

Trabajo Fin de Máster en Programación y Tecnología Software

Máster en Investigación en Informática
Facultad de Informática

Universidad Complutense de Madrid

Decision Procedures for the Temporal Verification
of Concurrent Data Structures

Alejandro Sánchez

Director: Miguel Palomino Tarjuelo
Colaborador externo: César Sánchez

2010/2011

Calificación obtenida: 10

Autorización de difusión

El abajo firmante, matriculado en el Máster en Investigación en Informática de la Facultad
de Informática, autoriza a la Universidad Complutense de Madrid (UCM) a difundir y utilizar con fines
académicos, no comerciales y mencionando expresamente a su autor, el presente Trabajo Fin de Máster:
Decision Procedures for the Temporal Verification of Concurrent Data Structures, realizado durante el
curso académico 2010-2011 bajo la dirección de Miguel Palomino Tarjuelo y con la colaboración ex-
terna de dirección de César Sánchez en el Departamento de Sistemas Informáticos y Computación, y a
la Biblioteca de la UCM a depositarlo en el Archivo Institucional E-Prints Complutense con el objeto
de incrementar la difusión, uso e impacto del trabajo en Internet y garantizar su preservación y acceso a
largo plazo.

En Madrid, a los 7 días del mes de julio de 2011,

Alejandro Sánchez
Y0403168-S

Miguel Palomino Tarjuelo
Director

Resumen

Los tipos de datos concurrentes básicamente son implementaciones concurrentes de abstracciones de
datos clásicas, diseñados específicamente para aprovechar el gran paralelismo disponible en arquitecturas
multiprocesador y multinúcleo. La corrección de los tipos de datos concurrentes resulta esencial para de-
mostrar la corrección de sistemas concurrentes en su conjunto. En este trabajo estudiamos el problema de
asistir en la automatización de la verificación de propiedades temporales en tipos de datos concurrentes.

La principal dificultad en el razonamiento sobre estos tipos de datos proviene de la interacción entre
la alta concurrencia que éstos poseen y la necesidad de manipular al mismo tiempo la memoria dinámica.
La mayoría de los enfoques utilizados hasta el momento para la verificación de tipos de datos concurren-
tes intentan enriquecer separation logic para poder hacer frente a la concurrencia, valiéndose del éxito
alcanzado por separation logic en el razonamiento de algoritmos secuenciales y que manipulan el heap.

Este trabajo contiene dos contribuciones. En primer lugar, presentamos un enfoque complementario
para la verificación de estructuras de datos concurrentes: partimos de verificación temporal deductiva,
una poderosa técnica para razonar sobre sistemas concurrentes, y la enriquecemos para poder lidiar con
memoria dinámica. El proceso de verificación utiliza diagramas de verificación y anotación explícita de
regiones. Al final, cada prueba se descompone en una secuencia de condiciones de verificación. Los
literales que forman parte de cada una de estas condiciones de verificación dependen casi exclusivamente
de las estructuras de datos que vayan a ser verificadas.

La segunda, y principal, contribución consiste en dos procedimientos de decisión para tipos de datos
específicos: listas concurrentes simplemente enlazadas con cerrojos en cadena y listas concurrentes con
saltos. Estos procedimientos de decisión son capaces de razonar sobre regiones, punteros, listas del estilo
de Lisp o listas ordenadas, permitiendo la verificación automática de las condiciones de verificación
generadas previamente.

Aquí demostramos cómo, utilizando nuestra técnica, resulta posible demostrar no solo propiedades
de seguridad, sino también viveza sobre una versión de listas concurrentes, además de la preservación
de la forma de listas con saltos por parte de una estructura de datos. Así mismo, el enfoque presentado
puede ser fácilmente extendido para razonar sobre un amplio espectro de tipos de datos concurrentes,
incluyendo tablas hash y grafos.

Palabras claves:

Concurrencia, Verificación Formal, Estructuras de Datos, Procedimientos de Decisión, Diagramas
de Verificación

v

Abstract

Concurrent datatypes are concurrent implementation of classical data abstractions, specifically de-
signed to exploit the great deal of parallelism available in multiprocessor and multicore architectures.
The correctness of concurrent datatypes is essential for the overall correctness of the system. In this
work we study the problem of aiding in the automation of temporal verification of concurrent datatypes.

The main difficulty to reason about these datatypes comes from the combination of their inherently
high concurrency and the manipulation of dynamic memory. Most previous approaches to verification of
concurrent datatypes try to enrich separation logic to deal with concurrency, leveraging on the success of
separation logic in reasoning about sequential heap algorithms.

This work contains two contributions. First, we present a complementary approach to the verification
of concurrent data structures: we start from deductive temporal verification, a very powerful technique
to reason about concurrent systems, and enrich it to cope with dynamic memory. The verification pro-
cess uses verification diagrams and explicit region annotations. In the end, each proof is decomposed
into a sequence of verification conditions. The literals involved in these verification conditions depend
mainly on the data structured being verified. The second, and main, contribution consists in two decision
procedures for specific data-types: concurrent lock-coupling singly-linked lists and concurrent skiplists.
These decision procedures are capable of reasoning about regions, pointers, lisp-like lists and ordered
lists allowing automatic verification of generated verification conditions.

We show how using our technique we are able to prove not only safety but also liveness properties of
a version of concurrent lists and express the preservation of skiplist shape by a data structure. Moreover,
the approach we present can be easily extended for using it in the verification of a wide range of similar
concurrent datatypes including hash maps and graphs.

Keywords:

Concurrency, Formal Verification, Data Structures, Decision Procedures, Verification Diagrams

vii

Acknowledgments

First of all, I would like to thank César Sanchez for being my advisor, my scientific guide, my
inspiration source and the person who drove me into the research world. I am sure that nothing of this
work could be possible without his help.

I would also like to thank Miguel Palomino for being the director of this work and for providing me
with very useful hints on how to improve this presentation.

Special thanks to my family, who always supported me. Thanks to my parents and my sister who are
always with me and, in special, to my grandmother Elena, who taught me my very first letters and has
been my early mentor to walk this path of knowledge and science.

Thanks to IMDEA Software for providing me the tools, space and commodities to carry out the
current work. In special to all people working there, for their friendship and support.

Finally, I would like to express my special gratitude towards Carolina, Javier and Julian, whose
unexpected combined travel abroad gave me the necessary time to finish this work. ¨̂

Thank you all,
Ale.

ix

Contents

Resumen v

Abstract vii

Acknowledgments ix

1 Introduction 1

1.1 Designing Concurrent Data Structures . 3

1.1.1 Performance Concerns . 4

1.1.2 Synchronization Techniques . 4

1.1.3 Verification Techniques . 6

1.1.4 Synchronization Elements . 8

1.1.5 Some Concurrent Data Structures . 9

1.2 Decision Procedures for Pointer Based Data Structures 14

2 Preliminaries 15

2.1 Regional Logic . 16

2.2 Verification Diagrams . 16

3 Concurrent Lists and Skiplists 23

3.1 Concurrent Lock-Coupling Lists . 23

3.2 Concurrent Skiplists . 26

xi

xii Contents

4 TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists 37

4.1 Decidability of TLL3 . 42

4.2 A Combination-based Decision Procedure for TLL3 . 47

4.3 Verifying Some Properties Over Concurrent Lists . 49

4.3.1 Termination of Concurrent Lock-Coupling Lists 50

4.3.2 No Thread Overtakes . 53

5 TSLK: A Decision Procedure for Concurrent Skiplists 55

5.1 Decidability of TSLK . 64

5.2 A Combination-based Decision Procedure for TSLK . 73

5.3 Extending TSLK to Reason about (L,U,H) . 78

5.4 Verifying Some Properties Over Concurrent Skiplists 82

5.4.1 Skiplist Preservation . 82

5.4.2 Termination of an Arbitrary Thread . 85

6 Conclusion 87

Bibliography 89

1
Introduction

Concurrent data structures [HS08] are an efficient approach to exploit the parallelism of multiprocessor
architectures. In contrast with sequential implementations, concurrent datatypes allow the simultaneous
access of many threads to the memory representing the data value of the concurrent datatype. Concurrent
data structures are hard to design, challenging to implement correctly and even more difficult to formally
prove correct.

The main difficulty in reasoning about concurrent datatypes comes from the interaction of concur-
rency and heap manipulation. The most popular technique to reason about the structures in the heap
is separation logic [Rey02]. Leveraging on this success, some researchers [VHHS06, HAN08] have
extended this logic to deal with concurrent programs. However, in separation logic disjoint regions are
implicitly declared (hidden in the separation conjunction), which makes the reasoning about unstructured
concurrency more cumbersome.

Explicit regions allow the use of a classical first-order assertion language to reason about heaps,
including mutation and disjointness of memory regions. Regions correspond to finite sets of object
references. Unlike separation logic, the theory of sets [WPK09] can be easily combined with other
classical theories to build more powerful decision procedures. Classical theories are also amenable of
integration into SMT solvers [BSST08]. Moreover, being a classical logic one can use classical Assume-
Guarantee reasoning, for example McMillan proof rules [McM99], for reasoning compositionally about
liveness properties. In practice, using explicit regions requires the annotation and manipulation of ghost
variables of type region, but adding these annotations is usually straightforward.

Most of the work in formal verification of pointer programs follows program logics in the Hoare
tradition, either using separation logic or with specialized logics to deal with the heap and pointer struc-
tures [LQ08, YRS+06, BDES09]. However, extending these logics to deal with concurrent programs is
hard, and though some success has been accomplished it is still an open area of research, particularly for
liveness.

We propose a complementary approach. We start from temporal deductive verification in the style
of Manna-Pnueli [MP95], in particular using general verification diagrams [BMS95, Sip99] to deal with
concurrency. This style of reasoning allows a clean separation in a proof between the temporal part (why
the interleavings of actions that a set of threads can perform satisfy a certain property) with the underlying
data being manipulated. Then, inspired by regional logic [BNR08], we enrich the state predicate language
to reason about the different regions in the heap that a program manipulates. Finally, we build decision
procedures capable of checking all generated verification conditions generated during our proofs, to aid
in the automation of the verification process.

Most previous approaches to verifying concurrent datatypes are restricted to safety properties. In
comparison, the method we propose can be used to prove all liveness properties, relying on the com-
pleteness of verification diagrams.

1

2 1. Introduction

Verification diagrams can be understood as an intuitive way to abstract the specific aspect of a pro-
gram which illustrates why the program satisfies a given temporal property. Besides, verification di-
agrams have been proved to be complete, in the sense that given a program and a temporal formula
satisfied by the program then a verification diagram does in fact exist, and sound in the sense that a
diagram connecting a program with a formula is in fact a proof that such temporal property is held by
the system. We propose the following verification process to show that a datatype satisfies a property
expressed in linear temporal logic. First, we build the most general client of the datatype, parametrized
by the number of threads. Then, we annotate the client and datatype with ghost fields and ghost code to
support the reasoning, if necessary. Second, we build a verification diagram that serves as a witness of
the proof that all possible parallel executions of the program satisfy the given temporal formula.

The proof is checked in two phases. First, we check that all executions abstracted by the diagram
satisfy the property, which can be solved through a fully-automatic finite state model checking method.
Second, we must check that the diagram does in fact abstract the program. A verification diagram decom-
poses a formal proof into a finite collection of verification conditions (VC), each of which corresponds
to the effect that a small step in the program has in the data. Then, the verification reduces to verifying
this collection of verification conditions. Each concurrent datatype maintains in memory a collection
of nodes and pointers with a particular layout. Based on this fact, we propose to use an assertion lan-
guage whose terms include predicates in specific theories for each layout. To automatize the process of
checking the proof represented by a verification diagram it is necessary to use decision procedures for
the kind of data structures manipulated. For instance, in the case of singly linked lists, we use a decision
procedure capable of reasoning about ideal lists as well as pointers representing lists in memory.

The construction of a verification diagram is a manual task, but it often follows the programmer’s in-
tuitive explanation of why the property holds. The activity that we want to automate is checking that the
diagram indeed proves the property. Following this idea , in this work we study the automatic verification
of VCs for the case of lists and skiplists extending the theory of linked lists presented in [RZ06a]. We
present two theories for concurrent singly-linked lists and concurrent skiplists. Besides, we describe a de-
cision procedure for each of them, applying a many-sorted variant of Nelson-Oppen [NO79] combination
method.

Logics like those in [LQ08, YRS+06, BDES09] are very powerful to describe pointer structures,
but they require the use of quantifiers to reach their expressive power. Hence, these logics preclude a
combination a-la Nelson-Oppen or BAPA [KNR05] with other aspects of the program state.

Instead, our solution starts from a quantifier-free theory of single-linked lists [RZ06a], and extends it
in a non trivial way with locks, order and sublists of ordered lists. The logics obtained can express list and
skiplist-like properties without using quantifiers, allowing the combination with other theories. Proofs
for an unbounded number of threads are achieved by parameterizing verification diagrams, splitting cases
for interesting threads and producing a single verification condition to generalize the remaining cases.
However, in this work we mainly focus on the decision procedure.

The decision procedures that we present here support the manipulation of explicit regions, as in
regional logic [BNR08] equipped with masked regions, which enables reasoning about disjoint portions
of the same memory cell. In this aspect, we use masked regions to “separate”different levels of the same
skiplist node.

As we said, we present two theories: TLL3 for concurrent singly-linked lists and TSLK for concurrent
skiplists of height at most K. To illustrate the use of these theories, we sketch the proof of termination
of every invocation of an implementation of a lock-coupling concurrent list and the preservation of the
skiplist shape of a data structure. We also prove the decidability of TLL3 and TSLK by showing that they
enjoy the finite model property. Moreover, we propose an even more efficient decision procedure for
them.

The rest of this work is structured as follows. We conclude Chapter 1 introducing the basic notions
of concurrent data structures and decision procedures as well as a description of the progress achieved
in these fields. Chapter 2 introduces some basic notions about regional logic and verification diagrams,
the building blocks of our verification method. Chapter 3 describes the concurrent data structures for
which we have developed decision procedures: concurrent lock-coupling lists and concurrent skiplists. In
Chapter 4 we explain the decision procedure for concurrent lock-coupling singly-linked lists. Chapter 5

1.1. Designing Concurrent Data Structures 3

details the decision procedure for concurrent skiplist. Finally, Chapter 6 gives the conclusions obtained
from this work.

1.1 Designing Concurrent Data Structures

Multiprocessor shared-memory systems are capable of running multiple threads, where all threads com-
municate and synchronize through data structures that reside in shared memory. As one may imagine,
concurrent data structures are much more difficult to design than sequential ones due to the way in which
involved threads may interleave. In addition, each possible interleave may lead to a different, and pos-
sibly unexpected, behavior. In this section we elaborate on some of the aspects described in [MS07] on
concurrent systems. We provide an overview of the challenges involved in the design of concurrent data
structures as well as a brief description of the most common concurrent datatypes present in the literature.

One of the main sources of difficulty when designing this kind of data structures comes from con-
currency. As threads may run concurrently on different processors, they are subject to operating system
scheduling policies, page fault, interruptions, etc. Hence, we should reason about the computation as a
completely asynchronous process, where steps of different threads can be arbitrarily interleaved.

As an example, imagine we want to implement a shared counter. A shared counter consists of a
shared variable that is concurrently incremented by many threads. A sequential version of such algorithm
is depicted in Fig. 1.1(a). This version just fetches the value from counter c and increments it by one,
returning the previous value. However, if many threads run this implementation concurrently, then the
result may not be the expected one. For instance, consider the scenario at which c is 0 and two threads
execute this implementation concurrently. Then, it exists the possibility that both threads read the value
0 from the memory and thus both return 0 as results, which is clearly wrong.

To avoid this problem, a common solution is the use of mutual exclusion locks (usually simply called
mutex or lock). A lock is a construction with the property that, at any given time, nobody owns it or it is
owned by a single thread. If a thread T1 wants to acquire a lock owned by thread T2, then it must wait
until T2 releases it.

Now, using locks, a correct implementation of the shared counter program can be obtained, as shown
in Fig. 1.1(b). This new version uses a lock to allow access to the critical section of a single thread at a
time. We refer to a program section as critical when it provides access to a shared data structure which
must not be concurrently executed by more that one thread simultaneously. In the example, the lock
clearly prevents two threads to access the critical section. While this is a correct solution, it lacks of good
performance. It is easy to achieve a correct implementation just by surrounding the whole code with a
lock. However, the performance of such implementation may not differ too much from a sequential one,
losing all power provided by concurrency. In the following, we describe some aspects to bear in mind in
order to improve performance while preserving correctness, as well as some techniques for verifying the
correctness of such data structures.

Procedure Seq-Counter
1: oldValue := c
2: c := oldValue + 1
3: return oldValue

End Procedure

Procedure Conc-Counter
1: acquire(lock)
2: oldValue := c
3: c := oldValue + 1
4: release(lock)
5: return oldValue

End Procedure

(a) Sequential (b) Concurrent

Figure 1.1: Possible implementation of a shared variable

4 1. Introduction

1.1.1 Performance Concerns

The speedup of a program when run on P different processors is the relation between its execution time
on a single processor and its execution time on P processors, concurrently. It can be considered as a
measure on how efficient a program uses the processor on which it is running. Ideally, we would like to
have linear speedup, however this is not always possible. Data structures whose speedup grows with P
are called scalable. When designing concurrent data structures, scalability must be taken into account.
Naive implementations, as Conc-Counter will surely undermine scalability.

Bearing in mind the example of a shared counter, it is evident that the lock introduces a sequential
bottleneck: at every instant, a single thread in allowed to perform useful work. Hence, reducing the
size of code sections being sequentially executed is crucial in order to achieve good performance. In the
context of locking, we are interested in:

• reducing the number of acquired locks, and

• reducing the lock granularity.

Lock granularity measures the number of instructions executed while holding a lock. The fewer
instructions, the finer lock granularity. Implementations like the shared counter’s one showed above
represent an example of a coarse-grain solution.

Another aspect to bear in mind is memory contention. Memory contention refers to the overhead
in traffic as a result of multiple threads concurrently trying to access the same memory location. For
instance, if the lock protecting a critical section is implemented in a single memory location, then a
thread trying to access that section must continuously try to access the memory portion where the lock
is stored. This problem may be solved if we consider cache-coherent multiprocessors. However, using
this technique may lead to long waiting times each time a location needs to be modified. As a result,
the exclusive ownership of the cache line containing the lock must be repeatedly transfered from one
processor to the other.

A final problem with lock-based solutions is that, if a thread holding a lock delays in releasing the
lock then all other threads with the intention to acquire the same lock are also delayed. This phenomenon
is known as blocking and it is quite common on systems with many threads per processor. A possible
solution is provided by non-blocking algorithms. Non-blocking programs do not use locks and thus the
delay of a thread does not imply the delay of other threads. In the following section we describe the main
characteristics of lock-based and non-blocking systems.

1.1.2 Synchronization Techniques

Conc-Counter used a lock to prevent many threads accessing the critical section simultaneously. How-
ever, sometimes not using locks at all is the best solution for getting concurrency on a system. Here, we
describe the two major techniques for accomplishing mutual exclusion on modern concurrent systems:
blocking techniques and non-blocking techniques.

Blocking Techniques

As we said, in many cases memory contention and sequential bottleneck can be reduced by reducing the
granularity of locking schemes. In fine-grained locking approaches, multiple locks of small granularity
are used to protect the critical sections modifying the data structure. The idea is to maximize the amount
of time threads are allowed to run in parallel, as far as they do not require to access the same sections
of the data structure. This approach can be also used to reduce the contention for individual memory
locations. In some cases, this sound natural, as in the case of hash maps. In hash maps, values are hashed
to different buckets, one independent of the other, reducing the number of possible conflicts. Hence,
placing individual locks on each bucket sounds like a good approach to reduce granularity.

On the other hand, in cases as the shared counter, it is not quite intuitive how contention and sequential
bottleneck can be reduced since, abstractly, all operations modify the same part of the data structure. One
approach to deal with contention results in spreading each operation accessing the counter in a separate

1.1. Designing Concurrent Data Structures 5

time interval from the others. A widely used technique to accomplish this is backoff [AC89]. However,
even reducing the contention, the lock-based implementation of the shared counter example still lacks
parallelism and hence it is not scalable. Therefore, more powerful techniques are required.

A possible solution lies on the use of a method known as combining trees [GVW89,GGK+83,HLS95,
YTL87]. Combining trees employ a binary tree with one leaf for each thread. The root of the tree keeps
the current value of the counter and intermediate nodes are used to coordinate the access to the root. The
idea is that while a thread climbs up to the root of the tree, it combines its effort with the one performed by
the other threads. Hence, every time two threads meet on an internal node, their operations are combined
into a single operation. Then, one thread waits in the node until a return value is delivered to it while the
other one proceeds to the root carrying the operation obtained from the combination.

In the particular case of our shared counter, a winner thread reaching the tree’s root modifies the
counter in a single atomic operation, performing the action of all combined operations. Then, it goes
down once again, delivering the return value to each thread waiting on an internal node. The return
values are distributed in such a way that the final effect is as if all operations were executed one after the
other at the moment the counter in the root was modified.

Threads waiting on internal nodes repeatedly read on a memory location, waiting for the return value.
This sort of waiting is known as spinning. An important consequence in the case of a cache-coherent
multiprocessor is that the accessed location resides in the local cache of the processor of the waiting
thread. Following this approach, no extra traffic is generated. This waiting technique, known as local
spinning, is very important for scalable performance [MCS91a].

In order to increase performance, non-uniform memory access (NUMA) architectures can be used.
In NUMA, processors have a mechanism to access their local portions of shared memory faster than they
can access the shared memory locations of other processors. A good organization of the data layout on
such architectures has a significant impact on performance.

Some techniques, such as combining trees, have the drawback that the total number of threads in-
volved in the system must be known in advance. Moreover, the required space in order to keep the
combining tree is proportional to the total number of processors. This way, despite the fact that the tech-
nique provides a good through out when the structure is accessed by a significant number of threads, its
best case performance under low loads is quite poor, as a result of the fact that until a thread reaches
the root, it must traverse O(log P) tree nodes. On the other hand, the same operation in the lock-based
implementation of Fig. 1.1 completes in constant time.

An extra drawback in the combining tree method is that, if coordination between threads going up
and down the tree is done incorrectly, it may lead to deadlocks. A deadlock is a situation at which two or
more threads are executing tasks such that all of them are blocked in a circular fashion, so none of them
can progress. Deadlock avoidance is a crucial aspect to bear in mind when designing correct and efficient
blocking concurrent data structures and algorithms. In fact, when designing blocking implementations,
the number of locks to be taken is a key factor to have in consideration. Enough locks should be used as to
ensure correctness while minimizing blocking, allowing other threads to perform concurrent operations
in parallel.

Non-blocking Techniques

Non-blocking implementations are designed in order to solve some of the inconveniences present on
blocking implementations, avoiding the use of locks. To formalize the idea of non-blocking algorithms,
some non-blocking progress conditions are widely described in the literature. Such conditions are known
as wait-freedom, lock-freedom and obstruction-freedom. A wait-free [Her91, Lam74] operation must
terminate on its own, after a finite number of steps, no matter the behavior of the remaining operations.
A lock-free [Her91] operation guarantees that after a finite number of its own steps, some operation
terminates: maybe its own operation, or maybe the operation performed by any other thread. Finally,
an obstruction-free [HLM03] operation guarantees to terminate after a finite number of its own steps,
assuming no interference with other operations.

There exists an evident relation between all these properties. Wait-freedom is stronger than lock-
freedom, while lock-freedom is stronger than obstruction-freedom. Clearly, strong progress conditions

6 1. Introduction

are desired over weaker ones. However, weaker conditions are in general simpler and more efficient to
design and verify them correct.

Remember that in non-blocking algorithms, no lock can be used. Then, we need to find a new way to
implement the concurrent version of the shared counter. [FLP85] (extended to shared memory by [Her91]
and [LAA87]) shows that it is not possible to implement a concurrent version using just load and store
instructions. The problem can be solved using a hardware operation that atomically combines both, a
load and a store. In fact, all modern multiprocessors provide one of such synchronization primitives.
The most well known are compare-and-swap (CAS) [IBM,Int94,SI94] and load-linked/store-conditional
(LL/SC) [IBM03, Kan89, Sit92]. Operation CAS is described as an algorithm in Fig. 1.2. It receives as
arguments a memory location L and two values: E and N. The operation is performed atomically: when
called, if the value stored at location L matches E, then it replaces it with the new value N and returns
true. On the other hand, if the value at L does not match E, false is returned.

Procedure CAS (L,E,N) : Bool
1: if ∗L = E then
2: ∗L := N
3: return true
4: else
5: return false
6: end if

End Procedure

Figure 1.2: Description of a CAS operation

In [Her91] it is shown that instructions such as CAS and LL/SC are universal. This means that, for
any data structure, it exists a wait-free implementation in a system that supports such instructions.

Using the CAS instruction it is now possible to implement a non-blocking version of the shared
counter program. We just require to load the value of counter c and then use CAS to atomically increment
the read value by one. In the case the read value does not coincide with the value read when performing
the CAS, the operation returns performing no modification to counter c. Hence, we would need to
retry until a successful call to CAS is accomplished. Fig. 1.3 shows a non-blocking implementation
of the shared counter using CAS. Because the CAS can only fail due to another succeeding fetch and
increment operation, the implementation is lock-free. However, it is not wait-free as other’s thread fetch
and increment operation can continuously prevent a CAS to succeed.

Procedure NonBlock-Counter
1: repeat
2: oldValue := c
3: newValue := oldValue + 1
4: until CAS(&c, oldValue,newValue)

End Procedure

Figure 1.3: Non-blocking shared counter implementation using CAS

Despite the example shown here being simple, in general, designing non-blocking algorithms is more
complex than blocking ones, since a thread can use a lock to prevent other threads from interfering while
it performs some action. If locks are not used, then the algorithm must be designed in order to be correct
despite the actions performed by the other concurrent threads. Currently, in modern architectures, this
requirement leads to the use of complicated and costly techniques.

1.1.3 Verification Techniques

In our case, it is quite easy to see that the lock-based implementation of the shared counter behaves exactly
the same as the sequential implementation. However, if we consider a more complicated data structure,
as a binary tree for instance, then the verification is significantly more difficult. Because of the inherent

1.1. Designing Concurrent Data Structures 7

difficulty in the design of concurrent datatypes, it is quite easy to fall into an incorrect implementation.
Hence, it becomes imperative to rigorously prove that a particular design correctly implements the desired
concurrent datatype.

In general, sequential implementations are easier to verify than concurrent ones. For example, the
semantics of a sequential data structure can be specified using a set of states and a transition function that
given a state, an operation and a set of arguments, returns a new state in addition to the result of applying
the operation with the arguments. In fact, if a valid initial state is given, then it is possible to describe all
acceptable sequences of operations over the data structure.

Operations on a sequential data structure are executed one after the other, in order. Then, we simply
require that the resulting sequence of operations respects the sequential semantic denoted by the set of
states and transitions as described above. On the contrary, in the case of concurrent data structures,
operations do not really need to be totally ordered. However, correctness for concurrent implementations
usually requires the existence of some total order of operations that respects the sequential semantics.

A common condition is Lamport’s sequential consistency [Lam79]. This condition requires that the
total order preserves the order of the operations run by each thread. However, it has a drawback: a data
structure constructed by sequential consistent components may not be sequential consistent at all.

Another widely used concept is linearizability [HW90], a variation of the concept of serializabil-
ity [BHG87] used in database transactions. Linearizability requires:

1. that the data structure is sequentially consistent, and

2. that the total ordering, which makes it sequentially consistent, respects the real-time ordering be-
tween the operations in the execution.

A way of thinking about linearizability is that it requires the user to identify specific points within the
algorithms, called linearization points, such that if we order the operations according to their linearization
points , the resulting order satisfies the desired sequential semantics of the data structure.

It is quite easy to see that Conc-Counter is linearizable. We just need to define the point after the
incrementation on c is performed as the linearization point. In the case of NonBlock-Counter, the
argument is similar, except that we must define the linearization point considering the semantics of CAS.

The intuitive appeal and modularity of linearizability makes it a very popular correctness condition.
Although, most of the concurrent data structures can be shown to be linearizable, on some situations,
better performance and scalability can be achieved by considering a weaker condition: quiescent consis-
tency. Quiescent consistency condition [AHS94] eliminates the restriction that the total order of opera-
tions needs to respect the real-time order of the executed operations, but it requires that every operation
executing after a quiescent state must be ordered after every operation executed before the quiescent
state. A state is said quiescent if no operations are in progress.

In general, obtaining a formal proof of the correctness for the implementation of a data structure
requires:

• a mathematical method for specifying correctness requirements,

• being able to come up with an accurate model of the data structure implementation, and

• ensuring that the proof of the implementation correctness is complete and accurate.

For instance, most linearizability arguments in the literature treat some of these aspects in an informal
way. This makes proofs easier to follow and understand. However, the use of some informal description
is prone to introduce some error, miss some cases or make some incorrect inferences. On the other
hand, rigorous proofs usually contain a great amount of details regarding trivial properties that makes
them difficult to write and tedious to read. Hence, computer assisted methods are desired for the formal
verification of concurrent implementations. One approach is based on the use of theorem provers to
aid in the verification. Another approach consists in the use of model checking. Model checking tools
exhaustively verify all possible executions of an implementation, to ensure that all reachable states meet
specified correctness conditions. However, some limitations exists on both approaches. Theorem provers
usually require significant human insight, while model checking is generally limited by the number of

8 1. Introduction

states it can consider. Therefore, a verification method involving as few human interaction as possible,
while being able to verify systems with a possible infinite number of states is desired.

1.1.4 Synchronization Elements

In this section, we describe some basic mechanisms commonly used to achieve correct concurrent im-
plementations: locks, barriers and transactional synchronization mechanisms. Locks and barriers are
traditional low level synchronization mechanisms used to prevent some interleaving to happen. For in-
stance, preventing two different threads to access the same section of code at the same time. On the
other hand, transactional synchronization mechanisms are used to hide the complex reasoning required
to design concurrent data algorithms, letting programmers to think in a more sequential fashion.

As said, locks are low level mechanisms used to prevent processes access the same region of program
concurrently. A key issue to bear in mind when designing locks is what to do when a thread tries to get
a lock that is already owned by other thread. A possibility is to let threads keep on trying to get the lock.
Locks based on this technique are called spinlocks. A simple spinlock may use a primitive such as CAS
to atomically change the value of a lock from unowned to owned. However, such spinning may cause
heavy contention for the lock. An alternative to avoid contention is the use of exponential backoff. In
exponential backoff [AC89] a thread that fails in its attempt of getting a lock waits for some time before a
new attempt. With every failed attempt, the waiting time is increased. The idea is that threads will spread
themselves out in time, resulting in a reduction of contention and memory traffic.

A disadvantage of exponential backoff is that it may happen that a lock remains unlocked for a long
time, since all interested threads have been backed-off too much in time. A possible solution to this
problem may consist in the use of a queue of interested threads. Locks based on this approach are known
as queuelocks. Some implementations of queuelocks based on arrays are introduced in [And89, GT90]
and then improved using list-based MCS queue locks [MCS91a] and CLH queuelocks [Cra93, MLH94].

Queuelocks also comes in many flavors. There exists abortable implementations of queuelocks where
a thread can give up if it is delayed beyond some time limit [Sco02,SI01] or if they just fall into deadlock.
On the other hand, preemptive-safe locks [MS98] ensure that an enqueued preempted thread does not
prevent the lock to be taken by another running thread.

In some cases, we would like to have locks letting multiple readers access the concurrent data struc-
ture. A reader is a process that only extracts information from the data structure, without modifying it at
all. Such locks are known as reader-writer locks. There exists many kinds of these locks. For instance,
reader-writer queuelock algorithms [MCS91b] use a MCS queuelock, a counter for reads and a special
pointer for writes. In [KSUH93] readers remove themselves from the lock’s queue, keeping a double-
linked list and some special locks on the list’s nodes. In this case, when a thread removes itself from the
list, it acquires a small lock on its neighbor nodes, and redirects the pointers removing itself from the list.

The reader-writer approach can be also generalized to group mutual exclusion or room synchroniza-
tion. Under this approach, operations are divided into groups. Operations within the same group can
be performed simultaneously with each other, while operations belonging to different groups cannot be
executed concurrently. An application of such technique, for instance, could classify the push and pop
operations over stacks on different groups [BCG01]. Group mutual exclusion is introduced in [Jou02]
and implementations for fetch and increment counters (as the example shown at the beginning of this
chapter) are described in [BCG01, KM99].

Another mechanism are barriers. A barrier stops all threads at a given point, allowing them to proceed
only after all threads have achieved such point. Barriers are used when the access to the data structure is
layered, preventing layer overlapping of different phases.

