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Resumen

Los tipos de datos concurrentes son implementaciones concurrentes de las abstracciones de
datos clásicas, con la diferencia de que han sido específicamente diseñados para aprovechar
el gran paralelismo disponible en las modernas arquitecturas multiprocesador y multinúcleo.
La correcta manipulación de los tipos de datos concurrentes resulta esencial para demostrar la
completa corrección de los sistemas de software que los utilizan. Una de las mayores dificultades
a la hora de diseñar y verificar tipos de datos concurrentes surge de la necesidad de tener que
razonar acerca de un número arbitrario de procesos que invocan estos tipos de datos de manera
concurrente. Esto requiere considerar sistemas parametrizados. En este trabajo estudiamos la
verificación formal de propiedades temporales de sistemas concurrentes parametrizados, poniendo
especial énfasis en programas que manipulan estructuras de datos concurrentes.

La principal dificultad a la hora de razonar acerca de sistemas concurrentes parametrizados
proviene de la interacción entre el gran nivel de concurrencia que éstos poseen y la necesidad de
razonar al mismo tiempo acerca de la memoria dinámica. La verificación de sistemas parametriza-
dos resulta en sí un problema desafiante debido a que requiere razonar acerca de estructuras
de datos complejas que son accedidas y modificadas por un numero ilimitado de procesos que
manipulan de manera simultánea el contenido de la memoria dinámica empleando métodos de
sincronización poco estructurados.

En este trabajo, presentamos un marco formal basado en métodos deductivos capaz de ocu-
parse de la verificación de propiedades de safety y liveness de sistemas concurrentes parametriza-
dos que manejan estructuras de datos complejas. Nuestro marco formal incluye reglas de prueba
y técnicas especialmente adaptadas para sistemas parametrizados, las cuales trabajan en co-
laboración con procedimientos de decisión especialmente diseñados para analizar complejas
estructuras de datos concurrentes. Un aspecto novedoso de nuestro marco formal es que efectúa
una clara diferenciación entre el análisis del flujo de control del programa y el análisis de los
datos que se manejan.

El flujo de control del programa se analiza utilizando reglas de prueba y técnicas de verificación
deductivas especialmente diseñadas para lidiar con sistemas parametrizados. Comenzando a
partir de un programa concurrente y la especificación de una propiedad temporal, nuestras
técnicas deductivas son capaces de generar un conjunto finito de condiciones de verificación cuya
validez implican la satisfacción de dicha especificación temporal por parte de cualquier sistema,
sin importar el número de procesos que formen parte del sistema.

Las condiciones de verificación generadas se corresponden con los datos manipulados. Es-
tudiamos el diseño de procedimientos de decisión especializados capaces de lidiar con estas
condiciones de verificación de manera completamente automática. Investigamos teorías decidi-
bles capaces de describir propiedades de tipos de datos complejos que manipulan punteros, tales
como implementaciones imperativas de pilas, colas, listas y skiplists. Para cada una de estas
teorías presentamos un procedimiento de decisión y una implementación práctica construida
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sobre SMT solvers. Estos procedimientos de decisión son finalmente utilizados para verificar de
manera automática las condiciones de verificación generadas por nuestras técnicas de verificación
parametrizada.

Para concluir, demostramos como utilizando nuestro marco formal es posible probar no solo
propiedades de safety sino además de liveness en algunas versiones de protocolos de exclusión
mutua y programas que manipulan estructuras de datos concurrentes. El enfoque que presentamos
en este trabajo resulta ser muy general y puede ser aplicado para verificar un amplio rango de
tipos de datos concurrentes similares.

Palabras clave:

Concurrencia, Sistemas Parametrizados, Verificación Temporal, Safety, Liveness, Procedimientos
de Decisión, Estructuras de Datos
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Abstract

Concurrent data types are concurrent implementations of classical data abstractions, specifi-
cally designed to exploit the great deal of parallelism available in modern multiprocessor and
multi-core architectures. The correct manipulation of concurrent data types is essential for the
overall correctness of the software system built using them. A major difficulty in designing and
verifying concurrent data types arises by the need to reason about any number of threads invoking
the data type simultaneously, which requires considering parametrized systems. In this work we
study the formal verification of temporal properties of parametrized concurrent systems, with a
special focus on programs that manipulate concurrent data structures.

The main difficulty to reason about concurrent parametrized systems comes from the com-
bination of their inherently high concurrency and the manipulation of dynamic memory. This
parametrized verification problem is very challenging, because it requires to reason about com-
plex concurrent data structures being accessed and modified by threads which simultaneously
manipulate the heap using unstructured synchronization methods.

In this work, we present a formal framework based on deductive methods which is capable
of dealing with the verification of safety and liveness properties of concurrent parametrized
systems that manipulate complex data structures. Our framework includes special proof rules
and techniques adapted for parametrized systems which work in collaboration with specialized
decision procedures for complex data structures. A novel aspect of our framework is that it
cleanly differentiates the analysis of the program control flow from the analysis of the data being
manipulated.

The program control flow is analyzed using deductive proof rules and verification techniques
specifically designed for coping with parametrized systems. Starting from a concurrent program
and a temporal specification, our techniques generate a finite collection of verification conditions
whose validity entails the satisfaction of the temporal specification by any client system, in spite
of the number of threads.

The verification conditions correspond to the data manipulation. We study the design of
specialized decision procedures to deal with these verification conditions fully automatically. We
investigate decidable theories capable of describing rich properties of complex pointer based data
types such as stacks, queues, lists and skiplists. For each of these theories we present a decision
procedure, and its practical implementation on top of existing SMT solvers. These decision
procedures are ultimately used for automatically verifying the verification conditions generated
by our specialized parametrized verification techniques.

Finally, we show how using our framework it is possible to prove not only safety but also
liveness properties of concurrent versions of some mutual exclusion protocols and programs that
manipulate concurrent data structures. The approach we present in this work is very general,
and can be applied to verify a wide range of similar concurrent data types.
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1
Introduction

“ It’s the job that’s never started as takes longest to
finish. ”

Samwise Gamgee

(The Fellowship of the Ring)

This work studies the formal verification of parametrized temporal properties of concurrent
systems which are composed by an unbounded number of threads. In particular, we are inter-
ested in programs that dynamically modify the heap, manipulating complex pointer-based data
structures. We propose the construction of a general verification framework which tackles the
problem of verifying temporal properties of concurrent parametrized systems, considering the
following three main aspects:

Parametrized Systems: The main concern we study on this work is the parametrized verification
of concurrent systems. The systems we study are composed by an unbounded number of
threads. In general, these threads could be executing arbitrary different programs. We
consider a simple scenario, in which all threads are executing the same program. This is
the typical case of programs manipulating data structures.

The properties we analyze on these kind of systems are also parametrized by arbitrary
threads. Consider, for instance, the following property:

mutex(i, j) :  (i 6= j → ¬(critical(i) ∧ critical(j)))

Property mutex is described by a parametrized temporal formula stating that it is always
the case that if threads i and j are different, then they are not at the critical section
simultaneously. Note that as the formula is parametrized by thread identifiers i and j,
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CHAPTER 1. INTRODUCTION

verifying this formula implies that the property holds for any two arbitrary threads which
are part of the system.

Parametrized verification remains important because it enables the verification of properties
for a family of system, independently on how many threads run such system. In other
words, the verification of a parametrized property implies the verification of such property
for any arbitrary instance of the system under study.

As expected, parametrized verification is also difficult to perform, since the reasoning must
deal with an unbounded number of processes and threads. Under special circumstances
techniques based on closed or bounded instances of a parametrized system can be used
to carry some parametrized verification. However, these techniques are limited and the
assumption of an unbounded system makes necessary the creation of specialized verification
methods for parametrized systems.

Temporal Verification: In general, most of the previous work regarding parametrized veri-
fication targets only the analysis of safety properties, like the absence of null pointer
dereferences, memory leaks and invalid references inside a program. However liveness
properties are also interesting for reactive systems and specially for programs that manipu-
late concurrent data types. For example, consider a concurrent list. We would like not only
to verify that the shape of the data structure is always of a valid list, but also that if a thread
tries to insert a new element into the list, then this attempt will eventually succeed. Because
of that, this work studies the construction of a general framework for the verification of
both, safety and liveness properties, for parametrized concurrent systems.

Complex Pointer-based Datatypes: Most of real life programs require to manipulate the heap
and use complex pointer-based data structures such as stacks, queues, lists and trees to
store the data they manage. Hence, it is natural to seek a general verification method which
may allow to cover as many different data types as possible.

There are numerous techniques specifically developed for abstracting the behaviour of a
program into an abstract representation using simple data types such as Booleans and
integers. In general, when abstractions are applied, part of the original information is lost
due to the abstraction process itself. Moreover, not all abstractions are usually suitable for
all complex data types. Hence, we study the development of a more general framework
which do not rely on any data abstraction and which is able to cover a wide range of real
complex data structures.

It is clear that, due to the state space explosion and the number of interleaving, software
verification is crucial for certifying the correctness of any critical system. With the advent
of multi-core technology, the importance of concurrent programs and the design of efficient
concurrent data structures has become a major field of study in the last years. Concurrent
data types are designed to exploit the parallelism of multiprocessor architectures by employing
very weak forms of synchronization, like lock-freedom and fine-grain locking, allowing multiple
threads to concurrently access the underlying data. Concurrent data structures are hard to design,
challenging to implement correctly and even more difficult to formally prove correct. The formal
verification of these concurrent programs is a very challenging task, particularly considering that
they manipulate complex data structures capable of storing unbounded data, and are executed by
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an unbounded number of threads. Consequently, novel verification techniques are required in
order to cope with the verification of such complex systems.

The problem we study presents itself as interesting and challenging. The main difficulty in
reasoning about concurrent data types comes from the interaction of unstructured unbounded
concurrency, and heap manipulation. “Unstructured” concurrency refers to programs that are not
structured in sections protected by locks and with clear memory footprints, but to programs that
allow a more liberal pattern of memory accesses. In general, programmers attempts to use more
liberal and unstructured memory accesses as doing so in general improve the overall performance
of concurrent data structures implementations. But the reasoning about the correctness of the
program is also “unbounded”, which refers to the aforementioned lack of a-priori bound on the
number of threads. Because of this, it is impossible to estimate or compute the total number of
threads involved in the system execution.

An advantage of parametrized verification is that it enables the analysis of a concurrent
system for any possible thread instantiation. This means that once a parametrized property
is verified, then the system can grow arbitrary big while still satisfying the verified properties.
Parametrized verification provides the ultimate guarantee for evolving systems which may grow
in the future. Furthermore, parametrized programs are useful in many settings including device
drivers, distributed algorithms, concurrent data structures, robotic swarms, and biological systems
among others.

Despite a lot of research concerning parametrized and concurrent verification has been done
in the last years, there are still plenty of open questions that require to be answered.

Following the success of separation logic [180], most current verification techniques for heap
manipulating programs are based on this logic. However, their application to the verification
of concurrent programs has not yet been fully explored. For instance, we believe that one of
the major drawbacks derived from the use of separation logic comes from its most important
operator. When using the heap separating conjunction operator (represented with “*”), the heap
is implicitly split into two disjoint sections. The problem here is that the user has no full control on
how the heap is partitioned. This limitation comes evident with data structures such as skiplists,
where a fine partitioning of memory cells may be required in order to represent the skiplist layout
into the memory. To prevent this problem, we advocate for the use of explicit region manipulation,
using sets and heap regions to denote disjoint sections of the heap. We believe that a explicit
heap partitioning adapts better to the philosophy of unstructured concurrent data manipulation.

Currently, there exists a vast range of automatic techniques aiming the verification of con-
current programs. However, they are limited to programs that reason about simple data types,
such as Booleans and integers, or they are restricted to the analysis of bounded data structures,
such as skiplists with at most n levels. Even though, in some cases, complex data structures can
be abstracted into simpler representations which enable the use of automatic techniques, most
concurrent programs deal with complex pointer-based data structures such as lists or trees in
order to store their data and information. For this reason, we target a more general verification
framework based on deductive methods, willing to sacrifice automation in exchange for generality
on the variety of data structures we can analyze.

Finally, most of the verification work under development is restricted to the study of safety
properties. We advocate for a single verification framework general enough as to tackle both,
safety and liveness temporal parametrized properties.

Bearing these problems in mind, the main contribution of this work is a general verification
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framework for the analysis of parametrized temporal properties, capable of dealing with the class
of systems stated above. In the framework we propose, we interpret the operational semantics
of the program as a state transition system and we use deductive techniques to reduce the
verification problem to a proof of validity of a finite collection of verification conditions.

The framework we propose is grounded on the following basis:

• We propose the use of deductive verification methods instead of fully automatic techniques.
Besides been incomplete, automatic methods are also currently limited to the analysis of
simple data types. We believe that the use of deductive techniques enables the verification
of richer data structures in exchange of some extra work from part of the user. Moreover,
in our experience, the extra work needed to be done by the user is very close to the
reasoning needed to understand the functionality of the program and the data types. In
other words, deductive methods present themselves as natural candidates for reasoning
about parametrized concurrent systems.

• In order to target the verification of temporal parametrized properties, we propose the
use of specialized proof rules and formalisms capable of tackling both safety and liveness
properties. The deductive techniques we suggest ultimately reduce the verification process
to a finite collection of verification conditions.

For safety properties, we propose novel proof rules for parametrized systems following
the ideas behind well known deductive methods for the verification of invariants in non-
parametrized systems. The proof rules we include in our framework extract a finite collection
of verification conditions given a program description and a temporal safety property. The
validity of these verification conditions entails the fact that the safety property is satisfied by
any instance of systems composed by any arbitrary number of threads executing the program.
A key aspect of these proof rules is that the number of generated verification conditions
depends solely of the length of the program and the number of threads parametrizing the
safety specification, but never on the total number of threads involved in the systems.

In the case of liveness properties, we present an extension of a deductive formalism
originally developed for verifying temporal specifications of closed systems. The method
is based on the construction of a formula automaton which represents the proof that a
system composed by an arbitrary number of threads executing a specific program satisfies
a given liveness property. Similarly to the proof rules for safety properties, the formalism
we propose for liveness verification ultimately generates a finite collection of verification
conditions, whose number depends solely on the program and the temporal specification
itself.

• We suggest the use of specialized decision procedures to enable the study of programs
that manipulate a wide range of data structures and not only simple data types. We
believe that following this idea, it is possible to use our framework to verify any program
which manipulates a data type for which there exists a decision procedure. The basis
behind this idea is that if a program manipulates a data structure for which there exists a
decision procedure, then such decision procedure can be used to automatically validate the
verification conditions generated using a specialized deductive techniques.

From our point of view, one of the main advantages of our framework is the clean separation
it makes between:

4



1.1. Related Work

1. the analysis of the program control flow, and;

2. the analysis of the data manipulated by the program.

While the control flow of the concurrent program is verified using novel deductive proof rules
and formalisms, the manipulation of data is verified using specialized decision procedures. By
clearly distinguishing control flow from data, our framework is even more reusable. For example,
our parametrized verification techniques for safety and liveness can virtually be used for the
analysis of concurrent programs manipulating any data type as far as a decision procedure exists
for such data type. Similarly, the decision procedures we present here can be used for checking
the satisfiability of formulas which has not been necessarily generated using our verification
techniques.

1.1 Related Work

The main application goal of this work is the verification of parametrized concurrent data
types [107], where the main difficulty arises, as we have stated before, from the mix of unstruc-
tured unbounded concurrency and heap manipulation.

This work tackles the verification of concurrent data types using the assumption of full
symmetry. In fact, concurrent data types can be modeled naturally as fully symmetric parametrized
systems, where each thread executes in parallel a client of the data type. Under the principle of
full symmetry, all threads identifiers are interchangeable.

Related to our work, there exists a vast bibliography which deals with logics for concurrent
heap reasoning, parametrized verification for concurrent systems and decision procedures. We
now present a brief description of the most relevant work within each of these areas.

1.1.1 Logics for Concurrent Heap Reasoning

The literature involving decidable logics for describing mutable data structures is rather extensive.
Although there exist frameworks based techniques such as model-checking [211], in general,
most of the work in formal verification of sequential pointer programs is based on program logics
following the Hoare tradition, equipped to deal with pointer structures in the heap [34,132,213].
The problem is that extending these logics to deal with concurrent programs is hard, and though
some success has been accomplished this is still an open area of research, particularly for liveness
properties [54,92].

In this sense, separation logic [165,180] is the most well known and extensively used general
framework for describing dynamically allocated mutable data structures in the heap. In fact, it has
been shown [117] that, in general, any separation logic formula using rather general recursively
defined predicates (which in general should be enough to describe single and double linked lists,
trees and a combination of them) is decidable for satisfiability.

When considering concurrency, there is a whole successful line of research involving concur-
rent separation logic [38, 110, 164]. Some of the techniques developed for the application of
separation logic to concurrent systems include the analysis of shared variables [33, 166]; per-
mission accounting [32]; concurrent abstract predicates [67]; impredicative concurrent abstract
predicates [196]; concurrent local subjective logic [173]; granularity abstraction for modu-
lar verification of higher-order concurrent programs [202]; fine-grained concurrent separation

5



CHAPTER 1. INTRODUCTION

logic [159]; combination of rely-guarantee with separation logic (RGSep) [208] and combination
of fractional permissions with abstract predicates [97] which enables the verification of data race
freedom, absence of null-dereferences and partial correctness.

The main advantage of separation logic is its ability to describe compositional proofs, mainly
thanks to the principle of local reasoning. This principle allows to work on disjoint parts of the
global heap, combining later the result of the analysis through a composition operator which
implicitly sets a partition in the heap. Interestingly, this ability of implicitly splitting the heap
is also one of the main weakness of separation logic, as the user cannot refer explicitly to the
partitioning of the heap. On the contrary, on this work we advocate for the use of explicit heap
regions [14] which provide the user full control over the heap partitioning. Explicit regions allow
the use of a classical first-order assertion language to reason about heaps, including mutation
and disjointness of memory regions. Regions correspond to finite sets of object references. Unlike
separation logic, the theory of sets [210] can be easily combined with other classical theories to
build more powerful decision procedures. Classical theories are also amenable of integration into
SMT solvers [16]. In practice, using explicit regions requires the annotation and manipulation of
ghost variables of type region, but adding these annotations is usually straightforward.

Separation logic [164] has been successfully used in the verification of many non-blocking
algorithms which manipulate data structures such as lists, stacks, queues and many mutual
exclusion protocols among others [92, 167, 203, 207]. When dealing with more complex data
structures, such as skiplists, an alternative for memory layouts is shape analysis [209], like
forest automata [4,112]. However, this approach can handle skiplists only of a bounded height
(empirical evaluation suggests a current limit of 3). Unlike [112], our approach is not fully
automatic in the sense that it requires some annotations—provided by the user—, but on the
other hand our approach can handle arbitrary skiplists. The burden of additional annotation can
be alleviated with methods like invariant generation, something we also explore in this work.

1.1.2 Parametrized Verification

The problem of verifying parametrized finite state systems has received a lot of attention in recent
years. In general, the problem is undecidable [9], even for finite state components [195]. There
are two ways to overcome this limitation:

(i) algorithmic approaches, which are necessarily incomplete; and

(ii) deductive proof methods.

Typically, algorithmic methods—in order to regain decidability—are restricted to finite state
processes [44,45,70] and finite state shared data. Some examples are synchronous systems with
guards [87]; interleaving systems with pairwise rendezvous [73]; systems with only conjunctive
guards or only disjunctive guards [70]; implicit induction [72]; network invariants [137];
context-free network grammar abstractions for verifying families of state-transition systems [47];
and abstractions of configurations as words from a regular language [1, 3, 46, 147]. A related
technique, used in parametrized model checking, is symmetry reduction [48, 74]. There also
exist some automatic approaches designed to automatically verify specific properties such as
linearizability [205]. Our approach is not automatic, but can be used to prove many properties
other than linearizability.
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Other approaches are based on shape analysis, like [24]. However, in general, they are limited
to a fixed number of threads [6] or limited to fixed data structures or shapes, like simple linked-
list data structures [204]. We follow an alternative approach, by extending temporal deductive
methods like Manna-Pnueli [144] with specialized proof rules and formalisms for parametrized
systems, thus sacrificing full automation to handle complex concurrency and data manipulation.
This style of reasoning allows a clean separation in a proof between the temporal part (why
the interleaving of actions that a set of threads can perform satisfy a certain property) and the
underlying data being manipulated. Temporal deductive methods, like ours, are very powerful to
reason about (structured or unstructured) concurrency, but they have been traditionally restricted
to non-parametrized systems and scalar data. Our approach can be applied to any theory of
data with an available decision procedure. These aforementioned automatic approaches based
on shape analysis can alleviate the human intervention needed in our approach by generating
intermediate invariants.

Property directed techniques can be used to automatically prove invariants without manual
effort [111], but they are in general restricted to Boolean programs. Some approaches that use
abstraction, like thread quantification [24] and environment abstraction [49], are based on similar
principles as the full symmetry presented in this work. However, these approaches rely on building
specific abstract domains that abstract symbolic states instead of using decision procedures based
on SMT solvers, as in our work. A very powerful method is invisible invariants [10,169,214],
which works by heuristically generating invariants on small instantiations and trying to generalize
these to parametrized invariants. However, this method is so far restricted to finite state processes.
There exist results [2] proving decidability for systems with finite control flow and infinite domain
provided the infinite domain contains a well-founded preorder. A key difference is that, unlike
in [169], we generate quantifier-free verification conditions, which eases the development of
decision procedures for complex data types.

In contrast with these methods, the verification framework we present here can be applied to
any finite or infinite data domain for which there exists a decision procedure. The price to pay is,
of course, automation because one needs to provide additional program annotations in the form
of supporting invariants. We see our line of research as complementary to the lines mentioned
above. We start from a general method and investigate how to improve automation as opposed
to starting from a restricted automatic technique and improve its applicability. The verification
conditions we generate through our methods can still be verified automatically as long as there
are decision procedures for the data that the program manipulates.

Regarding liveness, we extend the formalism of general verification diagrams [39, 189]
so that it can deal with concurrent parametrized systems. The work that is closest to ours
is [145] and chapter 8 of [28], which also use diagrams to verify temporal properties of reactive
systems. However, they use quantification in the nodes and hence generate quantified verification
conditions. In many cases, using quantifiers sacrifices the automation in the proof of the
generated verification conditions. In this work, we present techniques for generating quantifier-
free verification conditions for parametrized systems that can be handled automatically by SMT
solvers.

A work close to ours is the deductive verification framework (DVF) [90], which consists on
a language and a tool for verifying properties of transition systems by generating verification
conditions from specific goals which are then passed to SMT engines. However, DFV is based on
Hoare style reasoning and does not tackle parametrized verification.
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Environment abstraction [49] and thread quantification abstractions [24] are abstraction
based techniques that deal with parametrized systems, but these techniques abstract processes and
data altogether, and hence are much more difficult to extend to arbitrary data and memory layouts.
In contrast, our approach can be applied to any data type as long as there is a decision procedure
for its memory state. This is also a key difference between our approach and parametrized model
checking for symmetric systems [71]. Similarly, [96] shows a verification approach which uses
abstract transition systems to simulate lock-free algorithms, however it is limited only to safety
and the simulation obscures the verification. Our framework, on the other hand, is capable of
dealing with liveness properties of lock-free algorithms.

A related technique for the verification of temporal properties is transition invariants [170],
which characterize the validity of termination or other liveness properties by the existence
of a disjunctively well-founded transition invariant. A transition invariant is a relation-based
abstraction of the transition relation of a program expressed as a disjunctive set of relations. We,
on the other hand, propose a formalism which denotes a state-based abstraction of the reachable
state-space of a program. Other techniques for checking program termination include [64]
and [89]. However, all these techniques are restricted to non-parametrized systems.

1.1.3 Automatic Parametrized Invariant Generation

As part of our verification framework, we study the automation of invariant generation for
parametrized systems. We propose a method which consists of abstracting the environment as
a singe thread. Our approach to deal with automatic parametrized invariant generation is an
instance of the general framework of thread-modular reasoning [49,81,101,142], where one
reasons about a thread in isolation given some assumptions about its environment (i.e., the
other concurrently executing threads). Notably, the approach we consider in this work builds the
assumptions incrementally via self-reflection.

