ(s(pools), E,Gts) both hold, then the following is true:

∀e ∈ inQ(s(pools), E, Gts). E(e).tid ∈ A =⇒ ¬(e
R−→ CAND)

Acyclicity. At the commitment points extending the order of the abstract
history, we need to show that the extended order is acyclic as required by Defi-
nition 3.1 of the abstract history. To this end, we argue that the commitment
points at lines 49–50 and lines 58–65 preserve acyclicity of the abstract history.

The commitment point at lines 49–50 orders certain completed enqueue
events before the current uncompleted dequeue event myEid(). By Definition 3.1
of the abstract history, the partial order on its events is transitive, and uncom-
pleted events do not precede other events. Since myEid() does not precede any
other event, ordering any completed enqueue event before myEid() cannot create
a cycle in the abstract history.

We now consider the commitment point at lines 58–65 in the current de-
queue myEid(). Prior to the commitment point, the loop invariant LI has been
established in all threads, and the check cand_pid 6= NULL at line 57 has
ruled out the case when noCand holds. Thus, the candidate for removal CAND
has the properties described by isCand. If CAND’s value has already been de-
queued concurrently, the removal fails, and the abstract history remains intact
(and acyclic). When the removal succeeds, we consider separately the two kind
of edges added into the abstract history (E,R):

1. The case of (CAND, e) for each e ∈ inQ(pools, E,Gts). By Lemma 3.18,
an edge (e, CAND) is not in the partial order R of the abstract history.

58

There is also no sequence of edges e R−→ ...
R−→ CAND, since R is transitive

by Definition 3.1. Hence, cycles do not arise from ordering CAND before e.

2. The case of (myEid(), d) for each identifier d of an uncompleted
dequeue event. By Definition 3.1 of the abstract history, uncompleted
events do not precede other events. Since d is uncompleted event, it does
not precede myEid(). Hence, ordering myEid() in front of all such dequeue
events does not create cycles.

Rely and guarantee relations. We now explain how we generate rely and
guarantee relations for the proof. Instead of constructing the relations with the
help of abstracted intermediate assertions of a proof outline for the enqueue and
dequeue operations, we use the non-deterministic state transformers of primitive
commands together with the ghost code in Figure 3.4 and Figure 3.5. To this
end, the semantics of state transformers is extended to account for changes to
abstract histories and ghost state. We found that generating rely and guarantee
relations in such non-standard way results in cleaner stability proofs for the
TS Queue, and makes them similar in style to checking non-interference in the
Owicki-Gries method [46].

Let us refer to atomic blocks with corresponding ghost code at line 27, line 32,
line 49 and line 58 as atomic steps insert, setTS, scan(k) (k ∈ ThreadID) and
remove respectively, and let us also refer to the CAS operation at line 74 as
genTS. For each thread t and atomic step α̂, we assume a non-deterministic
configuration transformer Jα̂Kt : Config→ P(Config) that updates state accord-
ing to the semantics of a corresponding primitive command, and history with
ghost state as specified by ghost code.

Given an assertion P , an atomic step α̂ and a thread t, we associate them
with the following relation Gt,α̂,P ⊆ Config2:

Gt,α̂,P , {(κ, κ′) | ∃`. κ ∈ JP K` ∧ κ′ ∈ Jα̂Kt(κ)}

Additionally, we assume a relation Gt,local, which describes arbitrary changes to
certain program variables and no changes to the abstract history and the ghost
state. That is, we say that pools and counter are shared program variables
in the algorithm, and all others are thread-local, in the sense that every thread
has its own copy of them. We let Gt,local denote every possible change to
thread-local variables of a thread t only.

For each thread t, relations Gt and Rt are defined as follows:

Pop , INV ∧ started(t, op)

Gt , (
⋃
t′∈ThreadIDGt,scan(t′),PDeq

) ∪Gt,remove,PDeq

∪Gt,insert,PEnq
∪Gt,setTS,PEnq

∪Gt,genTS,INV ∪Gt,local,
Rt , ∪t′∈ThreadID\{t}(Gt′ ∪ 99Kt′)

As required by Theorem 3.6, the rely relation of a thread t accounts for addition
of new events in every other thread t′ by including 99K′t. Also, Rt takes into con-
sideration every atomic step by the other threads. Thus, the rely and guarantee
relations satisfy all the requirement 5 of the proof method from Theorem 3.6. It
is easy to see that the requirement 2 is also fulfilled: the global invariant INV is
simply preserved by each atomic step, so it is indeed stable under rely relations
of each thread.

59

The key observation implying stability of the loop invariant in every thread
t is presented in the following lemma, which states that environment transitions
in the rely relation never extend the set of enqueues seen by a given dequeue.

Lemma 3.19. If a dequeue event DEQ generated its timestamp start_ts, then:

∀κ, κ′. (κ, κ′) ∈ Rt =⇒ seen(κ′, DEQ) ⊆ seen(κ, DEQ)

3.7 The Optimistic Set: Informal Development

The algorithm. We now present another example, the Optimistic Set [19],
which is a variant of a classic algorithm by Heller et al. [47], rewritten to use
atomic sections instead of locks. However, this is a highly-concurrent algorithm:
every atomic section accesses a small bounded number of memory locations. In
this section we only give an informal explanation of the proof and commitment
points; more details are provided in Appendix A.2.

The set is implemented as a sorted singly-linked list. Each node in the list
has three fields: an integer val storing the key of the node, a pointer next
to the subsequent node in the list, and a boolean flag marked that is set true
when the node gets removed. The list also has sentinel nodes head and tail
that store −∞ and +∞ as keys accordingly. The set defines three operations:
insert, remove and contains. Each of them uses an internal operation locate
to traverse the list. Given a value v, locate traverses the list nodes and returns
a pair of nodes (p, c), out of which c has a key greater or equal to v, and p is
the node preceding c.

The insert (remove) operation spins in a loop locating a place after which
a new node should be inserted (after which a candidate for removal should be)
and attempting to atomically modify the data structure. The attempt may fail
if either p.next = c or !p.marked do not hold: the former condition ensures
that concurrent operations have not removed or inserted new nodes immediately
after p.next, and the latter checks that p has not been removed from the set.
When either check fails, the operation restarts. Both conditions are necessary
for preserving integrity of the data structure.

When the elements are removed from the set, their corresponding nodes have
the marked flag set and get unlinked from the list. However, the next field of
the removed node is not altered, so marked and unmarked nodes of the list form
a tree such that each node points towards the root, and only nodes reachable
from the head of the list are unmarked. In Figure 3.16, we have an example
state of the data structure. The insert and remove operations determine the
position of a node p in the tree by checking the flag p.marked. In remove,
this check prevents removing the same node from the data structure twice. In
insert, checking !p.marked ensures that the new node n is not inserted into a
branch of removed nodes and is reachable from the head of the list.

In contrast to insert and remove, contains never modifies the shared state
and never restarts. This leads to a subtle interaction that may happen due to
interference by concurrent events: it may be correct for contains to return true
even though the node may have been removed by the time contains finds it in
the list.

In Figure 3.16, we illustrate the subtleties with the help of a state of the
set, which is a result of executing the trace from Figure 3.17, assuming that

60

struct Node {
Node *next;
Int val;
Bool marked;

}

Bool contains(v) {
p, c := locate(v);
return (c.val = v);

}

Bool insert(v) {
Node×Node p, c;
do {

p, c := locate(v);
atomic {

if (p.next = c
&& !p.marked) {

commitinsert();
if (c.val 6= v) {

Node *n := new Node;
n->next := c;
n->val := v;
n->marked := false;
p.next := n;
return true;

} else
return false;

}
}

} while (true);
}

Node×Node locate(v) {
Node prev := head;
Node curr := prev.next;
while (curr.val < v) {

prev := curr;
atomic {

curr := curr.next;
if (E(myEid()).op = contains

&& (curr.val ≥ v))
commitcontains();

}
}
return prev, curr;

}

Bool remove(v) {
Node×Node p, c;
do {

p, c := locate(v);
atomic {

if (p.next = c
&& !p.marked) {

commitremove();
if (c.val = v) {

c.marked := true;
p.next := c.next;
return true;

} else
return false;

}
}

} while (true);
}

Figure 3.15: The Optimistic Set. Shaded portions are auxiliary code used in
the proof

values 1, 2 and 4 have been initially inserted in sequence by performing “Ins(1)”,
“Ins(2)” and “Ins(4)”. We consider the following scenario. First, “Con(2)” and
“Con(3)” start traversing through the list and get preempted when they reach
the node containing 1, which we denote by n1. Then the operations are finished
in the order depicted in Figure 3.17. Note that “Con(2)” returns true even
though the node containing 2 is removed from the data structure by the time
the contains operation locates it. This surprising behavior occurs due to the
values 1 and 2 being on the same branch of marked nodes in the list, which makes
it possible for “Con(2)” to resume traversing from n1 and find 2. On the other
hand, “Con(3)” cannot find 3 by traversing the nodes from n1: the contains
operation will reach the node n2 and return false, even though 3 has been
concurrently inserted into the set by this time. Such behavior is correct, since it
can be justified by a linearization [“Ins(1)”, “Ins(2)”, “Ins(4)”, “Rem(1)”, “Con(2):
true”, “Rem(2)”, “Con(3): false”, “Ins(3)”]. Intuitively, such linearization order
is possible, because pairs of events (“Con(2): true”, “Rem(2)”) and (“Con(3):

61

-∞

+∞

3
2

1
n1

n2

n3

4

Figure 3.16: Example state of the op-
timistic set. Shaded nodes have their
“marked” field set.

EA CB

t1

t2

t3

Rem(1) Rem(2)

Con(2): true Ins(3)

Con(3): false

D
Figure 3.17: Example execution of
the set. “Ins” and “Rem” denote
successful insert and remove opera-
tions accordingly, and “Con” denotes
contains operations. A–E corre-
spond to commitment points of op-
erations.

(c) (f)

(a) (d)

Ins(1, 2, 4) Con(2) Rem(2)

Con(3)

Rem(1)

(b) (e)

Con(2) Rem(2)

Con(3)

Rem(1)

Ins(1, 2, 4)

Con(2): true Rem(2)

Con(3)

Rem(1)

Ins(1, 2, 4) Con(2): true Rem(2)

Con(3): false Ins(3)

Rem(1)

Ins(1, 2, 4)

Rem(2)

Con(3) Ins(3)

Rem(1)

Con(2): trueIns(1, 2, 4)

Rem(2)

Con(3) Ins(3)

Rem(1)

Con(2): trueIns(1, 2, 4)

Figure 3.18: Changes to the abstract history of the execution in Figure 3.17.
Edges implied by transitivity are omitted.

false”, “Ins(3)”) overlap in the execution.
Building a correct linearization order by identifying a linearization point of

contains is complex, since it depends on presence of concurrent insert and
remove operation as well as on current position in the traversal of the data
structure. We demonstrate a different approach to the proof of the Optimistic
Set based on the following insights. Firstly, we observe that only decisions about
a relative order of operations with the same argument need to be committed into
the abstract history, since linearizability w.r.t. the sequential specification of a
set does not require enforcing any additional order on concurrent operations with
different arguments. Secondly, we postpone decisions about ordering contains
operations w.r.t. concurrent events till their return values are determined. Thus,
in the abstract history for Figure 3.17, “Con(2): true” and “Rem(2)” remain
unordered until the former encounters the node removed by the latter, and the

62

OrderInsRem() {

R := (R ∪ {(e, myEid()) | e ∈ id(bEc) ∧ E(e).arg = E(myEid()).arg})+;
R := (R ∪ {(myEid(), e) | e ∈ id(E \ bEc) ∧ E(e).arg = myEid().arg

∧ E(e).op 6= contains})+;

}

commitinsert() {

E(myEid()).rval := (c.val 6= v);
if (c.val 6= v)
Gnode[myEid()] := c;

OrderInsRem();

}

commitremove() {

E(myEid()).rval := (c.val = v);
if (c.val = v)
Gnode[myEid()] := c;

OrderInsRem();

}

Figure 3.19: The auxiliary code executed at the commitment points of insert
and remove

order between operations becomes clear. Intuitively, we construct a linear order
on completed events with the same argument, and let contains operations be
inserted in a certain place in that order rather than appended to it.

Preliminaries. We assume that a set NodeID is a set of pointers to nodes,
and that the state of the linked list is represented by a partial map NodeID ⇀
NodeID× Int×Bool. To aid in constructing the abstract history (E,R), the code
maintains a piece of ghost state—a partial function Gnode : EventID ⇀ NodeID.
Given the identifier i of an event E(i) denoting an insert that has inserted its
value into the set, Gnode(i) returns a node identifier (a pointer) of that value in
the data structure. Similarly, for a successful remove event identifier i, Gnode(i)
returns a node identifier that the corresponding operation removed from the
data structure.

Commitment points. The commitment points in the insert and remove

operations are denoted by ghost code in Figure 3.19. They are similar in struc-
ture and update the order of events in the abstract history in the same way
described by OrderInsRem. That is, these commitment points maintain a linear
order on completed events of operations with the same argument: on the first
line of OrderInsRem, the current insert/remove event identified by myEid()
gets ordered after each operation e with the same argument as myEid(). On the
second line of OrderInsRem, uncompleted insert and remove events with the
same argument are ordered after myEid(). Note that uncompleted contains
events remain unordered w.r.t. myEid(), so that later on at the commitment
point of contains they could be ordered before the current insert or remove
operation (depending on whether they return false or true accordingly), if it is
necessary.

At the commitment point, the remove operation assigns a return value to
the corresponding event. When the removal is successful, the commitment point
associates the removed node with the event by updating Gnode. Let us illustrate
how commitremove changes abstract histories on the example. For the execu-
tion in Figure 3.17, after starting the operation “Rem(2)” we have the abstract
history Figure 3.18(a), and then at point (B) “Rem(2)” changes the history
to Figure 3.18(b). The uncompleted event “Con(2)” remains unordered w.r.t.

63

commitcontains() {

E(myEid()).rval := (curr.val = v);
EventID obs:= if (curr.val = v) then insOf(E, curr)

else lastRemOf(E,R, v);
if (obs 6= ⊥)
R := (R ∪ {(obs, myEid())})+;

R := (R ∪ {(myEid(), i) | ¬(i
R−→ myEid()) ∧ E(i).arg = E(myEid()).arg})+;

}
where for an abstract history (E,R), a node identifier n and a value v:

insOf(E,n) =

{
i, if Gnode(i) = n,E(i).op = insert and E(i).rval = true

undefined otherwise

lastRemOf(E,R, v) =

i, if E(i) = (_, remove, v, true)

∧ (∀i′. E(i).op = remove ∧ E(i′).arg = v =⇒
i′

R−→ i)

⊥, if ¬∃i. E(i) = (_, remove, v, true)

Figure 3.20: The auxiliary code executed at the commitment point of contains

“Rem(2)” until it determines its return value (true) later on in the execution, at
which point it gets ordered before “Rem(2)”.

At the commitment point, the insert operation assigns a return value to the
event based on the check c.val 6= v determining whether v is already in the set.
In the execution Figure 3.17, prior to the start of “Ins(3)” we have the abstract
history Figure 3.18(c). When the event starts, a new event is added into the
history (commitment point of kind 1), which changes it to Figure 3.18(d). At
point (D) in the execution, commitinsert takes place, and the history is updated
to Figure 3.18(e). Note that “Ins(3)” and “Con(3)” remain unordered until the
latter determines its return value (false) and orders itself before “Ins(3)” in the
abstract history.

The commitment point at lines 40–42 of the contains operation occurs at
the last iteration of the sorted list traversal in the locate method. The last
iteration takes place when curr.val ≥ v holds. In Figure 3.20, we present
the auxiliary code commitcontains executed at line 42 in this case. Depending
on whether a requested value is found or not, the abstract history is updated
differently, so we further explain the two cases separately. In both cases, the
contains operation determines which event in the history it should immediately
follow in all linearizations.
Case (i). If curr.val = v, the requested value v is found, so the current event
myEid() receives true as its return value. In this case, commitcontains adds two
kinds of edges in the abstract history.

• Firstly, (insOf(E, curr), myEid()) is added to ensure that myEid() occurs
in all linearizations of the abstract history after the insert event of the
node curr.

• Secondly, (myEid(), i) is added for every other identifier i of an event that

64

does not precede myEid() and has an argument v. The requirement not to
precede myEid() is explained by the following. Even though at commit-
ment points of insert and remove operations we never order events w.r.t.
contains events, there still may be events preceding myEid() in real-time
order. Consequently, it may be impossible to order myEid() immediately
after insOf(E, curr).

At point (C) in the example from Figure 3.17, commitcontains in “Con(2)” changes
the history from Figure 3.18(b) to Figure 3.18(c). To this end, “Con(2)” is
completed with a return value true and gets ordered after “Ins(2)” (this edge
happened to be already in the abstract history due to the real-time order), and
also in front of events following “Ins(2)”, but not preceding “Con(2)”. This does
not include “Ins(4)” due to the real-time ordering, but includes “Rem(2)”, so the
latter is ordered after the contains event, and all linearizations of the abstract
history Figure 3.18(c) meet the sequential specification in this example. In
general case, we also need to show that successful remove events do not occur
between insOf(E, curr), myEid()) and myEid() in the resulting abstract history,
which we establish formally in Appendix A.2. Intuitively, when myEid() returns
true, all successful removes after insOf(E, curr) are concurrent with myEid():
if they preceded myEid() in the real-time order, it would be impossible for the
contains operation to reach the removed node by starting from the head of the
list in order return true.
Case (ii). Prior to executing commitcontains, at line 40 we check that
curr.val ≥ v. Thus, if curr.val = v does not hold in commitcontains, the
requested value v is not found in the sorted list, and false becomes the return
value of the current event myEid(). In this case, commitcontains adds two kinds
of edges in the abstract history.

• Firstly, (lastRemOf(E,R, v), myEid()) is added, when there are successful
remove events of value v (note that they are linearly ordered by con-
struction of the abstract history, so we can choose the last of them). This
ensures that myEid() occurs after a successful remove event in all lineariza-
tions of the abstract history.

• Secondly, (myEid(), i) is added for every other identifier i of an event that
does not precede myEid() and has an argument v, which is analogous to
the case (i).

Intuitively, if v has never been removed from the set, myEid() needs to happen
in the beginning of the abstract history and does not need to be ordered after
any event.

For example, at point (D) in the execution from Figure 3.17, commitcontains
changes the abstract history from Figure 3.18(e) to Figure 3.18(f). To this end,
“Con(3)” is ordered in front of all events with argument 3 (specifically, “Ins(3)”),
since there are no successful removes of 3 in the abstract history. Analogously to
the case (i), in general to ensure that all linearizations of the resulting abstract
history meet the sequential specification, we need to show that there cannot be
any successful insert events of v between lastRemOf(E,R, v) (or the beginning
of the abstract history, if it is undefined) and myEid(). We prove this formally
in Appendix A.2. Intuitively, when myEid() returns false, all successful insert
events after lastRemOf(E,R, v) (or the beginning of the history) are concurrent

65

with myEid(): if they preceded myEid() in the real-time order, the inserted nodes
would be possible to reach by starting from the head of the list, in which case
the contains operation could not possibly return false.

3.8 Summary and Related Work
There has been a great deal of work on proving algorithms linearizable; see [23]
for a broad survey. However, despite a large number of techniques, often sup-
ported by novel mathematical theory, it remains the case that all but the sim-
plest algorithms are difficult to verify. Our aim is to verify the most complex
kind of linearizable algorithms, those where the linearization of a set of op-
erations cannot be determined solely by examining the prefix of the program
execution consisting of these operations. Furthermore, we aim to do this while
maintaining a relatively simple proof argument.

Much work on proving linearizability is based on different kinds of simula-
tion proofs. Loosely speaking, in this approach the linearization of an execution
is built incrementally by considering either its prefixes or suffixes (respectively
known as forward and backward simulations). This supports inductive proofs of
linearizability: the proof involves showing that the execution and its lineariza-
tion stay in correspondence under forward or backward program steps. The
linearization point method is an instance of forward simulation: a syntactic
point in the code of an operation is used to determine when to add it to the
linearization.

As we explained in the beginning of the chapter, forward simulation alone is
not sufficient in general to verify linearizability. However, Schellhorn et al. [48]
prove that backward simulation alone is always sufficient.They also present a
proof technique and use it to verify the Herlihy-Wing queue [7]. However,
backwards simulation proofs are difficult to understand intuitively: programs
execute forwards in time, and therefore it is much more natural to reason this
way.

The queue originally proposed by Herlihy and Wing in their paper on lin-
earizability [7] has proved very difficult to verify. Their proof sketch is based
on reasoning about the possible linearizations arising from a given queue con-
figuration. Our method could be seen as being midway between this approach
and linearization points. We use partiality in the abstract history to represent
sets of possible linearizations, which helps us simplify the proof by omitting
irrelevant ordering (§3.1).

Another class of approach to proving linearizability is based on special-
purpose program logics. These can be seen as a kind of forward simulation:
assertions in the proof represent the connection between program execution
and its linearization. To get around the incompleteness of forward simulation,
several authors have introduced auxiliary notions that support limited reason-
ing about future behavior in the execution, and thus allow the proof to decide
the order of operations in the linearization [24, 25, 33]. However, these new
constructs have subtle semantics, which results in proofs that are difficult to
understand intuitively.

Our approach is based on program logic, and therefore is a kind of forward
simulation. The difference between us and previous program logics is that we
do not explicitly construct a linear order on operations, but only a partial order.

66

This removes the need for special constructs for reasoning about future behavior,
but creates the obligation to show that the partially ordered abstract history
can always be linearized.

One related approach to ours is that of Hemed et al. [49], who generalize lin-
earizability to data structures with concurrent specifications (such as barriers)
and propose a proof method for establishing it. To this end, they also consider
histories where some events are partially ordered—such events are meant to
happen concurrently. However, the goal of Hemed et al.’s work is different from
ours: their abstract histories are never linearized, to allow concurrent specifica-
tions; in contrast, we guarantee the existence of a linearization consistent with
a sequential specification. It is likely that the two approaches can be naturally
combined.

Linking-in-time [50] is another approach to reasoning about algorithms with
future-dependent linearizations developed concurrently with ours by Delbianco
et al. Their proof of logical atomicity of Jayanti’s snapshot algorithm can be
seen as an extension of the linearization-points method with means for relinking
linearization order. That is, they show that the linearization order in the proof
of Jayanti’s algorithm can always be altered upon discovering that a speculative
decision about the location of linearization points of operation has been wrong.
In contrast, in our approach instead of making a speculative decision about the
total ordering of events, we maintain a partial order and prove that it represents
only correct linearizations.

Aspect proofs [35] are a non-simulation approach that is related to our work.
An aspect proof imposes a set of forbidden shapes on the real-time order on
methods; if an algorithm avoids these shapes, then it is necessarily linearizable.
These shapes are specific to a particular data structure, and indeed the method
as proposed in [35] is limited to queues (extended to stacks in [36]). In contrast,
our proof method is generic, not tied to a particular kind of data structure.
Furthermore, checking the absence of forbidden shapes in the aspect method
requires global reasoning about the whole program execution, whereas our ap-
proach supports inductive proofs. The original proof of the TS stack used an
extended version of the aspect approach [36]. However, without a way of rea-
soning inductively about programs, the proof of correctness reduced to a large
case-split on possible executions. This made the proof involved and difficult.
Our proof is based on an inductive argument, which makes it easier.

Another class of algorithms that are challenging to verify are those that use
helping, where operations complete each others’ work. In such algorithms, an
operation’s position in the linearization order may be fixed by a helper method.
Our approach can also naturally reason about this pattern: the helper operation
may modify the abstract history to mark the event of the operation being helped
as completed.

The Optimistic set was also proven linearizable by O’Hearn et al. in [19].
The essence of the work is a collection of lemmas (including the Hindsight
Lemma) proven outside of the logic to justify conclusions about properties of
the past of executions based on the current state. Based on our case study of the
Optimistic set algorithm, we conjecture that at commitment points we make a
constructive decision about extending abstract history where the hindsight proof
would use the Hindsight Lemma to non-constructively extend a linearization
with the contains operation.

67

3.8.1 Summary
The popular approach to proving linearizability is to construct a total lineariza-
tion order by appending new operations as the program executes. This approach
is straightforward, but is limited in the range of algorithms it can handle. In this
chapter, we present a new approach which lifts these limitations, while preserv-
ing the appealing incremental proof structure of traditional linearization points.
As with linearization points, our fundamental idea can be explained simply:
at commitment points, operations impose order between themselves and other
operations, and all linearizations of the order must satisfy the sequential spec-
ification. Nonetheless, our technique generalizes to far more subtle algorithms
than traditional linearization points.

We have applied our approach to two algorithms known to present particular
problems for linearization points. Although, we have not presented it here, our
approach scales naturally to helping, where an operation is completed by another
thread. We can support this, by letting any thread complete the operation in
an abstract history. In future work, we plan to apply our approach to the Time-
Stamped stack [36], which poses verification challenges similar to the TS queue;
a flat-combining style algorithm, which depends fundamentally on helping, as
well as a range of other challenging algorithms.

68

Chapter 4

Safe Privatization in
Transactional Memory

Transactional memory (TM) facilitates the development of concurrent appli-
cations by letting the programmer designate certain code blocks as atomic [1].
TM allows developing a program and reasoning about its correctness as if each
atomic block executes as a transaction—atomically and without interleaving
with other blocks—even though in reality the blocks can be executed concur-
rently. This guarantee can be formalized as observational refinement [51]: every
behavior a user can observe of a program using a TM implementation can also
be observed when the program uses an abstract TM that executes each block
atomically. A TM can be implemented in hardware [3, 4], software [2] or a
combination of both [5, 6].

Often programmers using a TM would like to access the same data both
inside and outside transactions. This may be desirable to avoid performance
overheads of transactional accesses, to support legacy code, or for explicit mem-
ory deallocation. One typical pattern is privatization [12], illustrated in Fig-
ure 4.1(a). There the atomic blocks return a value signifying whether the
transaction committed or aborted. In the program, an object x is guarded
by a flag x_is_private, showing whether the object should be accessed trans-
actionally (false) or non-transactionally (true). The left-hand-side thread first
tries to set the flag inside transaction T1, thereby privatizing x. If successful, it
then accesses x non-transactionally. A concurrent transaction T2 in the right-
hand-side thread checks the flag x_is_private prior to accessing x, to avoid
simultaneous transactional and non-transactional access to the object. We ex-
pect the postcondition shown to hold: if privatization is successful, at the end
of the program x should store 1, not 42. The opposite idiom is publication, illus-
trated in Figure 4.2. The left-hand-side thread writes to x non-transactionally
and then clears the flag x_is_private inside transaction T1, thereby publishing
x. The right-hand-side thread tests the flag inside transaction T2, and if it is
cleared, reads x. Again, we expect the postcondition to hold: if the right-hand-
side thread sees the write to the flag, it should also see the write to x. The two
idioms can be combined: the programmer may privatize an object, then access
it non-transactionally, and then publish it back for transactional access.

Ideally, programmers mixing transactional and non-transactional accesses to

69

(a) Delayed commit problem:
{ x_is_private = false ∧ x = 0 }

l := atomic {
// T1

x_is_private
= true;

}
if (l ==

committed)
x = 1; // ν

atomic { // T2

if (!
x_is_private
) {
x = 42;

}
}

{ l = committed =⇒ x = 1 }

(b) Doomed transaction problem:
{ x_is_private = false ∧ x = 0 }

l := atomic {
// T1

x_is_private
= true;

}
if (l ==

committed)
x = 1; // ν

atomic { // T2

if (!
x_is_private
) {
while (x
== 1) {}

}
}

Figure 4.1: Privatization examples.

objects would like the TM to guarantee strong atomicity [14], where transactions
can be viewed as executing atomically also with respect to non-transactional
accesses, i.e., without interleaving with them. This is equivalent to considering
every non-transactional access as a single-instruction transaction. For example,
the program in Figure 4.3 under strongly atomic semantics can only produce
executions where each of the non-transactional accesses ν1 and ν2 executes either
before or after the transaction T , so that the postcondition in Figure 4.3 always
holds.

Unfortunately, providing strong atomicity in software requires instrument-
ing non-transactional accesses with additional instructions for maintaining TM
metadata. This undermines scalability and makes it difficult to reuse legacy
code. Since most existing TMs are either software-based or rely on a software
fall-back, they do not perform such instrumentation and, hence, provide weaker
atomicity guarantees. For example, they may allow the program in Figure 4.3
to execute non-transactional accesses ν1 and ν2 between transactional writes to
x and y and, thus, observe an intermediate state of the transaction, e.g., x = 1
and y = 0, which violates the postcondition in Figure 4.3.

Researchers have suggested resolving the tension between strong TM se-
mantics and performance by taking inspiration from non-transactional shared-
memory models, which are subject to the same problem: optimizations per-
formed by processors and compilers weaken the guarantee of sequential consis-
tency [52] ideal for this setting. The compromise taken is to guarantee sequential
consistency for certain data-race free (DRF) programs, which do not access the
same data concurrently without synchronization [53]. Racy programs either are

70

{ x_is_private = true ∧ x = l = 0 }

x := 42; // ν
l1 := atomic {

// T1

x_is_private
= false;

}

l2 := atomic {
// T2

if (!
x_is_private
)
l = x;

}

{ l2 = committed ∧ l 6= 0 =⇒ l = 42 }

Figure 4.2: Publication example.

{ x = y = l1 = l2 = 0 }

l := atomic {
// T

x := 1;
y := 2;

}

l1 := x; //
ν1

l2 := y; //
ν2

{ x = l1 =⇒ y = l2 }

Figure 4.3: A racy example.

allowed to produce non-sequentially-consistent behaviors [54], or are declared
faulty and thus having no semantics at all [55]. DRF thus establishes a contract
between the programmer and the run-time system, which can be formalized by
the so-called Fundamental Property: if a program is DRF assuming the strong
semantics (such as sequential consistency), then the program does have the
strong semantics. The crucial feature of this property is that DRF is checked
by considering only executions under the strong semantics, which relieves the
programmer from having to reason about the weaker semantics of unrestricted
programs. The DRF contract has formed the basis of the memory models of
both Java [54] and C/C++ [55].

Applying the above approach to TM, strong atomicity would be guaranteed
only for programs that do not have an analog of data races in this setting—
informally, concurrent transactional and non-transactional accesses to the same
data [56, 57, 12, 58, 20, 21]. For example, we do not want to guarantee strong
atomicity for the program in Figure 4.3, which has such concurrent accesses to
x and y. On the other hand, the programs in Figure 4.1 and Figure 4.2 should
be guaranteed strong atomicity, since at any point of time, an object is accessed
either only transactionally or only non-transactionally. Unfortunately, whereas
the DRF contract in non-transactional memory models has been worked out
in detail, the situation in transactional models remains unsettled. There is
currently no consensus on a single definition of transactional DRF: there are
multiple competing proposals [20, 21, 59, 60, 56], which often come without a
formal justification similar to the Fundamental Property of non-transactional
memory models.