A barrier can simply be implemented using a counter to keep track of the number of threads that
have achieved the barrier position. The counter is initialized with the total number of threads to wait for.
Then, every time a thread reaches the barrier, it decrements the counter. Once the counter has reached
zero, it let all threads to proceed. This approach still displays the problem of contention, as many threads
may be spinning, waiting for the barrier to let them go through. Therefore, special implementations of
barriers exist to attack this problem, making threads spin on different locations [III86, HFM88, SMC92].
An alternative approach consists in implementing barriers using diffusing computation trees [DS80]. In
this model each thread owns a node in a binary tree. The idea is as follows. Each thread waits in its node

1.1. Designing Concurrent Data Structures 9

until all its children have arrived. At this moment, the thread communicates its parent that all threads on
its branch have arrived. Once all threads have arrived, the root node releases all threads in the tree by
disseminating the release information down the tree.

The main purpose for using locks in concurrent programming is to let threads to modify multiple
memory locations atomically in such way that no partial result of the computation can be observed by
other threads. In this aspect, transactional memory is a mechanism that lets programmers model sections
of the code accessing multiple memory locations as a single atomic operation. The use of transactional
mechanisms is inspired on the idea of transactions in databases, despite the fact that the problem in
memory management is slightly different to the one existing on databases.

An example of transactional memory mechanism for concurrent data structures is optimistic concur-
rency control [KR81]. This approach uses a global lock which is held for a short time at the end of
the transaction. However, as one may imagine, such lock is a cause of sequential bottleneck. Ideally,
transaction synchronization should be accomplished without the use of locks. Moreover, transactions
accessing disjoint sections of the memory should not synchronize with each other at all. A hardware-
based transactional memory mechanism was first proposed in [HM93]. An extension to this idea is lock
elision [RG01, RG02] where the hardware can automatically translate accesses to critical section into
transactions that can be executed in parallel.

Despite the effort, up to this moment no hardware support for transactional memory has been devel-
oped. Nevertheless, many software based transactional memory approaches have been proposed [ST97b,
HFP02, HLMI03, HF03].

1.1.5 Some Concurrent Data Structures

In this section we introduce the basic idea behind some of the most widely spread concurrent data struc-
tures.

Stacks and Queues

Stacks and queues are one of the simplest data structures. A concurrent stack is a data structure lineariz-
able with a sequential stack, providing push and pop operations, respecting the usual LIFO semantics. As
one may imagine, many implementations of such data structure exist in the literature. In [MS98] several
lock-based linearizable concurrent stacks are presented. These implementations are based on sequential
linked lists with a top pointer and a single global lock. As we saw before, structures with a single global
lock scale poorly. Besides, if one succeeds in reducing contention on the lock, a sequential bottleneck
still exists at the top of the stack.

A first non-blocking implementation of concurrent stacks was presented by Treiber in [Tre86]. In
such implementation, a stack is a singly-linked list with a top pointer that is atomically modified through
a CAS operation. In [MS98] this algorithm is compared to an optimized non-blocking algorithm based
on [Her93] and several lock-based implementations (such as an MCS lock [MCS91a]) in low load scenar-
ios. The results show that the original implementation reaches the best overall performance. However, as
the pointer to the top element represents a sequential bottleneck, it offers little scalability as concurrency
increases [HSY04].

In fact, in [HSY04] it is shown that any stack implementation can be made more scalable using the
elimination technique [ST97a]. This technique allows pairs of operations with reverse semantics (such as
push and pop over a stack) to complete without any central coordination. If this approach is applied using
a collision array and adaptive backoff on the shared stack, then it can reach a high level of parallelism with
little contention. Following this method, it is also possible to obtain a scalable lock-free implementation
of a linearizable concurrent stack.

Using non-blocking algorithms has also its drawbacks. A common problem in many CAS-based
implementation is the ABA problem [PLJ91]. To illustrate the problem, in Fig. 1.4 we provide a naive
implementation of a non-blocking stack using CAS. We assume the stack is implemented using a singly-
linked list. Each node in the list stores an element and keeps a next pointer to the following element in the
stack. Pointer topPtr points to the top of the stack. Fig. 1.4 describes the implementation of operations
push and pop. push receives as argument the address of the node to be inserted into the stack. The figure

10 1. Introduction

Procedure Push (newPtr)
1: repeat
2: nextPtr := topPtr
3: newPtr .next := nextPtr
4: until CAS(topPtr ,nextPtr ,newPtr)

End Procedure

Procedure Pop ()
1: repeat
2: retPtr := topPtr
3: if retPtr = null then
4: return null
5: end if
6: nextPtr := retPtr .next
7: until CAS(topPtr , retPtr ,nextPtr)
8: return retPtr

End Procedure

A

B

C

a) Initial stack

A

B

C

b) T1 : Pop()

top top ret1

next1

A

B

C

c) T2 : Pop()

top

ret1

next1

A

B

C

d) T2 : Pop()

top

ret1

next1

A

B

C

e) T2 : Push(A)

top ret1

next1

A

B

C

f) T1 : completes Pop()

top

Figure 1.4: Representation of the ABA problem

also describes a scenario at which the ABA problem becomes evident. Fig 1.4 a) shows the initial state
of a stack. We assume two threads running concurrently: T1 and T2. T1 wants to perform a pop, while T2
performs two pop followed by a push of A. For simplification, we use A to denote both the element and
the address of the node storing such element.

Thread T1 begins executing the pop action. However, before it can execute the CAS, T2 begins to run.
Fig. 1.4 b) shows the state of the stack just before T1 can execute the CAS operation. Fig. 1.4 c), d) and
e) depict the situation of the stack just after T2 has executed pop, pop and push(A) respectively. Finally,
Fig. 1.4 e) shows the state of the stack once T1 finishes the original pop operation. Notice that according
to this implementation, when both thread terminate, the top of the stack contains node B, which was
eliminated by T2. This means that we could be accessing an invalid address through the topPtr pointer.
However, this kind of problems can be solved. A possible solution to this problem consists in equipping
the topPtr pointer with a version number that is incremented every time the topPtr pointer is modified.

As happened with stacks, a concurrent queue is a data structure that is linearizable to a sequential
queue and respects the FIFO semantics. [MS98] presents an improved implementation of the single lock
implementation of a queue by providing both, the head and tail pointer, with an independent lock. This
modification allows the execution of an enqueue and a dequeue operation in parallel, provided both
pointers are different one from each other.

It is possible to implement an array-based lock-free queue for just two processes, one performing
only enqueue and the other one carrying out just dequeues operations, using only load and store opera-
tions [Lam83]. A linked-list version of this algorithm is presented in [HS02] and a lock-free array-based
implementation assuming unbounded array size is described in [HW90]. Nevertheless, in general, it is
quite difficult to implement a nonblocking queue with multiple enqueuers and dequeuers.

In [MS98] a lock-free implementation of a queue based on CAS operations capable of parallel access
through both ends is presented. For such purpose it keeps a head and tail pointer, in addition to a dummy
pointer. The enqueue operation, first uses CAS to add the new node to the end of the list and then uses
CAS again to modify the tail pointer to point to the new node. If another enqueue operation tries to
execute between the first and the second CAS, it will notice that the tail pointer has not been modified
yet. A helping technique [Her93] is used to ensure the tail pointer is always at most one node of distance
behind the end of the list. Although this implementation is quite simple and efficient, is has a drawback:
operations can access nodes that have already been removed from the list. This implies that nodes cannot
be freed. Instead, removed nodes are kept in a free-list for reusing them when a new enqueue opera-
tion in executed. Nevertheless, in [HLM02, Mic02b] non-blocking memory management techniques are
presented in order to overcome this disadvantage.

1.1. Designing Concurrent Data Structures 11

A generalization of stacks and queues are deques. A deque [Knu68] is a double-ended queue that
allows push and pop at both ends. Lock-based implementations of deques can be easily obtained fol-
lowing the two-lock approach for queues. However it is not easy to come up with a lock-free imple-
mentation of deques as shown in [MMS02], even making use of the two-word synchronization primitive
double-compare-and-swap(DCAS) [Mot86]. One of the few non-blocking implementation of a deque
supporting noninterfering operations on both ends is an obstruction-free CAS-based implementation
given at [HLM03].

Much of the difficulty in implementing stacks and queues comes from the restrictions on when an
inserted element can be removed, depending on the internal order of elements in the data structure. A
concurrent pool [Man84] is a data structure which provides insert and delete operations and where the
delete operation removes any occurrence of the given element from the structure. An efficient pool can
be constructed using quiescently consistent counter implementations [AHS94,SZ96]. In such implemen-
tation, elements are kept in an array and a fetch and increment operation is used in order to find out the
position where an element must be inserted or removed from. Alternatively, a stack-like pool can be also
implemented.

Linked Lists

Consider now the implementation of a concurrent data structure supporting insert, remove and search
operations. If order does not matter and the operation deals only with a key value, then we have a
multiset or set, depending on whether repeated elements are allowed or not. Moreover, if a data value is
associated with every key, then we have a dictionary [CLRS01].

In this section we focus on linked-lists used to implement sets. The following sections discuss other
concurrent data structures, such as hash tables, search trees and skiplists, that can be used to implement
sets.

Considering a single-linked list, the most common approach in order to manage concurrency consists
in lock-coupling [BS77,Lea99]. In this approach, each node is associated with a different lock. This way,
a thread traversing the list releases a node’s lock only after it has acquired the lock of the next node in
the list, preventing overtaking. Clearly, this approach reduces granularity but it also limits concurrency
since insertions and deletions at different locations may delay each other.

A way to evict this problem is to employ ordered lock-free linked lists. The difficulty now resides
in ensuring that insertion and deletion keep the validity of the list. The first CAS-based implementation
of a list is given in [Val95]. Here, a special node is used in front of every regular node in order to
prevent any undesired behavior while manipulating the list. In fact, this lock-free implementation is
correct when combined with a memory management [MS95], but this solution is not practical at all.
Other approaches use a special bit to mark nodes as deleted (as in [Har01]), but this scheme is only
applicable in garbage collectors environments. The problem can be overcome using memory reclamation
methods [HLM02, Mic02b] as described in [Mic02a].

Hash Tables

A hash table [CLRS01] can be seen as a resizable array of buckets, where each of them can hold an
expected number of elements. Therefore, operations for insertion, deletion and search take constant
time. On extensible hash tables, an extra operation for resizing the table is also required. Usually, this
latter operation is the most costly of all.

Clearly, it is possible to implement a non-extensible hash table by placing a reader-writer lock on
each bucket [Mic02a]. Nevertheless, to keep the good performance, a hash table needs to be extensi-
ble [FNPS79].

Already in the eighties, some extensible concurrent hash tables for distributed databases based on
two-level locking schemes were introduced [Ell87, HY86, Kum90]. Besides, there exist some highly
efficient and extensible hashing algorithms for non-multiprogrammed environments, based on a sequen-
tial version of an algorithm for linear hashing [Lit80]. These algorithms are based on a small set of
high-level locks, instead of having one lock for each bucket. In addition, it allows concurrent searches
while performing the resizing of the hash table. However, concurrent inserts and deletes are not allowed.

12 1. Introduction

Lock-based implementations of concurrent hash tables suffer from the classical drawbacks of lock-based
techniques, which becomes even more notorious due to the elaborated resizing methods they require.

Therefore, lock-free implementations of hash tables are desired. Some ideas for reaching a lock-
free implementation consist in using an array of buckets, such that each bucket contains a lock-free list.
However, this approach does not take into consideration how to deal with extensible arrays, as it is not
obvious how to redistribute the elements in a lock-free manner through the buckets of the array. Moving
an item from one bucket to another would require two CAS operations to be executed atomically.

Using DCAS it is possible to obtain a lock-free extensible hash table [Gre02]. Nevertheless, this so-
lution has the inconvenient that no all architectures provide the primitive DCAS. In [SS03] an extensible
lock-free hash table for concurrent architectures is presented. The idea is to keep a single lock-free list
to store the elements instead of a list for each bucket. To preserve the fast access to the elements, the
hash table keeps a resizable array of pointers to the list. Operations can then use these pointers to get
fast access to internal sections of the list. To keep a constant number of steps per operation, new pointers
must be added as the number of elements in the table grows.

Search Trees

As with every concurrent data structure, a concurrent implementation of a tree can be achieved just by
placing a single lock protecting the whole structure. This approach can be improved by using a reader-
writer lock, such that multiple threads are allowed to search information in the tree, while a single thread
at the time is authorized to modify the tree. As expected, the exclusive lock for update operations creates
a sequential bottleneck. Concurrency on lock-based implementations can be improved using some fine-
locking strategy like placing a lock on each node.

[KL80] presents a concurrent implementation of binary search trees where update operations hold a
constant number of locks. Besides, these locks have the property of excluding only other update opera-
tions, not blocking search operations. The drawback of this implementation is that it does not attempt to
keep the tree balanced.

An alternative approach to allow concurrent modification of a tree based on fine-grained locking
consists in forcing an operation to acquire a single lock protecting the subtree that is about to modify.
This way, update operations working on disjoint sections of the tree can run in parallel.

For trees, in general, the maintenance operations such as splitting and merging nodes are performed
as part of the update operations while inserting or removing elements from the tree. This tight relation
between regular operations (insert or delete) with the maintenance operations is required to preserve the
balancing properties of the tree. However, if we relax the balancing property, then maintenance opera-
tions can be done separate from regular operations. For instance, Blink-trees [Sag86] provide a compress
process in charge of merging nodes, which can run concurrently with regular operations. By separating
maintenance operations from regular ones, we let them run concurrently on different processors or in the
background by specialized threads.

The idea of splitting maintenance operations from regular operations was initially described for red-
black trees [GS78] and first implemented for AVL trees [AVL62] supporting insert and search operation
in [Kes83]. An implementation supporting also delete is provided in [NSSW87]. These implementations
improve concurrency by dividing balancing tasks in small transformations that can be applied locally
and independently one from each other. It can be shown that the approach presented in [NSSW87]
guarantees that each update operation needs at most O(log N) rebalancing operations for a N-node AVL
tree. Similar results have been extended for B-trees [LF95,NSSW87] and red-black trees [BL94,NSS91].
On the non-blocking side we can find implementations based on dynamic software transactional memory
mechanisms [Fra03, HLMI03].

Other existing implementations in the literature include studies about failure recovery [ML92] and
implementations for generalized search trees (GiSTs) [KMH97]. GiSTs simplify the design of search
trees without repeating the delicate work involving concurrency. Finally there exists some works [Lar01,
Lar02] involving insertion and/or deletion of group of values.

1.1. Designing Concurrent Data Structures 13

Skiplists

A skiplist [Pug90] is a data structure that implements sets, maintaining several sorted singly-linked lists
in memory. In fact, skiplists can be seen as virtual tree structured in multiple levels, where each level
consists of a single linked list. The skiplist property establishes that the list at level i + 1 is a sublist of the
list at level i. Each node in a skiplist stores a value and at least the pointer corresponding to the lowest
level list. Some nodes also contain pointers at higher levels, pointing to the next element present at that
level. The advantage of skiplists is that they are simpler and more efficient to implement than search
trees, and search is still (probabilistically) logarithmic.

8 11 14

head tail

−∞ +∞16 202
level 0

level 1

level 2

level 3

Figure 1.5: A skiplist with 4 levels

Consider for instance the skiplist shown in Fig. 1.5. Contrary to single-linked lists implementations,
higher-level pointers allow to skip many elements during the search. A search is performed from left to
right in a top down fashion, progressing as much as possible in a level before descending. For instance,
in Fig. 1.5 a search for value 16 starts at level 3 of node head. From head, considering level 3, we can
reach tail in a single jump, which is beyond the possible position of 16. Therefore, the search algorithm
moves down one level, to level 2 of node head. The head successor at level 2 contains value 8, which is
smaller than 16, so it is safe to go to node 8 considering level 2. This way, the search continues at level 2
until a node containing a greater value is found. At that moment, the search moves down one level again
and so on. The expected logarithmic search follows because the probability of any given node occurring
at a certain level decreases by 1/2 as a level increases (see [Pug90] for an analysis of the running time of
skiplists).

Priority Queues

A concurrent priority queue is a data structure linearizable to a sequential priority queue, providing
operations insert and delete-min. Many concurrent implementations of priority queues are based on
heaps. When using heaps, insertion is done in bottom-up fashion while deletion of the minimum element
is carried out from the root down to the leaves. As one operation proceeds from the leaves and the
other from the root, there exists a high probability of achieving deadlock. A possibility to overcome
this problem is the use of specialized threads in charge of cleaning up the data structure [BB87]. An
alternative consists in implementing insert and delete-min operations both in a top down fashion [RK88].
An improvement of this algorithm consists in performing consecutive insertions on opposite sides of the
heap [Aya90].

In [HMPS96] a heap-based algorithm is presented which does not require the acquisition of multiple
locks while traversing the heap. For such purpose, it proceeds by locking a variable that stores the size of
the heap, plus a lock over the first and last element in the heap. Other existing implementations [HW91]
consist in concurrent priority queues based on concurrent versions of fibonacci heaps [FT87].

Non-blocking linearizable heap-based priority queues have been proposed by several authors [Her93,
Bar94, IR93]. Even skiplists have been considered for implementing concurrent lock-free versions prior-
ity queues [ST03].

Other implementations include priority pools [HW91], where delete-min operation is not guaranteed
to be linearizable. [Joh91] shows the implementation of a delete bin mechanism in charge of keeping
elements deleted through delete-min, and thus, reducing the load when performing concurrent delete-min
operations. In [SZ99] priority pools are implemented using skiplist. In general, the relaxed priority pools
semantics allows for a significant increment of concurrency.

14 1. Introduction

1.2 Decision Procedures for Pointer Based Data Structures

Pointer based data structured are currently widely used in computer science. In the previous section
we have described some of them, including stacks, queues, lists and trees. Here we focus on decision
procedures for the automatic verification of properties on these data structures. Many approaches have
been suggested and studied in order to reason about them [BRS99, DN03, BPZ05, BR06, Nel83, LQ06,
MN05, JJKS97] since the pioneer work of Burstall [Bur72]. However, most of them suffer from extreme
difficulties to incorporate reasoning in a wealth of decidable theories over data and pointer values.

The key aspect in many of these approaches resides in the availability of decision procedures to
reason about cells (the basic building blocks of the data structure), memories and a reachability notion
induced by following pointers. As reachability is not a first-order concept, some features must be added
in order to cope with it. Hence, despite the existence of precise and automatic techniques to reason about
pointer reachability [JJKS97], not many approaches focus on the combination of such techniques with
decision procedures capable of reasoning about data, pointers or locks. As a consequence, approximate
solutions have come out and little is known about the combination of such logics with decidable first-
order theories to reason about data and pointer values. In some cases, the information over data and
pointers is abstracted away to make the use of reachability tools [DN03] possible. In other cases, a
first-order approximation of reachability is used [Nel83] so that decision procedures for the theories of
pointers and data can be used. In any case, both approaches mentioned above suffer from lack of precision
when used.

In [BRS99], the decidability of a logic for pointer-based data structure is proved by showing that it
enjoys from finite model property. That is, given a formula, a finite model can be constructed and used to
verify the satisfiability of such formula. However, this logic can only reason about reachability on lists,
trees and graphs, but it cannot reason about the data stored in the data structure.

A generalization of [BRS99] is presented in [YRS+06], but the emphasis once more is put on ex-
pressing complex shape constraints rather than considering the data stored in the data type. Regard-
ing separation logic [Rey02] a decision procedure for lists based on finite model property is described
in [BCO04], but it abstracts away the theories over data and pointers. Meanwhile, in combination with
predicate abstraction, [BPZ05, BR06] describe decision procedures for logics abstracting away theories
over data.

Other logics have been proposed for reasoning about complex data structures [BDES09], but they
usually require the use of quantifiers, preventing them from been combined with other theories.

In [RZ06b] TLL is introduced. TLL is a logic for describing single-linked lists as well as a combina-
tion based decision procedure capable of reason about reachability. Moreover, it can be extended with
available decision procedures for fragments of first-order logic. In TLL it is possible to reason about cells,
memory and reachability. In addition, it has the property to be easily combined with other quantifier-free
theories capable of reasoning, for instance, about data. In fact, the use of combination schemas [RRZ05]
based on Nelson-Oppen [NO79] let them combine TLL with a wide range of available decision proce-
dures for various decidable theories in first-order logic, such as BAPA [KNR05], for example.

The logics we present in this work are an extension of TLL, letting them reason about concurrent lock-
based single-linked lists and concurrent skiplists. A key aspect is that both theories remain quantifier-
free and with the same combination properties as TLL. Hence, they become perfect candidates for being
combined with other theories in order to verify complex systems.

2
Preliminaries

As we said, our final goal is the verification of concurrent data structures. For such purpose, we use
verification diagrams. Verification diagrams can be seen as a formula automaton with extra components.
Then, the verification process consists in the following steps. First, we construct what we call the most
general client of the datatype. That is, a program that non-deterministically performs calls to the op-
erations provided by the data structure. Usually, those operations are Insert, Search and Remove. In
addition, some non-executable ghost is added to aid the verification process. We can then proceed with
the construction of a fair transition system representing the concurrent execution of M different instances
of such most general client. The temporal property we want to verify is expressed as a formula in lin-
ear temporal logic and the proof that the system does in fact satisfy the property is represented by the
verification diagram. Fig. 2.1 represents the main idea behind our method as well as the role played
by decision procedures within this scheme. In this work, we just focus on the development of decision
procedures for specific concurrent data structures.

The construction of a verification diagram is not an automatic task. Someone must sketch it, following
the reasoning of the system under analysis. An advantage is that, after it has been constructed, verification
can be done automatically. The verification that the diagram satisfies the temporal formula can be done

System of N concurrent MGC

...

P [N] : P (1)|| · · · ||P (N)

+
ghost variables

ϕ

PropertyDiagram

� �

Verification Conditions:

I Initiation

I Consecution

I Acceptance

I Fairness

Satisfaction
(Model Checking)

Decision Procedures
(first order propositional logic)

search()

remove()
insert()

Concurrent
Data Structure

Most
General Client

true

p
{τ2}

Figure 2.1: Sketch of our proposed approach

15

16 2. Preliminaries

just by model checking. On the other hand, to verify that the diagram abstracts the system represented
by the fair transition system, a number of verification conditions mush be checked. If we count with
a decision procedure capable of reasoning about the theories involved in such verification conditions,
then this process can be done automatically. In Chapters 4 and 5 we focus on decision procedures for
two specific data types: concurrent lists and skiplists. Meanwhile, in this chapter, we settle the basis of
the verification process describing the use of regional logic (distinguishing our approach from the ones
based on separation logic) and introducing the concept of verification diagrams, which will later be used
in some motivating examples.

2.1 Regional Logic

We are interested in the formal verification of implementations of data structures, in particular in tem-
poral verification (liveness and safety properties) of sequential and concurrent implementations. This
verification activity requires to deal with unbounded mutable data. One popular approach to verification
of heap programs is separation logic [Rey02].

Separation logic has been widely used up to now in the verification of a wide range of sequential
programs. This power of expressiveness is not limited to sequential programs, as some advances on
verification of concurrent programs show [GCPV09]. However, some data structures such as skiplists
are problematic for separation-like approaches due to the aliasing and memory sharing between nodes
at different levels. Based on the success of separation logic some researchers have extended this logic
to deal with concurrent programs [Vaf07,HAN08], but concurrent datatypes follow a programming style
in which the activities of concurrent threads are not structured according to critical regions with mem-
ory footprints. In these approaches based on separation logic memory regions are implicitly declared
(hidden in the separation conjunction), which makes the reasoning about unstructured concurrency more
cumbersome. Besides, despite the fact that some fragments of separation logic have been proved decid-
able [BCO04], it is still not completely clear how to integrate separation logic to current SMT solvers.

We use explicit regions to represent the manipulation of memory during the execution of the system.
This reasoning is handled by extending the program code with ghost variables of type rgn, and ghost
updates of these variables. Variables of type rgn represent finite sets of object references stored in the
heap. Regional logic [BNR08] provides a rich set of language constructs and assertions. However, it is
enough for our purposes to use only a small fragment of regional logic. The term emp denotes the empty
region and 〈x〉 represents the singleton region whose only object is the one referenced by x. Traditional
set-like operators such as ∪, ∩ and \ are also provided and can be applied to rgn variables. The assertion
language allows reasoning involving mutation and separation. Given two rgn expressions r1 and r2 we
can assert whether they are equal (r1 = r2), one is contained into the other (r1 ⊆ r2) or they are completely
disjoint (r1#r2).

2.2 Verification Diagrams

We now sketch the important notions from [BMS95,Sip99]. As we said, verification diagrams provide an
intuitive way to abstract temporal proofs over fair transition systems (fts). A ftsΦ is a tuple 〈V ,Θ, T ,J 〉
where V is a finite set of variables, Θ is an initial assertion, T is a finite set of transitions and J ⊆ T
contains the fair transitions. Here we do not consider strong fairness. A state is an interpretation of V .
We use S to denote the set of all possible states. A transition τ ∈ T is a function τ : S → 2S , which is
usually represented by a first-order logic formula ρτ(s, s′) describing the relation between the values of
the variables in a state s and in a successor state s′. Given a transition τ, the state predicate En(τ) denotes
whether there exists a successor state s′ such that ρτ(s, s′).

A computation of Φ is an infinite sequence of states such that:

(a) the first state satisfies Θ;

(b) any two consecutive states satisfy ρτ for some τ ∈ T ;

2.2. Verification Diagrams 17

(c) for each τ ∈ J , if τ is continuously enabled after some point, then τ is taken infinitely many times.

We use L(Φ) to denote the set of computations of the fts Φ. Given a formula ϕ, L(ϕ) denotes the set
of sequences satisfying ϕ. A fts Φ satisfies a temporal formula ϕ if all computations of Φ satisfy ϕ, i.e.,
L(Φ) ⊆ L(ϕ).

We use SF(ϕ) to denote the set of all atomic subformulas of ϕ. A ϕ-propositional state, denoted by sϕ,
assigns a truth-value sϕ[q] to each q ∈ SF(ϕ). Satisfaction of a formula ϕ over a ϕ-propositional model
σϕ : sϕ,0, sϕ,1, . . . is defined inductively where for an atomic subformula q, sϕ � q iff sϕ[q] = true.

A σ-propositional model σϕ is an infinite sequence of σ-propositional states. The propositional
language of ϕ,Lp(ϕ), is the set {σϕ|σϕ � ϕ}. A propositional projection sp

ϕ of a state s is a ϕ-propositional
state such that for each q ∈ SF(ϕ), sp

ϕ � q iff s � q.
Then, a verification diagram (vd) Ψ : 〈N,N0, E, µ, η,F ,∆, f 〉 is a formula automaton with extra

components, abstracting the fair transition system Φ and still preserving the satisfaction of formula ϕ.
All components of a verification diagram are:

• N is a finite set of nodes.

• N0 ⊆ N is the set of initial nodes.

• E ⊆ N × N is a set of edges.

• µ : N → F (V) is a labeling function mapping nodes to assertions over V .

• η : E → 2τ is a labeling function assigning sets of transitions to edges.

• F ⊆ 2E×E is an edge acceptance set of the form {(P1,R1) , . . . , (Pm,Rm)}.

• ∆ ⊆ {δ | δ : S → D} is a set of ranking functions from states to a well founded domain D.

• f maps nodes into propositional formulas over atomic subformulas of ϕ.

If n ∈ N, we use next (n) to denote the set {ñ ∈ N| (n, ñ) ∈ E} and τ (n) for {ñ ∈ next (n) |τ ∈ η (n, ñ)}.
For each (P j,R j) ∈ F and for each n ∈ N, ∆ contains a ranking function δ j,n. An infinite sequence of
nodes π = n0, n1, . . . is a path if n0 ∈ N0 and for each i > 0, (ni, ni+1) ∈ E. A path π is accepted if for
each pair (P j,R j) ∈ F some edge of R j occurs infinitely often in π or all edges that occur infinitely often
in π are also in P j. An infinite path π is fair when, for any just transition τ, if τ is enabled on all nodes
that appear infinitely often in π then τ is taken infinitely often.

Given a sequence of states σ = s0, s1, . . . of Φ, a path π = n0, n1, . . . is a trail of σ whenever si � µ(ni)
for all i ≥ 0. An infinite sequence of states σ is a computation of Ψ whenever there exists an accepting
trail of σ such that is also fair. L(Ψ) is the set of computations of Ψ.

A computation σ = sϕ,0, sϕ,1,... is a ϕ-propositional model of Ψ if there is a fair and accepting path
n0, n1, . . . in Ψ such that for all i ≥ 0, sϕ,i � f (ni). Finally, Lp(Ψ) denotes the set of all ϕ-propositional
models of Ψ.

A verification diagram shows that Φ � ϕ via the inclusions L(Φ) ⊆ L(Ψ) ⊆ L(ϕ). The map f is used
to check L(Ψ) ⊆ L(ϕ). To show L(Φ) ⊆ L(Ψ) it is enough to prove the following verification conditions:

Initiation: there is at least one initial node from N0 satisfying the initial conditions of the fair transition
system Φ.

Consecution: Any τ-successor of a state satisfying µ(n) does satisfy the labeling predicate of some
successor node of n. This means that for every node n ∈ N and transition τ ∈ T ,

µ (n) (s) ∧ ρτ(s, s′) → µ(next(n))(s′)

18 2. Preliminaries

Acceptance: For each pair (P j,R j) member of the acceptance list and for any e = (n1, n2) ∈ E and
τ ∈ T , when we take τ from an arbitrary state s, if e ∈ P j \ R j then δ j cannot increase, while if
e < P j ∪ R j then function δ j must decrease. That is:

1. if (n1, n2) ∈ P j \ R j then

ρτ(s, s′) ∧ µ (n1) (s) ∧ µ (n2) (s′) → δ j,n1 (s) � δ j,n2 (s′)

2. if (n1, n2) < P j ∪ R j then

ρτ(s, s′) ∧ µ (n1) (s) ∧ µ (n2) (s′) → δ j,n1 (s) � δ j,n2 (s′)

Fairness: For each e = (n1, n2) ∈ E and τ ∈ η (e):

1. τ is guaranteed to be enabled in every µ(n1)(s):

µ(n1)(s) → En(τ)

2. Any τ-successor of a state satisfying µ (n1) satisfies the label of some node in τ (n1):

µ(n1)(s) ∧ ρτ(s, s′) → µ(τ(n1))(s′)

Satisfaction:

1. For all n ∈ N, if s � µ (n) then sp
ϕ � f (n)

2. Lp(Ψ) ⊆ Lp(ϕ)

Some verification conditions such as satisfaction can be checked through model checking, just verify-
ing whether the language accepted by the diagram is contained into the language of the temporal formula,
or equivalently, checking if the intersection with the language of the negation of the formula is empty.

The remaining verification conditions can be automatically verified if we count with an appropriated
decision procedure. In such case, the components involved in the formulas depend on the data structure
we are verifying. In the following chapters, we present two concurrent data structures: concurrent lock-
coupling lists and concurrent skiplists. Moreover, we present some examples of properties we would like
to verify over these datatypes in addition to adequate decision procedures for each of them.

global
Int tick := 0
Set〈Int〉 announced := ∅

procedure MutExc
Int ticket

begin
1: loop
2: nondet

3:

〈
ticket := tick ++
announced .add(ticket)

〉

4: await(announced .min == ticket)
5: critical
6: announced .remove(ticket)
7: end loop

end procedure

Set〈Int〉 lower := ∅

if k /∈ announced
lower.add(ticket)

if my id = k
lower = announced − ticket

else lower = lower− ticket

Figure 2.2: MutExc: A mutual exclusion algorithm (left), and annotations (right)

2.2. Verification Diagrams 19

We now illustrate the use of generalized verification diagrams by showing the proof of a response
property of a simple mutual exclusion algorithm. The algorithm is structured the following way. Each
thread that wants to access the critical section acquires an increasing number (ticket) and announces
its intention to enter the critical section by adding its ticket to a shared global set of tickets. Then, each
thread waits until its ticket number becomes the lowest value in the set before entering the critical section.
After a thread leaves the critical section it removes its ticket from the set. For the sake of simplicity, we
assume that all operations are atomic.