One of the main issues in verifying parametrized programs is the interaction between a given
thread and its environment, consisting of the remaining threads. Abstracting this interaction
finitely has been considered recently [24,76]. In particular, the approach of [24] is very closely
related. Similarities include the notion of transferring invariants from a materialized thread to the
abstraction of the remaining threads. However, [24] does not explicitly specify an iteration scheme
describing how the inferred candidate invariants are transferred to the environment abstraction.
Besides, the effects of widening, including the potential non-monotonicity in many domains, are
not studied. As we will see in Chapter 5, such considerations have a significant impact on the
generated invariants. Another recent contribution is [76] which explores the interleaving of
control and data-flow analysis to better model the thread interference in parametrized programs.

In our work, we abstract away the effects of interacting threads by projecting away the local
variables. This idea is quite standard. For example, [155] analyzes multi-threaded embedded sys-
tems using this abstraction. Similarly, [121] presents a framework for the abstract interpretation
of multi-threaded programs with finitely-many threads. In such work, a melding operator is used
to model the effect of an interfering thread on the abstract state of the current thread.

The approach we use does not explicitly handle synchronization constructs such as locks
and pairwise rendezvous. These constructs can be handled using the framework of transaction
delineation presented in [121]. What we do is to use a single-threaded sequential analysis pass to
identify sections of the program which can be executed “atomically” while safely ignoring the
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interferences by the remaining threads.
Another class of approaches rely on finite model properties wherein invariants of finite

instantiations generalize to the parametrized system as a whole. One such approach is that of
invisible invariants pioneered by [169,214]. This approach finds inductive invariants by fixing
the number of processes and computing invariants on the instantiated system. These invariants
are heuristically generalized to the parametrized system, which are then checked to be inductive.
In [148], invisible invariants are generalized in the abstract interpretation framework as fixed
points. In specific instances, a finite model property is used to justify the completeness of this
technique. A related method is that of splitting invariants [50,158] that ease the automation of
invariant generation but also assumes finite state processes and the existence of a cut-off [70].

Other methods for automatically generating invariants consist on instrumenting the program
and letting a program to guess program invariants from a collection of executions [26,75], even
in combination with genetic algorithms [82]. However, these methods cannot tackle the problem
of generating parametrized invariants, as we do.

1.1.4 Verification Tools

The ideas presented in this work are implemented as part of a tool called LEAP. There exists a
wide range of tools for verifying concurrent systems. Smallfoot [23] is an automatic verifier that
uses concurrent separation logic for verifying sequential and concurrent programs. Smallfoot
depends on built-in rules for the data types, which are typically recursive definitions in separation
logic. Unlike our tool LEAP, Smallfoot cannot handle programs without strict separation (like
shared readers) or algorithms that do not follow the unrolling that is explicit in the recursive
definitions. TLA+ [42] is able to verify temporal properties of concurrent systems with the
aid of theorem provers and SMT solvers, but TLA+ does not support decision procedures for
data in the heap. Similarly, HAVOC [53] is capable of verifying C programs relying on Boogie
as intermediate language and Z3 as backend. Neither Frama-C [60] nor Jahob [129] handle
parametrized verification, which is necessary to verify concurrent data types (for any number of
threads). The closest system to LEAP is STeP [143], but STeP only handles temporal proofs for
simple data types. Unlike LEAP, none of these tools can reason about parametrized systems.

Chalice [135,136] is an experimental language that explores specification and verification of
concurrency in programs with dynamic thread creation and locks. VeriCool [191] uses dynamic
framing (as Chalice does) to tackle the verification of concurrent programs using Z3 as backend.
VerCors [31] is a tool for verifying concurrent multi-threaded and vector-based programming
models which relies on Chalice. However, none of these tools implement specialized decision
procedures for complex theories of data types. VCC [51] is an industrial-strength verification
environment for low-level concurrent system code written in C. Verification in VCC is done by
specifying preconditions, postconditions and type invariants. In comparison to LEAP it requires a
great amount of program annotation.

Other tools that employ separation logic as specification language or as an internal repre-
sentation language include Space Invader [21], Sleek [163], CAVE [205,206], Predator [68] and
Infer [41] among others.

A specification language which can be used as the framework we present here is Why3 [78],
which can also be used as intermediated language for other verification tools. However, it is not
specifically designed for tackling the verification of parametrized systems.

9



CHAPTER 1. INTRODUCTION

Specifically for dealing with liveness verification, there exist tools such as Terminator [55]
which can check liveness properties through program termination [54], but to our knowledge it
does not support parametrized systems.

1.1.5 Decision Procedures

In order to automatically verify properties of concurrent data structures, our approach relies on
the use of decision procedures. Since the work carried out by Burstall [40], many approaches
have been suggested and studied in order to deal with the verification of programs that manip-
ulate pointer-based data structures [13,20,27,61,119,131,149,161]. However, most of these
approaches experiment serious difficulties when reasoning about theories that combines pointers
with data. The key aspect in many of these approaches resides in the availability of decision
procedures to reason about cells (the basic building blocks of the data structure), memories,
and a reachability notion induced by following pointers. As reachability is not a first-order
concept, some feature must be added in order to cope with reachability. Hence, despite the
existence of precise and automatic techniques to reason about pointer reachability [119], not
many approaches focus on the combination of such techniques with decision procedures capable
of reasoning about data, pointers or locks. As a consequence, approximate solutions have come
out and little is known about the combination of such logics with decidable first-order theories to
reason about data and pointer values. In some cases, the information about data and pointers is
abstracted away to make the use of reachability tools [61] possible. In other cases, a first-order
approximation of reachability is used [161] so that decision procedures for the theories of pointers
and data can be used.

In [20], the decidability of a logic for pointer-based data structure is proven by showing that
it enjoys from finite model property. That is, given a formula, a finite model can be constructed
and used to witness the satisfiability of the formula. However, this logic can only reason about
reachability on lists, trees and graphs, but it cannot reason about the data stored in the data
structure. A generalization of [20] is presented in [213], but the emphasis once again is put on
expressing complex shape constraints rather than considering the data stored in the data type. In
general, pointer logics like [34,132,213] are very powerful to describe pointer structures, but
they require the use of quantifiers to reach their expressive power. In [22] the authors present a
fragment of separation logic oriented to linked lists whose decidability depends on a small model
property while [176] presents a decidable logic for heap manipulating programs. Similarly, in
combination with predicate abstraction, [13, 27] describe decision procedures which abstract
away the data. The problem these approaches suffer is that in general they are not expressible
enough. Some decidable logics for mutable data structures [35,157] are based on reductions to
monadic second order formulas. For instance, CSL [34] uses first-order logic with reachability in
combination with arithmetic theories to reason about shape, path lengths and data within the
heap. Similarly, STRAND [140] combines monadic second order logic, graphs and quantified
theories in order to provide decidable fragments using a reduction to monadic second order
theory of bounded trees. In these cases, the use of quantifiers precludes the combination of these
logics, using methods like Nelson-Oppen [162] or BAPA [128], with other aspects of the program
state to obtain an automatic reasoning engine for the combined theory. In comparison, the logics
we introduce in this work satisfy the conditions of the Nelson-Oppen combination method, and
hence can be extended with other reasoning procedures.
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Some logics such as [62] are capable of verifying pointer based sequential programs using
rewriting and tableaux. For many data types one can use directly SMT solvers [63, 84], or
specialized decision procedures (as we do) built on top of these solvers.

The approach we follow in this work is the construction of monolithic decision procedures for
the theories we develop. However, a more efficient and elegant approach consists on constructing
decision procedures for individual theories and then combine them for obtaining a decision
procedure for the combined theory. Two of the most well-known combination methods for first
order logic are Nelson-Oppen [162] and Shostak [181, 188]. In the Nelson-Oppen method,
decision procedures for two disjoint theories are combined by introducing variables to name
subterms, iteratively propagating any deduced equalities between variables. In the case of the
Shostak method, it uses an optimized implementation of the congruence closure procedure
for ground equality over uninterpreted function symbols to combine theories. Both methods
serve the same purpose, to enable the combination of decision procedures for quantifier-free
first-order theories with disjoint signatures. For these two methods, some variations [18] and
extensions have been studied [12,88]. Additionally, they are in the core of tools such as ICS [77],
Simplify [65] and Verifun [80] among others.

As most current systems studied in software verification are typed, it is more natural to express
verification problems in many-sorted first-order logics [83, 146], as we do in this work. The
theories we construct are capable of expressing rich properties of pointer-based data structures,
taking as starting point a theory for single-linked lists [178,179]. The decidable logics we present
in this work can be used as stand-alone decidable theories with a decision procedure built on top
of SMT solvers. These decision procedures can be used to verify general quantifier-free verification
conditions independently of the method used to generate these verification conditions. In fact,
as we use our theories in order to verify verification conditions generated from the small-step
semantics of program statements, problems such as intermediate assertion generation [8] do not
affect our theories.

In order to extend decidable theories it is possible to use techniques such as local theory
extensions [192,192]. Instead, we start from [178] and incrementally construct decidable theories
by ensuring they meet the required combination restrictions [177,199,200]. A key aspect is that
the theories we construct remain quantifier-free while they satisfy the necessary combination
requirements, making them perfect candidates for being combined with other theories in order to
verify complex systems.

1.2 Structure of this Work

The structure of this work presents the concepts and ideas incrementally. Fig. 1.1 shows a graphic
representation of the structure of this work. This dissertation contains 11 chapters with the
following content:

Chapter 1: presents the problem of formally verifying parametrized temporal properties of
concurrent systems executed by an unbounded number of threads. This chapter presents
the importance, the main challenges and the main ideas toward the solution we propose for
the parametrized verification problem. Additionally, this chapter presents a survey involving
current related work and how our approach relates with them.
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1.2. Structure of this Work

Chapter 2: presents the preliminaries concepts, definitions and notations that will be required
for fully understanding the rest of the chapters. In this chapter we introduce the syntax and
semantics of SPL, the Simplified Programming Language we use to describe the implemen-
tation of the algorithms and programs that we will later verify. Additionally, we formally
introduce the concepts of theory signature and theory combination which we will require
for later chapters.

This chapter also presents the theoretical model of computation we use in the rest of the
work. We introduce the concept of a parametrized fair transition system, which extends
conventional (non-parametrized) fair transition systems, enabling the representation of
parametrized systems executed by an unbounded number of threads. Similarly, we intro-
duce parametrized concurrent programs, parametrized formulas and the problem of the
verification of temporal parametrized properties.

Finally, this chapter describes some basic concepts regarding concurrency which are required
for fully understanding the development of the upcoming chapters. These problems include
linearizability, lock-based algorithms, lock-free implementations and general synchroniza-
tion methods.

Part I: presents the verification techniques we have developed for the verification of parametrized
concurrent systems. This Part consists of three chapters:

Chapter 3: introduces Parametrized Invariance, which is a general deductive method based
on specialized proof rules which aims at the verification of safety temporal proper-
ties of concurrent parametrized systems. In this chapter we present the traditional
deductive invariance proof rules for non-parametrized systems and we show why they
are unsuitable for parametrized systems. Then, we introduce novel proof rules for
parametrized systems and we show them sound.

Chapter 4: presents parametrized verification diagrams (PVDs), a deductive diagram–based
formalism that allows to prove temporal properties, including liveness properties, of
parametrized concurrent systems. PVDs encode succinctly as a formula automaton
the proof that a parametrized system satisfies a given temporal property. This chapter
provides a brief introduction to generalized verification diagrams (the formalism that
PVDs extend from) and presents its drawbacks when dealing with parametrized systems.
Finally, in this chapter we formally present PVDs and we show that this formalism is
sound. We also show how quantifier-free verification conditions are extracted from a
PVD. The validity of these verification conditions implies that the PVD in fact represents
the proof that the system satisfies the parametrized temporal property.

Chapter 5: describes an abstract-interpretation based method for automatically generating
parametrized invariants, leveraging off-the-shelf existing invariant generators for
sequential non-parametrized systems.

This chapter introduces the novel idea of reflective abstraction, which enables the in-
cremental construction of a sequential transition system that abstracts a parametrized
one. This chapter also describes how to construct an iterative procedure to automat-
ically generate invariants of a parametrized system using abstract interpretation on
reflective abstractions. Additionally, this chapter presents a set of alternative abstract
interpretation schemes using our method.
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Part II: contains a set of decidable theories for pointer based data structures. The techniques
presented in Chapter 3 and Chapter 4 ultimately generate a collection of verification condi-
tions whose validity can be automatically checked using specialized decision procedures
like the ones presented in this Part. This Part consists of three chapters:

Chapter 6: introduces TL3—the Theory of Linked Lists with Locks— a decidable theory of
single-linked lists, which is also equipped with features to reason about concurrency.
We use TL3 to study the verification problem of concurrent data types that manipulate
dynamic memory in the heap maintaining the shape of single-linked lists. Programs
that can be analyzed using TL3 include concurrent lock-coupling lists and lock-free
queues and stacks. This chapter presents some concurrent data types that manipulate
single-linked lists alike data-structures, formally introduces the theory TL3 and shows
that TL3 is decidable by stating and proving a bounded model theorem.

Chapter 7: introduces TSLK—the Family of Theories of Concurrent Skiplists with at Most K
Levels— a decidable family of theories that allow to reason about the skiplist memory
layout, for skiplists of unbounded length but with a bounded number of levels. TSLK

extends the reasoning of TL3 to K levels, adds some functions and predicates to deal
with order and introduces a notion of sublist between ordered lists. This chapter
presents the skiplist data structure, including an implementation of skiplists with a
constant number of levels, it formally presents the theory TSLK and shows that TSLK

is also decidable by stating and proving a bounded model theorem.

Chapter 8: presents TSL—The Theory of Skiplists with Unbounded Levels— a decidable
theory capable of dealing with skiplists of arbitrary length and height. This chapter
shows an implementation of skiplists with an unbounded and growing number of
levels, formally presents theory TSL, and shows that TSL is decidable by reducing the
satisfiability problem of TSL quantifier-free formulas to queries to decision procedures
for TSLK and Presburger arithmetic.

Part III: This part presents LEAP, a tool that implements the verification techniques introduced
in Part I and the decision procedures described in Part II along with some experimental
results we have obtained so far. This Part consists of two chapters:

Chapter 9: presents LEAP, a prototype tool for the verification of concurrent data types and
parametrized systems composed by an unbounded number of threads that manipulate
infinite data. LEAP implements the verification techniques of parametrized invariance
and verification diagrams presented in Chapter 3 and Chapter 4 respectively. Addition-
ally, it implements all the decision procedures introduced in Part II. We have developed
LEAP to show the feasibility of the application of our techniques.

Chapter 10: shows the results of the empirical evaluation we have done using LEAP to
formally verify parametrized temporal properties, including safety and liveness, of
algorithms and data types including mutual exclusion protocols, concurrent lock-
coupling single-linked lists, lock-free stacks and queues and bounded and unbounded
skiplists implementations. Additionally, we present some experimental results showing
the automatic generation of invariants of a collection of parametrized systems.
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1.2. Structure of this Work

Chapter 11: provides a summary of what we present in this work, the problems we have
attacked, the solutions we have proposed for each of these problems, the advantages and
disadvantages of our solution and some discussion about possible directions for future work
and the open questions that remain to be answered.
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2
Preliminaries

“ No one is dumb who is curious. The people who
don’t ask questions remain clueless throughout
their lives. ”

Neil deGrasse Tyson

In this chapter we introduce all the preliminaries concepts, definitions, and notations that will
be required for the rest of the chapters. Section 2.1 presents the Simplified Programming Language
(SPL) we will use to describe algorithms through this work and describes the operational semantic
of each SPL statement as a transition relation. Section 2.2 presents some basic definitions related
to concurrency such as linearization, lock-based algorithms, lock-free algorithms and general
synchronization methods. Section 2.3 introduces the concept of signatures and theories. Finally,
Section 2.4 presents the theoretical model of computation, revisiting the traditional definition of
non-parametrized fair transition systems and presenting the concepts of parametrized concurrent
programs, parametrized fair transition systems, parametrized formulas and the parametrized
temporal verification problem.

2.1 Simplified Programming Language (SPL)

When describing a program or algorithm we use our version of the simplified programming
language (SPL) [144], a simple imperative language. Our version is equipped with variable
declaration, procedure calls, conditionals, loops and atomic sections.

A program in SPL consists of two sections. The first section, which starts with the global
keyword, declares all global variables. The second section declares the procedures that are part
of the program.

A procedure declaration starts with the procedure keyword, followed by the procedure’s
name and a list of arguments surrounded by parenthesis. This list of arguments can be empty.
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Immediately after the list of procedure’s arguments it is possible to declare the set of local variables
that belong to the procedure. Following the declaration of local variables, the begin keyword
indicates the beginning of the body of the procedure, which contains the list of statements that
are part of the procedure. Finally, the procedure finishes with the end procedure keyword.

The basic types supported by SPL are:

• Bool : the Boolean type. Elements of this type are true and false.

• Int : the integer type, which accepts the classical operations over integers, such as addition
(+), subtraction (−) and multiplication (×).

• Tid : the type of thread identifiers. Elements of this type are used to denote specific thread
identifiers and can only be compared through equality. There exists a reserved word me

which denotes the identifier of the thread currently executing the program. Additionally,
the constant value � of type Tid denotes the absence of a thread identifier. In particular, if
l is a lock, then the program expression l = � represents that the lock is not owned by any
thread.

• Addr : the type of addresses. Addresses represent locations in the dynamic memory as well
as pointers. SPL does not support pointer arithmetic.

• Elem: the type of generic elements stored in a data structure.

• Lock : the type of mutexes that can be used to protect critical sections. We assume the
existence of the lock and unlock operations provided by the operating system to acquire
and release a lock.

SPL also defines the following collection types:

• Set〈T 〉: for sets of elements of type T . This type accepts the basic operations between sets
such as union (∪), intersection (∩), set difference (−) and inclusion (⊆).

• Array〈T 〉: which represents arrays containing elements of type T indexed by integers. The
operations accepted by this type are array lookup and array update. In the case of array
lookup, if A is an array of type Array〈T 〉 and i is an element of type Int , then A[i] is the
element of type T stored in A at position i. Similarly, if A is an array of type Array〈T 〉, i
is an element of type Int and e is an element of type T , then A{i← e} is an array of type
Array〈T 〉 that contains e stored at position i and coincides with A on all other positions
different from i.

Example 2.1
Fig. 2.1 illustrates the main parts of an SPL program with a simple example. This example presents
a program with a global variable count of type Int and a procedure named MULTIPLIESTWO

which receives an integer as argument and proceeds to compute the double of the value received.
Additionally, the result of the operation is added to the global count variable.
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global
Int count

procedure MultipliesTwo(Int i)
Int result

begin
1: result := i× 2
2: count := count + result
3: return result

end procedure

Global variables declaration

Procedure local variables declaration

Procedure’s statements

Figure 2.1: A simple example showing the structure of an SPL program.

Given a procedure proc, we use the notation proc::v to refer to a variable v local to proc.
We may also omit proc:: and simply write v when the procedure it belongs to is clear from the
context.

If t is a thread identifier, we use pc(t) to refer to the program counter of thread t. Similarly, we
use pc’ to refer to the program counter in the state reached after the statement has been executed.

We use pc(t) = i, j and pc(t) = i1..in to denote (pc(t) = i ∨ pc(t) = j) and
n∨
j=1

pc(t) = ij

respectively. When needed, we use pcP to denote the program counter when procedure P

executes.

2.1.1 SPL Statements

In addition to the operations over basic and collection types, SPL provides statements for basic
operations such as procedure calls, conditionals, program loops and atomic sections. We now
present the program statements available in SPL:

Assignments: The operator := is used to assign values to variables. For instance i := 1 is the
assignment of value 1 to variable i while v := w corresponds to assigning the value of
variable w to variable v.

Pointer access: The operator→ is used to access a data structure field though a pointer.

No operation: The operator skip corresponds to the statement that performs no operation.

Conditionals: SPL provides conditional statements of the form:

if cond then
S1

end if

if cond then
S1

else
S2

end if

These conditionals have the usual semantics. That is, if cond holds then the statements
within block S1 are executed. If cond does not hold, then nothing is executed in the first
case and the block in S2 is executed in the second case.

Loops: SPL provides loops based on Boolean conditions of the form:
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while cond do
S

end while

where block S is continuously executed as long as condition cond holds. We will usually
use for loops as a syntactic sugar for conditional loops controlled by integer variables. That
way:

for i := n to m do
S

end for

for i := n downtom do
S

end for

are syntactic sugar for:

i := n

while i ≤ m do
S

i := i+ 1

end while

i := n

while i ≥ m do
S

i := i− 1

end while

‘

Non determnistic choice: Non-deterministic choice between various statements can be ex-
pressed using the or operator. For example:

nondet choice
v := 1

or v := 2

or v := 3

end choice

non-deterministically assigns to variable v a value between 1 and 3.

Wait on condition: A procedure can wait on a condition using the await operator. For instance,
the statement await (v > 0) stops the execution of the procedure until variable v becomes
positive.

Critical sections: Statements noncritical and critical are schematic statements used to denote
sections in mutual exclusion programs.

Procedure calls: Procedures are invoked using the special operator call. A procedure may return
a value using a return statement. For instance, a call to the procedure MULTIPLIESTWO

defined above may be of the form:

• v := call MULTIPLIESTWO(3), which assigns to variable v the value returned by the
procedure MULTIPLIESTWO when invoked with value 3 as argument; or

• call MULTIPLIESTWO(3), which invokes and executes the procedure MULTIPLIESTWO,
but ignores the value returned from such procedure.
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Atomic sections: Statements may be surrounded by 〈〉 in order to denote that they are executed
atomically. For instance:

〈
result := i× 2

count := count + result

〉

atomically assigns to variable result the double of variable i and adds the result to variable
count .

Later, in Section 2.1.2 we will formally describe the semantics of each of the statements
presented here by exhibiting the corresponding transition relation.

Example 2.2 (A Mutual Exclusion Protocol Based on Tickets)
Fig. 2.2 presents two mutual exclusion protocols based on tickets that will serve as examples
of programs declared in SPL. We will also use these programs as running examples to illustrate
concepts and the application of some techniques developed in later chapters.

Fig. 2.2(a) contains SETMUTEX, a parametrized mutual exclusion protocol based on tickets.
Each thread that intends to access the critical section at line 5, acquires a ticket with a unique
and increasing number and—atomically—announces its intention to enter the critical section by
adding the ticket to a shared global set of tickets (line 3). Then, the thread waits (line 4) until
its ticket becomes the lowest value in the set before entering the critical section. After a thread
leaves the critical section it removes its ticket from the global set (line 6). SETMUTEX uses two
global variables: avail , of type Int , which stores the shared counter; and bag , of type Set〈Int〉,
which stores the set of tickets owned by those threads that are trying to access the critical section.
Program INTMUTEX in Fig. 2.2(b) implements a similar version of the protocol in which only the
minimum value among all given tickets is maintained, in a global variable of type Int . Note that
both programs are infinite state for any concrete instantiation (number of threads running in
parallel) since the available ticket is ever increasing. y

global
Int avail := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := avail ++
bag .add(ticket)

〉

4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

global
Int avail := 0
Int min := 0

procedure IntMutex
Int ticket

begin
1: while true do
2: noncritical
3: ticket := avail ++
4: await (min == ticket)
5: critical
6: min := min + 1
7: end while

end procedure

(a) SETMUTEX, using a set of integers (b) INTMUTEX, using two counters

Figure 2.2: Two implementations of a ticket based mutual exclusion protocol.
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2.1.2 Semantics of SPL Statements

We now formally describe the semantics of each statement in SPL as a first-order formula ρ(V, V ′)

which relates the values of a set of variables V in the pre-state with the values of the set of
variables V ′ in the post-state. Each transition relation describes the effect of executing the
statement. As usual, given a transition relation ρ(V, V ′), we say that the enabling condition of ρ
is the formula ∃X ′.ρ(V,X ′). For all cases, we provide the transition relation assuming that each
program statement is executed by a thread T . We also assume the existence of a global variable
heap which models the dynamic memory. We make heap as an array of memory cells indexed by
addresses. Hence, cells in the heap are accessible using an array lookup operator _[_] and the
heap is modified using the array update operator _{_ ← _}. As usual, we use v to refer to the
values of variables in the pre-state (before the statement is executed) and v′ to refer to the values
of the same variable is the post-state (after the statement has been executed). We use ` to denote
program lines. In order to simplify the notation, we assume that all variables which are not
explicitly stated in the transition relation are preserved. For each SPL statement, we now present
the semantics of the statement by defining the formula that describes its transition relation:

Assignments: The transition relation for a variable assignment consists of the update of the
program counter for the running thread and the corresponding modification to the variable
being assigned.