This dissertation makes a step towards a definition of transactional DRF on
a par with solutions in non-transactional memory models. A key technical chal-
lenge we tackle is that many TM implementations, when used out-of-the-box,

71

do not guarantee strong atomicity for seemingly well-behaved programs using
privatization, such as the ones in Figure 4.1 [22, 61, 62, 63]. For example, such
TMs may invalidate the postcondition of the program in Figure 4.1(a) due to
the delayed commit problem [12]. In more detail, many software TM imple-
mentations execute transactions optimistically, buffering their writes, and flush
them to memory only on commit. In this case, it is possible for the transac-
tion T1 to privatize x and for ν to modify it after T2 started committing, but
before its write to x reached the memory, so that T2’s write subsequently over-
writes ν’s write and violates the postcondition. TMs that make transactional
updates in-place and undo them on abort are subject to a similar problem. In
Figure 4.1(b) we give another privatization example that is prone to a different
problem—the doomed transaction problem [12]. A TM may execute T2’s read
from x_is_private, and then T1 and ν. Because T1 modifies x_is_private, at
this point T2 is “doomed”, i.e., guaranteed to abort if it finishes executing. But
if the non-transactional write ν is uninstrumented and ignores the metadata the
TM maintains to ensure the consistency of reads, T2 will read the value written
to x by ν and enter an infinite loop. This would never happen under strong
atomicity, where T1 and ν may not execute while T2 is running.

A possible solution to the above problems is for the compiler or the program-
mer to insert special transactional fences [12]. These have semantics similar to
read-copy-update (RCU) [64]: a fence blocks until all the transactions that were
active when it was invoked complete, by either committing or aborting. For
example, assume we insert a fence between the transaction T1 and the non-
transactional access ν in Figure 4.1(a). Then the delayed commit problem does
not arise: if T2 enters the if body and writes to x, then it must begin before
the fence does; thus the fence will wait until T2 completes and flushes its write
to memory, so that T2 cannot incorrectly overwrite ν. Analogously, a fence be-
tween T1 and ν in Figure 4.1(b) ensures that the doomed transaction problem
does not arise: if T2 reaches the while loop, then ν cannot execute before T2

finishes, and thus the while loop immediately terminates.
Unfortunately, inserting transactional fences conservatively after every trans-

action, even when not required, undermines scalability. For example, Yoo et
al. [65] showed that unnecessarily fencing a selection of transactional bench-
marks leads to overheads of 32% on average and 107% in the worst case, the
latter on one of the STAMP benchmarks [66]. For this reason, researchers
have suggested placing transactional fences selectively, e.g., according to pro-
grammer annotations [65]. However, omitting fences without violating strong
atomicity is nontrivial: for example, for several years the TM implementation in
the GCC compiler had a buggy placement of transactional fences that omitted
them after read-only transactions; this has recently been shown to violate strong
atomicity [67]. To make sure such bugs are not habitual, we need a notion of
transactional DRF that would take into account selective fence placements.

In this chapter we propose just such a notion and formalize its Fundamen-
tal Property using observational refinement: if a program is DRF under strong
atomicity (formalized as transactional sequential consistency [20, 21]), then all
its executions are observationally equivalent to strongly atomic ones. We fur-
thermore prove that the Fundamental Property holds under a certain condition
on the TM, generalizing opacity [10, 68], which we call strong opacity. Thus,
similarly to non-transactional memory models, the programmer writing code
that has no data races according to our notion never needs to reason about

72

weakly atomic semantics.
Our results thus establish a contract between client programs and TM im-

plementations sufficient for strong atomicity. Of course, for this contract to
be useful, it should not overconstrain either of its participants: programmers
should be able to use the typical programming idioms, and common TM im-
plementations should satisfy strong opacity that we require. In this chapter we
argue that this is indeed the case.

On the client side, our DRF notion allows the programmer to use privati-
zation and publication idioms—programs in Figure 4.2 and in Figure 4.1 with
a fence between T1 and ν are considered data-race free and thus guaranteed
strong atomicity. We hence view privatization and publication idioms as just
particular ways of ensuring data-race freedom.

To justify appropriateness of our requirements on TM systems, we develop a
method for proving that a TM satisfies strong opacity for DRF programs. Our
method is modular: it requires only a minimal adjustment to a proof of the usual
opacity of the TM assuming no mixed transactional/non-transactional accesses.
We demonstrate the effectiveness of the method by applying it to prove the
strong opacity of a realistic TM, TL2 [22], enhanced with transactional fences
implemented using RCU. Our proof shows that this TM will indeed guarantee
strong atomicity to programs satisfying our notion of DRF.

Thus, this dissertation makes the first proposal of transactional DRF that
considers a flexible programming model (with transactional fences) and comes
with a formal justification of its appropriateness—the Fundamental Property
and the notion of TM correctness required for it to hold.

4.1 Programming Language
We now introduce a simple programming language with mixed
transactional/non-transactional accesses, for which we formalize our re-
sults. We also define the semantics of the language when using a given TM
implementation. As a special case of this semantics, we get the notion of
strong atomicity [14] (also called transactional sequential consistency [20]):
this is obtained by instantiating our semantics with a special idealized atomic
TM where the execution of transactions does not interleave with that of other
transactions or with non-transactional accesses.

4.1.1 Programming Language Syntax
A program P = C1 ‖ . . . ‖ CN in our language is a parallel composition of
commands Ct executed by different threads t ∈ ThreadID = {1, . . . , N}. Every
thread t ∈ ThreadID has a set of local variables l ∈ LVart, which only it can
access; for simplicity, we assume that these are integer-valued. Threads have
access to a transactional memory (TM), which manages a fixed collection of
shared register objects x ∈ Reg. The syntax of commands C ∈ Com is as
follows:

C = α | C ; C | if (b) then C else C | while (b) do C

| l := atomic {C} | l := x.read() | x.write(e) | fence

73

where b and e denote Boolean, respectively, integer expressions over local vari-
ables and constants. The language includes primitive commands α ∈ PCom,
which operate on local variables, and standard control-flow constructs.

An atomic block l := atomic {C} executes C as a transaction, which the TM
can commit or abort. The system’s decision is returned in the local variable l,
which gets assigned a distinguished value committed or aborted. We do not allow
programs to abort a transaction explicitly, and forbid nested atomic blocks and,
hence, nested transactions.

Commands can invoke two methods on a shared register x: x.read() returns
the current value of x, and x.write(e) sets it to e. Threads may call these
methods both inside and outside atomic blocks. We refer to the former as a
transactional accesses and to the latter as a non-transactional accesses. To make
our presentation more approachable, following [68] we assume that each write in
a single program execution writes a distinct value. Finally, the language includes
a transactional fence command fence, which acts as previously explained in the
beginning of this chapter. It may only be used outside transactions.

The simplicity of the above language allows us to clearly explain our con-
tributions. We leave handling advanced features, such as nested transac-
tions [69, 70] and nested synchronization [71] as future work.

4.1.2 A Trace-based Model of Computations
To define the semantics of our programming language, we need a formal model
for program computations. To this end, we introduce traces—certain finite
sequences of actions, each describing a single computation step (for simplicity,
in this chapter we consider only finite computations). Let ActionId be a set
of action identifiers. Actions are of two kinds. A primitive action denotes the
execution of a primitive command and is of the form (a, t, α), where a ∈ ActionId,
t ∈ ThreadID and α ∈ PCom. A TM interface action has one of the forms shown
in Figure 4.4. We use ψ to range over actions.

TM interface actions denote the control flow of a thread t crossing the bound-
ary between the program and the TM: request actions correspond to the control
being transferred from the former to the latter, and response actions, the other
way around. A txbegin action is generated upon entering an atomic block, and
a txcommit action when a transaction tries to commit upon exiting an atomic

block. The request actions write(x, v) and read(x) denote invocations of the
write, respectively, read methods of register x; a write action is annotated
with the value v written. The response actions ret(⊥) and ret(v) denote the
return from invocations of write, respectively, read methods of a register; the
latter is annotated with the value v read. For reasons explained below, we con-
sider non-transactional accesses to registers as calling into the TM, and hence
use the same actions for them as for transactional accesses. The TM may abort
a transaction (but not a non-transactional access) at any point when it is in
control; this is recorded by an aborted response action. The actions fbegin and
fend denote the beginning, respectively, the end of the execution of a fence

command. In the following _ denotes an irrelevant expression.
To formalize restrictions on accesses to variables by primitive commands, we

partition the set PCom into m classes: PCom =
⊎m
t=1 LPcommt. The intention

is that commands from LPcommt can access only the local variables of thread t
(LVart). To ensure that in our programming language a thread t does not access

74

Request actions Matching response actions
(a, t, txbegin) (a, t, ok) | (a, t, aborted)
(a, t, txcommit) (a, t, committed) | (a, t, aborted)
(a, t,write(x, v)) (a, t, ret(⊥)) | (a, t, aborted)
(a, t, read(x)) (a, t, ret(v)) | (a, t, aborted)
(a, t, fbegin) (a, t, fend)

Figure 4.4: TM interface actions. Here a ∈ ActionId, t ∈ ThreadID, x ∈ Reg,
and v ∈ Z.

local variables of other threads, we require that the thread cannot mention
such variables in the conditions of if and while commands and can only use
primitive commands from LPcommt.

Definition 4.1. A trace τ is a finite sequence of actions satisfying the following
well-formedness conditions:

1. every action in τ has a unique identifier: if τ = τ1 (a1,_,_) τ2 (a2,_,_) τ3
then a1 6= a2;

2. commands in actions executed by a thread t do not access local variables of
other threads t′ 6= t: if τ = _ (_, t, α)_ then α ∈ LPcommt;

3. every write operation writes a unique value:
if τ = _ (_,_,write(_, v))_ (_,_,write(_, v′))_ then v 6= v′;

4. for every thread t, the projection τ |t of τ onto the actions by t cannot contain
a request action immediately followed by a primitive action: if τ |t = _ψ1ψ2_
and ψ1 is a request then ψ2 is a response;

5. request and response actions are properly matched: for every thread t,
history(τ)|t consists of alternating request and corresponding response ac-
tions, starting from a request action;

6. actions denoting the beginning and end of transactions are properly matched:
for every thread t, in the projection of τ |t to txbegin, committed and aborted
actions, txbegin alternates with committed or aborted, starting from txbegin;

7. non-transactional accesses execute atomically: if τ = τ1 ψ τ2, where ψ is a
read or a write request action by thread t, and all the transactions of t in τ1
completed, then τ2 begins with a response to ψ.

8. non-transactional accesses never abort: if τ = _ψ1 ψ2 τ2, where ψ1 is a
non-transactional request action then ψ2 is not an aborted action;

9. fence actions may not occur inside transactions; if τ = τ1 (t, fbegin)_ the
all the transactions t in τ1 completed; and

10. fence blocks until all active transactions complete:
if τ = τ1 (_, t, txbegin) τ2 (_, t′, fbegin) τ3 (_, t′, fend) τ4 then either τ2 or τ3
contains an action of the form (_, t, committed) or (_, t, aborted).

75

We denote the set of traces by Trace and the set of actions in a trace τ by act(τ).
For a trace τ = τ0_, where τ0 is also a trace, we say that τ0 is a prefix of τ .

A transaction T is a nonempty trace such that it contains actions by the
same thread, begins with a txbegin action and only its last action can be a
committed or an aborted action. A transaction T is:

• committed if it ends with a committed action,

• aborted if it ends with aborted,

• commit-pending if it ends with txcommit, and

• live, in all other cases.

A transaction T is in a trace τ if T is a subsequence of τ and no longer transaction
is. We let txns(τ) be the set of transactions in τ .

We refer to TM interface actions in a trace outside of a transaction as non-
transactional actions. We call a matching request/response pair of a read or
a write a non-transactional access. We denote by nontxn(τ) the set of non-
transactional accesses in τ and range over them by ν.

A history is a trace containing only TM interface actions; we use H,S to
range over histories. Since histories fully capture the possible interactions be-
tween a TM and a client program, we often conflate the notion of a TM and
the set of histories it produces. Hence, a transactional memory H is a set of
histories that is prefix-closed and closed under renaming action identifiers. Note
that histories include actions corresponding to non-transactional accesses, even
though these may not be directly managed by the TM implementation. This is
needed to account for changes to registers performed by such actions when defin-
ing the TM semantics: e.g., in the case when a register is privatized, modified
non-transactionally and then published back for transactional access. Of course,
a well-formed TM semantics should not impose restrictions on the placement of
non-transactional actions, since these are under the control of the program.

4.1.3 Programming Language Semantics
The semantics of the programming language is the set of traces that computa-
tions of programs produce. A state of a program P = C1 ‖ . . . ‖ CN records the
values of all its variables: s ∈ State = (

⊎N
t=1 LVart) → Z. The semantics of a

program P is given by the set of traces JP,HK(s) ⊆ Trace it produces when exe-
cuted with a TM H from an initial state s. To define this set, we first define the
set of traces JP K(s) ⊆ Trace that a program can produce when executed from s
with the behavior of the TM unrestricted, i.e., considering all possible values the
TM can return on reads and allowing transactions to commit or abort arbitrar-
ily. This definition follows the intuitive semantics of our programming language.
We then restrict JP K(s) to the set of traces produced by P when executed with
H by selecting those traces that interact with the TM in a way consistent with
H: JP,HK(s) = {τ | τ ∈ JP K(s) ∧ history(τ) ∈ H}, where history(·) projects to
TM interface actions.

The set JP K(s) is itself computed in two stages. First, we compute a set
A(P) of traces that resolves all issues regarding sequential control flow and
interleaving. Intuitively, if one thinks of each thread Ct in P as a control-flow
graph, then A(P) contains all possible interleavings of paths in the graphs of

76

Ct, t ∈ ThreadID starting from their initial nodes. The set A(P) is a superset
of all the traces that can actually be executed: e.g., if a thread executes the
command:

x := 1; if (x = 1) y := 1 else y := 2

where x, y are local variables, then A(P) will contain a trace where y := 2 is
executed instead of y := 1. To filter out such nonsensical traces, we evaluate
every trace to determine whether it is valid, i.e., whether its control flow is
consistent with the effect of its actions on program variables. This is formalized
by a function eval : State × Trace → P(State) ∪ { } that, given an initial state
and a trace, produces the set of states resulting from executing the actions in
the trace, an empty set if the trace is invalid, or a special state if the trace
contains a action. Thus, JP K(s) = {τ ∈ A(P) | eval(s, τ) 6= ∅}.

When defining the semantics, we encode the evaluation of conditions in if
and while statements with assume commands. More specifically, we expect
that the sets LPcommt contain special primitive commands assume(b), where b
is a Boolean expression over local variables of thread t, defining the condition.
We state their semantics formally below; informally, assume(b) does nothing if b
holds in the current program state, and stops the computation otherwise. Thus,
it allows the computation to proceed only if b holds. The assume commands
are only used in defining the semantics of the programming language; hence, we
forbid threads from using them directly.

The trace set A(P). The function A′(·) in Figure 4.5 maps commands and
programs to sequences of actions they may produce. Technically, A′(·) might
contain sequences that are not traces, e.g., because they do not have unique
identifiers or continue beyond a command. This is resolved by intersecting
the set A′(P) with the set of all traces to define A(P). A′(C)t gives the set of
action sequences produced by a command C when it is executed by thread t. To
define A′(P), we first compute the set of all the interleavings of action sequences
produced by the threads constituting P . Formally, τ ∈ interleave(τ1, . . . , τm) if
and only if every action in τ is performed by some thread t ∈ {1, . . . ,m}, and
τ |t = τt for every thread t ∈ {1, . . . ,m}. We then let A′(P) be the set of all
prefixes of the resulting sequences which respect Definition 4.1, as denoted by
the prefix operator. We take prefix closure here (while respecting the atomicity
of non transactional access) to account for incomplete program computations
as well as those in which the scheduler preempts a thread forever.

A′(c)t returns a singleton set with the action corresponding to the primitive
command c (primitive commands execute atomically). A′(C1;C2)t concatenates
all possible action sequences corresponding to C1 with those corresponding to
C2. The set of action sequences of a conditional considers cases where either
branch is taken. We record the decision using an assume action; at the eval-
uation stage, this allows us to ensure that this decision is consistent with the
program state. The set of action sequences for a loop is defined by considering
all possible unfoldings of the loop body. Again, we record branching decisions
using assume actions.

The set of action sequences of read and write accesses includes both se-
quences where the access executes successfully and where the current transac-
tion is aborted. The former set is constructed by nondeterministically choosing
an integers v to describe the the return and parameter for the read and write

77

A
′ (
c)
t

=
{(
_
,t
,c

)}
A
′ (
C

1
;C

2
)t

=
{τ

1
τ 2
|τ

1
∈
A
′ (
C

1
)t
∧
τ 2
∈
A
′ (
C

2
)t
}

A
′ (
i
f

(b
)
t
h
e
n
C

1
e
l
s
e
C

2
)t

=
{(
_
,t
,a
s
s
u
m
e
(b

))
τ 1
|τ

1
∈
A
′ (
C

1
)t
}
∪
{(
_
,t
,a
s
s
u
m
e
(¬
b)

)
τ 2
|τ

2
∈
A
′ (
C

2
)t

A
′ (
w
h
i
l
e

(b
)
d
o
C

)t
=
{τ

1
τ 2
..
.τ

2
n

(_
,t
,a
s
s
u
m
e
(¬
b)

)
|n
∈
N
∧
∀j
∈
{1
,.
..
,n
}.
τ 2
j
−

1
=

(_
,t
,a
s
s
u
m
e
(b

))

∧
τ 2
j
∈
A
′ (
C

)t
}
∪
{(
_
,t
,a
s
s
u
m
e
(¬
b)

)}
A
′ (
l

:=
x
.r
e
a
d
()

)t
=
{(
_
,t
,r

ea
d
(x

))
(_
,t
,r

et
(v

))
(_
,t
,l

:=
v
)
|v
∈
Z}
∪
{(
_
,t
,r

ea
d
(x

))
(_
,t
,a

b
or

te
d
)}

A
′ (
x
.w
r
i
t
e
(e

))
t

=
{(
_
,t
,a
s
s
u
m
e
(e

=
v
))

(_
,t
,w

ri
te

(x
,v

))
(_
,t
,r

et
(⊥

))
)
|v
∈
Z}

∪
{(
_
,t
,a
s
s
u
m
e
(e

=
v
))

(_
,t
,w

ri
te

(x
,v

))
(_
,t
,a

b
or

te
d
)
|v
∈
Z}

A
′ (
f
e
n
c
e
)t

=
{(
_
,t
,f

b
eg

in
)

(_
,t
,f

en
d
)}

A
′ (
x

:=
a
t
o
m
i
c
{C
})
t

=
{(
_
,t
,t

xb
eg

in
)

(_
,t
,a

b
or

te
d
)

(_
,t
,x

:=
ab

or
te

d
)}

∪
{(
_
,t
,t

xb
eg

in
)

(_
,t
,o

k)
τ

(_
,t
,a

b
or

te
d
)

(_
,t
,x

:=
ab

or
te

d
)
|

τ
(_
,t
,a

b
or

te
d
)
τ
′
∈
A
′ (
C

)t
∧

(_
,t
,a

b
or

te
d
)
6∈
τ
}

∪
{(
_
,t
,t

xb
eg

in
)

(_
,t
,o

k)
τ

(_
,t
,t

xc
om

m
it

)
(_
,t
,r

)
(_
,t
,x

:=
r)
|

τ
∈
A
′ (
C

)t
∧

(_
,t
,a

b
or

te
d
)
6∈
τ
∧

(r
=

co
m

m
it

te
d
∨
r

=
ab

or
te

d
)}

A
′ (
C

1
‖
..
.
‖
C
m

)
=

pr
efi

x(
⋃ {in

te
rl

ea
ve

(τ
1
,.
..
,τ
m

)
|∀
t.

1
≤
t
≤
m

=
⇒

τ t
∈
A
′ (
C
t
)t
})

A
(P

)
=

A
′ (
P

)
∩

T
ra

ce

F
ig
ur
e
4.
5:

T
he

de
fin

it
io
n
of
A

(P
).

78

accesses, respectively. To ensure that e indeed evaluates to v, in the case of a
write, Note that some of the choices here might not be feasible: the chosen
v might not be the value of the parameter expression e when the method is
invoked. infeasible choices are filtered out at the following stages of the seman-
tics definition: the former in the definition of JP K(s) by the use of evaluation
and the semantics of assume, and the latter in the definition of JP,HK(s) by
selecting the sequences from JP K(s) that interact with the transactional mem-
ory correctly. The set of action sequences of a fence command is comprised of
all traces comprised of a fbegin action followed by a fend action, indicating that
once a fence command is invoked, the thread gets blocked until it ends. The set
of action sequences of x := atomic {C} contains those in which C is aborted in
the middle of its execution (at an object operation or right after it begins) and
those in which C executes until completion and then the transaction commits
or aborts.

Semantics of primitive commands. To define evaluation, we assume a
semantics of every command α ∈ PCom, given by a function JαK that defines how
the program state is transformed by executing α. As we noted before, different
classes of primitive commands are supposed to access only certain subsets of
variables. To ensure that this is indeed the case, we define JαK as a function
of only those variables that α is allowed to access. Namely, the semantics of
α ∈ LPcommt is given by

JcK : (LVart → Z)→ P(LVart → Z).

Note that we allow α to be non-deterministic.
For a valuation q of variables that α is allowed to access, JαK(q) yields the

set of their valuations that can be obtained by executing c from a state with
variable values q. For example, an assignment command l := l′ has the following
semantics:

Jl := l′K(q) = {q[l 7→ q(l′)]} .

We define the semantics of assume commands following the informal explanation
given at the beginning of this section: for example,

Jassume(l = v)K(q) =

{
{q}, if q(l) = v;

∅, otherwise.
(4.2)

Thus, when the condition in assume does not hold of q, the command stops the
computation by not producing any output.

We lift functions JαK to full states by keeping the variables that α is not
allowed to access unmodified and producing if α faults. For example, if c ∈
LPcommt, then

JcK(s) = {s|LVar\LVart] q | q ∈ JcK(s|LVart)},

where s|V is the restriction of s to variables in V . (For simplicity, we assume
commands to not fault.)

79

Trace evaluation. Using the semantics of primitive commands, we first define
the evaluation of a single action on a given state:

eval : State× Action→ P(State)

eval(s, (_, t, c)) = JcK(s);
eval(s, ψ) = {s}.

Note that this does not change the state s as a result of TM interface or fence
actions, since their return values are assigned to local variables by separate
actions introduced when generating A(P). We then lift eval to traces as follows:

eval : State× Trace→ P(State)

eval(s, τ) =

{
∅, if τ = τ ′ϕ ∧ eval(s, τ ′) = ∅;
evalna(s, τ |¬abortact), otherwise,

where τ |¬abortact denotes the trace obtained from τ by removing all actions inside
aborted transactions, and

evalna(s, τ) =

{
{s}, if τ = ε;

{s′′ ∈ eval(s′, ϕ) | s′ ∈ evalna(s, τ ′)}, if τ = τ ′ϕ.

The set of states resulting from evaluating trace τ from state s is effec-
tively computed by the helper function evalna(s, τ), which ignores actions inside
aborted transactions to model local variable roll-back. However, ignoring the
contents of aborted transactions completely poses a risk that we might consider
traces including sequences of actions inside aborted transactions that yield an
empty set of states. To mitigate this, eval(s, τ) recursively evaluates every pre-
fix of τ , thus ensuring that sequences of actions inside aborted transaction are
valid.

Recall that we define JP K(s) as the set of those traces from A(P) that can
be evaluated from s without getting stuck, as formalized by eval. Note that
this definition enables the semantics of assume defined by (4.2) to filter out
traces that make branching decisions inconsistent with the program state. For
example, consider again the program “l := 1; if (l = 1) l′ := 1 else l′ := 2”.
The set A(P) includes traces where both branches are explored. However, due to
the semantics of the assume actions added to the traces according to Figure 4.5,
only the trace executing l′ := 1 will result in a nonempty set of final states after
the evaluation and, therefore, only this trace will be included into JP K(s).

4.1.4 Strong Atomicity
We now define an idealized atomic TM Hatomic where the execution of trans-
actions does not interleave with that of other transactions or with non-
transactional accesses. By instantiating the semantics of §4.1.3 with this TM,
we formalize the strongly atomic semantics [14] (transactional sequential con-
sistency [20, 21]). Hatomic contains only histories that are non-interleaved, i.e.,
where actions by one transaction do not overlap with the actions of another
transaction or of non-transactional accesses. Note that by definition actions
pertaining to different non-transactional accesses cannot interleave. Note also

80

that transactions in a non-interleaved history do not have to be complete. For
example,

H0 = (_, t1, txbegin)(_, t1, ok)(_, t1,write(x, 1))(_, t1, ret(⊥))
(_, t1, txcommit) (_, t2, txbegin) (_, t2, ok)(_, t2,write(x, 2))
(_, t3, read(x)) (_, t3, ret(1))

is non-interleaved. We have to allow such histories in Hatomic, because they may
be produced by programs in our language, e.g., due to a non-terminating loop
inside an atomic block.

We define Hatomic in such a way that the changes made by a live or aborted
transaction are invisible to other transactions. However, there is no such cer-
tainty in the treatment of a commit-pending transaction: the TM implementa-
tion might have already reached a point at which it is decided that the trans-
action will commit. Then the transaction is effectively committed, and its op-
erations may affect other transactions [68]. To account for this, when defining
Hatomic we consider every possible completion of each commit-pending transac-
tion in a history to either committed or an aborted one. Formally, we say that
a history Hc is a completion of a non-interleaved history H if:

1. Hc is non-interleaved;

2. Hc is has no commit-pending transactions;

3. H is a subsequence of Hc; and

4. any action in Hc which is not in H is either a committed or an aborted
action.

For example, we can obtain a completion of history H0 above by inserting
(_, t1, committed) after (_, t1, txcommit).

We define Hatomic as the set of all non-interleaved histories H that have a
completion Hc where every response action of a read(x) returns the value v in
the last preceding write(x, v) action that is not located in an aborted or live
transaction different from the one of the read; if there is no such write, the read
should return the initial value vinit. For example, H0 ∈ Hatomic. Hence, Hatomic

defines the intuitive atomic semantics of transactions.

4.2 Data-Race Freedom
A data race happens between a pair of conflicting actions, as defined below.

Definition 4.3. A non-transactional request action ψ and a transactional re-
quest action ψ′ conflict if ψ and ψ′ are executed by different threads and they
are read or write actions on the same register, with at least one being a write.

For such actions to form a data race, they should be concurrent. As is stan-
dard, we formalize this using a happens-before relation on actions in a history:
hb(H) ⊆ act(H) × act(H). To streamline explanations, we first define DRF in
terms of happens-before, and only after this define the latter. For a history H
and an index i, let H(i) denote the i-th action in the sequence H.

81

Definition 4.4. Actions H(i) and H(j) in a history H form a data race, if
they conflict and are not related by hb(H) either way. A history H is data-race
free (DRF), written DRF(H), if it has no data races.

Definition 4.5. A program P is data-race free (DRF) when executed from a
state s with a TM H, written DRF(P, s,H), if ∀τ ∈ JP K(H, s).DRF(H(τ)).

Our goal is to enable programmers to ensure strong atomicity of a program
by checking its data-race freedom. However, the notion of DRF depends on
the TM H, and we do not want the programmer to have to reason about the
actual TM implementation. In Section 4.4, we give conditions on TM H under
which strong atomicity of a program is guaranteed if it is DRF assuming strong
atomicity, i.e., DRF(P, s,Hatomic) for Hatomic from §4.1.4. We next define hb(H)
and show examples of programs that are racy and race-free under Hatomic.

For a history H, we define several relations over act(H), which we explain
in the following:

• execution order:
α <H α′ iff for some i, j we have α = H(i), α′ = H(j) and i < j.

• per-thread order po(H):
ψ <po(H) ψ

′ iff ψ <H ψ′ and actions ψ and ψ′ are by the same thread.

• restricted per-thread order xpo(H):
ψ <xpo(H) ψ

′ iff ψ <H ψ′, actions ψ and ψ′ are by the same thread t, and
there is a (_, t, txbegin) action between ψ and ψ′.

• client order cl(H):
ψ <cl(H) ψ

′ iff ψ <H ψ′ and ψ,ψ′ are non-transactional in H.

• after-fence order af(H):
ψ <af(H) ψ

′ iff ψ <H ψ′, ψ = (_,_, fbegin) and ψ′ = (_,_, txbegin), i.e., the
transaction begins after the fence does (Figure 4.6(a)).

• before-fence order bf(H):
ψ <bf(H) ψ

′ iff ψ <H ψ′, ψ ∈ {(_,_, committed), (_,_, aborted)} and ψ′ =
(_,_, fend), i.e., the transaction ends before the fence does (Figure 4.6(b)).

• read-dependency relation wrx(H) for x ∈ Reg1:
ψ <wrx(H) ψ

′ iff ψ = (_,_,write(x, v)), ψ′ = (_,_, ret(v)) and the matching
request action for ψ′ is (_,_, read(x)).

• transactional read-dependency relation txwrx(H):
ψ <txwrx(H) ψ

′ iff ψ <wrx(H) ψ
′, and ψ and ψ′ are transactional.

Definition 4.6. For a history H we let the happens-before relation of H be

hb(H) = (po(H) ∪ cl(H) ∪ af(H) ∪ bf(H) ∪
⋃
x∈Reg(xpo(H) ; txwrx(H)))+.

Components of the happens-before describe various forms of synchronization
available in our programming language, which we now explain one by one. First,
actions by the same thread cannot be concurrent, and thus, we let po(H) ⊆

1The notation wr, standing for “write-to-read”, is chosen to mirror other kinds of depen-
dencies introduced in §4.5.

82

fence

T

α

α′af

T

fence

α

α′

bf

(a) (b)

Figure 4.6: Illustration of the fence relations.

{ x_is_ready = false ∧ x = 0 }

l1 := atomic { // T
x = 42;

}
x_is_ready := true; // ν

do {
l2 := x_is_ready; // ν′

} while (¬l2);
int l3 := x; // ν′′

{ l1 = committed =⇒ l3 = 42 }

Figure 4.7: Privatization by agreement outside transactions.

hb(H). To concentrate on issues related to TM, in this chapter we do not
consider the integration of transactions into a language with a weak memory
model and assume that the underlying non-transactional memory is sequentially
consistent. Hence, we do not consider pairs of concurrent non-transactional
accesses as races and let cl(H) ⊆ hb(H). This can be used to privatize an
object by agreeing on its status outside transactions, as illustrated in Figure 4.7.
There the left-hand-side thread writes to x inside a transaction and then sets
the flag x_is_ready outside. The right-hand-side thread keeps reading the flag
non-transactionally until it is set, and then reads x non-transactionally. This
program is DRF under Hatomic because, in any of its traces, the conflicting write
in T and the non-transactional read ν′′ are ordered in happens-before due to
the client order between the write in ν and the read in ν′ that causes the do
loop to terminate.

We also have xpo(H) ; txwrx(H) ⊆ hb(H). Intuitively, this is because, if we
have (α, α′) ∈ txwrx(H), then the commands by the thread of α preceding the
transaction of α are guaranteed to have taken effect by the time α′ executes.2
This ensures that publication can be done safely, as we now illustrate by showing
that the program in Figure 4.2 is DRF under Hatomic. Traces of the program
may have only a single pair of conflicting actions—the accesses to x in ν and T2.
For both conflicting actions to occur, T2 has to read false from x_is_private.
Since under Hatomic transactions do not interleave with other transactions or
non-transactional accesses, for this T1 has to execute before T2, yielding a history
of the form ν T1T2. In this history, we have a read-dependency between the write
to x_is_private in T1 and the read from x_is_private in T2. But then the
write to x in ν happens before the read from x in T2, so that these actions
cannot form a race.