Fig. 2.2 (left) shows MutExc, a program that implements this mutual exclusion protocol to protect
access to the critical section at line 5, using two global variables. The Int variable tick stores the shared
increasing counter. The Set variable announced stores the ticket numbers of all threads that are trying to
access the critical section. We want to prove that if an arbitrary thread k requests access to the critical
section, eventually it succeeds. To aid in the verification, ghost variable lower is used to keep the track of
all requests that have been done before thread k. We use the cardinality of such set as a ranking function
to prove that eventually, the request of thread k is taken into consideration. In general, ghost annotations
are introduced in order to keep track of special conditions and values that aid in the verification pro-
cess. Variable ticket stores the ticket number assigned to the thread while variable pc keeps the program
counter. If S is a set of variables v1, . . . , vn, we use pres(S) to denote that the value of all variables in S

V : {tick, announced, ticket[1], ticket[2], pc[1], pc[2]}

ρτ[1]
1

: pc[1] = 1 ∧ pc[1] = 2 ∧ pres(V \ {pc[1]})
ρτ[1]

2
: pc[1] = 2 ∧ pc[1] = 3 ∧ pres(V \ {pc[1]})

ρT
τ[1]

3

: pc[1] = 3 ∧ pc[1] = 4 ∧ k ∈ announced

∧ ticket′[1]
= tick + 1

∧ tick′ = tick + 1

∧ announced′ = announced ∪ {ticket[1]} ∧ pres(V \ {pc[1], ticket[1], announced})
ρF
τ[1]

3

: pc[1] = 3 ∧ pc[1] = 4 ∧ k < announced

∧ ticket′[1]
= tick + 1

∧ tick′ = tick + 1

∧ announced′ = announced ∪ {ticket[1]}
∧ lower′ = lower ∪ {ticket[1]} ∧ pres(V \ {pc[1], ticket[1], announced, lower})

ρτ[1]
4

: pc[1] = 4 ∧ pc[1] = 5 ∧ announced.min = ticket[1] ∧ pres(V \ pc[1])
ρτ[1]

5
: pc[1] = 5 ∧ pc[1] = 6 ∧ pres(V \ {pc[1]})

ρT
τ[1]

6

: pc[1] = 6 ∧ pc[1] = 7 ∧ my_id = k

∧ announced′ = announced \ {ticket[1]}
∧ lower′ = announced \ {ticket[1]} ∧ pres(V \ pc[1], announced, lower)

ρF
τ[1]

6

: pc[1] = 6 ∧ pc[1] = 7 ∧ my_id , k

∧ announced′ = announced \ {ticket[1]}
∧ lower′ = lower \ {ticket[1]} ∧ pres(V \ pc[1], announced, lower)

ρτ[1]
7

: pc[1] = 7 ∧ pc[1] = 1 ∧ pres(V \ {pc[1]})

Θ : tick = 0 ∧ announced = ∅ ∧ lower = ∅ ∧ pc[1] = 1 ∧ pc[2] = 1

Figure 2.3: Fair transition system for MutExc

20 2. Preliminaries

is preserved by the transition. That is, that v′1 = v1 ∧ · · · ∧ v′n = vn.
For simplicity, we assume a system made just from two threads: T1 and T2. We would like to prove

that whenever T1 shows it interest to enter the critical section, then it eventually succeeds.
Throughout this work we use at_p[k]

n to denote that thread k is at line n of program p. Similarly, we
use at_p[k]

n..m to represent
∧

i∈[n..m] at_p[k]
i . If v is a local variable of a program, we use v[k] to denote the

local instance of variable v owned by thread k. As usual, we use primed variables to describe the values
of the variables after the transition is taken.

We can define the fair transition representing an instance of MutExc for two threads as shown in
Fig. 2.3. Here we limit ourselves to show just the transition relations for thread T1. A set of analog
transition relations are required for thread T2.

Before we describe the property and the diagram, we introduce some notation to ease the proof. We
use active(i) for at_MutExc[i]4,5,6, wants(i) for at_MutExc[i]3 , and critical(i) for at_MutExc[i]5 . Diagrams
for the verification of safety properties are quite easy to construct. For instance, imagine we want to
verify mutual exclusion of the system. Then, we require to verify a set of invariants. For instance, below
ϕ1(i) describes the fact that every time a thread i has a valid ticket, the value of this ticket is smaller than
tick. Formula ϕ2(i, j) establishes that two different threads cannot have the same ticket. Formula ϕ3(i)
specifies that if a thread is in active(k) then its ticket is in the announced set. Formula ϕ4(i) establishes
that the thread in the critical section owns the lowest ticket. Finally, mutual exclusion is expressed as
ϕmutex:

ϕ1(i) =̂ (active(i)→ ticket(i) < tick)
ϕ2(i, j) =̂ (i , j ∧ active(i) ∧ active(j)→ ticket(i) , ticket(j))
ϕ3(i) =̂ (active(i)→ ticket(i) ∈ announced)
ϕ4(i) =̂ (critical(i)→ min(announced) = ticket(i))
ϕmutex(i, j) =̂  (i , j→ ¬(critical(i) ∧ critical(j)))

It is easy to see that these invariants hold. In this work we are not interested in describing parametric
systems. Thus, given a system, we assume a fixed number of threads running concurrently. This way,
all properties need to be verified for every thread in the system. If we would like to construct a diagram
for, let say, ϕ1(T1), then it would look like the one shown in Fig. 2.4. Despite verification can be done
automatically, the construction of a diagram remains as a manual task. Hence, it is the user the one who
must sketch it, following its intuition, trying to capture the behavior of the program.

active(T1)→ ticket(1) < tick

Figure 2.4: Verification diagram for ϕ1(T1)

We show now how to verify liveness properties. The program MutExc satisfies that every thread
that wants to enter the critical section eventually does, formally expressed in LTL using the following
response property [MP95]:

ψ(k) =̂ (wants(k)→critical(k))

In the verification we use the ghost variables and ghost updates, shown in Fig. 2.2 (right). This
variables allow to keep track of important aspects of the history of the computation, in this case, the set
of lower tickets (with respect to ticket[k]).

We show how to construct the diagram for verifying ψ(T1), that is, that the property holds for thread
T1. Two diagrams are shown in Fig. 2.5. The first one labels nodes with an informal description of
the state they represent. The second one is labelled with program positions and is the one used for the

2.2. Verification Diagrams 21

verification. Formally, the diagram is defined by:

N =̂ {ni | 1 ≤ i ≤ 6}
N0 =̂ {n1}
F =̂ {(P,R)} with R = {(n4, n1)} and P = E − (

R ∪ {(n6, n3)})
f (n) =̂ µ(n)

δ(n, s) =̂ |lower|

The edges shown in Fig. 2.5 represent the set E. Similarly, µ an η are defined, respectively, as the
functions that label nodes and edges with the formulas and transitions depicted in the same figure.

T1 not interested

T1 interested

T1 leaves
critical section

T2 has min ticket,
so T2 enters

critical section

T2 leaves
critical section

T1 has min ticket,
so T1 enters

critical section

pc[1] = 1,2,3,7

pc[1] = 4

pc[1] = 4 ∧ pc[2] = 5pc[1] = 5

pc[1] = 6 pc[1] = 4 ∧ pc[2] = 6

n1

n2

n3

n4

n5

n6

{τ[1]
i

| i = 1, 2, 7} ∪ {τ[2]
i

| i ∈ 1..7}

{τ[2]
i

| i ∈ 1, 2, 3, 6, 7}

{τ[2]
i

| i ∈ 1, 2, 3, 7}

{τ[2]4 }

{τ[2]5 }

{τ[2]5 }

{τ[2]6 }

{τ[2]
i

| i ∈ 1, 2, 3, 7}

{τ[1]3 }

{τ[1]4 }

{τ[1]5 }

{τ[1]6 }

Figure 2.5: Verification diagram for ψ(T1)

3
Concurrent Lists and Skiplists

In this work we focus on decision procedures for two pointer based data structures: concurrent lock-
coupling singly-linked lists and concurrent skiplists. In this chapter, we introduce both data types, de-
scribe their structure and give the main operations that manipulate them. Besides, for each data type we
sketch a proof requiring temporal reasoning. This will let us present the components we will require in
our decision procedures for each data type.

3.1 Concurrent Lock-Coupling Lists

Lock-coupling concurrent lists [HS08,VHHS06] are ordered lists with non-repeating elements, in which
each node is protected by a lock. A thread advances through the list acquiring the lock of the node it
visits. This lock is only released after the lock of the next node has been acquired. The following List
and Node structures are used to maintain the data of a concurrent list:

class List {Node∗ list; }
class Node {Value val; Node∗ next; Lock lock; }

A List contains one field pointing to the Node representing the head of the list. A Node consists of
a value, a pointer to the next Node in the list and a lock. We assume that the operating system provides
the operations lock and unlock to acquire and release a lock. Every list has two sentinel nodes, Head and
Tail, with phantom values representing the lowest and highest possible values. For simplicity, we assume
such nodes cannot be removed or modified. Fig 3.1 presents a concurrent lock-coupling skiplist.

list
head tail

+∞1710953−∞
0x01 0x02 0x03 0x04 0x05 0x06 0x07

Figure 3.1: A lock-coupling singly-linked list with elements 5 and 9 locked

Concurrent Lock-Coupling Lists are used to implement sets, so they offer three operations:

• Locate, shown as Algorithm 3.1, finds an element traversing the list. This operation returns the
pair consisting of the desired node and the node that precedes it in the list. If the element is not
found the Tail node is returned as the current node. A Search operation, shown as Algorithm 3.2,
that decides whether an element is in the list can be easily extended from Locate.

23

24 3. Concurrent Lists and Skiplists

• Insert, shown as Algorithm 3.3, inserts a new element in the list, using Locate to determine the
position at which the element must be inserted. The operation add returns true upon success,
otherwise it returns false.

• Remove, depicted as Algorithm 3.4, deletes a node from the list by redirecting the next pointer of
the previous node appropriately.

Algorithm 3.1 Locate program for concurrent lock-coupling singly-linked lists

1: procedure Locate(Value e)
2: prev := Head
3: prev.lock()
4: curr := prev.next
5: curr.lock()
6: while curr.val < e do
7: prev.unlock()
8: prev := curr
9: curr := curr.next

10: curr.lock()
11: end while
12: return (prev, curr)
13: end procedure

Algorithm 3.2 Search for concurrent lock-coupling singly-linked lists

1: procedure Search(Value e)
2: prev, curr := Locate(e)
3: if curr.val = e then
4: result := true
5: else
6: result := false
7: end if
8: curr.unlock()
9: prev.unlock()

10: return result
11: end procedure

Algorithm 3.3 Insertion for concurrent lock-coupling singly-linked lists

1: procedure Insert(Value e)
2: prev, curr := Locate(e)
3: if curr.val , e then
4: aux := new Node(e)
5: aux.next := curr
6: prev.next := aux
7: result := true
8: else
9: result := false

10: end if
11: prev.unlock()
12: curr.unlock()
13: return result
14: end procedure

3.1. Concurrent Lock-Coupling Lists 25

Algorithm 3.4 Remove for concurrent lock-coupling singly-linked lists

1: procedure Remove(Value e)
2: prev, curr := Locate(e)
3: if curr.val = e then
4: aux := curr.next
5: prev.next := aux
6: result := true
7: else
8: result := false
9: end if

10: prev.unlock()
11: curr.unlock()
12: return result
13: end procedure

Algorithm 3.5 Most general client for concurrent lock-coupling singly-linked lists

1: procedure MGC
2: while true do
3: e := NondetPickElem
4: nondet

5:



call Search(e)
or

call Insert(e)
or

call Remove(e)


6: end while
7: end procedure

We can also construct the most general client of the concurrent-list datatype: the program MGC
that repeatedly chooses non-deterministically a method and its parameters. Such client is shown as
Algorithm 3.5.

Example 3.1 (Termination of rightmost thread)
Imagine we want to prove that on a lock-coupling concurrent list as the one introduced in this chapter,
the thread owning the nearest lock to the end of the list eventually terminates. To prove it, we construct
a fair transition system S[N] parametrized by the total number of threads N, in which all threads run
MGC. Let ψ(k) be the temporal formula that describes that if thread k owns the last lock in the list (i.e.,
the lock nearest to node Tail) then it eventually terminates. The verification problem is then casted as
S[N] � ψ(k), for all N. A sketch of a verification diagram is depicted in Fig. 3.2. We say that a thread is
the rightmost owning a lock when there is no other thread owning a lock that protects a Node closer to
the tail.

Each diagram node is labeled with a predicate. This predicate captures the set of states of the transi-
tion system that the node abstracts. Edges represent transitions between states abstracted by the nodes.
For the sake of simplicity, in the diagram at Fig. 3.2 we have replaced the predicates labeling each node
by an informal description of what they represent.

Node n1 denotes all states in which thread k has not acquired a lock yet, or it does not own the
rightmost lock. Node n2 represents states in which thread k has acquired the rightmost lock in the list
and it is about to execute a non-blocking statement. Node n3 denotes the states at which thread k is the
rightmost thread owning a lock, and no other thread is blocking it. Node n4 represents the states on which
thread k is about to acquire a lock so it could get blocked. Node n5 denotes the states at which thread k

26 3. Concurrent Lists and Skiplists

n2 :
Thread k gets its first lock and

k is the rightmost thread owning a lock

n3 :
Thread k is the rightmost owning a lock

and k is not blocked

n4 :
Thread k is the rightmost owning a lock

and k is about to get a new lock

n5 :
Thread k is the rightmost owning a lock

and k has reached the last line of locate

n6 :
Thread k is the rightmost owning a lock

and k has gone beyond the last line of locate

n1 :
Thread k does not own a lock or

k does not hold the rightmost lock

Figure 3.2: Sketched verification diagram for S[N] � ψ(k)

has reached the last line of program Locate meaning that no more locks needs to be acquired. Finally,
node n4 denotes the state at which thread k has gone beyond the last line of program Locate. At this
point, the operations done by thread k consists only in modifying some pointers and releasing locks.

Since we assume that all threads are running program MGC, by "thread j terminates" we mean that
thread j has reached the last program line of Locate. Notice that once thread j has arrived to the last line
of Locate it is easy to show that j cannot be blocked.

Checking the proof represented by the verification diagram requires two activities. First, to show that
all traces of the diagram satisfy the temporal formula ψ(k), which can be performed by finite state model
checking. Second, to prove that all computations of S[N] are traces of the verification diagram. This
process involves the verification of formulas built from several theories. For instance, considering the
execution of line 6 of program Insert we should verify that the following condition holds:

at_Insert[k]
5 ∧ IsLast(k) ∧

r′ = r ∪
〈
aux[k]

〉
∧

prev′[k]
.next = aux[k]

→ at′_Insert[k]
6 ∧ IsLast′(k) (3.1)

The predicate prev′[k]
.next = curr[k] is in the theory of pointers, while r′ = r ∪

〈
curr[k]

〉
is in the

theory of regions. Moreover, some predicates belong to a combination of theories, like IsLast(k), which
among other things establishes that List (h, x, r) holds. List (h, x, r) expresses that in heap h, starting from
pointer x, the pointers form a list of elements following the next field, and that all nodes in this list form
precisely the region r. ∗

Our intention here is not to show a full example or a complete verification condition, but just to give
the reader the intuition of the construction our decision procedure should be able to deal with. At this
point, it should be clear that we must deal with elements, addresses, thread identifiers, nodes, memory
assignments, regions and locks. To accomplish the automatic verification, we must build a suitable
decision procedure involving all these theories. Such decision procedure is described in Chapter 4.

3.2 Concurrent Skiplists

A skiplist [Pug90] is a data structure that implements sets, maintaining several sorted singly-linked lists
in memory. Skiplists are structured in multiple levels, where each level consists of a single linked list.
The skiplist property establishes that the list at level i + 1 is a sublist of the list at level i. Each node
in a skiplist stores a value and at least the pointer corresponding to the lowest level list. Some nodes
also contain pointers at higher levels, pointing to the next element present at that level. The advantage
of skiplists is that they are simpler and more efficient to implement than search trees, and search is still
(probabilistically) logarithmic.

3.2. Concurrent Skiplists 27

In this section we present a simple concurrent implementation of skiplists using lock-coupling [HS08]
to acquire and release locks. This implementation can be seen as an extension of concurrent lock-coupling
lists [HS08,Vaf07] to multiple layers of pointers. This algorithm imposes a locking discipline, consisting
of acquiring locks as the search progresses, and releasing a node’s lock only after the lock of the next
node in the search process has been acquired. A naïve implementation of this solution would equip
each node with a single lock, allowing multiple threads to access simultaneously different nodes in the
list, but protecting concurrent accesses to two different fields of the same node. The performance can
be improved by carefully allowing multiple threads to simultaneously access the same node at different
levels. We study here an implementation of the latter solution in which each node is equipped with a
different lock at each level.

8 11 14

head tail

−∞ +∞16 202

n1 n2 n3 n4 n5 n6

level 0

level 1

level 2

level 3

j

j

j j

j

j

0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

Figure 3.3: A skiplist with the masked region given by the fields locked by thread j

At execution time a thread uses locks to protect the access to only some fields of a given node. A
precise reasoning framework needs to capture those portions of the memory protected by a set of locks,
which may include only parts of a node. Approaches based on strict separation (separation logic [Rey02]
or regional logic [BNR08]) do not provide the fine grain needed to reason about individual fields of shared
objects. We now introduce the concept of masked regions to describe regions and the fields within. A
masked region consists of a set of pairs formed by a region (Node cell) and a field (a skiplist level):

mrgn =̂ 2Node×N

We call the field a mask, since it identifies which part of the object is relevant. For example, in
Fig. 3.3 the region within dots represents the area of the memory that thread j is protecting. This portion
of the memory is described by the masked region {(n2, 2), (n5, 2), (n2, 1), (n4, 1), (n3, 0), (n4, 0)}. As with
regional logic, an empty set intersection denotes separation. In masked regions two memory nodes at
different levels do not overlap. This notion is similar to data-groups [Lei98].

We now present the pseudo-code declaration of the Node and SkipList classes:

class SkipList { Node∗ head; Node∗ tail; }
class Node { Value val;

Key key;
Array〈Node∗〉(K) next;
Array〈Node∗〉(K) lock; }

Throughout the present work we use boxes to denote ghost code added for verification purposes. Note
that the structure is parametrized by a value K, which determines the maximum possible level of any
node in the modeled skiplist. The fields val and key in the class Node contain the value and the key of the
element used to order them. Then, we can store key-value pairs, or use the skiplist as a set of arbitrary
elements as long as the key can be used to compare. The next array stores the pointers to the next nodes
at each of the possible K different levels of the skiplist. Finally, the lock array keeps the locks, one for
each level, protecting the access to the corresponding next field.

The SkipList class contains two pointer fields: head and tail plus a ghost variable field r. Field head
points to the first node of the skiplist, and tail to the last one. Variable r, only used for verification
purposes, keeps the (masked) region represented by all nodes in the skiplist with all their levels. In this

28 3. Concurrent Lists and Skiplists

Algorithm 3.6 Unfair implementation of concurrent skiplist operation Insert

1: procedure Insert(SkipList sl, Value newval)
2: Vector〈Node∗〉upd [0..K − 1]
3: lvl := randomLevel(K)
4: Node∗pred := sl.head
5: pred .locks[K − 1].lock()
6: Node∗curr := pred .next [K − 1]
7: curr .locks[K − 1].lock()
8: for i := K − 1 downto 0 do
9: if i < K − 1 then

10: pred .locks[i].lock()
11: if i ≥ lvl then
12: curr .locks[i+ 1].unlock()
13: pred .locks[i+ 1].unlock()
14: end if
15: curr := pred .next [i]
16: curr .locks[i].lock()
17: end if
18: while curr .val < newval do
19: pred .locks[i].unlock()
20: pred := curr
21: curr := pred .next [i]
22: curr .locks[i].lock()
23: end while
24: upd [i] := pred
25: end for
26: Bool valueWasIn := (curr .val = newval)
27: if valueWasIn then
28: for i := 0 to lvl do
29: upd [i].next [i].locks[i].unlock()
30: upd [i].locks[i].unlock()
31: end for
32: else
33: x := CreateNode(lvl,newval)
34: for i := 0 to lvl do
35: x.next [i] := upd [i].next [i]
36: upd [i].next [i] := x
37: x.next [i].locks[i].unlock()
38: upd [i].locks[i].unlock()
39: end for
40: end if
41: return ¬valueWasIn
42: end procedure

L := L{me ← sl.head}
U := U{me ← sl.tail}
H := H{me ← K − 1}

U := U{me ← pred .next [i+ 1]}

H := H{me ← i}

if (i ≥ lvl){L := L{me ← curr}}

L = L{me ← null}

implementation, head and tail are sentinel nodes, with key = −∞ and key = +∞, respectively. For
simplicity, these nodes are not eliminated during the execution and their val field remains unchanged.

When considering concurrent datatypes, a craft design must be taken in consideration. Apparently
correct implementations may lead to undesired behaviors. For instance, consider the implementation for
Insert given as Algorithm 3.6. This implementation does not properly works under the assumption of

3.2. Concurrent Skiplists 29

strong fairness, since a thread may prevent other to progress under the assumption of an unfair scheduler.

Example 3.2
We show that the implementation described as Algorithm 3.6 does not ensure termination of all threads
under the assumption of weak-fairness. The program has been enriched with ghost arrays L and U from
thread identifiers to addresses and an array H from thread identifiers to skiplist levels. These three global
arrays are used to store for each thread the addresses and level that delimit the section of the skiplists that
can be potentially be modified by a thread. We use e = x[i] to denote that e is the value stored in array x
at position i. We also use y = x{i← e} to denote that y is the array resulting from taking x and modifying
position i to store element e. This means that y[i] = e while y[j] = x[j] for any other j different from
i. This way, L[t] stores the lowest address than can be modified by thread t. Similarly, U[t] denotes the
upper address of the region modifiable by t. Meanwhile, H[t] is the highest level that can be modified by
thread t. In any case, we assume any thread can use me to refer to its thread identifier.

Notice that skiplists levels are numerated starting from 0. Then, a node at level 0 is said to have
height 1. Similarly, a node that goes up to level 1 is said to be of height 2 and so on.

Consider now the skiplist described in Fig. 3.4 and a system with two thread: T1 and T2. Imagine T1
wants to insert a node with value 14 and height 1, while T2 tries to insert value 16 with height 2.

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞

head tail

15

Figure 3.4: An example of skiplist

T1 begins by grabbing the lock at level 2 on node −∞ and node 18, as shown in Fig. 3.5(a). As 18
is beyond the position where 14 should be inserted, it decides then to go a level below. Afterwards, the
algorithm proceeds as depicted in Fig. 3.5(b) and 3.5(c). In the figure, we use a dashed line to denote the

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

(a) initial locking by T1

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

(b) T1 on level 1

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

(c) T1 on level 0

Figure 3.5: Progress of T1 towards insertion of value 14

30 3. Concurrent Lists and Skiplists

region of the skiplist that can potentially be modified by T1, i.e., the region limited by L[T1], U[T1] and
H[T1].

At this moment, T2 starts its execution. Fig. 3.6 shows the progress made by T2 toward the insertion
of a level 2 node with value 16. As before, in this case the heavily dashed region represents the masked
region of the skiplist that can be modified by T2.

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

2 2

(a) initial locking by T2

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

2 2

(b) T2 on level 1

level 0

level 1

level 2

−∞ 3 5 9 12 18 20 +∞15

1 1

2 2

(c) final position of T2 on level 1

Figure 3.6: Progress of T2 towards insertion of value 16

Notice that the potentially modifiable regions by thread T1 and T2 intersect, as shown in Fig. 3.6(c).
In this case, it is quite easy to see that under the assumption of weak-fairness, if T2 continuously perform
the same insertion, it can prevent T1 from progressing. However, no problem exists under the assumption
of strong fairness, since T1 is not continuously enabled. In fact, it is quite easy to see that T1 becomes
disabled every time T2 gets the lock at level 0 on node 15. ∗

A correct implementation of the Search, Insert and Remove operations is shown as Algorithms 3.7,
3.8 and 3.9 respectively. We call these implementations pessimistic, since each thread keeps a lock
a couple of levels above its current position, just to ensure that nothing bad happens (as the situation
described in Example 3.2). In the pessimistic implementations, we extend the skiplist data structure with
a ghost masked region field r. Then, if sl is a skiplist, we use sl.r to refer to this new field. sl.r keeps the
masked region made by all the nodes that form the skiplist sl.

As we said before, boxes denote ghost code added to aid the verification. In this particular case,
the ghost variable mr stores a masked region containing all the nodes and fields currently locked by the
running thread. The set operations ∪ and − are used for the manipulation of the corresponding sets of
pairs. On the other hand, as we said, arrays L and U are used to keep an upper and lower bound of node’s
addresses that can be potentially modified by the thread performing the Insert or Remove actions. In the
case of Search, these values denote the limits within the skiplist where the element to be searched can
be located. Similarly, array H describes the upper bound for the levels involved in the operation.

The reader should convince himself that it is possible to show that thanks to the order in which locks
are taken and released, a node cannot be removed until it has not been fully inserted. Similarly, it can be
proved that if an element of the skiplist is being removed, then any Insert program trying to insert a node
with the same value into the skiplist will be prevented from progressing until the old node has been fully
removed.

3.2. Concurrent Skiplists 31

Algorithm 3.7 Pessimistic implementation of concurrent skiplist operation Search

1: procedure Search(SkipList sl, Value v)
2: int i := K − 1
3: Node∗pred := sl.head
4: pred .locks[i].lock()
5: Node∗curr := pred .next [i]
6: curr .locks[i].lock()
7: Node∗cover
8: while 0 ≤ i ∧ curr .val 6= v do
9: if i < K − 1 then

10: pred .locks[i].lock()
11: pred .locks[i+ 1].unlock()
12: if i < K − 2 then
13: cover .locks[i+ 2].unlock()
14: end if
15: cover := curr
16: curr := pred .next [i]
17: curr .locks[i].lock()
18: end if
19: while curr .val < v do
20: pred .locks[i].unlock()
21: pred := curr
22: curr := pred .next [i]
23: curr .locks[i].lock()
24: end while
25: i := i− 1
26: end while
27: Bool valueIsIn := (curr .val = v)
28: if i = K − 1 then
29: curr .locks[i].unlock()
30: pred .locks[i].unlock()
31: else
32: if i < K − 2 then
33: cover .locks[i+ 2].unlock()
34: end if
35: curr .locks[i+ 1].unlock()
36: pred .locks[i+ 1].unlock()
37: end if
38: return valueIsIn
39: end procedure

mr := mr ∪ {(pred , i)}

mr := mr ∪ {(curr , i)}

mr := mr ∪ {(pred , i)}
U := U{me ← pred .next [i+ 1]}

mrgnmr := ∅
L := L{me ← sl.head}
U := U{me ← sl.tail}
H := H{me ← K − 1}

mr := mr ∪ {(curr , i)}

mr := mr ∪ {(curr , i)}

mr := mr − {(pred , i+ 1)}
H := H{me ← i}

mr := mr − {(pred , i)}
L := L{me ← curr}

mr := mr − {(curr , i)}
U := U{me ← L[me]}
mr := mr − {(pred , i)}
L := L{me ← null}

mr := mr − {(curr , i+ 1)}
U := U{me ← L[me]}
mr := mr − {(pred , i+ 1)}
L := L{me ← null}

mr := mr − {(cover , i+ 2)}

32 3. Concurrent Lists and Skiplists

Algorithm 3.8 Pessimistic implementation of concurrent skiplist operation Insert

1: procedure Insert(SkipList sl, Value newval)
2: Vector〈Node∗〉upd [0..K − 1]
3: lvl := randomLevel(K)
4: Node∗pred := sl.head
5: pred .locks[K − 1].lock()
6: Node∗curr := pred .next [K − 1]
7: curr .locks[K − 1].lock()
8: Node∗cover
9: for i := K − 1 downto 0 do

10: if i < K − 1 then
11: pred .locks[i].lock()
12: if i ≥ lvl then
13: pred .locks[i+ 1].unlock()
14: end if
15: if i < K − 2 ∧ i > lvl − 2 then
16: cover .locks[i+ 2].unlock()
17: end if
18: cover := curr
19: curr := pred .next [i]
20: curr .locks[i].lock()
21: end if
22: while curr .val < newval do
23: pred .locks[i].unlock()
24: pred := curr
25: curr := pred .next [i]
26: curr .locks[i].lock()
27: end while
28: upd [i] := pred
29: end for
30: if i < K − 2 then
31: cover .locks[i+ 2].unlock()
32: end if
33: Bool valueWasIn := (curr .val = newval)
34: if valueWasIn then
35: for i := lvl to 0 do
36: upd [i].next [i].locks[i].unlock()
37: upd [i].locks[i].unlock()
38: end for
39: else
40: x := CreateNode(lvl ,newval)
41: for i := 0 to lvl do
42: x.next [i] := upd [i].next [i]
43: upd [i].next [i] := x
44: x.next [i].locks[i].unlock()
45: upd [i].locks[i].unlock()
46: end for
47: end if
48: return ¬valueWasIn
49: end procedure

mr := mr ∪ {(pred ,K − 1)}

mr := mr ∪ {(curr ,K − 1)}

mr := mr ∪ {(pred , i)}
U := U{me ← pred .next [i+ 1]}

mrgnmr := ∅
L := L{me ← sl.head}
U := U{me ← sl.tail}
H := H{me ← K − 1}

mr := mr − {(pred , i+ 1)}
H := H{me ← i}

mr := mr ∪ {(curr , i)}

mr := mr − {(pred , i)}
if (i ≥ lvl){

L := L{me ← curr}
}

mr := mr ∪ {(curr , i)}

mr := mr − {(upd [i].next [i], i)}
mr := mr − {(upd [i], i)}

sl.r := sl.r ∪ {(x, i)}
mr := mr − {(x.next [i], i)}
mr := mr − {(upd [i], i)}

L := L{me ← null}

mr := mr − {(cover , i+ 2)}

3.2. Concurrent Skiplists 33

Algorithm 3.9 Pessimistic implementation of concurrent skiplist operation Remove

1: procedure Remove(SkipList sl, Value v)
2: Vector < Node∗ > upd [0..K − 1]
3: Node∗pred := sl.head
4: pred .locks[K − 1].lock()
5: Node∗curr := pred .next [K − 1]
6: curr .locks[K − 1].lock()
7: cover := sl.tail
8: deleteFrom := K − 1
9: for i := K − 1 downto 0 do

10: if i < K − 1 then
11: pred .locks[i].lock()
12: if pred .next [i+ 1].val 6= v then
13: deleteFrom := i
14: pred .locks[i+ 1].unlock()
15: end if
16: if i < K − 2 ∧ cover .val 6= v then
17: cover .locks[i+ 2].unlock()
18: end if
19: cover := curr
20: curr := pred .next [i]
21: curr .locks[i].lock()
22: end if
23: while curr .val < v do
24: pred .locks[i].unlock()
25: pred := curr
26: curr := pred .next [i]
27: curr .locks[i].lock()
28: end while
29: upd [i] := pred
30: end for
31: if i < K − 2 then
32: cover .locks[i+ 2].unlock()
33: end if
34: Bool valueWasIn := (curr .val = v)
35: for i := deleteFrom downto 0 do
36: if upd [i].next [i] = curr ∧ curr .val = v then
37: upd [i].next [i] := curr .next [i]
38: curr .locks[i].unlock()
39: else
40: upd [i].next [i].locks[i].unlock()
41: end if
42: upd [i].locks[i].unlock()
43: end for
44: if valueWasIn then
45: free (curr)
46: end if
47: return valueWasIn
48: end procedure

mr := mr ∪ {(pred ,K − 1)}

mr := mr ∪ {(curr ,K − 1)}

mr := mr ∪ {(pred , i)}
U := U{me ← curr}

mrgnmr := ∅
L := L{me ← sl.head}
U := U{me ← sl.tail}
H := H{me ← K − 1}

mr := mr ∪ {(curr , i)}

mr := mr − {(pred , i)}
if (cover .val 6= e){

L := L{me ← curr}
}

mr := mr ∪ {(curr , i)}

mr := mr − {(upd [i].next [i], i)}

sl.r := sl.r − {(curr , i)}
mr := mr − {(curr , i)}

mr := mr − {(upd [i], i)}
L := L{me ← null}

mr := mr − {(pred , i+ 1)}
H := H{me ← i}

34 3. Concurrent Lists and Skiplists

Example 3.3 (Skiplist shape preservation)
Let sl be a pointer to an instance of the class SkipList described before. The following predicate captures
whether sl points to a well-formed skiplist of height 4 or less:

SkipList4(h, head, tail) =̂ OList(h, head, 0) ∧ (3.2)tail.next[0] = null ∧ tail.next[1] = null

tail.next[2] = null ∧ tail.next[3] = null

 ∧ (3.3)
SubList(h, head, tail, 1, head, tail, 0) ∧
SubList(h, head, tail, 2, head, tail, 1) ∧
SubList(h, head, tail, 3, head, tail, 2)

 (3.4)

Assuming that head (resp. tail) points to the first (resp. last) node of a skiplist, predicate SkipList4
says that in fact between both nodes there is a structure with the shape of a skiplist of height 4. Consid-
ering the definition of SkipList4, the predicate OList in (3.2) describes that in heap h, the pointer head
points to an ordered linked-lists if we repeatedly follow the pointers at level 0. The predicate (3.3) indi-
cates that all levels are null terminated, and (3.4) indicates that each level is in fact a sublist of its nearest
lower level. Predicates of this kind also allow to express the effect of program statements via first order
transition relations. ∗

Example 3.4 (Transition relation on skiplist Insert operation)
Consider the statement at line 43 in program Insert shown as Algorithm 3.8 on a skiplist of height 4,
taken by thread with id j. This transition corresponds to a new node x[j] at level i being connected to the
skiplist, as depicted in Fig. 3.7.