Statement Transition relation

`1 : v := w

`2 : · · ·
pc(T ) = `1 ∧ pc′(T ) = `2 ∧ v′ = w

Pointer access: Cell fields are accessible through the pointer operator→. There are two possible
scenarios for the use of pointers, depending on whether the statement accesses or modifies
a cell field. We present now the semantics for both cases. The first case corresponds to
the access of a cell field through an address pointer. The second case corresponds to the
modification of a cell field using an address pointer. Note how, in the second case, all cells
(except the one pointed by b) remain unchanged. Also, all fields of the cell pointed by b

remain unmodified except for fieldn.
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Statement Transition relation

`1 : v := a→field

`2 : · · ·

pc(T ) = `1 ∧ pc′(T ) = `2 ∧
v′ = heap[a].field

`1 : b→fieldn := a

`2 : · · ·

pc(T ) = `1 ∧ pc′(T ) = `2 ∧
heap′ = heap{b← c} ∧
c.fieldn = a ∧
∧
i 6=n

c.fieldi = heap[b].fieldi

No operation: The no operation statement performs no change at all except from updating the
program counter of the executing thread.

Statement Transition relation

`1 : skip

`2 : · · ·
pc(T ) = `1 ∧ pc′(T ) = `2

Conditionals: We present now the two possible kinds of conditional statements in SPL. In the
first case, if condition c does not hold, the execution proceeds from the statement following
the end of the conditional.

Statement Transition relation

`1 : if c then

`2 : · · ·
...

`n : end if

`n+1 : · · ·

(pc(T ) = `1 ∧ c ∧ pc′(T ) = `2) ∨
(pc(T ) = `1 ∧ ¬c ∧ pc′(T ) = `n+1)

In the second case, if condition c does not hold, the execution continues at the first statement
in the else section of the conditional statement.
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Statement Transition relation

`1 : if c then

`2 : · · ·
...

`n : else

`n+1 : · · ·
...

`m : end if

`m+1 : · · ·

(pc(T ) = `1 ∧ c ∧ pc′(T ) = `2) ∨
(pc(T ) = `1 ∧ ¬c ∧ pc′(T ) = `n+1) for line `1

pc(T ) = `n ∧ pc′(T ) = `m+1 for line `n

Loops: We consider the only loop statement available in SPL which executes the statements in
the body as long as the loop condition holds.

Statement Transition relation

`1 : while c do

`2 : · · ·
...

`n : end while

`n+1 : · · ·

(pc(T ) = `1 ∧ c ∧ pc′(T ) = `2) ∨
(pc(T ) = `1 ∧ ¬c ∧ pc′(T ) = `n+1) for line `1

pc(T ) = `n ∧ pc′(T ) = `1 for line `n

Non deterministic choice: The transition relation for the non-deterministic choice statement
can be expressed as follows:

Statement Transition relation

`1 : nondet choice

`2 : · · ·
`3 : or · · ·
...

`n : or · · ·
`n+1 : end choice

pc(T ) = `1 ∧
∨

i=2..n

pc′(T ) = `i

Wait on condition: When waiting on a condition, the program execution does not progress until
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the condition is satisfied.

Statement Transition relation

`1 : await c

`2 : · · ·
pc(T ) = `1 ∧ c ∧ pc′(T ) = `2

We can relate to this statement the lock and unlock operations used over locks. Even though
these are not SPL statements, as they will be widely used in the rest of the chapters, we
describe here the transition relation associated with these two functions.

Statement Transition relation

`1 : lock(l)

`2 : · · ·
pc(T ) = `1 ∧ l = � ∧ l′ = T ∧ pc′(T ) = `2

`1 : unlock(l)

`2 : · · ·
pc(T ) = `1 ∧ l′ = � ∧ pc′(T ) = `2

Critical sections: The statements noncritical and critical are just schematic statements to de-
note the presence of a non-critical or a critical section, respectively. Hence, their transition
relations are similar to the one of a no operation statement.

Statement Transition relation

`1 : noncritical

`2 : · · ·
pc(T ) = `1 ∧ pc′(T ) = `2

`1 : critical

`2 : · · ·
pc(T ) = `1 ∧ pc′(T ) = `2

Procedure calls: We need to consider two statements related to procedure calls. The call
statement which invokes a procedure and the return statement which returns a value from
a procedure.
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Statement Transition relation

`1 : v := call P(v1, ...vn)

`2 : · · ·
...

procedure P(arg1, ..., argn)

begin

`p : · · ·
...

`p+m : return(w)

For call statement:

pc(T ) = `1 ∧ pc′(T ) = `p ∧
P :: ret = `2 ∧
∧

i=1..n

P :: argi = vi

For return statement:

pc(T ) = `p+m ∧ pc′(T ) = ret ∧
v′ = w

We use the auxiliary local variable ret to store the program location where procedure
P should return. As expected, this approach does not support recursion but it supports
multiple procedure calls.

Atomic sections: Atomic sections group a set of SPL statements into a single statement which
is executed in a single step of execution. Hence, the transition relation for an atomic
statement is the combination of the transition relations of all statements that are part of it.
For example, consider the case of an atomic section 〈S1;S2〉 which consists of a sequence of
two statements S1 and S2. Then, the transition relation ρ〈〉(V, V ′′) corresponds to a formula
which states a relation between the values of variables in the pre-state V and the post-state
V ′′. These valuations are obtained from the transition relations ρS1

(V, V ′) and ρS2
(V ′, V ′′)

which are associated to the statements S1 and S2 respectively. That is:

ρ〈〉(V, V
′′)

def
= ρS1(V, V ′) ∧ ρS2(V ′, V ′′)

2.1.3 Ghost Code

When performing program verification it is sometimes convenient to enlarge the set of program
variables with auxiliary variables, called ghost variables, to store interesting information about
the history of the computation. If extra notation fields are added, they are called ghost fields. If
code is added to the algorithm, it is called ghost code. We will usually refer to all of them simply
as ghost code.

The idea to use ghost code in a program to ease specification is well known [139]. Ghost code
is used for verification only and its execution does not interfere with the actual program code.

The variables added as ghost code are not allowed in the enabling condition of statements
occurring in the actual program, and are only used to update other ghost variables in ghost code.
Ghost instructions are executed atomically together with the real code they annotate but they do
not affect the original control flow of the program. In particular, ghost variables do not occur in
the normal program code nor in assignments to program variables.

We will use the symbol @ to denote a ghost field which is part of a class. We uses classes to
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describe the signature of concrete program structures. Similarly, we use dashed boxes around the
ghost code added to program statements.

Example 2.3
Fig. 2.3 presents a variation of the program SETMUTEX in which some ghost code has been added.
We have added a ghost variable tids of type Set〈Tid〉 to keep track of the set of thread identifiers
that have required access to the critical section. The ghost variable tids is updated at two points.
First, when a thread requires access to the critical section by asking for a new ticket at line 3. At
this point, the thread identifier of the running thread (me) is inserted into the set tids. Second,
the set tids is updated at line 6, when a thread leaves the critical section. At this point, the
running thread removes its thread identifier from the set to indicate that the running thread has
effectively left the critical section. y

2.2 Concurrent Data Structures

Multiprocessor shared-memory systems are capable of running multiple threads of execution
simultaneously, where all threads communicate and synchronize using shared data. Concurrent
data structures are much more difficult to design than sequential data structures due to the
interleaving between the executions. Each possible interleaving may lead to a different, and
possibly unexpected, behavior. In this section we build on some of the aspects described in [156]
on concurrent systems. We provide an overview of the challenges involved in the design of
concurrent data structures.

The main sources of difficulty when designing these kind of data structures comes from
concurrent interaction. As threads may run concurrently on different processors, they are subject

global
Int avail := 0
Set〈Int〉 bag := ∅
Set〈Tid〉 tids := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := avail ++
bag .add(ticket)

〉

tids := tids ∪ {me}
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)

tids := tids − {me}
7: end while

end procedure

Figure 2.3: Program INTMUTEX updated with ghost code.
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to operating system scheduling policies, page fault, interruptions, etc. Hence, reasoning about
the computation must consider how all different threads can be arbitrarily interleaved.

Example 2.4
Imagine we want to implement a shared counter. A shared counter consists of a shared variable
that is concurrently incremented by many threads. A sequential version of this algorithm is
depicted in Fig. 2.4(a). This version just fetches the value from counter c and increments it by
one, returning the previous value. If many threads run this implementation concurrently, then
the result may not be the expected one. For instance, consider the scenario at which c is 0 and
two threads execute this implementation concurrently. Then, there is the possibility that both
threads read the value 0 from memory and thus both return 0 as a result, which is clearly wrong.

To avoid this problem, a common solution is the use of mutual exclusion locks (usually simply
called mutexes or locks). A lock is a construction with the property that, at any given time, no
thread owns the lock or the lock is owned by a single thread. If a thread T1 wants to acquire a
lock owned by thread T2, then T1 must wait until T2 releases the lock.

A correct implementation of the shared counter using locks is shown in Fig. 2.4(b). This new
version uses a lock to allow access to the critical section in mutual exclusion. y

We refer to a program section as critical when it provides access to a shared data structure
which must not be concurrently executed by more that one thread simultaneously. In the example
above, the lock prevents two different threads from accessing the critical section simultaneously.
While this is a correct solution, this version lacks good performance. It is usually easier to achieve
a correct concurrent implementation from a sequential one by protecting large blocks of code
with locks. However, the performance of such implementation is usually very poor.

In the following, we describe some concepts to design faster concurrent solutions as well as
some techniques for verifying the correctness of concurrent data structures.

global
Int c

procedure Seq-Counter()
Int oldValue

begin
1: oldValue := c
2: c := oldValue + 1
3: return oldValue

end procedure

global
Int c
Lock l

procedure Conc-Counter()
Int oldValue

begin
1: lock(l)
2: oldValue := c
3: c := oldValue + 1
4: unlock(l)
5: return oldValue

end procedure

(a) Sequential (b) Concurrent

Figure 2.4: Possible implementation of a shared variable.
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2.2.1 Performance Concerns

The speedup of a program when run on P different processors is the relation between its execution
time on a single processor and its execution time on P processors concurrently. The speedup
provides a way to measure how efficiently a program uses the processors on which it runs. Ideally,
we would like to have linear speedup, but this is not always possible. Data structures whose
speedup grows with P are called scalable. When designing concurrent data structures, scalability
must be taken into account. Naïve implementations, as CONC-COUNTER will surely undermine
scalability.

In Example 2.4 it is easy to see that the lock introduces a sequential bottleneck: at every
instant, only a single thread is allowed to perform useful work. Hence, reducing the size of code
sections that are forced to execute sequentially is crucial in order to achieve good performance.
In the context of locking, we are interested in:

1. reducing the number of acquired locks, and

2. reducing the lock granularity.

Lock granularity is essentially the number of instructions executed while holding a lock. The
fewer instructions, the finer lock granularity. Implementations like the shared counter considered
above represent an example of a coarse-grain solution.

Another aspect to keep in mind is memory contention. Memory contention refers to the
slowdown in memory accesses as a result of multiple threads concurrently trying to access the
same memory location. For instance, if the lock protecting a critical section is implemented in
a single memory location, then a thread trying to access that section must continuously try to
access the memory portion where the lock is stored. This problem may be solved if we consider
cache-coherent multiprocessors. However, using this technique may lead to long waiting times
each time a location needs to be modified. As a result, the exclusive ownership of the cache line
containing the lock must be repeatedly transfered from one processor to other.

A final problem with lock-based solutions is that, if a thread holding a lock is delayed then
all other threads that intend to acquire the same lock are also delayed. This phenomenon is
known as blocking and it is quite common on systems with many threads per processor. A possible
solution is provided by non-blocking algorithms. Non-blocking programs do not use locks and
thus the delay of a thread does not affect the delay of other threads. In the following section we
describe the main characteristics of lock-based and non-blocking systems.

2.2.2 Synchronization Techniques

In Example 2.4, program CONC-COUNTER uses a lock to prevent many threads to access the
critical section simultaneously. However, sometimes not using locks at all is a better solution.
Here, we describe the two major techniques for accomplishing mutual exclusion on modern
concurrent systems: blocking techniques and non-blocking techniques.

Blocking Techniques

In many cases memory contention and sequential bottlenecks can be reduced by reducing the
granularity of locking schemes. In fine-grained locking approaches, multiple locks of small
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granularity are used to protect the critical sections that modify the data structure. The idea is to
maximize time that threads are allowed to run in parallel, as far as they do not require to access
the same portions of the data structure. This approach can also be used to reduce the contention
for individual memory locations. In some cases, this solution is very natural, as in the case of
hash maps. In hash maps, values are often hashed to independent different buckets, in order to
reduce the number of potential conflicts. Hence, simply placing individual locks on each bucket
reduces granularity easily.

On the other hand, in cases like the shared counter, it is not quite intuitive how contention
and sequential bottleneck can be reduced since, abstractly, all operations modify the same part of
the data structure. One approach to deal with contention is based on spreading each operation
to access the counter at a separate time interval. A widely used technique to accomplish this is
backoff [5]. However, even reducing the contention, the lock-based implementation of the shared
counter still lacks effective parallelism and hence it is not scalable. Therefore, more powerful
techniques are required.

A possible solution is the use of a method known as combining trees [91, 93, 103, 212].
Combining trees employ a binary tree with one leaf for each thread. The root of the tree keeps
the current value of the counter and intermediate nodes are used to coordinate the access to the
root. The idea is that while a thread climbs up to the root of the tree, it combines the effect of
its operations with the operations of other threads. Hence, every time two threads meet on an
internal node, their operations are combined into a single operation. Then, one thread waits in
the node until a return value is delivered to it while the other thread proceeds further up the tree
carrying the operation obtained from the combination.

In the particular case of our shared counter, the winner thread that reaches the root of the
tree modifies the counter in a single atomic operation, performing the action of all combined
operations. Then, this winning thread traverses down the tree, delivering the return value to
each thread waiting on an internal node. The values returned are distributed in such a way that
the final effect is as if all operations were executed one after the other at the moment the counter
in the root was modified.

Threads waiting on internal nodes repeatedly read a memory location, waiting for the return
value. This sort of waiting is known as spinning. An important consequence in the case of a cache-
coherent multiprocessor is that the accessed location resides in the local cache of the processor of
the waiting thread. Following this approach, no extra traffic is generated. This waiting technique,
known as local spinning, is very important to achieve scalable performance [151].

A drawback of the combining tree method is that if coordination between threads going up
and down the tree is done incorrectly, it may lead to deadlocks. A deadlock is a situation at
which two or more threads are executing tasks such that all of them are blocked in a circular
fashion, so none of them can progress. Deadlock avoidance is a crucial technique to guarantee
when designing correct and efficient blocking concurrent data structures and algorithms. When
designing blocking implementations, the number of locks to be taken is a key factor to consider.
Enough locks should be used as to ensure absence of data races while minimizing blocking,
allowing threads to perform concurrent operations in parallel.

30



2.2. Concurrent Data Structures

Non-blocking Techniques

Non-blocking implementations are designed in order to solve some of the inconveniences present
on blocking implementations, by avoiding the use of locks. To formalize the idea of non-blocking
algorithms, some non-blocking progress conditions have been proposed in the literature. The best
known conditions are known as wait-freedom, lock-freedom and obstruction-freedom. A wait-free
operation [102, 133] must terminate on its own, after a finite number of steps, no matter the
behavior of the competing concurrent operations. A lock-free operation [102] guarantees that
after a finite number of steps of a given thread, some operation terminates: maybe a given
operation of interest, or maybe the operation performed by some other thread. Finally, an
obstruction-free operation [104] guarantees that any given operation of a thread terminates after
a finite number of its own steps, assuming that it runs continuously without interruptions. There
exists a relation between all these properties. Wait-freedom is stronger than lock-freedom, and in
turn lock-freedom is stronger than obstruction-freedom. Clearly, strong progress conditions are
desired over weaker ones. However, weaker conditions are in general simpler and more efficient
to design and verify.

Non-blocking algorithms use no locks. This means, one needs to find a different way to
implement the concurrent version of the shared counter. The work in [79] (extended to shared
memory by [102] and [138]) shows that it is not possible to implement a concurrent shared
counter using just load and store instructions. The problem can be solved using a hardware
operation that atomically combines both a load and a store. In fact, most modern multiprocessors
provide one kind of such synchronization primitives. The most well known are compare-and-swap
(CAS) [113,116,194] and load-linked/store-conditional (LL/SC) [114,122,190]. Fig. 2.5 describes
the behaviour of the CAS operation as an algorithm. This algorithm receives as arguments a
memory location L and two values: E and N . The operation is performed atomically: if the value
stored at location L matches E, then the value in L is replaced with N , and the operation returns
true. If the value at L does not match E, false is returned, and the value at L remains unchanged.

In [102] it is shown that instructions such as CAS and LL/SC are universal in the following
sense. For any data structure, it exists a wait-free implementation in a system that supports these
instructions.

Example 2.5
Using the CAS instruction it is now possible to implement a non-blocking version of the shared
counter program presented in Example 2.4. The idea is to perform the operation locally and
then use CAS to atomically update the result. In case the read value does not coincide with the

procedure CAS(L,E,N) : Bool
1: if ∗L = E then
2: ∗L := N
3: return true
4: else
5: return false
6: end if

end procedure

Figure 2.5: Description of a CAS operation.
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procedure NonBlock-Counter()
Int oldValue
Int newValue

begin
1: repeat
2: oldValue := c
3: newValue := oldValue + 1
4: until CAS(&c, oldValue,newValue)
5: return oldValue

end procedure

Figure 2.6: Non-blocking shared counter implementation using CAS.

value required in the CAS, the CAS operation returns false performing no modification to the
counter. Hence, the operation needs to be retried until a successful call to CAS is accomplished.
Fig. 2.6 shows a non-blocking implementation of the shared counter using CAS. Because the CAS

can only fail due to another succeeding fetch and increment operation, the implementation is
clearly lock-free. However, it is not wait-free as the fetch and increment operation successfully
accomplished by other threads can continuously prevent a given CAS to succeed. y

The example shown here is simple, but in general, designing non-blocking algorithms is more
complex than blocking solutions, since the complexity is greatly reduced when a thread can use a
lock to prevent other threads from interfering while it performs some action. If locks are not used,
then the algorithm must be designed in order to be correct despite the actions performed by all
other concurrent threads. Currently, in modern architectures, using non-blocking algorithms that
maximize performance requires the use of complicated and error-prone techniques.

2.2.3 Verification Techniques

In our case, it is quite easy to see that the lock-based implementation of the shared counter
behaves exactly as the sequential implementation. However, if we consider a more complicated
data structure, such as a binary tree for instance, then the design and verification is significantly
more difficult. Due to the huge number of interleaving, it is quite easy to introduce mistakes and
propose an incorrect implementation. Hence, it becomes imperative to rigorously prove that a
particular design correctly implements the desired concurrent data type.

Operations on a sequential data structure are executed one after the other, in order. Then,
we simply require that the resulting sequence of operations respects the sequential semantics
denoted by the set of states and transitions, as described above. On the contrary, in the case of
concurrent data structures, operations are not necessarily totally ordered. Typical correctness
criteria for concurrent implementations usually requires the existence of some total order of
operations that respects the sequential semantics.

A common condition is Lamport’s sequential consistency [134]. This condition requires that
the total order preserves the order of the operations run by each thread. However, this condition
has a drawback: a data structure constructed by sequential consistent components may not be
sequential consistent.
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Another widely used concept is linearizability [108, 109], a variation of the concept of
serializability [25] used in database transactions. Linearizability requires that:

1. the data structure is sequentially consistent, and

2. the total ordering which makes it sequentially consistent, respects the real-time ordering
between the operations in the execution.

A way of thinking about linearizability is that it requires the user to identify specific points
within the algorithms, called linearization points, such that if we order the operations according to
the execution turn of their linearization points , the resulting order satisfies the desired sequential
semantics of the data structure.

Example 2.6
It is easy to see that CONC-COUNTER presented in Example 2.4 is linearizable. We just need to
define the point after the increment of c as the linearization point. In the case of NONBLOCK-
COUNTER presented in Example 2.5, the argument is similar, except that we must define the
linearization point considering the semantics of CAS. y

The intuitive simplicity and the modularity of linearizability makes it a very popular correctness
condition. Although most of the concurrent data structures can be shown to be linearizable, on
some situations, better performance and scalability can be achieved by considering a weaker
condition: quiescent consistency.

The quiescent consistency condition [11] relaxes the restriction that the total order of opera-
tions needs to respect the real-time order of the executed operations, but it requires that every
operation executed after a quiescent state must be ordered after every operation executed before
the quiescent state. A state is said quiescent if no operations are in progress.

In general, obtaining a formal proof of the correctness for the implementation of a data
structure requires:

• a mathematical method for specifying correctness requirements,

• an accurate model of the data structure implementation, and

• a proof system to show that the implementation is correct.

For instance, most linearizability arguments in the literature treat some of these aspects in
an informal way. This makes proofs easier to follow and understand. However, the use of some
informal description is prone to introduce some error (based for example in implicit assumptions),
miss some cases or make some incorrect inferences. On the other hand, rigorous proofs usually
contain a great amount of details regarding trivial properties that makes them difficult to write
and tedious to read. Hence, computer assisted methods are desired for the formal verification
of concurrent implementations. One approach is based on the use of theorem provers to aid in
the verification. Another approach consists in the use of model checking. Model checking tools
exhaustively verify all possible executions of an implementation, to ensure that all reachable
states meet specified correctness conditions. However, some limitations exists on both approaches.
Theorem provers usually require significant human insight, while model checking is generally
limited by the number of states it can consider. Therefore, a verification method involving as few
human interaction as possible, while being able to verify systems with a possible infinite number
of states is desired.
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2.2.4 Synchronization Elements

In this section, we describe some basic mechanisms commonly used to achieve correct concurrent
implementations: locks, barriers and transactional synchronization mechanisms. Locks and
barriers are traditional low level synchronization mechanisms used to prevent some interleaving
to happen. For instance, preventing two different threads to access the same section of code at
the same time. On the other hand, transactional synchronization mechanisms are used to hide
the complex reasoning required to design concurrent data algorithms, letting programmers to
think in a more sequential fashion.

As explained before, locks are a low level mechanism used to prevent processes to access the
same region of memory concurrently. A key issue when designing lock based solutions is what to
do when a thread tries to get a lock that is already owned by other thread. A possibility is to let
threads keep on trying to get the lock. Locks based on this technique are called spinlocks. A simple
spinlock may use a primitive such as CAS to atomically change the value of a lock from unowned
to owned. However, such spinning may cause heavy contention for the lock. An alternative to
avoid contention is the use of exponential backoff. In exponential backoff [5] a thread that fails
in its attempt of getting a lock waits for some time before a new attempt. With every failed
attempt, the waiting time is increased. The idea is that threads will spread themselves out in
time, resulting in a reduction of contention and memory traffic.

A disadvantage of exponential backoff is that it may happen that a lock remains unlocked
for a long time, since all interested threads have been backed-off too much in time. A possible
solution to this problem may consist in the use of a queue of interested threads. Locks based on
this approach are known as queuelocks. Some implementations of queuelocks based on arrays
are introduced in [7,94] and then improved using list-based MCS queue locks [151] and CLH
queuelocks [59,141].

Queuelocks also come in many flavors. There are abortable implementations of queuelocks
where a thread can give up if it is delayed beyond some time limit [184, 185] or if they just
fall into deadlock. On the other hand, preemptive-safe locks [154] ensure that an enqueued
preempted thread does not prevent the lock to be taken by another running thread.

In some cases, we would like to have locks letting multiple readers access the concurrent data
structure. A reader is a process that only extracts information from the data structure, without
modifying it. Such locks are known as reader-writer locks. There exist many kinds of these locks.
For instance, reader-writer queuelock algorithms [152] use a MCS queuelock, a counter for reads
and a special pointer for writes. In [126] readers remove themselves from the lock’s queue,
keeping a double-linked list and some special locks on the list’s nodes. In this case, when a thread
removes itself from the list, it acquires a small lock on its neighbor nodes, and redirects the
pointers removing itself from the list.