Relations af(H) and bf(H) are used to formalize synchronization ensured
by transactional fences. Recall that a fence blocks until all active transactions

2Note, however, that the commands preceding α in its transaction may not have taken
effect by this time: the TM may flush the writes of the transaction to the memory in any
order. This is why we do not require txwrx(H) ⊆ hb(H).

83

complete, by either committing or aborting. Hence, every transaction either
begins after the fence does (and thus the fence does not need to wait for it;
Figure 4.6(a)) or ends (including any required clean-up) before the fence does
(Figure 4.6(b)). The relations af(H) and bf(H) capture the two respective cases.
Note that, as required by Definition 4.1, every transaction has to be related to
a fence at least by one of the two relations: a transaction may not span a fence.

Including after-fence and before-fence relations into happens-before ensures
that privatization can be done safely given an appropriate placement of fences.
To illustrate this, we show that the programs in Figure 4.1 are DRF under
Hatomic when we place a transactional fence between T1 and ν. The possible
conflicts are between the accesses to x in ν and T2. For a conflict to occur,
T2 has to read false from x_is_private. Then T2 has to execute before T1,
yielding a history H of the form T2T1ψ1ψ2 ν, where ψ1 and ψ2 denote the
request and the response actions of the fence. Since T2 occurs before ψ2 in the
history, they are related by the before-fence relation. But then the accesses to x
in T2 happen-before the write in ν and, therefore, the conflicting actions do not
form a race. Finally, the program in Figure 4.3 is racy, since its traces contain
pairs of conflicting actions unordered in happens-before. Inserting fences into
this program will not make it DRF.

Our notion of DRF under Hatomic establishes the condition that a program
has to satisfy to be guaranteed strong atomicity. In the next section, we formu-
late the obligations of its TM counterpart in the DRF contract.

4.3 Strong Opacity
We state the requirements on a TM H by generalizing the notion of opacity [10,
68], yielding what we call strong opacity. As part of our definition, we require
that a history H of a TM H can be matched by a history S of the atomic TM
Hatomic that “looks similar” to H from the perspective of the program. The
similarity is formalized by the following relation H v S, which requires S to be
a permutation of H preserving the happens-before relation.

Definition 4.7. A history H1 is in the strong opacity relation with a history
H2, written H1 v H2, if there is a bijection θ : {1, . . . , |H1|} → {1, . . . , |H2|}
such that:

• ∀i.H1(i) = H2(θ(i)), and

• ∀i, j. i < j ∧H1(i) <hb(H1) H2(j) =⇒ θ(i) < θ(j).

The original definition of opacity requires any history of a TM H to have a
matching history of the atomic TM Hatomic. However, such a requirement would
be too strong for our setting: since the TM has no control over non-transactional
actions of its clients, histories in H may be racy, and we do not want to require
the TM to guarantee strong atomicity in such cases. Hence, our definition of
strong opacity requires only DRF histories to have justifications in Hatomic. Let
H|DRF = {H ∈ H | DRF(H)}.

Definition 4.8. A TM H is strongly opaque, written H|DRF v Hatomic, if

∀H.H ∈ H|DRF =⇒ ∃S. S ∈ Hatomic ∧H v S.

84

Apart from the restriction to DRF histories, strong opacity and the usual
opacity differ in several other ways. First, unlike in the usual opacity, our histo-
ries include non-transactional actions, because these can affect the behavior of
the TM (e.g., via the idiom of “privatize, modify non-transactionally, publish”,
§4.1.2). Second, instead of preserving happens-before hb(H1) in Definition 4.7,
the usual opacity requires preserving the program order po(H1) and the follow-
ing real-time order rt(H1) on actions:

α <rt(H) α , ψ ∈ {(_,_, committed), (_,_, aborted)} ∧
ψ′ = (_,_, txbegin) ∧ ψ <H ψ′.

This orders non-overlapping transactions, with the duration of a transaction de-
termined by the interval from its txbegin action to the corresponding committed
or aborted action (or to the end of the history if there is none). As shown in [8],
preserving real-time order is unnecessary if program threads do not have means
of communication not reflected in histories. Since we record the actions using
both transactional and non-transactional accesses, preserving real-time order is
unnecessary for our results. However, we use this order to prove strong opacity
by adjusting the proofs of the usual one (§4.5). Finally, preserving happens-
before in Definition 4.7 is required so that we could check DRF assuming strong
atomicity, as we explain next.

4.4 The Fundamental Property
We now formalize the Fundamental Property of our DRF notion using observa-
tional refinement [51]: if a program is DRF under the atomic TM Hatomic, then
any trace of the program under a strongly opaque TM H has an observationally
equivalent trace under the atomic TM Hatomic.

Definition 4.9. Traces τ and τ ′ are observationally equivalent, denoted by
τ ∼ τ ′, if:

(∀t ∈ ThreadID. τ |t = τ ′|t) ∧ (τ |nontx = τ ′|nontx),

where τ |nontx denotes the subsequence of τ containing all actions from non-
transactional accesses.

Equivalent traces are considered indistinguishable to the user. In particular,
the sequences of non-transactional accesses in equivalent traces (which usually
include all input-output) satisfy the same linear-time temporal properties. We
lift the equivalence to sets of traces as follows.

Definition 4.10. A set of traces T observationally refines a set of traces T ′,
written T �T ′, if ∀τ ∈T .∃τ ′ ∈T ′. τ ∼ τ ′.

Theorem 4.11 (Fundamental Property). If H is a TM such that H|DRF v
Hatomic, then:

∀P, s.DRF(P, s,Hatomic) =⇒ JP K(H, s) � JP K(Hatomic, s).

Theorem 4.11 establishes a contract between the programmer and the TM
implementors. The TM implementor has to ensure strong opacity of the TM

85

assuming the program is DRF: H|DRF v Hatomic. The programmer has to en-
sure the DRF of the program assuming strong atomicity: DRF(P, s,Hatomic).
This contract lets the programmer to check properties of a program assuming
strong atomicity (JP K(Hatomic, s)) and get the guarantee that the properties hold
when the program uses the actual TM implementation (JP K(H, s)). We have
already shown that the expected privatization and publication idioms are DRF
under strong atomicity (§4.2), so that the programmer can satisfy its part of
the contract. In the following sections we develop a method for discharging the
obligations of the TM.

The proof of Theorem 4.11 follows directly from the following lemma:

Lemma 4.12. If H is a TM such that H|DRF v Hatomic, then:

1. ∀P, s.DRF(P, s,H) =⇒ JP K(H, s) � JP K(Hatomic, s).

2. ∀P, s.DRF(P, s,Hatomic) =⇒ DRF(P, s,H).

Part 1 shows that if a program is DRF under the concrete TM H, then
it has the expected strongly atomic semantics. It is an adaptation of a result
from [51]. Part 2 enables checking DRF using an atomic TM Hatomic and is a
contribution of this dissertation. Its proof relies on the fact that strong opacity
preserves happens-before (Definition 4.7).

Proof of Lemma 4.12. The key step in the proof of Lemma 4.12(1) is the
next lemma. It shows that a trace τH with a history H can be transformed into
an equivalent trace τS with a history S that is in the opacity relation with H.

Lemma 4.13 (Rearrangement).

∀H,S ∈ History. H v S =⇒ (∀τH . history(τH) = H =⇒
∃τS . history(τS) = S ∧ τH ∼ τS).

The proof follows the proof of the corresponding lemma in [51] and is omitted.
We also rely on the following proposition that allows us to conclude that the

trace τS resulting from the rearrangement in Lemma 4.13 can be produced by
a program P if so can the original trace τH .

Proposition 4.14. If τH ∈ JP K(s) and τH ∼ τS, then τS ∈ JP K(s).

This proposition follows immediately from Definition 4.9 and the definition
of A(P) in Figure 4.5.

Lemma 4.13 and Proposition 4.14 together yield the following corollary, from
which Lemma 4.12(1) follows.

Corollary 4.15. If H is a TM such that H|DRF v Hatomic, then:

∀P, s, τH . τH ∈ JP K(H, s) ∧ DRF(τH) =⇒
∃τS . τS ∈ JP K(Hatomic, s) ∧

history(τH) v history(τS) ∧ τH ∼ τS .

The following proposition states the prefix-closure property of the program-
ming language semantics.

86

Proposition 4.16. For every program P , TM H and state s, the set JP K(H, s)
is prefix-closed.

Proof of Lemma 4.12(2). Let us consider a TM H such that H|DRF v Hatomic,
any client program P and an initial state s. We prove the theorem by contra-
positive, i.e., by demonstrating:

¬DRF(P, s,H) =⇒ ¬DRF(P, s,Hatomic)

Let us assume that DRF(P, s,H) does not hold. By Definition 4.5, there exists
τ̂ ∈ JP K(H, s) such that its history Ĥ = history(τ̂) is racy, i.e., DRF(Ĥ) does not
hold. More specifically, τ̂ contains a data race (ψ′, ψ). Note that there might
be multiple races in τ̂ , and we choose such race (ψ′, ψ) that the later of the two
actions, ψ, is the earliest in the execution order of Ĥ. We split the further proof
depending on whether ψ is transactional or non-transactional.

Case 1: ψ is non-transactional. Let τ̂ take form of τ̂ = τ ψβ_, where
β is a matching response action for ψ and τ is a prefix of τ̂ containing ψ′. It
is easy to see that our choice of the data race is such that τ ψβ is racy and
τ is data-race free. Additionally, as stated in Proposition 4.16, JP K(H, s) is
prefix-closed. Therefore, both τ ψβ ∈ JP K(H, s) and τ ∈ JP K(H, s) hold. By
Corollary 4.15, there exists a trace τ ′ ∈ JP K(Hatomic, s) such that its history
S = history(τ ′) ∈ Hatomic is in the strong opacity relation with H = history(τ)
(H v S) and τ ∼ τ ′.

Let us consider a trace τ ′′ = τ ′ψβ′, which extends τ ′ with the request action
ψ and a matching response β′ in such a way that its history S′′ = Sψβ′ ∈
Hatomic. Such response β′ and a trace τ ′′ exist, since Sψ is a non-interleaved
history, and it is easy to see that it can always be extended with a response to
ψ (not necessarily returning the same result as β).

Since τ ∼ τ ′, we have τ ψβ ∼ τ ′ψβ according to Definition 4.9. Therefore,
by Proposition 4.14, τ ′ψβ ∈ JP K(s). Also, as evident from the definition of
A(P) in Figure 4.5, A(P) is closed under replacing a return value of a trailing
read-response action, so τ ′′ ∈ JP K(s) holds. Knowing that S′′ ∈ Hatomic, we
conclude that τ ′′ ∈ JP K(Hatomic, s).

We argue that hb(Hψβ) = hb(S′′). First, since τ ψβ ∼ τ ′ψβ and τ ′′ differs
from τ ′ψβ only in the return value of β′, cl(Hψβ) = cl(S′′) and po(Hψ) =
po(S′′) hold. Since ψ is neither a fence action nor a beginning or an end of a
transaction, af(Hψβ) = af(S′′) and bf(Hψβ) = bf(S′′) hold too. Finally, since
ψ is non-transactional, it does not contribute to (xpo(S′′) ; txwr(S′′)). Overall,
hb(Hψβ) = hb(S′′) holds.

Knowing that hb(history(τ ψβ)) = hb(Hψβ) = hb(S′′) and that the conflict
(ψ′, ψ) is unordered in hb(history(τ ψβ)), we conclude that (ψ′, ψ) is a data race
in τ ′′.

Case 2: ψ is transactional. Let τ̂ take form of τ̂ = τ ψ_, where
the prefix τ contains ψ′. It is easy to see that our choice of the data race
is such that τ ψ is racy and τ is data-race free. Additionally, as stated in
Proposition 4.16, JP K(H, s) is prefix-closed. Therefore, both τ ψ ∈ JP K(H, s) and
τ ∈ JP K(H, s) hold. By Corollary 4.15, there exists a trace τ ′ ∈ JP K(Hatomic, s)
such that its history S = history(τ ′) ∈ Hatomic is in the strong opacity relation
with H = history(τ) (H v S) and τ ∼ τ ′.

Let us consider a trace τ ′′ obtained from τ ′ by inserting ψ after the last
action by the same thread. It is easy to see that τ ′′ is well-formed and that

87

S′ = history(τ ′′) is non-interleaved, meaning that S′ ∈ Hatomic holds.
Since τ ∼ τ ′, the following holds:

(∀t ∈ ThreadID. τ |t = τ ′|t) ∧ (τ |nontx = τ ′|nontx).

Note that the following holds, because ψ is transactional:

τ ′′|nontx = τ ′|nontx = τ |nontx = (τ ψ)|nontx.

Let t′ be the thread of ψ. For all t ∈ ThreadID\{t′}, the following holds, because
ψ is by a different thread:

(τ ψ)|t = τ |t = τ ′|t = τ ′′|t,

and (τ ψ)|t′ = τ ′′|t′ by construction. Overall, we have:

(∀t ∈ ThreadID. (τ ψ)|t = τ ′′|t) ∧ ((τ ψ)|nontx = τ ′′|nontx),

so τ ψ ∼ τ ′′. Therefore, by Proposition 4.14, τ ′′ ∈ JP K(s). Knowing that
S′ ∈ Hatomic, we conclude that τ ′′ ∈ JP K(Hatomic, s).

We argue that hb(Hψ) = hb(S′). Similarly to Case 1, we observe that po,
cl, af and bf components of hb(Hψ) and hb(S′) are equal. Let us consider the
edges from (xpo(Hψ) ; txwr(Hψ)) that may appear in hb(Hψ) \ hb(H):

• if ψ is a write request, then {(β, β′) | β <xpo(Hψ) ψ <txwr(Hψ) β
′};

• if ψ is a read request, then {(β, ψ) | ∃β′. β <xpo(Hψ) β
′ <txwr(Hψ) ψ}.

Note that txwr(Hψ) = txwr(S′), because Hψ and S′ are histories with unique
writes, so read-dependencies are uniquely determined. Also, xpo(Hψ) =
xpo(S′), because ψ is executed within the same transaction in the two histories.
Therefore, the aforementioned edges are present in hb(Hψ) if and only if they
are present in hb(S′). Overall, hb(Hψ) = hb(S′) holds.

Knowing that hb(history(τ ψ)) = hb(S′) and that the conflict (ψ′, ψ) is un-
ordered in hb(history(τ ψ)), we conclude that (ψ′, ψ) is a data race in τ ′ψ.

4.5 Proving Strong Opacity
We now develop a method for proving H|DRF v Hatomic. The method builds
on a graph characterization of opacity of Guerraoui and Kapalka [68], which
was proposed for proving the usual opacity of TMs that do not allow mixed
transactional/non-transactional accesses to the same data. The characterization
allows checking opacity of a history by checking two properties: consistency of
the history and the acyclicity of a certain opacity graph, which we define further
in this section.

Consistency captures some very basic properties of read-dependency relation
wrx (for each register x) that have to be satisfied by every opaque TM history.
Intuitively, in a consistent history every transaction T reading the value of a
register x either reads the latest value T itself wrote to x before, or some value
written non-transactionally or by a committed or commit-pending transaction.

Definition 4.17. A pair of matching request and response actions (ψ,ψ′) is
said to be local to T ∈ txns(H), if:

88

• ψ = (_,_, read(x)) ∧
∃β ∈ T. β <po(H) ψ ∧ β = (_,_,write(x,_)); or

• ψ = (_,_,write(x,_)) ∧
∃β ∈ T. ψ <po(H) β ∧ β = (_,_,write(x,_)).

We let local(H) denote the set of all local actions in H.

Thus, local reads from x are preceded by a write to x in the same transaction;
local writes to x are followed by a write to x in the same transaction.

Definition 4.18. In a history H, a read request ψ = (_,_, read(x)) and its
matching response ψ′ = (_,_, ret(v)) are said to be consistent, if:

• when (ψ,ψ′) ∈ local(H) and performed by a transaction T , v is the value
written by the most recent write (_,_,write(x, v)) preceding the read in T ;

• when (ψ,ψ′) /∈ local(H), either there exists a non-local β not located in an
aborted or live transaction such that β <wrx(H) ψ

′, or there is no such β
and v = vinit.

We also say that a history H is consistent, written cons(H), if all of its matching
read requests and responses are.

We now present the definition of an opacity graph of a history with mixed
transactional/non-transactional accesses.

Definition 4.19. The opacity graph of a history H is a tuple G =
(N, vis,HB,WR,WW,RW), where:

• N = txns(H) ∪ nontxn(H) is the set of nodes.

• vis ⊆ N is a visibility predicate, such that it holds of all non-transactional
accesses and committed transactions and does not hold of all aborted and live
transactions.

• HB ∈ P(N ×N) is such that

n
HB−−→ n′ ⇐⇒ ∃α ∈ n, α′ ∈ n′. ψ <hb(H) ψ

′.

• WR ∈ Reg → P(N ×N) specifies read-dependency relations on nodes: for
each x ∈ Reg,

n
WRx−−−→ n′ ⇐⇒ n 6= n′ ∧ ∃ψ ∈ n, ψ′ ∈ n′. ψ <wrx(H) ψ

′,

where the relation on actions wrx(H) is defined in §4.2. We require that each
node that is read from be visible:

∀n, x. n WRx−−−→ _ =⇒ vis(n).

• WW ∈ Reg → P(N ×N) specifies write-dependency relations, such that
for each x ∈ Reg, WWx is an irreflexive total order on {n ∈ N | vis(n) ∧
(_,_,write(x,_)) ∈ n}.

89

• RW ∈ Reg → P(N ×N) specifies anti-dependency relations, computed from
WR and WW as follows:

n
RWx−−−→ n′ ⇐⇒ n 6= n′ ∧ ((∃n′′. n′′ WWx−−−→ n′ ∧ n′′ WRx−−−→ n)

∨ (vis(n′) ∧ (_,_,write(x,_)) ∈ n′
∧ (_,_, ret(x, vinit)) ∈ n)).

We let Graph(H) denote the set of all opacity graphs of H. We say that a
graph G is acyclic, written acyclic(G), if edges from HB, WR, WW and RW do
not form a cycle.

The nodes in our opacity graph include transactions and non-transactional
accesses in H. The intention of the vis predicate is to mark those nodes that
have taken effect, in particular, commit-pending transactions that should be
considered committed (cf. history completions in §4.1.4). The other compo-
nents, intuitively, constrain the order in which the nodes should go in a sequen-
tial history witnessing the strong opacity of H. The HB relation is the lifting
of happens-before to the nodes of the graph. A read-dependency n

WRx−−−→ n′

specifies when the node n′ reads a value of x written by another node n. A
write-dependency n WWx−−−→ n′ specifies when n′ overwrites a value of x written
by n; for the writes to take effect, both nodes should be visible. Finally, an anti-
dependency n RWx−−−→ n′ specifies when n reads a value of x overwritten by n′;
the initial value vinit of x is considered overwritten by any write to the register.

The following lemma (proved in §4.5 shows that we can check strong opacity
of a history by checking its consistency and the acyclicity of its opacity graph.
Then the theorem following from it gives a criterion for the strong opacity of a
TM H.

Lemma 4.20. ∀H. (cons(H) ∧ ∃G ∈ Graph(H). acyclic(G))
=⇒ (∃H ′ ∈ Hatomic. H v H ′).

Theorem 4.21. H v Hatomic holds, if the following is true:

∀H ∈ H. cons(H) ∧ ∃G ∈ Graph(H). acyclic(G).

In comparison to the graph characterization of the usual opacity [68] for TMs
without mixed transactional/non-transactional accesses, ours is more complex:
the graph includes non-transactional accesses and the acyclicity check has to
take into account the happens-before relation. We now show that, to prove the
strong opacity of a TM using Theorem 4.21, we need to make only a minimal
adjustment to a proof of its usual opacity using graph characterization. The
latter characterization includes only transactions as nodes of the graph, and
instead of happens-before, considers the lifting of the real-time order from §4.3 to
transactions: for a history H, we let RT(H) be the relation between transactions
in H such that T <RT(H) T

′ iff for some α ∈ T and α′ ∈ T we have α <rt(H) α.
In the following we abuse notation and denote by WR also the relation⋃

x∈Reg WRx, and similarly for WW and RW.

Theorem 4.22. Let a history H ∈ HC|DRF and an opacity graph G =
(N, vis,HB,WR,WW,RW) ∈ Graph(H) be such that the relation (HB ; (WR ∪
WW ∪ RW)) is irreflexive. If G contains a cycle, then it also contains a cycle
over transactions only with edges from RT ∪WR ∪WW ∪ RW.

90

Thus, the theorem allows us to modularize the proof of the acyclicity of
an opacity graph into: (i) checking the absence of “small” cycles with a single
dependency edge; and (ii) checking the absence of cycles in the projection of
the graph to transactions, with real-time order replacing happens-before. The
latter acyclicity check is exactly the one required in the graph characterization
of the usual opacity [68]. In the next section, we show how the theorem enables
a simple proof of strong opacity of a realistic TM, TL2 [22].

Proof of Lemma 4.20
The key idea of the proof of Lemma 4.20 is

To prove Lemma 4.20, we introduce a notion of fenced opacity graphs, which
extend opacity graphs with fence actions. We prove that fenced opacity graphs
are acyclic when corresponding opacity graphs are.

Let fact(H) denote the set of all fence actions of a history H, or formally:

fact(H) , {(a, t, fbegin) | (a, t, fbegin) ∈ act(H)}
∪ {(a, t, fbegin) | (a, t, fend) ∈ act(H)}.

Definition 4.23. Given a history H and its opacity graph G =
(N, vis,HB,WR,WW,RW) ∈ Graph(H), we define a matching fenced graph G
as a tuple (N, vis,HB,WR,WW,RW), where:

• N = N ∪ fact(H) extends the set of nodes of G with nodes denoting fence
actions of the history H;

• HB ∈ P(N ×N) is such that

n
HB−−→ n′ ⇐⇒ ∃ψ,ψ′. (ψ ∈ n ∨ ψ = n ∈ fact(H))

∧ (ψ′ ∈ n′ ∨ ψ′ = n′ ∈ fact(H)) ∧ ψ <hb(H) ψ
′.

That is, a fenced graph G corresponding to G ∈ Graph(H) simply extends
G with fence actions and happens-before edges.

Proposition 4.24. ∀H,G.G ∈ Graph(H) ∧ acyclic(G) =⇒ acyclic(G).

Proof. Let G = (N, vis,HB,WR,WW,RW) and G = (N, vis,HB,WR,WW,RW).
It is easy to see that:

HB = HB] {(ψ,ψ′) | ψ <hb(H) ψ
′ ∧ (ψ ∈ fact(H) ∨ ψ′ ∈ fact(H))}

That is, all edges between non-fence nodes implied by transitivity via fence
nodes in G are already present in G. We know that G is acyclic. Therefore, if
G contains a cycle, it necessarily involves fence actions.

Let us first consider a cycle over nodes of G consisting entirely of fence action
nodes. The cycle takes the following form then:

φ1
HB−−→ φ2

HB−−→ . . .
HB−−→ φk

HB−−→ φ1,

where k is the length of the cycle and φi is a fence action for each i such
that 1 ≤ i ≤ k. For each consecutive φi and φi+1 in the cycle, we assume that

91

there is no non-fence action n such that φi
HB−−→ n

HB−−→ φi+1 (we consider cycles
involving non-fence actions separately). By Definition 4.19, the following must
be the case:

φ1 <hb(H) φ2 <hb(H) . . . <hb(H) φk <hb(H) φ1,

It is easy to see that such cycle is not possible: without intermediate non-fence
actions, fence actions can only be related by po(H) in hb(H), and po(H) is not
cyclic.

We now consider a cycle in G involving at least one node that does not
correspond to a fence action. We consider each sequence of fence actions in the
cycle surrounded by non-fence actions:

n
HB−−→ φ1

HB−−→ φ2
HB−−→ . . .

HB−−→ φk
HB−−→ n′

where n and n′ denote non-fence actions (or, possibly, the same non-fence ac-
tion), and for each i (1 ≤ i ≤ k), φi is a fence action. Since HB is transitive,
n

HB−−→ n′ is present in the graph G. By replacing each segment of fence actions
in the cycle with HB-edges between non-fence actions, we transform the cycle in
G into a cycle in G. By the premise of the proposition, acyclic(G) holds. Thus,
we arrive to a contradiction, meaning that acyclic(G) holds.

Before proving Lemma 4.20, let us restate the definition of Hatomic from
§4.1.4.

Definition 4.25. In a non-interleaved history H, a read request (_,_, read(x))
and its matching response (_,_, ret(v)) are said to be legal, if v is the value
returned by the last preceding write(x, v) action that is not located in an aborted
or live transaction different from the one of the read; if there is no such write,
then v = vinit.

Thus, Hatomic can be defined as the set of all non-interleaved histories H
that have a completion Hc, in which every pair of a matching read request and
response is legal.

Proof of Lemma 4.20. In the proof, we only consider finite histories of TM.
Let H1 be an consistent TM history. Assume that there exists an acyclic
graph G ∈ Graph(H1). We consider its matching fenced graph G =
(N, vis,HB,WR,WW,RW), which is acyclic by Proposition 4.24.

Let k be the number of nodes in N and a sequence S = n1n2 . . . nk be the
result of a topological sort of graph G. Let ≺S be a relation on nodes of S such
that n ≺S n′ if n occurs earlier than n′ in S.

We define a relation lin ⊆ act(H1)×act(H1) on actions of history H1 so that
for every actions ψ <lin ψ

′ if for n, n′ ∈ S such that ψ ∈ n and ψ′ ∈ n′, either
n = n′ ∧ ψ <po(H1) ψ

′ or n 6= n′ ∧ n ≺S n′ holds. It is easy to see that lin is a
linear order on act(H1).

LetH2 be a sequence obtained by putting the actions of the historyH2 in the
order lin. Note that hb(H) ⊆ lin. Therefore, by Definition 4.7, H1 v H2 holds.
It is easy to see that H2 is non-interleaved. To conclude that H2 ∈ Hatomic,
it remains to show that it has a non-interleaved completion, in which every
matching read request and response are legal.

Let Hc
2 be a non-interleaved completion of H2 obtained by committing each

transaction from vis and aborting all other commit-pending transaction. We

92

argue that cons(Hc
2) holds. It is easy to see that local read actions are consistent

in Hc
2 . Consider any non-local read (ψ,ψ′). Since cons(H1) holds, there are two

possibilities:

• There exists a non-local β such that β <wr_ ψ′ and β is not located in an
aborted or live transaction in H1. Let n ∈ N be the node of Ĝ containing
β. By Definition 4.19, n ∈ vis holds. Therefore, n is not an aborted or
live transaction in Hc

2 either, meaning that (ψ,ψ′) is consistent in Hc
2 .

• There is no such write β, and ψ′ returns vinit. It is easy to see that (ψ,ψ′)
is consistent in Hc

2 .

We consider every read request ψ = (_,_, read(x)) and its matching re-
sponse ψ′ = (_,_, ret(v)) in Hc

2 . When (ψ,ψ′) ∈ local(Hc
2), the consistency of

Hc
2 immediately implies that (ψ,ψ′) is legal.
Let us assume that (ψ,ψ′) /∈ local(Hc

2), and let n be its node in the graph
Ĝ. By Definition 4.18, there are two possibilities:

• there exists a non-local β1 not located in an aborted or live transaction
and such that β1 <wrx(Hc

2) ψ
′; or

• v = vinit, otherwise.

Let us assume that there is no β1 satisfying the above and that v = vinit.
Consider any action β2 = (_,_,write(x,_)) in Hc

2 that is not located in a
live or aborted transaction, and let n2 denote its node in Ĝ. Knowing that
n2 is not an aborted transaction in Hc

2 , we conclude that n ∈ vis holds. By
Definition 4.19, n RWx−−−→ n2 holds. Since lin is a topological sort of the order
including RWx, all actions of the node n2 occur after all actions of the node n,
meaning that β2 does not precede ψ in Hc

2 . Therefore, It is easy to see that
(ψ,ψ′) is legal.

We now consider the case when in Hc
2 there exists a non-local β1 not located

in an aborted or live transaction and such that β1 <wrx(Hc
2) ψ

′. It is easy to see
that in order to conclude that (ψ,ψ′) is legal, we only need to prove that β1 is
the most recent write to x preceding ψ. Let n and n1 be the nodes of ψ and β1

accordingly in the graph G. Firstly, we observe that β1 <wrx(H1) ψ holds and,

hence, so does n1
WR−−→ n. Since lin is a topological sort of the order including

WR, actions of n1 precede actions of n in Hc
2 . Therefore, β1 precedes ψ in Hc

2 .
Let us consider any other write β2 = (_,_,write(x,_)) that occurs after β1 in
Hc

2 and that is not located in a live or aborted transaction. Let n2 be its node in
the graph G. Knowing that n2 is not an aborted transaction in Hc

2 , we conclude
that n ∈ vis holds. By Definition 4.19, WW totally orders visible nodes writing
to the same register, so either n2

WW−−→ n1 or n1
WW−−→ n2 holds. Recall that lin

is a topological sort of the order including WW and RW. Consequently, it can
only be the case that n1

WW−−→ n2 holds. By Definition 4.19, n RW−−→ n2 holds too,
and, hence, ψ <lin β2. Thus, we have shown that β1 is the last write to x that
precedes ψ and that is not located in an aborted or live transaction, meaning
that (ψ,ψ′) is legal.

93

Proof of Theorem 4.22
We now prove Theorem 4.22. The main idea of the proof lies in the observation
that any edge in WR∪WW∪RW, where one of the endpoints is a transaction and
one is a non-transactional access, yields a pair of conflicting actions in H. Since
H is DRF, this means that the nodes are related by HB one way or another,
and the irreflexivity of (HB ; (WR ∪WW ∪ RW)) means that the dependency
edge has to be covered by HB. Using this, we can transform any cycle in the
graph into one in RT∪WR∪WW∪RW by replacing segments of edges involving
non-transactional accesses by the real-time order.

Lemma 4.26. Let a DRF history H and its graph G =
(N,_,HB,WR,WW,RW) ∈ Graph(H) be such that (HB ; (WR ∪WW ∪ RW)) is
irreflexive. Then for all nodes n, n′ ∈ N , such that at most one of them is a
transaction:

n
WR∪WW∪RW−−−−−−−−−→ n′ =⇒ n

HB−−→ n′.

Proof. Let us first consider two nodes n = ν and n′ = ν′ that are non-
transactional accesses such that ν WR∪WW∪RW−−−−−−−−−→ ν′. All non-transactional ac-
tions are totally ordered by cl(H), and, therefore, by hb(H). Consequently, at
least one of the two edges, ν HB−−→ ν′ and ν′

HB−−→ ν, is present in the graph G.
Knowing that (HB ; (WR∪WW∪RW)) is irreflexive, we conclude that only the
former edge is possible, i.e., ν HB−−→ ν′ holds.