8 11 14

head tail

−∞ +∞16 202

n1 n2 n3 n4 n5 n6

level 0

level 1

level 2

level 3

12

x

j

j

j j

j

j

8 11 14−∞ +∞16 202
level 0

level 1

level 2

level 3

12

j

j

j j

j

j

Figure 3.7: Skiplist modification at line 43 before and after inserting value 12 with i = 1

For the sake of simplicity, from this point on we use x to represent x[j]. If the memory layout from
pointer sl is that of a skiplist before the statement at line 43 is executed, then it is also a skiplist after the
execution:

SkipList4(h, sl.head, sl.tail) ∧ ϕaux ∧ ρ[j]
43 (V,V ′)→ SkipList4(h′, sl′.head, sl′, tail)

The effect of the statement at line 43 is represented by the first-order transition relation ρ[t]
43. To ensure

this property, i is required to be a valid level, and the key of the nodes that will be pointing to x must be
lower than the key of node x. Moreover, the masked region of locked nodes remains unchanged. Predicate
ϕaux contains support invariants. For simplicity, we use prev for upd[j][i]. Then, the full verification
condition is SkipList4(h, sl.head, sl.tail) ∧ φ→ SkipList4(h′, sl′.head, sl′.tail), where φ is:

3.2. Concurrent Skiplists 35



x.key = newval ∧
prev.key < newval ∧

x.next[i].key > newval ∧
prev.next[i] = x.next[i] ∧

(x, i) < sl.r ∧ 0 ≤ i ≤ 3


∧



at[j]
43 ∧

prev′.next[i] = x ∧
at′[j]

44 ∧
h′ = h ∧ sl = sl′ ∧

x′ = x . . .

 ∗

Note that in the previous verification condition we do not explicitly indicate in all cases that the
rest of the nodes, memory and local variables of other threads remain unchanged. This preservation
predicates are generated as part of a verification condition based on those elements of the formula that
are not modified by the statement. A full example of a verification condition is given in Chapter 5,
where the decision procedure for concurrent skiplists is described. The examples we have seen should be
enough to illustrate that to be able to automatically prove VCs for the verification of skiplist manipulating
algorithms, we require a theory that allows to reason about heaps, addresses, nodes, masked regions,
ordered lists and sublists.

4
TLL3: A Decision
Procedure for Concurrent
Lock-Coupling Lists

The automatic check of the proof represented by a verification diagram requires decision procedures to
verify the generated verification conditions. These decision procedures must deal with formulas contain-
ing terms belonging to different theories. In particular, for concurrent lists the decision procedure must
reason about pointer data structures with a list layout, regions and locks. To obtain a suitable decision
procedure, we extend the Theory of Linked Lists (TLL) [RZ06a], a decidable theory including reachabil-
ity of list-like structures. However, this theory lacks the expressivity to describe locked lists of cells, a
fundamental component in our proofs. From the extension of TLL we get TLL3 [SS10]. In this chapter we
focus on the definition, description and analysis of TLL3 as well as a decision procedure for this theory.

We begin with a brief description of the basic notation and concepts. A signature Σ is a triple (S , F, P)
where S is a set of sorts, F is a set of function symbols and P is a set of predicate symbols constructed
using the sorts in S . If Σ1 = (S 1, F1, P1) and Σ2 = (S 2, F2, P2) are two signatures, we define their union
Σ1 ∪ Σ2 = (S 1 ∪ S 2, F1 ∪ F2, P1 ∪ P2). Similarly we say that Σ1 ⊆ Σ2 when S 1 ⊆ S 2, F1 ⊆ F2 and
P1 ⊆ P2.

Given a signature Σ, we assume the standard notions of Σ-term, Σ-literal and Σ-formula. A literal is
flat if it is of the form x = y, x , y, x = f (y1, . . . , yn), p(y1, . . . , yn) or ¬p(y1, . . . , yn), where x, y, y1, . . . , yn

are variables, f is a function symbol and p is a predicate symbol. If t(ϕ) is a term (resp. formula), then
we denote with Vσ(t) (resp. Vσ(ϕ)) the set of variables of sort σ occurring in t (resp. ϕ).

We assume the usual notion of Σ-interpretation over a set V of variables as a map which assigns a
value to each symbol in Σ and V . Let A be a Σ-interpretation over V . Then, for each s ∈ S , As is a set of
elements called the domain of s; for each symbol f : s1 × · · · × sn → s in F, A f is a function that goes
from As1 × · · · × Asn to elements in As and for each symbol p : s1 × · · · × sn in P, Ap is a relation over
elements of As1 × · · · × Asn .

A Σ-structure is a Σ-interpretation over an empty set of variables. A Σ-formula over a set V of
variables is satisfiable whenever it is true in some Σ-interpretation over V . Let Ω be a signature, A a
Ω-interpretation over a set V of variables, Σ ⊆ Ω and U ⊆ V . AΣ,U denotes the interpretation obtained
from A restricting it to interpret only the symbols in Σ and the variables in U. We use AΣ to denote
AΣ,∅. A Σ-theory is a pair (Σ,A) where Σ is a signature and A is a class of Σ-structures. Given a theory
T = (Σ,A), a T -interpretation is a Σ-interpretationA such thatAΣ ∈ A. Given a Σ-theory T , a Σ-formula
ϕ over a set of variables V is T -satisfiable if it is true on a T -interpretation over V .

37

38 4. TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists

Signature: Σcell

Sorts: cell, elem, addr, thid
Functions: error : cell

mkcell : elem× addr× thid→ cell

_.data : cell→ elem

_.next : cell→ addr

_.lockid : cell→ thid

_.lock : cell→ thid→ cell

_.unlock : cell→ cell

Signature: Σmem

Sorts: mem, addr, cell
Functions: null : addr

[] : mem× addr→ cell

upd : mem× addr× cell→ mem

Signature: Σreach

Sorts: mem, addr, path
Functions: ε : path

[_] : addr→ path

Predicates: append : path× path× path

reach : mem× addr× addr× path

Signature: Σset

Sorts: addr, set
Functions: ∅ : set

{ _ } : addr→ set

∪, ∩, \ : set× set→ set
Predicates: ∈ : addr× set

⊆ : set× set
Signature: Σsettid

Sorts: thid, settid
Functions: ∅t : settid

{_}t : thid→ settid

∪t, ∩t, \t : settid× settid→ settid
Predicates: ∈t : thid× settid

⊆t : settid× settid
Signature: Σbridge

Sorts: mem, addr, set, path
Functions: path2set : path→ set

addr2set : mem× addr→ set

getp : mem× addr× addr→ path

fstlock : mem× path→ addr

Figure 4.1: The signature of the TLL3 theory

39

signature: Σcell

interpretation: • mkcellA(e, a, k) = 〈e, a, k〉
• 〈e, a, t〉.dataA = e
• 〈e, a, t〉.nextA = a
• 〈e, a, t〉.lockidA = t
• 〈e, a, t〉.lockA(t′) = 〈e, a, t′〉
• 〈e, a, t〉.unlockA = 〈e, a,�〉
• errorA.nextA = nullA

for each e ∈ Aelem, a ∈ Aaddr, k ∈ Athid and t, t′ ∈ Athid

Signature: Σmem

Interpretation: • m[a]A = m(a)
• updA(m, a, c) = ma 7→c

• mA(nullA) = errorA

for each m ∈ Amem, a ∈ Aaddr and c ∈ Acell

Signature: Σreach

Interpretation: • εA is the empty sequence
• [i]A is the sequence containing i ∈ Aaddr as the only element
• ([i1, . . . , in] , [j1, . . . , jm] , [i1, . . . , in, j1, . . . , jm]) ∈ appendA iff

ik and jl are all distinct
• (m, i, j, p) ∈ reachA iff

– i = j and p = ε, or
– there exist addresses i1, . . . , in ∈ Aaddr such that:

(a) p = [i1, . . . , in] (c) m(ir).nextA = ir+1, for 1 ≤ r < n

(b) i1 = i (d) m(in).nextA = j
Signature: Σset

Interpretation: • The symbols ∅, {_}, ∪, ∩, \, ∈ and ⊆ are interpreted according to
their standard interpretation over sets of addresses.

Signature: Σsettid

Interpretation: • The symbols ∅t, {_}t, ∪t, ∩t, \t, ∈t and⊆t are interpreted according
to their standard interpretation over sets of thread identifiers.

Signature: Σbridge

Interpretation: • addr2setA(m, i) =
{
j ∈ Aaddr | ∃p ∈ Apath s.t. (m, i, j, p) ∈ reach

}
• path2setA(p) = {i1, . . . , in} for p = [i1, . . . , in] ∈ Apath

• getpA(m, i, j) =

p if (m, i, j, p) ∈ reachA

ε otherwise
for each m ∈ Amem, p ∈ Apath and i, j ∈ Aaddr

• fstlockA (m, [a1, . . . , an]) =


ak if there is 1 ≤ k ≤ n such that

for all 1 ≤ j < k,m[a j].lockid = �
and m[ak].lockid , �

null otherwise
for each m ∈ Amem and a1, . . . an ∈ Aaddr

Figure 4.2: Characterization of a TLL3-interpretation A

40 4. TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists

Formally, the theory of linked lists is defined as TLL = (ΣTLL,TLL), where

ΣTLL := Σcell ∪ Σmem ∪ Σreach ∪ Σset ∪ Σbridge

The sorts, functions and predicates belonging to these signatures are described as part of Fig. 4.1,
while TLL is the class of ΣTLL-structures satisfying the conditions shown in Fig. 4.2. In fact, these
figures corresponds to the signatures and interpretations for TLL3 while TLL is contained into TLL3, as
we will see next.

We extend TLL into the theory for concurrent single linked lists with locks TLL3 := (ΣTLL3,TLL3),
where

ΣTLL3 = ΣTLL ∪ Σsettid ∪ {lockid, lock, unlock, fstlock}
Each sort σ in a ΣTLL3-structure is mapped to a non-empty set Aσ such that:

(a) Acell = Aelem ×Aaddr ×Athid

(b) Amem = AAaddr
cell

(c) Apath is the set of all finite sequences of (pairwise) distinct elements of Aaddr

(d) Aset is the power-set of Aaddr

(e) Asettid is the power-set of Athid

The sorts, functions and predicates of TLL3 correspond to the signatures shown in Fig. 4.1 and the
interpretation of each function and predicate is depicted in Fig. 4.2. Informally, Σcell models cells, struc-
tures containing an element (data), an address (pointer) and a lock owner, which represents a node in
a linked list. Σmem models the memory. Σreach models finite sequences of non-repeating addresses, to
represent paths. Σset models sets of addresses. Finally, Σbridge is a bridge theory containing auxiliary
functions that map paths of addresses to set of addresses or let us obtain the set of addresses reachable
from a given address following a chain of next fields. The sort thid contains thread identifiers. The
sorts addr, elem and thid are uninterpreted, except that � : thid is different from all others thread ids.
Otherwise, Σaddr =

(
addr, ∅, ∅), Σelem =

(
elem, ∅, ∅) and Σthid =

(
thid, ∅, ∅).

Example 4.1
Consider the list shown in Fig. 3.1 in Section 3.1. For that particular list and assuming that nodes are
locked by let’s say T1, we can construct a model A such that for instance:

Aaddr = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}
Aord=Aelem = {−∞, 3, 5, 9, 10, 17,+∞}

Athid = {T1,T2,�}
Acell = Aelem ×Aord ×Aaddr ×Athid

Amem = {m : Aaddr → Acell}
where

nullA = 0x00
errorA = 〈 −∞ , −∞ , null , � 〉

m(0x00) = 〈 −∞ , −∞ , null , � 〉
m(0x01) = 〈 −∞ , +∞ , null , � 〉
m(0x02) = 〈 3 , 3 , 0x03 , � 〉
m(0x03) = 〈 5 , 5 , 0x04 , T1 〉
m(0x04) = 〈 9 , 9 , 0x05 , T1 〉
m(0x05) = 〈 10 , 10 , 0x06 , � 〉
m(0x06) = 〈 17 , 17 , 0x07 , � 〉
m(0x07) = 〈 +∞ , +∞ , 0x00 , � 〉 ∗

41

We are interested in analyzing the satisfiability of quantifier-free first order formulas. Hence, if ϕ is a
formula, we first write it into its disjunctive normal form, let’s say ϕ1 ∨ · · · ∨ϕn. And then, we just verify
the satisfiability of any of the ϕi, where each ϕi is a conjunction of TLL3 literals. We now classify the
TLL3 literals into normalized and non-normalized ones. Non-normalized literals have the property that
they can be written in terms of normalized ones. We now define the set of normalized TLL3-literals.

Definition 4.1 (TLL3-normalized literals).
A TLL3-literal is normalized if it is a flat literal of the form:

e1 , e2 a1 , a2
a = null c = error
c = mkcell(e, a, t) c = rd(m, a) m2 = upd(m1, a, c)
s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3
p1 , p2 p = [a] p1 = rev(p2)
s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)
s = addr2set(m, a) p = getp(m, a1, a2)
t1 , t2 a = fstlock (m, p)

where e, e1 and e2 are elem-variables, a, a1 and a2 are addr-variables, c is a cell-variable, m, m1 and m2
are mem-variables, p, p1, p2 and p3 are path-variables, and t, t1 and t2 are thid-variables. †

The remaining literals that are part of TLL3 but not detailed in the previous definition, can be written
in terms of normalized literals considering the following equivalences:

t = c.lockid ↔ (∃eleme ∃addra) [c = mkcell (e, a, t)]
c1 = c2.lock (t) ↔ c2.data = c1.data ∧ c2.next = c1.next ∧ t = c1.lockid

c1 = c2.unlock ↔ c2.data = c1.data ∧ c2.next = c1.next ∧ � = c1.lockid

c1 ,cell c2 ↔ c1.data , c2.data ∨ c1.next , c2.next ∨ c1.lockid , c2.lockid

m1 ,mem m2 ↔ (∃addra) [rd(m1, a) , rd(m2, a)]
s1 , s2 ↔ (∃addra)

[
a ∈ (

s1 \ s2
) ∪ (

s2 \ s1
)]

s = ∅ ↔ s = s \ s

s3 = s1 ∩ s2 ↔ s3 = (s1 ∪ s2) \ ((s1 \ s2
) ∪ (

s2 \ s1
))

a ∈ s ↔ {a} ⊆ s

s1 ⊆ s2 ↔ s2 = s1 ∪ s2

p = ε ↔ append(p, p, p)
reach(m, a1, a2, p) ↔ a2 ∈ addr2set(m, a1) ∧ p = getp(m, a1, a2)

this means that we can rewrite such literals using the following table:
Flat: t = c.lockid
Normalized: c = mkcell (e, a, t)
Proviso: e and a are fresh variables.
Flat: c1 = c2.lock (t)
Normalized: c1 = mkcell (e, a, t) ∧ c2 = mkcell

(
e, a, t′

)
Proviso: e, a and t′ are fresh variables.
Flat: c1 = c2.lock (t)
Normalized: c1 = mkcell (e, a, t) ∧ c2 = mkcell

(
e, a, t′

)
Proviso: e, a and t′ are fresh variables.
Flat: c1 = c2.unlock
Normalized: c1 = mkcell (e, a,�) ∧ c2 = mkcell

(
e, a, t′

)
Proviso: e, a and t′ are fresh variables.

42 4. TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists

Flat: c1 , c2
Normalized: c1.data , c2.data ∨ c1.next , c2.nextc1.lockid , c2.lockid
Proviso: −
Flat: m1 , m2
Normalized: m[a] , m[a]
Proviso: a is fresh.
Flat: s1 , s2
Normalized: s12 = s1 \ s2 ∧ s21 = s2 \ s1 ∧ s3 = s12 ∪ s21 ∧ s = s3 ∪ {a} ∧ {a} ⊆ s
Proviso: s12, s21, s3, s and a are fresh.
Flat: s = ∅
Normalized: s = s \ s
Proviso: −
Flat: s3 = s1 ∩ s2
Normalized: s12 = s1\s2∧s21 = s2\s1∧su1 = s1∪s2∧su2 = s12∪s21 ∧s3 = su1 \su2

Proviso: s12, s21, su1 and su2 are fresh.
Flat: a ∈ s
Normalized: s = {a} ∪ s
Proviso: −
Flat: s1 ⊆ s2
Normalized: s2 = s1 ∪ s2
Proviso: −
Flat: p = ε
Normalized: append(p, p, p)
Proviso: -
Flat: reach(m, a1, a2, p)
Normalized: a2 ∈ addr2set(m, a1) ∧ p = getp(m, a1, a2)
Proviso: -

4.1 Decidability of TLL3

TLL [RZ06a] enjoys the finite model property. We now show that TLL3 also has the finite model property
with respect to domains elem, addr and thid. Hence, TLL3 is decidable because one can enumerate
ΣTLL3-structures up to a certain cardinality. Notice that a bound on the domain of these sorts it is enough
to get finite interpretations for the remaining sorts (cell, mem, path, set and settid) as the elements in the
domains of these latter sorts are constructed using the elements in the domains of elem, addr and thid.

Definition 4.2 (Finite Model Property).
Let Σ = (S , F, P) be a signature, S0 ⊆ S be a set of sorts, and T be a Σ-theory. T has the finite
model property with respect to S0 if for every T -satisfiable quantifier-free Σ-formula ϕ there exists a
T -interpretation A satisfying ϕ such that for each sort σ ∈ S0, Aσ is finite. †

Lemma 4.1:
Deciding the TLL3-satisfiability of a quantifier-free TLL3-formula is equivalent to verifying the TLL3-
satisfiability of the normalized TLL3-literals. ♠

Proof The proof is by cases on the shape of all possible TLL3-literals. Let ϕ be a quantifier-free TLL3
formula. As we are interested in the satisfiability problem, ϕ can be reduced to its disjunctive normal
form ϕ1 ∨ · · · ∨ ϕn, leading us to the problem of checking whether some ϕi is satisfiable. Each ϕi is a

4.1. Decidability of TLL3 43

conjunction of TLL3 normalized and non-normalized literals. Then, it just remains to see that if a model
satisfies a non-normalized literal, then it also satisfies its representation made by normalized literals.

For instance, let’s consider the non-normalized literal c1 = c2.lock(t). According to the table we
presented before, this literal can be written as a conjunction of normalized literals of the form c1 =

mkcell(e, a, t) ∧ c2 = mkcell(e, a, t′) where e, a and t′ are fresh variables. Let A be a model satisfying
c1 = c2.lock(t). Then, we show thatA � c1 = c2.lock(t) ↔ A � c1 = mkcell(e, a, t)∧c2 = mkcell(e, a, t′)

A � c1 = c2.lock(t) ↔
cA1 = cA2 .lockA(tA) ↔
cA1 = cA2 .lockA(tA) ∧ c2

A = 〈eA, aA, t′A〉 ↔
cA1 = 〈eA, aA, tA〉 ∧ c2

A = 〈eA, aA, t′A〉 ↔
cA1 = mkcellA(eA, aA, tA) ∧ cA2 = mkcellA(eA, aA, t′A) ↔

A � c1 = mkcell(e, a, t) ∧ c2 = mkcell(e, a, t′)

The remaining cases can be proved in a similar way. �

Consider an arbitrary TLL3-interpretation A satisfying a conjunction of normalized TLL3-literals Γ.
We show that if there are sets Aelem, Aaddr and Athid (these sets are the domains interpreted by A for
the sorts elem, addr and thid respectively) then there are finite sets Belem, Baddr and Bthid with bounded
cardinalities (the bound depending on Γ). Belem, Baddr and Bthid can in turn be used to obtain a finite
interpretation B satisfying Γ.

Before proceeding with the proof that TLL3 enjoys the finite model property, we define some auxiliary
functions. We start by defining the function first. Let X ⊆ X̃, m : X̃ → Z × X̃ × Y and a ∈ X. The
function first(m, a,X) is defined by

first(m, a,X) =


null if (∀r ≥ 1) [mr (a) .next < X]

ms (a) .next if (∃s ≥ 1)
[
ms (a) .next ∈ X∧

(∀r ≥ 1) (r < s→ mr (a) .next < X)
]

where m1(a).next stands for m(a).next and mn+1(a).next for m(mn(a).next).next when n > 1.
Basically, given a set of addresses X, function first chooses the next address in X that can be reached

from a given address following repeatedly the next pointer. It is easy to see, for example, that if
m(a).next ∈ X then first(m, a,X) = m(a).next. We will later filter out unnecessary intermediate nodes
and use first to bypass properly the removed nodes, preserving the important connectivity properties.

Lemma 4.2:
Let X ⊆ X̃, m1,m2 : X̃ → Z × X̃ × Y , i, j ∈ X, c ∈ Z × X × Y and i , j. Then:

(a) If m1(i).next ∈ X then first(m1, i,X) = m1(i).next

(b) If m1 = upd(m2, i, c) then first(m1, j,X) = first(m2, j,X) ♠

Proof (a) immediate.

(b) Let m1 = upd(m2, i, c) and assume first that mr
1(j).next < X, for all r ≥ 1. By induction it can be

shown that mr
1(j) = mr

2(j), for each r ≥ 1. It follows that first(m1, j,X) = j and first(m2, j,X) = j.

If instead ms
1(j).next ∈ X, for some s ≥ 1, assume without loss of generality that first(m1, j,X) =

ms
1(j).next. By induction, it is possible to show that mr

1(j) = mr
2(j), for each 1 ≤ r ≤ s. It follows

that first(m1, j,X) = ms
1(j).next = mb

2(j).next = first(m2, j,X). �

44 4. TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists

We also define the compress function which, given a path p and a set X of addresses, returns the path
obtained from p by removing all the addresses that do not belong to X.

compress([i1, . . . , in],X) =


ε if n = 0
[i1] ◦ compress ([i2, . . . , in] ,X) if n > 0 and i1 ∈ X

compress ([i2, . . . , in] ,X) otherwise

We conclude by defining the function diseq [RZ06a] that outputs a set of addresses accountable for
disequality of two given paths:

diseq([i1, . . . , in], [j1, . . . jm]) =



∅ if n = m = 0
{i1} if n > 0 and m = 0
{ j1} if n = 0 and m > 0
{i1, j1} if n,m > 0 and i1 , j1
diseq([i2, . . . , im], [j2, . . . , jm]) otherwise

and function common [RZ06a] that outputs an element common to two paths (an element that witnesses
that path2set(p) ∩ path2set(q) , ∅):

common([i1, . . . , in], p) =


∅ if n = 0
{i1} if n > 0 and i1 ∈ path2set(p)
common([i2, . . . , in], p) otherwise

Lemma 4.3 (Finite Model Property):
Let Γ be a conjunction of normalized TLL3-literals. Let e = |Velem (Γ)|, a = |Vaddr (Γ)|, m = |Vmem (Γ)|,
p = |Vpath (Γ)| and t = |Vthid (Γ)|. Then the following are equivalent:

1. Γ is TLL3-satisfiable;

2. Γ is true in a TLL3 interpretation B such that

|Baddr| ≤ a + 1 + m a + p2
+ p3

|Bthid| ≤ t + m |Baddr| + 1
|Belem| ≤ e + m |Baddr| ♠

Proof (2→ 1). Immediate.
(1→ 2). As TLL3 is an extension of TLL, some normalized literals are shared between both theories.

Hence, here we limit ourselves to prove the implication for the new TLL3-literals only. The proof for
normalized literals shared between TLL and TLL3 can be seen in [RZ06b].

Let nowA be a TLL3-interpretation satisfying Γ. We will useA to construct a finite TLL3-interpretation
B satisfying Γ.

4.1. Decidability of TLL3 45

Baddr = VAaddr ∪
{
nullA

}
∪{

mA(vA).nextA | m ∈ Vmem and v ∈ Vaddr

}
∪{

v ∈ diseq(pA, qA) | the literal p , q is in Γ
}

∪{
v ∈ common(p1

A, p2
A) | the literal ¬append(p1, p2, p3) is in Γ and

path2setA(p1
A) ∩ path2setA(p2

A) , ∅
}

∪{
v ∈ common(p1

A ◦ p2
A, p3

A) | the literal ¬append(p1, p2, p3) is in Γ and

path2setA(p1
A) ∩ path2setA(p2

A) = ∅
}

Bthid = VAthid ∪
{
�

}
∪

{
mA(v).lockidA | m ∈ Vmem and v ∈ X

}
Belem = VAelem ∪

{
mA(v).dataA | m ∈ Vmem and v ∈ X

}
and let

errorB = errorA

nullB = nullA

eB = eA for each e ∈ Velem

aB = aA for each a ∈ Vaddr

cB = cA for each c ∈ Vcell

tB = tA for each t ∈ Vthid

mB(v) =
(
mA(v).dataA, first(mA, v,Baddr),mA(v).lockidA

)
for each m ∈ Vmem, v ∈ Baddr

sB = sA ∩ Baddr for each s ∈ Vset

gB = gA ∩ Bthid for each g ∈ Vsettid

pB = compress(pA,Baddr) for each p ∈ Vpath

Clearly, by construction Baddr, Bthid and Belem satisfy the given cardinality constraints.
The proof that B satisfies all TLL-literals in Γ is not shown here since, as we said, many TLL3-literals

are shared with TLL. The proof for the shared literals can be found in [RZ06b]. Here we just limit
ourselves to the new literals defined in TLL3. Hence, we consider the following cases:

Literals of the form t1 , t2: Immediate.

Literals of the form c = mkcell(e, a, t): We know that

cB = cA

= mkcellA(e, a, t)
= 〈eA, aA, tA〉
= 〈eB, aB, tB〉
= mkcellB(e, a, t)

Literals of the form c = rd(m, a): In this case we have that

[
rd(m, a)

]B
= mB(aB)
= mB(aA)

=
(
mA(aA).dataA, first(mA, aA,Baddr),mA(aA).lockidA

)

46 4. TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists

=
(
mA(aA).dataA,mA(aA).nextA,mA(aA).lockidA

)
(Lemma 4.2(a))

= mA(aA)
= cA

= cB

Literals of the form m = upd(m̃, a, c): In this particular case we want to prove that mB(aB) = cB while
for any other v ∈ Baddr, such that v , aB, mB(v) = m̃B(v). Since mA(aA) = cA, then we have that
cB = mB(aB). Let now v , aB. Then,

mB(v) =
(
mA(v).dataA, first(mA, v,Baddr),mA(v).lockidA

)
=

(
m̃A(v).dataA, first(m̃A, v,Baddr), m̃A(v).lockidA

)
(Lemma 4.2(b))

= m̃B(v)

Literals of the form a = fstlock(m, p): First consider the case p = ε. Hence fstlockA(mA, εA) = nullA.
At the same time, we know that εB = compress(εA,Baddr) and so fstlockB(mB, εB) = nullB. Let’s
now consider the case in which p = [a1, . . . , an]. There are two possible scenarios to consider.

• If for all 1 ≤ k ≤ n, mA(aAk).lockidA = �, then we have that

fstlockA(mA, pA) = nullA

Notice that function compress returns a subset of the path it receives with the property
that all addresses in the returned path belong to the received path. Therefore, if we have
[ã1, . . . , ãm] = pB = compress(pA,Baddr), we can deduce that {ã1, . . . , ãm} ⊆ Baddr and hence
for all 1 ≤ j ≤ m, mB(ã j).lockidB = �. Then, we conclude that fstlockB(mB, pB) = nullB.

• If there is a 1 ≤ k ≤ n s.t., for all 1 ≤ j < k, mA(aAj).lockidA = � and mA(aAk).lockidA , �
then since by the construction of model B, we have that aB = aA. Therefore, we can say that
aB = aA = x ∈ Baddr. It then remains to verify whether

x = fstlockA(mA, pA) → x = fstlockB(mB, compress(pA,Baddr))

By definition of fstlock we have that x = aAk and by the construction of set Baddr, we know
that aAk ∈ Baddr. Let [ã1, . . . , ãi, . . . , ãm] = compress(pA,Baddr) such that ãi = aAk . It is
clear that ã j ∈ Baddr for all 1 ≤ j ≤ m. Then, as compress preserves the order and for all
1 ≤ j < k, mA(aAj).lockidA = �, we have that for all 1 ≤ j < i, mB(ã j).lockidB = �.
Besides mB(ãi).lockidB , �. Then:

fstlockB(mB, compress(pA,Baddr) = fstlockB(mB, [ã1, . . . , ãm])
= ãi

= aA

= x �

4.2. A Combination-based Decision Procedure for TLL3 47

4.2 A Combination-based Decision Procedure for TLL3

Lemma 4.3 justifies a brute force method to automatically check TLL3 satisfiability of normalized TLL3-
literals. However, such a method is not efficient in practice. To find a more efficient decision procedure we
decompose TLL3 into a combination of theories, and apply a many-sorted variant of the Nelson-Oppen
combination method [TZ04].

In [NO79], Nelson and Oppen show how a decision procedure for a theory built by many first-order
theories can be derived as a combination of the existing decision procedures for each of these theo-
ries. The main idea is to combine the decision procedures by means of equality sharing, guessing an
arrangement over the set of shared variables. This arrangement is used to build equalities and disequal-
ities between variables, to constrain simultaneously the inputs of decision procedures for each of the
component theories.

This method requires the theories to fulfill two conditions. First, each theory must have a decision
procedure. Second, all involved theories must be stable infinite and share sorts only.

Definition 4.3 (stable-infiniteness).
A Σ-theory T is stably infinite if for every T -satisfiable quantifier-free Σ-formula ϕ there exists a T -
interpretation A satisfying ϕ whose domain is infinite. †

As we said, TLL [RZ06a] is a union of theories. All theories involved in TLL are stably-infinite, so the
only missing theories are Tsettid and the one defining fstlock. Clearly Tsettid is stably infinite (following a
similar reasoning as for Tset). This leaves us only with the problem of finding a decision procedure for
Σreach and a way to define the functions and predicates in Σbridge. We begin by defining the theory TBase3

as follows:

TBase3 = Taddr ∪ Telem ∪ Tcell ∪ Tmem ∪ Tpath ∪ Tset ∪ Tsettid ∪ Tthid

where Tpath extends the theory of finite sequences of addresses with the auxiliary functions and predicates
depicted in Fig. 4.3. Moreover, we say that ΣBase3 is the signature obtained by the union of all the
signatures for each theory that is part of TBase3. The theory of finite sequences of addresses is defined by
Tfseq =

(
Σfseq,TGen

)
, where:

Σfseq =
(
{ addr, fseq },
{ nil : fseq,

cons : addr× fseq→ fseq,

hd : fseq→ addr,

tl : fseq→ fseq },
{ }

)
and TGen is the class of multi-sorted term-generated structures that satisfy the axioms of Tfseq. These
axioms are the standard for a theory of lists, such as distinctness, uniqueness and generation of sequences
using the constructors cons and nil, as well as acyclicity of sequences (see, for example [BM07]). Let
PATH be the set of axioms of Tfseq including all in Fig. 4.3. Using these definitions, we can formally
define Tpath =

(
Σpath,ETGen

)
where ETGen is

{
AΣpath |AΣpath � PATH and AΣfseq ∈ TGen

}
.

Next, we extend TBase3 defining the missing functions and predicates from Treach and Σbridge. For
addr2set and reach the definition is immediate from fseq2set and isreachpK respectively. For the other

48 4. TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists

functions and predicates we can use the following definitions:

nil = ε

cons(a, nil) = [a]
ispath(p)→ fseq2set(p) = path2set(p)

ispath(p1) ∧ ispath(p2) ∧
fseq2set(p1) ∩ fseq2set(p2) = ∅ ∧
app(p1, p2) = p3

 ↔ append(p1, p2, p3)

isreachp(m, a1, a2, p) → getp(m, a1, a2) = p

¬isreachp(m, a1, a2, p) → getp(m, a1, a2) = nil

ispath (p) ∧ fstmark (m, p, i) ↔ fstlock (m, p) = i

Let GAP be the set of axioms that define ε, [_], append, reach, path2set, addr2set and getp. We
define T̂LL3 = (ΣT̂LL3,

̂ETGen) where ΣT̂LL3 is ΣBase3 ∪ {getp, append, path2set, fstlock} and ̂ETGen is{
AΣT̂LL3 |AΣT̂LL3 � GAP and AΣpath ∈ ETGen

}
.

Using the definitions of GAP it is easy to prove that if Γ is a set of normalized TLL3-literals, then Γ

is TLL3-satisfiable iff Γ is T̂LL3-satisfiable. It is enough to carry out an analysis by cases. For all literals
belonging to both theories, this verification is straightforward. On the other hand, for literals of the form
involving path2set, append or getp for instance, we just need to apply the definitions introduced by GAP
and then apply the definitions of PATH.