The reader-writer approach can be also generalized to group mutual exclusion or room
synchronization. Under this approach, operations are divided into groups. Operations within the
same group can be performed simultaneously with each other, while operations belonging to
different groups cannot be executed concurrently. An application of such technique, for instance,
could classify the PUSH and POP operations over stacks on different groups [30]. Group mutual
exclusion is introduced in [120] and implementations for fetch and increment counters (as the
example shown at the beginning of this chapter) are described in [30,124].

Another mechanism are barriers. A barrier stops all threads at a given point, allowing them to
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proceed only after all threads have reached that point. Barriers are used when the access to the
data structure is layered, preventing layer overlapping between different phases.

A barrier can simply be implemented using a counter to keep track of the number of threads
that have achieved the barrier position. The counter is initialized with the total number of threads
that must synchronize. Then, every time a thread reaches the barrier, it decrements the counter.
Once the counter has reached zero, all threads are allowed to proceed. This approach still displays
the problem of contention, as many threads may be spinning, waiting for the barrier to reach
zero and let them proceed. Therefore, special implementations of barriers exist to alleviate this
problem, making threads spin on different locations [100,115, 186]. An alternative approach
consists in implementing barriers using diffusing computation trees [66].

The main purpose for using locks in concurrent programming is to let threads modify multiple
memory locations atomically in such a way that no partial result of the computation can be
observed by other threads. In this aspect, transactional memory is a mechanism that lets
programmers model sections of the code accessing multiple memory locations as a single atomic
operation. The use of transactional mechanisms is inspired on the idea of transactions in databases,
even though that the problem in memory management is slightly different to the one existing on
databases.

An example of a transactional memory mechanism for concurrent data structures is optimistic
concurrency control [130]. This approach uses a global lock which is held for a short time at
the end of the transaction. However, such a lock is a cause of sequential bottleneck. Ideally,
transaction synchronization should be accomplished without the use of global locks. For example,
transactions accessing disjoint sections of the memory should not synchronize with each other
at all. A hardware-based transactional memory mechanism was first proposed in [106]. An
extension to this idea is lock elision [174,175] where the hardware can automatically translate
accesses to critical section into transactions that can be executed in parallel.

Despite the effort, up to this moment no hardware support for transactional memory has
been developed. Even though, many software based transactional memory approaches have been
proposed [98,99,105,187].

2.3 Signatures and Theories

We use many-sorted first order logic to define the theories presented in Chapter 6, 7 and 8 as
a combination of theories. Hence, we begin with a brief description of the basic notation and
concepts.

A signature Σ is a triple (S, F, P ) where S is a set of sorts, F is a set of function symbols
and P is a set of predicate symbols constructed using the sorts in S. If Σ1 = (S1, F1, P1) and
Σ2 = (S2, F2, P2) are two signatures, we define their union Σ1 ∪Σ2 = (S1 ∪ S2, F1 ∪ F2, P1 ∪ P2).
Similarly we say that Σ1 ⊆ Σ2 when S1 ⊆ S2, F1 ⊆ F2 and P1 ⊆ P2.

Example 2.7
We can describe the signature of the theory of naturals with addition, equality and total order
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with the following signature:

Σnat =




{nat} ,

{0 : nat, s : nat→ nat, + : nat× nat→ nat} ,

{=: nat× nat, <: nat× nat}




y

Example 2.8
Consider now the signature of the theory of sets of integers with union, set difference and
minimum:

Σsetnat =




{ nat, setnat } ,

{ ∅ : setnat,

{_} : nat→ setnat,

∪ : setnat× setnat→ setnat,

− : setnat× setnat→ setnat,

min : setnat→ nat } ,

{ = : setnat× setnat }




For analyzing program SETMUTEX presented in Example 2.2 we could use a theory whose
signature may be the union of Σsetnat, presented here, and Σnat, presented in Example 2.7. y

Given a signature Σ, we assume the standard notions of Σ-term, Σ-literal and Σ-formula. A
literal is flat if it is of the form x = y, x 6= y, x = f(y1, . . . , yn), p(y1, . . . , yn) or ¬p(y1, . . . , yn),
where x, y, y1, . . . , yn are variables, f is a function symbol and p is a predicate symbol. Every
literal can be converted into an equivalent conjunction of flat literals, simply by introducing
fresh variables for each of the sub-terms of a non-flat literal, and equating the variable with the
corresponding sub-term. For example p(t(x, y)) becomes p(z) ∧ z = t(x, y) for a fresh variable z
of the appropriate sort. The formula ∃ ∗ .p(t(x, y)) is equivalent to ∃ ∗ .

(
p(z) ∧ z = t(x, y)

)
.

Given a term t, we use Vσ(t) for the set of variables of sort σ occurring in t and Cσ(t) for the
set of constants of sort σ occurring in t. Similarly, given a formula ϕ, we use Vσ(ϕ) for the set of
variables of sort σ occurring in ϕ and Cσ(ϕ) for the set of constants of sort σ occurring in ϕ.

A Σ-interpretation is a map from symbols in Σ to values (see, e.g., [83]). Let A be a Σ-
interpretation over V . Then, for each s ∈ S, As is a set of elements called the domain of s.
For each symbol f : s1 × · · · × sn → s in F , Af is a function that goes from elements in the
tuple As1 × · · · × Asn to elements in As. For each symbol p : s1 × · · · × sn in P , Ap is a relation
over elements of As1 × · · · × Asn . Given a model A and a sort σ, VAσ denotes the set of values
interpreted by model A for all variables of sort σ.

A Σ-structure is a Σ-interpretation over an empty set of variables. A Σ-formula over a set V

of variables is satisfiable whenever it is true in some Σ-interpretation over V . Two Σ-formulas ϕ
and ψ over a set V of variables are equivalent is their truth values, in symbols ϕA and ψA, are
identical (i.e. ϕA = ψA) for all Σ-interpretations over V .

Let Ω be a signature, A a Ω-interpretation over a set V of variables, Σ ⊆ Ω and U ⊆ V . AΣ,U

denotes the interpretation obtained from A restricting it to interpret only the symbols in Σ and

36



2.3. Signatures and Theories

the variables in U . We use AΣ to denote AΣ,∅. If Φ is a set of Σ-formulas, we use ModΣ(Φ) to
denote the class of many-sorted Σ-structures satisfying all the formulas in the set Φ. A Σ-theory is
a pair (Σ,A) where Σ is a signature and A is a class of Σ-structures. Given a theory T = (Σ,A),
a T -interpretation is a Σ-interpretation A such that AΣ ∈ A. Given a Σ-theory T , a Σ-formula ϕ
over a set of variables V is T -satisfiable if it is true on a T -interpretation over V . We define F (V )

Σ

as the set of Σ-formula over variables V . Finally, given a sequence of variables v1, . . . , vn, we use
v0..n to denote such sequence.

Example 2.9
We can now formally define the theory of natural numbers with addition using the Σnat signature
presented in above Example 2.7. Let Tnat be the theory of natural numbers defined by:

Tnat = (Σnat,Anat)

where Anat is a class of Σnat-structures that restricts the models of Σnat such that every interpreta-
tion A of Σnat must satisfy that for every variable n, n1 and n2 of sort nat:

0A = 0

sA(n) = n+ 1

+A(n1, n2) = n1 + n2

=A(n1, n2) ↔ n1 = n2

<A(n1, n2) ↔ n1 < n2

y

Through this work we will usually refer to a combination of theories. Let Ti = (Σi,Ai) be a
theory, for i = 1, 2. The combination of theories T1 and T2 is the theory T1 ⊕ T2 = (Σ,A) where
Σ = Σ1 ∪ Σ2 and A = {A | AΣ1 ∈ A1 and AΣ2 ∈ A2}. If Φi is a set of Σi-formulas with no
free variables and Ti = (Σi,ModΣi(Φi)) for i = 1, 2 such that their signature is disjoint (that is,
Σ1 ∩ Σ2 = ∅), then T1 ⊕ T2 = (Σ1 ∪ Σ2,ModΣ1∪Σ2(Φ1 ∪ Φ2)).

We now present two definitions we will require later when proving that a theory is decidable
thanks to a finite or bounded model theorem.

Definition 2.1 (Finite Model Property).
Let Σ be a signature, S0 ⊆ S be a set of sorts, and T be a Σ-theory. T has the finite model
property with respect to S0 if for every T -satisfiable quantifier-free Σ-formula ϕ there exists a
T -interpretation A satisfying ϕ such that for each sort σ ∈ S0, Aσ is finite. y

Definition 2.2 (Bounded Model Property).
Theory T has the bounded model property with respect to a set of sorts S if there are computable
functions fσ : FΣ 7→ N for every sort σ in S such that if ϕ has a model, then it has a model B for
which |Bσ| ≤ fσ(ϕ). y

37



CHAPTER 2. PRELIMINARIES

2.4 Model of Computation

We study the verification of temporal properties in parametrized systems, that is, systems com-
posed by an arbitrary number of threads. We now present the general model of computation we
will use as well as the main differences between non-parametrized and parametrized systems.
The verification framework we propose is based on deductive techniques. That is, starting from a
system specification and a temporal property, we advocate for the generation of a set of proof
obligations, whose validity imply the conformance of the system to the given temporal property.
In the case of safety properties, for example, the formal verification problem for non-parametrized
systems takes a system described as a program and a specification of a property expressed as a
state predicate. A system satisfies its specification if all states reachable in all the traces of the
transition system that models the set of executions of the program satisfy the property.

We will now proceed to present the logic we use to express the temporal properties we
verify. Moreover, we will revisit the notion of a non-parametrized transition system and a
non-parametrized fair transition system. Then, we will introduce parametrized programs and
parametrized fair transition systems, which in turn provide the vocabulary to define parametrized
temporal formulas. Finally, we define our notion of correctness of concurrent programs by
associating parametrized fair transition systems with parametrized temporal formulas.

2.4.1 Linear Temporal Logic

To express the temporal properties we verify, we use linear temporal logic (LTL). LTL is a modal
temporal logic introduced by Amir Pnueli [168] which allows to describe logical properties
through time.

LTL formulas are constructed form a finite set of propositional variables AP , the logical unary
operator ¬ (negation), the logical binary operator ∨ (disjunction), the temporal modal unary
operator  (read as next) and the temporal modal binary operator U (read as until). Formally
speaking, the set of LTL formulas over the set of propositional variables AP is inductively defined
as:

• if p ∈ AP , then p is an LTL formula;

• if ϕ and ψ are LTL formulas, then ¬ϕ, ϕ ∨ ψ, ϕ and ϕ U ψ are LTL formulas.

In addition to the operators presented above, there are other logical and temporal operators
which can be defined in terms of the fundamental operators. The additional logical operators
are ∧ (conjunction), → (implication), ↔ (equivalence), true and false. On the other hand,
the additional temporal operators are the unary operators  (read as always) and (read as
eventually), and the binary operators R (read as release) andW (read as wait for).

An LTL formula can be satisfied by an infinite sequence of truth evaluations of variables in AP .
These sequences can be viewed as a word on a path of a Kripke structure [127] or as a ω-word
over the 2AP alphabet. We can formally define the satisfaction relation � between a ω-word
w = a0, a1, a2, . . . and an LTL formula as:

• w � p, if and only if p ∈ a0. That is, p must be true in the current step of time.

• w � ¬ϕ, if and only if w 6� ϕ. That is, w must not make ϕ true.
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• w � ϕ ∨ ψ, if and only if w � ϕ or w � ψ. That is, w must satisfy ϕ or ψ.

• w � ϕ, if and only if a1, a2, . . . � ϕ. That is, in the next step of time, ϕ must be true.

• w � ϕ U ψ, if and only if there exists an i ≥ 0 such that ai, ai+1, . . . � ψ and for all k such
that 0 ≤ k < i, ak, ak+1, . . . � ϕ. That is, ϕ must be true until ψ becomes true. Note that,
according to the definition, ϕ may never be true at all provided ψ is always true.

An LTL formula ϕ is satisfiable if there exists an ω-word w such that w � ϕ. The additional
logical operators are defined as usual. The additional temporal operators R,,  andW are
defined using the  and U operators as follows:

• ϕR ψ = ¬(¬ϕ U ¬ψ). That is, ψ remains true until ϕ becomes true, bearing in mind that ϕ
may never become true.

• ϕ = true U ϕ. That is, eventually ϕ becomes true.

• ϕ = false R ϕ = ¬(true U ¬ϕ). That is, ϕ always remains true.

• ϕW ψ = ψ R (ψ ∨ ϕ). That is, ϕ remains true until ψ becomes true, or ψ is always true.

2.4.2 Non-Parametrized Fair Transition Systems

The execution of a non-parametrized system is modeled by a non-parametrized fair transition
system. A non-parametrized fair transition system is expressed as a tuple

S : 〈Σprog,V ,Θ, T ,J 〉

where Σprog is a theory signature, V is a set of program variables, Θ is the initial condition of the
system, T is a set of transition relations and J is a set of fair transitions. More detailed:

Signature: The signature Σprog is a first-order signature modeling the data manipulated in a
given program. We will use Tprog for denoting the theory that allows to reason about
formulas in Σprog.

Program Variables: V denotes a finite set of (typed) variables, whose types are taken from sorts
in Σprog.

Initial Condition: Θ is the initial condition of the transition system, expressed as a first-order
assertion over the variables V . Values of V satisfying Θ correspond to initial states of the
system.

Transition Relation: T is a finite set of transitions. Each transition τ in T is expressed as a
first-order formula τ(V, V ′) that refers to program variables from V . The set V ′ contains a
fresh copy of v′ of each variable v from V . As usual, the variable v′ denotes the value of
variable v after a transition is taken while v denotes the value before the transition is taken.
Moreover, we assume that every system is equipped with an idle transition whose transition
relation is τε(V, V ′) and which describes the preservation of all system variables, that is,
v = v′ for all v ∈ V . This idle transition allows to reason only about infinite runs even for
deadlocked systems.
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Fairness condition: J is a subset of T , denoting the set of fair transitions.

A state is an interpretation of V , which assigns to each program variable a value form the
corresponding type. We use S to denote the set of all possible states. A transition between two
states s and s′ satisfies a transition relation τ when the combined valuation, that assigns values to
variables in V according to s and to variables in V ′ according to s′, satisfies the formula τ(V, V ′).
In this case, we write τ(s, s′), and we say that the system reaches state s′ from state s by taking
transition τ . We say that a transition τ is enabled in state s if there is a state s′ for which τ(s, s′).
The enabling condition of transition τ is then the formula ∃V ′.τ(V, V ′). We will generally use
the predicate pres over a set of variables to denote variable preservation. That is, if U is a set of
variables, then pres(U) is a short for u′ = u for all u ∈ U .

Example 2.10
Consider the following program statement:

1: x := x+ 1

Such statement is modeled by the following formula:

pc = 1 ∧ pc′ = 2 ∧ x′ = x+ 1 ∧ pres(V \ {pc, x}) y

Given a transition τ , the state predicate En(τ), called the enabling condition, captures whether
τ can be taken from s, that is, whether there exists a successor state s′ such that τ(s, s′). In the
example above, En(τ) is equivalent to pc = 1, because the statement “1: x := x+ 1” can always
be taken if the program is at location 1.

A run of a transition system S is then an infinite sequence s0τ0s1τ1s2 . . . of states and transi-
tions such that:

1. the first state is initial, that is s0 � Θ; and

2. all steps are legal. That is, for all i, the relation τi(si, si+1) holds. In such case, we say that
τi is taken at si, leading to state si+1.

A computation of S is a run of S such that for each transition τ ∈ J , if τ is continuously
enabled after some point, then τ is taken infinitely many times. We use L(S) to denote the set of
computations of S. Given an LTL formula ϕ over a propositional vocabulary AP , L(ϕ) denotes
the set of sequences (of elements of 2AP) satisfying ϕ. Given a computation π : s0τ0s1 . . . of a
system S, the corresponding run πAP for a given propositional vocabulary AP is the sequence
P1P2 . . . with Pi ⊆ AP , such that for all instants i:

si � pi for all pi ∈ Pi and si � ¬pi for all pi /∈ Pi

We use LAP (S) for the set of sequences of propositions from AP that result from L(S). A system
S satisfies a temporal formula ϕ over AP whenever all computations of S when interpreted over
AP satisfy ϕ, that is LAP (S) ⊆ L(ϕ). In this case we write S � ϕ.
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2.4.3 Parametrized Concurrent Programs

Programs manipulate data during their execution. In our approach, the reasoning about the
program data and its manipulation is handled by specialized decision procedures for specific
theories of data.

Example 2.11
Consider once again the program SETMUTEX introduced in Example 2.2. For that program, Tprog

is the combined theory of Presburger arithmetic, finite sets of integers with minimum, and finite
values (to reason about locations). y

The parametrized programs we consider consist of the parallel execution of processes running
the same program. It is easy to extend this framework to systems where processes can run
programs taken from a finite collection —to model for example, reader/writers. We assume
asynchronous interleaving semantics for parallel composition, so precisely one process executes
atomically a single statement at a given point it time. The effect of the execution of a statement
is fully visible to all other processes after the statement finishes. A program is described by a
sequence of statements as described in Section 2.1.1. We use Locs to represent the set of program
locations. Each statement in SPL is assigned to a program location in the range Locs : 1 . . . L.
Each instruction can manipulate a collection of typed variables partitioned into Vglobal, the set
of global variables, and Vlocal, the set of local variables. A running program contains one shared
copy of each global variable, and each thread manipulates its own copy of each local variable. As
we mentioned before, there is one special local variable pc of sort Loc that stores the program
counter of each thread.

Given a parametrized program P , we associate P to an instance family {SP [M ]}, a collection
of non-parametrized transition systems indexed by M ≥ 1, the number of running threads. This
family is called the parametrized system corresponding to program P . We use [M ] to denote
the set {0, . . . ,M − 1} of concrete thread identifiers. Given a value M we refer to P [M ] as the
instance of P with M threads.

For each M , the concrete non-parametrized transition system

P [M ] : 〈Σprog,V ,Θ, T ,J 〉

consists of:

Signature: Signature Σprog, as in non-parametrized fair transition systems.

Program Variables: The set V of typed variables is:

V = Vglobal ∪ {v[k] | for every v ∈ Vlocal, k ∈ [M ]}
∪ {pc[k] | for every k ∈ [M ]}.

Note that in this case, “v[k]” is an indivisible variable name. Alternative names could have
been vk or vk. The set {pc[k] | k ∈ [M ]} contains one variable of sort Loc for each thread
id k in [M ]. The variable pc[k] stores the program counter of thread k. Similarly, for each
local program variable v and thread k there is one variable v[k] of the appropriate sort in
the set {v[k] | v ∈ Vlocal and k ∈ [M ]}.
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Initial Condition: The initial condition Θ is described by two predicates Θg (that only refers
to variables from Vglobal) and Θl (that can refer to variables in Vglobal and Vlocal). These
expressions are extracted from the semantics of the programming language. Given a thread
identifier a ∈ [M ] for a concrete system SP [M ], Θl[a] is the initial condition for thread a,
obtained by replacing in Θl every occurrence of a local variable v from Vlocal for v[a]. The
initial condition of the concrete transition system SP [M ] is:

Θ : Θg ∧
∧

i∈M
Θl[i]

Transition Relation: T contains a transition τ`[a] for each program location ` and thread identi-
fier a in [M ], which are obtained from the semantics of the programming language. The
formula τ`[a] is obtained from τ` by replacing every occurrence of a local variable v for v[a],
and v′ for v[a]′. Note again that “v[a]′” is an indivisible variable name, denoting the primed
version of v[a].

Fairness Condition: We consider all transitions fair, that is J = T .

In general, we will use parenthesis for denoting formal parameters of parametrized formulas
and terms. Similarly, we will use brackets for concretes values of parametrized formulas and
terms. For instance, “pc(i) = 5” is a formula parametrized by a generic thread identifier i, while
“pc[T1] = 5” is the same formula but concretized for the specific thread T1.

Example 2.12
Consider again program SETMUTEX presented in Example 2.2. The instance consisting of two
running threads, SETMUTEX[2], contains the following variables:

V = {avail , bag , ticket [0], ticket [1], pc[0], pc[1]}

Global variable avail has type Int , and global variable bag has type Set〈Int〉. The instances of
local variable ticket for threads 0 and 1, ticket [0] and ticket [1], have type Int . The program
counters pc[0] and pc[1] have type Loc = {1 . . . 7}. The initial condition of SETMUTEX[2] specifies
that:

Θg : avail = 0 ∧ bag = ∅ Θl[0] : ticket [0] = 0 ∧ pc[0] = 1

Θl[1] : ticket [1] = 0 ∧ pc[1] = 1
(2.1)

There are fourteen transitions in SETMUTEX[2], seven transitions for each thread: τ1[0] . . . τ7[0]

and τ1[1] . . . τ7[1]. The transitions corresponding to thread 0 are:
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τ1[0] :

(
pc[0] = 1 ∧
pc[0]′ = 2

)
∧ pres(V \ {pc[0]})

τ2[0] :

(
pc[0] = 2 ∧
pc[0]′ = 3

)
∧ pres(V \ {pc[0]})

τ3[0] :

(
pc[0] = 3 ∧
pc[0]′ = 4

)
∧




ticket [0]′ = avail

avail ′ = avail + 1

bag ′ = bag ∪ {avail}


 ∧ pres({pc[1], ticket [1]})

τ4[0] :

(
pc[0] = 4 ∧
pc[0]′ = 5

)
∧ bag .min = ticket [0] ∧ pres(V \ {pc[0]})

τ5[0] :

(
pc[0] = 5 ∧
pc[0]′ = 6

)
∧ pres(V \ {pc[0]})

τ6[0] :

(
pc[0] = 6 ∧
pc[0]′ = 7

)
∧ bag ′ = bag \ {ticket [0]} ∧ pres(V \ {bag , pc[0]})

τ7[0] :

(
pc[0] = 7 ∧
pc[0]′ = 1

)
∧ pres(V \ {pc[0]})

The transitions for thread 1 are analogous. As explained before, the predicate pres encodes
the preservation of the values of its argument variables, allowing to describe what a program
statement does not modify. For example, in SETMUTEX[2], the predicate pres(V \ {bag , pc[0]}) is:

avail ′ = avail ∧ ticket [0]′ = ticket [0] ∧ pc[1]′ = pc[1] ∧ ticket [1]′ = ticket [1].

Using pres, the idle transition τε implicitly added to every system is pres(V ). Note that each
transition in SETMUTEX[2] is quantifier free, and involve a combination of theories, including
Presburger arithmetic and a theory of finite sets of integers with minimum. y

An alternative model of computation consists of including only one transition per program
location, independently of the number of threads. Each transition then would choose one thread
and manipulate the local variables for that thread only. There is an advantage in our choice
to include a separate transition for each thread and program location. Fairness of a closed
fair transition system guarantees that a fair transition must be taken if enabled continuously.
In the alternative model of computation, this simple notion of fairness would not guarantee
that each thread must eventually execute, but only that each transition is taken for some thread.
Obtaining thread fairness in this alternative model would require to extend the temporal reasoning
specifically for this purpose.

2.4.4 Parametrized Fair Transition Systems

A parametrized system consists of a large, unbounded, set of threads that interact with each other
using some synchronization primitives. The model presented in this work is based on concurrent

43



CHAPTER 2. PRELIMINARIES

systems that communicate and synchronize through shared memory. Under the assumption
of full symmetry, as we do in this work, all thread identifiers of a parametrized system are
interchangeable.

Formally, a parametrized transition system associated with a program P is a tuple

PP : 〈Σparam, Vparam,Θparam, Tparam〉

where Σparam is the first-order signature used to reason about data, Vparam is the set of system
variables, Θparam describes the initial condition and Tparam is the parametrized transition relation.
We assume all transitions in Tparam to be fair. The intention of parametrized transition systems
is not to define program runs directly but to serve as a modeling language for the definition of
parametrized formulas and to enable the definition of proof rules and verification diagrams for
parametrized systems. We describe each component separately:

Parametrized Program Signature: To capture thread identifiers in an arbitrary instantiation of
the parametrized system we introduce a new sort tid interpreted as an unbounded discrete
set. The signature Σtid contains only = and 6=, and no constructor. Theory Ttid is then
the theory of thread identifiers defined over the signature Σtid. We extend the theory
Tprog—used to reason about the data in the program— with Array , the theory of arrays
from [37], with indices from tid and elements ranging over sorts σ of the local variables of
program P . We use Tparam for the union of theories Tprog, Ttid and Array , and Σparam for the
combined signature.