Let us now consider a node-transaction n = T and a non-transactional access
n′ = ν such that T WR∪WW∪RW−−−−−−−−−→ ν (the case when n is a non-transactional access
and n′ is a transaction is analogous). We first assume that T and ν are by the
same thread. Then either T HB−−→ ν or ν HB−−→ T holds, since actions of T and ν are
related by program order accordingly. Knowing that (HB ; (WR ∪WW ∪ RW))

is irreflexive, we conclude that it is only possible that T HB−−→ ν.
We now consider T and ν that are by different threads. Let ψ′ be the request

action of ν. It is easy to see from Definition 4.19 of edges of the opacity graph
that there exists an action ψ ∈ T and a register x such that ψ and ψ′ access
x. Since ψ and ψ′ are by different threads and access the same register, they
form a conflict. However, H is DRF, so by Definition 4.4, either ψ <hb(H) ψ

′

or ψ′ <hb(H) ψ holds. When lifted to nodes of the opacity graph, it is the case

that either T HB−−→ ν or ν HB−−→ T . Knowing that (HB ; (WR ∪WW ∪ RW)) is
irreflexive, we conclude that it is only possible that T HB−−→ ν.

Given a history H and a graph G = (H,_,_,WR,_,_), we write n TXWR−−−−→
n′ when n, n′ ∈ txns(H) and n WR−−→ n′. We also use a shorthand xpotxwr(H) =⋃
x∈Reg(xpo(H) ; txwrx(H)).

Definition 4.27. A hb-path π in a history H is a (possibly empty) sequence of
triples:

π = (ψ1, R1, ψ2)(ψ2, R2, ψ3) . . . (ψm−1, Rm−1, ψm),

such that:

• ψ1, ψ2, . . . , ψm ∈ act(H);

94

• each Ri (1 ≤ i ≤ m − 1) is one of the following relations: po(H), cl(H),
af(H), bf(H) and xpotxwr(H).

• for every i such that 1 ≤ i ≤ m− 1, ψi <Ri
ψi+1.

We let Paths(H) denote the set of all hb-paths in H.

Definition 4.28. Given a history H and transactions T, T ′ ∈ txns(H), we let
TXPathsn(H,T, T ′) ⊆ Paths(H) denote the set of all hb-paths satisfying the
following conditions:

• the hb-path starts with an action of T and ends with an action of T ′;

• n is the number of occurrences of triples of the form (_, xpotxwr(H),_)
in the hb-path.

Lemma 4.29. For a history H ∈ History, an opacity graph G =
(N, vis,HB,WR,WW,RW) ∈ Graph(H) and two distinct transactions T, T ′ ∈
txns(H), if T HB−−→ T ′, then T RT∪TXWR−−−−−−−→+ T ′.

Proof. By Definition 4.19, T HB−−→ T ′ if and only if there exist ψ ∈ T and ψ′ ∈ T ′

such that ψ <hb(H) ψ
′. It is easy to see that T HB−−→ T ′ holds if and only if⋃

n≥0 TXPathsn(H,T, T ′) 6= ∅. Thus, to prove the lemma, we demonstrate that
for a given history H and its graph G = (N, vis,HB,WR,WW,RW) ∈ Graph(H),
the following holds:

∀T, T ′ ∈ txns(H). T 6= T ′ ∧
⋃
n≥0

TXPathsn(H,T, T ′) 6= ∅ =⇒

T
RT∪TXWR−−−−−−−→+ T ′. (4.30)

We define Φ(n) as the following auxiliary statement:

∀T, T ′ ∈ txns(H). T 6= T ′ ∧ TXPathsn(H,T, T ′) 6= ∅ =⇒ T
RT∪TXWR−−−−−−−→+ T ′.

To prove (4.30), we show that Φ(n) holds for all n ≥ 0 by induction on n.
Base of the induction. Let us consider two distinct transactions T

and T ′ and the hb-paths TXPaths0(H,T, T ′) between them. Since these hb-
paths begin and end in different transactions and only feature relations po(H),
cl(H), af(H) and bf(H), every hb-path TXPaths0(H,T, T ′) includes actions
denoting the end of T and the beginning of T ′. Hence, there exists a path
π = (ψ,_,_) . . . (_,_, ψ′) ∈ TXPaths0(H,T, T ′) such that ψ is the end of
a transaction T and ψ′ is the beginning of a transaction T ′. Since relations
po(H), cl(H), af(H) and bf(H) are all consistent with the history execution
order <H (see §4.2), ψ <H ψ′. Therefore, T RT−−→ T ′ holds.

Induction step. Assuming that Φ(i) holds for i ≤ n, we demonstrate that
so does Φ(n+ 1). Let us consider two distinct transactions T, T ′ ∈ txns(H) and
a hb-path π ∈ TXPathsn+1(H,T, T ′).

Consider actions ψ1 and ψ2 such that the triple (ψ1, xpotxwr(H), ψ2) occurs
the latest in π: there exist π′ and π′′ such that π = π′ (ψ1, xpotxwr(H), ψ2)π′′

and there is no triple (_, xpotxwr(H),_) in π′′. By definition of xpo(H) and
txwr(H), there exists a transaction T1 and actions ψbegin and ψwrite such that:

95

• ψbegin denotes a beginning of a transaction T1;

• ψwrite denotes a write request action by T1;

• ψ1 <po(H) ψbegin <po(H) ψwrite <txwr_(H) ψ2 holds.

To conclude the induction step, we make the following three observations.
Firstly, note that the hb-path π′ (ψ1, po(H), ψwrite) ∈ TXPathsn(H,T, T1), and,
therefore, T RT∪TXWR−−−−−−−→+ T1 holds by the induction hypothesis Φ(n). Secondly,
let T2 be the transaction of ψ2. Since ψwrite <txwr_(H) ψ2 holds, so does

T1
TXWR−−−−→ T2. Finally, π′′ ∈ TXPaths0(H,T2, T

′). By the induction hypoth-
esis Φ(0), T2

RT∪TXWR−−−−−−−→+ T ′ holds. Altogether, the three observations imply
T

RT∪TXWR−−−−−−−→+ T ′.

Proof of Theorem 4.22. Let us consider a DRF history H and its graph G =
(N, vis,HB,WR,WW,RW) ∈ Graph(H). Consider a cycle π in G. Without loss
of generality, we can assume that all vertices on the cycle are distinct.

We first consider the case when all nodes in the cycle π are non-transactional
accesses. Note that non-transactional accesses ofH are totally ordered by cl(H).
Knowing that cl(H) is consistent with the execution order <H of the history H,
we conclude that there cannot be such cycle π.

In order to construct a cycle π′ over transactions only with edges from
RT ∪ DEP, we consider any two adjacent transactions in the cycle π, i.e., such
transactions T and T ′ that no other transaction appears between T and T ′. We
then demonstrate that in the opacity graph G, there is a path from T to T ′ in
RT ∪ DEP over transactions only, and we add the path to π′.

There are two possibilities: either T ′ immediately follows T in the cycle, or
they are separated by non-transactional accesses.

When T ′ immediately follows T in the cycle π, the two transactions are
connected by an opacity graph edge HB∪DEP. If T HB−−→ T ′, then by Lemma 4.29,
T

RT∪TXWR−−−−−−−→+ T ′, so we add the latter edges to π′. If T DEP−−→ T ′, then we add
the same edge to π′.

When T and T ′ are separated by other actions in the cycle π, we consider a
path between the two transactions:

T
HB∪DEP−−−−−→ n1

HB∪DEP−−−−−→ n2
HB∪DEP−−−−−→ . . .

HB∪DEP−−−−−→ nK
HB∪DEP−−−−−→ T ′,

where each ni ∈ nontxn(H) (i = 1..K) is a node of the graph G denoting a
non-transactional access. By Lemma 4.26, all non-HB edges on the path can be
replaced by HB:

T
HB−−→ n1

HB−−→ n2
HB−−→ . . .

HB−−→ nK
HB−−→ T ′

Therefore, T HB−−→ T ′ holds. By Lemma 4.29, there is a sequence of edges
T

RT∪TXWR−−−−−−−→+ T ′. We add all of those edges to the cycle π′.

Analogously to Theorem 4.22, we can prove the following lemma. Let txWR,
txWW, txRW denote WR, WW and RW dependencies between transactions ac-
cordingly.

96

Lemma 4.31. Let a data-race free history H and an opacity graph G =
(N, vis,HB,WR,WW,RW) ∈ Graph(H) be such that the relation (HB ; (WR ∪
WW ∪ RW)) is irreflexive. If T HB∪WR∪WW∪RW−−−−−−−−−−−→+ T ′ holds, then so does
T

RT∪txWR∪txWW∪txRW−−−−−−−−−−−−−−−→+ T ′.

That is, if there exists a path over edges HB ∪ WR ∪ WW ∪ RW between
two distinct transactions T and T ′ of the graph G, there also exists a path
consisting only of edges from RT ∪ txWR ∪ txWW ∪ txRW (note that RT edges
are not necessarily present in the graph G).

4.6 Case Study: TL2
The TL2 algorithm. The metadata maintained by the TL2 software TM are
summarized in Figure 4.8. For each register x, TL2 maintains its value reg[x],
version number ver[x] and a write-lock lock[x]. New version numbers are gen-
erated with the help of a global counter clock, which transactions advance on
commit. For every thread t, the TM maintains a flag active[t], which indicates
that the thread t is currently performing a transaction and is used to imple-
ment fences. TL2 also maintains metadata for each transaction T : a read-set
rset[T] of registers T has read from, a write-set wset[T] of registers and values
T intends to write to.

For brevity, we only provide pseudocode for transaction commits and fences,
and describe the initialization, read, and write informally. When a transaction
T starts in a thread t, it sets the flag active[t] to true, and stores the value of
clock into a local variable rver[T], which determines T ’s read timestamp: TL2
allows T to read registers only with versions less than or equal to rver[T]. The
write of a value v into a register x simply adds the pair (x, v) to the write-set
wset[T].

Each time T performs a read from a register x, it first checks if it has
already performed a write to x, in which case it returns that the value for x
from the write-set wset[T]. In other cases, T reads the current value reg[x] and
checks that its version is less than or equal to rver[T]; if not, TL2 aborts the
transaction.

Upon a commit, the current transaction T executes the function txcommit
in Figure 4.8. The commit starts by acquiring locks on each register in the
write-set wset[T] (lines 11–18). Next, T fetches-and-increments the value of
clock, which it stores into wver[T] and uses as the version for the new values T
will write to registers—its write timestamp (line 21). Afterwards, T ensures that
each register x in rset[T] has not been modified during the execution of T by
checking that x’s version ver[x] remains less than or equal to rver[T] and that x
is not currently locked (lines 22–28). The transaction then proceeds to write to
the registers and release the locks one register at a time (lines 31–34). Finally,
T commits. Upon aborting or committing at lines 18, 28 or 36, T executes a
handler that clears the active[t] flag (not shown in the code).

We consider a simple implementation of transactional fences in lines 39–
45 (taken from [72]). The implementation works in two steps: it first deter-
mines which transactions the fence should wait for by checking and storing their
active flags, and then blocks until the threads performing those transactions
clear their active flags.

97

1 Value clock, reg[NRegs], ver[NRegs];
2 Lock lock[NRegs];
3 Bool active[NThreads];
4 Set<Register> rset; // for each transaction
5 Map<Register, Value> wset; // for each transaction
6 Value rver; // for each transaction, initially ⊥
7 Value wver; // for each transaction, initially >
8

9 function txcommit(Transaction T) {
10 Set<Lock> lset := ∅;
11 foreach x in wset[T] {
12 Bool locked := lock[x].trylock();
13 if (¬locked)
14 lset.add(x);
15 else {
16 foreach y in lset[T]
17 lock[y].unlock();
18 return aborted(T);
19 }
20 }
21 wver[T] := fetch_and_increment(clock)+1;
22 foreach x in rset[T].keys() {
23 Bool locked := lock[x].test();
24 Value ts := ver[x];
25 if (locked ∨ rver[T] < ts) {
26 foreach y in lset[T]
27 lock[y].unlock();
28 return aborted(T);
29 }
30 }
31 foreach (x, v) in wset[T] {
32 reg[x] := v;
33 ver[x] := wver[T];
34 lock[x].unlock();
35 }
36 return committed(T);
37 }
38

39 function fence() {
40 Bool r[NThreads]; // initially all false
41 foreach t in ThreadID
42 r[t] := active[t];
43 foreach t in ThreadID
44 if (r[t])
45 while (active[t]);
46 return;
47 }

Figure 4.8: A fragment of the TL2 algorithm.

98

Proof overview. Due to space constraints, we only give an overview of the
proof of the strong opacity of TL2. To generate the set HTL2 of all histories of
TL2, we consider the most general client of TL2: a program where every thread
non-deterministically chooses the commands to execute. The well-formedness
conditions on fences from Definition 4.1 can be established with a simple rea-
soning about the fence function in lines 39–45 independently from the rest of
the proof. We prove strong opacity using Theorem 4.21: for every execution
of the most general client of TL2 with a DRF history H, we show that H is
consistent and build an opacity graph. To this end, we only need to define a
visibility relation vis and write-dependencies WW, as the other components of
the graph can be computed from these and H.

The consistency proof and the construction of the graph are inductive in
the length of the execution of the most general client. We start with an empty
trace, an empty history and an empty graph, and extend them as the executions
proceeds. Whenever a non-transactional access ν is executed, we add a new
visible node to the graph. When ν is a write to a register x, we also append
it to the total order WWx. Whenever a new transaction T starts, we add
a corresponding invisible node. When T executes the txcommit function, if
it reaches line 31, then we are sure T is going to commit. At this point we
therefore we make T visible and append it to the total order WWx for each
register x ∈ wset[T].

We need to show that, whenever the graph is extended with new edges, it
stays acyclic. To this end, we use Theorem 4.22 to reduce the acyclicity check
to the one required when proving the usual opacity, i.e., checking the absence of
cycles over transactions in RT∪WR∪WW∪RW (checking the absence of cycles
with a single dependency is easier and we omit its description for brevity).
In our proof, only graph updates of the read and commit operations of each
transaction impose proof obligations.

At every step of the graph construction, we maintain an inductive invariant
that helps us prove both consistency of the history and the acyclicity of RT ∪
WR ∪WW ∪ RW. Its most important part associates a notion of time with the
edges of the graph based on the read and write timestamps of transactions:

1. ∀T, T ′. T RT−−→ T ′ =⇒ rver[T ′] = ⊥ ∨
((vis(T) =⇒ wver[T] ≤ rver[T ′])∧ (¬vis(T) =⇒ rver[T] ≤ rver[T ′])).

2. ∀T, T ′. T WR−−→ T ′ =⇒ wver[T] ≤ rver[T ′].

3. ∀T, T ′. T RW−−→ T ′ =⇒ rver[T] < wver[T ′].

4. ∀T, T ′. T WW−−→ T ′ =⇒ wver[T] < wver[T ′].

Property 1 asserts that, whenever a transaction T ′ occurs after a completed
transaction T in the real time, it either has not yet generated a read timestamp
rver[T ′], or it has and rver[T ′] is greater or equal to wver[T] (when T is visible
and, therefore, committed) or rver[T] (otherwise). Property 2 asserts that,
whenever a transaction T ′ reads a value of a register written by a transaction
T , the version that T ′ assigned to the register may not be greater than the read
timestamp of T . This is validated by the check TL2 performs when reading
registers. Property 3 asserts that a transaction T ′ overwriting the value read
by a transaction T has the write timestamp greater than the read timestamp of

99

T . It holds because, if T ′ commits its write after T reads the previous value of
the register, then T generates its read timestamp before T ′ generates its write
timestamp. Property 4 follows from the mutual exclusion that TL2 ensures for
committing transactions that write the same register x (using lock[x]). Since
writes in commit operations occur within a critical section, write dependencies
are always consistent with the order on write timestamps.

With the help of the above invariant, we establish that for a path between
any transactions T and T ′ in the graph, certain inequalities between their times-
tamps take place depending on visibility of the two transactions, such as the
following:

vis(T) ∧ vis(T ′) =⇒ wver[T] < wver[T ′]. (4.32)

Using this and other minor observations, we can demonstrate that graph updates
preserve the acyclicity of RT∪WR∪WW ∪ RW, by showing that a cycle would
imply a contradiction involving the timestamps of transactions. As an example
of such reasoning, consider a transaction T executing the txcommit operation.
As T reaches line 31, we mark it as visible and add new write dependencies in
the graph. Let us assume that adding T ′ WW−−→ T , where T ′ is some transaction,
causes a cycle over transactions. Then there must exist a path from T to T ′.
Note that vis(T) and vis(T ′) both hold, since they are ordered by WW. By
(4.32), wver[T] < wver[T ′] holds, because there is a path from T to T ′. On the
other hand, Property 4 above gives us wver[T ′] < wver[T], since T ′ WW−−→ T is
in the graph. Thus, we have arrived to a contradiction.

4.7 Related Work
In this chapter we have concentrated on one technique for ensuring privatization
safety—transactional fences. However, there have been several proposals of
alternative techniques (see [14, §4.6.1] for a survey), and in the future, we plan
to address these. In particular, some TMs do not require transactional fences for
safe privatization [73, 74, 75, 76], even though the programmer still has to follow
a certain DRF discipline. Such a discipline has been proposed by Dalessandro
and Scott [20, 21], but it did not come with a formal justification, such as our
proofs of the Fundamental Property and TM correctness.

Kestor et al. [59] proposed a notion of DRF for TMs that do not support
safe privatization and a race-detection tool for this notion. Unlike us, they do
not consider transactional fences, so that the only way to safely privatize an
object is to agree on its status outside transactions (Figure 4.7). Our notion of
DRF specializes to the one by Kestor et al. if we consider only histories without
fences.

Lesani et al. [60] proposed a transactional DRF based on TMS [77], a TM
consistency criterion. However, as they acknowledge, their proposal does not
support privatization.

To the best of our knowledge, a line of work by Abadi et al. was the only one
that proposed disciplines for privatization with a formal justification of their
safety [56, 78]. However, they did not take into account transactional fences
and considered programming disciplines more restrictive than ours. Their static
separation [56] ensures strong atomicity by not mixing transactional and non-
transactional accesses to the same register. Dynamic separation [78] relaxes

100

this by introducing explicit commands to privatize and publish an object. We
believe such disciplines are particular ways of achieving the more general notion
of data-race freedom that we adopted.

Gotsman et al. have previously proposed a logic for reasoning about pro-
grams using RCU [72]. Since transactional fences are similar to RCU, we believe
this logic can be adapted to guide programmers in inserting fences to satisfy our
notion of DRF.

In this chapter we assumed sequential consistency as a baseline non-
transactional memory model. However, transactions are being integrated into
languages, such as C++, that have weaker memory models [79]. Our defini-
tion of a data race is given in the axiomatic style used in the C++ memory
model [55]. For this reason, we believe that our results can in the future be
adapted to the more complex setting of C++.

Guerraoui et al. [80] considered TMs that provide strong atomicity without
making any assumptions about the client program. They formalized the require-
ment on such TMs as parameterized opacity and proved the impossibility of
achieving it on many memory models without instrumenting non-transactional
accesses. This result justifies our decision to provide strong atomicity only to
DRF programs.

101

Chapter 5

Conclusion

This thesis presents advances in program logics and proof techniques for rea-
soning about fine-grained concurrent implementations of data structures and
transactional memory. It also provides formal foundations for the programming
model in which memory can be accesses both inside and outside of transactions.

Firstly, we have presented a generic logic for proving linearizability of con-
current data structures. It unifies the various logics based on linearization points
with helping. As designing a new logic for reasoning about a new class of algo-
rithms requires finding the proof rules and proving their soundness afresh, our
goal in Chapter 2 was to propose a framework for designing such logics and to
formalize the method they use for reasoning about linearizability in a way inde-
pendent of the particular thread-modular reasoning technique. We have shown
instantiations of our logic based on disjoint concurrent separation logic [28] and
RGSep [24]. However, we expect that our logic can also be instantiated with
more complex thread-modular reasoning methods, such as those based on con-
current abstract predicates [29] or islands and protocols [33].

The notable limitation of the approach we took in Chapter 2 is that of the
linearization-point method. It is limited in the range of algorithms it can handle:
in particular, algorithms requiring reasoning about future behavior of operations
in the execution are notoriously difficult to prove using linearization points. In
Chapter 3, we presented a new proof method which lifts these limitations, while
preserving the inductive proof structure of traditional linearization points. As
with linearization points, our key idea can be explained simply: at commitment
points, operations impose order between themselves and other operations, and
all linearizations of the order must satisfy the sequential specification. Nonethe-
less, our method generalizes to algorithms such as the Herlihy-Wing queue and
the Time-stamped Queue, which are known to be challenging to reason about
in terms of linearization points.

In Chapter 4, we studied the problem of safe privatization support in trans-
actional memory (TM). We proposed a notion of data-race freedom (DRF) and
showed that DRF programs get strong atomicity guarantees from a TM system
and, therefore, privatization-safety, under assumption that the TM system sat-
isfies strong opacity. The notion of data-race freedom supports the standard
primitive for ensuring privatization safety, i.e., transactional fences. However,
there have been several proposals of alternative approaches and in the future,
we plan to address these.

102

We conclude by noting some directions of further research that our results
suggest.

5.1 Future Directions
The Views Framework for liveness-preserving linearizability. In this
dissertation we concentrated on linearizability in its original form [7], which
considers only finite computations and, hence, specifies only safety properties
of the library. Linearizability has since been generalized to also specify liveness
properties [37]. A possible direction of future work is to generalize our generic
logic from Chapter 2 to handle liveness, possibly building on ideas from [38].

Reasoning about future-dependent linearizations in the Views Frame-
work. We formalized our proof method from Chapter 3 as a Hoare logic based
on rely-guarantee [16]. Our method is general and can be combined with more
advanced methods for reasoning about concurrency [24, 29, 45]. However, since
modifying those logics accordingly requires re-proving their soundness, extend-
ing the Views framework to support the proof method of using partial orders
could be a possible direction of future work.

Automation of proving linearizability using partial orders. In this dis-
sertation we have concentrated on simplifying manual proofs. However, our ap-
proach in Chapter 3 also seems like a promising candidate for automation, as
it requires no special meta-theory, just reasoning about partial orders. We are
hopeful that we can automate such arguments using off-the-shelf solvers such
as Z3, and we plan to experiment with this in future.

DRF for privatization-safe TMs. In Chapter 4 we have concentrated on
one technique for ensuring privatization safety—transactional fences. However,
there have been several proposals of alternative techniques (see [14, §4.6.1] for
a survey), and in the future, we plan to address these. In particular, some
TMs do not require transactional fences for safe privatization [73, 74, 75, 76],
even though the programmer still has to follow a certain DRF discipline. Such
a discipline has been proposed by Dalessandro and Scott [20, 21], but it did
not come with a formal justification, such as our proofs of the Fundamental
Property and TM correctness.

DRF for strong atomicity under weak memory models. Our work in
Chapter 4 assumed sequential consistency as a baseline non-transactional mem-
ory model. However, transactions are being integrated into languages, such as
C++, that have weaker memory models [79]. Our definition of a data race is
given in the axiomatic style used in the C++ memory model [55]. For this
reason, we believe that our results can in the future be adapted to the more
complex setting of C++.

Transactional race-detection tools. Kestor et al. [59] proposed a notion
of DRF for TMs that do not support safe privatization and a race-detection
tool for this notion. Unlike us, they do not consider transactional fences, so

103

that the only way to safely privatize an object is to agree on its status outside
transactions (Figure 4.7). Our notion of DRF specializes to the one by Kestor
et al. if we consider only histories without fences. We hope that, in the future,
race-detection tools like the one of Kestor et al. can be adapted to detect our
notion of data races.

104

Bibliography

[1] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural sup-
port for lock-free data structures,” in International Symposium on Com-
puter Architecture (ISCA), pp. 289–300, 1993.

[2] N. Shavit and D. Touitou, “Software transactional memory,” Distributed
Computing, vol. 10, no. 2, pp. 99–116, 1997.

[3] Intel Corporation, “Intel architecture instruction set extensions program-
ming reference. Chapter 8: Intel transactional synchronization extensions,”
2012.

[4] H. Q. Le, G. L. Guthrie, D. E. Williams, M. M. Michael, B. G. Frey, W. J.
Starke, C. May, R. Odaira, and T. Nakaike, “Transactional memory support
in the ibm power8 processor,” IBM Journal of Research and Development,
vol. 59, no. 1, pp. 8:1–8:14, 2015.

[5] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen, “Hybrid
transactional memory,” in Symposium on Principles and Practice of Par-
allel Programming (PPOPP), pp. 209–220, 2006.

[6] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum, “Hybrid transactional memory,” in International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 336–346, 2006.

[7] M. Herlihy and J. M. Wing, “Linearizability: A correctness condition for
concurrent objects,” ACM TOPLAS, 1990.

[8] I. Filipovic, P. O’Hearn, N. Rinetzky, and H. Yang, “Abstraction for concur-
rent objects,” Theoretical Computer Science, vol. 411, no. 51-52, pp. 4379
– 4398, 2010.

[9] M. Herlihy and N. Shavit, The art of multiprocessor programming. 2008.

[10] R. Guerraoui and M. Kapalka, “On the correctness of transactional mem-
ory,” in Symposium on Principles and Practice of Parallel Programming
(PPOPP), pp. 175–184, 2008.

[11] H. Attiya, G. Ramalingam, and N. Rinetzky, “Sequential verification of
serializability,” in Proceedings of the 37th ACM Symposium on Principles
of Programming Languages, POPL 2010, Madrid, Spain, January 17-23,
2010, pp. 31–42, 2010.

105

[12] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott, “Privatization
techniques for software transactional memory,” Tech. Rep. 915, Computer
Science Department, University of Rochester, 2007.

[13] C. Blundell, E. C. Lewis, and M. M. K. Martin, “Subtleties of transactional
memory atomicity semantics,” IEEE Computer Architecture Letters, vol. 5,
no. 2, 2006.

[14] T. Harris, J. Larus, and R. Rajwar, Transactional Memory. Morgan and
Claypool Publishers, 2nd ed., 2010.

[15] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local reasoning about pro-
grams that alter data structures,” in CSL, 2001.

[16] C. B. Jones, “Specification and design of (parallel) programs,” in IFIP
Congress, 1983.

[17] T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and H. Yang,
“Views: compositional reasoning for concurrent programs,” in POPL, 2013.

[18] A. Haas, Fast Concurrent Data Structures Through Timestamping. PhD
thesis, University of Salzburg, 2015.

[19] P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh, “Ver-
ifying linearizability with hindsight,” in PODC, 2010.

[20] L. Dalessandro and M. L. Scott, “Strong isolation is a weak idea,” in Work-
shop on Transactional Computing (TRANSACT), 2009.

[21] L. Dalessandro, M. L. Scott, and M. F. Spear, “Transactions as the foun-
dation of a memory consistency model,” in International Symposium on
Distributed Computing (DISC), pp. 20–34, 2010.

[22] D. Dice, O. Shalev, and N. Shavit, “Transactional locking II,” in Interna-
tional Symposium on Distributed Computing (DISC), pp. 194–208, 2006.

[23] B. Dongol and J. Derrick, “Verifying linearizability: A comparative survey,”
arXiv CoRR, vol. 1410.6268, 2014.

[24] V. Vafeiadis, Modular fine-grained concurrency verification. PhD thesis,
University of Cambridge, UK, 2008. Technical Report UCAM-CL-TR-726.

[25] H. Liang and X. Feng, “Modular verification of linearizability with non-fixed
linearization points,” in PLDI, 2013.

[26] X. Feng, “Local rely-guarantee reasoning,” in POPL, 2009.

[27] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner, “TaDA: A logic
for time and data abstraction,” in ECOOP, 2014.

[28] P. W. O’Hearn, “Resources, concurrency, and local reasoning,” Theoretical
Computer Science, 2007.

[29] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and
V. Vafeiadis, “Concurrent abstract predicates,” in European Conference on
Object-Oriented Programming, ECOOP 2010, 2010.

106

[30] R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson, “Permission
accounting in separation logic,” in POPL, 2005.

[31] A. Gotsman and H. Yang, “Linearizability with ownership transfer,” LMCS,
2013.

[32] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir, “Flat combining and the
synchronization-parallelism tradeoff,” in SPAA, 2010.

[33] A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer, “Logical
relations for fine-grained concurrency,” in POPL, 2013.

[34] G. Schellhorn, H. Wehrheim, and J. Derrick, “How to prove algorithms
linearisable,” in CAV, 2012.

[35] T. A. Henzinger, A. Sezgin, and V. Vafeiadis, “Aspect-oriented linearizabil-
ity proofs,” in CONCUR, 2013.

[36] M. Dodds, A. Haas, and C. M. Kirsch, “A scalable, correct time-stamped
stack,” in POPL, 2015.

[37] A. Gotsman and H. Yang, “Liveness-preserving atomicity abstraction,” in
ICALP, 2011.

[38] H. Liang, X. Feng, and Z. Shao, “Compositional verification of termination-
preserving refinement of concurrent programs,” in LICS, 2014.

[39] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal,
and D. Dreyer, “Iris: Monoids and invariants as an orthogonal basis for
concurrent reasoning,” in POPL, 2015.

[40] K. Svendsen and L. Birkedal, “Impredicative concurrent abstract predi-
cates,” in ESOP, 2014.

[41] I. Sergey, A. Nanevski, and A. Banerjee, “Specifying and verifying concur-
rent algorithms with histories and subjectivity,” in ESOP, 2015.

[42] M. Hoffman, O. Shalev, and N. Shavit, “The baskets queue,” in OPODIS,
Springer, 2007.

[43] A. Morrison and Y. Afek, “Fast concurrent queues for x86 processors,” in
PPoPP, 2013.

[44] P. C. Fishburn, “Intransitive indifference with unequal indifference inter-
vals,” Journal of Mathematical Psychology, vol. 7, 1970.

[45] A. Turon, D. Dreyer, and L. Birkedal, “Unifying refinement and hoare-style
reasoning in a logic for higher-order concurrency,” in ICFP, 2013.

[46] S. S. Owicki and D. Gries, “An axiomatic proof technique for parallel pro-
grams I,” Acta Informatica, vol. 6, 1976.

[47] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and N. Shavit,
“A lazy concurrent list-based set algorithm,” in OPODIS, 2005.

107

[48] G. Schellhorn, J. Derrick, and H. Wehrheim, “A sound and complete proof
technique for linearizability of concurrent data structures,” ACM TOCL,
vol. 15, 2014.

[49] N. Hemed, N. Rinetzky, and V. Vafeiadis, “Modular verification of
concurrency-aware linearizability,” in DISC, 2015.

[50] G. A. Delbianco, I. Sergey, A. Nanevski, and A. Banerjee, “Concurrent
data structures linked in time,” in European Conference on Object-Oriented
Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain, pp. 8:1–
8:30, 2017.

[51] H. Attiya, A. Gotsman, S. Hans, and N. Rinetzky, “A programming lan-
guage perspective on transactional memory consistency,” in Symposium on
Principles of Distributed Computing (PODC), pp. 309–318, 2013.

[52] L. Lamport, “How to make a multiprocessor computer that correctly ex-
ecutes multiprocess programs,” IEEE Trans. Computers, vol. 28, no. 9,
pp. 690–691, 1979.

[53] S. V. Adve and M. D. Hill, “Weak ordering - A new definition,” in Interna-
tional Symposium on Computer Architecture (ISCA), pp. 2–14, 1990.

[54] J. Manson, W. Pugh, and S. V. Adve, “The java memory model,” in Sym-
posium on Principles of Programming Languages (POPL), pp. 378–391,
2005.

[55] ISO/IEC. Programming Languages — C++, 14882:2017. 2017.