This way, T̂LL3 can be used in place of TLL3 for satisfiability checking. We reduce T̂LL3 into TBase3

in two steps. First we do the unfolding of the definition of auxiliary functions defined in PATH and GAP,

app : fseq× fseq→ fseq
app(nil, l) = l

app(cons(a, l), l′) = cons(a, app(l, l′))

fseq2set : fseq→ set
fseq2set(nil) = ∅

fseq2set(cons(a, l)) = {a} ∪ fseq2set(l)

ispath : fseq
ispath(nil)

ispath(cons(a, nil))
{a} * fseq2set(l) ∧ ispath(l)→ ispath(cons(a, l))

last : fseq→ addr
last(cons(a, nil)) = a

l , nil→ last(cons(a, l)) = last(l)

isreach : mem× addr× addr
isreach(m, a, a)

m[a].next = a′ ∧ isreach(m, a′, b)→ isreach(m, a, b)

isreachp : mem× addr× addr× fseq
isreachp(m, a, a, nil)

m[a].next = a′ ∧ isreachp(m, a′, b, p)→ isreachp(m, a, b, cons(a, p))

fstmark : mem× fseq× addr
fstmark(m, nil, null)

p , nil ∧ p = cons(j, q) ∧ m[j].lockid , � → fstmark(m, p, j)
p , nil ∧ p = cons(j, q) ∧ m[j].lockid = � ∧ fstmark(m, q, i)→ fstmark(m, p, i)

Figure 4.3: Functions, predicates and axioms of Tpath

4.3. Verifying Some Properties Over Concurrent Lists 49

List : mem× addr× set
List(h, a, r) ↔ null ∈ addr2set(h, a) ∧ r = path2set(getp(h, a, null))

fa : mem× addr→ path

fa(h, n) =

ε if n = null

getp(h, h[n].next, null) if n , null

fb : mem× addr× addr× path
fb(h, n,m, p) ↔ (n = null ∧ p = ε) ∨(

n , null ∧ reach(h, n,m, p̃) ∧ m = null→ append(p, null, p̃)

∧ m , null→ append(p, [m], p̃)
)

LastMarked : mem× path→ addr
LastMarked(m, p) = fstlock(m, rev(p))

NoMarks : mem× path
NoMarks(m, p)↔ fstlock(m, p) = null

SomeMark : mem× path
SomeMark(m, p)↔ fstlock(m, p) , null

Figure 4.4: Auxiliary functions to reason about concurrent lists

getting rid of the extra functions, and obtaining a formula in TBase3. Second, as we have proved that TSLK

enjoys finite model property then it is always possible to enumerate the finitely many ground terms. This
means that we can always find a model with a finite number of elements that preserves satisfiability of a
conjunction of TSLK literals. Hence, by substituting all possible ground terms in the set of normalized
literals and symbolically executing the definitions of the symbols in PATH it is possible to reduce the
T̂LL3-satisfiability problem of normalized literals to the TBase3-satisfiability of quantifier free formulas,
setting a bound for the unfolding of recursive formulas. This way it is possible to obtain a decision
procedure for reachability, based on the finite model property of the theory.

All theories involved in TBase3 share only sorts symbols, are stably-infinite and for all of them there
is a decision procedure. Hence, the multi-sorted Nelson-Oppen combination method can be applied,
obtaining a decision procedure for TLL3.

We now define some auxiliary functions and predicates using TLL3, that aid in the reasoning about
concurrent linked-lists (see Fig. 4.4). For example, predicate List(h, a, r) expresses that in heap h, starting
from address a there is sequence of cells all of which form region r. Function fa, given a heap h and
an address n, returns the path that goes from the address pointed by the cell stored in n up to the end of
the list (i.e., a null pointer is found). Similarly, predicate fb holds when p is the path that connects the
node stored at address n with the one at address m. Notice that m is not considered as part of the path.
Function LastMarked(h, p), on the other hand, returns the address of the last locked node in path p on
memory h. All these functions can be used in verification conditions. Then, using the equivalences in
Fig. 4.4 the predicates are removed, generating a pure T̂LL3 formula whose satisfiability can be checked
with the procedure described above.

4.3 Verifying Some Properties Over Concurrent Lists

In this section we sketch the proofs for some properties over lock-coupling singly-linked lists. The reader
will notice that all literals involved in the formulas described from this point on belong to TLL3. This
way, the decision procedure presented in this chapter can be used to automatically verify them all.

Firstly, we prove that the thread owning the locks closest to the tail of the list, eventually terminates.
We have already introduced this property on Example 3.1. Finally, we present the idea behind the verifi-
cation of the property describing that no thread can overtake other thread that already owns some lock in
the list.

50 4. TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists

4.3.1 Termination of Concurrent Lock-Coupling Lists

In this section we show the proof of a simple liveness property of concurrent lock-coupling lists: termi-
nation of the leading thread. To aid in the verification of this property we annotate the code with ghost
fields and ghost updates. We use boxes to represent the annotations introduced in the code. We enrich
List objects introduced in Section 3.1 with a ghost field r of type region that keeps track of all the nodes
in the list:

class List {
Node list;
rgn r;

}

class Node {
Value val;
Node next;
Lock lock;

}

The algorithms for Insert and Remove are shown as Algorithms 4.1 and 4.2 respectively.
The predicate c.lockid = � denotes that the lock of list node c is not taken. The predicate c.lockid = k

establishes that the lock at list node c is owned by thread k. As shown, the code for Insert and Remove is
extended with ghost updates to maintain r.

Tk denotes thread k. We want to prove that if a thread has acquired a lock at node n and no other
thread holds a lock ahead of n, then thread k eventually terminates. The predicate at_Insert[k]

n means that
thread k is executing line n of program Insert. Similarly, at_Insert[k]

n1,...,nm
is a short for thread k is running

some of the lines n1, . . . , nm of program Insert. We use n..m to denote all correlative lines from n to m.
The instance of a local variable v in thread k is represented by v[k]. We define DisjList as an extension
of List enriching it with the property that new nodes created during insertion are all disjoint from each
other, including all nodes that are already part of the list:

DisjList(h, a, r) =̂ List(h, a, r) ∧
∀ j : TID . at_Insert[j]5,6 →

〈
aux[j]

〉
#r ∧

∀i, j : TID.i , j ∧ at_Insert[i]5,6 ∧ at_Insert[j]5,6 →
〈
aux[i]

〉
#
〈
aux[j]

〉
#r

We now define the following auxiliary predicate:

IsLast(k) =̂ DisjList(h, l.list, l.r) ∧
SomeMark

(
h, getp(h, l.list, null)

)
∧

LastMarked
(
h, getp(h, l.list, null)

)
= a ∧

h[a].lockid = k

Algorithm 4.1 Insertion for concurrent lock-coupling lists extended with ghost code
1: procedure Insert(Value e)
2: prev , curr := locate(e)
3: if curr .val 6= e then
4: aux := new Node(e)
5: aux .next := curr
6: prev .next := aux
7: result := true
8: else
9: result := false

10: end if
11: prev .unlock()
12: curr .unlock()
13: return result
14: end procedure

l.r := l.r ∪ {〈aux 〉}

4.3. Verifying Some Properties Over Concurrent Lists 51

Algorithm 4.2 Remove for concurrent lock-coupling lists extended with ghost code
1: procedure Remove(Value e)
2: prev , curr := locate(e)
3: if curr .val = e then
4: aux := curr .next
5: prev .next := aux
6: result := true
7: else
8: result := false
9: end if

10: prev .unlock()
11: curr .unlock()
12: return result
13: end procedure

l.r := l.r − {〈aux 〉}

Notice how the ghost variable r of type region is used in the List predicate to assert that new nodes
do not already belong to the list. The formula IsLast(k) identifies whether Tk is the thread owning the
last lock in the list (i.e., the closest node towards the end of the list). Using these predicates we define the
parametrized temporal formula we want to verify as:

ψ(k) =̂
(
at_Locate[k]

4..11 ∧ IsLast(k)→ IsLast(k) U at_Locate[k]
12

)
This temporal formula states that if thread k is running Locate and it owns the last locked node in the

list, then thread Tk will still own the last locked node until Tk reaches the last line of Locate. Reachability
of the last line of Locate implies termination of the invocation to the concurrent datatype because Locate
is the only program containing potentially blocking operations.

We proceed with the construction of a verification diagram that proves that the parallel execution of
all threads guarantees the satisfaction of formula ψ(k). Given N, we build the transition system S[N], in
which threads T1, . . . ,TN run in parallel the program MGC and show that S[N] � ψ(k). The verification
diagram is depicted in Fig. 4.5.

We use τ[k]
pn to denote the transition taken by thread k on program p at line n, and τ[N]

pn to describe he
set τ[j]

pn , for all j ∈ {1..N}.

{
τ
[k]
l6

}

{
τ
[k]
l4

}

{
τ
[k]
l5

} {
τ
[k]
l6,7,8,11

}

n6 : IsLast(k)

n1 : ¬IsLast(k)

n2 : IsLast(k) ∧ at l
[k]
4 ,5

n3 : IsLast(k) ∧ at l
[k]
6 ..9 ,11

{
τ
[k]
l9

} {
τ
[k]
l10

}

n4 : IsLast(k) ∧ at l
[k]
10

n5 : IsLast(k) ∧ at l
[k]
12

Figure 4.5: Verification diagram Ψ for ‖ j<N T j � ψ(k)

52 4. TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists

Dashed arrows in the diagram denote transitions that strictly decrement the ranking function δ. For-
mally, the verification diagram is defined by:

• N0 = {n1}

• F = {(P,R)}, with P = {(n3, n4), (n3, n5), (n5, n6), (n6, n1)}∪{(n1, n j)| j ∈ 2..6}∪{(n j, n j)| j ∈ 1..6}
and R = ∅

• δ(n, s) =


{

a | a ∈ dom(h)
}

n = n1, n2

path2set
(

fa(h,LastMarked(h, getp(h, prev[k], null)))
)

otherwise

• f (n) =



∅ if n = n1, n6

at_Locate[k]
4,5 if n = n2

at_Locate[k]
6..9,11 if n = n3

at_Locate[k]
10 if n = n4

at_Locate[k]
12 if n = n5

We can now describe the verification conditions:

initialization Trivial, since in the initial state l.list forms an empty list, and consequently ¬IsLast(k).

consecution We will show, for illustration purposes, transition τ
[j]
Locate10

on node n2 with j , k. The
verification condition is:



TLL3︷ ︸︸ ︷
IsLast(k)∧

Tthid︷︸︸︷
j , k ∧

at_l[k]
4,5 ∧ at_l[j]10∧

curr[j].lockid = �︸ ︷︷ ︸
TLL3


∧

TLL3︷ ︸︸ ︷
curr[j].lock(j) →



TLL3︷ ︸︸ ︷
IsLast(k′)∧at′_l[k

′]
4,5 ∧

at′_l[j
′]

11 ∧ pres(V − curr[j]) ∧
curr′[j′]

.lockid = j′︸ ︷︷ ︸
TLL3


where pres is the predicate denoting variable preservation. Note that all fragments of such verifica-
tion condition belong to theories for which we have already defined a decision procedure, including
propositional logic for the (finite) locations of the program counters.

acceptance The ranking function δ maps, at a given state, the set of list nodes accessible from the last
node with an owned lock. This set remains identical for all transitions except τ[k]

l5
and τ[k]

l10
, for

which the set decrements (in the inclusion order on sets). The decision procedure presented in this
chapter proves this automatically (using ⊂ operation and equality over sets of addresses).

fairness Only two conditions must be verified. First, all transitions labeling an edge are enabled since
the only potentially blocking operation is τ[k]

l10
and IsLast(k) implies that τ[k]

l10
is enabled. Second, for

all nodes and labeled edges, starting from a state that satisfies the predicate of the incoming node
satisfies the predicate of the outgoing node via taking the transition. Sequential progress of thread
k is guaranteed by fairness, since all idling transitions for thread k are in fact a diagram idiom to
represent the expansion of such nodes to a sequence of nodes with a single program position on
each node.

satisfaction L(Ψ) ⊆ L(ψ(k)) is automatically checkable via a finite LTL model-checking problem. In
this case, instead of proving that all accepting paths in the diagram are contained into the set of
sequences satisfying formula ψ(k), we show that the intersection with the negation of the formula
is empty. We use 〈v1, v2, v3〉 to represent 〈at_l[k]

4..11, at_l[k]
12 , IsLast(k)〉. In fact IsLast(k) should be

decomposed into all its atomic subformulas. However, for the sake of simplicity we assume that an

4.3. Verifying Some Properties Over Concurrent Lists 53

assignment to IsLast(k) represents all necessarily assignments to its atomic subformulas in order
to make IsLast(k) predicate true. Then, since

¬ψ(k) =
(
at_l[k]

4..11 ∧ IsLast(k) ∧
(
¬at_l[k]

12 W ¬IsLast(k)
))

we have that:

LP (¬ψ (k)) = 〈−,−,−〉∗〈t, f, t〉 (〈−, f,−〉ω ∪ 〈−, f,−〉∗〈−,−, f〉〈−,−,−〉ω)
while for our verification diagram we have(〈−,−, f〉+〈t, f, t〉∗〈f, t, t〉+〈−,−, t〉+)ω
Imagine we consider the sequence 〈−,−,−〉∗〈t, f, t〉〈−, f,−〉ω. Then, 〈t, f, t〉 should correspond
to 〈t, f, t〉∗. Then, it is impossible to match 〈−, f,−〉ω with any possible pattern in the accepting
paths of the diagram. On the other hand, if we consider the sequence 〈−, f,−〉∗〈−,−, f〉〈−,−,−〉ω,
notice that there is no possible way to match 〈−,−, f〉with the accepting paths of the diagram. This
way we have shown that both languages are disjoint.

4.3.2 No Thread Overtakes

In this section we sketch the proof that it is not possible in the presented implementation that, once a
thread has acquired a lock, being overtaken by other thread. To carry out the proof, we first extend the
code for concurrent lock-coupling singly-linked lists with two ghost variables: a global ghost variable
ticket and a local ghost variable myTicket. Then, we modify Locate to consider the new ghost vari-
ables. The extended version of the Locate program with the corresponding modification is depicted in
Algorithm 4.3.

Algorithm 4.3 Locate program for preventing overtake
1: procedure Locate(Value e)
2: prev := Head
3: prev .lock()
4: curr := prev .next
5: curr .lock()
6: while curr .val < e do
7: prev .unlock()
8: prev := curr
9: curr := curr .next

10: curr .lock()
11: end while
12: return (prev , curr)
13: end procedure

myTicket := ticket
ticket := ticket + 1

The idea is that every time a thread gets the first lock in the list, it also gets a ticket number. Tickets
are delivered by the data structure and they are strictly increasingly. This policy guarantees that no thread
gets a duplicated ticket and threads are ordered according to the order in which they acquired their first
lock. We want to assure that there is no overtake in the system. This means that all threads remain
ordered as they own a ticket. To express the formula that describes this condition we first declare the
ahead predicate defined over thread identifiers t1 and t2 and a memory configuration m:

ahead(t1, t2) =̂ haveLocks(t1, t2)→


fstlock(m, prev[t1]) , null ∧
fstlock(m, prev[t2]) , null ∧
fstlock(m, prev[t2]) ∈ addr2set(m, curr[t1])



54 4. TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists

where

haveLocks(t1, t2) = at_Locate[t1,t2]
4..12 ∨ at_Insert[t1,t2]

3..12 ∨ at_Remove[t1,t2]
3..11 ∨ at_Search[t1,t2]

3..9

In the formula above, we use at_p[t1,t2]
n to denote at_p[t1]

n ∧at_p[t2]
n . Roughly speaking, predicate ahead

holds when both threads have at least one locked node and the leftmost node locked by thread T2 (that is,
the nearest to the head of the list) is between the position of t1 and the tail of the list.

We can now use the ahead predicate to define the condition we want to verify. We use ϕ to represent
such formula:

ϕ =̂
(
myTicket[t1] > myTicket[t2]

)
→ 

(
ahead(t1, t2)→ 

(
ahead(t1, t2)

))
Once more, notice how ghost variables myTicket and ticket are used and are part of formula ϕ. Now,

ϕ is a system invariant; we just need to verify that:

• ϕ is satisfied by the system’s initial condition, and

• all transitions preserve ϕ.

It is easy to see that the initial condition satisfies ϕ. At such moment, no ticket number has been
assigned nor any thread has acquired any lock. Then, formula ϕ is trivially satisfied.

Now we analyze that every transition preserves ϕ. In fact, here we do not analyze all possible tran-
sitions, but we just focus on the possible offending ones. That is, transitions that get or release a lock,
or that modifies the position of the curr pointer. Notice that all these transitions can potentially modify
the validity of ϕ. All other transitions are not relevant as the modification they introduced cannot modify
the value of ϕ at all or they are simply trivially valid because of propositional reasoning on the program
location. Now, the transitions we analyze are:

• When a threads acquires its first lock. For an arbitrary thread t, this transition corresponds to
at_Locate[t]3 . This transition clearly satisfies ϕ′ because the value of ticket is strictly increasing.
This guarantees that for all other thread s with locks in the list, myTicket[t] > myTicket[s] and
ahead(t, s) hold, since fstlock(m, s) ∈ addr2set(m, prev[t]).

• When a thread gets a new lock. This modification is accomplished by the transitions at_Locate[t]5
and at_Locate[t]10. If some of these transitions are taken by thread t2 then ϕ is clearly preserved.
If the transition is taken by t1, the ticket numbering and order is preserved. Besides, t1 acquires
its new lock over a node where no other thread has a lock. Hence, once more we conclude that
fstlock(m, t2) ∈ addr2set(m, prev[t1]).

• When a thread releases its last lock. This happens when transitions at_Insert[t]12, at_Remove[t]11 or
at_Search[t]

9 are taken. Notice that in this case one of the thread is moving outside of the range set
by the haveLocks predicate. Hence,ahead(t1, t2) trivially holds and therefore ϕ does.

• When the position of a thread advances through the nodes in the lists. This progress corresponds
to transitions at_Locate[t]4 and at_Locate[t]9 . In this case ticket numbers are not modified nor any
lock is acquired or removed. Hence, ϕ clearly holds.

5
TSLK:
A Decision Procedure for
Concurrent Skiplists

In this chapter, we present a theory of skiplists with a decidable satisfiability problem, and show its ap-
plications to the verification of concurrent skiplist implementations. As already described in Section 3.2,
a skiplist is a data structure used to implement sets by maintaining several ordered singly-linked lists in
memory, with a performance comparable to balanced binary trees. We define a theory capable of ex-
pressing the memory layout of a skiplist and show a decision procedure for the satisfiability problem of
this theory. Concurrent lock-coupling skiplists introduced in Chapter 3, where every node contains a lock
at each possible level, reduce granularity of mutual exclusion sections.

We now proceed with the description of the theory TSLK. This theory is briefly described in [SS11].
TSLK is a decidable theory capable of reasoning about list reachability, locks, ordered lists, and sublists
of ordered lists. First, we show that TSLK enjoys a finite model property and thus it is decidable. Finally,
we show how to reduce the satisfiability problem of quantifier-free TSLK formulas to a combination of
theories for which a many-sorted version of Nelson-Oppen can be applied.

We build a decision procedure to reason about skiplist of height K combining different theories,
aiming to represent pointer data structures with a skiplist layout, masked regions and locks. We extend
the Theory of Concurrent Linked Lists (TLL3) presented in Chapter 4, a decidable theory that includes
reachability of concurrent list-like structures, in the following way:

• each node is equipped with a key field, used to reason about node’s order.

• the reasoning about single level lists is extended to all the K levels.

• we extend the theory of regions with masked regions.

• lists are extended to ordered lists and sub-paths of ordered lists.

Formally, the theory of skiplists of height K is defined as TSLK =
(
ΣTSLK ,TSLK

)
, where

ΣTSLK = ΣlevelK ∪ Σord ∪ Σthid ∪ Σcell ∪ Σmem ∪ Σreach ∪ Σset ∪ Σsettid ∪ Σmrgn ∪ Σaarr ∪ Σlarr ∪ Σbridge

Then, the signature of TSLK is shown in Fig. 5.1 and 5.2. TSLK is the class of ΣTSLK -structures
satisfying the conditions depicted in Fig. 5.3 and 5.4. The symbols of Σset and Σsettid follow their standard

55

56 5. TSLK: A Decision Procedure for Concurrent Skiplists

Signature: ΣlevelK
Sorts: levelK

Functions: 0,1, . . . , K-1 : levelK
Predicates: < : levelK × levelK
Signature: Σord

Sorts: ord
Functions: −∞, +∞ : ord

Predicates: � : ord× ord

Signature: Σthid

Sorts: thid
Functions: � : thid

Signature: Σcell

Sorts: cell, elem, ord, levelK, addr, thid
Functions: error : cell

mkcell : elem× ord× addrK × thidK → cell

_.data : cell→ elem

_.key : cell→ ord

.next [] : cell× levelK → addr

.lockid [] : cell× levelK → thid

.lock [] : cell× levelK → thid→ cell

.unlock [] : cell× levelK → cell

Signature: Σmem

Sorts: mem, addr, cell
Functions: null : addr

[] : mem× addr→ cell

upd : mem× addr× cell→ mem

Signature: Σreach

Sorts: mem, addr, levelK, path
Functions: ε : path

[_] : addr→ path

Predicates: append : path× path× path

reachK : mem× addr× addr× levelK × path

Signature: Σset

Sorts: addr, set
Functions: ∅ : set

{_} : addr→ set

∪, ∩, \ : set× set→ set

Predicates: ∈ : addr× set

⊆ : set× set

Figure 5.1: The signature of the TSLK theory - Part I

57

Signature: Σsettid

Sorts: thid, settid
Functions: ∅t : settid

{_}t : thid→ settid

∪t, ∩t, \t : settid× settid→ settid

Predicates: ∈t : thid× settid

⊆t : settid× settid

Signature: Σmrgn

Sorts: mrgn, addr, levelK
Functions: empmr : mrgn

〈_, _〉mr : addr× levelK → mrgn

∪mr, ∩mr, −mr : mrgn×mrgn→ mrgn

Predicates: ∈mr : addr× levelK ×mrgn

⊆mr : mrgn×mrgn

#mr : mrgn×mrgn

Signature: Σaarr

Sorts: aarr, thid, addr
Functions: _[_]a : aarr× thid→ addr

{← _}a : aarr× thid× addr→ aarr

Signature: Σlarr

Sorts: larr, thid, levelK
Functions: _[_]l : larr× thid→ levelK

{← _}l : larr× thid× levelK → larr

Signature: Σbridge

Sorts: mem, addr, levelK, set, path
Functions: path2set : path→ set

addr2setK : mem× addr× levelK → set

getpK : mem× addr× addr× levelK → path

fstlockK : mem× path× levelK → addr

Predicates: ordList : mem× path

Figure 5.2: The signature of the TSLK theory - Part II

58 5. TSLK: A Decision Procedure for Concurrent Skiplists

signature: Σcell

interpretation: • mkcellA(e, k,−→a ,−→t) = 〈e, k,−→a ,−→t 〉
• errorA.nextA = nullA

• 〈e, k,−→a ,−→t 〉.dataA = e
• 〈e, k,−→a ,−→t 〉.keyA = k
• 〈e, k,−→a ,−→t 〉.nextA[j] = a j

• 〈e, k,−→a ,−→t 〉.lockidA[j] = t j

• 〈e, k,−→a , ...t j−1, t j, t j+1...〉.lockA[j](t′) = 〈e, k,−→a , ...t j−1, t′, t j+1...〉
• 〈e, k,−→a , ...t j−1, t j, t j+1...〉.unlockA[j] = 〈e, k,−→a , ...t j−1,�, t j+1...〉

for each e ∈ Aelem, k ∈ Aord, t0, . . . , t j, t j+1, t j−1, t′ ∈ Athid, −→a ∈ AK
addr,−→t ∈ AK

thid and j ∈ AlevelK
signature: Σmem

interpretation: • m[a]A = m(a)
• updA(m, a, c) = ma 7→c

• mA(nullA) = errorA

for each m ∈ Amem, a ∈ Aaddr and c ∈ Acell

signature: Σreach

interpretation: • εA is the empty sequence
• [i]A is the sequence containing i ∈ Aaddr as the only element
• ([i1 .. in] , [j1 .. jm] , [i1 .. in, j1 .. jm]) ∈ appendA iff ik , jl
• (m, ainit, aend, l, p) ∈ reachK

A iff ainit = aend and p = ε, or there exist
addresses a1, . . . , an ∈ Aaddr such that:

(a) p = [a1 .. an] (c) m(ar).nextA[l] = ar+1, for r < n

(b) a1 = ainit (d) m(an).nextA[l] = aend

signature: Σmrgn

interpretation: • empAmr = ∅
• r ∪Amr s = r ∪ s
• (a, j) ∈Amr r ↔ (a, j) ∈ r
• 〈a, j〉Amr = {(a, j)}
• r ∩Amr s = r ∩ s
• r ⊆Amr s↔ r ⊆ s
• r −Amr s = r \ s
• r#Amrs↔ r ∩Amr s = empAmr

for each a ∈ Aaddr, j ∈ AlevelK and r, s ∈ Amrgn

signature: Σaarr

interpretation: • x[t]Aa = x(t)

• x{t← a}Aa = xnew, such that xnew(i) =

a if i = t

x(i) otherwise

for each x, xnew ∈ Aaarr, t ∈ Athid and a ∈ Aaddr

signature: Σlarr

interpretation: • z[t]Al = x(t)

• z{t← l}Al = znew, such that znew(i) =

l if i = t

z(i) otherwise

for each z, znew ∈ Alarr, t ∈ Athid and l ∈ AlevelK

Figure 5.3: Characterization of a TSLK-interpretation A

59

signature: Σbridge

interpretation: • path2setA(p) = {a1, . . . , an} for p = [a1, . . . , an] ∈ Apath

• addr2setKA(m, a, l) =
{
a′ ∈ Aaddr | ∃p ∈ Apath . (m, a, a′, l, p) ∈ reachK

}
• getpK

A(m, ainit, aend, l) =

p if (m, ainit, aend, l, p) ∈ reachK
A

ε otherwise
for each m ∈ Amem, p ∈ Apath, l ∈ AlevelK and ainit, aend ∈ Aaddr

• fstlockA (m, [a1 .. an], l) =


ak if there is k ≤ n such that

for all j < k,m[a j].lockid[l] = �
and m[ak].lockid[l] , �

null otherwise
• ordListA (m, p) iff

– p = ε, or
– p = [a], or
– p = [a1 .. an] with n ≥ 2 and m(ai).keyA � m(ai+1).keyA for all

1 ≤ i < n, for any m ∈ Amem

Figure 5.4: Characterization of a TSLK-interpretation A

interpretation over sets of addresses and thread identifiers respectively. Each sort σ in ΣTSLK is mapped
to a non-empty set Aσ such that:

(a) Aaddr and Aelem are discrete sets.

(b) Athid is a discrete set containing �.

(c) AlevelK is the finite collection 0, . . . ,K− 1.

(d) Aord is a total ordered set.

(e) Acell = Aelem ×Aord ×AK
addr ×AK

thid.

(f) Amem = AAaddr
cell .

(g) Apath is the set of all finite sequences of (pairwise) distinct elements of Aaddr.

(h) Aset is the power-set of Aaddr.

(i) Asettid is the power-set of Athid.

(j) Amrgn is the power-set of Aaddr ×AlevelK .

(k) Aaarr = AAthid
addr .

(l) Alarr = AAthid
levelK

.

Informally, sort addr represents addresses; elem the universe of elements that can be stored in the
skiplist; ord the ordered keys used to preserve a strict order in the skiplist; thid thread identifiers; levelK
the levels of a skiplist; cell models cells representing a node in a skiplist; mem models the heap, mapping
addresses to cells; path describes finite sequences of non-repeating addresses to model non-cyclic list
paths; set models sets of addresses – also known as regions –, while settid models sets of thread identi-
fiers and mrgn masked regions; aarr models arrays of addresses indexed by thread identifiers and finally
larr models arrays of skiplist levels indexed by thread identifiers.

ΣlevelK contains symbols for level identifiers 0, 1, . . . , K−1 and their conventional order. Σord contains
two special elements −∞ and ∞ for the lowest and highest values in the order �. Σthid only contains,

60 5. TSLK: A Decision Procedure for Concurrent Skiplists

besides = and , as for all the other theories, a special constant � to represent the absence of a thread
identifier. Σcell contains the constructors and selectors for building and inspecting cells, including error
for incorrect dereferences. Σmem is the signature for heaps, with the usual memory access and single
memory mutation functions. Σset and Σsettid are the signatures of theories of sets of addresses and thread
ids resp. Σmrgn is the signature of the theory of masked regions while Σaarr and Σlarr are the signatures
for the theory of arrays over addresses and skiplist levels respectively, indexed in both cases by thread
identifiers. The signature Σreach contains predicates to check reachability of address using paths at differ-
ent levels, while Σbridge contains auxiliary functions and predicates to manipulate and inspect paths and
locks.

Example 5.1
Consider the skiplist shown in Fig. 3.3 in Section 3.2. For that particular list and assuming that thread id
variable j is assigned to value T1, we can construct a model A such that for instance:

Aaddr = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08}
Aord = Aelem = {−∞, 2, 8, 11, 14, 16, 20,+∞}

Athid = {T1,T2,�}
AlevelK = {0, 1, 2, 3}
Acell = Aelem ×Aord ×A4

addr ×A4
thid

Amem = {m : Aaddr → Acell}

where

nullA = 0x00
errorA = 〈 −∞ , −∞ , null , null , null , null , � , � , � , � 〉

m(0x00) = 〈 −∞ , −∞ , null , null , null , null , � , � , � , � 〉
m(0x01) = 〈 −∞ , −∞ , 0x02 , 0x02 , 0x03 , 0x08 , � , � , � , � 〉
m(0x02) = 〈 2 , 2 , 0x03 , 0x03 , null , null , � , � , � , � 〉
m(0x03) = 〈 8 , 8 , 0x04 , 0x05 , 0x06 , null , � , T1 , T1 , � 〉
m(0x04) = 〈 11 , 11 , 0x05 , null , null , null , T1 , � , � , � 〉
m(0x05) = 〈 14 , 14 , 0x06 , 0x06 , null , null , T1 , T1 , � , � 〉
m(0x06) = 〈 16 , 16 , 0x07 , 0x08 , 0x08 , null , � , � , T1 , � 〉
m(0x07) = 〈 20 , 20 , 0x08 , null , null , null , � , � , � , � 〉
m(0x08) = 〈 +∞ , +∞ , null , null , null , null , � , � , � , � 〉

and where for instance the masked region depicted in the figure is described by the set

{(0x03, 1), (0x03, 2), (0x04, 0), (0x05, 0), (0x05, 1), (0x06, 2)} ∗

Once more, we are interested in analyzing the satisfiability of quantifier-free first order formulas.
Hence, if ϕ is a formula, we first proceed to write it into its disjunctive normal form, let’s say ϕ1∨· · ·∨ϕn.
Then, we just verify the satisfiability of any of the ϕi, where each ϕi is a conjunction of TSLK literals. We
now classify the TSLK literals into normalized and non-normalized ones. Non-normalized literals have
the property that they can be written in terms of normalized ones. We now define the set of normalized
TSLK-literals.