Parametrized Program Variables: For each local variable v of type σ in the program, we intro-
duce a variable name av of sort array〈σ〉, including apc for the program counter pc. Using
the theory of arrays, the expression av(k) denotes the elements of sort σ stored in array
av at position given by expression k of sort tid. The expression av{k ← e} corresponds to
an array update, and denotes the array that results from av by replacing the element at
position k with e. For clarity, we abuse notation using v(k) for av(k), and v{k ← e} for
av{k ← e}. Note how v[0] is different from v(k): the term v[0] is an atomic term in V (for a
concrete system SP [M ]) referring to the local program variable v of a concrete thread with
id 0. On the other hand, v(k) is a non-atomic term built using the signature of arrays, where
k is a variable (logical variable, not program variable) of sort tid serving as index of the
array v. The use we make of Array is very limited: we do not use arithmetic over indices or
nested arrays, so the conditions for decidability in [37] are trivially met. Variables of sort
tid indexing arrays play a special role, so we classify formulas depending on the number of
free variables of sort tid. The parametrized set of program variables with index variables X
of sort tid is defined as:

Vparam(X) = Vglobal ∪ {av | v ∈ Vlocal} ∪ {apc} ∪X

We use Fparam(X) for the set of first-order formulas constructed using predicates and
symbols from Tparam and variables from Vparam(X). Given a formula ϕ from Fparam(X) we
use Voc(ϕ) to refer to the set of variables of type tid free in ϕ. We usually refer to Voc(ϕ) as
the vocabulary of formula ϕ. Since we restrict to the quantifier-free fragment of Fparam(X)

then Voc(ϕ) corresponds to the subset of variables from X actually occurring in ϕ. We say
that ϕ is a 1-index formula if the cardinality of Voc(ϕ) is 1 (similarly for 0, 2, 3, etc).
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Parametrized Transition Relation: The set Tparam contains for each statement ` in the program
one formula τ

(k)
` indexed by a fresh tid variable k. These formulas are built using the

semantics of the program statements, as for concrete systems except that we now use array
reads and updates (to position k) instead of concrete local variable reads and updates. The
predicate pres is now defined with array extensional equality for unmodified local variables.
Note that there is a finite number of parametrized transitions τ (k)

` for a given program
because ` ∈ Locs and Locs is finite.

Parametrized Initial Condition: We similarly define the parametrized initial condition for a
given set of thread identifiers X as:

Θparam(X) : Θg ∧
∧

k∈X

Θl(k)

where Θl(k) is obtained by replacing every local variable v in Θl by v(k).

Example 2.13
Consider once again the program SETMUTEX presented in Example 2.2. The parametrized

transition τ (k)
4 , for thread k in line 4, is the following formula from Fparam({k}):
(

pc(k) = 4 ∧
pc′ = pc{k ← 5}

)
∧
(

bag .min = ticket(k)
)
∧ pres(ticket , bag , avail)

where pres(bag , avail , ticket) stands for the equalities:

bag ′ = bag ∧ avail ′ = avail ∧ ticket ′ = ticket

Note that the last equality (ticket ′ = ticket) is an array equality. The parametrized initial condition
of SETMUTEX for two thread ids i and j is the formula Θparam({i, j}):

avail = 0 ∧ bag = ∅ ∧




ticket(i) = 0

∧
pc(i) = 1


 ∧




ticket(j) = 0

∧
pc(j) = 1


 (2.2)

y

2.4.5 Parametrized Formulas

A parametrized formula ϕ({k0, . . . , kn}) with free variables {k0, . . . , kn} of sort tid is simply a
formula from Fparam({k0, . . . , kn}). For clarity, we use k for {k0, . . . , kn} when the size and
index of the set of tid variables is not relevant. Parametrized formulas can only compare thread
identifiers using equality and inequality, and no constant thread identifier exists.

We are interested in verifying temporal properties of parametrized programs, so we ex-
tend parametrized formulas to temporal parametrized formulas, by taking predicates from
Fparam({k0 . . . , kn}) and combining them using temporal operators from LTL (, U , , etc).
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Example 2.14
We revisit the SETMUTEX program presented in Example 2.2. For such program, the following
formula —which is a 2-index safety formula— expresses mutual exclusion for SETMUTEX:

ϕmutex(i, j) = 
(
i 6= j → ¬(pc(i) = 6 ∧ pc(j) = 6)

)
(2.3)

Similarly, progress of each individual thread is expressed by the following 1-index temporal
formula:

ϕprogress(i) = 
(

pc(i) = 3→pc(i) = 6
)

y

We will usually refer to a function to be in its conjunctive or disjunctive normal form. The
definition we will manage about these two concepts is the standard one.

Definition 2.3 (Disjunctive and Conjunctive Normal Form).
A clause is a literal or its negation. A formula is in disjunctive normal form if it is expressed as a
disjunction consisting of one or more disjuncts, each of which is a conjunction of one or more
clauses.

Similarly, a formula is in conjunctive normal form if it is expressed as a conjunction consisting
of one or more conjuncts, each of which is a disjunction of one or more clauses. y

We now formally present the concept of vocabulary of a formula (Voc).

Definition 2.4 (Vocabulary).
The vocabulary of a formula is defined as the set of free variables of type tid appearing in a
formula. Formally:

Voc(c) =




{c} if c ∈ Ctid

∅ otherwise
Voc(pc(k)) = {k}

Voc(v) =




{v} if v ∈ V tid

global

∅ otherwise
Voc(v(k)) =




{v(k), k} if v(k) ∈ V tid

local

{k} otherwise

Voc(ϕ1 ./ ϕ2) = Voc(ϕ1) ∪Voc(ϕ2) Voc(.ϕ) = Voc(ϕ)

where ./ represents any binary operators like ∧, ∨,→, U orW , and . denotes any unary operator
such as ¬, , ,, etc. y

Let ϕi be a formula for i = 1, . . . , n. In general, we use Voc(ϕ1, . . . , ϕn) to denote
⋃n
i=1 Voc(ϕi).

2.4.6 Parametrized Temporal Verification

In order to define the parametrized temporal verification problem we need to introduce the
notion of concretization. Let us fix a program P , and let {SP [M ]} be its instance family and PP
be the parametrized transition system.
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Definition 2.5 (Concretization).
Given a parametrized formula ϕ and a concrete number of threads M , a concretization of ϕ is a
substitution that maps tid variables in ϕ into concrete thread identifiers in [M ]:

α : Voc(ϕ)→ [M ] y

In this manner, elementary propositions from the parametrized formula ϕ are in Tparam but the
corresponding elementary propositions of the concrete α(ϕ) are in Tprog using the variables of the
concrete system S[M ]. We use ArrϕM for the set of concretizations of ϕ and M .

A concretization α can be lifted inductively to convert Σparam expressions (parametrized
expressions) into Σprog expressions (non-parametrized expressions for SP [M ]). All function
symbols F and predicate symbols P in Σparam that are not in the theory of arrays are translated
to the same symbols in Σprog:

α(F (t1, . . . , tn)) 7→ F (α(t1), . . . , α(tn))

α(P (t1, . . . , tm)) 7→ P (α(t1), . . . , α(tm))

For symbols in the theory of arrays, we first translate all literals of sort array in a formula ϕ to:

(a) either variables of sort array, or

(b) array updates in the right of equalities w = v{k ← e}

This translation can be easily achieved by introducing a fresh array variable v for every more
complex term t of type array occurring in ϕ, conjoining v = t to the root of ϕ and substituting in
ϕ all occurrences of t for v. Then, α can be defined for the remaining array cases:

α(v(ki)) 7→ v[α(ki)]

α(w = v{k ← e}) 7→
(
w[α(k)] = e ∧

∧

a∈M\α(k)

w[a] = v[a]
)

α(w = v) 7→
∧

a∈M
w[a] = v[a]

α(v 6= w) 7→ v[k] 6= w[k] for a fresh k

Finally, this map can be extended to formulas in the usual manner, extending to Boolean and
temporal connectives. In fact, for fully symmetric systems, we have the following lemma:

Lemma 2.1:
Let ψ be a parametrized formula and α a concretization of ψ for a given number of threads M .
Then,

if ψ is a valid formula, then α(ψ) is also a valid formula. y

Proof. The proof proceeds by showing that if α(ψ) has a model then ψ also has a model. The
lemma then follows because if ψ is valid, then ¬ψ has no model. Consequently, α(¬ψ) can have
no model either and α(ψ) must be valid too.

Starting from a model A of α(ψ) we build the model B of ψ as follows:
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• The domains of all sorts in A and B coincide, except for arrays, in which case indices are Z
and values are the corresponding domain in A. In particular, the domain of the variable pc

is that of arrays indexed by Z with values ranging over locations in Loc.

• For terms: the only terms of sort tid occurring in ψ are variables. For these, B assigns the
integer within range [M ] given by α:

kB = α(k)

Array terms in ψ can be either a variable v or a term v{k ← e}, but the function symbol
{· ← e} is interpreted, so we only need to specify the valuation in B of array variables. We
let B assign, for indices within [M ] the value of the corresponding variable in A and for
values out of the range [M ], the array is filled with a fixed value dσ (an arbitrary value) in
the domain of the sort σ of elements of the array. Formally:

vB(n) =





(v[n])A if n ∈ [M ]

dσ if n /∈ [M ]
(2.4)

Note, in particular, that for tid variable k,

(v(k))B = vB(kB) = (v[α(k)])A

All other function symbols are interpreted in B as in A. This is well-defined since all
domains (and signatures) coincide. It follows that, with the possible exception of arrays:

for all terms t tB = (α(t))A.

• The only predicate in the extended theory that is not in the concrete theory is array equality.
We first show that for all array variables v and w:

(w = v)B ⇐⇒ (α(w = v))A (2.5)

Since for all n /∈ [M ], by (2.4), wB(n) = dσ = vB(n), it follows that:

(w = v)B ⇐⇒ (dσ = dσ) ∧
∧

a∈[M ]

(wB(a) = vB(a))

⇐⇒
∧

a∈[M ]

(w[a]A = v[a]A)

⇐⇒
∧

a∈[M ]

(w[a] = v[a])A

⇐⇒ (α(w = v))A

Therefore, (2.5) holds.

Second, we show that:

(w = v{k ← e})B ⇐⇒ (α(w = v{k ← e}))A (2.6)
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Given array variables v and w, tid variable k, and term e (of the appropriate sort of elements
stored in arrays v and w) by (2.4) all indices not in [M ] are mapped to the same value dσ.
Then, wB(n) = vB(n) for all n /∈ [M ]. It follows that:

(w = v{k ← e})B ⇐⇒ wB(n) = (v{k ← e))B(n) for all n ∈ [M ]

⇐⇒ wB(α(k)) = eB ∧
∧

a∈[M ]\α(k)

(w(a)B = v(a)B)

⇐⇒ w[α(k)]A = eA ∧
∧

a∈[M ]\α(k)

(w[a]A = v[a]A)

⇐⇒ (α(w = v{k ← e}))A

Therefore, (2.6) holds as well.

Finally, for all common predicates P , that is, for all predicates except those in the theory of
arrays we let:

PB(a1, . . . , an) ⇐⇒ PA(a1, . . . , an)

Hence, by (2.4), (2.5) and (2.6) it follows that for all predicates, including those in the
theory of arrays:

(P (t1, . . . , tn))B ⇐⇒ α(P (t1, . . . , tn))A

Since all atomic predicates of ψ have the same truth value in B as the corresponding
predicates of α(ψ) in A, it follows that B is a model of ψ because A is a model of α(ψ).

This finishes the proof. �

In general, we use parenthesis for parameters of parametrized formulas and brackets for
parameters of formulas on concrete systems. That is, if ϕ(t) is an 1-index parametrized formula,
then ϕ(i) is formula ϕ(t) with all occurrences of t replaced by i. Note that ϕ(i) is still a
parametrized formula. Instead, ϕ[T ] denotes formula ϕ where all occurrences of t has been
instantiated for the concrete thread identifier T . The same notation applies for transitions. For
instance, τ (t)

` is the transition relation associate to program location ` for an arbitrary thread t,
while τ [T ]

` is the same transition relation but instantiated for the concrete thread identifier T .
Essentially, a concretization computes the predicate α(ϕ) for system SP [M ] that results from

ϕ by instantiating its variables Voc(ϕ) according to the map α.

Example 2.15
Consider the formula Θparam({i, j}) shown as Equation (2.2) in Example 2.13 above. The
concretization of Θparam({i, j}) by the map α : {i ← 0, j ← 1} is the concrete initial condition
expressed by Equation (2.1) in Example 2.12.

Similarly, if we consider the formula ϕmutex from Example 2.14, its concretization according
to the map α1 : {i→ 0, j → 1} is:

α1(ϕmutex) = ¬(pc[0] = 6 ∧ pc[1] = 6)

However, with the concretization α2 : {i→ 0, j → 0}, the resulting formula α2(ϕmutex) is:

α2(ϕmutex) = T y
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We are now ready to define formally the parametrized temporal verification problem.

Definition 2.6.
Given a parametrized system S and a parametrized temporal formula ϕ(k) we say that S � ϕ(k)

whenever for all concrete instances S[M ] and concretizations α, S[M ] � α(ϕ(k)). y

50



Part I
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Verification Techniques





3
Parametrized Invariance

“ Absence of evidence
is not evidence of absence. ”

Carl Sagan

In this chapter we present Parametrized Invariance, a general method to verify safety temporal
properties in concurrent parametrized programs. The parametrized concurrent programs we are
interested in are executed by an unbounded number of threads and they can manipulate complex
data, including unbounded local and shared state. We propose in this chapter a method that
solves the uniform verification problem for safety properties. That is, given a parametrized system
P : P (1) ‖ P (2) ‖ . . . ‖ P (N) and a safety property ϕ, establish whether

SP [M ] � ϕ for all instances M ≥ 1

In particular, we solve this problem for systems processes that manipulate arbitrary infinite
data.

Parametrized Invariance is a generalization of the inductive invariance proof rules for temporal
deductive verification [144], in which each verification condition corresponds to a small-step (a
single transition) in the execution of a system. The applicability of these proof rules, without
adding quantifiers, is restricted to non-parametrized systems. In fact, non-parametrized systems
can be described by a finite number of transitions, so one can generate one verification condition
per transition. However, in parametrized systems, the number of transitions depends on the
concrete number of processes in each particular instantiation, which is unbounded: the larger the
instantiation, the larger the set of transitions to consider.

To tackle this problem, our parametrized invariance rules automatically discharge a finite
collection of verification conditions. The validity of these verification conditions implies the
correctness of all concrete system instantiations. In order to generate a finite set of verification
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conditions, the proof rules we present in this chapter capture the effect of single steps of the
following:

• all threads explicitly referred to in the property, and

• an arbitrary thread not involved in the property definition.

All generated verification conditions using the parametrized invariance proof rules are
quantifier-free as long as the transition relations and the specifications are quantifier-free. The ver-
ification conditions generated using parametrized invariance can then be automatically checked
as valid using appropriate decision procedures for each manipulated data type.

The rest of this chapter is structured as follows. Section 3.1 presents the traditional deductive
invariance rules for non-parametrized systems and shows why they are unsuitable for param-
etrized systems. Section 3.2 introduces the novel proof rules for parametrized invariance, the
method we propose for verifying safety properties on parametrized systems, and proves these
new proof rules sound. Finally, Section 3.3 summarizes this chapter.

3.1 The Need of Parametrized Safety Proof Rules

We begin by showing the need of specialized proof rules for the verification of safety properties of
parametrized systems. To do so, we first formulate the uniform verification problem in terms of
concretizations.

Definition 3.1 (Uniform Verification Problem).
Given a program P and a parametrized formula ϕ(k), we say that P satisfies the universal safety
property: (

∀k . ϕ(k)
)

whenever for every M and substitution α : k → [M ], the concrete closed system SP [M ] satisfies
SP [M ] � α(ϕ(k)). In this case we write P � ∀k.ϕ(k), or simply P � ϕ and say that ϕ is a
parametrized invariant of P . y

We say that a system S satisfies a safety property p, which we write S � p, whenever
all runs of S satisfy p at all states. Fig. 3.1 presents the classical invariance rules [144] for

To show that P satisfies ϕ:

B1. Θ→ ϕ

B2. ϕ ∧ τ → ϕ′ for all τ

ϕ

To show that P satisfies ϕ, find q:

I1. Θ→ q

I2. q ∧ τ → q′ for all τ

I3. q → ϕ

ϕ

(a) The basic invariance rule B-INV (b) The invariance rule INV

Figure 3.1: Rules B-INV and INV for non-parametrized systems.
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non-parametrized systems. The formula ϕ′ in the consequent of premise B2 refers to the formula
obtained from ϕ by replacing every variable v in ϕ by v′. The formula q′ in the consequent of
premise I2 is obtained from q similarly. The basic rule B-INV establishes that if the candidate
invariant ϕ holds initially and is preserved by every transition, then ϕ is indeed an invariant. In
this case we call ϕ an inductive invariant.

A naïve approach to prove parametrized invariants is to try to enumerate all concrete instances
and repeatedly use rule B-INV for each resulting instance to show that each possible concretization
is an invariant. However, as we show below, this approach requires proving an unbounded number
of verification conditions because one (potentially different) verification condition is discharged
per transition and per thread that is present in each instantiated closed system.

Example 3.1
Fig. 3.2 presents procedure TWO. This procedure operates over a local variable x which is
initialized to 1 and then it is multiplied by 2 (line 1).

A simple invariant property we would like to verify is alwaysPositive:

alwaysPositive : (x > 0)

In this case, we can use the basic proof rule B-INV presented in Fig. 3.1(a), since, for premise B1

we have that:
pc = 1 ∧ x = 1 → x > 0

And following premise B2, every transition of TWO preserves the invariant candidate:

x > 0 ∧ pc = 1 ∧ pc′ = 2 ∧ x′ = x× 2 → x′ > 0

Hence, alwaysPositive is an inductive invariant. y

A stronger rule is INV, shown in Fig. 3.1(b), which uses an intermediate strengthening invariant
q. If q implies ϕ and q is an invariant, then ϕ is also an invariant. An alternative characterization
of rule INV requires finding q and proving that (q ∧ ϕ) is an inductive invariant using rule B-INV.

Example 3.2
Consider again procedure TWO defined in Example 3.1. We would like to prove as invariant the
formula finallyTwo, which says that the procedure always returns value 2. That is:

finallyTwo : (pc = 2→ x = 2)

procedure Two()
Int x = 1

begin
1: x := x× 2
2: return (x)

end procedure

Figure 3.2: Declaration of procedure TWO.
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We cannot prove finallyTwo invariant using B-INV because it is not inductive. In particular, the
following verification condition is not valid:

(pc = 2→ x = 2) ∧ pc = 1 ∧ pc′ = 2 ∧ x′ = x× 2 → (pc′ = 2→ x′ = 2)

So, in this case we require to use proof rule INV and find a stronger inductive invariant in order
to prove finallyTwo invariant.

Let strgFinallyTwo be th following candidate invariant:

strgFinallyTwo : (pc = 1→ x = 1 ∧ pc = 2→ x = 2)

We will use strgFinallyTwo as q in the INV rule. Clearly, strgFinallyTwo is inductive and can be
verified using premise I1:

pc = 1 ∧ x = 1 → (pc = 1→ x = 1 ∧ pc = 2→ x = 2)

and premise I2:




pc = 1→ x = 1

∧
pc = 2→ x = 2


 ∧




pc = 1

∧
pc′ = 2


 ∧ x′ = x× 2 →




pc′ = 1→ x′ = 1

∧
pc′ = 2→ x′ = 2




Finally, premise I3 holds:

(pc = 1→ x = 1 ∧ pc = 2→ x = 2) → (pc = 2→ x = 2)

which proves that finallyTwo is an invariant, as desired. y

For non-parametrized systems, premises B1 and I1 —called initiation— discharge one verifica-
tion condition, and premises B2 and I2 —called consecution— discharge a collection of verification
conditions whose size is linear in the number of transitions. To use these invariance rules directly
for parametrized systems, one either needs to use quantification (as in [169]) or apply the rules
once for each concrete system instantiation, which requires to discharge and prove an unbounded
number of verification conditions.

Example 3.3
We now revisit program SETMUTEX presented in Example 2.2. Consider the following specification
availNotNeg, which ensures that avail is never negative:

availNotNeg : (avail ≥ 0)

Specification availNotNeg is in fact an inductive invariant. But proving it invariant using the
traditional B-INV rule would require to verify that:

avail ≥ 0 ∧ τ`[t]→ avail ′ ≥ 0

56



3.2. Parametrized Proof Rules

for all transition relations τ`[t] presented in Example 2.12 with ` ∈ {1..7} and each thread t in the
system. Hence, for a system with M threads we would require to verify 7×M + 1 verification
conditions. y

The novelty of the parametrized invariance rules we present in this chapter is that they allow
to tackle parametrized systems while discharging only a finite number of verification conditions.

3.2 Parametrized Proof Rules

We now present parametrized invariance, a set of specialized proof rules for parametrized systems,
which allow to prove parametrized invariants discharging only a finite number of verification
conditions. As happens with non-parametrized invariance rules, some parametrized proof rules
can be applied to inductive invariants, while more sophisticated parametrized proof rules are
required for non inductive invariants. We now proceed to describe each of the new parametrized
proof rules.

3.2.1 The Basic Parametrized Invariance Rule: BP-INV

The simplest proof rule is BP-INV, called the basic parametrized invariance rule, which is shown in
Fig. 3.3. Basically, in BP-INV:

Premise P1: guarantees that the initial condition holds for all instantiations. This premise
discharges only one verification condition.

Premise P2: guarantees that ϕ is preserved under transitions taken by all threads referred in the
formula and considering all possible transitions of the system. This premise discharges one
verification condition per transition in the description of the system (each statement in the
program) and per index variable in the formula ϕ.

Premise P3: guarantees that ϕ is preserved for all transitions taken by any other thread. This is
achieved by taking a fresh thread identifier in P3. A fresh variable of type thread identifier
refers to a variable not appearing in ϕ. Premise P3 generates one extra verification condition
per transition in the system.

All the generated verification conditions using BP-INV are quantifier-free provided that ϕ is
quantifier-free. Premises P2 and P3 must be checked for all system transitions. Moreover, premise

To show that P satisfies ϕ:

P1. Θparam(k) → ϕ for k = Voc(ϕ)

P2. ϕ ∧ τ (i) → ϕ′ forall τ and all i ∈ Voc(ϕ)

P3. ϕ ∧
( ∧
x∈Voc(ϕ)

j 6= x ∧ τ (j) → ϕ′
)

forall τ and one fresh j /∈ Voc(ϕ)

ϕ

Figure 3.3: The basic parametrized invariance rule BP-INV.
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P2 requires each transition to be checked for every thread identifier appearing in the formula ϕ.
Corollary 3.1 in page 63 justifies the soundness of rule BP-INV.

3.2.2 The Parametrized Invariance Rule: P-INV

There are cases in which premise P3 from proof rule B-INV presented in Section 3.2.1 cannot be
proven, even if ϕ is initial and preserved by all transitions of all threads in all system instantiations.

Example 3.4
Consider the program POSITIVE presented in Fig. 3.4. The program simply adds a positive number
c to a global positive variable x and returns the result.

Consider now the 1-index property:

ϕPOS(i) = (x > 0 ∧ c(i) > 0)

Property ϕPOS is trivially a parametrized invariant. However, premise P3 from BP-INV is not valid
for this property when a fresh thread identifier j takes the transition at line 1, as we require to
prove the validity of the following formula:

(
(x > 0 ∧ c(i) > 0) ∧ (j 6= i) ∧ x′ = x+ c(j) ∧ c′ = c

)
→ x′ > 0 ∧ c′(i) > 0

The formula above is not valid as we can construct, for example, the following counter-model:

x = 1 i = 0 j = 1 c(0) = 1 c(1) = −1 x′ = 0 c′ = c

Essentially, the problem is that formula ϕPOS does not imply that c(j) > 0 before the transition
τ

(j)
1 is taken (although it states that c(i) > 0). Because of that, the counter-example can assign
c(j) = −1. A transition for which the corresponding verification condition is not valid is known
as an offending transition (see [144]), or more modernly as a counter-example to induction [36].y

The problem exposed in Example 3.4 is that in the antecedent of premise P3, ϕ does not refer
to the fresh arbitrary thread introduced. In other words, BP-INV tries to prove a property for the
threads referred to in the formula, without assuming anything about any other thread. It is sound,
however, to assume that in the pre-state of the verification condition the property one intends to
prove holds for all processes, and not only for the processes explicitly mentioned in the formula.

global
Int x > 0

procedure Positive()
Int c > 0

begin
1: x = x+ c
2: return (x)

end procedure

Figure 3.4: Declaration of program POSITIVE.
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Intuitively speaking, the justification of this assumption is based on:

∀k . ϕ(k) being equivalent to (∀k . ϕ(k))

However, we want to avoid quantification in all verification conditions. Instead, we propose to
instantiate the formula ϕ in the antecedent of premises, not only to threads in the formula, but
also to other threads. In particular, for all threads appearing in the transition relation. The notion
of support allows to formally capture this intuition. We use the conventional notion of substitution
in first-order-logic (as a map from variables to terms), and restrict our attention to maps from a
set of tid variables X into set of tid variables Y . Substitutions can be extended to maps from terms
to terms and (formulas to formulas) homomorphically in the usual way, preserving all symbols
except the replaced variables. A partial substitution is then a partial map.