[56] M. Abadi, A. Birrell, T. Harris, and M. Isard, “Semantics of transactional
memory and automatic mutual exclusion,” ACM Trans. Program. Lang.
Syst., vol. 33, pp. 2:1–2:50, 2011.

[57] M. Abadi, T. Harris, and K. F. Moore, “A model of dynamic separation
for transactional memory,” in International Conference on Concurrency
Theory (CONCUR), pp. 6–20, 2008.

[58] K. F. Moore and D. Grossman, “High-level small-step operational semantics
for transactions,” in Symposium on Principles of Programming Languages
(POPL), pp. 51–62, 2008.

[59] G. Kestor, O. S. Unsal, A. Cristal, and S. Tasiran, “T-rex: a dynamic race
detection tool for C/C++ transactional memory applications,” in European
Systems Conference (Eurosys), pp. 20:1–20:12, 2014.

[60] M. Lesani, V. Luchangco, and M. Moir, “Specifying transactional memories
with nontransactional operations,” in Workshop on the Theory of Transac-
tional Memory (WTTM), 2013.

[61] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg,
“McRT-STM: a high performance software transactional memory system
for a multi-core runtime,” in Symposium on Principles and Practice of Par-
allel Programming (PPOPP), pp. 187–197, 2006.

108

[62] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, “Time-based software trans-
actional memory,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 12, pp. 1793–1807, 2010.

[63] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott., “Lowering the overhead of software transac-
tional memory.,” in Workshop on Transactional Computing (TRANSACT),
2006.

[64] P. E. McKenney, Exploiting Deferred Destruction: An Analysis of Read-
Copy-Update Techniques in Operating System Kernels. PhD thesis, OGI
School of Science and Engineering at Oregon Health and Sciences Univer-
sity, 2004.

[65] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A. Adl-Tabatabai, and H. S. Lee, “Kick-
ing the tires of software transactional memory: why the going gets tough,”
in Symposium on Parallelism in Algorithms and Architectures (SPAA),
pp. 265–274, 2008.

[66] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford
transactional applications for multi-processing,” in International Sympo-
sium on Workload Characterization (IISWC), pp. 35–46, 2008.

[67] T. Zhou, P. Zardoshti, and M. F. Spear, “Practical experience with trans-
actional lock elision,” in International Conference on Parallel Processing
(ICPP), pp. 81–90, 2017.

[68] R. Guerraoui and M. Kapalka, Principles of Transactional Memory. Syn-
thesis Lectures on Distributed Computing Theory, Morgan & Claypool
Publishers, 2010.

[69] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson,
J. E. B. Moss, B. Saha, and T. Shpeisman, “Open nesting in software
transactional memory,” in Symposium on Principles and Practice of Par-
allel Programming (PPOPP), pp. 68–78, 2007.

[70] J. E. B. Moss and A. L. Hosking, “Nested transactional memory: model and
architecture sketches,” Science of Computer Programming, vol. 63, no. 2,
pp. 186–201, 2006.

[71] T. Shpeisman, A.-R. Adl-Tabatabai, R. Geva, Y. Ni, and A. Welc, “Towards
transactional memory semantics for C++,” in Symposium on Parallelism
in Algorithms and Architectures (SPAA), pp. 49–58, 2009.

[72] A. Gotsman, N. Rinetzky, and H. Yang, “Verifying concurrent memory
reclamation algorithms with grace.,” in European Symposium on Program-
ming (ESOP), pp. 249–269, 2013.

[73] L. Dalessandro, M. F. Spear, and M. L. Scott, “Norec: streamlining STM
by abolishing ownership records,” in Symposium on Principles and Practice
of Parallel Programming (PPOPP), pp. 67–78, 2010.

[74] M. F. Spear, M. M. Michael, and C. von Praun, “RingSTM: Scalable trans-
actions with a single atomic instruction,” in Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 275–284, 2008.

109

[75] D. Dice and N. Shavit, “TLRW: return of the read-write lock,” in Sympo-
sium on Parallelism in Algorithms and Architectures (SPAA), pp. 284–293,
2010.

[76] M. Olszewski, J. Cutler, and J. G. Steffan, “JudoSTM: A dynamic binary-
rewriting approach to software transactional memory,” in International
Conference on Parallel Architecture and Compilation Techniques (PACT),
pp. 365–375, 2007.

[77] S. Doherty, L. Groves, V. Luchangco, and M. Moir, “Towards formally spec-
ifying and verifying Transactional Memory,” Formal Aspects of Computing,
vol. 25, no. 5, pp. 769–799, 2013.

[78] M. Abadi, A. Birrell, T. Harris, J. Hsieh, and M. Isard, “Implementation
and use of transactional memory with dynamic separation,” in International
Conference on Compiler Construction (CC), pp. 63–77, 2009.

[79] ISO/IEC. Technical Specification for C++ Extensions for Transactional
Memory, 19841:2015. 2015.

[80] R. Guerraoui, T. A. Henzinger, M. Kapalka, and V. Singh, “Transactions in
the jungle,” in Symposium on Parallelism in Algorithms and Architectures
(SPAA), pp. 263–272, 2010.

110

Appendix A

Detailed Case Studies

A.1 Linearizability of the Time-Stamped Queue

A.1.1 Proof outline
We prove the following specifications for Enq and Deq for each thread t ∈
ThreadID (proof outlines are provided in Figure A.1 and Figure A.2):

Rt, Gt `t
{

INV ∧ started(t,Enq)
}

Enq
{

INV ∧ ended(t,Enq)
}

Rt, Gt `t
{

INV ∧ started(t,Deq)
}

Deq
{

INV ∧ ended(t,Deq)
}

In the specifications, INV is the global invariant, and Rt and Gt are rely and
guarantee relations defined in §3.6. Assertions started(t, op) and ended(t, op)
are defined in §3.5.

We prove the following specifications for Enq and Deq for each thread t ∈
ThreadID (proof outlines are provided in Figure A.1 and Figure A.2):

Rt, Gt `t
{

INV ∧ started(t,Enq)
}

Enq
{

INV ∧ ended(t,Enq)
}

Rt, Gt `t
{

INV ∧ started(t,Deq)
}

Deq
{

INV ∧ ended(t,Deq)
}

In the specifications, INV is the global invariant, and Rt and Gt are rely and
guarantee relations defined in §3.6. Assertions started(t, op) and ended(t, op)
are defined in §3.5.

We introduce assertions noPotCand and isPotCand to denote the properties
analogous to noCand and isCand that hold of an enqueue event in the front of
the pool of thread k. To this end, we let seenA(κ, d) denote the set of enqueue
events observed d in the pools of threads from A (see Definition 3.17), and we
also let minTSA(ENQ) be a predicate asserting that ENQ’s timestamp is minimal
among enqueues in pools(k).

JnoPotCandK` = {(s,H,Gts) | seenk((s,H,Gts), myEid()) = ∅ ∧ s(pid) = NULL};
JisPotCandK` = {(s,H,Gts) | ∃ENQ. ENQ = enqOf(E,G, s(k), s(ts))

∧minTSk(ENQ) ∧ (ENQ ∈ inQ(s(pools), E,Gts) =⇒
ENQ ∈ seenk((s,H,Gts), myEid())) ∧ s(pid) 6= NULL};

We further explain how they are used in Appendix A.1.2.

111

1 enqueue(Val v) {
2

{
INV ∧ started(t,Enq)

}
3 atomic { // insert
4 PoolID node := insert(myTid(), v);
5 Gts[myEid()] := >;
6 }
7

{
INV ∧ started(t,Enq)

}
8 TS timestamp := newTimestamp();
9

{
∃T. INV ∧ started(t,Enq) ∧ newTS(timestamp)

}
10 atomic { // setTS
11 setTimestamp(myTid(), node, timestamp);
12 Gts[myEid()] := timestamp;
13 E(myEid()).rval := ⊥;
14 }
15

{
INV ∧ ended(t,Enq)

}
16 return ⊥;
17 }

Figure A.1: The proof outline for the enqueue method of the TS queue.

112

18 Val dequeue() {
19

{
INV ∧ started(t,Deq)

}
20 Val ret := NULL;
21 EventID CAND;
22 do {
23 TS start_ts := newTimestamp();
24 PoolID pid, cand_pid := NULL;
25 TS ts, cand_ts := >;
26 ThreadID cand_tid;
27

{
INV ∧ started(t,Deq) ∧ LI ∧ res[t] = NULL

}
28 for each k in 1..NThreads do {
29

{
INV ∧ started(t,Deq) ∧ LI ∧ res[t] = NULL

}
30 atomic {
31 (pid, ts) := getOldest(k);
32 R := (R ∪ {(e, myEid()) | e ∈ id(bEc) ∩ inQ(pools, E,Gts)
33 ∧ ¬(start_ts <TS Gts(e))})+;
34 }

35

{
INV ∧ started(t,Deq) ∧ LI ∧ res[t] = NULL
∧ (noPotCand ∨ isPotCand)

}
36 if (pid 6= NULL && ts <TS cand_ts && ¬(start_ts <TS ts)) {
37 (cand_pid, cand_ts, cand_tid) := (pid, ts, k);
38 CAND:= enqOf(E, Gts, cand_tid, cand_ts);
39 }
40

{
INV ∧ started(t,Deq) ∧ LI ∧ res[t] = NULL

}
41 }
42

{
INV ∧ started(t,Deq) ∧ LI ∧ res[t] = NULL

}
43 if (cand_pid 6= NULL)
44

{
INV ∧ started(t,Deq) ∧ isCand ∧ cand_pid 6= NULL ∧ res[t] = NULL

}
45 atomic { // remove
46 ret := remove(cand_tid, cand_pid);
47 if (ret 6= NULL) {
48 E(myEid()).rval := ret;
49 R := (R ∪ {(CAND, e) | e ∈ inQ(pools, E,Gts)}
50 ∪ {(myEid(), d) | E(d).op = Deq ∧ d ∈ id(E \ bEc)})+;
51 }
52 }
53

{
INV ∧ ((started(t,Deq) ∧ res[t] = NULL) ∨ ended(t,Deq))

}
54 } while (ret = NULL);
55

{
INV ∧ ended(t,Deq)

}
56 return ret;
57 }

Figure A.2: The proof outline for the dequeue method of the TS queue.

113

A.1.2 Preservation of the loop invariant.
We consider the current dequeue operation myEid() in a thread t, which gen-
erates a timestamp start_ts and proceeds to execute for each loop. At k’s
iteration of the loop, the following two steps performed:

• Step 1: Using getOldest(k), we learn a pool identifier pid and a times-
tamp ts of the value in the front of the queue (if there is any). Addi-
tionally, every enqueue in pools(k) with a timestamp not greater than
start_ts is ordered in front of myEid(). As a result, one of the two cases
takes place:

– noPotCand holds, in which case we say that there is no potential can-
didate in pools(k). This describes configurations, in which pools(k)
is either empty or ts is greater than start_ts.

– isPotCand holds, in which case we say that the enqueue event ENQ =
enqOf(E,Gts, k, ts) is the potential candidate in pools(k). This de-
scribes configurations, in which ts is not greater than start_ts.
Additionally, this requires that ts be smaller than other timestamps
currently present in pools(k). Note that the latter follows from
INVALG(ii) and INVALG(i) after Step 1.

• Step 2: if there is a potential candidate, its timestamp is compared to the
timestamp cand_ts of the current candidate for removal and the earliest
of the two is kept as the candidate;

To show that the loop invariant LI is preserved by the k’s iteration, we consider
separately the cases when there is the potential candidate ENQ and when there
is no such enqueue event.

Let us first assume that isPotCand holds, and ENQ = enqOf(E,Gts, k, ts) is
the potential candidate in pools(k). At step 2 (line 36), the current dequeue
compares ts to cand_ts and decides whether to choose ENQ as the candidate for
removal. According to the loop invariant, there are two possibilities: either no
candidate has been chosen so far (noCand holds), or there is a candidate CAND

(isCand holds). When the former is the case, seenA((s,H,Gts), myEid()) = ∅.
It is easy to see that isPotCand immediately implies isCand after k’s iteration.
Let us now consider the case when isCand holds and CAND has been selected as
the candidate for removal out of enqueues in threads from A. Let us assume
that ts <TS cand_ts takes place (the other situation is justified analogously).
To conclude isCand for the next iteration, we need to show that:

• ENQ ∈ inQ(pools, E,Gts) =⇒ ENQ ∈ seenA]{k}((s,H,Gts), myEid()), and

• minTSA]{k}(ENQ).

The first requirement follows trivially from isPotCand: if ENQ ∈
inQ(pools, E,Gts) holds, then so does:

ENQ ∈ seen{k}((s,H,Gts), myEid()) ⊆ seenA]{k}((s,H,Gts), myEid()).

It remains to show that minTSA]{k}(ENQ) holds, i.e. that every other enqueue
in seenA]{k}((s,H,Gts), myEid()) does not have a timestamp smaller than ENQ.
According to isPotCand, ENQ is minimal among enqueues in thread k. Let

114

us assume that ENQ is not minimal among enqueues in A, i.e. that there is
ENQ′ ∈ seenA((s, H, Gts), myEid()) such that Gts(ENQ

′) <TS Gts(ENQ). Knowing
that Gts(ENQ) <TS cand_ts, we conclude that Gts(ENQ

′) <TS cand_ts, which
contradicts the loop invariant. Therefore, ENQ is minimal among enqueues in
both A and k.

Now let us assume that noPotCand holds, i.e. that there is no potential can-
didate in pools(k). In this case, the candidate for removal remains unchanged.
Intuitively, when there is no potential candidate in pools(k), all values oc-
curring in the pool have timestamps greater than start_ts. According to the
invariant INVALG(i), all successors of corresponding events will have even greater
timestamps.

Prior to k’s iteration, either noCand or isCand holds. Let us first assume
the former. Then no candidate has been chosen after iterating over A. Together,
noCand and noPotCand immediately imply noCand for the next iteration. Let
us now consider the case when isCand holds. Then there is a candidate for
removal CAND. It is easy to see that CAND ∈ seenA]{k}(κ, myEid()) holds, so it
remains to ensure that minTSA]{k}(CAND) holds. To this end, we need to demon-
strate that for every enqueue e ∈ seenk(κ, myEid()), ¬(Gts(e) <TS Gts(CAND))
holds. However, according to noPotCand, there are no such enqueues e, so
isCand can be concluded for the next iteration.

A.1.3 Auxiliary proofs for the loop invariant
(Lemma 3.18)

Lemma A.1. Given any configuration κ = (s, (E,R), Gts) satisfying INV and
an identifier d of a dequeue event that has generated its timestamp start_ts,
an enqueue by a visited thread not seen by d does not precede any enqueue seen
by d:

∀i, i′. i ∈ inQ(s, E,Gts) \ seen(κ, d)

∧ i′ ∈ seen(κ, d) ∧ {E(i).tid, E(i′).tid} ⊆ A =⇒ ¬(i
R−→ i′).

Proof. We do a proof by contradiction. Let us assume that there exist i and
i′ satisfying the premise of the implication above and such that i R−→ i′ holds.
Since E(i).tid ∈ A and i ∈ inQ(s, E,Gts) \ seen(κ, d), the following holds by
definition of seen:

(a) i /∈ bid(E)c,

(b) s(start_ts) <TS Gts(i),

(c) ¬(i
R−→ d).

Note that (b) takes place whenever (a) does. Let us assume (a). Since i is
not completed, Gts(i) = > holds (by INVWF). On the other hand, by the
assumption of the lemma, start_ts contains a non-maximal timestamp. Under
such conditions, (b) holds.

Let us obtain a contradiction for (b). Since κ satisfies the invariant INV,
from INVALG(i) and i

R−→ i′ we learn that Gts(i) <TS Gts(i
′). Consequently:

s(start_ts) <TS Gts(i) <TS Gts(i
′)

115

On the other hand, since i′ ∈ seen(κ, d) holds, so does ¬(s(start_ts) <TS

Gts(i
′)) by definition of seen. Thus, we arrived to a contradiction.

Let us obtain a contradiction for (c). Since i′ ∈ seen(κ, d), i′ R−→ d holds. By
Definition 3.1 of a history, R is a transitive relation. Thus, i R−→ i′ and i′ R−→ d

together imply i R−→ d, which contradicts (c).

Lemma 3.18. Let us take any interpretation of logical variables ` and
a configuration κ = (s, (E,R), Gts) ∈ JisCandK` such that CAND =
enqOf(E,Gts, cand_tid, cand_ts) and CAND ∈ inQ(s(pools), E,Gts) both
hold. We need to prove that:

∀e ∈ inQ(s(pools), E, Gts). E(e).tid ∈ A =⇒ ¬(e
R−→ CAND)

Let DEQ = myEid() be the current dequeue event. By definition, the set
seen(κ, DEQ) is a subset of inQ(pools, E,Gts). In other words, every enqueue
with a value in the data structure is either seen by DEQ or not.

According to isCand, CAND ∈ seen(κ, DEQ). By Lemma A.1, no unseen en-
queue can precede CAND in the abstract history. Additionally, since CAND’s times-
tamp is minimal among enqueues seen by DEQ, CAND is necessary R-minimal
among them according to INVALG(i).

A.1.4 Preservation of INVLIN

Sequential queue specification. We first introduce auxiliary notation re-
lated to the sequential queue specification in order to simplify the further tech-
nical development.

We call L a sequential queue history, if seq(L) holds and each event in L
is either an enqueue or a dequeue operation. For simplicity, we assume that
dequeue operations always return values and never return Empty1.

Following the definition of specification histories in Section 3.4, given L ∈
Hqueue, we consider the state σ of the sequential queue such that the following
holds:

〈(ε, (∅, ∅)〉�∗queue 〈σ, L〉}
That is, σ is the state of the sequential queue after executing operations from
L starting from the empty queue state ε. For convenience, we let sq{L} denote
a sequence of enqueue operations that inserted each value in σ. In particular,
when sq{L} = e ·_, the value e.arg is the front of the queue: σ = e.arg ·_.

When L is a sequential queue history, we also use a notation L·[i : (t, op, a, r)]
to denote a history resulting from appending the event [i : (t, op, a, r)] to the
linear order of L.

The following definition establishes a mapping from dequeues to enqueues
in a sequential queue history.

Definition A.2. Given a sequential queue history L, we define rf{L} as a map
from dequeue to enqueue events in L such that:

rf{L · [_ : (_,Enq,_,_)]} = rf{L}

rf{L · [_ : (_,Deq,_, r)]} =

{
rf{L}[d : e], if sq{L} = e ·_and e.arg = r

undefined, otherwise
1Instead of being a part of the queue specification, this assumption can be proven formally

as an invariant of the TS Queue and HW Queue.

116

It is easy to see that rf{L} is always well-defined for each L ∈ Hqueue and
that the FIFO properties hold of rf{L}.

Proposition A.3. For L ∈ Hqueue, the map rf{L} satisfies the following:

1. rf{L} is well-defined;

2. rf{L} correctly maps dequeue events to enqueue events:

• enqueues are uniquely matched with dequeues in rf (rf is injective):

∀d, d′ ∈ dom(rf{L}). rf{L}(d) = rf{L}(d′) =⇒ d = d′

• values inserted by enqueues equal to values removed by matching de-
queues:

∀d ∈ dom(rf{L}). E(d).rval = E(rf{L}(d)).arg

3. every successful dequeue event is matched in rf{L} with an enqueue ac-
cording to the FIFO policy:

∀d.E(d).op = Deq ∧ E(d).rval 6= NULL =⇒ rf{L}(d)
L−→ d ∧

(∀e′. E(e′).op = Enq ∧ e′ L−→ rf{L}(d) =⇒ ∃d′. rf{L}(d′) = e ∧ d′ L−→ d)

Proposition A.4. Given L ∈ Hqueue and any enqueue event e ∈ L, sq{L}
contains e if and only if there is no dequeue event d ∈ L such that rf{L}(d) = e.

Finally, we define the relation same_data (previously informally introduced
in Section 3.6 in the definition of INVLIN).

Definition A.5 (same_data). Given a configuration κ = (s,H,G) and L ∈
Hqueue, we say that same_data((s,H,G), L) holds if any enqueue e occurs in
sq{L} if and only if it occurs in inQ(s,H,G).

Proving the preservation of INVLIN. We now prove preservation of the
invariant INVLIN by the commitment points. In the following proofs, we only
consider two commitment points: setTS corresponding to the atomic block at
lines 10-14 and remove corresponding to the atomic block at lines 45-52. Since
we only need to consider commitment points adding new completed events to
histories, we ignore the commitment point at lines 3-6. We also ignore the
commitment point at lines 30-34, because it only refines the order in the history
and cannot invalidate the sequential queue specification.

Lemma A.6. When INV holds, the commitment point setTS at lines 10-14
preserves INVLIN:

∀`, κ, κ′. κ ∈ JINVK` ∧ κ′ ∈ JsetTSKt(κ) =⇒ κ′ ∈ JINVLINK`

Proof. Let us choose any interpretation of logical variables ` and let s,H and
G be such that (s,H,G) = κ ∈ JINVK`. Let κ′ = (s′, H ′, G′) be the results of
the commitment point setTS. We prove that (s′, H ′, G′) ∈ JINVLINK` holds.

Consider any linearization L′ of H ′ (meaning that seq(L′) and bH ′c v L′

hold). We need to prove that L′ ∈ Hqueue. Let e be the enqueue event completed

117

at the commitment point. Then L′ takes form of L1 · e · L2, where L1 and L2

are sequences of events such that seq(L1 · L2) and bHc v L1 · L2 hold. Thus,
L1 ·L2 ∈ Hqueue, since H satisfies INVLIN according to the premise of the lemma.

It is easy to see that all dequeue events in L1 return values corresponding
to the queue specification, since L1 is a prefix of a linearization L1 · L2 of a
history satisfying INVLIN. Consequently, to conclude that L1 · e · L2 meets the
queue specification, we only need to show that all dequeues in L2 return correct
values.

Let d1, d2, . . . , dk be all of the dequeues in L2. We consider rf{L′} and
enqueue events e1 = rf{L′}(d1), e2 = rf{L′}(d2), . . ., ek = rf{L′}(dk). Since
(s,H,G) ∈ JINVK`, same_data((s,H,G), L1 · L2) holds. By Proposition A.4,
when ei (for each 1 ≤ i ≤ k) is read by a dequeue in L1 · L2, it must be
the case that ei /∈ sq{L1 · L2}. By Definition A.5 of same_data((s,H,G), L1 ·
L2), we conclude that ei /∈ inQ(κ) holds, and, because setTS does not alter
those enqueue events, ei /∈ inQ(κ′) holds too. Since invariants INVALG(iv) and
INVORD(ii) hold of (s,H,G), we learn that e ∈ inQ(κ) and that ei precedes e in
H for each 1 ≤ i ≤ k. The latter observation also holds of H ′, since it extends
H monotonously, and of its linearization L′.

According to the FIFO properties stated in Proposition A.3(3), L1 and L2

take the following form:

L1 = _ · e1 ·_ · . . . ·_ · ek ·_
L2 = _ · d1 ·_ · . . . ·_ · dk ·_

Let {Li | 1 ≤ i ≤ k} be the prefixes of L2 such that each Li ends right before
di. Since L1 · L2 ∈ Hqueue is a correct sequential queue history, it must be the
case that:

• sq{L1 · Lk} = ek ·_,

• ...

• sq{L1 · L2} = e2 · . . . · ek ·_, and

• sq{L1 · L1} = e1 · e2 · . . . · ek ·_.

It is easy to see that sq{L1 · e ·L1} also starts with e1 · e2 · . . . · ek, meaning that
each dequeue di (for 1 ≤ i ≤ k) returns a correct return value in L′.

Lemma A.7. When INV, isCand and cand_pid 6= NULL all hold, the com-
mitment point remove at lines 45-52 preserves INVLIN.

∀`, κ, κ′. κ ∈ JINV ∧ isCand ∧ cand_pid 6= NULLK`
∧ κ′ ∈ JremoveKt(κ) =⇒ κ′ ∈ JINVLINK`

Proof. Let us choose any interpretation of logical variables ` and let s,H and G
be such that (s,H,G) satisfy INV, isCand and cand_pid 6= NULL. Let s′, H ′
and G′ be the results of the atomic step remove. We prove that (s′, H ′, G′) ∈
JINVLINK`.

In this proof, we consider the case of a successful removal (when removal
fails, the atomic step does nothing, so INVLIN is trivially preserved). In the

118

following, we consider a dequeue event d that is completed at the commitment
point and e is the enqueue event that is dequeued. Upon the successful removal,
(cand_pid,_, cand_ts) occur in the pool of a thread cand_tid. Consequently,
e = enqOf(E,Gts, cand_tid, cand_ts) ∈ inQ(pools, H,G).

Consider any linearization L′ of H ′ (meaning that seq(L′) and bH ′c v L′

hold). We need to prove that L′ ∈ Hqueue. Note that e precedes d in H ′, since
this is how they get ordered at the commitment point. Hence, L′ takes form
of L1 · e · L2 · d · L3, where L1, L2 and L3 are sequences of events such that
seq(L1 · e ·L2 ·L3) and bHc v L1 · e ·L2 ·L3 hold. Thus, L1 · e ·L2 ·L3 ∈ Hqueue,
since H satisfies INVLIN according to the premise of the lemma.

It is easy to see that all dequeue events in L1 · e · L2 return values corre-
sponding to the queue specification, since L1 · e · L2 is a prefix of a correct
linearization L1 · e · L2 · L3. Consequently, to conclude that L1 · e · L2 · d · L3

meets the queue specification, we need to show that all dequeues in d ·L3 return
correct values. Note that d is an uncompleted dequeue in H, so by INVORD it is
later in the order than all completed dequeues in H, which remains true for H ′.
Thus, dequeues in L′ precede d, meaning that L3 does not contain any dequeue
event. Consequently, we only need to prove that E(e).arg is a correct return
value for d according to the sequential specification.

Let us consider L = L1 · e · L2 · L3. Since e ∈ inQ(s,H,G) and H satisfies
INVLIN, e is in sq{L} according to same_data. Note that the commitment point
remove orders e in front of every enqueue belonging to inQ(s,H,G). Knowing
from same_data that inQ(s,H,G) and sq{L} consist of the same enqueue events,
and that out of all of them, e occurs the first in L, we conclude that sq{L} =
e ·_. Additionally, we make an observation that L3 consists entirely of unread
enqueues: the invariant INVORD(ii) states that all enqueues that are not in
inQ(s,H,G) must precede e in H (and, therefore, in its linearization L too).
This allows us to conclude that sq{L1 · e ·L2} = e ·_ holds. Consequently, it is
correct for d to return the value of e in L1 · e · L2 · d · L3.

A.1.5 Preservation of INVALG(i)
Showing that the invariant INV is preserved by all primitive commands is mostly
straightforward, except for the command assigning a timestamp to an enqueued
value at line 10. When the latter happens, it is necessary to prove that the
property of the timestamps INVALG(i) is not invalidated. To show that this is
indeed the case, one has to observe a certain property of timestamps generated
by the function newTimestamp: a timestamp generated for the current enqueue
event myEid() and stored in a memory cell timestamp is greater than timestamps
of all enqueues that precede myEid() in the abstract history and still have their
values in the data structure. Specifically, we define an assertion newTS(ts)
denoting configurations (s, (E,R), G) that satisfy the following:

∀i ∈ inQ(s(pools), E,G). i
R−→ myEid() =⇒ Gts(i) <TS ts

It is easy to see that newTS asserts the same property as INVALG(i), but only
for the current event and a timestamp generated for it. When at line 10 the
timestamp gets assigned, newTS enables concluding that INVALG(i) is preserved.

We prove the following Hoare specification for the timestamp generation
algorithm and outline the proof in Figure A.3:

119

int counter = 1;

TS newTimestamp() {{
INV ∧ inserted(t,Enq)

}
int oldCounter = counter;{
INV ∧ inserted(t,Enq) ∧ cntProp(oldCounter)
∧ oldCounter ≤ counter

}
TS result;
if (CAS(counter, oldCounter, oldCounter+1)){

INV ∧ inserted(t,Enq)
∧ cntProp(oldCounter) ∧ oldCounter < counter

}
result = (oldCounter, oldCounter);{

INV ∧ inserted(t,Enq) ∧ newTS(result)
}

else{
INV ∧ inserted(t,Enq)
∧ cntProp(oldCounter) ∧ oldCounter < counter

}
result = (oldCounter, counter-1);{

INV ∧ inserted(t,Enq) ∧ newTS(result)
}{

INV ∧ inserted(t,Enq) ∧ newTS(result)
}

return result;
}

Figure A.3: Proof outline for the timestamp generating algorithm

{
INV ∧ started(t,Enq)

}
TS timestamp := newTimestamp();{

INV ∧ started(t,Enq) ∧ newTS
}

The assertion newTS is obtained with the help of the following auxiliary
assertion, which connects the generated timestamp to the real-time order using
INVALG(iii):

JcntProp(C)K` , {(s,H,G) | ∀a, b.∀i ∈ inQ(s(pools), H,G). i
R−→ myEid()

∧Gts(i) = (a, b) =⇒ b < C}

It is easy to see that cntProp(counter) is implied by the invariant property
INVALG(iii). Thus, after the first line of newTimestamp, cntProp(oldCounter)
holds. Later on, when the timestamp result is formed, cntProp(counter) yields
us the fact that result is a timestamp greater than timestamps of all enqueues
that have a value in the pools and precede myEid(), which concludes the proof
of newTS(ts).

A.1.6 Stability of the loop invariant
Proof of Lemma 3.19. Since (κ, κ′) ∈ Rt, there exists a thread t′ such that one
of the following situations takes place:

• (κ, κ′) ∈ 99Kt′ ,

• (κ, κ′) ∈ Gt′,local, or

• there exists α̂ and P such that Gt′,α̂,P ⊆ Rt and (κ, κ′) ∈ Gt′,α̂,P .

120

In further, we prove the lemma separately for each α̂ and P . In each case, we
assume that κ = (s, (E,R), Gts) and κ′ = (s′, (E′, R′), G′ts).
Case #1: (κ, κ′) ∈ 99Kt′ . This environment transition only adds a new event e
in a thread t′ and orders it after completed events. As a result of this environ-
ment transition, e is uncompleted in κ′. By Definition 3.1, e R′−→ DEQ does not
hold. Consequently, e /∈ seen(κ′, DEQ). It is easy to see that all other enqueues
outside of seen(κ, DEQ) are not affected by this environment transition, so we
can conclude that seen(κ′, DEQ) ⊆ seen(κ, DEQ).

Cases #2 and #3: α̂ is either insert or setTS, and P = INV ∧
started(t′,Enq). These environment transitions only update the abstract his-
tory, concrete and ghost state associated with an event e, which is uncompleted
in κ (that is, E(e) = (t′,Enq, v, todo)). Since e is uncompleted, by Definition 3.1,
e
R−→ DEQ does not hold. Neither of these environment transitions add any edges

into the abstract history, meaning that e R′−→ DEQ does not hold either. Conse-
quently, e /∈ seen(κ′, DEQ). It is easy to see that all other enqueues outside of
seen(κ, DEQ) are not affected by this environment transition, so we can conclude
that seen(κ′, DEQ) ⊆ seen(κ, DEQ).