61

Definition 5.1 (TSLK-normalized literals).
A TSLK-literal is normalized if it is a flat literal of the form:

e1 , e2 a1 , a2 l1 , l2
a = null c = error c = rd(m, a)
k1 , k2 k1 � k2 m2 = upd(m1, a, c)
c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1) l1 < l2
s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3
g = {t}t g1 = g2 ∪t g3 g1 = g2 \t g3
r = 〈a, l〉mr r1 = r2 ∪mr r3 r1 = r2 −mr r3
a = x[t]a xnew = x{t← a}a
l = z[t]l znew = z{t← l}l
p1 , p2 p = [a] p1 = rev(p2)
s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)
s = addr2setK(m, a, l) p = getpK(m, a1, a2, l)
t1 , t2 a = fstlock (m, p, l) ordList(m, p)

where e, e1 and e2 are elem-variables; a, a0, a1, a2, . . . , aK−1 are addr-variables; c is a cell-variable; m,
m1 and m2 are mem-variables; p, p1, p2 and p3 are path-variables; s, s1, s2 and s3 are set-variables;
g, g1, g2 and g3 are settid-variables; r, r1, r2 and r3 are mrgn-variables; x and xnew are aarr-variables;
z and znew are Σlarr-variables; k, k1 and k2 are ord-variables; l, l1 and l2 are levelK-variables and t, t0, t1,
t2, . . . , tK−1 are thid-variables. †

The remaining literals can be rewritten from the normalized ones using the following equivalences:

e = c.data ↔ (∃ordk ∃addra0, . . . , aK−1 ∃thidt0, . . . , tK−1
)[

c = mkcell
(
e, k, a0, . . . , aK−1, t0, . . . , tK−1

)]
k = c.key ↔ (∃eleme ∃addra0, . . . , aK−1 ∃thidt0, . . . , tK−1

)[
c = mkcell

(
e, k, a0, . . . , aK−1, t0, . . . , tK−1

)]
a = c.next[l] ↔ (∃eleme ∃ordk ∃addra0, . . . , al−1, al+1, . . . , aK−1 ∃thidt0, . . . , tK−1

)[
c = mkcell

(
e, k, a0, . . . , al−1, a, al+1, . . . , aK−1, t0, . . . , tK−1

)]
t = c.lockid[l] ↔ (∃eleme ∃ordk ∃addra0, . . . , aK−1 ∃thidt0, . . . , tl−1, tl+1, . . . , tK−1

)[
c = mkcell

(
e, k, a0, . . . , aK−1, t0, . . . , tl−1, t, tl+1, . . . , tK−1

)]
c1 = c2.lock[l](t) ↔ c2.data = c1.data ∧ c2.key = c1.key ∧

c2.next[0] = c1.next[0] ∧ · · · ∧ c2.next[K− 1] = c1.next[K− 1] ∧
c2.lockid[0] = c1.lockid[0] ∧ · · · ∧ c2.lockid[l− 1] = c1.lockid[l− 1] ∧
c2.lockid[l + 1] = c1.lockid[l + 1] ∧ · · · ∧ c2.lockid[K− 1] = c1.lockid[K− 1] ∧
t = c1.lockid[l]

c1 = c2.unlock(l) ↔ c2.data = c1.data ∧ c2.key = c1.key ∧
c2.next[0] = c1.next[0] ∧ · · · ∧ c2.next[K− 1] = c1.next[K− 1] ∧
c2.lockid[0] = c1.lockid[0] ∧ · · · ∧ c2.lockid[l− 1] = c1.lockid[l− 1] ∧
c2.lockid[l + 1] = c1.lockid[l + 1] ∧ · · · ∧ c2.lockid[K− 1] = c1.lockid[K− 1] ∧
� = c1.lockid[l]

c1 ,cell c2 ↔ c1.data , c2.data ∨ c1.key , c2.key ∨
c1.next[0] , c2.next[0] ∨ . . . ∨ c1.next[K− 1] , c2.next[K− 1] ∨
c1.lockid[0] , c2.lockid[0] ∨ · · · ∨ c1.lockid[K− 1] , c2.lockid[K− 1]

m1 ,mem m2 ↔ (∃addra) [rd(m1, a) , rd(m2, a)]

62 5. TSLK: A Decision Procedure for Concurrent Skiplists

s1 , s2 ↔ (∃addra)
[
a ∈ (

s1 \ s2
) ∪ (

s2 \ s1
)]

s = ∅ ↔ s = s \ s

s3 = s1 ∩ s2 ↔ s3 = (s1 ∪ s2) \ ((s1 \ s2
) ∪ (

s2 \ s1
))

a ∈ s ↔ {a} ⊆ s

s1 ⊆ s2 ↔ s2 = s1 ∪ s2

g1 ,settid g2 ↔ (∃thidt)
[
t ∈ (

g1 \t g2
) ∪t (g2 \t g1

)]
g = ∅t ↔ g = g \t g

g3 = g1 ∩t g2 ↔ g3 = (g1 ∪t g2) \t
((

g1 \t g2
) ∪t (g2 \t g1

))
t ∈t g ↔ {t}t ⊆t g

g1 ⊆t g2 ↔ g2 = g1 ∪t g2

r1 ,settid r2 ↔ (∃addra ∃levelK l
)

[(a, l) ∈ (r1 −mr r2) ∪mr (r2 −mr r1)]
r = empmr ↔ r = r −mr r

r3 = r1 ∩mr r2 ↔ r3 = (r1 ∪mr r2)−mr ((r1 −mr r2) ∪mr (r2 −mr r1))
(a, l) ∈mr r ↔ 〈a, l〉mr ⊆mr r

r1 ⊆mr r2 ↔ r2 = r1 ∪mr r2

r1#mrr2 ↔ empmr = (r1 ∪mr r2)−mr ((r1 −mr r2) ∪mr (r2 −mr r1))
p = ε ↔ append(p, p, p)
reachK(m, a1, a2, l, p) ↔ a2 ∈ addr2setK(m, a1, l) ∧ p = getpK(m, a1, a2, l)

This means that we can rewrite such literals using:

Flat: e = c.data
Normalized: c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1)
Proviso: k, a0, . . . , aK−1, t0, . . . , tK−1 are fresh.
Flat: k = c.key
Normalized: c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1)
Proviso: e, a0, . . . , aK−1, t0, . . . , tK−1 are fresh.
Flat: a = c.next[l]
Normalized: c = mkcell(e, k, a0, . . . , al−1, a, al+1, . . . , aK−1, t0, . . . , tK−1)
Proviso: e, k, a0, . . . , al−1, al+1, aK−1, t0, . . . , tK−1 are fresh.
Flat: t = c.lockid[l]
Normalized: c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1, t, tl+1, . . . , tK−1)
Proviso: e, k, a0, . . . , aK−1, t0, . . . , tl−1, tl+1, . . . , tK−1 are fresh.
Flat: c1 = c2.lock[l](t)
Normalized: c1 = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1, t, tl+1, . . . , tK−1) ∧

c2 = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1, t̃, tl+1, . . . , tK−1)
Proviso: e, k, a0, . . . , aK−1, t0, . . . , tl−1, t̃, tl+1, . . . , tK−1 are fresh.
Flat: c1 = c2.unlock[l]
Normalized: c1 = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1,�, tl+1, . . . , tK−1) ∧

c2 = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tl−1, t̃, tl+1, . . . , tK−1)
Proviso: e, k, a0, . . . , aK−1, t0, . . . , tl−1, t̃, tl+1, . . . , tK−1 are fresh.
Flat: c1 , c2
Normalized: c1.data , c2.data ∨ c1.key , c2.key ∨

c1.next[0] , c2.next[0] ∨ · · · ∨ c1.next[K− 1] , c2.next[K− 1] ∨
c1.lockid[0] , c2.lockid[0]∨ · · · ∨ c1.lockid[K− 1] , c2.lockid[K− 1]

Proviso: -

63

Flat: m1 , m2
Normalized: m[a] , m[a]
Proviso: a is fresh.
Flat: s1 , s2
Normalized: s12 = s1 \ s2 ∧ s21 = s2 \ s1 ∧ s3 = s12 ∪ s21 ∧ s = s3 ∪ {a} ∧ {a} ⊆ s
Proviso: s12, s21, s3, s and a are fresh.
Flat: s = ∅
Normalized: s = s \ s
Proviso: -
Flat: s3 = s1 ∩ s2
Normalized: s12 = s1 \ s2 ∧ s21 = s2 \ s1 ∧ su1 = s1 ∪ s2 ∧ su2 = s12 ∪ s21 ∧

s3 = su1 \ su2

Proviso: s12, s21, su1 and su2 are fresh.
Flat: a ∈ s
Normalized: s = {a} ∪ s
Proviso: -
Flat: s1 ⊆ s2
Normalized: s2 = s1 ∪ s2
Proviso: -
Flat: g1 , g2
Normalized: g12 = g1\tg2∧g21 = g2\tg1∧g3 = g12∪tg21∧g = g3∪t{t}∧{t} ⊆t g
Proviso: g12, g21, g3, g and t are fresh.
Flat: g = ∅t
Normalized: g = g \t g
Proviso: -
Flat: g3 = g1 ∩t g2
Normalized: g12 = g1 \t g2 ∧ g21 = g2 \t g1 ∧ gu1 = g1 ∪t g2 ∧ gu2 = g12 ∪t g21 ∧

g3 = gu1 \t gu2

Proviso: g12, g21, gu1 and gu2 are fresh.
Flat: t ∈t g
Normalized: g = {t} ∪t g
Proviso: -
Flat: g1 ⊆t g2
Normalized: g2 = g1 ∪t g2
Proviso: -
Flat: r1 , r2
Normalized: r12 = r1 −mr r2 ∧ r21 = r2 −mr r1 ∧ r3 = r12 ∪mr r21 ∧

r = r3 ∪mr {(a, l)} ∧ {(a, l)} ⊆mr r
Proviso: r12, r21, r3, r, a and l are fresh.
Flat: r = empmr
Normalized: r = r −mr r
Proviso: -
Flat: r3 = r1 ∩mr r2
Normalized: r12 = r1 −mr r2 ∧ r21 = r2 −mr r1 ∧ ru1 = r1 ∪mr r2 ∧

ru2 = r12 ∪mr r21 ∧ r3 = ru1 −mr ru2

Proviso: r12, r21, ru1 and ru2 are fresh.
Flat: (a, l) ∈mr r
Normalized: r = {(a, l)} ∪mr r
Proviso: -
Flat: r1 ⊆mr r2
Normalized: r2 = r1 ∪mr r2
Proviso: -

64 5. TSLK: A Decision Procedure for Concurrent Skiplists

Flat: r1#mrr2
Normalized: r12 = r1 −mr r2 ∧ r21 = r2 −mr r1 ∧ ru1 = r1 ∪mr r2 ∧

ru2 = r12 ∪mr r21 ∧ r3 = ru1 −mr ru2 ∧ r3 = r3 −mr r3
Proviso: r12, r21, ru1 , ru2 and r3 are fresh.
Flat: p = ε
Normalized: append(p, p, p)
Proviso: -
Flat: reachK(m, a1, a2, l, p)
Normalized: a2 ∈ addr2setK(m, a1, l) ∧ p = getpK(m, a1, a2, l)
Proviso: -

5.1 Decidability of TSLK

We show that TSLK is decidable by proving that it enjoys the finite model property with respect to its
sorts, and exhibiting upper bounds for the sizes of the domains of a small interpretation of a satisfiable
formula.

Definition 5.2 (Finite Model Property).
Let Σ be a signature, S0 ⊆ S be a set of sorts, and T be a Σ-theory. T has the finite model property
with respect to S0 if for every T -satisfiable quantifier-free Σ-formula ϕ there exists a T -interpretation A
satisfying ϕ such that for each sort σ ∈ S0, Aσ is finite. †

The fact that TSLK has the finite model property with respect to domains elem, addr, ord, levelK
and thid, implies that TSLK is decidable by enumerating all possible ΣTSLK -structures up to a certain
cardinality. Notice that a bound on the domain of these sorts it is enough to get finite interpretations for
the remaining sorts (cell, mem, path, set, settid, mrgn, aarr and larr) as the elements in the domains of
these latter sorts are constructed using the elements in the domains of elem, addr, ord, levelK and thid.

Lemma 5.1:
Deciding the TSLK-satisfiability of a quantifier-free TSLK-formula is equivalent to verifying the TSLK-
satisfiability of the normalized TSLK-literals. ♠

Proof First, transform a formula in disjunctive normal form. Then each conjunct can be normalized
introducing auxiliary fresh variables when necessary. For instance, consider the non-normalized literal
c1 = c2.lock[l](t). According to the table we presented before, this literal can be written as a conjunction
of normalized literals of the form

c1 = mkcell(e, k,−→a , t0, . . . , tl−1, t, tl+1, . . . , tK−1) ∧ c2 = mkcell(e, k,−→a , t0, . . . , tK−1)

where e, k, −→a = a0 . . . aK−1, t0, . . . , tK−1 and t are fresh variables. Let A be a model satisfying the literal
c1 = c2.lock[l](t). Then, we show that

A � c1 = c2.lock[l](t)

iff

A � c1 = mkcell(e, k,−→a , t0, . . . , tl−1, t, tl+1, . . . , tK−1) ∧ c2 = mkcell(e, k,−→a , t0, . . . , tK−1)

5.1. Decidability of TSLK 65

The proof is as follows:

A � c1 = c2.lock[l](t) ↔
cA1 = cA2 .lockA[lA](tA) ↔
cA1 = cA2 .lockA[lA](tA) ∧ c2

A = 〈eA, kA,−→a A, tA0 , . . . , tAK−1〉 ↔
cA1 = 〈eA, kA,−→a A, tA0 , . . . , tAl−1, t

A, tAl+1, . . . , t
A
K−1〉 ∧

c2
A = 〈eA, kA,−→a A, tA0 , . . . , tAK−1〉 ↔

cA1 = mkcellA(eA, kA,−→a A, tA0 , . . . , tAl−1, t
A, tAl+1, . . . , t

A
K−1) ∧

cA2 = mkcellA(eA, kA,−→a A, tA0 , . . . , tAK−1) ↔
A � c1 = mkcell(e, k,−→a , t0, . . . , tl−1, t, tl+1, . . . , tK−1) ∧

c2 = mkcell(e, k,−→a , t0, . . . , tK−1)

The remaining cases can be proved in a similar way. �

The phase of normalizing a formula is commonly known [RRZ05] as the “variable abstraction phase”.
Note that each normalized literal belongs to just one of the theories that are part of TSLK.

Consider an arbitrary TSLK-interpretation A satisfying a conjunction of normalized TSLK-literals Γ.
We show that if A consists of domains Aelem, Aaddr, Athid, AlevelK and Aord then there are finite sets
Belem, Baddr, Bthid, BlevelK and Bord with bounded cardinalities, where the finite bound on the sizes can be
computed from Γ. Such sets can in turn be used to obtain a finite interpretation B satisfying Γ, since all
the other sorts are bounded by the sizes of these sets.

Before proving that TSLK enjoys the finite model property, we define some auxiliary functions. We
start by defining the function

firstK : mem× addr× levelK × set→ addr

Let Baddr ⊆ Aaddr, m : Aaddr → Belem × Bord ×AK
addr × BK

thid, a ∈ Baddr and l ∈ BlevelK . The function
firstK(m, a, l,Baddr) is defined by

firstK(m, a, l,Baddr) =


null if for all r ≥ 1 mr(a).next(l) < Baddr

ms(a).next(l) if for some s ≥ 1 ms(a).next(l) ∈ Baddr,

and for all r < s mr(a).next(l) < Baddr

where

• m1(a).next(l) stands for m(a).next(l), and

• mn+1(a).next(l) stands for m(mn(a).next(l)).next(l) when n > 0.

Basically, given the original modelA and a subset of addresses Baddr ⊆ Aaddr, function firstK chooses
the next address in Baddr that can be reached from a given address following repeatedly the next(l) pointer.
It is easy to see, for example, that if m(a).next(l) ∈ Baddr then firstK(m, a, l,Baddr) = m(a).next(l). We
will later filter out unnecessary intermediate nodes and use firstK to bypass properly the removed nodes,
preserving the important connectivity properties.

Lemma 5.2:
Let Baddr ⊆ Aaddr, m : Aaddr → Belem × Bord × AK

addr × BK
thid, a ∈ Baddr and l ∈ BlevelK . Then, if

m(a).next(l) ∈ Baddr, we have that firstK(m, a, l,Baddr) = m(a).next(l). ♠

66 5. TSLK: A Decision Procedure for Concurrent Skiplists

Proof Immediate from the definition of firstK. �

Secondly, the function unordered that given a memory m and a path p, returns a set containing two
addresses that witness the failure to preserve the key order of elements in p:

unordered(m, [i1, . . . , in]) =


∅ if n = 0 or n = 1
{i1, i2} if m(i2).key � m(i1).key and

m(i2).key , m(i1).key

unordered(m, [i2, . . . , in]) otherwise

If two such addresses exist, unordered returns the first two consecutive addresses whose keys violate
the order.

Lemma 5.3:
Let p be a path such that p = [a1, . . . , an] with n ≥ 2 and let m be a memory. If it exists ai, with 1 ≤ i < n,
such that m(ai+1).key � m(ai).key and m(ai+1).key , m(ai).key, then unordered(m, p) , ∅ ♠

Proof By induction. Let’s consider n = 2 and let p = [a1, a2] such that m(a2).key � m(a1).key and
m(a2).key , m(a1).key. Then, by definition of unordered, we have that unordered(m, p) = {a1, a2} , ∅.

Now assume n > 2 and let p = [a1, . . . , an]. If m(a2).key � m(a1).key and m(a2).key , m(a1).key,
then we have that unordered(m, p) = {a1, a2} , ∅. On the other hand, if m(a1).key � m(a2).key, we
still know that there is ai, with 2 ≤ i < n, s.t., m(ai+1).key � m(ai).key and m(ai+1).key , m(ai).key.
Therefore, by induction we have that unordered(m, [a2, . . . , an]) , ∅ and by definition of unordered,
unordered(m, p) = unordered(m, [a2, . . . , an]) , ∅. �

Finally, we define the function knownTID that given a thread identifier and a set of threads, returns
the same thread id if it belongs to the given set. Otherwise, it returns �:

knownTID(t,T) =

 t if t ∈ T

� otherwise

In this section, we also make use of the functions compress, diseq and common defined in Section 4.1.
We now show that given a conjunction of TSLK literals, if there exists a model satisfying such formula,
then it is possible to construct a new model with a finite number of elements satisfying the same formula.
This property is described in the following Lemma.

Lemma 5.4 (Finite Model Property):
Let Γ be a conjunction of normalized TSLK-literals. Let e = |Velem (Γ)|, a = |Vaddr (Γ)|, m = |Vmem (Γ)|,
p = |Vpath (Γ)|, t = |Vthid (Γ)|, o = |Vord (Γ)| and x = |Vaarr (Γ)|. Then the following are equivalent:

1. Γ is TSLK-satisfiable;
2. Γ is true in a TSLK interpretation B such that

|BlevelK | ≤ K

|Bthid| ≤ t + 1 + K m a

|Baddr| ≤ a + 1 + K m a + p2
+ p3

+ 2 m p + x |Bthid|
|Belem| ≤ e + m |Baddr|
|Bord| ≤ o + m |Baddr| ♠

5.1. Decidability of TSLK 67

Proof (2→ 1) is immediate.
(1→ 2). We prove this implication only for the new TSLK-literals since the ones shared with theory

TLL3 have already been proved in Lemma 4.3.
Bearing in mind the auxiliary functions we have defined, let A be a TSLK-interpretation satisfying a

set of normalized TSLK-literals Γ. We use A to construct a finite TSLK-interpretation B that satisfies Γ.

BlevelK = AlevelK = [0 . . .K − 1]

Bthid = VAthid ∪
{
�

}
∪

{
mA(aA).lockidA(l) | m ∈ Vmem, a ∈ Vaddr and l ∈ BlevelK

}
Baddr = VAaddr ∪

{
nullA

}
∪{

mA(aA).nextA(l) | m ∈ Vmem, a ∈ Vaddr and l ∈ BlevelK

}
∪{

v ∈ diseq(pA, qA) | the literal p , q is in Γ
}

∪{
v ∈ common(p1

A, p2
A) | the literal ¬append(p1, p2, p3) is in Γ and

path2setA(p1
A) ∩ path2setA(p2

A) , ∅
}

∪{
v ∈ common(p1

A ◦ p2
A, p3

A) | the literal ¬append(p1, p2, p3) is in Γ and

path2setA(p1
A) ∩ path2setA(p2

A) = ∅
}
∪{

v ∈ unordered(mA, pA) | ¬ordList(m, p) is in Γ
}

∪{
xA(i) | x ∈ Vaarr and i ∈ Bthid

}
Belem = VAelem ∪

{
mA(v).dataA | m ∈ Vmem and v ∈ Baddr

}
Bord = VAord ∪

{
mA(v).keyA | m ∈ Vmem and v ∈ Baddr

}
For each sort σ, VAσ denotes the set of values obtained by the interpretation of all variables of type σ

appearing in Γ. Notice that as a finite number of variables can appear in Γ, VAσ is also a finite set.
The domains described above satisfy the cardinality constrains expressed in the statement of the

theorem. The interpretations of the symbols are:

errorB = errorA

nullB = nullA

eB = eA for each e ∈ Velem

aB = aA for each a ∈ Vaddr

cB = cA for each c ∈ Vcell

tB = tA for each t ∈ Vthid

kB = kA for each k ∈ Vord

lB = lA for each l ∈ VlevelK

mB(v) =
(

mA(v).dataA,mA(v).keyA, for each m ∈ Vmem

firstK(mA, v, 0,Baddr), . . . , firstK(mA, v,K− 1,Baddr), and v ∈ Baddr

knownTID(mA(v).lockidA(0),Bthid),
. . . ,

knownTID(mA(v).lockidA(K− 1),Bthid)
)

sB = sA ∩ Baddr for each s ∈ Vset

gB = gA ∩ Bthid for each g ∈ Vsettid

rB = rA ∩ (Baddr × BlevelK) for each r ∈ Vmrgn

xB(i) = xA(i) for each x ∈ Vaarr, i ∈ Bthid

zB(i) = zA(i) for each z ∈ Vlarr, i ∈ Bthid

pB = compress(pA,Baddr) for each p ∈ Vpath

68 5. TSLK: A Decision Procedure for Concurrent Skiplists

Essentially, all variables and constants in B are interpreted as inA except that next pointers use firstK
to point to the next reachable element that has been preserved in Baddr, and paths filter out all elements
except those in Baddr. It can be routinely checked that B is an interpretation of Γ. So it remains to be
seen that B satisfies all literals in Γ assuming thatA does, concluding that B is indeed a model of Γ. This
check is performed by cases. The proof that B satisfies all TSLK-literals in Γ is not shown here. We just
focus on the new functions and predicates that are not part of TLL. The proof for literals of TLL can be
found in [RZ06a] and for TLL3 in Chapter 4. For TSLK-literals we must consider the following cases:

Literals of the form l1 , l2, k1 , k2, l1 < l2 and k1 � k2: Immediate.

Literals of the form c = mkcell(e, k, a0, . . . , aK−1, t0, . . . , tK−1):

cB = cA

= mkcellA(e, k, a0, . . . , aK−1, t0, . . . , tK−1)
= 〈eA, kA, aA0 , . . . , aAK−1, t

A
0 , . . . , t

A
K−1〉

= 〈eB, kB, aB0 , . . . , aBK−1, t
B
0 , . . . , t

B
K−1〉

= mkcellB(e, k, a0, . . . , aK−1, t0, . . . , tK−1)

Literals of the form c = rd(m, a):

[
rd(m, a)

]B
= mB (aB)
= mB (aA)

=

(
mA (aA).dataA, mA (aA).keyA,

firstK (mA, aA, 0, Baddr), . . . , firstK (mA, aA, K-1, Baddr),

knownTID (mA (v).lockidA (0), Bthid), . . . , knownTID (mA (v).lockidA (K-1),Bthid)
)

=

(
mA(aA).dataA,mA(aA).keyA,

mA(aA).nextA(0), . . . ,mA(aA).nextA(K− 1),

mA(aA).lockidA[0], . . . ,mA(aA).lockidA[K− 1]
)

(Lemma 5.2)

= mA(aA)
= cA

= cB

Literals of the form g = {t}t:

gB = gA ∩ Bthid = {tA}t ∩ Bthid = {tB}t ∩ Bthid = {tB}t

Literals of the form g1 = g2 ∪t g3:

gB1 = gA1 ∩ Bthid

=
(
gA2 ∪t gA3

)
∩ Bthid

=
(
gA2 ∩ Bthid

)
∪t

(
gA3 ∩ Bthid

)
= gB2 ∪t gB3

5.1. Decidability of TSLK 69

Literals of the form g1 = g2 \t g3:

gB1 = gA1 ∩ Bthid

=
(
gA2 \t gA3

)
∩ Bthid

=
(
gA2 ∩ Bthid

)
\t

(
gA3 ∩ Bthid

)
= gB2 \t gB3

Literals of the form r = 〈a, l〉mr:

rB = rA ∩ (Baddr × BlevelK)
= 〈aA, lA〉mr ∩ (Baddr × BlevelK)
= 〈aB, lB〉mr ∩ (Baddr × BlevelK)
= 〈aB, lB〉mr

Literals of the form r1 = r2 ∪mr r3:

rB1 = rA1 ∩ (Baddr × BlevelK)

=
(
rA2 ∪mr rA3

)
∩ (Baddr × BlevelK)

=
(
rA2 ∩ (Baddr × BlevelK)

)
∪mr

(
rA3 ∩ (Baddr × BlevelK)

)
= rB2 ∪mr rB3

Literals of the form r1 = r2 −mr r3:

rB1 = rA1 ∩ (Baddr × BsLevelK)

=
(
rA2 −mr rA3

)
∩ (Baddr × BsLevelK)

=
(
rA2 ∩ (Baddr × BsLevelK)

)
−mr

(
rA3 ∩ (Baddr × BsLevelK)

)
= rB2 −mr rB3

Literals of the form a = x[t]a:

x[t]Ba = xB(tB)
= xA(tB)
= xA(tA)
= x[t]Aa
= aA

= aB

Literals of the form xnew = x{t← a}a: In this case, since xnew
A(tA) = aA, it follows that xnew

B(tB) =

aB. Let us now consider an arbitrary i ∈ Bthid such that i , tA. Then, xnew
A(i) = xA(i) = xB(i).

70 5. TSLK: A Decision Procedure for Concurrent Skiplists

Literals of the form l = z[t]l:

z[t]Bl = zB(tB)
= zA(tB)
= zA(tA)
= z[t]Al
= lA

= lB

Literals of the form znew = z{t← l}l: In this case, since znew
A(tA) = lA, it follows that znew

B(tB) = lB.
Let us now consider an arbitrary i ∈ Bthid such that i , tA. Then, znew

A(i) = zA(i) = zB(i).

Literals of the form s = addr2setK(m, a, l): Let x = aB = aA. Then,

sB = sA ∩ Baddr

=
{
y ∈ Aaddr | ∃ p ∈ Apath s.t., (mA, x, y, l, p) ∈ reachK

A}
∩Baddr

=
{
y ∈ Baddr | ∃ p ∈ Apath s.t., (mA, x, y, l, p) ∈ reachK

A}
=

{
y ∈ Baddr | ∃ p ∈ Bpath s.t., (mB, x, y, l, p) ∈ reachK

B}
It just remains to see that the last equality holds. Let

• SB =
{
y ∈ Baddr | ∃ p ∈ Bpath s.t., (mB, x, y, l, p) ∈ reachK

B}, and

• SA =
{
y ∈ Baddr | ∃ p ∈ Apath s.t., (mA, x, y, l, p) ∈ reachK

A}
We first show that SA ⊆ SB. Let y ∈ SA. Then it exists p ∈ Apath such that (mA, x, y, l, p) ∈
reachK

A. Then, by definition of reachK there are two possible cases.

• If p = ε and x = y, then (mB, x, y, l, εB) ∈ reachK
B and therefore y ∈ SB.

• Otherwise, there exists a1, . . . , an ∈ Aaddr s.t.,

i) p = [a1, . . . , an] iii) mA(ar).nextA(l) = ar+1, for 1 ≤ r < n

ii) x = a1 iv) mA(an).nextA(l) = y

Then, we only need to find ã1, . . . , ãm ∈ Baddr s.t.,

i) q = [ã1, . . . , ãm] iii) mB(ãr).nextB(l) = ãr+1, for 1 ≤ r < m

ii) x = ã1 iv) mB(ãm).nextB(l) = y

We define ã1 = a1 = x and ã2 = firstK(mA, ã1, l,Baddr). Then, ã2 = mB(ã1).nextB(l) and
ã2 ∈ Baddr and thus ã2 ∈ Baddr. If ã2 = y there is nothing else to prove. On the other hand,
if ã2 , y then we proceed in the same way to define ã3 and so on until ãm+1 = y. Notice that
this way, y is guaranteed to be found in at most n steps.
To show that SB ⊆ SA we proceed in a similar way. Let y ∈ SB. Then x = y and p = ε and
thus (mA, x, y, l, εA) ∈ reachK

A, or exists a1, . . . , an ∈ Baddr such that

i) p = [a1, . . . , an] iii) mB(ar).nextB(l) = ar+1, for 1 ≤ r < n

ii) x = a1 iv) mB(an).nextB(l) = y

As we know that a1, . . . , an, y ∈ Baddr, by definition of firstK we know that there exists s ≥ 1
s.t.,

5.1. Decidability of TSLK 71

mA
(
· · ·

(
mA (a1) . nextA (l)

)
· · ·

)
.nextA (l)︸ ︷︷ ︸

s

= a2

Let then a1
1, . . . , a

s−1
1 ∈ Aaddr such that

mA(a1).nextA(l) = a1
1

mA(a1
1).nextA(l) = a2

1
...

mA(as−1
1).nextA(l) = a2

We then use a1
1, . . . , a

s−1
1 to construct the section of a path q that goes from a1 up to a2.

Finally we use the same approach to finish the construction of such a path in A. Then we
have that (mA, x, y, l, qA) ∈ reachK

A. Hence, y ∈ SA.

Literals of the form p = getpK(m, a, b, l): We consider two possible cases.

• Case bA ∈ addr2setK(mA, aA, l).
Since (mA, aA, bA, l, pA) ∈ reachK

A, it is enough to prove:

if (mA, x, y, l, q) ∈ reachK
A then (mB, x, y, l, compress(q,Baddr)) ∈ reachK

B

for each x, y ∈ Baddr and q ∈ Apath. If (mA, x, y, l, q) ∈ reachK
A, x = y and q = ε, then

(mB, x, y, l, compress(q,Baddr)) ∈ reachK
B. Otherwise, there exist a1, . . . , an ∈ Aaddr such

that:

i) q = [a1, . . . , an] iii) mA(ar).nextA(l) = ar+1, for 1 ≤ r < n

ii) x = a1 iv) mA(an).nextA(l) = y

Then, we proceed by induction on n.
– If n = 1, then q = [a1] and therefore compress(q,Baddr) = [a1], as x = a1 ∈ Baddr.

Besides, mA(a1).nextA(l) = y which implies that mB(a1).nextB(l) = y. Therefore,
(mB, x, y, l, compress(q,Baddr)) ∈ reachK

B.
– If n > 1, then let ai = firstK(mA, x, l,Baddr). As

q = [x = a1, a2, . . . , ai, ai+1, . . . , an]

we have that

compress(q,Baddr) = [x = a1] ◦ compress([ai, ai+1, . . . , an],Baddr)

Besides, as (mA, ai, y, l, [ai, ai+1, . . . , an]) ∈ reachK
A, by induction we have that

(mB, ai, y, l, compress([ai, ai+1, . . . , an],Baddr)) ∈ reachK
B

Moreover mB(x).nextB(l) = ai and therefore

(mB, x, y, l, compress(q,Baddr)) ∈ reachK
B

• Case bA < addr2setK(mA, aA, l).
In such case we have that pA = ε, which implies that pB = ε. Then using a reasoning similar
to the previous case we can deduce that bB < addr2setK(mB, aB, l).

72 5. TSLK: A Decision Procedure for Concurrent Skiplists

Literals of the form a = fstlockK(m, p, l): Consider the case p = ε: then fstlockK
A(mA, εA, lA) = nullA.

At the same time, we know that εB = compress(εA,Baddr) and so fstlockK
B(mB, εB, lB) = nullB.

Let’s now consider the case at which p = [a1, . . . , an]. There are two scenarios to consider.

• If for all 1 ≤ k ≤ n, mA(aAk).lockid(l) = �, then we have that

fstlockK
A(mA, pA, lA) = nullA

Notice that function compress returns a subset of the path it receives with the property that
all addresses in the returned path belong to the received set. Hence, if [ã1, . . . , ãm] = pB =

compress(pA,Baddr), we know that {ã1, . . . , ãm} ⊆ Baddr and therefore for all 1 ≤ j ≤ m,
mB(ã j).lockidB(lB) = �. Then, we can conclude that in fact fstlockK

B(mB, pB, lB) = nullB.
• If there is a k, with 1 ≤ k ≤ n, such that for all 1 ≤ j < k, mA(aAj).lockid(l) = � and

mA(aAk).lockid(l) , � then since aB = aA, we can say that aB = aA = x ∈ Baddr. It then
remains to verify whether

if x = fstlockK
A(mA, pA, lA) then x = fstlockK

B(mB, compress(pA,Baddr), lB)

By definition of fstlockK we have that x = aAk and by construction of Baddr we know that
aAk ∈ Baddr. Let [ã1, . . . , ãi, . . . , ãm] = compress(pA,Baddr) such that ãi = aAk . We had that
ã j ∈ Baddr for all 1 ≤ j ≤ m. As compress preserves the order and for all 1 ≤ j < k,
mA(aAj).lockidA(lA) = �, we have that for all 1 ≤ j < i, mB(ã j).lockidB(lB) = �. Besides
mB(ãi).lockidB(lB) , �. Then:

fstlockK
B(mB, compress(pA), lB) = fstlockK

B(mB, [ã1, . . . , ãm], lB)
= ãi

= aAk
= x

Literals of the form ordList(m, p): Assume that (mA, pA) ∈ ordListA. We would like to verify whether
(mB, pB) ∈ ordListB i.e., (mB, compress(pA,Baddr)) ∈ ordListB. We proceed by induction on p.

• If p = ε, by definition of compress and ordList, we have that (mB, εB) ∈ ordListB.
• If p = [a1], we know that (mA, [a1]A) ∈ ordListA and that pB = compress(pA,Baddr). Then,

if aA1 ∈ Baddr, we have that pB = [a1]B and then clearly (mB, pB) ∈ ordListB holds. On the
other hand, if aA1 < Baddr, then pB = εB and once more (mB, pB) ∈ ordListB holds.
• If p = [a1, . . . , an+1] with n ≥ 1, then we have two possible cases to bear in mind. If we

consider the case at which aA1 < Baddr then

compress(pA,Baddr) = compress([a2, . . . , an+1]A,Baddr)

and, as by induction we have that (mB, compress([a2, . . . , an+1]A,Baddr)) ∈ ordListB, we
conclude that (mB, compress([a1, a2, . . . , an+1]A,Baddr)) ∈ ordListB. On the other hand, if
we assume aA1 ∈ Baddr, by induction, (mB, compress([a2, . . . , an+1]A,Baddr)) ∈ ordListB.
Besides, as mA(aA1).keyA � mA(aA2).keyA we can deduce that mB(aA1).keyB � mB(aA2).keyB.
And so, (mB, compress([a1, a2, . . . , an+1]A,Baddr)) ∈ ordListB.