Definition 3.2 (Support).
Let ψ, A and B be parametrized formulas, and let S be the set of partial substitutions from Voc(ψ)

into Voc(A→ B). We say that ψ supports (A→ B), whenever

(( ∧

σ∈S
σ (ψ)

)
∧ A

)
→ B is valid

We use ψ � (A→ B) as a short notation for
(

(
∧
σ∈S σ(ψ)) ∧ A

)
→ B. y

Note that if S′ ⊆ S is a subset of the substitutions, and

(( ∧

σ∈S′

σ (ψ)
)
∧ A

)
→ B is valid

then (( ∧

σ∈S
σ (ψ)

)
∧ A

)
→ B is also valid

Essentially, if one is successful in proving the validity of a formula obtained by removing some
of the conjuncts from the antecedent, the validity of the full formula is guaranteed. Hence, in
practice, it is enough to consider only some of the partial substitutions to show that a support
formula is valid.

Example 3.5
Consider again program POSITIVE presented in Example 3.4 above, and let A and B be the
formulas:

A : (i 6= j) ∧ τ (j)
1 B : ϕPOS(i)

′

The formula ϕPOS � (A→ B) is:

(
ϕPOS(i) ∧ ϕPOS(j) ∧ ϕPOS(k)

)
∧ (i 6= j) ∧ τ

(j)
1 → ϕPOS(i)

′

This formula is valid. Note that the subformula ϕPOS(k) in the antecedent is obtained by applying
the empty substitution to ϕPOS. y
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The main motivation for introducing the notion of support is to instantiate a formula ψ which
is an assumed fact in the pre-state. This way, we strengthen the antecedent of an implication (the
verification condition) without extending the vocabulary (the free tid variables) in the resulting
strengthened implication. If we consider again premise P3 from rule BP-INV, we can now construct
a new premise which strengthens premise P3, so that the target invariant candidate ϕ can be
assumed in the pre-state for every thread, in particular for the fresh thread that takes the transition.
We name this new premise S3:

S3. ϕ �

( ∧
x∈Voc(ϕ)

j 6= x ∧ τ (j) → ϕ′
)

forall τ and one fresh j /∈ Voc(ϕ)

Example 3.6
Let ϕ(i) be a candidate invariant parametrized by one thread variable i, that is, a 1-index invariant
candidate. For a transition taken by thread j, premise S3 described above is:

(
ϕ � (j 6= i ∧ τ (j) → ϕ′(i))

)

or equivalently:

(
ϕ(j) ∧ ϕ(i) ∧ j 6= i ∧ τ (j)

)
→ ϕ′(i)

Note how ϕ(j) in the antecedent is the result of instantiating ϕ for the fresh thread j introduced
by the premise. y

Using the notion of support introduced in Definition 3.2, we can now rewrite the basic
parametrized invariance rule BP-INV into the parametrized invariance rule P-INV, shown in
Fig. 3.5.

Unfortunately, rule P-INV can still fail to prove invariants if they are not inductive, as the
following example shows.

To show that P satisfies ϕ:

S1. Θparam � ϕ

S2. ϕ � τ (i) → ϕ′ forall τ and all i ∈ Voc(ϕ)

S3. ϕ �
( ∧
x∈Voc(ϕ)

j 6= x ∧ τ (j) → ϕ′
)

forall τ and one fresh j /∈ Voc(ϕ)

ϕ

Figure 3.5: The parametrized invariance rule P-INV.
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Example 3.7
Consider again program SETMUTEX presented in Example 2.2 in page 21. Let notsame be the
following 2-index property parametrized by thread identifiers i and j:

notsame(i, j) :
(
i 6= j ∧ active(i) ∧ active(j)

)
→ ticket(i) 6= ticket(j)

where active(t) is a short notation for (pc(t) = 4 ∨ pc(t) = 5 ∨ pc(t) = 6).
Property notsame(i, j) is a parametrized invariant of SETMUTEX, but it cannot be proven using

P-INV. Premise S2 fails when taking τ (j)
3 (this transition is an offending transition for proving the

property invariant) as witnessed by a model from a pre-state in which:

pc(i) = 4 pc(j) = 3 ticket(i) = 1 avail = 1

A true fact of the program that eliminates this spurious counter-example is that when a thread
i is in active(i), then ticket(i) < avail. But here, neither the goal invariant notsame(i, j) nor
the transition relation for τ (j)

3 directly imply this fact. This is a limitation of P-INV. Later, in
Section 3.2.3, we will present an additional proof rule named SP-INV which overcomes this
limitation. y

We now present the theorem which proves the soundness of parametrized proof rule P-INV.

Theorem 3.1 (Soundness of P-INV):
Let P be a parametrized system and ϕ a parametrized safety property. If premises S1, S2 and
S3 hold, then P � ϕ.

Proof. Given ϕ, let M be an arbitrary bound. We will show that the premises B1 and B2 of the
basic non-parametrized invariance rule B-INV hold for the concrete non-parametrized system
SP [M ] and the concrete formula Ψ:

Ψ
def
=

∧

α∈ArrϕM

α(ϕ)

Since for an arbitrary concretization α, the formula α(ϕ) is one of the conjuncts of Ψ, it follows
that if Ψ is an invariant of the concrete non-parametrized system SP [M ] then α(ϕ) is also an
invariant of SP [M ]. An alternative model-theoretic proof would consist on showing that there is
no violating trace of α(ϕ) in SP [M ]. We present here the proof-theoretic argument, that shows
additionally that Ψ is inductive, and not only that Ψ is invariant as the model-theoretic proof
would show. We use Imgα for denoting those concrete indices in [M ] that are in the image of α,
that is, those concretes indices that α maps from tid variables in ϕ. We now need to show that
both premises of B-INV are valid.

Premise B1: Since premise S1 is valid, then Θparam(k) � ϕ is valid, or equivalently:

Θparam(k) → ϕ where k = Voc(ϕ)
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Consequently, by Lemma 2.1, α(Θparam(k) → ϕ) is valid for an arbitrary α, and then,
α(Θparam(k))→ α(ϕ)) is valid for an arbitrary α. Then:

Θg ∧
∧

n∈[M ]

Θl[n] →
∧

α∈ArrϕM

α(ϕ) is valid

and, finally:

Θg ∧
∧

n∈[M ]

Θl[n] → Ψ is valid

Premise B2: We need to show that for all n ∈ [M ] and all transitions τ [n]:

Ψ ∧ τ [n]→ Ψ′ is valid (3.1)

Let α be an arbitrary concretization in ArrϕM . We will show that:

Ψ ∧ τ [n]→ α(ϕ) is valid

which implies (3.1) because α is arbitrary. We now consider two cases depending on
whether the concrete n is in the image of α or not:

1. Case n ∈ Imgα: That is, there is an i ∈ Voc(ϕ) for which α(i) = n. In this case, since
premise S2 for τ (i) is valid, due to Lemma 2.1, we have:

α(ϕ � τ (i) → ϕ′) is valid

or, equivalently, for the set S of partial substitutions:

α(
∧

σ∈S
σ(ϕ)) ∧ α(τ (i)) → α(ϕ′) is valid

Then, since the application of concretization α after a substitution is a concretization:

∧

α2 ∈ ArrϕM

α2(ϕ) ∧ τ [n] → α(ϕ′) is valid

which implies that:

(
Ψ ∧ τ [n]

)
→ α(ϕ′) is valid

2. Case n /∈ Imgα: That is, there is not an i ∈ Voc(ϕ) for which α(i) = n: Let j be a fresh
tid identifier, and let α3 be the following concretization of Voc(ϕ) ∪ {j}:

α3(k) =




n if k = j

α(k) if k 6= j
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Now, since premise S3 is valid, by Lemma 2.1 for α3, we have:

α3

(
ϕ �

∧

x∈Voc(ϕ)

j 6= x ∧ τ (j) → ϕ′
)

is valid

Then, for the set of substitutions S:

(
α3(

∧

σ∈S
σ(ϕ)) ∧ α3

( ∧

x∈Voc(ϕ)

j 6= x
)
∧ α3(τ (j))

)
→ α3(ϕ′) is valid

and, since substitutions followed by concretizations are concretizations from ArrϕM , and

α3

( ∧
x∈Voc(ϕ)

j 6= x
)

simplifies to true, α3(τ (j)) simplifies to τ [n], and α3(ϕ) simplifies

to α(ϕ):

( ∧

α4 ∈ ArrϕM

α4(ϕ) ∧ τ [n]
)
→ α(ϕ′) is valid

and then

(
Ψ ∧ τ [n]

)
→ α(ϕ′) is valid

Hence, premise B2 is valid for SP [M ] and Ψ. Since both premise B1 and premise B2 are valid,
then Ψ is an inductive invariant of SP [M ], and α(ϕ) is an invariant of SP [M ] for an arbitrary α.�

The following corollary establishes the soundness of rule BP-INV, and follows immediately
from Theorem 3.1 by observing that if (A ∧ B)→ C is valid then A � B → C is also valid.

Corollary 3.1 (Soundness of BP-INV):
Let P be a parametrized system and ϕ a parametrized safety property. If premises P1, P2 and
P3 hold, then P � ϕ.

3.2.3 The General Strengthening Parametrized Invariance Rule: SP-INV

As happens with closed systems, there are two reasons that explain the failure to prove using the
invariance proof rules that a candidate invariant is indeed an invariant:

1. the candidate is actually not an invariant;

2. the candidate is invariant but not inductive, so one needs to use strengthening invariants,
or to prove the candidate is inductive relative to other invariants.

However, in parametrized systems it is not necessary the case that by simply conjoining the
candidate and its strengthening one obtains a BP-INV inductive invariant, because one may
need to instantiate the candidate formulas for all thread identifiers in their shared vocabulary.
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To show that P satisfies ϕ. Find ψ with:

R0. ψ

R1. Θparam � ϕ

R2. ψ, ϕ � τ (i) → ϕ′ forall τ and all i ∈ Voc(ϕ)

R3. ψ, ϕ �
∧

x∈Voc(ϕ)

j 6= x ∧ τ (j) → ϕ′ forall τ and one fresh j /∈ Voc(ϕ)

ϕ

Figure 3.6: The general strengthening parametrized invariance rule SP-INV for proving relative
inductive parametrized invariants.

One solution is to prove the invariants incrementally, and use support to instantiate to freshly
introduced thread identifiers. This idea is captured by the general strengthening parameterized
invariance rule SP-INV shown in Fig. 3.6.

The following theorem shows the soundness of the general strengthening parameterized
invariance rule SP-INV.

Theorem 3.2:
Let P be a parametrized system and ϕ a parametrized safety property. If premises R0, R1, R2

and R3 from SP-INV hold, then P � ϕ.

Proof. Assume that Voc(ϕ) ∩Voc(ψ) = ∅ which can be easily achieved by renaming tid variables.
The proof is very similar to the proof of Theorem 3.1 showing that:

Ψ
def
=

∧

α1∈ArrϕM

α1(ϕ) ∧
∧

α2∈ArrψM

α2(ψ)

satisfies the premises B1 and B2 of rule B-INV for SP [M ] for an arbitrary M . In this case, one can
use, by premise R0, that α2(ψ) holds for every concretization α2 of ψ. �

Example 3.8
When we presented Example 3.7, we saw that the parametrized proof rule P-INV was not enough
to prove that notsame is invariant. In fact, we concluded that while it was not possible to prove
notsame invariant using P-INV, it would be possible to prove notsame invariant if we consider the
fact that any thread running SETMUTEX has a ticket lower than avail when located at line 4, 5 or
6. Let activelow be the 1-index specification:

activelow(i) :
(

active(i)→ ticket(i) < avail
)

We can now apply the parametrized proof rule SP-INV considering notsame and activelow as
ϕ and ψ respectively. Premise R0 holds, as activelow is inductive and can be proven using P-INV;
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premise R1 is trivially satisfied. Now, when we consider premise R2 we have, for thread i:




activelow(i)

∧
activelow(j)


 ∧ notsame(i, j) ∧




pc(i) = 3

∧
pc′(i) = 4


 ∧




ticket(i)′ = avail ∧
avail ′ = avail + 1 ∧

bag ′ = bag ∪ {avail}


→ notsame(i, j)′

For thread j and for premise R3 the reasoning is analog. Note that in the verification condition
above we consider only a subset of the substitutions from Voc(ψ)∪Voc(ϕ) = {i, j} into Voc(τ(i))∪
Voc(notsame(i, j)) = {i, j}. y

3.2.4 The Parametrized Graph Proof Rule: G-INV

Finally, we introduce a specialized proof rule for parametrized systems, called the graph proof
rule. The main motivation is that carrying out incremental invariance proofs using SP-INV requires
in premise R0 to start from an already proved invariant, and it is often the case that invariants
mutually depend on each other.

A naïve solution attempt would be to write down all necessary candidates in a single large
formula and prove this large formula invariant using P-INV. While theoretically correct, when
dealing with parametrized systems this approach quickly leads to formulas with many duplications
due to thread renaming which in turn jeopardizes the scalability of the decision procedures for
sophisticated data by requiring to prove large formulas, which requires to search for large models.
A more efficient approach consists of building the proof modularly, splitting invariants into
meaningful sub-formulas to be used only when required. This sort of proof modularity is captured
by the parametrized graph proof rule G-INV shown in Fig. 3.7. This rule handles cases in which
invariant candidates mutually dependent on each other.

A proof graph is a finite directed graph (Invs,Supp) where nodes in Invs are labeled with
candidate invariant formulas. An edge in Supp between two nodes indicates that in order to
prove the formula pointed by the edge it is useful to use the formula at the origin of the edge as
support. As a particular case, a formula with no incident edges is inductive and can be shown

To show that P satisfies ϕ find a proof graph (Invs,Supp) with ϕ ∈ Invs such
that:

G1. Θparam � ψ forall ψ ∈ Invs

G2. Φ, ψ � τ (k) → ψ′ forall ψ ∈ Invs, forall τ ,

and all k ∈ Voc(ψ),

and Φ = {ψi | (ψi, ψ) ∈ Supp}
G3. Φ, ψ �

∧
x∈v

k 6= x ∧ τ (k) → ψ′ forall ψ ∈ Invs, forall τ ,

one fresh k /∈ v = Voc(ψ),

and Φ = {ψi | (ψi, ψ) ∈ Supp}
ϕ

Figure 3.7: The graph parametrized invariance rule G-INV.
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directly using P-INV. Note that a proof graph can be, and in practice it usually is, a cyclic graph. A
proof graph encodes the proof that all the formulas labeling nodes are invariants of the system.
The edges encode the information of which sub-formulas, described by the set of predecessor
nodes, are needed to prove a particular node.

We now present the theorem which shows that the parametrized graph proof rule is sound.

Theorem 3.3 (Soundness of Proof Graphs):
Let P be a parametrized system and (Invs,Supp) a proof graph. If premises G1, G2, and G3 from
G-INV hold, then P � ψ for all ψ ∈ Invs. y

Proof. Again, we present a proof theoretic argument to show that, for an arbitrary M , the
following is a concrete non-parametrized inductive invariant of SP [M ]:

Ψ
def
=

∧

ψ∈Invs

∧

α∈ArrψM

α(ψ)

The argument to show that premise B1 follows from premise G1 is identical to the argument that
premise B1 follows from premise S1, in the proof of Theorem 3.1 above.

For premise B2, we consider an arbitrary ψ in Invs and an arbitrary concretization α from
ArrψM . We now need to show that:

Ψ ∧ τ [n] → α(ψ) is valid

Again, to do so, we consider two cases depending on whether n is in the image of α or not.

1. Case n ∈ Imgα: Let k in Voc(ψ) be such that α(k) = n. In this case, by premise G2 with
Φ = {ψi | (ψi, ψ) ∈ E}:

Φ, ψ � τ (k) → ψ′ is valid

and hence

α
(

Φ, ψ � τ (k) → ψ′
)

is valid

Now, by considering the definition of Φ, considering that α(τ (k)) = τ [n], and adding
conjuncts to the antecedent (which keeps a valid implication valid)

Ψ ∧ τ [n] → α(ψ′) is valid

2. Case n /∈ Imgα: Then, let α2 be α extended by mapping a fresh tid j with α2(j) = n. Then,
by premise G3 of rule G-INV:

Φ, ψ �
∧

x∈Voc(ψ)

j 6= x ∧ τ (j) → ψ′ is valid
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or, for α2 by Lemma 2.1,

α2

(
Φ, ψ �

∧

x∈Voc(ψ)

j 6= x ∧ τ (j) → ψ′
)

is valid

Now, by considering the definition of Ψ, that α2(
∧

x∈Voc(ψ)

j 6= x) simplifies to true, that

α2(τ (j)) = τ [n], adding conjuncts to the antecedent (which keeps a valid implication valid),
and that α2(ψ′) = α(ψ′):

Ψ ∧ true ∧ τ [n]→ α(ψ′) is valid

Hence, in both cases (Ψ ∧ τ [n]→ α(ψ′)) is valid, which finishes the proof. �

Example 3.9 (Mutual Exclusion of SETMUTEX)
We revisit program SETMUTEX presented in Example 2.2 in page 21. Remember we use active(k)

and critical(k) to denote (pc(k) = 4 ∨ pc(k) = 5 ∨ pc(k) = 6) and (pc(k) = 5 ∨ pc(k) = 6)

respectively.
Mutual exclusion for SETMUTEX is specified as the following 2-index formula:

mutex(i, j)
def
=
(
i 6= j → ¬(critical(i) ∧ critical(j))

)

Attempting to use the P-INV rule to prove mutex fails due to offending transition τ (i)
4 . For such

transition, using P-INV, we need to verify the following verification condition:

mutex(i, j) ∧




pc(i) = 4 ∧ pc′ = pc{i← 5} ∧
ticket(i) = min ∧

pres(avail ,min, ticket(i), ticket(j))


→ mutex′(i, j) (3.2)

However, this verification condition in not valid. Two counter models that negate Equation (3.2)
are:

pc(j) = 5 ∧ min = 1 ∧ avail = 2 ∧ ticket(i) = 1 ∧ ticket(j) = 3 (3.3)

and

pc(j) = 5 ∧ min = 1 ∧ avail = 2 ∧ ticket(i) = 1 ∧ ticket(j) = 1 (3.4)

Each of these models illustrate that the verification condition is not valid. Property mutex cannot
be verified using P-INV because it is not inductive. The main problem is that the formula mutex(i, j)

by itself does not include information about two important facts of the program. First, if a thread
is in the critical section, then it owns the minimum announced ticket, unlike in the counter-model
described by Equation (3.3). Second, the same ticket cannot be given to two different threads,
unlike in the second counter-model described by Equation (3.4). Two new auxiliary support
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mutex

activelow

minticket notsame

Figure 3.8: Proof graph showing dependencies between the invariants candidates for SETMUTEX.

invariants encode these facts:

minticket(i)
def
=
(

critical(i)→ min = ticket(i)
)

notsame(i, j)
def
=
(
i 6= j ∧ active(i) ∧ active(j)→ ticket(i) 6= ticket(j)

)

Using SP-INV, we can now prove that mutex is invariant, using minticket and notsame as
support, except for the fact that minticket is also not inductive. When trying to use P-INV to prove
minticket invariant, the verification fails at the case in which two different threads i and j are in
the critical section with the same ticket and τ (j)

6 is taken. When this happens, minticket(i) does
not hold in the post state. Even if we use notsame as support for minticket, we still need to encode
the fact that when a thread takes transition τ3, it adds to bag a value strictly greater than any
other previously assigned ticket. The following invariant rules out this spurious case:

activelow(i)
def
=
(

active(i)→ ticket(i) < avail
)

The formula activelow is inductive and can be proven directly using P-INV. Also, activelow is
enough to support notsame and minticket, so the proof is completed.

Alternatively, we could use the G-INV rule and the proof graph depicted in Fig. 3.8. In this
graph, invariant candidates mutex, minticket, notsame and activelow are the nodes, and the dashed
arrows denote dependencies between them. y

More detailed examples showing the application of parametrized invariance rules for the
verification of safety properties of programs manipulating more complex data structures such as
lists and skiplists are presented later in Chapter 10.

3.3 Summary

In this chapter we introduced a temporal deductive technique for the uniform verification problem
of safety properties of parametrized infinite state processes, in particular for the verification
of concurrent data types that manipulate data in the heap. The parametrized proof rules we
presented automatically discharge a finite collection of verification conditions. A novelty is that
the size of this collection of verification conditions depends on the program description and
the index of the formula to prove, but not on the number of threads in a particular instance.
Each verification condition describes a small-step in the execution of all corresponding instances.
Moreover, the verification conditions are quantifier-free as long as the formulas are quantifier
free.
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Here we used the theory of arrays [37] to encode the local variables of a system with an
arbitrary number of threads, but the dependencies with arrays can be eliminated under the
assumption of full symmetry. The proof rules presented here are amenable for fully symmetric
systems in which thread identifiers are only compared with equality, which encompasses many
real systems. However, other topologies like rings of processes or totally ordered collections of
processes can be handled with variations of our proof rules. In fact, it is immediate to extend our
framework to a finite family of process classes, for example to model client/server systems.

The parametrized proof rules we presented here are designed for tackling the parametrized
verification of safety properties. Later, in Chapter 4 we will introduce Parametrized Verification Di-
agrams, a formalism amenable for the verification of liveness temporal properties of parametrized
systems.

In Chapters 6, 7 and 8 we will present decision procedures for theories of lists and skiplists,
which can be used to automatically check the validity of the verification conditions generated by
the proof rules presented in this chapter. Our parametrized proof rules has been implemented as
part of LEAP, a theorem prover developed at the IMDEA Software Institute. LEAP is described
in detail in Chapter 9. Finally, Chapter 10 presents some of the experimental results we have
obtained using the parametrized invariance rules implemented in LEAP.
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4
Parametrized Verification
Diagrams

“ What about liveness? ”
César Sánchez

In chapter 3 we presented parametrized invariance, a deductive method to check safety
properties of parametrized systems, that is, systems in which a given program is executed by an
unbounded number of processes. Now, in this chapter we introduce parametrized verification
diagrams (PVDs), a deductive formalism that allows to prove temporal properties, specially liveness
properties of parametrized concurrent systems.

PVDs extend Generalized Verification Diagrams (GVDs) [39, 189]. A GVD encodes succinctly
a proof that a non-parametrized reactive system satisfies a given temporal property. Even
though GVDs are known to be sound and complete for non-parametrized systems, proving
temporal properties of parametrized systems potentially requires to find a different a GVD for each
instantiation with a concrete number of processes. In turn, each GVD would require to discharge
and prove a different collection of verification conditions.

The PVDs we present here allow a single diagram to represent the proof that all instances
of the parametrized system for an arbitrary number of threads running concurrently satisfy the
temporal specification. To do so, PVDs exploit the symmetry assumption in a system, under
which process identifiers are interchangeable. This assumption covers a large class of concurrent
systems, including concurrent data types.

PVDs can be seen as a formula automaton with some extra notations which act as the witness
of the proof that a parametrized system does satisfy a temporal property. Using a PVD, we
generate a finite collection of quantifier-free verification conditions that can then be automatically
proven with the assistance of an appropriate decision procedure. Hence, at the end, checking the
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proof represented by a PVD reduces to proving only these finite set of quantifier-free verification
conditions.