Case #4: α̂ = scan and P = INV ∧ started(t′,Deq). This environment
transition orders some of the enqueue events in front of an uncompleted de-
queue d (E(d) = (t′,Deq,_, todo)). Let e be an enqueue event in κ such that
e /∈ seen(κ, DEQ). Out of the reasons why e is not visible by DEQ in κ, only
e

R−→ DEQ may be affected by this environment transition, as it simply adds
edges in the abstract history. However, we argue that an edge e R′−→ DEQ is not
added by scan. Indeed, d is uncompleted, so by Definition 3.1 it cannot precede
any other event in the abstract history. Consequently, e R′−→ DEQ is not added
as implied by transitivity.

Case #5: α̂ = remove and P = INV ∧ started(t′,Deq). Let d be the un-
completed event by a thread t′, i.e. such that E(d) = (t′,Deq,_, todo). Let
e ∈ inQ(s(pools), E,Gts) be the enqueue event removed by this environment
transition. As a result, e ∈ inQ(s′(pools), E′, G′ts) does not hold in κ′, so
e /∈ seen(κ′, DEQ). It is easy to see that this environment transition affects other
enqueue events only by ordering them w.r.t. other events. Consequently, if some
ENQ /∈ seen(κ, DEQ), the only reason it may become visible in κ′ is an addition

of the edge ENQ R′−→ DEQ. However remove does not introduce such edge, and it
is not implied by transitivity.

Case #6: α̂ = genTS and P = INV. This transition does not affect any
concrete state, ghost state or the abstract history associated with any enqueue
event.

Case #7: (κ, κ′) ∈ Gt′,local. This transition does not affect any concrete state,
ghost state or the abstract history associated with any enqueue event.

121

A.2 Linearizability of the Optimistic Set

A.2.1 Overview of proof details
We prove the following specifications for the set operations:

Rt, Gt `t
{

INV ∧ started(t, insert)
}

insert
{

INV ∧ ended(t, insert)
}

Rt, Gt `t
{

INV ∧ started(t, remove)
}

remove
{

INV ∧ ended(t, remove)
}

Rt, Gt `t
{

INV ∧ started(t, contains)
}

contains
{

INV ∧ ended(t, contains)
}

For each thread t, we generate rely and guarantee relations analogously
to §3.6. To this end, we let insert, remove, contains denote atomic steps
corresponding to atomic blocks extended with ghost code in Figure 3.16 (at
lines 16-30, 54-64 and 38-45 accordingly). For each thread t, relations Gt and
Rt are then defined as follows:

Gt , Gt,insert,INV ∪Gt,remove,INV ∪Gt,contains,INV ∪Gt,local,
Rt , ∪t′∈ThreadID\{t}(Gt′ ∪ 99Kt′)

In the above, we assume a relation Gt,local, which describes arbitrary changes
to certain program variables and no changes to the abstract history and the
ghost state. That is, we say that the nodes of the linked list (such as head are
shared program variables in the algorithm, and all others are thread-local, in
the sense that every thread has its own copy of them. We let Gt,local denote
every possible change to thread-local variables of a thread t only.

In Figure A.4 we present the invariant INV. To formulate the invariant,
we characterize all of the nodes in the data structure as either reachable or
unreachable.

Definition A.8 (Reachable nodes). For a set of nodes of the data structure in
a state s, we let s ⊆ NodeID × NodeID to be a reachability relation on the
nodes and let n s n

′ hold whenever there exists a sequence of node identifiers
n0, n1, . . . , nk (k ≥ 0) such that ni+1 = (∗ni).next, n0 = n, nk = n′.

Additionally, we define a function remOf : P(Event) × NodeID ⇀ EventID
which maps a node identifier n to a matching remove event identifier i (if it
exists).

remOf(E,n) =

{
i, if Gnode(i) = n ∧ E(i).op = remove

undefined otherwise

We also assume that Event consists of well-typed queue events [i : (t, op, a, r)]
meeting the following constraints:

• op ∈ Op = {insert, remove, contains},

• a ∈ Val, and

• r ∈ {false, true}.

122

A.2.2 Loop invariant and preservation of INVLIN

The key technical details for constructing abstract histories of the Optimistic
Set are related to the preservation of the acyclicity of the abstract history and
the invariant INVLIN at the commitment points.

Preservation of acyclicity of abstract histories by commitinsert and
commitremove is justified straightforwardly as follows. These two commitment
points simply order the current event after all other completed events with the
same argument and in front of all uncompleted events with the same argument.
Knowing that the acyclicity of abstract histories and the invariant INVORD hold
prior to these commitment points, it is easy to see that the new edges cannot
create a cycle.

Preservation of INVLIN by commitinsert and commitremove is also straight-
forward to conclude. Note that the sequential specification of the set is only
concerned with the order of events with the same argument. By construction,
the order of completed events with the same argument is linear, as asserted by
INVORD. The two commitment points extend abstract histories by appending
insert and remove events to the linear order corresponding to their arguments. It
is trivial to consider all possible linearizations of an abstract history constructed
in this way and conclude that it satisfies the sequential specification.

In the rest of this section, we focus on discharging proof obligations induced
by the commitment point commitcontains. As we argue in §3.7, in order to
conclude that the return value of the contains operation matches the sequential
specification of the set (and also that the resulting abstract history is acyclic), it
is necessary to demonstrate the following two properties of the current contains
event myEid() upon the commitment point:

• if curr.val = E(myEid()).arg, then all successful removes occurring after
insOf(E, curr) are concurrent with myEid();

• if curr.val > E(myEid()).arg, then all successful inserts occurring after
lastRemOf(E,E(myEid()).arg) are concurrent with myEid();

To discharge both obligations, we build a loop invariant LI for the loop in the
locate operation invoked by the contains operation in a thread t. For a
given interpretation of logical variables `, the loop invariant LI denotes triples
(s, (E,R), Gnode) ∈ JLIK` such that the following conditions hold of the current
node currin a thread t and every node n′ ∈ NodeID:

• when n′ is reachable from n and stores the value sought by the contains
operation, it is either in the data structure or a matching remove operation
is concurrent with the current one:

curr s n
′ ∧ n′.val = last(t, E,R).arg =⇒

n′.marked = false ∨ ¬(remOf(n′)
R−→ last(t, E,R))

• when n′ is not reachable from n and stores the value sought by the
contains operation, it is either removed from the data structure or it
has been inserted concurrently:

curr 6 s n
′ ∧ n′.val = last(t, E,R).arg =⇒

n′.marked = true ∨ ¬(insOf(n′)
R−→ last(t, E,R))

123

In the following two lemmas, we establish the two properties required in §3.7
with the help of the loop invariant LI.

Lemma A.9. For every ` : LVars → Val and configuration (s, (E,R), Gts) ∈
JLIK`, if curr.val = E(myEid()).arg then:

¬∃r. E(r) = (_, remove, E(myEid()).arg, true) ∧ insOf(E, curr)
R−→ r

R−→ myEid()

Proof. The node curr is reachable from itself, i.e., curr s curr holds. Also,
curr.val = E(myEid()).arg. The first case of the loop invariant applies then,
and the following holds:

curr.marked = false ∨ ¬(remOf(curr)
R−→ myEid()) (A.10)

Let us first consider the case when curr.marked = false. According to INVALG(i),
the following is true:

(E, curr) ∈ dom(insOf) ∧ (E, curr) /∈ dom(remOf) ∧

(∀i. insOf(E,n)
R−→ i ∧ E(i).arg = curr.val ∧ E(i).rval = true =⇒

E(i).op = contains)

meaning that no successful remove event of E(myEid()).arg follows
insOf(E, curr) in the abstract history. This allows us to conclude the state-
ment of the lemma in the case of curr.marked = false.

Let us now consider the case when curr.marked = true. From (A.10), we
know that ¬(remOf(curr)

R−→ myEid()) also holds then. Let us assume that
there exists a remove event r contradicting the lemma:

E(r).op = remove ∧ E(r).arg = E(myEid()).arg

∧ insOf(E, curr)
R−→ r

R−→ myEid() (A.11)

Note that r 6= remOf(E, curr), since that together with (A.11) immediately
contradicts ¬(remOf(curr)

R−→ myEid()). By INVALG(ii), r cannot occur between
insOf(E, curr) and remOf(E, curr). Knowing from INVORD(i) that completed
events with the same argument are linearly ordered, we note that only the
following can be the case:

insOf(E, curr)
R−→ remOf(E, curr)

R−→ r.

However, together with (A.11), that implies remOf(curr)
R−→ myEid(). We

arrived to a contradiction.

Lemma A.12. For every ` : LVars → Val and configuration (s, (E,R), Gts) ∈
JLIK`, if curr.val > E(myEid()).arg then:

¬∃i. E(i) = (_, insert, E(myEid()).arg, true)

∧ lastRemOf(E(myEid()).arg)
R−→ i

R−→ myEid()

124

Proof. We use a = E(myEid()).arg as a shorthand for the argument of the
current contains operations. The proof is by contradiction. Let us assume
that there exists an event identifier i such that:

E(i) = (_, insert, a, true) ∧ lastRemOf(a)
R−→ i

R−→ myEid() (A.13)

That is, there exists an insert event identifier i that is after the last remove
of the value a, but before the current contains event. By INVWF(ii), the node
Gnode(i) stores the argument of the insert, i.e., Gnode(i).val = a holds. The
assumption of the lemma can then be rewritten as curr.val > Gnode(i).val.
According to the contrapositive of INVALG(iii), curr.val > Gnode(i).val implies
that curr 6 s Gnode(i).

Knowing that curr 6 s Gnode(i) and that Gnode(i).val = a, from the loop
invariant we learn that:

Gnode(i).marked = true ∨ ¬(i
R−→ myEid()) (A.14)

In the rest of the proof, we do a case split on the two possible values of
Gnode(i).marked. Let us first consider the case when Gnode(i).marked = true.
According to INVALG(ii), there exists remOf(E,Gnode(i)). By INVALG(iv), i

R−→
remOf(E,Gnode(i)). Note that the event lastRemOf(a) is the last remove event
of the value a, so i

R−→ lastRemOf(a) must hold. However, that contradicts
(A.13).

Let us now consider the case when Gnode(i).marked = false. By (A.14),
¬(i

R−→ myEid()) also holds then. However, that contradicts (A.13).

125

(INVLIN) all linearizations of completed events of the abstract history satisfy
the queue specification:

abs(H,Hset)

(INVORD) properties of the partial order of the abstract history:

(i) completed events with the same argument are linearly ordered:

∀i, j ∈ id(bEc). E(i).arg = E(j).arg =⇒ i
R−→ j ∨ j R−→ i

(ii) no edges originate from uncompleted events:

∀i ∈ id(E \ bEc), j ∈ id(E).¬(i
R−→ j)

(INVALG) for every node n ∈ dom(s), the following holds:

(i) n.marked = false =⇒ (E,n) ∈ dom(insOf) ∧ (E,n) /∈ dom(remOf)

∧ (∀i. insOf(E,n)
R−→ i ∧ E(i).arg = n.val ∧ E(i).rval = true =⇒

E(i).op = contains)

(ii) n.marked = true =⇒ (E,n) ∈ dom(insOf) ∧ (E,n) ∈ dom(remOf)

∧ (∀i. insOf(E,n)
R−→ i

R−→ remOf(E,n) ∧ E(i).rval = true =⇒
E(i).op = contains)

(iii) ∀n′ ∈ dom(s). n s n
′ =⇒ n.val ≤ n′.val

(iv) ∀n. (E,n) ∈ dom(remOf) =⇒ insOf(E,n)
R−→ remOf(E,n)

(v) head s n ⇐⇒ n.marked = false

(vi) n s tail

(vii) n.marked = true ∨ n.marked = false

(INVWF) properties of ghost state:

(i) ∀e. E(e).rval = true ⇐⇒ e ∈ dom(Gnode)

(ii) ∀e. E(e).arg = Gnode(e).val

Figure A.4: The Optimistic Set: The invariant INV = INVLIN∧INVORD∧INVALG∧
INVWF

126

A.3 Linearizability of the Herlihy-Wing Queue

A.3.1 The algorithm
We now present the Herlihy-Wing queue [7] as our next running example. Values
in the queue are stored in an infinite array, Array, with unbounded index back

pointing to the first unoccupied cell of the array. Initially, each cell of the array
is considered empty and contains NULL. Accordingly, initially back = 0.

An enqueue operation performs two steps. First, it acquires an index k

with the help of atomic command inc returning the value of back and then
incrementing it. At the second step, the enqueue operations stores its argument
in Array[k].

A dequeue operation obtains the length of the currently used part of the
array and stores it in n. Then the operation iterates over array cells from
the beginning till n and looks at the values in them. If a non-NULL value is
encountered, the cells gets overwritten with NULL to remove the value from
the queue, and the value itself is returned as a result of the dequeue operation.
Alternatively, if all cells of Array appeared to store NULL during the loop, the
algorithm restarts.

A.3.2 Concrete and auxiliary state
We assume that Event consists of well-typed queue events [i : (t, op, a, r)] meeting
the following constraints:

• op ∈ Op = {Enq,Deq},

• op = Deq ⇐⇒ a = ⊥, and

• r = ⊥ =⇒ op = Enq.

We consider a set of states State = Loc → Val, ranged over by s, where
Loc = {back} ∪ {Array[i] | i ∈ N} ∪ {k[t] | t ∈ ThreadID} ∪ ... is the set of all
memory locations including the global back and infinite array Array[], as well
as thread-local variables (k, n etc).

We use a function Gslot : EventID ⇀ Slot as ghost state in the proof in order
to map event identifiers to slots in the infinite array. The map is established
with the help of auxiliary code in the atomic block at line 7 in Figure A.5.

For given Gslot and E, every enqueue event e ∈ id(E) can be one of the
following:

• e /∈ dom(Gslot) — the slot is not assigned to the enqueue yet,

• e ∈ withSlot(s, E,Gslot) — the enqueue has a slot, but has not written a
value into it yet:

withSlot(s, E,Gslot) , {e | e ∈ id(E \ bEc) ∧ E(e).op = Enq

∧ s(Array[Gslot(e)]) = NULL}

• e ∈ untaken(s, E,Gslot) — the slot has writen a value into its slot:

untaken(s, E,Gslot) , {e | e ∈ bEc ∧ E(e).op = Enq

∧ s(Array[Gslot(e)]) = E(e).arg}

127

int back = 0;
int[] Array =

new int[+∞];

enqueue(Val v) {{
INV ∧ started(t,Enq)

}
atomic { // getSlot

k := inc(back);

Gslot[myEid()] := k;

}{
INV ∧ hasSlot(t,Enq)

}
atomic { // insert

Array[k] := v;

myEid().rval := ⊥;

}{
INV ∧ ended(t,Enq)

}
}

Val dequeue() {
Val res = NULL;{

INV ∧ started(t,Deq)
}

do {
n:= back;{

INV ∧ started(t,Deq) ∧ n ≤ back
}

for k = 1 to n {{
INV ∧ started(t,Deq) ∧ LI

}
atomic { // remove

res := Swap(Array[k], NULL);
if (res 6= NULL) {

EventID ENQ := getEvent(k);
E(myEid()).rval := res;
R := (R ∪ {(ENQ, myEid())}

∪ {(ENQ, e′) | e′ ∈ untaken(s, history,Gslot)}
∪ {(myEid(), d) | E(d).op = Deq

∧ d ∈ id(E \ bEc)})+
}

}{
INV ∧ LI ∧ ((started(t,Deq) ∧ res = NULL)

∨ (ended(t,Deq) ∧ res 6= NULL))

}
if res 6= NULL then

break;{
INV ∧ started(t,Deq) ∧ LI

}
} } while (res != NULL);{

INV ∧ ended(t,Deq)
}

}

Figure A.5: The Herlihy-Wing queue

• e ∈ taken(s, E,Gslot) – the value written into the slot by the enqueue has
been successfully taken by some dequeue event:

taken(s, E,Gslot) , {e | e ∈ bEc ∧ E(e).op = Enq

∧ s(Array[Gslot(e)]) = NULL}

A.3.3 Commitment points
To explain the construction of abstract histories for the Herlihy-Wing queue,
we instrument the code in Figure A.5 with auxiliary code. When an operation
starts, we automatically add a new uncompleted event into the set of events E
to represent this operation and order it in R after all completed events. Aside
from that, the enqueue operation has two more commitment points. For the
first, the auxiliary code in the atomic block at line 7 maintains the ghost state
Gslot. For the second, the auxiliary code at line 12 completes the enqueue event.

Upon a dequeue’s start, we similarly add an event representing it, and then
the operation does one of the two commitment points. At line 22, the current
dequeue operation encounters a non-NULL value in a slot Array[k], in which
case it returns this value and removes it from the array. The auxiliary code

128

accompanying this change to the state completes the dequeue event and also
adds three following kinds of edges to R and then transitively closes it:

1. (ENQ, myEid()), ensuring that in all linearizations of the abstract history,
the current dequeue returns a value that has been already inserted by
ENQ = enqOf(E,G, k).

2. (ENQ, e) for each identifier e of an enqueue event whose value is still in
the pools. This ensures that the dequeue removes the oldest value in the
queue.

3. (myEid(), d) for each identifier d of an uncompleted dequeue event. This
ensures that dequeues occur in the same order as they remove values from
the queue.

A.3.4 The overview of proof details
In Figure A.5, we provide the proof outlines for the enqueue and dequeue oper-
ations, in which we prove the following specifications:

Rt, Gt `t
{

INV ∧ started(t,Deq)
}

Deq
{

INV ∧ ended(t,Deq)
}

Rt, Gt `t
{

INV ∧ started(t,Enq)
}

Enq
{

INV ∧ ended(t,Enq)
}

In the proof outlines, we use an auxiliary assertion describing an enqueue
event that has obtained a slot in the array, but has not written into it yet.

JhasSlot(t, op)K` = {(s,H,Gslot) | E(last(t,H)) = (t, op, s(arg[t]), todo)

∧ last(t,H) ∈ dom(G)};

For each thread t, we generate rely and guarantee relations analogously to
§3.6. To this end, we let getSlot, insert and remove denote atomic steps
corresponding to atomic blocks extended with ghost code in Figure A.5 (at
lines 7, 12 and 22) accordingly). For each thread t, relations Gt and Rt are then
defined as follows:

Gt , Gt,getSlot,INV∧started(t,Enq) ∪Gt,insert,INV∧hasSlot(t,Enq) ∪Gt,remove,INV
∪Gt,local,

Rt , ∪t′∈ThreadID\{t}(Gt′ ∪ 99Kt′)

In the above, we assume a relation Gt,local, which describes arbitrary changes to
certain program variables and no changes to the abstract history and the ghost
state. That is, we say that back and Array are shared program variables in the
algorithm, and all others are thread-local, in the sense that every thread has
its own copy of them. We let Gt,local denote every possible change to thread-local
variables of a thread t only.

In Figure A.6 we present the invariant INV. It consists of several properties:

• INVLIN – the main correctness property;

• INVORD – properties of uncompleted events that hold by construction of
the partial order;

129

• INVALG – a property of the array slots;

• INVWF – well-formedness of ghost state.

We introduce the following auxiliary predicate that we use in the invariant
INVLIN:

Definition A.15 (same_data). Given a configuration κ = (s,H,Gslot) and
L ∈ Hqueue, we say that same_data((s,H,Gslot), L) holds if any enqueue e occurs
in sq{L} if and only if it occurs in untaken(s,H,G).

A.3.5 Loop invariant
We define a loop invariant LI, which we use to ensure that the uncompleted
dequeue of a thread t returns a correct return value (the value inserted by the
R-minimal enqueue).

Definition A.16. Given interpretation of logical variables `, we let LI be an
assertion denoting the set of configurations JLIK` such that every configuration
(s, (E,R), Gslot) in it satisfies the following:

1. ∀e, e′ ∈ untaken(E,G). Gslot(e) < k ≤ Gslot(e
′) ≤ n =⇒ ¬(e

R−→ e′);

2. ∀e ∈ untaken(E,G). Gslot(e) < s(k) =⇒ ¬(e
R−→ myEid());

3. s(n) ≤ s(back).

The loop invariant LI consists of three properties, which are formulated w.r.t.
the thread-local memory cells k (contains the current loop index), n (contains
the loop boundary), back and events of the abstract history. The first property
states that an enqueue event e of a value in each slot preceding the current
(Gslot(e) < k) does not precede in R an enqueue event e′ of a value from the
subsequent part of the array. The second property similarly requires that an
enqueue event e of a value in each slot that has already been visited (Gslot(e) <
s(k)) does not precede the current dequeue event myEid(). Finally, the third
property simply asserts that the value in n is smaller than back.

The following lemma justifies the history update by the atomic step remove.

Lemma A.17. For every ` : LVars → Val and configuration (s, (E,R), Gts) ∈
JLIK`, if s(Array[k]) 6= NULL, then ENQ = enqOf(E,G, k) is minimal among
untaken enqueue events:

∀e ∈ untaken(s,H,G).¬(e
R−→ ENQ)

Proof. The statement of the lemma follows from the first property of the loop
invariant, INVALG and INVWF. According to the latter, every untaken enqueue
e has a value in a slot Gslot(e) < s(back).

When Array[k] 6= NULL, it is easy to see that all untaken enqueues with
slots later than k in the array cannot precede ENQ according to INVALG, and the
loop invariant asserts that all untaken enqueues before k in the array do not
precede ENQ either. Thus, ENQ is a minimal untaken enqueue.

130

With the help of Lemma A.17, we can conclude that the history update
of the atomic step remove at line 22 in the dequeue operation does not in-
validate acyclicity of the partial order. Let Array[k] 6= NULL hold and let
ENQ = enqOf(E,G, k) be an identifier of an enqueue event whose value is being
removed. We consider separately each kind of edges added into the abstract
history:

1. The case of (ENQ, myEid()). Note that prior to the commitment point,
myEid() is an uncompleted event. By Definition 3.1 of the abstract history,
the partial order on its events is transitive, and uncompleted events do not
precede other events. Thus, ordering ENQ before myEid() does not create
a cycle.

2. The case of (myEid(), d) for each identifier d of an uncompleted
dequeue event. Analogously to the previous case, if d is uncompleted
event, it does not precede other events in the abstract history. Hence,
ordering myEid() in front of all such dequeue events does not create cycles.

3. The case of (ENQ, e) for each e ∈ untaken(s,H,G). By Lemma A.17,
from LI it follows that no e ∈ untaken(s,H,G) precedes ENQ in the abstract
history. Consequently, ordering ENQ before all such enqueue events does
not create cycles.

A.3.6 Preservation of INVLIN

The proof of preservation of INVLIN is structured analogously to Appendix A.1.4.
We reuse the notation for the sequential queue specification. In the proofs of
preservation of the invariant INVLIN by the commitment points, we only consider
two of them: insert corresponding to the atomic block at lines 12-15 and
remove corresponding to the atomic block at at lines 22-31. That is because
we only need to consider commitment points adding new completed events to
histories.

Lemma A.18. When INV holds, the commitment point insert at lines 12-15
preserves INVLIN:

∀`, κ, κ′. κ ∈ JINVK` ∧ κ′ ∈ JinsertKt(κ) =⇒ κ′ ∈ JINVLINK`

Proof. Let us choose any interpretation of logical variables ` and let s,H and G
be such that (s,H,Gslot) = κ ∈ JINVK`. Let κ′ = (s′, H ′, G′slot) be the results of
the commitment point setTS. We prove that (s′, H ′, G′slot) ∈ JINVLINK` holds.

Consider any linearization L′ of H ′ (meaning that seq(L′) and bH ′c v L′

hold). We need to prove that L′ ∈ Hqueue. Let e be the enqueue event completed
at the commitment point. Then L′ takes form of L1 · e · L2, where L1 and L2

are sequences of events such that seq(L1 · L2) and bHc v L1 · L2 hold. Thus,
L1 ·L2 ∈ Hqueue, since H satisfies INVLIN according to the premise of the lemma.

It is easy to see that all dequeue events in L1 return values corresponding
to the queue specification, since L1 is a prefix of a linearization L1 · L2 of a
history satisfying INVLIN. Consequently, to conclude that L1 · e · L2 meets the
queue specification, we only need to show that all dequeues in L2 return correct
values.

131

Let d1, d2, . . . , dk be all of the dequeues in L2. We consider rf{L′} and en-
queue events e1 = rf{L′}(d1), e2 = rf{L′}(d2), . . ., ek = rf{L′}(dk). Since
(s,H,Gslot) ∈ JINVK`, same_data((s,H,Gslot), L1 · L2) holds. By Proposi-
tion A.4, when ei (for each 1 ≤ i ≤ k) is read by a dequeue in L1 ·L2, it must be
the case that ei /∈ sq{L1 ·L2}. By Definition A.15 of same_data((s,H,Gslot), L1 ·
L2), we conclude that ei /∈ untaken(s,H,G) holds, and, because insert does
not alter those enqueue events, ei /∈ untaken(s′, H ′, G′slot) holds too. Since
invariants INVWF(c) and INVORD(ii) hold of (s′, H ′, G′slot), we learn that e ∈
untaken(s′, H ′, G′slot) and that ei precedes e in H ′ for each 1 ≤ i ≤ k. The latter
observation also holds of the linearization L′ of H ′.

According to the FIFO properties stated in Proposition A.3(3), L1 and L2

take the following form:

L1 = _ · e1 ·_ · . . . ·_ · ek ·_
L2 = _ · d1 ·_ · . . . ·_ · dk ·_

Let {Li | 1 ≤ i ≤ k} be the prefixes of L2 such that each Li ends right before
di. Since L1 · L2 ∈ Hqueue is a correct sequential queue history, it must be the
case that:

• sq{L1 · Lk} = ek ·_,

• ...

• sq{L1 · L2} = e2 · . . . · ek ·_, and

• sq{L1 · L1} = e1 · e2 · . . . · ek ·_.

It is easy to see that sq{L1 · e ·L1} also starts with e1 · e2 · . . . · ek, meaning that
each dequeue di (for 1 ≤ i ≤ k) returns a correct return value in L′.

Lemma A.19. When INV and LI hold, the commitment point remove at
lines 22-31 preserves INVLIN.

∀`, κ, κ′. κ ∈ JINV ∧ LIK` ∧ κ′ ∈ JremoveKt(κ) =⇒ κ′ ∈ JINVLINK`

Proof. Let us choose any interpretation of logical variables ` and let s,H and G
be such that (s,H,Gslot) satisfy INV, isCand and cand_pid 6= NULL. Let s′, H ′
and G′slot be the results of the atomic step remove. We prove that (s′, H ′, G′slot) ∈
JINVLINK`.

In this proof, we consider the case of a successful removal (when removal
fails, the atomic step does nothing, so INVLIN is trivially preserved). In the
following, we consider a dequeue event d that is completed at the commitment
point and e is the enqueue event that is dequeued.

Consider any linearization L′ of H ′ (meaning that seq(L′) and bH ′c v L′

hold). We need to prove that L′ ∈ Hqueue. Note that e precedes d in H ′, since
this is how they get ordered at the commitment point. Hence, L′ takes form
of L1 · e · L2 · d · L3, where L1, L2 and L3 are sequences of events such that
seq(L1 · e ·L2 ·L3) and bHc v L1 · e ·L2 ·L3 hold. Thus, L1 · e ·L2 ·L3 ∈ Hqueue,
since H satisfies INVLIN according to the premise of the lemma.

It is easy to see that all dequeue events in L1 ·e ·L2 return values correspond-
ing to the queue specification, since L1 ·e ·L2 is a prefix of a correct linearization
L1 · e ·L2 ·L3. Consequently, to conclude that L1 · e ·L2 · d ·L3 meets the queue

132

specification, we need to show that all dequeues in d · L3 return correct values.
Note that d is an uncompleted dequeue in H, so by INVORD(i) it is later in
the order than all completed dequeues in H, which remains true for H ′. Thus,
dequeues in L′ precede d, meaning that L3 does not contain any dequeue event.
Consequently, we only need to prove that E(e).arg is a correct return value for
d according to the sequential specification.

Let us consider L = L1·e·L2·L3. Since e ∈ untaken(s,H,Gslot) andH satisfies
INVLIN, e is in sq{L} according to same_data. Note that the commitment
point remove orders e in front of every enqueue belonging to untaken(s,H,Gslot).
Knowing from same_data that untaken(s,H,Gslot) and sq{L} consist of the same
enqueue events, and that out of all of them, e occurs the first in L, we conclude
that sq{L} = e · _. Additionally, we make an observation that L3 consists
entirely of unread enqueues: the invariant INVORD(ii) states that all enqueues
that are not in untaken(s,H,Gslot) must precede e in H (and, therefore, in its
linearization L too). This allows us to conclude that sq{L1 ·e ·L2} = e ·_ holds.
Consequently, it is correct for d to return the value of e in L1 · e ·L2 · d ·L3.

133

(INVLIN) all linearizations of completed events of the abstract history satisfy
the queue specification:

abs(H,Hqueue)

(INVORD) properties of the partial order of the abstract history:

(i) completed dequeues precede uncompleted ones:

∀i ∈ id(bEc).∀j ∈ id(E \ bEc). E(i).op = E(j).op = Deq =⇒ i
R−→ j

(ii) enqueues of already dequeued values precede enqueues of values in
the array:

∀i ∈ id(bEc) \ untaken(s, E,Gslot).∀j ∈ untaken(s, E,Gslot). i
R−→ j

(INVALG) the order on untaken enqueue events does not contradict the order
in which they appear in the array:

∀e1, e2 ∈ untaken(s, E,G). e1
R−→ e2 =⇒ Gslot(e1) < Gslot(e2)

(INVWF) well-formedness properties of ghost state that enumerate all possi-
ble combinations of states, ghost states and events in a history:

(a) Gslot maps some of the events from E to slots preceding back:

∀e ∈ dom(Gslot). e ∈ id(E) ∧Gslot(e) < s(back)

(b) Gslot is injective;

(c) if s(Array[k]) 6= NULL then k is a slot corresponding to an untaken
completed enqueue event:

∀k, v. s(Array)[k] 6= NULL ⇐⇒ ∃e ∈ untaken(s, E,Gslot). Gslot(e) = k

(d) if s(Array[k]) = NULL then k is a slot behind the back of the array,
or it has not been used yet, or it is assigned to an uncompleted
enqueue, or it has been inserted into and taken already:

∀k. s(Array)[k] = NULL ⇐⇒ s(back) ≤ k ∨ k /∈ dom(G−1
slot) ∨

(∃e ∈ taken(s, E,Gslot). Gslot(e) = k) ∨
(∃e ∈ withSlot(E,Gslot). Gslot(e) = k)

Figure A.6: The invariant INV = INVLIN ∧ INVORD ∧ INVWF ∧ INVALG

134

1 Value clock, reg[NRegs], ver[NRegs];
2 Lock lock[NRegs];
3 Bool active[NThreads];
4 Set<Register> rset; // for each transaction
5 Map<Register, Value> wset; // for each transaction
6 Value rver; // for each transaction, initially ⊥
7 Value wver; // for each transaction, initially >
8

9 function txbegin(Transaction T) {
10 active[threadOf(T)] := true;
11 rver[T] := clock;
12 return;
13 }
14

15 function read(Transaction T, Register x) {
16 if (wset[T].contains(x))
17 return wset[T].get(x);
18 ts1 := ver[x];
19 value := reg[x];
20 locked := lock[x].test();
21 ts2 := ver[x];
22 if (locked ∨ ts1 6= ts2 ∨ rver[T] < ts2)
23 return abort(T);
24 rset[T].put(x);
25 return value;
26 }
27

28 function write(Transaction T, Register x, Value v) {
29 wset[T].put(x, v);
30 return;
31 }
32

33 function fence() {
34 Bool r[NThreads]; // initially all false
35 foreach t in ThreadID
36 r[t] := active[t];
37 foreach t in ThreadID
38 if (r[t])
39 while (active[t]);
40 return;
41 }

Figure A.7: TL2 pseudocode (part 1). The code continues in Figure A.8.