Literals of the form ¬ordList(m, p): Let’s assume that (mA, pA) < ordListA. We want to see that
(mB, pB) < ordListB. If (mA, pA) < ordListA, then it means that p = [a1, . . . , an] with n ≥ 2
and mA(ai+1).keyA � mA(ai).keyA and mA(ai+1).keyA , mA(ai).keyA for some i ∈ 1, . . . , n − 1.
Let that i be the one such that for all j < i, mA(a j).keyA � mA(a j+1).keyA. Then, by Lemma 5.3 we
have unordered(mA, [a1, . . . , an]A) , ∅ and besides {aAi , aAi+1} ⊆ unordered(mA, [a1, . . . , an]A) ⊆
Baddr. This means that

5.2. A Combination-based Decision Procedure for TSLK 73

compress([a1, . . . , an]A,Baddr) = [ã1, . . . , ai, ai+1, . . . , ãm]B

Therefore, since mB(ai+1).keyB � mB(ai).keyB and mB(ai+1).keyB , mB(ai).keyB, we have that

(mB, compress([a1, . . . , an]A,Baddr)) < ordListB. �

5.2 A Combination-based Decision Procedure for TSLK

Lemma 5.4 enables a brute force method to automatically check whether a set of normalized TSLK-
literals is satisfiable. However, such a method is not efficient in practice. We describe now how to obtain
a more efficient decision procedure for TSLK applying a many-sorted variant [TZ04] of the Nelson-
Oppen combination method [NO79], by combining the decision procedures for the underlying theories.
This combination method requires that the theories fulfill some conditions. First, each theory must have
a decision procedure. Second, two theories can only share sorts (but not functions or predicates). Third,
when two theories are combined, either both theories are stable infinite or one of them is polite with
respect to the underlying sorts that it shares with the other. The stable infinite condition for a theory
establishes that if a formula has a model then it has a model with infinite cardinality. In our case, some
theories are not stable infinite. For example, TlevelK is not stably infinite, Tord, and Tthid need not be stable
infinite in some instances. The observation that the condition of stable infinity may be cumbersome in
the combination of theories for data structures was already made in [RZ06a] where they suggest the
condition of politeness:

Definition 5.3 (Smoothness).
Let Σ = (S , F, P) be a signature, S0 = {σ1, . . . , σn} ⊆ S be a set of sorts, and T be a Σ-theory. T is
smooth with respect to S0 if:

(i) for every T -satisfiable quantifier-free Σ-formula ϕ,

(ii) for every T -interpretation A satisfying ϕ,

(iii) for every cardinal number k1, . . . , kn such that ki ≥ |Aσi |

there exists a T -interpretation B satisfying ϕ such that |Bσi | = ki, for i = 1, . . . , n. †

Definition 5.4 (Finite witnessability).
Let Σ = (S , F, P) be a signature, S0 ⊆ S be a set of sorts, ant T be a Σ-theory. T is finitely witnessable
with respect to S0 if there exists a computable function witness that for every quantifier-free Σ-formula ϕ
returns a quantifier-fee Σ-formula ψ = witness(ϕ) such that

(i) ϕ and (∃v)ψ are T -equivalent, where v = vars(ψ) \ vars(ϕ), and

(ii) if ψ is T -satisfiable then there exists a T -interpretation A satisfying ψ such that the domain Aσ

interpreting the sort σ inA is the (finite) set [varsσ(ψ)]A of elements inA interpreting the variables
of sort σ in ψ (in symbols, Aσ = [varsσ(ψ)]A), for each σ ∈ S0. †

74 5. TSLK: A Decision Procedure for Concurrent Skiplists

Definition 5.5 (Politeness).
Let Σ = (S , F, P) be a signature, S0 ⊆ S be a set of sorts and T be a Σ-theory. T is polite with respect to
S0 if it is both smooth and finitely witnessable with respect to S0. †

Smoothness guarantees that interpretations can be enlarged as needed. Finite witnessability gives a
procedure to produce a model in which every element is represented by a variable. The Finite Model
Property, Lemma 5.4 above, guarantees that every sub-theory of TSLK is finite witnessable since one can
add as many fresh variables as the bound for the corresponding sort in the lemma, even one for each
element in the domain of the sorts. The smoothness property can be shown for:

Tcell ∪ Tmem ∪ Tpath ∪ Tset ∪ Tsettid ∪ Tmrgn ∪ Taarr ∪ Tlarr

with respect to sorts addr, levelK, elem, ord and thid. Moreover, these theories can be combined because
all of them are stably infinite. The following can also be combined:

TlevelK ∪ Tord ∪ Tthid

because they do not share any sorts, so combination is trivial. The many-sorted Nelson-Oppen method
allows to combine the first collection of theories with the second. Regarding the decision procedures
for each individual theory, TlevelK is trivial since it is just a finite set of naturals with order. For Tord we
can adapt a decision procedure for dense orders as the reals [Tar51], or other appropriate theory. For
instance, if no dense order is required, we can consider Presburger Arithmetic equiped only with 0, succ
and <. For Tcell we can use a decision procedure for recursive data structures [Opp80]. Tmem is the
theory of arrays [ARR03]. Tset, Tsettid and Tmrgn are theories of (finite) sets for which there are many
decision procedures [Zar03, KNR05]. For theories Taarr and Tlarr we can use a decision procedure for
arrays [BMS06]. The remaining theories are Treach and Tbridge. Following the approaches in [RZ06a,
SS10] we extend a decision procedure for the theory Tpath of finite sequences of (non-repeated) addresses
with the auxiliary functions and predicates shown in Fig. 5.5, and combine this theory with the theories
that are part of TSLK (except from Treach) to obtain:

TSLKBase = Taddr ∪ Tord ∪ Tthid ∪ TlevelK ∪ Tcell ∪ Tmem ∪ Tpath ∪ Tset ∪ Tsettid ∪ Tmrgn ∪ Taarr ∪ Tlarr

Using Tpath all symbols in Treach can be easily defined. Once more, we pick the theory of finite
sequences of addresses defined by Tfseq =

(
Σfseq,TGen

)
, where:

Σfseq =
(
{ addr, fseq },
{ nil : fseq,

cons : addr× fseq→ fseq,

hd : fseq→ addr,

tl : fseq→ fseq },
{ }

)
and TGen as the class of term-generated structures that satisfy the axioms of distinctness, uniqueness and
generation of sequences using constructors, as well as acyclicity (see, for example [BM07]). Let Σpath be
Σfseq extended with the symbols of Fig. 5.5 and let PATH be the set of axioms of Tfseq including the ones
in Fig. 5.5. Then, we can formally define Tpath =

(
Σpath,ETGen

)
where

ETGen =
{
AΣpath |AΣpath � PATH and AΣfseq ∈ TGen

}
Next, we extend TSLKBase with definitions for translating all missing functions and predicates from

Σreach and Σbridge appearing in normalized TSLK-literals by definitions from TSLKBase. Let GAP be the set

5.2. A Combination-based Decision Procedure for TSLK 75

of axioms that define ε, [_], append, reachK, path2set, getpK, fstlockK and ordList. Some of the equiva-
lences for GAP were given in Section 4.2. Hence, here we limit ourselves only to the new equivalences.
For instance:

isreachpK(m, a1, a2, l, p) → getpK(m, a1, a2, l) = p

¬isreachp(m, a1, a2, l, p) → getpK(m, a1, a2, l) = nil

ispath (p) ∧ fstmark (m, p, l, i) ↔ fstlockK (m, p, l) = i

ispath (p) ∧ ordPath (m, p) ↔ ordList (m, p)

We now define T̂SLK = (ΣT̂SLK
, ̂ETGen) where

ΣT̂SLK
= ΣTSLKBase ∪ {append, reachK, path2set, getpK, fstlockK, ordList}

and ̂ETGen :=
{
AΣT̂SLK |AΣT̂SLK � GAP and AΣTSLKBase ∈ ETGen

}
.

Using the definitions of GAP it is easy to prove that if Γ is a set of normalized TSLK-literals, then Γ is
TSLK-satisfiable iff Γ is T̂SLK-satisfiable. Therefore, T̂SLK can be used in place of TSLK for satisfiability
checking. The reduction from T̂SLK into TSLKBase is performed in two steps. First, by the finite model
theorem (Lemma 5.4), it is always possible to calculate an upper bound in the number of elements of

app : fseq× fseq→ fseq
app(nil, l) = l
app(cons(a, l), l′) = cons(a, app(l, l′))

fseq2set : fseq→ set
fseq2set(nil) = ∅
fseq2set(cons(a, l)) = {a} ∪ fseq2set(l)

ispath : fseq
ispath(nil)
ispath(cons(a, nil))
{a} * fseq2set(l) ∧ ispath(l)→ ispath(cons(a, l))

last : fseq→ addr
last(cons(a, nil)) = a
l , nil→ last(cons(a, l)) = last(l)

isreachK : mem× addr× addr× levelK
isreachK(m, a, a, l)
m[a].next[l] = a′ ∧ isreachK(m, a′, b, l)→ isreachK(m, a, b, l)

isreachpK : mem× addr× addr× levelK × fseq
isreachpK(m, a, a, l, nil)
m[a].next[l] = a′ ∧ isreachp(m, a′, b, l, p)→ isreachp(m, a, b, l, cons(a, p))

fstmark : mem× fseq× levelK × addr
fstmark(m, nil, l, null)
p , nil ∧ p = cons(a, q) ∧ m[a].lockid[l] , � → fstmark(m, p, l, a)
p , nil ∧ p = cons(a, q) ∧ m[a].lockid[l] = � ∧ fstmark(m, q, l, b)→ fstmark(m, p, l, b)

ordPath : mem× fseq
ordPath(h, nil)
ordPath(h, cons(a, nil))
h[a].next[0] = a′ ∧ h[a].key � h[a′].key ∧ p = cons(a, q) ∧ ordPath(h, q)→ ordPath(h, p)

Figure 5.5: Functions, predicates and axioms of Tpath

76 5. TSLK: A Decision Procedure for Concurrent Skiplists

sort addr, elem, thid, ord and level in a model (if there is one model), based on the input formula.
Therefore, one can introduce one variable per element of each of these sorts and unfold all definitions in
PATH and GAP, by symbolic expansion, leading to terms in Σfseq, and thus, in TSLKBase. This way, it is
always possible to reduce a T̂SLK-satisfiability problem of normalized literals into a TSLKBase-satisfiability
problem. Hence, using a decision procedure for TSLKBase we obtain a decision procedure for T̂SLK, and
thus, for TSLK. Notice, for instance, that the predicate subPath : path × path for ordered lists can be
defined using only path2set as:

subPath(p1, p2) =̂ path2set(p1) ⊆ path2set(p2)

Example 5.2
We now illustrate how reduction from T̂SLK to TSLKBase is performed. For the sake of simplicity, let just
consider the formula ϕ = S kipList4(h, sl.head, sl.tail). According to the definition we gave in Exam-
ple 3.3,

ϕ =̂ OList(h, sl.head, 0) ∧ (5.1)sl.tail.next[0] = null ∧ sl.tail.next[1] = null

sl.tail.next[2] = null ∧ sl.tail.next[3] = null

 ∧ (5.2)
SubList(h, sl.head, sl.tail, 1, sl.head, sl.tail, 0) ∧
SubList(h, sl.head, sl.tail, 2, sl.head, sl.tail, 1) ∧
SubList(h, sl.head, sl.tail, 3, sl.head, sl.tail, 2)

 (5.3)

For simplicty, from now on, we use head for sl.head and tail for sl.tail. Notice that ϕ is not in TSLK.
In fact, it contains some functions like OList and SubList which do not belong to TSLK but give us the
intuition of what a skiplist should look like. Hence, we first rewrite ϕ using terms of TSLK:

(5.1)
[

Σbridge︷ ︸︸ ︷
p = getpK(h, head, null, 0) ∧

Σbridge︷ ︸︸ ︷
ordList(h, p) ∧

(5.2)



Σmem︷ ︸︸ ︷
ctail = h[tail] ∧

Σcell︷ ︸︸ ︷
atail0 = ctail.next[0] ∧

Σaddr︷ ︸︸ ︷
atail0 = null

∧
... ∧

...

∧
Σcell︷ ︸︸ ︷

atail3 = ctail.next[3] ∧
Σaddr︷ ︸︸ ︷

atail3 = null ∧

(5.3)



Σbridge︷ ︸︸ ︷
ptail0 = getpK(h, head, tail, 0) ∧ · · · ∧

Σbridge︷ ︸︸ ︷
ptail3 = getpK(h, head, tail, 3) ∧

Σbridge︷ ︸︸ ︷
stail0 = path2set(ptail0) ∧ · · · ∧

Σbridge︷ ︸︸ ︷
stail3 = path2set(ptail3) ∧

Σset︷ ︸︸ ︷
stail1 ⊆ stail0 ∧ · · · ∧

Σset︷ ︸︸ ︷
stail3 ⊆ stail2

Notice that after been rewriten, we already have a conjuntion of literals belonging to T̂SLK. We can
go a little further, and rewrite ϕ using normalized literals. Some of the literals are already normalized,
like ordList(h, p), while other must be rewriten, like ataili = ctail.next[i] or stail j ⊆ stail j−1 to:

ctail = mkcell(e0, k0, atail0 , a
1
0, a

2
0, a

3
0, t

0
0, t

1
0, t

2
0, t

3
0) ∧ atail0 = null

ctail = mkcell(e1, k1, a0
1, atail1 , a

2
1, a

3
1, t

0
1, t

1
1, t

2
1, t

3
1) ∧ atail1 = null

ctail = mkcell(e2, k2, a0
2, a

1
2, atail2 , a

3
2, t

0
2, t

1
2, t

2
2, t

3
2) ∧ atail2 = null

ctail = mkcell(e3, k3, a0
3, a

1
3, a

2
3, atail3 , t

0
3, t

1
3, t

2
3, t

3
3) ∧ atail3 = null

5.2. A Combination-based Decision Procedure for TSLK 77

and

stail0 = stail0 ∪ stail1 ∧ stail1 = stail1 ∪ stail2 ∧ stail2 = stail2 ∪ stail3

respectively. So far, we have

Velem(ϕ) = {e0, e1, e2, e3}
Vaddr(ϕ) = {head, tail} ∪ {ataili | 1 ∈ 0..3} ∪ ({a j

i | i, j ∈ 0..3 ∧ i , j}
Vmem(ϕ) = {h}
Vpath(ϕ) = {p} ∪ {ptaili | i ∈ 0..3}
Vthid(ϕ) = ∅
Vord(ϕ) = ∅
Vaarr(ϕ) = ∅

Therefore, assuming ϕ holds in a model A, when constructing a finite model B, we can ensure the
following bounds for the domains of each sort in B:

|BlevelK | ≤ K = 4
|Bthid| ≤ t + 1 + K m a = 0 + 1 + 4× 1× 18 = 73

|Baddr| ≤ a + 1 + K m a + p2
+ p3

+ 2 m p + x |Bthid|
= 18 + 1 + 4× 1× 18 + 52 + 53 + 2× 1× 5 + 0× 73 = 251

|Belem| ≤ e + m |Baddr| = 4 + 1× 251 = 255
|Bord| ≤ o + m |Baddr| = 0 + 1× 251 = 251

In fact, when we construct the domains for B, we find out that we only require the follwing sets,
which clearly are under the bounds we have calculated:

|BlevelK | = {0, 1, 2, 3}
|Bthid| = {�}
|Baddr| = {0x00, 0x01, 0x08}
|Belem| = {−∞,+∞}
|Bord| = {−∞,+∞}

Then, it just remains to reduce literals from Σbridge using the definitions of GAP and PATH, to end up
with terms in TSLKBase. This way, we get:

Σbridge-term TSLKBase-term

p = getpK(h, head, tail, 0) h[head].next[0] = tail ∧ h[tail].next[0] = null ∧
isreachpK(h, null, null, 0, nil)

ordList(h, p) h[head].next[0] = tail ∧ h[head].key � h[tail].key ∧
p = cons(head, cons(tail, nil)) ∧ ordPath(h, cons(tail, nil)) ∧

¬{head} ⊆ {tail} ∧ ispath(cons(tail, nil))

ptaili = getpK(h, head, tail, i) h[head].next[i] = tail ∧ isreachpK(h, tail, tail, i, nil)

staili = path2set(ptaili) staili = {head}

78 5. TSLK: A Decision Procedure for Concurrent Skiplists

Once we have achieved this point, we only need to call the decision procedures for each of the
involved theories in TSLKBase. ∗

5.3 Extending TSLK to Reason about (L,U,H)

In Section 3.2 we presented the algorithms for Insert, Remove and Search over a concurrent skiplist. In
that moment, we also annotated the code with ghost arrays L, U and H. L and U are arrays from thread
identifiers to addresses while H is an array from thread identifiers to skiplist levels. The idea is that the
triplet (L[t],U[t],H[t]) denotes the bounds of the section of the skiplist that thread t can modify. This is
not a restriction imposed to thread t, but just a consequence of the progress of t. We usually refer to such
section of the skiplist as the (L,U,H) of thread t.

Following these algorithms, in this section we show how we can extend TSLK with some extra func-
tions to let us reason about (L,U,H) inclusion. When we presented the pessimistic version of programs
Insert, Remove and Search we stated that such implementation enjoys fairness. In fact, we can verify
that any thread whose (L,U,H) does not strictly contain the (L,U,H) of another thread is guaranteed to
terminate.

To begin with, we present two new theories we will use. A theory of pairs of thread identifiers (Tpair)
and a theory of sets of pairs (Tsetpair). The signature of these two new theories is defined as one may
expect:

Σpair =
(
{ pair, thid },
{ 〈_, _〉 : thid× thid→ pair },
{ }

)
Σsetpair =

(
{ setpair, pair },
{ ∅p : setpair,

{_}p : pair→ setpair,

∪p : setpair× setpair→ setpair,

∩p : setpair× setpair→ setpair,

\p : setpair× setpair→ setpair },
{ ∈p : pair× setpair

⊆p : setpair× setpair }
)

The interpretation for each new function and predicate is the expected one for pairs and sets. Apair =

Athid ×Athid while Asetpair is the power-set of Apair. Besides, we introduce a new theory, TLUH, to reason
about (L,U,H). The signature of TLUH, ΣLUH, is given by:

ΣLUH =
(
{ mem, aarr, larr, thid, settid, pair, setpair },
{ subsetLUH : mem× aarr× aarr× larr× addr× addr× levelK → settid

interLUH : mem× aarr× aarr× larr× settid→ setpair

emptyLUH : mem× aarr× aarr× larr× addr× addr× levelK → settid

minLUH : mem× aarr× settid→ thid },
{ }

)
Function subsetLUH receives as argument a memory, three arrays (representing the (L,U,H) regions

for a skiplist), a couple of addresses and a level. It returns the set of thread identifiers whose (L,U,H) is
strictly contained into the region bounded by the address and level taken as argument. Function interLUH

5.3. Extending TSLK to Reason about (L,U,H) 79

receives as argument a set of pairs and it returns the subset of pairs whose (L,U,H) intersects with each
other. Function emptyLUH is similar to subsetLUH , except that it returns the set of thread identifiers whose
(L,U,H) is empty, that is, those whose (L,U,H) does not contain the (L,U,H) of any other thread.
Finally, function minLUH receives a set of thread id and returns the minimum of all of them. We say that
the minimum is the one with its right bound closest to the tail of the skiplist. To simplify notation, if a1
and a2 are two variables of type address, considering a memory m, we use

a1 ≤ a2 for a2 ∈ addr2setK(m, a1, 0)

Similarly, if A is a model, i1 and i2 belong to Aaddr and m ∈ Amem, we abuse notation and write

i1 ≤ i2 for i2 ∈ addr2setKA(m, i1, 0)

Using the syntactic sugar we have just introduced, given a model A, the functions of ΣLUH are inter-
preted this way:

subsetLUH
A(m, L,U,H, a1, a2, l) =

{
t′ ∈ Athid | a1 ≤ L(t′) and U(t′) ≤ a2 and

(H(t′) < l or H(t′) = l)
}

interLUH
A(m, L,U,H, g) =

{
〈t1, t2〉 ∈ Apair | t1 ∈ g, t2 ∈ g,

intersects(t1, t2) and t1 , t2
}

emptyLUH
A(m, L,U,H, a1, a2, l) =

{
t′ ∈ Athid | t′ ∈ subsetLUH

A(m, L,U,H, a1, a2, l) and

subsetLUH
A(m, L,U,H, L(t′),U(t′),H(t′)) = ∅

}
minLUH

A(m,U, g) =

� if g = ∅
ti if g = {t1, . . . , tq}, i ∈ 1..q and for all j ∈ 1..q U(ti) ≤ U(t j)

for each m ∈ Amem; L,U ∈ Aaarr; H ∈ larr; a1, a2 ∈ Aaddr; l ∈ AlevelK ; w ∈ Asetpair and g ∈ Asettid.
Besides, we define intersects by:

intersects(t1, t2) = (L(t2) ≤ L(t1) ∧ L(t1) ≤ U(t2) ∧ H(t1) ≥ 1 ∧ H(t2) ≥ 1) ∨
(L(t2) ≤ U(t1) ∧ U(t1) ≤ U(t2) ∧ H(t1) ≥ 1 ∧ H(t2) ≥ 1) ∨
(L(t1) ≤ L(t2) ∧ U(t2) ≤ U(t1) ∧ H(t2) > H(t1))

We now define the theory TSLK+ as the one obtained from the union of TSLK with Tpair, Tsetpair and
TLUH. As before, we now define the set of TSLK+-normalized literals.

Definition 5.6 (TSLK+-normalized literals).
A TSLK+-literal is normalized if it is a TSLK-normalized literal or it is a flat literal of the form:

u = 〈t1, t2〉
w = {u}p w1 = w2 ∪p w3

w1 = w2 \p w3

g = subsetLUH(m, L,U,H, a1, a2, l) w = interLUH(m, L,U,H, g)
g = emptyLUH(m, L,U,H, a1, a2, l) t = minLUH(m,U, g)

where a1 and a2 are addr-variables; m is a mem-variable; g is a settid-variable; L and U are aarr-
variables; H is a Σlarr-variable; l is a levelK-variable; t1 and t2 are thid-variables; u is pair-variable and w,
w1, w2 and w3 are setpair-variables. †

The non normalized literals can be constructed from the normalized ones using an approach similar
to the one employed in the definition of literals from sets of thread identifiers. We now show that TSLK+

still satisfies the finite model property.

80 5. TSLK: A Decision Procedure for Concurrent Skiplists

Lemma 5.5 (Finite Model Property for TSLK+):
Let Γ be a conjunction of normalized TSLK+-literals. Let e = |Velem (Γ)|, a = |Vaddr (Γ)|, m = |Vmem (Γ)|,
p = |Vpath (Γ)|, t = |Vthid (Γ)|, o = |Vord (Γ)|, u = |Vpair (Γ)| and x = |Vaarr (Γ)|. Then the following are
equivalent:

1. Γ is TSLK+-satisfiable;
2. Γ is true in a TSLK+ interpretation B such that

|BlevelK | ≤ K

|Bthid| ≤ t + 1 + K m a + 2 u

|Baddr| ≤ a + 1 + K m a + p2
+ p3

+ 2 m p + x |Bthid|
|Belem| ≤ e + m |Baddr|
|Bord| ≤ o + m |Baddr| ♠

Proof (2→ 1) is immediate.
(1→ 2).
We prove this implication only for the new TSLK+-literals. LetA be a TSLK-interpretation satisfying

a set of normalized TSLK+-literals Γ. We use A to construct a finite TSLK+-interpretation B. B is
construted as for TSLK, except for the set of thread identifiers, which is defined as

Bthid = VAthid ∪
{
�

}
∪{

mA(aA).lockidA(l) | m ∈ Vmem, a ∈ Vaddr and l ∈ BlevelK

}
∪{

t1, t2 ∈ Athid | (t1,t2)=pA and p∈Vpair

}
and the interpretation of the new variables is given by

uB = uA for each u ∈ Vpair

wB = wA ∩ (Bthid × Bthid) for each w ∈ Vsetpair

We now proceed to the analysis of the new literals:

Literals of the form u = 〈t1, t2〉:

uB = uA

= (t1A, t2A)
= (t1B, t2B)

Literals of the form w = {u}p:

wB = wA ∩ (Bthid × Bthid)
= {uA}p ∩ (Bthid × Bthid)
= {uB}p ∩ (Bthid × Bthid)
= {uB}p

Literals of the form w1 = w2 ∪p w3:

wB1 = wA1 ∩ (Bthid × Bthid)

=
(
wA2 ∪ wA3

)
∩ (Bthid × Bthid)

=
(
wA2 ∩ (Bthid × Bthid)

)
∪

(
wA3 ∩ (Bthid × Bthid)

)
= wB2 ∪p wB3

5.3. Extending TSLK to Reason about (L,U,H) 81

Literals of the form w1 = w2 \p w3:

wB1 = wA1 ∩ (Bthid × Bthid)

=
(
wA2 \ wA3

)
∩ (Bthid × Bthid)

=
(
wA2 ∩ (Bthid × Bthid)

)
\
(
wA3 ∩ (Bthid × Bthid)

)
= wB2 \p wB3

Literals of the form g = subsetLUH(m, L,U,H, a1, a2, l):

gB = gA ∩ Bthid

= subsetLUH
A(mA,LA,UA,HA, aA1 , a

A
2 , l
A) ∩ Bthid

=
{
t′ ∈ Athid | aA1 ≤ LA(t′) and UA(t′) ≤ aA2 and (HA(t′) < lA or HA(t′) = lA)

}
∩ Bthid

=
{
t′ ∈ Bthid | aB1 ≤ LB(t′) and UB(t′) ≤ aB2 and (HB(t′) < lB or HB(t′) = lB)

}
= subsetLUH

B(mA,LB,UB,HB, aB1 , a
B
2 , l
B)

Literals of the form w = interLUH(m, L,U,H, g):

wB = wA ∩ (Bthid × Bthid)

= interLUH
A(mA,LA,UA,HA, gA1) ∩ (Bthid × Bthid)

=
{
〈t1, t2〉 ∈ Apair | t1 ∈ gA, t2 ∈ gA, intersects(t1, t2) and t1 , t2

}
∩ (Bthid × Bthid)

=
{
〈t1, t2〉 ∈ Bpair | t1 ∈ gB, t2 ∈ gB, intersects(t1, t2) and t1 , t2

}
= interLUH

B(mA,LB,UB,HB, gB)

Literals of the form g = emptyLUH(m, L,U,H, a1, a2, l):

gB = gA ∩ Bthid

= emptyLUH
A(mA,LA,UA,HA, aA1 , a

A
2 , l
A) ∩ Bthid

=
{
t′ ∈ Athid | t′ ∈ subsetLUH

A(mA,LA,UA,HA, aA1 , a
A
2 , l
A) and

subsetLUH
A(mA,LA,UA,HA,LA(t′),UA(t′),HA(t′)) = ∅

}
∩ Bthid

=
{
t′ ∈ Bthid | t′ ∈ subsetLUH

B(mB,LB,UB,HB, aB1 , a
B
2 , l
B) and

subsetLUH
B(mA,LB,UB,HB,LB(t′),UB(t′),HB(t′)) = ∅

}
= emptyLUH

B(mB,LB,UB,HB, aB1 , a
B
2 , l
B)

Literals of the form t = minLUH(m,U, g):

tB = tA

= minLUH
A (mA, UA, gA)

Then, we have two cases to consider. If gA = ∅, then gB = gA ∩ Bthid = ∅ ∩ Bthid = ∅. Besides,
� = tA = tB = minLUH

B(mB,UB, gB). So, let’s now consider the other possible case. Let’s
assume g = {t1, . . . , tq}. Let ti ∈ g be a thread such that for all j ∈ 1..q, U(t j) ≤ U(ti). At
t ∈ Vthid, tA = tB = tBi ∈ Bthid. Besides, gB = gA ∩ Bthid and hence tBi ∈ gB. Therefore,
tBi = minLUH(mB,UB, gB). �

82 5. TSLK: A Decision Procedure for Concurrent Skiplists

5.4 Verifying Some Properties Over Concurrent Skiplists

In this section we show how some of the properties we would like to describe about a skiplist are trans-
lated to TSLK, so that the decision procedure described in this chapter can be used to solve them.

5.4.1 Skiplist Preservation

In Example 3.4 we gave an idea of the functions and predicates we would require to verify skiplists
presenting the verification condition for transition 43 of program Insert. Such verification condition
applied to a skiplist of height 4 was SkipList4(h, sl.head, sl.tail) ∧ φ → SkipList4(h′, sl′.head, sl′.tail),
where φ is: 

x.key = newval ∧
prev.key < newval ∧

x.next[i].key > newval ∧
prev.next[i] = x.next[i] ∧

(x, i) < sl.r ∧ 0 ≤ i ≤ 3


∧



at[j]
43 ∧

prev′.next[i] = x ∧
at′[j]

44 ∧
h′ = h ∧ sl = sl′ ∧

x′ = x . . .


We now show how to write this verification condition using TSLK so that the decision procedure can

be applied. We assume x : addr and prev : addr. Besides, for the sake of simplicity, we assume variables
head : addr, tail : addr and r : mrgn such that head = sl.head, tail = sl.tail and r = sl.r.

Remember we are working with parametrized systems. Hence, when we use x, prev or newval, in
fact we mean the local copy of these variables for a particular thread, let’s say, thread j. Then we are in
fact working with x[j], prev[j] and newval[j] respectively. We are also assuming that proofs are done for a
closed system, after the number of threads involved in the system has been fixed. This way, we assume
reasoning over a finite and bounded number of threads. In more general parametrized systems, one can
reason over an unbounded number of threads. In such case, a theory of arrays equipped with a decision

Original term TSLK term

ordList(h, head, 0)
Σbridge︷ ︸︸ ︷

p = getpK(h, head, null, 0) ∧
Σbridge︷ ︸︸ ︷

ordList(h, p)

tail.next[0] = null

∧ · · · ∧
tail.next[3] = null

Σmem︷ ︸︸ ︷
ctail = h[tail] ∧

Σcell︷ ︸︸ ︷
atail0 = ctail.next[0] ∧

Σaddr︷ ︸︸ ︷
atail0 = null

∧
... ∧

...

Σcell︷ ︸︸ ︷
atail3 = ctail.next[3] ∧

Σaddr︷ ︸︸ ︷
atail3 = null

SubList(h,head, tail, 1,
head, tail, 0)
∧ · · · ∧

SubList(h,head, tail, 3,
head, tail, 2)

Σbridge︷ ︸︸ ︷
ptail0 = getpK(h, head, tail, 0)∧· · ·∧

Σbridge︷ ︸︸ ︷
ptail3 = getpK(h, head, tail, 3)∧

Σbridge︷ ︸︸ ︷
stail0 = path2set(ptail0) ∧· · ·∧

Σbridge︷ ︸︸ ︷
stail3 = path2set(ptail3) ∧

Σset︷ ︸︸ ︷
stail1 ⊆ stail0 ∧· · ·∧

Σset︷ ︸︸ ︷
stail3 ⊆ stail2

Figure 5.6: Translation of SkipList4(h, sl.head, sl.tail) into TSLK

5.4. Verifying Some Properties Over Concurrent Skiplists 83

Original term TSLK term

x.key = newval
Σmem︷ ︸︸ ︷

cx = h[x] ∧
Σcell︷ ︸︸ ︷

cx.key = newval

prev.key < newval

Σmem︷ ︸︸ ︷
cprev = h[prev] ∧

Σcell︷ ︸︸ ︷
cprev.key = kprev ∧

Σord︷ ︸︸ ︷
kprev � newval ∧

Σord︷ ︸︸ ︷
kprev , newval

prev.next[i].key > newval

Σcell︷ ︸︸ ︷
anext = cprev.next[i] ∧

Σmem︷ ︸︸ ︷
cnext = h[anext] ∧

Σcell︷ ︸︸ ︷
knext = cnext.key ∧

Σord︷ ︸︸ ︷
newval � knext ∧

Σord︷ ︸︸ ︷
newval , knext

prev.next[i] = x.next[i]
Σcell︷ ︸︸ ︷

anextx = cx.next[i] ∧
Σaddr︷ ︸︸ ︷

anext = anextx

prev.lockid[i] = j
Σcell︷ ︸︸ ︷

tprev = cprev.lockid[i] ∧
Σthid︷ ︸︸ ︷

tprev = j

x.next[i].lockid[i] = j
Σmem︷ ︸︸ ︷

cnextx = h[anextx] ∧
Σcell︷ ︸︸ ︷

tnextx = cnextx .lockid[i] ∧
Σthid︷ ︸︸ ︷

tnextx = j

(x, i) < r
Σmrgn︷ ︸︸ ︷

empty = empmr ∧
Σmrgn︷ ︸︸ ︷

xiset = 〈x, i〉mr ∧
Σmrgn︷ ︸︸ ︷

empty = r ∩mr xiset

0 ≤ i ≤ 3

We must generate four different scenarios to be combined with
the conjunction of the remaining literals. These scenarios are:

1.