The rest of the chapter is structured as follows. Section 4.1 gives a brief introduction to
Generalized Verification Diagrams and presents its drawbacks when dealing with parametrized
systems. Section 4.2 formally presents Parametrized Verification Diagrams. Section 4.3 describes
the quantifier-free verification conditions which are generated from a PVD, whose validity imply
the correction of the proof described though the PVD, and presents the proof of soundness for
PVDs. Finally, Section 4.4 presents a summary of what has been discussed in this chapter.

4.1 GVD vs. PVD: The Need of Parametrized Verification Dia-

grams

Generalized verification diagrams [39,189] are a formalism to prove temporal specifications of
reactive systems involving either, finite or infinite state. In particular, GVDs are suitable for the
analysis of concurrent programs. A diagram is essentially an abstraction of the system and it is
built specifically for the property under consideration. The diagram is precise enough to formally
represent the temporal proof, and it allows the mechanical check of the correctness of the proof.

Formal verification using general verification diagrams starts from a program and a specifica-
tion in linear temporal logic. The semantics of the program are represented as a fair transition
system (FTS) that encompasses all executions of the program. In a nutshell, a verification diagram
encodes a proof that all the executions covered by the FTS satisfy the given temporal property.
Given a program P and a temporal specification ϕ, as shown in Fig. 4.1, a GVD D acts as a witness
of the proof that in fact all fair traces of P satisfies the temporal specification ϕ. Hence, checking
the proof encoded in the diagram requires two activities:

1. Check the validity of a finite collection of verification conditions, which are automatically
generated from the program and the diagram. This guarantees that the diagram covers all
(fair) executions of the system.

2. Execute a finite state model checking algorithm to ensure that every fair path of the diagram
satisfies the temporal property. This analysis can be fully automated using model checkers.

The first part can be handled using suitable decision procedures for the underlying data that
the program manipulates, like Boolean, integers, lists in the heap, skiplists, etc. This way, GVDs

P D ϕ�
Program gvd Temporal property

Verification conditions Model checking

�

Figure 4.1: Schematic representation of the use of a GVD D to prove that program P satisfies the
temporal property ϕ.
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cleanly separates two concerns:

1. the temporal reasoning, and

2. the data-manipulation

GVDs are complete in the following sense: if a (closed) reactive system satisfies a given
temporal property then there is a diagram that encodes a proof. Unfortunately, GVDs cannot be
used directly to verify concurrent programs that involve an arbitrary number of threads, which
are naturally modeled as parametrized systems where the parameter is the number of threads
involved. This problem arises because each instantiation of the parameter produces a different
closed system, and in turn a different FTS. Hence, in principle, each closed system requires finding
a different diagram, discharging a different collection of verification conditions, and solving a
different model-checking problem.

Example 4.1
Consider the mutual exclusion protocol SETMUTEX presented in Example 2.2 of Section 2.1.1
in page 21. The protocol ensures mutual exclusion using a ticketing system. In this protocol,
any thread with the intention to enter the critical section is assigned an unique increasing ticket
number. Additionally, a copy of such ticket is stored in a shared set of tickets. Before accessing the
critical section, a thread needs to wait until its ticket matches the minimum ticket in the shared
set. Hence, only threads with the minimum ticket are allowed to enter the critical section. After
one such thread leaves the critical section, it removes its ticket from the set so that a new thread
can access later the critical section.

Now, consider a system composed by only 2 threads, T1 and T2, running program SETMUTEX.
We use the following notation:

• wants(t), to denote that thread t is about to the get a ticket, so that it wants to access the
critical section. That is, pc(t) = 3 in SETMUTEX.

• awaits(t), to represent the fact that threat t is waiting for its turn to access the critical
section. This corresponds to pc(t) = 4 in SETMUTEX.

• critical(t), to denote that thread t is inside the critical section. That is pc(t) = 5 ∨ pc(t) = 6.

A temporal property we would like to verify is that if thread T1 requires access to the critical
section (i.e., claims a ticket) then it eventually gains access to the critical section. This in fact is a
liveness property we can describe with the following temporal specification:

eventually_critical_T1 =  (wants(T1)→critical(T1))

A simple GVD to prove this property is sketched in Fig. 4.2. A real GVD contains more elements
than the ones depicted in Fig. 4.2, but this simplified GVD will help us understand where GVDs
fail when dealing with an unbounded number of threads. It should also be clear from the figure
that a diagram naturally follows the reasoning about the data structure user. That makes GVDs a
simple formalism to verify temporal properties.

The initial node of the diagram presented in Fig. 4.2 is n0. This node presents the situation
in which thread T1 has still not shown interested in entering the critical section. When thread
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¬




wants(T1) ∨
awaits(T1) ∨
critical(T1)




wants(T1)

awaits(T1) ∧
bag .min = ticket(T1)

critical(T1)

awaits(T1) ∧
bag .min = ticket(T2)

awaits(T1) ∧
critical(T2)

n0

n1

n2 n4

n3 n5

Figure 4.2: Simplified GVD for proving eventually_critical_T1 in a system with two threads.

T1 reaches line 3 of SETMUTEX, a ticket (ticket(T1)) is assigned to thread T1 and a copy of this
ticket is included into the bag . This situation is depicted by node n1 in the diagram. Once line 3

of SETMUTEX is executed by thread T1, for sure awaits(T1) holds. Now, depending on whether
thread T1 has the minimum ticket in the bag or not, there are two possible scenarios:

1. if thread T1 has the minimum ticket in bag (node n2), then thread T1 will enter the critical
section (node n3), satisfying the eventually_critical_T1 property stated above.

2. if thread T2 has the minimum ticket of bag , because T2 required access to the critical section
before T1, then we are in one of the situations described by node n4 or n5. That is, thread
T1 must wait while thread T2 has the minimum ticket and T2 is about to enter the critical
section (node n4) or thread T2 is already in the critical section (node n5). In any case,
thread T1 needs to wait until thread T2 comes out of the critical section and removes its
ticket from the bag. Only after thread T2 removes its ticket from bag , thread T1 will have
the lowest ticket in bag and thus T1 will be allowed to enter the critical section.

Now, imagine we would like to consider the scenario of a system composed by three different
threads: T1, T2 and T3. For a system with 3 threads, the diagram shown in Fig. 4.2 is no longer
suitable, as we would require to construct a similar, but slightly different new diagram. The
simplified GVD for a system with 3 threads is shown in Fig. 4.3. Note that, basically, we were
required to duplicate the reasoning associated to nodes n4 and n5 to the new nodes n6 and
n7. This change is necessary as we need to consider now the case in which thread T3 has the
minimum ticket of the bag .

As should result evident at this point, the problem is that every time we consider a system
with one more thread, a slightly different GVD is required. Hence, GVDs do not scale well when
dealing with parametrized systems composed by an unbounded number of threads. Even more,
we have made theses diagrams to prove property eventually_critical_T1, which is associated to
the termination of just thread T1. What if we want to prove that any thread that wants to access
the critical section eventually succeeds? We would require an even more complex diagram which
should be parametrized by a thread identifier, something that is not currently possible in GVDs.y
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¬




wants(T1) ∨
awaits(T1) ∨
critical(T1)




wants(T1)

awaits(T1) ∧
bag .min = ticket(T1)

critical(T1)

awaits(T1) ∧
bag .min = ticket(T2)

awaits(T1) ∧
critical(T2)

n0

n1

n2 n4

n3 n5

awaits(T1) ∧
bag .min = ticket(T3)

awaits(T1) ∧
critical(T3)

n6

n7

Figure 4.3: Simplified GVD for proving eventually_critical_T1 in a system with three threads.

In order to be able to verify parametrized temporal properties of systems composed by an
unbounded number of threads we develop the idea of Parametrized Verification Diagrams (PVDs).
PVDs enrich verification diagrams with capabilities to reason about executions with an arbitrary
number of symmetric threads. Checking the proof represented by a PVD requires to handle a
single finite collection of verification conditions and to solve a single finite-state model-checking
problem. Success in proving each of these obligations guarantees that the property holds for all
parameter instances.

The key idea behind PVDs is that a proof usually only requires to reason about a finite number
of processes at each time instant. This finite collection includes:

1. the processes referred to in the property;

2. some other processes with particular remarkable characteristic in the given state (like a
leader); and

3. one fresh thread identifier representing an arbitrary process that executes a small step in
the global execution.

As happens with the Parametrized Invariance rules presented in Chapter 3, the PVDs we present
in this chapter rely on the symmetry assumption. This assumption states that process identifiers
are interchangeable and are only compared for equality and inequality. Under this assumption,
swapping identifiers in a given legal execution produces another legal execution. Even though
some protocols are not symmetric, full symmetry covers an important class of concurrent systems:
concurrent data types [107]. In this line of work we propose PVD as a formalism aiming the
verification of liveness properties of concurrent data types.

4.2 Parametrized Verification Diagrams

In this section, we formally define Parametrized Verification Diagrams and we present them as an
effective method to solve the parametrized temporal verification problem, specially for liveness
temporal properties. The aim of PVDs is to capture formally the proof that all instances of a
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parametrized program satisfy a temporal specification. Essentially, for each value of M , the
diagram over-approximates the set of runs of S[M ]. In turn, fair runs of the diagram are covered
by the executions allowed by the temporal formula.

4.2.1 Definition of PVD

Given a parametrized temporal formula ϕ(k) and a parametrized system P, a PVD is a tuple
〈N,N0, E,B, µ, η,F , f〉 where:

• N is the finite set of nodes that conform the PVD.

• N0 ⊆ N is the set of initial notes, which is a subset of all PVD nodes N .

• B is a finite collection of pairs {(B1, b1), . . . , (Bq, bq)}, where Bi ⊆ N , Bi ∩ Bj = ∅ for i 6= j,
and bi is a fresh tid variable. Each pair (Bi, bi) is called a box and the set Vbox = {b1, . . . , bq}
is called the set of box variables. Boxes group nodes and label them with thread identifiers.
While inside a box, the thread identifier bi labeling the box is preserved and it can only be
modified when entering a box from an outside edge. Finally, we use VtidParams to denote the
set of thread identifiers formed by the parameters of the parametrized temporal formula
ϕ(k) and the thread identifiers which label boxes in a PVD. That is, VtidParams = k ∪ Vbox.

• E is a finite set of edges, each connecting two nodes. Edges are equipped with the following
functions and predicates:

– in : E → N and out : E → N , which given an edge indicates the incoming and
outcoming node respectively for such edge.

– within ⊆ E, is a predicate which indicates whether a transition modeled by an edge
which connects two nodes within the same box must preserve the box variable. That
is, for all e ∈ within, we require that there exists a box Bi such that both in(e) ∈ Bi
and out(e) ∈ Bi. In the case that e ∈ within, then the box variable i must be preserved
when edge e is taken. Otherwise the box variable i can arbitrarily change.

• µ is a labeling function for nodes which assigns to each node n a formula µ(n) in the theory
FT (k ∪ Vbox), with the restriction that µ(n) can only contain bi whenever node n is in box
Bi.

• η : E ⇀ T ×VtidParams is a partial function labeling some edges with transitions of the system
to indicate that these edges label fair transitions. That is, all these transitions must be taken
by fairness.

• F is the acceptance condition of the diagram. It consists of a finite collection:

〈〈B1, G1, δ1〉 . . . 〈Bm, Gm, δm〉〉

Each triplet acceptance condition 〈Bi, Gi, δi〉 is formed by an edge Streett conditionBi, G1 ⊆
E and a ranking function δ : N → O, where O is a well founded domain. The Streett
condition requires that some edge in Gi is visited infinitely often or all edges in Bi are visit
only finitely often. Without loss of generality we can assume Gi ∩Bi = ∅. Edges in Gi are
called good edges, and edges in Bi are called bad edges.
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• f is a map from nodes into Boolean combinations of elementary propositions from ϕ(k).

Additionally, we ask for an extra requirement over the transitions labeling edges which come
out of boxes. Transitions labeling an edge according to η can be parametrized by a thread
identifier in k. Otherwise, the transition is allowed to be parametrized by a box variable bi only if
the edge begins at a node belonging to the box (Bi, bi).

Conceptually, once a parameter instance M is fixed, every box can be populated M times,
assigning in each expansion one of the possible tid values within [M ] to the box variable. The
resulting diagram is a conventional non-parametrized generalized verification diagram.

Example 4.2
Consider again the example of a GVD for the eventually_critical_T1 property we presented in
Example 4.1. The GVD shown in Fig. 4.4 was designed for a system involving only 2 threads.
Later, in Fig. 4.3 we considered a new GVD for a system made of 3 threads. We now present, in
Fig. 4.4 a PVD that encodes the satisfaction of the temporal formula eventually_critical_T1 in a
system composed by an unbounded number of threads executing program SETMUTEX.

Note that, according to our definition of a PVD, formulas labeling nodes can be parametrized
only by box variables and threads parametrizing the temporal formula under verification. Clearly,
specification eventually_critical_T1 is not parametrized, as it only represents the termination of
thread T1. Equation 4.1 presents a parametrized version of specification eventually_critical_T1:

eventually_critical(k) =  (wants(k)→critical(k)) (4.1)

Note that, in fact, eventually_critical_T1 is eventually_critical(T1).
Note that the structure of the diagram presented in Fig. 4.4 is very similar to the GVD depicted

in Fig. 4.2. A key difference is that in the PVD, the formulas labeling nodes n0, n1, n2, n3, n4 and
n5 are now parametrized by k (the parameter of eventually_critical(k)) instead of T1. Another
difference is the presence of a box surrounding nodes n4 and n5. Such box is labeled with the box
variable b. This means that b is preserved by all transitions within the box. As b can be assigned
any thread identifier in the system, if b is T2 in a given execution state then the box captures the
situation in which T2 has the minimum ticket in the bag . The edge connecting node n1 to the box

¬




wants(k) ∨
awaits(k) ∨
critical(k)




wants(k)

awaits(k) ∧
bag .min = ticket(k)

critical(k)

awaits(k) ∧
bag .min = ticket(b)

awaits(k) ∧
critical(b)

n0

n1

n2 n4

n3 n5

b

τ6(b)

τ6(b)

Figure 4.4: A PVD for verifying property of a system with an unbounded number of threads.
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in fact symbolizes two edges, one connecting node n1 to node n4 and another edge connection
node n1 with node n5.

Now, consider the two edges labeled with transition τ6(b). We are allowed to label these edges
with a transition parametrized by b since in both cases their incoming node (n5) resides within a
box whose variable is b. Each of these two labeled edges represent:

1. the edge that connects node n5 to node n2, denotes the situation in which a thread different
from k leaves the critical section and removes its ticket from the bag . At this moment,
thread k becomes the thread with the lowest ticket in the bag .

2. the edge connecting node n5 with the bag represents the situation in which a new thread
—different from k— becomes the thread with the lowest ticket in the bag . Note that as the
edge is leaving the box, we have that the value of b in the pre-state and in the post-state
does not need to be the same. This is exactly modeling the situation in which a new thread,
different from k or the thread leaving the critical section, is taking the role of being the
thread with the lowest ticket in the bag .

Finally, note how a PVD represents many GVDs for a system with an unbounded number of
threads. If we consider parameter k to be T1 and we instantiate the box only once (replacing b
with T2) or twice (by replacing b by T2 and T3) we obtain the GVD for system with 2 and 3 threads
respectively. y

In a PVD, the intended meaning of each edge Streett condition 〈Bi, Gi, δi〉 is to ensure that in
any accepting trail of the diagram either some edge from Gi is visited infinitely often, or all edges
from Bi are visited finitely often.

A path in the diagram is a sequence of states and edges n0e0n1e1 . . . such that for every i,
ni →ei ni+1. A path is fair whenever if after some point i all nodes ni in the diagram have an
outgoing edge labeled with (τ, v) then edges labeled (τ, v) are taken infinitely often. A path
is accepting whenever for every acceptance condition (Bi, Gi, δi) either all edges from Bi are
traversed finitely often, or some edge from Gi is traversed infinitely often.

Given a concretization function α : k → [M ] for some concrete system S[M ] and a path π

of the diagram, we define an extended concretization of the path as a sequence of functions
αi : (k∪Vbox)→ [M ] that coincide with α on all k ∈ k, and such that if ei ∈ within then αi+1 = αi.
Essentially, the extended concretizations choose concrete indices for the box variables whenever
these are free to choose.

Given a run π : s0τ0s1τ1 . . . of a concrete instance S[M ] and a concretization α : k → M , a
path d = n0e0n1e1 . . . of D is a trail of π whenever for some extended concretization {αi}, the
following holds:

si � αi(µ(ni)) for all i ≥ 0

A run π is a computation of D if there exists a trail of π that is fair and accepting. L[M ](D) denotes
the set of computations of D for parameter instance M (i.e., sequences of states of S[M ] accepted
by D).

In the next section we will list a collection of verification conditions extracted from the
diagram, and we will show that proving the validity of these verification conditions implies that
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all computations of S[M ] are in L[M ](D). Given a concrete instance S[M ] and a concretization
α : k → [M ], a sequence P0P1 . . . of elements from concrete elementary propositions of α(AP(ϕ))

is a propositional model of D whenever there is a fair and accepting path π : n0e0n1 . . . of D
for which Pi � α(f(ni)). We use L[M ]

p (D) to denote the set of propositional models of D (for
S[M ]). Again, we will show that checking all verification conditions implies that for all S[M ]

and concretizations α, every sequence of elementary propositions of a run of S[M ] is included
in L[M ]

p (D). We use L[M ](ϕ) for ∪α:k→[M ]L(α(ϕ)). Finally, we will also show that every trace in

L[M ]
p (D) for concretization α is included in α(ϕ), that is L[M ]

p (D) ⊆ L[M ](ϕ).

4.3 Verification Conditions for PVD

As we mentioned, a PVD shows that all instances S[M ] of a parametrized system P satisfies a
temporal parametrized specification ϕ(k) by checking the inclusions:

• All reachable states by the program are included into the parametrized diagram: L(S[M ]) ⊆
L[M ](D); and

• The propositional language described by the parametrized diagram satisfy the parametrized
temporal specification: L[M ]

p (D) ⊆ L[M ](ϕ(k)).

Theorem 4.1 below shows that to prove L(S[M ]) ⊆ L[M ](D) it is enough to prove the verification
conditions we present in this section.

The main difficulty is to define a finite number of verification conditions that guarantee
the previous language inclusion. To do so, we rely on the definition of the vocabulary of a
formula, introduced in Section 2.4.5. Note that the vocabulary represents the set of variables
of type tid whose modification can potentially alter the truth value of a given formula. We
now define the vocabulary of a node as NVoc(n) = {bi | n ∈ Bi} ∪ k. Given a node n, let
next(n) = {n′ ∈ N | for some n→e n

′ ∈ E}.
In the verification conditions listed below, given an edge e ∈ E such that in(e), out(e) ∈ Bi,

we define boxed(e) as the formula such that:

boxed(e) =




b′i = bi if e ∈ within

true otherwise

Given a parametrized transition system P, a parametrized temporal formula ϕ(k) and a
parametrized verification diagramD, diagramD shows that for all instances S[M ] of parametrized
system P it holds that S[M ] � ϕ(k) whenever all these conditions hold:

Initiation: Condition (Init), known as initiation, states that at least one initial node in N0 satisfies
the initial condition of P:

Θ→ µ(N0) (Init)

Consecution: Consecution ensures that every node in the diagram has a τ -successor. Consecution
is expressed by two different kind of conditions:
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• Condition (SelfConsec), called self-consecution, establishes that any τ -successor of a
state satisfying µ(n) satisfies the label of some successor node of n. In other words,
the diagram can always move when taking any enabled transition by any thread
mentioned in the property. Formally speaking, condition (SelfConsec) states that for
every node n ∈ N and for all i ∈ NVoc(n):

∨

n→em

µ(n) ∧ τ(i) ∧ boxed(e)→ µ′(m) (SelfConsec)

• Condition (OtherConsec), called others-consecution, is analogous to (SelfConsec), with
the difference that it considers transitions taken by an arbitrary thread not mentioned
in the vocabulary of ϕ(k) or used as argument of any of the boxes in the diagram. This
condition is the key to guarantee that only a finite number of verification conditions is
necessary, because this condition encompasses all other threads not mentioned in the
formula (or in boxes). Formally, condition (OtherConsec) states that for every n ∈ N
and for a fresh j /∈ NVoc(n):

∨

n→em

µ(n) ∧ τ(j) ∧ boxed(e) ∧
∧

i∈V
i 6= j → µ′(m) (OtherConsec)

Acceptance: Conditions (SelfAcc) and (OtherAcc), called self-acceptance and others-acceptance
respectively, guarantee the acceptance condition of the diagram through the verification
of ranking functions. Intuitively speaking, these verification conditions use information
extracted from the data in the system to infer that certain sequences of states must be
terminating. For example, this is the manner in which one checks that at most a finite
number of threads can out-run a given thread when entering the critical section. These
conditions guarantee that the ranking function δi is (strictly) decreasing in Bi edges, and
non-increasing in edges E − (Gi ∪Bi). We use Pi to denote edges in E − (Gi ∪Bi), called
permitted edges.

Formally, for each (B,G, δ) ∈ F and edge n →e m, condition (SelfAcc) states that for all
i ∈ NVoc(n):

(
µ(n) ∧ τ(i) ∧ µ′(m) ∧ boxed(e)

)
→ δ(n) � δ(m) if e ∈ B

(
µ(n) ∧ τ(i) ∧ µ′(m) ∧ boxed(e)

)
→ δ(n) � δ(m) if e ∈ E \ (G ∪B)

Similarly, condition (OtherAcc) states that for a fresh j /∈ NVoc(n):

(
µ(n) ∧ τ(j) ∧

∧

i∈NVoc(n)

i 6= j ∧ µ′(m) ∧ boxed(e)
)
→ δ(n) � δ(m) if e ∈ B

(
µ(n) ∧ τ(j) ∧

∧

i∈NVoc(n)

i 6= j ∧ µ′(m) ∧ boxed(e)
)
→ δ(n) � δ(m) if e ∈ E \ (G ∪B)

If the verification conditions for δ are valid, infinite trails either traverse Gi edges infinitely
often, or traverse Bi edges only finitely often. This second case holds because (1) the
domain is well-founded, (2) permitted edges are non-increasing, and (3) bad edges are
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decreasing.

Fairness: In order to verify the fairness of the diagram, we need to check the validity of the
following two conditions. Condition (En) establishes that any transition labeling an edge
coming out from a node must be enabled at every state modeled by the node. That is, for
each edge e = (n,m) and τ(i) ∈ η(e):

µ(n)→ En(τ(i)) (En)

On the other hand, condition (Succ) establishes that if a transition labeling an edge is taken
at the incoming node, then all edge labels cover the possible actions of the transitions. That
is, for each edge e = (n,m) and τ(i) ∈ η(e):

µ(n) ∧ τ(i)→
∨

τ(i)∈η(n→em)

µ′(m) (Succ)

The combination of (En) and (Succ) guarantee that a label τ is always enabled at the given
nodes and that the only way to exit the nodes taking τ(i) is through the label edges. This
relates fairness in any concrete system with fairness in the diagram.

Satisfaction: Finally, satisfaction ensures that the diagram satisfies the temporal parametrized
specification ϕ(k). Satisfaction consists of two conditions. Condition (Prop) guarantees the
correctness of the propositional models of the diagram. That is, for all n ∈ N :

µ(n)→ f(n) (Prop)

Condition (ModelCheck) ensures that propositional models of the diagram are included in
traces of the property ϕ(k).

L[M ]
p (D) ⊆ L[M ](ϕ(k)) (ModelCheck)

The propositional label f of the diagram allows us to use a single query to a finite state
model-checker to show whether condition (ModelCheck) is satisfied. Appendix A shows how
to check that the diagram D satisfies the temporal property ϕ(k) using model checking.

For a parametrized system P, a formula ϕ(k) and a PVD D, if all verification conditions
described above hold we say that D is (P, ϕ)-valid.

Note that in every case, there is finite number of verification conditions. In particular, there
are |N |(|VtidParams|+ 1) conditions for consecution and at most |F||E|(|VtidParams|+ 1) conditions
for acceptance. Finally, the number of conditions needed to verify fairness is limited by the number
of edges, program lines and thread identifiers in the vocabulary of the formulas labeling nodes in
each box.

We enunciate the main result of this section, which ensures that PVDs are sound for proving
that a parametrized system satisfies a parametrized temporal specification.