135

41 function txcommit(Transaction T) {
42 Set<Lock> lset := ∅;
43 foreach x in wset[T] {
44 Bool locked := lock[x].trylock();
45 if (¬locked)
46 lset.add(x);
47 else {
48 foreach y in lset[T]
49 lock[y].unlock();
50 return abort(T);
51 }
52 }
53 wver[T] := fetch_and_increment(clock)+1;
54 foreach x in rset[T] {
55 Bool locked := lock[x].test();
56 atomic {
57 Value ts := ver[x];
58 pv[T][x] := ¬(locked ∨ rver[T] < ts);
59 }
60 if (locked ∨ rver[T] < ts) {
61 foreach y in lset[T]
62 lock[y].unlock();
63 return abort(T);
64 }
65 }
66 foreach (x, v) in wset[T] {
67 reg[x] := v;
68 ver[x] := wver[T];
69 lock[x].unlock();
70 }
71 return commit(T);
72 }
73

74 function abort(Transaction T) {
75 return aborted;
76 active[threadOf(T)] := false;
77 }
78

79 function commit(Transaction T) {
80 return committed;
81 active[threadOf(T)] := false;
82 }

Figure A.8: TL2 pseudocode (part 2).

136

A.4 Strong Opacity of TL2
In this section, we provide details for the proof of strong opacity of TL2. To this
end, we first argue that histories of TL2 are well-formed, and in the rest of the
section we discharge the proof obligations arising from graph characterization
of TL2 histories by means of Lemma 4.20 and Theorem 4.22.

A.4.1 Preliminaries
In Figure A.7 we present the full pseudo-code of the TL2 software TM imple-
mentation. In the code, we use NThreads to denote the number of threads and
threadOf(T) to denote the thread executing a given transaction T . We also
let ⊥ and > denote special minimal and maximal values, which rver[T] and
wver[T] are initialized to (for every transaction T). The value ⊥ is also used to
describe a state of a lock as follows. We assume that the lock lock[x] of each
register x is either unlocked or stores an identifier of a transaction holding the
lock, i.e., Lock = {⊥}] Transaction. Thus, when lock[x] = ⊥, the lock is not
acquired by any transaction, and when lock[x] = T , we know that T is holding
a lock on x.

Functions txbegin, txcommit, write, read and fence of the pseudocode
generate corresponding request and response actions from Figure 4.4 simultane-
ously with an invocation and return from the function accordingly. Additionally,
we assume that each transaction T upon aborting or committing executes a han-
dler aborted(T) or committed(T) accordingly, both of which simply unset the
active[t] flag (at line 76 or line 81) after appending an abort-response or a
commit-response.

In the proof of strong opacity of TL2, we consider every execution of the
most general client of TL2. At each step of it, we maintain a triple (s,H,G)
consisting of a current state s, a current history H and its matching opacity
graph G ∈ Graph(H). In addition to these three components, for every trans-
action T we also maintain a ghost variable pv[T] : Register→ Bool that maps
a register to true only if T post-validated a read from it. Ghost variables are
different from usual variables in that they do not describe the concrete state
of the execution, and are means to representing information about the past of
executions in proofs. For simplicity of presentation, in the following we treat
the pv variables as if they were a part of concrete state.

A.4.2 Well-formedness of TL2 histories
We argue that the histories of TL2 are well-formed. The most non-trivial well-
formedness property of histories is that of the fences, i.e., we need to show
that:

• Fence blocks until all active transactions complete:
if τ = τ1 (_, t, txbegin) τ2 (_, t′, fbegin) τ3 (_, t′, fend) τ4 then either τ2 or
τ3 contains an action of the form (_, t, committed) or (_, t, aborted).

Let us consider the fence implementation at lines 33–39 of Figure A.7. The
fence function consists of two loops: first, it iterates over all threads and records
whether each thread t has an active transaction in a local variable r[t]; and then
for each thread t, the fence waits until active[t] becomes false, if r[t] is true.

137

Let us consider execution of a fence in a thread t′ and let A be the set of
all active transactions at the beginning of the execution of the fence. For each
transaction T ∈ A in a thread t, there are two possibilities:

• The transaction T commits (aborts) before the fence checks active[t] for
the first time. Therefore, its commit-response (_, t, committed) (abort-
response (_, t, aborted)) occurs before (_, t′, fend) in a history of the exe-
cution.

• The transaction T commits (aborts) after the fence checks active[t] for
the first time, meaning that active[t] = true at that point. When that
is the case, the fence sets r[t] to true. Later on at line 39, the fence
repeatedly re-reads the value of active[t] until it observes false. Note
that T will append a commit-response (_, t, committed) (abort-response
(_, t, aborted)) to the history before setting active[t] to false. Therefore,
by the time the fence reads false from active[t], the T ’s commit-response
(_, t, committed) (abort-response (_, t, aborted)) is already in the history,
meaning that it occurs before (_, t′, fend).

Based on these observations, we conclude that fences block until all active trans-
actions complete, and that histories of TL2 are well-formed.

A.4.3 Opacity graph construction
The construction of the graph is inductive in the length of the execution of
the most general client. At each step of the construction, we maintain a triple
(s,H,G) consisting of the concrete state s, a history H and its opacity graph
G ∈ Graph(H). We start from the initial state2 empty history and an empty
graph, and modify them as the execution proceeds. To this end, simultaneously
with certain primitive commands of the TL2 algorithm in Figure A.7 we execute
graph updates modifying the opacity graph.

In Figure A.9, we specify all the changes each graph update performs to
an opacity graph G = (N, vis,HB,WR,WW,RW) of the triple (s,H,G). The
updates make use of auxiliary predicates reads(n, x, v) and writes(n, x, v), which
we further define:

• A predicate reads(n, x, v) holds of (s,H,G), if either n ∈ N reads v from x
non-transactionally or n ∈ N is a transaction containing a non-local read
of v from x.

• A predicate writes(n, x, v) holds of (s,H,G), if n is a node of the
graph G such that either n = ((_,_,write(x, v)), (_,_, ret(⊥))) ∈
nontxn(H) holds, or n ∈ txns(H) and its last write to x is
((_,_,write(x, v)), (_,_, ret(⊥))).

We perform changes instructed by graph updates simultaneously with certain
transitions of the TL2 algorithm, which we further specify for each update:

• TXBEGIN(T) occurs at the beginning of a transaction T ;
2the state, in which every registers stores the initial value vinit and has a version 0; clock

stores 0; no lock is held and no transaction is active in any thread.

138

• TXREAD(T, x, v) occurs when a transaction T returns a value v at line 25,
and a corresponding read response is appended to the current history;

• TXVIS(T) occurs simultaneously with the last transition of the loop at
lines 54–63 in the transaction T ;

• NTXREAD(ν, x, v) occurs when a non-transactional read access ν reads a
value v from a register x;

• NTXWRITE(ν, x) occurs when a non-transactional write access ν writes a
value to a register x.

A.4.4 Invariants
We prove strong opacity of TL2 by demonstrating that at each step of the
construction of an opacity graph characterized by (s,H,G), where s is a concrete
state, H is a history and G is its matching opacity graph, the triple satisfies
a global invariant presented in Figure A.10. The invariant makes use of the
following auxiliary definitions:

• Given a relation R on a set of graph nodes and a node n, we say that
isLastIn(R,n) holds, if R is a linear order and n is the last node in R.

• We let completed(T) be a predicate that holds of (s,H,G), if T ∈ txns(H)
is a committed or aborted transaction. We also introduce a predicate
aborted(T) that holds of (s,H,G), when T ∈ txns(H) is an aborted trans-
action.

The most important invariant properties correspond to the proof obligations
arising from Lemma 4.20 and Theorem 4.22. Recall that we need to demonstrate
that for a history H ∈ HC|DRF and the graph G ∈ Graph(H) that we construct,
the following holds:

1. H is consistent;

2. if G = (N, vis,HB,WR,WW,RW), then the relation (HB ; (WR ∪WW ∪
RW)) is irreflexive;

3. G does not contain a cycle over transactions only with edges from RT ∪
WR ∪WW ∪ RW.

The obligations 1–3 are discharged by proving invariants INV.2, INV.3 and INV.4
accordingly. In the following, we explain each part of the invariant.

The invariant INV.1 requires that histories be data-race free, since we only
need to consider histories from HC|DRF in the proof. The invariant INV.2(a)
asserts consistency of TL2 histories, while INV.2(b) is an auxiliary property
relating a predicate writes(_,_,_) with the content of write-sets of transactions.
The invariant INV.3 requires that (HB ; (WR ∪WW ∪ RW)) be irreflexive. The
invariant INV.4 asserts that the opacity graph G does not contain cycles over
transactions in (RT ∪ txWR ∪ txWW ∪ txRW). By Theorem 4.22, together the
latter two invariants imply that the graph G is acyclic.

The invariants mentioned so far are not inductive, so we strengthen them
with additional auxiliary invariants. To this end, INV.5 relates the order of

139

TXBEGIN(T):
N := N ∪ {T};
vis(T) := false;

HB := HB ∪ {n HB−−→ T | ∃ψ ∈ n, ψ′ ∈ T. ψ <hb(H) ψ
′};

TXREAD(T, x, v):
if (v = vinit):

RW := RW ∪ {T RWx−−−→ n | vis(n) ∧ writes(n, x, _)}
else:

WR := WR ∪ {n WRx−−−→ T | writes(n, x, v)};
RW := RW ∪ {T RWx−−−→ n′ | writes(n, x, v) ∧ n WWx−−−→ n′};

HB := HB ∪ {n HB−−→ T | ∃T ′, n′.writes(T ′, x, v)

∧ threadOf(T ′) = threadOf(n′)

∧ n HB−−→∗ n′ HB−−→ T ′};

TXVIS(T):
vis(T) := true;
foreach x in wset[T]:

WW := WW ∪ {n WWx−−−→ T | n 6= T ∧ vis(n)

∧ writes(n, x, _)};
RW := RW ∪ {n RWx−−−→ T | n 6= T ∧ reads(n, x, _)};

NTXREAD(ν, x, v):
N := N ∪ {ν};
vis(ν) := true;
if (v 6= vinit):

WR := WR ∪ {n WRx−−−→ T | writes(n, x, v)};
HB := HB ∪ {n HB−−→ T | ∃ψ ∈ n, ψ′ ∈ ν. ψ <hb(H) ψ

′};

NTXWRITE(ν, x):
N := N ∪ {ν};
vis(ν) := true;

WW := WW ∪ {n WWx−−−→ ν | n 6= ν ∧ vis(n) ∧ writes(n, x, _)};
RW := RW ∪ {n RWx−−−→ ν | n 6= ν ∧ reads(n, x, _)};
HB := HB ∪ {n HB−−→ ν | ∃ψ ∈ n, ψ′ ∈ ν. ψ <hb(H) ψ

′};

Figure A.9: Description of graph updates

140

INV denotes the smallest set of triples (s,H,G) of a concrete state s, a history H
and an opacity graph G = (N, vis,HB,WR,WW,RW) ∈ Graph(H), all satisfying
the following:

1. The history H is data-race free.

2. Consistency invariants:

(a) H is a consistent history.

(b) The write-set of each transaction T consists of its most recent writes
to registers:

∀T ∈ txns(H), x ∈ Reg, v ∈ Z. (x, v) ∈ wset[T] ⇐⇒ writes(T, x, v)

3. The relation (HB ; (WR ∪WW ∪ RW)) is irreflexive.

4. The relation (RT ∪ txWR ∪ txWW ∪ txRW) is acyclic.

5. Read and write timestamps of transactions have the following properties:

(a) ∀T, T ′ ∈ txns(H). T
RT−−→ T ′ =⇒ ((vis(T) =⇒ wver[T] ≤ rver[T ′])

∧ (¬vis(T) =⇒ rver[T] ≤ rver[T ′])) ∨ rver[T ′] = ⊥

(b) ∀T, T ′ ∈ txns(H). T
WR−−→ T ′ =⇒ wver[T] ≤ rver[T ′]

(c) ∀T, T ′ ∈ txns(H). T
WW−−→ T ′ =⇒ wver[T] < wver[T ′]

(d) ∀T, T ′ ∈ txns(H). T
RW−−→ T ′ =⇒ rver[T] < wver[T ′]

(e) ∀T, T ′ ∈ txns(H). T
RWx−−−→ T ′ ∧ pv[T][x] = true =⇒ wver[T] <

wver[T ′]

6. Commit-pending transaction T ′ has the following properties:

(a) ∀T, T ′ ∈ txns(H), x ∈ Reg. T 6= T ′ ∧ writes(T, x) ∧ vis(T) ∧ lock[x] =
T ′ =⇒ wver[T] < wver[T ′]

(b) ∀T, T ′ ∈ txns(H), x ∈ Reg. T 6= T ′∧reads(T, x,_)∧lock[x] = T ′ =⇒
rver[T] < wver[T ′]

(c) ∀T, T ′ ∈ txns(H), x ∈ Reg. T 6= T ′ ∧ pv[T][x] = true ∧ lock[x] =
T ′ =⇒ wver[T] < wver[T ′]

7. Well-formedness properties of read and write timestamps:

(a) ∀T ∈ txns(H). rver[T] < wver[T]

(b) ∀T ∈ txns(H). rver[T] ≤ clock ∧ (wver[T] = > ∨ wver[T] ≤ clock)

(c) ∀T ∈ txns(H). wver[T] 6= > =⇒ rver[T] 6= ⊥
(d) ∀T ∈ txns(H). reads(T,_,_) =⇒ rver[T] 6= ⊥)

(e) ∀T ∈ txns(H). (∃x. pv[T][x] = true) ∨ vis(T) =⇒ wver[T] 6= >

Figure A.10: The TL2 invariant (continues in Figure A.11)

141

8. Auxiliary invariants:

(a) The value of each unlocked register x is ether the initial vinit or the
value written by the last node in WWx.

∀x ∈ Reg. lock[x] = ⊥ =⇒
(reg[x] = vinit ⇐⇒ ¬∃n. vis(n) ∧ writes(n, x,_)) ∧
(reg[x] 6= vinit ⇐⇒ ∃n. isLastIn(WWx, n) ∧ writes(n, x, reg[x]))

(b) The version of each unlocked register x is either the initial version
vinit or the write timestamp of the last transaction in txWWx.

∀x ∈ Reg. lock[x] = ⊥ =⇒
(ver[x] = vinit ⇐⇒ ¬∃T ∈ txns(H). vis(T) ∧ writes(T, x,_)) ∧
(ver[x] 6= vinit ⇐⇒ ∃T ∈ txns(H). isLastIn(txWWx, T) ∧

ver[x] = wver[T])

(c) Visible transactions have their reads post-validated:

∀T ∈ txns(H), x ∈ Reg. vis(T) ∧ reads(T, x,_) =⇒ pv[T][x] = true

(d) HB-edges do not originate from active transactions:

∀T ∈ txns(H).¬completed(T) =⇒ ¬∃n′. T HB−−→ n′

(e) A transaction holding a lock on a register is not completed and writes
to that register and is not overwritten:

∀x ∈ Reg, T ∈ txns(H). lock[x] = T =⇒

¬completed(T) ∧ writes(T, x,_) ∧ ¬∃T. T WWx−−−→ T ′

Figure A.11: The TL2 invariant (continues Figure A.10)

142

timestamps to the edges of the opacity graph. In order to maintain this in-
variant inductively, we include an additional invariant INV.6, which helps to
establish that INV.5(c–e) are preserved by the graph update TXVIS(_). To
this end, it asserts the properties of every commit-pending transaction T ′ that
has acquired a lock on a register, but has not added corresponding write and
anti-dependencies yet.

The invariant INV.7 asserts various well-formedness properties of read and
write timestamps of each transaction, and the invariant INV.8 asserts multiple
well-formedness conditions relating the concrete state, history actions and graph
edges.

Lemma A.20. The invariant INV is preserved by the graph updates
TXREAD(T, x), TXVIS(T), NTXREAD(ν), NTXWRITE(ν) and TXBEGIN(T).

The invariant INV.1 does not require a proof of preservation. Indeed, in the
Fundamental Property (Theorem 4.11) data-race freedom is an obligation that
clients of a TM system need to fulfill, not a TM implementation. Hence, in the
proof of strong opacity of TL2, INV.1 is an assumption. Also, it is easy to see
that the well-formedness conditions of INV.7 and INV.8 are preserved trivially by
construction of histories and graphs. We provide proof details for the remaining
invariants in the following sections:

Section # Invariant
Section A.4.6 INV.2
Section A.4.7 INV.3
Section A.4.8 INV.5
Section A.4.9 INV.4
Section A.4.10 INV.6

Note that we are considering the invariants out of the ascending order due to
Section A.4.9 depending on Section A.4.8.

A.4.5 Timestamp order properties
We state Proposition A.21, which relates paths between transactions with times-
tamp order, and then we use it in multiple proofs of preservation of the invariant.

Proposition A.21. If (s,H,G) satisfies INV.5, INV.7 and INV.8, then for every
transactions T, T ′ ∈ txns(H), if T RT∪txWR∪txWW∪txRW−−−−−−−−−−−−−−−→+ T ′, then either of the
following holds:

1. vis(T) ∧ vis(T ′) =⇒ wver[T] < wver[T ′];

2. ¬vis(T) ∧ vis(T ′) =⇒ rver[T] < wver[T ′];

3. vis(T) ∧ ¬vis(T ′) =⇒ wver[T] ≤ rver[T ′] ∨ rver[T ′] = ⊥;

4. ¬vis(T) ∧ ¬vis(T ′) =⇒ rver[T] ≤ rver[T ′] ∨ rver[T ′] = ⊥.
Proof of Proposition A.21. The proof is by induction on the length of the path
T

RT∪txWR∪txWW∪txRW−−−−−−−−−−−−−−−→+ T ′. Let φ1(T, T ′), φ2(T, T ′), φ3(T, T ′) and φ4(T, T ′)
be predicates corresponding to the implications of the proposition. For each
k ≥ 1, we prove Φ(k), which is defined as follows:

Φ(k) , ∀T, T ′ ∈ txns(H). T
RT∪txWR∪txWW∪txRW−−−−−−−−−−−−−−−→k T ′

=⇒ φ1(T, T ′) ∧ φ2(T, T ′) ∧ φ3(T, T ′) ∧ φ4(T, T ′)

143

Base of induction. We need to show that Φ(1) holds. Let us consider any two
transactions T and T ′ in the opacity graph and assume that T RT∪WR∪WW∪RW−−−−−−−−−−−→
T ′ holds. We consider each possible edge separately and demonstrate φ1(T, T ′),
φ2(T, T ′), φ3(T, T ′) or φ4(T, T ′) depending on visibility of T and T ′.

1. Consider the edge T RT−−→ T ′. According to the invariant INV.5(a), we
consider make the following conclusions depending on visibility of T and
T ′.

• Let us assume that both T and T ′ are visible. We demonstrate that
φ1(T, T ′) holds. From the invariant INV.5(a), we know that either
wver[T] ≤ rver[T ′] or rver[T ′] = ⊥ is the case. Note that the
contra-positive of the invariant INV.7(c,e) states that rver[T ′] = ⊥
contradicts visibility of T ′. Therefore, only wver[T] ≤ rver[T ′] can
hold in this case. By INV.7(a), rver[T ′] < wver[T ′] holds, which
allows us to conclude wver[T] ≤ wver[T ′] (coinciding with φ1(T, T ′)).

• Let us assume that T is not visible and T ′ is. We demonstrate that
φ2(T, T ′) holds. From the invariant INV.5(a), we know that either
rver[T] ≤ rver[T ′] or rver[T ′] = ⊥ is the case. Note that the
contra-positive of the invariant INV.7(c,e) states that rver[T ′] = ⊥
contradicts visibility of T ′. Therefore, only rver[T] ≤ rver[T ′] can
hold in this case. By INV.7(a), rver[T ′] < wver[T ′] holds, which
allows us to conclude rver[T] < wver[T ′] (coinciding with φ2(T, T ′)).

• Let us assume that T is visible and T ′ is not. It is easy to see that
φ3(T, T ′) holds, since, by INV.5(a), either wver[T] ≤ rver[T ′] or
rver[T ′] = ⊥ is true.

• Let us assume that neither T nor T ′ is visible. It is easy to see
that φ4(T, T ′) holds, since, by INV.5(a), either rver[T] ≤ rver[T ′]
or rver[T ′] = ⊥ is true.

2. T WR−−→ T ′. By Definition 4.19, vis(T) holds. From invariant INV.5(b), we
obtain that wver[T] ≤ rver[T ′] holds. Hence, if vis(T ′) does not hold,
we can conclude φ3(T, T ′). Let us consider the case when vis(T ′) holds.
By INV.7(a), rver[T ′] < wver[T ′] holds. Therefore, wver[T] < wver[T ′]
holds, which allows us to conclude φ1(T, T ′).

3. T WW−−→ T ′. By Definition 4.19, vis(T) and vis(T ′) both hold. By invariant
INV.5(c), wver[T] ≤ wver[T ′] holds, which allows us to conclude φ1(T, T ′).

4. T RW−−→ T ′. By Definition 4.19, vis(T ′) holds. Let us first assume that vis(T)
does not hold. By INV.5(d), rver[T] < wver[T ′] holds, which allows us
to conclude φ2(T, T ′). Let us now consider the case when vis(T) holds.
By INV.8(c), T post-validated all of its reads. Therefore, by INV.5(e),
wver[T] < wver[T ′] holds, which allows us to conclude φ1(T, T ′)

Induction step. Let us consider any k ≥ 1 and assume that Φ(k′) holds for
all k′ ≤ k, i.e.:

∀T, T ′. T RT∪txWR∪txWW∪txRW−−−−−−−−−−−−−−−→k′ T ′ =⇒ φ1(T, T ′) ∧ φ2(T, T ′) (A.22)

144

We need to show that Φ(k + 1) holds too. To this end, we consider any path
T

RT∪txWR∪txWW∪txRW−−−−−−−−−−−−−−−→k+1 T ′.
Let T ′′ be the next transaction after T on the path, i.e., such that:

T
RT∪txWR∪txWW∪txRW−−−−−−−−−−−−−−−→ T ′′

RT∪txWR∪txWW∪txRW−−−−−−−−−−−−−−−→k T ′.

It is easy to see that Φ(k + 1) can be obtained from the induction hypotheses
Φ(1) (instantiated for T and T ′′) and Φ(k) (instantiated for T ′′ and T ′).

Anti-dependencies of read updates

We now formulate and establish a property of anti-dependency edges added at
the graph update TXREAD(T, x, v), which we use in proofs of preservation of
several invariants. To this end, we introduce an auxiliary predicate PAD(T, x, v)
denoting a set of triples (s′′, H ′′, G′′) such that:

• in the history H ′′, T is a transaction whose last action is a read request
(_,_, read(x));

• if v = vinit holds, then

∀n′.writes(n′, x,_) ∧ ¬aborted(n′) =⇒
(n′ ∈ txns(H)) ∧ rver[T] < wver[n′]

• if v 6= vinit holds, then there exists a node n such that vis(n), writes(n, x, v)
and the following all hold:

∀n′.writes(n′, x,_) ∧ ¬aborted(n′) ∧ ¬n′ WWx−−−→ n =⇒
(n′ ∈ txns(H)) ∧ rver[T] < wver[n′]

The following proposition asserts that PAD(T, x, v) is stable under interference
from other threads, i.e., transitions and graph updates of other threads do not
invalidate it.

Proposition A.23. If (s,H,G) ∈ PAD(T, x, v) and (s′, H ′, G′) is a result of
a graph update or a transition in a thread different from threadOf(T), then
(s′, H ′, G′) ∈ PAD(T, x, v).

Proof. Note that opacity graphs are constructed monotonously, i.e., once we add
an edge, it stays in the graph. Hence, in a proof of stability of PAD(T, x, v) it
is important to consider only graph updates NTXWRITE(n′, x) and TXVIS(n′),
since they introduce new nodes writing to x, which PAD(T, x, v) requires to
have a timestamp greater than rver[T]. Out of all primitive commands by
other threads, we only consider the ones at line 30 and at line 53 (the rest of
primitive commands preserve PAD(T, x, v) trivially).

Firstly, we consider the graph update NTXWRITE(n′, x), which adds a new
non-transactional node n′ writing to x. Since we only consider data-race free
histories in our proof of TL2, either n′ HB−−→ T or T HB−−→ n′ must occur in G′. The
former cannot be the case, since n′ is a new node, and the graph update only
adds edges ending in n′. Also, T is a live transaction, so by INV.8(d), T HB−−→ n′

cannot be in G′.

145

Secondly, we consider a primitive command at line 30, which happens when
a transaction T ′ writes to the register x and results in adding a corresponding
write response into the history. Hence, after this command, writes(T ′, x,_) and
¬aborted(T ′) both hold. Note that when T reads a non-initial value written
by a node n, ¬(T ′

WWx−−−→ n) also holds, since T ′ is not visible. Additionally,
T ′ is also live, meaning that it has not generated its write timestamp yet, i.e.,
wver[T ′] = > holds. Therefore, PAD(T, x, v) holds too.

Thirdly, we now consider the primitive command at line 53 occurring in
some transaction T ′ writing to x. The primitive command replaces previously
maximal write timestamp wver[T ′] with the incremented value of clock. By
INV.7(b), all other read and write timestamps, such as rver[T], are less or
equal to clock in (s,H,G). Hence, rver[T] < wver[n′] holds after the primitive
command executes.

Lastly, we consider TXVIS(n′) occurring in a transaction n′ writing to x.
Knowing that (s,H,G) ∈ PAD(T, x, v), we get that rver[T] < wver[n′] holds.
Since the graph update simply makes n′ visible, PAD(T, x, v) holds.

We now prove the property of anti-dependencies added at the graph update
TXREAD(T, x, v).

Proposition A.24. If (s,H,G) ∈ INV, T ∈ txns(H) and (s′, H ′, G′) is
a result of a graph update TXREAD(T, x, v), then for every anti-dependency
T

WRx−−−→ n added by the update, both n ∈ txns(H ′) and rver[T] < wver[n] hold
of (s′, H ′, G′).

Proof. Before the graph update, the read operation stores the value of ver[x]
into a local variable ts1, then it stores reg[x] in a local variable value as well as
the lock status lock[x].test() in locked. Afterwards, the read operation stores
the value of ver[x] once again into a local variable ts2. The graph update
TXREAD(T, x) happens provided that the following holds of (s,H,G) prior to
the update:

¬locked ∧ ts1 = ts2 ∧ ts2 ≤ rver[T] (A.25)

Note that by checking the above, the read operation ensures that there was
a moment in between the two accesses to ver[x], when ver[x] = ts1 = ts2,
reg[x] = value and lock[x] = ⊥ all simultaneously held. Let (s′′, H ′′, G′′) cor-
respond to that moment. Since that is the past of the execution, (s′′, H ′′, G′′) ∈
INV holds.

In the following, we demonstrate that PAD(T, x, v) holds of (s′′, H ′′, G′′).
Once that is established, Proposition A.23 will ensure that PAD(T, x, v) is not
invalidated till the read operation returns and the graph update executes.

Let us assume that T reads the initial value, i.e. value = vinit. Note that
reg[x] = vinit holds of (s′′, H ′′, G′′). By INV.8(a,b), there is no visible node in
G′′ that writes to x. Hence, PAD(T, x, v) holds trivially of (s′′, H ′′, G′′). Now
let us consider the case when T does not read an initial value, i.e., value 6= vinit.
Note that reg[x] = value 6= vinit holds of (s′′, H ′′, G′′). By INV.8(b), n is last
in WWx. Once again, PAD(T, x, v) holds trivially of (s′′, H ′′, G′′), since no node
n′ follows n in WWx.

Corollary A.26. If (s,H,G) ∈ INV, T ∈ txns(H) and (s′, H ′, G′) is a result of
a graph update TXREAD(T, x, v), then for every anti-dependency T

WRx−−−→ n

146

added by the update, both n ∈ txns(H ′) and rver[T] < wver[n] hold of
(s′, H ′, G′).

Proof sketch. Note that the graph update TXREAD(T, x, v) adds the following
anti-dependency edges into G:

• if v = vinit, then {T
RWx−−−→ n | vis(n) ∧ writes(n, x,_)};

• otherwise, {T RWx−−−→ n′ | writes(n′, x, v) ∧ n′ WWx−−−→ n}.

Thus, it is sufficient to prove that PAD(T, x, v) holds of (s′, H ′, G′). This follows
from Proposition A.24.

A.4.6 Preservation of INV.2
It is easy to see that the invariants INV.2(b,c) hold by construction of the history.
In the following, we argue that INV.2(a) is preserved throughout each execution.

In order to ensure consistency of a history H, according to Definition 4.18,
we need to demonstrate the following for every read request ψ = (_,_, read(x))
and its matching response ψ′ = (_,_, ret(v)):

• when (ψ,ψ′) ∈ Local(H) and performed by a transaction T , v is the value
written by the most recent write (_,_,write(x, v)) preceding the read in
T ;

• when (ψ,ψ′) /∈ Local(H), there exists a non-local β not located in an
aborted or live transaction and such that β <wrx(H) ψ

′; if there is no such
write, v = vinit.

It is easy to see that it is sufficient to ensure preservation of consistency only
when we add read-response actions into history, which happens at line 17 or
line 25 of the read function.

Let us consider any transaction T that initiated a read operation from a
register x (the case of a non-transactional read is analogous to a non-local
read by a transaction). The last action by T in history is a read-request
ψ = (_,_, read(x)). Let a corresponding read response be ψ′ = (_,_, ret(v))
and consider the moment it is added into history H, which results in a history
H ′.

We first consider the case when (ψ,ψ′) ∈ Local(H) holds. By Definition 4.17,
T writes to x before ψ. Let v′ be the value of the last such write; then
writes(T, x, v′) holds of H and H ′. By INV.2(b), (x, v′) ∈ wset[T]. Note that
(x, v′) ∈ wset[T] holds during the entire read operation, because wset[T] is
a local variable of transaction T . It is easy to see that in this case the read
operation returns a value from the write-set at line 17, meaning that v = v′.

We now consider the case when (ψ,ψ′) /∈ Local(H) holds. By Definition 4.17,
T does not write to x before ψ, meaning that there is no value v′ such that
writes(T, x, v′) holds of history during the execution of the read operation.
Hence, by INV.2(b), wset[T] does not contain a value for x. Moreover, the
latter is the case during the entire read operation, because wset[T] is a local
variable of transaction T . It is easy to see that in this case the read operation
at line 25 returns the value v read directly from the register; however, the result
of the operation is determined at line 21. Based on INV.8(a) (note that the read

147

operation ensures that lock[x] is unlocked), the following two observations can
be made about the value v at the moment of executing line 21:

1. v 6= vinit if and only if there exists a node n such that isLastIn(WWx, n)
and writes(n, x, v) both hold;

2. v = vinit if and only if there is no visible node writing to x.