ΣlevelK︷︸︸︷
0 < i ∧

ΣlevelK︷︸︸︷
i < 3

2.

ΣlevelK︷︸︸︷
0 < i ∧

ΣlevelK︷︸︸︷
i = 3

3.

ΣlevelK︷︸︸︷
0 = i ∧

ΣlevelK︷︸︸︷
i < 3

4.

ΣlevelK︷︸︸︷
0 = i ∧

ΣlevelK︷︸︸︷
i = 3

Figure 5.7: Translation of enabling conditions into TSLK

84 5. TSLK: A Decision Procedure for Concurrent Skiplists

Original term TSLK term

at[j]
43 ∧ at′[j]

44

boolean︷︸︸︷
at j43 ∧

boolean︷︸︸︷
¬at j44 ∧

boolean︷ ︸︸ ︷
¬at′ j43 ∧

boolean︷︸︸︷
at′ j44

prev′.next[i] = x
Σcell︷ ︸︸ ︷

anextnew = cprevnew
.next[i] ∧

Σaddr︷ ︸︸ ︷
anextnew = x

prev′.key = prev.key
Σcell︷ ︸︸ ︷

kprevnew
= cprevnew

.key ∧
Σord︷ ︸︸ ︷

kprev = kprevnew

prev′.data = prev.data
Σcell︷ ︸︸ ︷

eprev = cprev.data ∧
Σcell︷ ︸︸ ︷

eprevnew
= cprevnew

.data ∧
Σelem︷ ︸︸ ︷

eprev = eprevnew

prev′.next[0] = prev.next[0]
∧ · · · ∧

prev′.next[i− 1] = prev.next[i− 1]
∧

prev′.next[i + 1] = prev.next[i + 1]
∧ · · · ∧

prev′.next[3] = prev.next[3]

Σcell︷ ︸︸ ︷
aprev0

= cprev.next[0] ∧· · ·∧
Σcell︷ ︸︸ ︷

aprevi−1
= cprev.next[i− 1] ∧

Σcell︷ ︸︸ ︷
aprevi+1

= cprev.next[i + 1] ∧· · ·∧
Σcell︷ ︸︸ ︷

aprev3
= cprev.next[3] ∧

Σcell︷ ︸︸ ︷
aprevnew0

= cprevnew
.next[0] ∧· · ·∧

Σcell︷ ︸︸ ︷
aprevnewi−1

= cprevnew
.next[i− 1]∧

Σcell︷ ︸︸ ︷
aprevnewi+1

= cprevnew
.next[i + 1]∧· · ·∧

Σcell︷ ︸︸ ︷
aprevnew3

= cprevnew
.next[3] ∧

Σaddr︷ ︸︸ ︷
aprevnew0

= aprev0
∧· · ·∧

Σaddr︷ ︸︸ ︷
aprevnewi−1

= aprevi−1
∧

Σaddr︷ ︸︸ ︷
aprevnewi+1

= aprevi+1
∧· · ·∧

Σaddr︷ ︸︸ ︷
aprevnew3

= aprev3
∧

Σmem︷ ︸︸ ︷
h′ = upd(h, prev, cprevnew

)

Figure 5.8: Translation of the modifications introduced by the transition relation into TSLK

procedure [BMS06] can be used to keep the values of all local variables and program counters as arrays.
Moreover, such theory is easily combined with TSLK. However, this approach goes beyond the scope of
this work.

Fig. 5.6 contains the translation of the SkipList4 predicate into literals of TSLK. The translation
for predicate SkipList4(h′, sl′.head, sl′.tail) is very similar to SkipList4(h, sl.head, sl.tail) and thus it is
omitted. The difference between them resides only on the modifications introduced by the transition
relation, stating SkipList4(h′, sl′.head, sl′.tail) that the structure keeps the shape of a skiplist after the
transition has been taken. Fig. 5.7 describes the translation of the enabling conditions for the presented
verification condition into TSLK. Similarly, Fig. 5.8 depicts the translation of the modifications produced
by the transition. In all cases, it is straightforward to realize that the resulting literals are all in TSLK and
thus it is possible to check their satisfiability using the decision procedure described in this chapter. For
the moment, this translation must be accomplished manually. Future work includes the construction of a

5.4. Verifying Some Properties Over Concurrent Skiplists 85

tool to automatically translate formulas into TSLK.
When describing the new literals in TSLK obtained from the verification condition, some fresh vari-

ables must be introduced. To describe them we use a for variables of sort addr, k for variables of sort
ord, e for variables of sort elem, t for variables of sort thid, c for variables of sort cell, p for variables of
sort path and s for variables of sort set.

5.4.2 Termination of an Arbitrary Thread

When we introduced concurrent skiplists in Chapter 3, we showed that some implementations do not
guarantee termination of all threads if we do not assume a fair scheduler. Because of this, we intro-
duced a new implementation we called pessimistic. Now, we sketch how the termination of an arbitrary
thread running the pessimistic implementation of a concurrent skiplist (presented in Section 3.2) could
be proved.

When we gave the implementations, we enriched the algorithms with ghost arrays L, U and H, to
define the (L,U,H) section for each running thread. Remember that (L,U,H) represents the maximum
portion of the skiplist we are sure a thread can potentially modify.

The pessimistic version left a locked node behind, to prevent threads to overtake other threads. First of
all, we extend the definition of skiplist to capture the property that, in pessimistic skiplists, two (L,U,H)
belonging to different threads are disjoint or one is strictly contained into the other. For such purpose, we
define

Skiplistpessi
K (h, sl : SkipList) =̂ SkipListK(h, sl.head, sl.tail) ∧

∅p = interLUH(m, L,U,H, subsetLUH(m, L,U,H, sl.head, sl.tail,K− 1))

The new predicate Skiplistpessi
K (h, sl) says that in heap h, sl points to a structure with the shape of a

skiplist and no (L,U,H) within the skiplist partially overlays with other thread’s (L,U,H).
Imagine we want to prove that an arbitrary thread k terminates. Here we do not give the diagram,

but just the intuition behind the proof. Let (L,U,H)k be the (L,U,H) of thread k. A key property is that
the number of threads whose (L,U,H) is contained into (L,U,H)k does not increment. In fact, we can
use the cardinality of subsetLUH(m, L,U,H, L(k),U(k),H(k)) as a ranking function to ensure that no new
thread is entering (L,U,H)k. Besides, we can ensure that it always exists a thread that has no contention
when trying to progress. Such thread is the one with the minimum (L,U,H) within (L,U,H)k, that is,
thread tmin where

tmin = minLUH(m,U, emptyLUH(m, L,U,H, L(k),U(k),H(k),K− 1)).

6
Conclusion

In this work, we have presented combinable decision procedures for concurrent lists and skiplists. The
development of such decision procedures is motivated by the necessity of automating the verification pro-
cess of temporal properties (safety and liveness) of an imperative implementation of concurrent datatypes.
Although we have focused on concurrent lists and skiplists, the approach can be applied to the verification
of more complex concurrent data structures.

As shown, the verification is performed using verification diagrams – a complete method to prove
temporal properties of reactive systems – and explicit reasoning on memory regions. The verification
process usually requires the aid of ghost variables. Verification is reduced to proving a finite number of
verification conditions, which requires decision procedures in the appropriate theories, including regions,
pointers, locks and specific theories for memory layouts (in this case single linked-lists and skiplists).

There are some key differences between our approach and other approaches in the literature. Build-
ing on the success of separation logic in proving sequential programs, the most popular approach has
consisted in extending separation logic to concurrent programs. These extensions require adapting tech-
niques like rely-guarantee that cannot be directly used with separation logic. Our decision to use explicit
regions (finite sets of addresses) allows the direct use of classical techniques like assume-guarantee and
the combination of decision procedures. Furthermore, in concurrent separation logic, it is critical to de-
scribe memory footprints of sections of code. This description becomes very cumbersome when the code
is not organized in mutual exclusion regions, as in fine-grain synchronization algorithms. Moreover, the
integration into SMT solvers is quite straightforward with classical logics, but it is still an open question
with separation logic.

The technique we propose can be seen as a method to separate the reasoning about concurrency (with
verification diagrams) from the reasoning about the memory (with decision procedures). The former is
independent of the data structure under consideration. We are currently extending our approach to the
verification of other pointer-based concurrent data structures like concurrent hash maps. Again, sharing
in these data structures makes it very hard to reason using separation logic. For our approach, these
extensions will require the design of suitable decision procedures.

We have also presented TLL3 and TSLK, theories of concurrent singly linked lists and concurrent
skiplists of height at most K respectively. We showed both of them are useful for automatically proving
the VCs generated during the verification of concurrent list and skiplist implementations.

TLL3 is capable of reasoning about memory, cells, pointers and reachability. TSLK can also reason
about masked regions, enabling ordered lists and sublists, allowing the description of the skiplist property
as well as the representation of memory modifications introduced by the execution of program statements.

We showed both theories decidable by proving their finite model property and exhibiting the minimal
cardinality of a model if one such model exists. Moreover, we showed how to reduce the satisfiability
problem of quantifier-free TLL3 and TSLK formulas to a combination of theories using the many-sorted

87

88 6. Conclusion

version of Nelson-Oppen, allowing the use of well studied decision procedures. The complexity of the
decision problem for TLL3 and TSLK is easily shown to be NP-complete since they properly extend
TLL [RZ06a].

Current work includes among other things the translation of formulas from Tord, TlevelK , Tset, Tsettid

and Tmrgn into BAPA [KNR05]. In BAPA, arithmetic, sets and cardinality aid in the definition of
skiplists properties. At the same time, paths can be represented as finite sequences of addresses. We
are studying how to replace the recursive functions from Treach and Σbridge by canonical set and list ab-
stractions [SDK10], which would lead to a more efficient decision procedure, essentially encoding full
TLL3 and TSLK formulas into BAPA.

In the case of TSLK, the family of theories presented in the work is limited to skiplists of a fixed
maximum height. Typical skiplist implementations fix a maximum number of levels and this can be
handled with TSLK. Inserting more than 2levels elements into a skiplist may slow-down the search of a
skiplist implementation but this issue affects performance and not correctness, which is the goal pursued
in this paper. Following this line, we are studying techniques to describe skiplists of arbitrary many
levels. A promising approach consists of reducing a formula describing an unbounded number of levels
to a formula grounded on a finite number of them, reducing the satisfiability problem to TSLK. This
approach, however, is still work in progress.

Future work also includes building a generic verification condition generator for verification dia-
grams, implementing an ad-hoc version of the decision procedure described here, and later integrating
this decision procedure into state-of-the-art SMT solvers. We are also interested in the temporal verifi-
cation of sequential and concurrent skiplists implementations, including one at the java.concurrent
standard library. This can be accomplished by the design of verification diagrams that use the decision
procedure presented in this paper.

Bibliography

[AC89] Anant Agarwal and Mathews Cherian. Adaptive backoff synchronization techniques. In
Proc. of ISCA 1989, pages 396–406, 1989.

[AHS94] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks. Journal of the ACM,
41(5):1020–1048, 1994.

[And89] Thomas E. Anderson. The performance implications of spin-waiting alternatives for shared-
memory multiprocessors. In Proc. of ICPP 1989, pages 170–174, 1989.

[ARR03] Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch. A rewriting approach to
satisfiability procedures. Information and Computation, 183(2):140–164, 2003.

[AVL62] G. Adel’son-Vel’skii and E. Landis. An algorithm for the organization of information. Dok-
lady Akademii Nauk USSR, 146(2):263–266, 1962.

[Aya90] Rassul Ayani. Lr-algorithm: concurrent operations on priority queues. In Proc. of SPDP
1990, pages 22–25, 1990.

[Bar94] G. Barnes. Wait free algorithms for heaps. Technical report, University of Washington, 1994.

[BB87] Jit Biswas and James C. Browne. Simultaneous update of priority structures. In Proc. of
ICPP 1987, pages 124–131, 1987.

[BCG01] Guy E. Blelloch, Perry Cheng, and Phillip B. Gibbons. Room synchronizations. In Proc. of
SPAA 2001, pages 122–133, 2001.

[BCO04] Berdine, Calcagno, and O’Hearn. A decidable fragment of separation logic. FSTTCS: Foun-
dations of Software Technology and Theoretical Computer Science, 24, 2004.

[BDES09] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela Sighireanu. A logic-based
framework for reasoning about composite data structures. In CONCUR’09, pages 178–195,
2009.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

[BL94] Joan Boyar and Kim S. Larsen. Efficient rebalancing of chromatic search trees. J. Comput.
Syst. Sci., 49(3):667–682, 1994.

[BM07] Aaron R. Bradley and Zohar Manna. The Calculus of Computation. Springer-Verlag, 2007.

[BMS95] Anca Browne, Zohar Manna, and Henny B. Sipma. Generalized verification diagrams. In
Proc. of FSTTCS’95, volume 1206 of LNCS, pages 484–498. Springer, 1995.

89

90 Bibliography

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about arrays? In
Proc. of VMCAI 2006, volume 3855 of LNCS, pages 427–442. Springer, 2006.

[BNR08] Anindya Banerjee, David A. Naumann, and Stan Rosenberg. Regional logic for local rea-
soning about global invariants. In Proc. of ECOOP’08, pages 387–411. Springer, 2008.

[BPZ05] Ittai Balaban, Amir Pnueli, and Lenore D. Zuck. Shape analysis by predicate abstraction. In
Proc. of VMCAI 2005, pages 164–180, 2005.

[BR06] Jesse D. Bingham and Zvonimir Rakamaric. A logic and decision procedure for predicate
abstraction of heap-manipulating programs. In Proc. of VMCAI 2006, pages 207–221, 2006.

[BRS99] Michael Benedikt, Thomas W. Reps, and Shmuel Sagiv. A decidable logic for describing
linked data structures. In Proc. of ESOP 1999, pages 2–19, 1999.

[BS77] Rudolf Bayer and Mario Schkolnick. Concurrency of operations on B-trees. Acta Informat-
ica, 9:1–21, 1977.

[BSST08] Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesar Tinelli. Handbook of Satifia-
bility, chapter Satisfiability Modulo Theories. IOS Press, 2008.

[Bur72] R. M. Burstall. Some techniques for proving correctness of programs which alter data struc-
tures. Machine Intelligence, 7:23–50, 1972.

[CLRS01] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT Press,
2001.

[Cra93] Travis Craig. Building fifo and priority-queuing spin locks from atomic swap. Technical
report, University of Washington, Department of Computer Science, 1993.

[DN03] Dennis Dams and Kedar S. Namjoshi. Shape analysis through predicate abstraction and
model checking. In Proc. of VMCAI 2003, pages 310–324, 2003.

[DS80] Edsger W. Dijkstra and Carel S. Scholten. Termination detection for diffusing computations.
Inf. Process. Lett., 11(1):1–4, 1980.

[Ell87] Carla Schlatter Ellis. Concurrency in linear hashing. ACM Trans. Database Syst., 12(2):195–
217, 1987.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consen-
sus with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[FNPS79] Ronald Fagin, Jürg Nievergelt, Nicholas Pippenger, and H. Raymond Strong. Extendible
hashing - a fast access method for dynamic files. ACM Trans. Database Syst., 4(3):315–344,
1979.

[Fra03] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge, 2003.

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987.

[GCPV09] Alexey Gotsman, Byron Cook, Matthew J. Parkinson, and Viktor Vafeiadis. Proving that
non-blocking algorithms don’t block. In Zhong Shao and Benjamin C. Pierce, editors, Pro-
ceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 16–28. ACM,
2009.

[GGK+83] Allan Gottlieb, Ralph Grishman, Clyde P. Kruskal, Kevin P. McAuliffe, Larry Rudolph, and
Marc Snir. The nyu ultracomputer - designing an mimd shared memory parallel computer.
IEEE Trans. Computers, 32(2):175–189, 1983.

Bibliography 91

[Gre02] Michael Greenwald. Two-handed emulation: how to build non-blocking implementation of
complex data-structures using dcas. In Proc. of PODC 2002, pages 260–269, 2002.

[GS78] Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In
Proc. of FOCS 1978, pages 8–21, 1978.

[GT90] Gary Graunke and Shreekant S. Thakkar. Synchronization algorithms for shared-memory
multiprocessors. IEEE Computer, 23(6):60–69, 1990.

[GVW89] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficent synchronization primi-
tives for large-scale cache-coherent multiprocessors. In Proc. of ASPLOS 1989, pages 64–75,
1989.

[HAN08] Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. Oracle semantics for
concurrent separation logic. In Proc. of ESOP’08, volume 4960 of LNCS, pages 353–367.
Springer, 2008.

[Har01] Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proc. of
DISC 2001, pages 300–314, 2001.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991.

[Her93] Maurice Herlihy. A methodology for implementing highly concurrent objects. ACM Trans.
Program. Lang. Syst., 15(5):745–770, 1993.

[HF03] Timothy L. Harris and Keir Fraser. Language support for lightweight transactions. In Proc.
of OOPSLA 2003, pages 388–402, 2003.

[HFM88] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for barrier synchroniza-
tion. Int. J. Parallel Program., 17(1):1–17, 1988.

[HFP02] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. A practical multi-word compare-and-swap
operation. In Proc. of DISC 2002, pages 265–279, 2002.

[HLM02] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender problem: A mech-
anism for supporting dynamic-sized, lock-free data structures. In Proc. of DISC 2002, pages
339–353, 2002.

[HLM03] Maurice Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free synchronization:
Double-ended queues as an example. In Proc. of ICDCS 2003, pages 522–529, 2003.

[HLMI03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. Software trans-
actional memory for dynamic-sized data structures. In Proc. of PODC 2003, pages 92–101,
2003.

[HLS95] Maurice Herlihy, Beng-Hong Lim, and Nir Shavit. Scalable concurrent counting. ACM
Trans. Comput. Syst., 13(4):343–364, 1995.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for
lock-free data structures. In Proc. of ISCA 1993, pages 289–300, 1993.

[HMPS96] Galen C. Hunt, Maged M. Michael, Srinivasan Parthasarathy, and Michael L. Scott. Concur-
rent access of priority queues. Inf. Process. Lett., 60(3):151–157, 1996.

[HS02] Danny Hendler and Nir Shavit. Work dealing. In Proc. of SPAA 2002, pages 164–172, 2002.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgran-
Kaufmann, 2008.

92 Bibliography

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A scalable lock-free stack algorithm. In
Proc. of SPAA 2004, pages 206–215, 2004.

[HW90] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[HW91] Qin Huang and William E. Weihl. An evaluation of concurrent priority queue algorithms. In
Proc. of SPDP 1991, pages 518–525, 1991.

[HY86] Meichun Hsu and Wei-Pang Yang. Concurrent operations in extendible hashing. In Proc. of
VLDB 1986, pages 241–247, 1986.

[IBM] IBM. System/370 principles of operation. order number ga22-7000.

[IBM03] IBM. Powerpc microprocessor family: Programming environments manual for 64 and 32-bit
microprocessors, version 2.0, 2003.

[III86] Eugene D. Brooks III. The butterfly barrier. Int. J. Parallel Program., 15(4):295–307, 1986.

[Int94] Intel. Pentium processor family user’s manual: Vol 3, architecture and programming manual,
1994.

[IR93] Amos Israeli and Lihu Rappoport. Efficient wait-free implementation of a concurrent priority
queue. In Proc. of WDAG 1993, pages 1–17, 1993.

[JJKS97] Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund, and Michael I. Schwartzbach. Auto-
matic verification of pointer programs using monadic second-order logic. In Proc. of PLDI
1997, pages 226–236, 1997.

[Joh91] T. Johnson. A highly concurrent priority queue based on the b-link tree. Technical report,
University of Florida, 1991.

[Jou02] Yuh-Jzer Joung. Nonblocking algorithms and preemption-safe locking on multiprogrammed
shared memory multiprocessors. Distributed Computing, 15(3):155–175, 2002.

[Kan89] G. Kane. MIPS RISC Architecture. Prentice-Hall, Inc., New York, USA, 1989.

[Kes83] Joep L. W. Kessels. On-the-fly optimization of data structures. Commun. ACM, 26(11):895–
901, 1983.

[KL80] H. T. Kung and Philip L. Lehman. Concurrent manipulation of binary search trees. ACM
Trans. Database Syst., 5(3):354–382, 1980.

[KM99] Patrick Keane and Mark Moir. A simple local-spin group mutual exclusion algorithm. In
Proc. of PODC 1999, pages 23–32, 1999.

[KMH97] Marcel Kornacker, C. Mohan, and Joseph M. Hellerstein. Concurrency and recovery in
generalized search trees. In Proc. of SIGMOD 1997, pages 62–72, 1997.

[KNR05] Viktor Kuncak, Huu Hai Nguyen, and Martin C. Rinard. An algorithm for deciding BAPA:
Boolean Algebra with Presburger Arithmetic. In CADE’05, pages 260–277, 2005.

[Knu68] D. Knuth. The Art of Computer Programming: Fundamental Algorithms. Addison-Wesley,
1968.

[KR81] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM
Trans. Database Syst., 6(2):213–226, 1981.

[KSUH93] Orran Krieger, Michael Stumm, Ronald C. Unrau, and Jonathan Hanna. A fair fast scalable
reader-writer lock. In Proc. of ICPP 1993, pages 201–204, 1993.

Bibliography 93

[Kum90] Vijay Kumar. Concurrent operations on extendible hashing and its performance. Commun.
ACM, 33(6):681–694, 1990.

[LAA87] M. Loui and H. Abu-Amara. Memory requirements for agreement among unreliable asyn-
chronous processes. Advances in Computing Research, 4:163–183, 1987.

[Lam74] Leslie Lamport. A new solution of dijkstra’s concurrent programming problem. Commun.
ACM, 17(8):453–455, 1974.

[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Trans. Computers, 28(9):690–691, 1979.

[Lam83] Leslie Lamport. Specifying concurrent program modules. ACM Trans. Program. Lang. Syst.,
5(2):190–222, 1983.

[Lar01] Kim S. Larsen. Relaxed multi-way trees with group updates. In Proc. of PODS 2001, pages
93–101, 2001.

[Lar02] Kim S. Larsen. Relaxed red-black trees with group updates. Acta Inf., 38(8):565–586, 2002.

[Lea99] D. Lea. Concurrent Programming in JAVA(TM): Design Principles and Pattern. Addison-
Wesley, 1999.

[Lei98] K. Rustan M. Leino. Data groups: Specifying the modification of extended state. In OOP-
SLA’98, pages 144–153. ACM, 1998.

[LF95] Kim S. Larsen and Rolf Fagerberg. B-trees with relaxed balance. In Proc. of IPPS 1995,
pages 196–202, 1995.

[Lit80] Witold Litwin. Linear hashing: A new tool for file and table addressing. In Proc. of VLDB
1980, pages 212–223, 1980.

[LQ06] Shuvendu K. Lahiri and Shaz Qadeer. Verifying properties of well-founded linked lists. In
Proc. of POPL 2006, pages 115–126, 2006.

[LQ08] Shuvendu K. Lahiri and Shaz Qadeer. Back to the future: revisiting precise program verifi-
cation using smt solvers. In Proc. of POPL’08, pages 171–182. ACM, 2008.

[Man84] Udi Manber. On maintaining dynamic information in a concurrent environment. In Proc. of
STOC 1984, pages 273–278, 1984.

[McM99] Kenneth L. McMillan. Circular compositional reasoning about liveness. In Proc. of
CHARME’99, volume 1703 of LNCS, pages 342–345. Springer, 1999.

[MCS91a] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, 1991.

[MCS91b] John M. Mellor-Crummey and Michael L. Scott. Scalable reader-writer synchronization for
shared-memory multiprocessors. In Proc. of PPOPP 1991, pages 106–113, 1991.

[Mic02a] Maged M. Michael. High performance dynamic lock-free hash tables and list-based sets. In
Proc. of SPAA 2002, pages 73–82, 2002.

[Mic02b] Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using atomic
reads and writes. In Proc. of PODC 2002, pages 21–30, 2002.

[ML92] C. Mohan and Frank E. Levine. Aries/im: An efficient and high concurrency index man-
agement method using write-ahead logging. In Proc. of SIGMOD 1992, pages 371–380,
1992.

94 Bibliography

[MLH94] Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue locks on cache coherent
multiprocessors. In Proc. of IPPS 1994, pages 165–171, 1994.

[MMS02] P. Martin, M. Moir, and G. Steele. Dcas-based concurrent deques supporting bulk allocation.
Technical report, Sun Microsystems Laboratories, 2002.

[MN05] Scott McPeak and George C. Necula. Data structure specifications via local equality axioms.
In Proc. of CAV 2005, pages 476–490, 2005.

[Mot86] Motorola. Mc68020 32-bit microprocessor user’s manual, 1986.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems. Springer, 1995.

[MS95] M. Michael and M. Scott. Correction of a memory management method for lock-free data
structures. Technical report, University of Rochester, 1995.

[MS98] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and preemption-safe
locking on multiprogrammed shared memory multiprocessors. J. Parallel Distrib. Comput.,
51(1):1–26, 1998.

[MS07] M. Moir and N. Shavit. Concurrent data structures. In Handbook of Data Structures and
Applications, pages 47–14 — 47–30, 2007. Chapman and Hall/CRC Press.

[Nel83] Greg Nelson. Verifying reachability invariants of linked structures. In Proc. of POPL 1983,
pages 38–47, 1983.

[NO79] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision procedures. ACM
Trans. Program. Lang. Syst., 1(2):245–257, 1979.

[NSS91] Otto Nurmi and Eljas Soisalon-Soininen. Uncoupling updating and rebalancing in chromatic
binary search trees. In Proc. of PODS 1991, pages 192–198, 1991.

[NSSW87] Otto Nurmi, Eljas Soisalon-Soininen, and Derick Wood. Concurrency control in database
structures with relaxed balance. In Proc. of PODS 1987, pages 170–176, 1987.

[Opp80] Derek C. Oppen. Reasoning about recursively defined data structures. J. ACM, 27(3):403–
411, 1980.

[PLJ91] Sundeep Prakash, Yann-Hang Lee, and Theodore Johnson. A non-blocking algorithm for
shared queues using compare-and-swap. In Proc. of ICPP 1991, pages 68–75, 1991.

[Pug90] William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,
33(6):668–676, 1990.

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proc. of
LICS’02, pages 55–74. IEEE CS Press, 2002.

[RG01] Ravi Rajwar and James R. Goodman. Speculative lock elision: enabling highly concurrent
multithreaded execution. In Proc. of MICRO 2001, pages 294–305, 2001.

[RG02] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-based pro-
grams. In Proc. of ASPLOS 2002, pages 5–17, 2002.

[RK88] V. Nageshwara Rao and Vipin Kumar. Concurrent access of priority queues. IEEE Trans.
Computers, 37(12):1657–1665, 1988.

[RRZ05] Silvio Ranise, Christophe Ringeissen, and Calogero G. Zarba. Combining data structures
with nonstably infinite theories using many-sorted logic. In FROCOS’05, pages 48–64, 2005.

[RZ06a] Silvio Ranise and Calogero G. Zarba. A theory of singly-linked lists and its extensible deci-
sion procedure. In Proc. of SEFM 2006. IEEE CS Press, 2006.

Bibliography 95

[RZ06b] Silvio Ranise and Calogero G. Zarba. A theory of singly-linked lists and its extensible deci-
sion procedure. In Technical report, 2006.

[Sag86] Yehoshua Sagiv. Concurrent operations on b*-trees with overtaking. J. Comput. Syst. Sci.,
33(2):275–296, 1986.

[Sco02] Michael L. Scott. Non-blocking timeout in scalable queue-based spin locks. In Proc. of
PODC 2002, pages 31–40, 2002.

[SDK10] Philippe Suter, Mirco Dotta, and Viktor Kuncak. Decision procedures for algebraic data
types with abstractions. In Proc. of POPL’10, pages 199–210. ACM, 2010.

[SI94] CORPORATE SPARC International, Inc. The SPARC architecture manual (version 9).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[SI01] Michael L. Scott and William N. Scherer III. Scalable queue-based spin locks with timeout.
In Proc. of PPOPP 2001, pages 44–52, 2001.

[Sip99] Henny B. Sipma. Diagram-Based Verification of Discrete, Real-Time and Hybrid Systems.
PhD thesis, Stanford University, 1999.

[Sit92] R. Sites. Alpha architecture reference manual, 1992.

[SMC92] M. L. Scott and J. M. Mellor-Crummey. Fast, contention-free combining tree barriers. Tech-
nical report, University of Rochester, Rochester, NY, USA, 1992.

[SS03] Ori Shalev and Nir Shavit. Split-ordered lists: lock-free extensible hash tables. In Proc. of
PODC 2003, pages 102–111, 2003.

[SS10] Alejandro Sánchez and César Sánchez. Decision procedures for the temporal verification of
concurrent lists. In Proc. of ICFEM’10, volume 6447 of LNCS, pages 74–89. Springer, 2010.

[SS11] Alejandro Sánchez and César Sánchez. A theory of skiplists with applications to the verifi-
cation of concurrent datatypes. In Proc. of NFM’11, volume 6617 of LNCS, pages 343–358.
Springer, 2011.

[ST97a] Nir Shavit and Dan Touitou. Elimination trees and the construction of pools and stacks.
Theory Comput. Syst., 30(6):645–670, 1997.

[ST97b] Nir Shavit and Dan Touitou. Software transactional memory. Distributed Computing,
10(2):99–116, 1997.

[ST03] Håkan Sundell and Philippas Tsigas. Fast and lock-free concurrent priority queues for multi-
thread systems. In Proc. of IPDPS 2003, page 84, 2003.

[SZ96] Nir Shavit and Asaph Zemach. Diffracting trees. ACM Trans. Comput. Syst., 45(4):385–428,
1996.

[SZ99] Nir Shavit and Asaph Zemach. Scalable concurrent priority queue algorithms. In Proc. of
PODC 1999, pages 113–122, 1999.

[Tar51] Alfred Tarski. A decision method for elementary algebra and geometry. University of Cali-
fornia Press, 1951.

[Tre86] R. K. Treiber. Systems programming: Coping with parallelism. Technical report, IBM
Almaden Research Center, 1986.

[TZ04] Cesare Tinelli and Calogero G. Zarba. Combining decision procedures for sorted theories.
In JELIA’04, volume 3229 of LNCS, pages 641–653. Springer, 2004.

96 Bibliography

[Vaf07] Viktor Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of
Cambridge, 2007.

[Val95] John D. Valois. Lock-free linked lists using compare-and-swap. In Proc. of PODC 1995,
pages 214–222, 1995.

[VHHS06] Viktor Vafeiadis, Maurice Herlihy, Tony Hoare, and Marc Shapiro. Proving correctness of
highly-concurrent linearisable objects. In Proc of PPoPP’06, pages 129–136. ACM, 2006.

[WPK09] Thomas Wies, Ruzica Piskac, and Viktor Kuncak. Combining theories with shared set op-
erations. In Proc. of Frontiers of Combining Systems (FroCoS’09), volume 5749 of LNCS,
pages 366–382. Springer, 2009.

[YRS+06] Greta Yorsh, Alexander Moshe Rabinovich, Mooly Sagiv, Antoine Meyer, and Ahmed Boua-
jjani. A logic of reachable patterns in linked data-structures. In FOSSACS’06, pages 94–110,
2006.

[YTL87] Pen-Chung Yew, Nian-Feng Tzeng, and Duncan H. Lawrie. Distributing hot-spot addressing
in large-scale multiprocessors. IEEE Trans. Computers, 36(4):388–395, 1987.

[Zar03] Calogero G. Zarba. Combining sets with elements. In Verification: Theory and Practice,
volume 2772 of LNCS, pages 762–782. Springer, 2003.

	Resumen
	Abstract
	Acknowledgments
	Introduction
	Designing Concurrent Data Structures
	Performance Concerns
	Synchronization Techniques
	Verification Techniques
	Synchronization Elements
	Some Concurrent Data Structures

	Decision Procedures for Pointer Based Data Structures

	Preliminaries
	Regional Logic
	Verification Diagrams

	Concurrent Lists and Skiplists
	Concurrent Lock-Coupling Lists
	Concurrent Skiplists

	TLL3: A Decision Procedure for Concurrent Lock-Coupling Lists
	Decidability of TLL3
	A Combination-based Decision Procedure for TLL3
	Verifying Some Properties Over Concurrent Lists
	Termination of Concurrent Lock-Coupling Lists
	No Thread Overtakes

	TSLK: A Decision Procedure for Concurrent Skiplists
	Decidability of TSLK
	A Combination-based Decision Procedure for TSLK
	Extending TSLK to Reason about (L,U,H)
	Verifying Some Properties Over Concurrent Skiplists
	Skiplist Preservation
	Termination of an Arbitrary Thread

	Conclusion
	Bibliography