First, let us consider the case when there exists a node n such that
isLastIn(WWx, n) and writes(n, x, v) both hold. Since it is ordered by WWx,
by Definition 4.19, it is visible, and, therefore, does not denote a live or an
aborted transaction. According to writes(n, x, v), n contains a non-local write
action β writing v to x. Thus, β <wrx(H′) ψ

′ holds. Overall, in this case, if
(ψ,ψ′) /∈ Local(H ′) and v 6= vinit, then there exists a non-local β ∈ n, which is
not an aborted or live transaction, such that β <wrx(H) ψ

′.
We now consider the case when there does not exist a visible node writing

to x, which is when v = vinit. Thus, any node n writing to x must be either a
live, aborted or commit-pending non-visible transaction. Additionally, in case
of the latter, if β is the non-local write to x by n, β <wrx(H′) ψ

′ does not hold,
since ψ′ returns v = vinit and β writes a non-initial value. Overall, in this case,
if (ψ,ψ′) /∈ Local(H ′) and v = vinit, then there does not exists a non-local β not
located in an aborted or live transaction and such that β <wrx(H) ψ

′.

A.4.7 Preservation of INV.3
Proposition A.27. If (s,H,G) ∈ INV and (s′, H ′, G′) is a result adding a new
node n by graph updates TXBEGIN(n), NTXREAD(n,_) or NTXWRITE(n,_),
the following observation holds of (s′, H ′, G′): ¬∃n′. n HB∪WR∪WW∪RW−−−−−−−−−−−→ n′.

Proof sketch. The proof of the proposition is almost trivial, as TXBEGIN(n) and
NTXWRITE(n,_) always order new graph nodes after existing ones. The same
is true of NTXREAD(n, x) as well (for every register x), however, it is necessary
to demonstrate that this graph update does not introduce anti-dependencies
originating in n.

We consider the register x. Let us first assume that it is locked at the
moment of the graph update NTXREAD(n, x), i.e., there exists a transaction T
such that lock[x] = T . By INV.8(e), T writes to x, and, therefore, conflicts with
n. Since we only consider data-race free histories, it must be the case that either
T

HB−−→ n or n HB−−→ T . However, neither is possible: the former, because according
to INV.8(d,e) T is not completed and therefore cannot have outgoing happens-
before edges, and the latter, because n is a fresh node, and NTXREAD(n, x) does
not introduce edges of the form n

HB−−→ _. Thus, we obtained a contradiction.
We conclude that x is not locked at the moment of the graph update.

When lock[x] = ⊥, by INV.8(a), the value of reg[x] is either the value
written by the last node in WWx or vinit, if there is no such node. Thus, it
is easy to see that in both cases no anti-dependency of the form n

RWx−−−→ _ is
added into G by NTXREAD(n, x).

Proposition A.28. If (s,H,G) ∈ INV and (s′, H ′, G′) is a result of a graph
update, then (s′, H ′, G′) satisfies INV.3.

148

Proof. We consider all possible graph updates separately in the four following
cases.

Case 1: non-transactional graph update NTXWRITE(ν,_) or
NTXREAD(ν,_). Both updates add a new node ν to the graph, which
by Proposition A.27 does not have outgoing edges. Hence, it is easy to see that
(HB ; (WR ∪WW ∪ RW)) remains irreflexive after either of the graph updates.

Case 2: transactional graph update TXBEGIN(T). This update adds a new
node T to the graph and happens-before edges of the following form: _ HB−−→ T .
Note that by Proposition A.27, no edge starts from T . Hence, it is easy to see
that (HB ; (WR ∪WW ∪ RW)) remains irreflexive after the graph update.

Case 3: transactional graph update TXVIS(T). It adds edges only of the
following form: _ WW−−→ T and _ RW−−→ T . Adding such edges cannot invalidate
irreflexivity of (HB ; (WR ∪ WW ∪ RW)), unless there is a node n such that
T

HB−−→ n holds of (s,H,G). However, by invariant INV.8(d), HB-edges do not
originate in T , so we can conclude that (HB ; (WR ∪ WW ∪ RW)) remains
irreflexive after TXVIS(T).

Case 4: transactional graph update TXREAD(T, x,_). According to Fig-
ure A.9, it adds edges of the form _ WRx−−−→ T , T RWx−−−→ _ and _ HB−−→ T . Note
that the transaction T is not completed at the moment (s,H,G). Hence, by
invariant INV.8(d), HB-edges do not originate from T prior to the update. The
transaction T is also not visible at the moment of the graph update, so WW and
WR-edges do not originate from T either according to Definition 4.19. There-
fore, the only kind of edges going from T in G and G′ is anti-dependencies of
the form T

RW−−→ _. We need to demonstrate that there is no node n such that
a cycle T RW−−→ n

HB−−→ T appears in G′ after the graph update. To this end, we
consider three possibilities:

1. only the edge T RWx−−−→ n is added by the graph update, and n
HB−−→ T is

present in G;

2. only the edge n HB−−→ T is added by the graph update, and T
RWy−−−→ n is

present in G (for some register y);

3. edges T RWx−−−→ n and n HB−−→ T are both added by the graph update.

We start with the first potential cycle, and demonstrate by contradic-
tion that it never takes place. By Proposition A.24, n is a transaction and
rver[T] < wver[n]. Since n is a transaction, Lemma 4.29 gives us that there
is a path n

RT∪TXWR−−−−−−−→+ T in the graph G. Recall that T is not visible and,
according to the definition of TXREAD(T, x,_) in Figure A.9, n is visible. By
applying Proposition A.29 to the path n

RT∪TXWR−−−−−−−→+ T , we learn that either
wver[n] ≤ rver[T] or rver[T] = ⊥ holds of (s,H,G). However, at the moment
of the graph update, transactions already have generated their read timestamps,
meaning that only wver[n] ≤ rver[T] can be the case. Thus, we arrived to a
contradiction.

We now consider the second potential cycle, and demonstrate by contradic-
tion that it is never added. Let us assume that T

RWy−−−→ n is in the graph G.
Hence, by definition of RWy, T must have already read from y, from which

149

we conclude that y 6= x. We also assume that the edge n hb−→ T is added by
the graph update, which, according to Figure A.9, only happens when T ′ is a
transaction from which T reads from and there is a node n′ in the thread of T ′
such that the following configuration takes place:

n
HB∗

xx

HB

��

__

RWyn′

HB

��
T ′

WRx // T

where the solid lines depict edges present in the original graph G, and the dotted
lines are new edges added by the graph update. We consider two possibilities
depending on whether n represents a transaction or not. Let us first assume it
is a transaction. By Lemma 4.29, n RT∪TXWR−−−−−−−→+ T ′ holds of the graph G. By
applying Proposition A.29 to the path T

RWy−−−→ n
RT∪TXWR−−−−−−−→+ T ′, we learn that

rver[T] < wver[T ′]. However, the graph update happens only if wver[T ′] ≤
rver[T], meaning that this possibility never arises. Let us now assume that n
is non-transactional. Since H is data-race free, either T HB−−→ n or n HB−−→ T is
the case for the graph G. Knowing that (s,H,G) ∈ INV.3 and that T

RWy−−−→ n is
in G, we conclude that only T HB−−→ n is possible. Hence, T HB−−→ T ′ holds, and,
by Lemma 4.29, so does T RT∪TXWR−−−−−−−→+ T ′. By applying Proposition A.29 to
the latter path, we learn that rver[T] < wver[T ′]. However, the graph update
happens only if wver[T ′] ≤ rver[T], meaning that this possibility never arises.

Finally, we consider the last possible cycle, and demonstrate by contradiction
that it is never added. Let us assume that the edges T RWx−−−→ n and n HB−−→ T are
both added by the graph update and form a cycle. This is only possible if the
following configuration (analogous to the case of the second cycle) takes place:

n
HB∗

xx

HB

��

__

RWx
n′

HB

��
T ′

WRx // T

where the solid lines depict edges present in the original graph G, and the
dotted lines are new edges added by the graph update. By Proposition A.24,
n is a transaction and rver[T] < wver[n]. By Lemma 4.29, n RT∪TXWR−−−−−−−→+ T ′

holds of the graph G. Note that n is visible transaction, and T is not. By
applying Proposition A.29 to the path n RT∪TXWR−−−−−−−→+ T ′

WRx−−−→ T , we learn that
either wver[n] ≤ rver[T] or rver[T] = ⊥. However, the latter cannot be the
case at the moment of the graph update. Hence, we obtained a contradiction:
rver[T] < wver[n] and wver[n] ≤ rver[T] both hold.

A.4.8 Preservation of INV.5
Proposition A.29. If (s,H,G) ∈ INV, T ∈ txns(H) and (s′, H ′, G′) is a result
of a graph update, then (s′, H ′, G′) satisfies INV.5.

150

Proof. Graph updates NTXREAD(_,_) and NTXWRITE(_,_) do not affect the
invariant. Therefore, we consider the following cases in the proof: graph updates
TXBEGIN(T ′), TXREAD(T ′, x), TXVIS(T ′) and also primitive commands at at
line 11, line 58 and line 53 in Figure A.7. We consider primitive commands in
the proof, because the ones at line 11 and line 53 may change the implication
of INV.5 for existing nodes and edges satisfying its premise, meaning that we
need to prove that the implication remains true. The rest of the graph updates
may add new nodes and edges satisfying the premise of the invariant, so we
demonstrate that the implication holds of them too.

We first consider a primitive command at line 11 assigning a read version
to a transaction T ′, which happens only when rver[T ′] = ⊥. As follows from
invariants INV.7(c,d,e), in order to have the minimal read timestamp T ′ must
be neither visible nor have non-locally read from any register. This is not the
case for transactions in the invariants INV.5(b-e), so we focus on the invariant
INV.5(a). Let us consider a transaction T such that T RT−−→ T ′ holds. By invariant
INV.7(b), rver[T] ≤ clock and either wver[T] = > or wver[T] ≤ clock. Let us
assume that vis(T) holds. By INV.7(e), wver[T] 6= >, so only wver[T] ≤ clock is
possible. Since the new value of rver[T ′] is clock, it is the case that wver[T] ≤
rver[T ′], meaning that the invariant INV.5(a) is preserved. Let us now consider
the case when vis(T) does not hold. Knowing that rver[T] ≤ clock and that
the new value of rver[T ′] is clock, we conclude rver[T] ≤ rver[T ′], which
means that the invariant INV.5(a) is preserved.

Second, we consider a primitive command at line 53 assigning a write times-
tamp to a transaction, which happens only when the transaction has the write
timestamp >. The contra-positive of INV.7(e) states that such transaction is
not visible. Note that every occurrence of wver[·] in INV.5 corresponds to a
visible transaction. Therefore, line 53 does not invalidate INV.5.

Third, we consider a graph update TXBEGIN(T ′). This graph update adds
a new node corresponding to the transaction T ′. We also need to consider real-
time order between completed transactions and T ′. Let T be any completed
transaction such that T RT−−→ T ′. Since rver[T ′] is initialized with rver[T ′] = ⊥,
INV.6(a) holds trivially.

Forth, we consider a graph update TXREAD(T ′, x,_) adding read and anti-
dependencies between transaction. Let us first consider the new read depen-
dency T WRx−−−→ T ′. Since the graph update only happens if wver[T] ≤ rver[T ′]
holds, the invariant INV.5 is not invalidated by adding the new read dependency.
We now consider any new anti-dependency T ′ RWx−−−→ T ′′. By Proposition A.24,
rver[T ′] < wver[T ′′], meaning that INV.5(d) is preserved too.

Fifth, we consider a graph update TXVIS(T ′). Let us consider any new
edge T WWx∪RWx−−−−−−−→ T ′. Since the transaction T ′ first locks registers of its write-
set and then performs TXVIS(T ′), lock[x] = T ′ holds at the moment of the
graph update. Preservation of INV.5(c–e) by the graph update then follows
immediately from INV.6(a–c) accordingly.

Finally, we consider a possibility of a primitive command by T at line 58
setting pv[T][x] to true for some register x. Let us assume that there exists
a transaction T ′ such that T RWx−−−→ T ′ holds prior to the execution of line 58
(if there are several such transactions, we let T ′ be the one occurring the last
in WWx). By INV.5(d), rver[T] < wver[T ′] holds then. Note that line 58 sets

151

pv[T][x] to true only if lock[x] = ⊥ and ts ≤ rver[T], where ts = ver[x].
By INV.8(b), ver[x] = wver[T ′]. As a consequence, wver[T ′] ≤ rver[T] holds,
which contradicts our previous observation about wver[T ′] and rver[T]. Hence,
there does not exist a transaction T ′ such that T RWx−−−→ T ′, and INV.5(e) is
preserved by the primitive command at line 58.

A.4.9 Preservation of INV.4
In this section, we demonstrate that all graph updates preserve the invariant
INV.4. To this end, firstly, we observe that graph updates NTXREAD(_,_) and
NTXWRITE(_,_) do not introduce edges between pairs of transactions and
therefore cannot possibly invalidate INV.4. Secondly, we argue that the graph
update TXINIT(T), which adds a new transaction T into the graph and implies
new real-time order edges between transactions ending in T , also straightfor-
wardly preserves INV.4. As we previously demonstrated in Proposition A.27, no
edges originate from the new transaction T , so it is easy to see that the graph
update does not introduce any cycle and, thus, preserves INV.4. In the rest
of the section, we consider the remaining graph updates TXREAD(_,_) and
TXVIS(_), we prove Proposition A.30 and Proposition A.32.

Proposition A.30. If (s,H,G) ∈ INV, T ′ ∈ txns(H) and (s′, H ′, G′) is a result
of a graph update TXREAD(T ′, x), then (s′, H ′, G′) satisfies INV.4.

Proof. Before the graph update, the read operation stores the value of ver[x]
into a local variable ts1, then it stores reg[x] in a local variable value as well as
the lock status lock[x].test() in locked. Afterwards, when the read operation
stores the value of ver[x] once again into a local variable ts2, the graph update
TXREAD(T ′, x) may happen, provided that the following holds of (s,H,G) prior
to the update:

¬locked ∧ ts1 = ts2 ∧ ts2 ≤ rver[T ′] (A.31)

Note that by checking the above, the read operation ensures that there was
a moment in between the two accesses to ver[x], when ver[x] = ts1 = ts2,
reg[x] = value and lock[x] = ⊥ all simultaneously held. Let (s′′, H ′′, G′′)
correspond to that moment.

Let us assume that the condition (A.31) holds, and the graph update takes
place. Since TXREAD(T ′, x) adds different edges depending on whether value =
vinit holds, we consider these two cases in the proof separately.

Firstly, we consider the case when value = vinit holds. According to Fig-
ure A.9, only RW edges are added into the graph in this case. We prove that
such edges do not create cycles by contradiction. Let us imagine a cycle in
the graph G′ going through a new anti-dependency edge T ′ RWx−−−→ T ′′. The path
T ′′

RT∪WR∪WW∪RW−−−−−−−−−−−→+ T ′ is present in the graph G. Hence, after applying Propo-
sition A.21 to visible T ′′ and non-visible T ′, we obtain that wver[T ′′] ≤ rver[T ′].
Additionally, by Proposition A.24, the anti-dependency T ′ RWx−−−→ T ′′ implies that
rver[T ′] < wver[T ′′]. Overall, we obtained a contradiction.

Secondly, we consider the case when value 6= vinit. According to Figure A.9,
HB, RW and WR edges are added into the graph. However, in this proof we do
not consider the new HB edges, since they cannot cause cycles invalidating INV.4.
For the same reason, we only consider WR-edges originating from transactions.

152

Let T WRx−−−→ T ′ be the read dependency added and let T ′ RWx−−−→ T ′′ be any of the
new anti-dependencies added by the graph update. We prove by contradiction
that neither of them causes a cycle in (RT ∪ txWR ∪ txWW ∪ txRW).

The invariant INV.8(a) asserts that the value of the register reg[x] previously
stored in a local variable value is the value written by the last transaction in
WWx. From this observation, it is easy to conclude that T is this transaction at
the moment (s′′, H ′′, G′′). By INV.8(b), ver[x] coincides with the write version
wver[T]. Knowing that the condition (A.31) holds, we conclude that so does
wver[T] ≤ rver[T ′]. Also, by Proposition A.24, the anti-dependency T ′ RWx−−−→
T ′′ implies that rver[T ′] < wver[T ′′].

Adding edges T WRx−−−→ T ′ or T ′ RWx−−−→ T ′′ may cause three kinds of cycles: the
ones containing exactly one of the two edges, and the one containing both. We
consider these cases separately:

Case #1: T WRx−−−→ T ′. Previously, we have shown that wver[T] ≤ rver[T ′]
holds. Also, by INV.7(d), rver[T ′] 6= ⊥ holds. Overall, both ¬(rver[T ′] <
wver[T]) and rver[T ′] 6= ⊥ hold. Note that T ′ is not visible and T is.
When all of the aforementioned takes place, the contra-positive of Propo-
sition A.21 states that there is no path T ′ RT∪WR∪WW∪RW−−−−−−−−−−−→+ T . Hence, the
edge T WRx−−−→ T ′ alone does not cause a cycle in RT∪txWR∪txWW∪txRW.

Case #2: T ′ RWx−−−→ T ′′. Previously, we have shown that rver[T ′] < wver[T ′′]
holds. Also, by INV.7(d), rver[T ′] 6= ⊥ holds. Overall, both ¬(wver[T ′′] ≤
rver[T ′]) and rver[T ′] 6= ⊥ hold. Note that T ′′ is visible and T ′ is not.
When all of the aforementioned takes place, the contra-positive of Proposi-
tion A.21 states that there is no path T ′′ RT∪WR∪WW∪RW−−−−−−−−−−−→+ T ′. Hence, the
edge T ′ RWx−−−→ T ′′ alone does not cause a cycle in RT∪txWR∪txWW∪txRW.

Case #3: T WRx−−−→ T ′
RWx−−−→ T ′′. Previously, we have shown that wver[T] ≤

rver[T ′] < wver[T ′′] holds. Note that T ′′ and T are both visible. As
the contra-positive of Proposition A.21 states, if wver[T ′′] < wver[T] does
not hold, then there is no path T ′′ RT∪WR∪WW∪RW−−−−−−−−−−−→+ T . Hence, the edges
T

WRx−−−→ T ′
RWx−−−→ T ′′ do not cause a cycle in RT ∪ txWR ∪ txWW ∪ txRW.

Proposition A.32. If (s,H,G) ∈ INV, T ∈ txns(H) and (s′, H ′, G′) is a result
of a graph update TXVIS(T ′), then (s′, H ′, G′) satisfies INV.4.

Proof. Note the graph update TXVIS(T ′) occurs after line 63 in the transaction
T ′, meaning that the following holds of T ′ in (s,H,G):

• ∀(x,_) ∈ wset[T ′]. lock[x] = T ′;

• ∀(x,_) ∈ rset[T ′]. pv[T ′][x] = true.

The graph update TXVIS(T ′) adds the following new edges into the opacity
graph G = (N, vis,HB,WR,WW,RW) for every register x such that (x,_) ∈
wset[T ′] holds:

• {n WWx−−−→ T ′ | n ∈ N ∧ n 6= T ′ ∧ vis(n) ∧ writes(n, x,_)}

153

• {n RWx−−−→ T ′ | n ∈ N ∧ n 6= T ′ ∧ reads(n, x,_)}

The update also makes T ′ visible in (s′, H ′, G′). It is easy to see that only
new edges between transactions can invalidate INV.4, since it asserts absence of
cycles over transactions only. As the new dependencies end in the same node T ′,
they will not appear in the same simple cycle. These two observations together
allow us to consider each edge individually and prove that it does not create a
cycle in (RT ∪ txWR ∪ txWW ∪ txRW).
WW-edges. We show that adding an edge T WWx−−−→ T ′ into the opacity graph
G preserves INV.4.

Note that lock[x] = T ′ and that T is such that vis(T), T 6= T ′ and
writes(T, x,_) all hold of (s,H,G); then from INV.6(a) we infer that wver[T] <
wver[T ′]. The latter also holds of (s′, H ′, G′), as the graph update does not
change write timestamps of transactions.

We demonstrated in Proposition A.29 that (s′, H ′, G′) satisfies INV.5 and
argued that it also satisfies INV.8. This enables applying Proposition A.21 to
(s′, H ′, G′). Note that vis(T) and vis(T ′) both hold of (s′, H ′, G′). The contra-
positive of Proposition A.21 asserts that vis(T), vis(T ′) and wver[T] < wver[T ′]

together imply that T ′ RT∪WR∪WW∪RW−−−−−−−−−−−→+ T does not hold, meaning that adding
the edge T WWx−−−→ T ′ into G does not create cycles in RT∪txWR∪txWW∪txRW.
RW-edges. We show that adding the edge T RWx−−−→ T ′ into the opacity graph G
preserves INV.4. We consider the triple (s,H,G) of the state prior to the graph
update and split the proof in two cases depending on whether T is visible or
not.

First, we consider the case when T is visible. By INV.8(c), pv[T][x] = true

holds of (s,H,G). Also, recall that T ′ holds a lock on x. When that is the
case, according to INV.6(c), wver[T] < wver[T ′] holds. The latter also holds of
(s′, H ′, G′), as the graph update does not change write timestamps of transac-
tions.

We demonstrated in Proposition A.29 that (s′, H ′, G′) satisfies INV.5 and
argued that it also satisfies INV.8. This enables applying Proposition A.21 to
(s′, H ′, G′). Note that vis(T) and vis(T ′) both hold of (s′, H ′, G′). The contra-
positive of Proposition A.21 asserts that vis(T), vis(T ′) and wver[T] < wver[T ′]

together imply that T ′ RT∪WR∪WW∪RW−−−−−−−−−−−→+ T does not hold, meaning that adding
the edge T RWx−−−→ T ′ into G does not create cycles in RT∪ txWR∪ txWW∪ txRW.

We now return to the case when T is not visible. Recall that T ′ holds a lock
on x. When that is the case, according to INV.6(b), rver[T] < wver[T ′] holds
of (s,H,G). The latter also holds of (s′, H ′, G′), as the graph update does not
change write timestamps of transactions.

We demonstrated in Proposition A.29 that (s′, H ′, G′) satisfies INV.5 and
argued that it also satisfies INV.8. This enables applying Proposition A.21
to (s′, H ′, G′). Note that ¬vis(T) and vis(T ′) both hold of (s′, H ′, G′). Also,
rver[T] 6= ⊥, since by INV.7(d) transaction satisfying reads(T, x,_) already
has its read timestamp initialized. The contra-positive of Proposition A.21
asserts that vis(T ′), ¬vis(T) and ¬(wver[T ′] ≤ wver[T]∨ rver[T] = ⊥) together
imply that T ′ RT∪WR∪WW∪RW−−−−−−−−−−−→+ T does not hold, meaning that adding the edge
T

RWx−−−→ T ′ into G does not create cycles in RT ∪ txWR ∪ txWW ∪ txRW.

154

A.4.10 Preservation of INV.6
Proposition A.33. When (s,H,G) ∈ INV, T ∈ txns(H) and (s′, H ′, G′) is a
result of execution of line 58 by T , if lock[x] is held by some transaction T ′,
then rver[T] < wver[T ′].

Proof sketch. The transaction T post-validates its read from x at line 58 simul-
taneously with loading the value of ver[x]. At the previous line, the commit
operation of T stores the value of lock[x] in a local variables locked. The
post-validation is successful only if ¬locked and ver[x] ≤ rver[T]. Note that
this check has already been performed when T performed a read operation from
x. This way TL2 ensures that there has been a moment between the execu-
tion of line 21 in the read operation and line 58, at which both lock[x] = ⊥
and ver[x] ≤ rver[T] hold simultaneously. Let (s′′, H ′′, G′′) correspond to that
moment.

For convenience, we introduce a predicate PVP(T, x), which holds of (s,H,G)
whenever the following does: reads(T, x,_) holds, and if lock[x] is held by
some transaction T ′, then rver[T] < wver[T ′]. It is easy to see that PVP(T, x)
holds trivially of (s′′, H ′′, G′′), since lock[x] is not held at that moment. We
further demonstrate that PVP(T, x) is never invalidated by transitions and graph
updates of T or by other threads. This allows us to conclude that PVP(T, x)
holds of (s′, H ′, G′).

Note that once PVP(T, x) is established, it could only be possibly invalidated
by:

• a transition by T ′ at line 44 acquiring the lock lock[x];

• a transition by T ′ at line 53 setting the write timestamps wver[T ′] from
> to the incremented clock value.

However, both preserve PVP(T, x). Indeed, when the former transition occurs,
wver[T ′] = > holds. Since > is the maximal possible timestamp, rver[T] <
wver[T ′] holds then. When the second transition occurs in a transaction T ′

holding a lock on x, by INV.7(b), we observe that rver[T] < clock+1 and that
wver[T ′] = clock + 1, which also allows to conclude rver[T] < wver[T ′].

Proposition A.34. If (s,H,G) ∈ INV, T ∈ txns(H) and (s′, H ′, G′) is a result
of a graph update, then (s′, H ′, G′) satisfies INV.6.

Proof. Graph updates NTXREAD(_,_) and NTXWRITE(_,_) do not affect the
invariant, since it only asserts properties of transactions. Thus, in this proof we
consider the following graph updates and transitions:

1. the graph update TXVIS(T), which may enable the premise of INV.6(a);

2. the graph update TXREAD(T, x,_), which may enable the premise of
INV.6(b);

3. the transition by T at line 58 setting pv[T][x] to true, which may enable
the premise of INV.6(c);

4. the transition by T ′ at line 44 acquiring the lock lock[x], which may enable
the premise of INV.6(a,b,c);

155

5. the transition by T at line 11 setting the read timestamp rver[T] from ⊥
to the current clock value, which may affect the implication of INV.6(b);

6. the transition by T (or T ′) at line 53 setting the write timestamps wver[T]
(or wver[T ′]) from > to the incremented clock value, which may affect the
implication of INV.6(a,b,c).

Firstly, we discuss a possibility when the graph update TXVIS(T) in a trans-
action T writing to x makes T visible, when lock[x] = T ′ holds already. Note
that TXVIS(T) only happens when T holds the lock on lock[x], meaning that
the possibility in discussion never arises.

Second, we consider a possibility when the graph update TXREAD(T, x, v)
(or rather, the read response added into the history) in a transaction T makes
reads(T, x, v) hold, when lock[x] = T ′ holds already. In the proof of Proposi-
tion A.24, we shown PAD(T, x, v), meaning that the following holds of T in this
case:

• if T reads the initial value, then:

∀n′.writes(n′, x,_) ∧ ¬aborted(n′) =⇒
(n′ ∈ txns(H)) ∧ rver[T] < wver[n′]

• if T reads the value written by a node n, then:

∀n′.writes(n′, x,_) ∧ ¬aborted(n′) ∧ ¬n′ WWx−−−→ n =⇒
(n′ ∈ txns(H)) ∧ rver[T] < wver[n′]

We further argue that premises of the two properties above hold of T ′. Note
that T ′ holds a lock on x. By INV.8(e), T ′ is not completed (and, therefore,
not aborted), writes to x and is not followed in WWx by any other transaction.
Let us show by contradiction that it is also not followed in WWx by any non-
transactional node either. Let us assume that there is a non-transactional n
such that T ′ WWx−−−→ n holds. By INV.1, the history is DRF, meaning that either
T ′

HB−−→ n or n HB−−→ T ′ must hold. However, the former contradicts INV.8(d) and
the latter contradicts INV.3. Hence, such node n does not exist. Overall, we
demonstrated that writes(T ′, x,_), ¬aborted(T ′) and ∀n.¬T ′ WWx−−−→ n all hold,
hence, from PAD(T, x, v) we obtain rver[T] < wver[T ′].

Third, we consider the transition by T at line 58 setting pv[T][x] to true,
when lock[x] = T ′ holds already. By Proposition A.33, rver[T] < wver[T ′]
holds in this case.

Forth, we consider a possibility of the transition by T ′ at line 44 acquiring
lock[x] and enabling the premise of either of the invariants, which we consider
separately. To this end, we start with considering the case when writes(T, x) and
vis(T) hold, and T ′ acquires lock[x]. We need to demonstrate that wver[T] <
wver[T ′]. By INV.7(e), wver[T] 6= >. However, at line 44, wver[T ′] = >. Hence,
wver[T] < wver[T ′], which concludes INV.6(a). Let us now consider the case
when reads(T, x,_) holds, and T ′ acquires lock[x]. We need to demonstrate
that rver[T] < wver[T ′]. By INV.7(b), rver[T] is smaller than the value of the
global clock, so it cannot be >. Knowing that wver[T ′] = > holds, we get that
so does rver[T] < wver[T ′], which concludes INV.6(b). We now consider the

156

case when pv[T][x] holds, and T ′ acquires lock[x]. We need to demonstrate
that wver[T] < wver[T ′]. By INV.7(e), if T post-validated at least one of its
reads, wver[T] 6= >. Knowing that at line 44, wver[T ′] = > holds, we get that
so does wver[T] < wver[T ′], which concludes INV.6(c).

Fifth, we consider a possibility of the transition by T at line 11 affecting
the implication of INV.6(b). We assume that reads(T, x,_) and lock[x] = T ′

both hold prior to the transition. By INV.7(d), rver[T] 6= ⊥ then. Since the
transition by T at line 11 only happens when rver[T] = ⊥, it cannot possibly
invalidate INV.6(b).

Finally, we consider a possibility of the transition by T or T ′ at line 53
affecting the implication of INV.6(a, b, c). Let us first show that such transi-
tion in fact cannot happen in T . For each of the invariants, we assume that
its premise holds, and that wver[T] < wver[T ′] prior to the transition. This
means that wver[T] 6= >, since > is the maximal timestamp value. Knowing
that line 53 executes only when wver[T] = >, we conclude that it cannot inval-
idate INV.6. We now consider line 53 changing the write timestamp wver[T ′]
from > to (clock+1). For each of the invariants, we assume that its premise
holds. Let us show that wver[T] < wver[T ′] is preserved by the transition. As
we have shown, when the aforementioned inequality holds before the transition,
wver[T] 6= >. By INV.7(b), the value (clock+1) is greater than every write
timestamp distinct from >, such as wver[T]. Hence, wver[T] < wver[T ′] holds
after the transition. We now show that rver[T] < wver[T ′] is preserved by
the transition. By INV.7(b), the value (clock+1) is greater than every read
timestamp, such as rver[T]. Hence, rver[T] < wver[T ′] holds after the transi-
tion.

157

	Introduction
	Proving Linearizability of Concurrent Data Structures
	Safe Privatization in Transactional Memory
	List of Publications

	A Generic Logic for Proving Linearizability
	Methods Syntax and Sequential Semantics
	The Generic Logic
	Soundness
	The RGSep-based Logic
	Case Study: Flat Combining
	Summary and Related Work

	Proving Linearizability Using Partial Orders
	Linearizability, Abstract Histories and Commitment Points
	Running Example: the Time-Stamped Queue
	The TS Queue: Informal Development
	Programming Language
	Logic
	The TS Queue: Proof Details
	The Optimistic Set: Informal Development
	Summary and Related Work

	Safe Privatization in Transactional Memory
	Programming Language
	Data-Race Freedom
	Strong Opacity
	The Fundamental Property
	Proving Strong Opacity
	Case Study: TL2
	Related Work

	Conclusion
	Future Directions

	Bibliography
	Detailed Case Studies
	Linearizability of the Time-Stamped Queue
	Linearizability of the Optimistic Set
	Linearizability of the Herlihy-Wing Queue
	Strong Opacity of TL2