Theorem 4.1 (Soundness):
Let P be a parametrized system and ϕ(k) a temporal formula. If there exists a (P, ϕ)−valid PVD,
then P � ϕ.
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Proof. We start by assuming that there is a (P, ϕ)−valid PVD D, and show that P � ϕ. This
requires showing that for an arbitrary M and concretization α : k → [M ], it holds that S[M ] �
α(ϕ(k)). In the proof, we will use repeatedly Lemma 2.1 from Chapter 2 which ensures that if
ψ(k) is a parametrized (non-temporal) formula and α is a concretization then, if ψ(k) is valid, so
is α(ψ(k)).

Let M be an arbitrary bound and α an arbitrary concretization function. We consider an
arbitrary run (that is, a fair computation) of S[M ]: σ : s0τ0[i0]s1τ1[i1] . . . and show that σp � α(ϕ),
where σp is the projection of σ on the propositional alphabet of α(ϕ).

We first consider an extension of α such that Img(α) = M by adding one fresh thread identifier
i for each k ∈ M not mapped by the original alpha and making α(i) = k. In this manner, all
elements of M have at least one representative thread identifier (not necessarily in k).

First, we show by induction that there is a path π : n0e0n1e1n2 . . . of σ in the diagram, and a
sequence of thread identifiers j0j1 . . . such that α(jk) = ik — that is, the identifier of the thread
taking the k-th step in the execution skτk[ik]sk+1 — and si � α(µ(ni)). It is enough to prove that
there is a trail of nodes nk of the diagram and a extended concretization αk such that

1. sk � αk(µ(nk)), and

2. τ jkk can be taken to traverse edge ek. That is, ¬(µ(nk) ∧ τ jkk ∧ boxed(ek)→ µ′(nk+1)) is not
valid.

We build the trace by induction:

• Base case: The base case of induction follows from condition (Init). Since Θ → µ(N0) is
valid, then α(Θ→ µ(N0)) is valid, and α(Θ)→ α(µ(N0)) is valid. Hence, since s0 � α(Θ)

it follows that s0 � α(µ(N0)) and for some n0 ∈ N0, s0 � α(µ(n0)) as desired.

• Induction step: Let nk be the last node of the trail, αk be the extended concretization, and
jk be a thread identifier for which αk(jk) = α(jk) = ik. We consider the cases for the
outgoing transition τk(jk) from nk:

– if jk is referred to in the property, from condition (SelfConsec) we have that

∨

nk→enk+1

µ(nk) ∧ τ(jk) ∧ boxed(e)→ µ′(nk+1)

is valid, so the following is also valid

αk

( ∨

nk→enk+1

µ(nk) ∧ τ(jk) ∧ boxed(e)→ µ′(nk+1)

)

or equivalently

∨

nk→enk+1

αk(µ(nk)) ∧ τ [ik] ∧ boxed(e)→ αk(µ′(nk+1)))

is valid. Now, since sk � αk(µ(nk)), and (sk, sk+1) is a model of the last formula
(possibly for a different value of box if boxed(e) is true), for at least one of the
conjuncts sk+1 � αk+1(µ′(nk+1). This conjunct provides the edge ek, the successor
nk+1 and the value of the box for αk+1.
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– the case for condition (OtherConsec) follows similarly.

We now show that the trail π : n0e0n1 . . . with transitions τ (jk)
k is a fair trail of the diagram.

We prove it by contradiction. Assume trail π is not fair for transition τ taken by thread
identifier i, which is enabled continuously but not taken. Then, there is a position j in the
path π after which, for all successive states k > j, the node nk of the path has an outgoing
edge labeled τ(i) but τ (jk)

k in the path is not τ(i). Now, by verification conditions (En)

and (Succ), there is a successor in the diagram for τ(i), and τ(i) is enabled. By taking α
on these two verification conditions it follows that τ [α(i)] is enabled in sk and, sk has a
τ [α(i)] successor in S[M ] but τ [α(i)] is not taken. Hence σ is not a fair run of S[M ], which
contradicts our assumption that σ is a computation.

We now check that the trail π is accepting. Again, we proceed by contradiction. Assume
π is not accepting and let (Bi, Gi, δi) be the offending acceptance condition. This means
that after some position j, for all k > j, only edges ek /∈ Gi are visited, and some edges
in Bi are seen infinitely often. This means, by conditions (SelfAcc) and (OtherAcc), that
δ(nk) � δ(nk+1) and for infinitely many r > j: δ(nr) � δ(nr+1). Hence, there is an infinite
descending chain in a well-founded domain, which is a contradiction. This shows that
σ ∈ L[M ](D).

Finally, condition (Prop) ensures that sk � αk(µ(nk)) and since αk(µ(nk) → f(nk)) is
valid, then sk � αk(f(nk)). Hence, σp is in L[M ]

p (D). Finally, by (ModelCheck), L[M ]
p (D) ⊆

L(α(ϕ)). This finishes the proof. �

Example 4.3
We now illustrate the use of PVDs by presenting the full diagram for the response property
eventually_critical(k), described by Equation 4.1 in page 77, for the mutual exclusion protocol
SETMUTEX presented in Example 2.2.

In order to verify the protocol, we use a slightly modified version of the program. In the
modified version, we keep a set of pairs instead on just the set of tickets. Pairs contain the ticket

global
Int avail := 0
Set〈Int ,Tid〉 bag := ∅

procedure SetMutex()
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := avail ++
bag .add(ticket ,me)

〉

4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,me)
7: end while

end procedure

Figure 4.5: SETMUTEX modified for proving eventually_critical(k).

83



CHAPTER 4. PARAMETRIZED VERIFICATION DIAGRAMS

n0 : ¬



wants(k)∨
awaits(k)∨
critical(k)




n1 : wants(k)

n2 : awaits(t)

t 6= k ∧ isMin(t) ∧ awaits(k)

n3 : pc(t) = 5

n4 : pc(t) = 6

t

n5 : awaits(k)

n6 : critical(k)

isMin(k)

τk(3)

τk(3)

τt(4)

τt(5)
τt(6)

τt(6)

τk(4)

Figure 4.6: PVD for the proof that SETMUTEX satisfies eventually_critical(k).

and the thread identifier of the thread owning such ticket. Fig. 4.5 shows the modified version of
the SETMUTEX program.

In order to verify this program, we rely on the theory of finite sets of pairs of integers and
thread identifiers with ordered comprehension and minimum value. Given a pair p, function
πint(p) returns the integer component of p while function πtid(p) returns the thread identifier
component of pair p. In this theory, the function lower(s, n) receives a set of pairs s and an integer
n, and returns the subset of pairs whose first component is strictly lower than n. Additionally, this
theory also provides a function minPair that returns the lowest value in a set of pairs, using the
integer component for comparison. If more than one pair satisfy the condition to be the lowest
elements in a set, then one of such pairs can be arbitrarily returned.

We now present the PVD that represents the desired proof. In the diagram, we use isMin(i) for
πint(minPair(bag)) = ticket(i). That is, if isMin(i) holds, then thread i has the minimum ticket
in the set bag . The diagram is depicted in Fig. 4.6. Formally, the PVD is defined by:

N
def
= {ni | 0 ≤ i ≤ 6}

N0
def
= {n0}

E
def
= {n0 → n1, n2 → n3, n3 → n4, n5 → n6, n6 → n0}
{ni → nj | i = 1, 4 and j = 2, 3, 4, 5} ∪ {ni → ni | i = 0, 1, 2, 3, 4, 5, 6}

within def
= {n2 → n3, n3 → n4}

B def
= {({n2, n3, n4}, t)}

µ(n0)
def
= ¬(wants(k) ∨ awaits(k) ∨ critical(k))

µ(n1)
def
= wants(k)

µ(n2)
def
= t 6= k ∧ isMin(t) ∧ awaits(k) ∧ awaits(t)

µ(n3)
def
= t 6= k ∧ isMin(t) ∧ awaits(k) ∧ pc(t) = 5

µ(n4)
def
= t 6= k ∧ isMin(t) ∧ awaits(k) ∧ pc(t) = 6
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µ(n5)
def
= isMin(k) ∧ awaits(k)

µ(n6)
def
= isMin(k) ∧ critical(k)

η(e)
def
=





(τ3, k) if e ∈ {n1 → ni | i = 2, 3, 4, 5}

(τ4, t) if e ∈ {n2 → n3}

(τ4, k) if e ∈ {n5 → n6}

(τ5, t) if e ∈ {n3 → n4}

(τ6, t) if e ∈ {n4 → ni | i = 2, 3, 4, 5}
F def

= 〈〈{n4 → ni | i = 2, 3, 4, 5}, {n6 → n0}, λn→ lower(bag , ticket(k))〉〉

f(n)
def
=





¬(wants(k) ∨ critical(k)) if n = n0

wants(k) if n = n1

critical(k) if n = n6

true otherwise

The diagram presented above consists of 7 nodes, named ni for i = 0, . . . , 6. The initial node
is n0. Each node in the diagram contains self-loop edges for all transitions which are not labeling
any other outgoing edge from such node. For example, for node n4 there exists an (implicit) edge
n4 → n4 for all transitions other than τ6(t). Additionally, the value of the ranking function is the
subset of tickets lower than the ticket of k. This set decreases (with respect to ⊆) every time the
leader thread (captured by the box variable t) exits the critical section and removes its pair from
the set. y

In general, PVDs require to work in collaboration with Parametrized Invariance presented in
Chapter 3, as a PVD usually relies on some parametrized invariants that can be proven using the
parametrized invariance technique. Section 10.5 of Chapter 10 presents more details about the
use of PVDs in collaboration with Parametrized Invariance. Additionally, Section 10.5 describes
in more detail Example 4.3 and presents the empirical results of using PVD to prove liveness
properties for other programs.

4.4 Summary

In this chapter we introduced Parametrized Verification Diagrams, an extension of Generalized
Verification Diagrams which allow to prove temporal properties of concurrent systems with an
unbounded number of processes. We have shown that GVD are not suitable for parametrized
systems and why PVDs present as a natural candidate to tackle parametrized verification.

PVDs enable to encode in a single proof an evidence that all instances of the parametrized
system satisfy a given temporal specification. We have proven a soundness theorem which
indicates that the fact that a PVD encodes the proof of satisfaction of a parametrized specification
by a parametrized system can be automatically checked by:
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• solving a finite-state model checking problem, and

• proving a finite number of verification conditions, generated automatically from the program
and the diagram.

Decision procedures for the underlying theories of the data types in the program allow to
handle these verification conditions automatically as well. Later, in Chapters 6 and 7 we will
present decision procedures which can be used to automatically verify the verification conditions
presented in Section 4.3 when the program manipulates concurrent lists or skiplists.

PVDs has been implemented as part of the theorem prover for parametrized systems LEAP,
which is presented in Chapter 9.
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5
Invariant Generation for
Parametrized Systems

“ Science, my lad, is made up of mistakes, but they
are mistakes which it is useful to make, because
they lead little by little to the truth. ”

Jules Verne

In Chapter 3 and Chapter 4 we presented techniques for the parametrized verification of
safety and liveness properties. Both techniques have in common that they rely on intermediate
invariants in order to successfully accomplish the verification task. In general, these intermediate
invariants need to be provided by the user. However, we are interested in automatic methods
for generating such intermediate invariants whenever this is possible. This chapter study the
problem of automatically inferring invariants for parametrized systems.

In this chapter we define an abstract-interpretation–based framework for inferring indexed
invariants of parametrized programs. The main idea here is to build what we call a reflective
abstraction of the parametrized program. A reflective abstraction consists of a thread composed
with a mirror abstraction that summarizes the effect of the remaining threads on the global
variables. Fig. 5.1 presents the idea of mirror abstractions for deriving 2-indexed invariants.
In this case, a reflective abstraction to infer a 2-indexed invariant of a parametrized system is
constructed by abstracting the system into 2 materialized threads and the mirror process.

Part of the core of the method we present in this chapter is based on the idea that invariants
computed at various program locations of the materialized processes can be transfered into
guards of the mirror process. This way, the abstraction of other interfering threads via the mirror
process varies during the course of the analysis, similarly to the way in which materialization in
shape analysis enables the heap abstraction to vary for better precision. We also present in this
chapter different iteration schemes.
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P [1]
Materialized

P [2]
Materialized

mirror

T1 Ti Tj TN

· · ·· · ·

Figure 5.1: A reflective abstraction to infer 2-indexed invariants of a parametrized system.

This chapter is structured as follows. Section 5.1 introduces the basic idea of reflective
abstractions for parametrized systems. Section 5.2 presents the notion of reflective abstraction of
a parametrized system. Section 5.3 describes an iterative procedure to generate invariants of a
parametrized system using abstract interpretation on reflective abstractions. Finally, Section 5.4
presents a summary.

5.1 Self-Reflection

In this section, we present the basic idea behind reflective abstractions of parametrized systems.
As we mentioned before, parametrized programs consist of a fixed but unbounded number of
thread instances T1, . . . , TM where M ≥ 1. We begin with a motivating example.

Example 5.1 (Work Stealing)
Fig. 5.2 presents program WORKSTEAL. This is a parametrized program which processes a

global
Int len > 0
Array [len] data
Int next = 0

procedure WorkSteal()
Int c = 0
Int end = 0

begin

1:

〈 if next + 10 ≤ len then
c := next
end := next + 10
next := next + 10

end if

〉

2: while c < end do
3: data[c] := process(data[c])
4: c := c+ 1
5: end while

end procedure

Figure 5.2: WORKSTEAL: A parametrized array processing program.
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collection of elements stored in an array. In the program, each thread processes a section of 10

consecutive elements within the array.
In this program, there is a global array data of size len which contains the elements to be

processed. Additionally, there is a global variable next which stores the current unprocessed
index. Each thread has two local variables. For a given thread, local variable c indicates the
current position in the array being processed by the thread. On the other hand, local variable end

holds the last position in the array that needs to process the current thread. y

The goal is to prove properties about the behavior of parametrized systems that must hold
regardless of the number of running thread instances M . The simplest properties involve only
global variables. This kind of properties are said to be 0-index properties. Other properties may
also involve local variables, as well as globals. Properties involving global variables and local
variables of a single thread are said to be 1-indexed properties. Similarly, properties which refer
to global variables and local variables of two different threads are called 2-index properties and
so on.

Example 5.2
Consider again the WORKSTEAL program presented in Example 5.1. An example of a 0-index
property would be:

modten = next mod 10 = 0

Property modten says that global variable next is always multiple of 10. Similarly, for line 3, a
1-indexed property that should hold is bounded, which states that access to array data are always
within bounds:

bounded = (∀ i) 0 ≤ c[i] < len (5.1)

Finally, an example of a 2-indexed property is race-freedom for two distinct threads i, j whenever
one of the threads is at line 3. This is described by property racefree which says that no two
different threads will process the same element in the data array:

racefree = (∀ i, j) (i 6= j → c[i] 6= c[j]) (5.2)
y

In order to simplify the reasoning, in the rest of this chapter we will implicitly assume that
two different symbols ij , ik involved in a given assertion ψ are used to refer to different threads.

The core of the method presented in this chapter involves the use and adaptation of existing
invariant synthesis techniques to parametrized programs. The technique we present here allows
us to generate invariants such as modten, bounded, and racefree presented in Example 5.2. Our
approach, inspired by the idea of materialization in shape analysis [182], is based on identifying
a fixed number of materialized threads and abstracting the remaining processes into a single,
separate thread that we will call the MIRROR.

Fig. 5.1 provides a graphical idea of this approach. In this figure, a parametrized system
composed by M different threads is modeled by three threads:
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• 2 materialized threads, P [1], P [2]; and

• the mirror process MIRROR that summarizes the effects of the M − 2 remaining threads on
the shared global variables.

The number of materialized threads is fixed a priori and depends on the index of the desired
invariant. For example, we need to materialize at least 2 threads to infer a 2-indexed invariant.
The novel aspect of our reflective approach is that the MIRROR process is not fixed a priori but
rather is derived as part of the fixed point analysis.

The composition of the materialized threads and the MIRROR results on a regular sequential
transition system that can be analyzed using a standard abstract interpretation engine for
sequential systems. The MIRROR process simulates the effect of the remaining non-materialized
threads over the shared global variable in the system. In the case of WORKSTEAL, that is the effect
of the remaining threads over the global variables next and len. The MIRROR thread itself has no
local variables as they are abstracted away.

In order to construct the MIRROR thread, we need to focus on the transitions that produce
an effect on the global variables. These transitions are modeled as a self-loop around a single
location in the MIRROR thread, and the local variable updates including program locations are
quantified away. However, in order to maintain precision, it is preferable to restrict the scope
of the transition within the MIRROR thread only to those states of the program that are actually
reachable at the program location corresponding to the transition.

Example 5.3
Fig. 5.3 shows the basic setup for invariant synthesis for the WORKSTEAL program. In the case of
WORKSTEAL, the program contains a single transition, the one going from line 1 to line 2 that
actually produces an effect over the shared global variables. This transition is highlighted in
Fig. 5.3. It updates the value of global variable next . On the other hand, global variable len is
never updated by the program. This transition is then copied as a self-loop around in the MIRROR

thread. As the transition modifying the global variables is the one that corresponds to program
line 1, we restrict the scope of the transition in the MIRROR thread to those program states that
are reachable at line 1. We will over-approximate these states by an assertion Inv@`0. In fact, the
guard Inv@`1 in the MIRROR thread corresponds to the invariant computed at program location `1
in a materialized thread. y

Materialized

`1

`2

`3

`4

`5

next + 10 > len

next + 10 ≤ len ∧
c′ = next ∧

next ′ = next + 10 ∧
end ′ = next + 10

c < len

process(data[c])

c′ = c+ 1

c ≥ len

mirror

m

(∃ c, end , c′, end ′)


Inv@`1 ∧
next + 10 ≤ len ∧
c′ = next ∧
next ′ = next + 10 ∧
end ′ = next + 10




Figure 5.3: Materialized and MIRROR thread for a 1-index invariant in the WORKSTEAL program.
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The main question now is to precisely determine what Inv@`i is on a MIRROR thread for all
transitions at program location `i that produce an effect on the global variables. A simple solution
would be to assume Inv@`i to be true. In fact, doing so leads to a valid over-approximation of
all states that are reachable whenever some process resides at location `i However, true can
be often a very coarse over-approximation. Our key observation is that Inv@`i, and hence the
corresponding MIRROR thread, does not need to be fixed a priori. Instead, we build a more precise
abstraction by incrementally constructing MIRROR as follows:

1. The first iteration sets Inv@`i to false. By doing this, we are in fact disabling the MIRROR

thread. Consequently, this first iteration approximates only those states reachable by the
materialized threads running in isolation.

2. We run an abstract interpreter and compute invariants of the composition of the current
MIRROR thread and the materialized threads.

3. The MIRROR process for the next iteration is updated with Inv@`i set to the candidate
invariants computed in the previous iteration at location `i in the materialized threads with
the local variables projected out. This candidate invariant reflection allows the MIRROR to
run from a larger portion of the reachable state space.

4. Convergence is achieved whenever the invariants obtained at some iteration are subsumed
by those at the previous iteration. At this point, the effect of the mirror and the materialized
processes in the invariants and the guards is stable.

Upon convergence, the result are k-indexed invariants that relate the local variables of the k
materialized threads to the global variables.

5.2 Reflective Abstractions and Inductive Invariants

We now define the notion of a reflective abstraction of a parametrized system. Then we present the
main result of this section, Theorem 5.1, which proves the soundness of reflective abstractions.

Recall the definition of non-parametrized fair transition system we gave in Section 2.4.2.
To simplify the presentation, in this chapter we assume that all program variables are of type
integer. Additionally, through this chapter, we will represent a transition as a tuple τ : 〈`src, `tgt, ρ〉
consisting of a pre-location `src, a post-location `tgt and a transition relation ρ that relates the
values of the variables (global and local) before the transition with the values after the transition
is taken.

Example 5.4 (Parametrized Transition System for WORKSTEAL)
Consider once again the WORKSTEAL program presented in Example 5.1. The parametrized
transition system associated to this program consists of:

• Global variables Vglobal = {len,next}.

• Local variables Vlocal = {c, end}.

• Program locations Locs = {`1, `2, `3, `4, `5}, with the initial location being `1.
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• Transition relations are depicted as labels in Fig. 5.3, ignoring the transition relations for
the MIRROR process.

Not modeling the array data means the transition relation ρ between `3 and `4 is a no-op, that
is, ρ = pres(Vglobal ∪ Vlocal). y

Given a formula ϕ, where helpful for clarity in presentation, we write ϕ[G,X] to indicate the
variables G ⊆ Vglobal and X ⊆ Vlocal over which the formula ϕ is defined.

Definition 5.1 (Post-Condition).
Let ϕ be an assertion over the set of variables X and τ be a transition with transition relation
ρτ . The (strongest) post-condition (also known as image, transfer function, or transformer) of ϕ
across τ is given by the assertion

post(ϕ, τ) : (∃ X0) ( ϕ[X0] ∧ ρτ [X0, X] )

The post-condition describes all the valuations of variables X reachable in one step by
executing transition τ starting from a state that satisfies ϕ. y

Let Γ(X) be some fixed first-order language of assertions, such as the theory of integers,
involving free variables X. We overload � to denote the semantic entailment relation between
these formulas. An assertion map η : Locs ⇀fin Γ(X) maps each location to an assertion in Γ(X)

and it is inductive whenever the assertion at the initial location subsumes the initial condition
and the assertion map respects consecution. Formally speaking, an inductive assertion map is
described by the following definition.

Definition 5.2 (Inductive Assertion Map).
An assertion map η : Loc ⇀fin Γ[X] maps each location ` to an assertion. An assertion map η is
inductive whenever the following conditions hold:

− Initiation: The assertion at `0 subsumes the initial condition. That is:

Θ � η(`0)

− Consecution: For any transition τ between `src and `tgt, the post-condition transformer for τ
applied to η(`src) implies η(`tgt). Formally, for each transition τ : 〈`src, `tgt, ρ〉:

post(η(`src), τ) � η(`tgt) y
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5.2.1 Reflective Abstractions

In essence, a reflective abstraction is an over-approximation of a parametrized transition system
by a sequential one. What makes an abstraction reflective is that the over-approximation is
computed under an assertion map. As usual, to specifically denote a sequential transition system,
we use S.

In this chapter we will use a slightly different definition of state from the one presented in
Chapter 2. Here, we consider a state ξ to be a tuple 〈L,V〉 consisting of a map L : [M ] ⇀fin Locs
that associates a location L(i) for each thread instance i in M and a valuation map V which
assigns to each global variable and each local variable instance to its integer value. We write
V(Vglobal) to denote the valuations to all global variables and V(Vlocal[i]) to denote the valuations
of local thread i. We write V � ϕ for a valuation V satisfying a formula ϕ. Given a state ξ, we
write ξ � ϕ when state ξ satisfies formula ϕ.

In Chapter 2 we introduced the idea of i-indexed invariants. We now present a formal defini-
tion of 1-index invariants that adapts to the invariant generation framework we are developing in
this chapter.

Definition 5.3 (1-Indexed Invariant).
A pair 〈`, ϕ〉 consisting of a location ` and an assertion ϕ[Vparam] is a 1-index invariant of a
parametrized program P if and only if for every reachable state ξ : (L,V) with M > 0 thread
instances, and for every i ∈ [M ]

if L(i) = ` then (V(Vglobal),V(Vlocal[i])) � ϕ

In other words, the valuations of the local variables Vlocal[i] and global variables Vglobal for any
thread instance i reaching the location ` satisfies ϕ. y

We can now generalize Definition 5.3 to k-indexed invariants.

Definition 5.4 (k-Indexed Invariant).
A tuple 〈`1, `2, . . . , `k, ϕ〉 consisting of locations `1, . . . , `k and assertion ϕ[Vglobal, X1, . . . , Xk],
where X1, . . . , Xk are k disjoint copies of the local variables in Vlocal, is a k-indexed invariant of
a parametrized transition system P whenever for every reachable state ξ : (L,V) with M ≥ k

thread instances, and for every i1, . . . , ik ∈ [M ] where ia 6= ib if a 6= b:
if L(i1) = `1, L(i2) = `2, · · · , L(ik) = `k

then (V(Vglobal),V(X[i1]), · · · ,V(X[ik])) � ϕ(Vglobal, X1, . . . , Xk)
y

Inductive invariants are fundamental to the process of verifying safety properties of programs.
In order to prove an assertion ϕ over all reachable states at a location `, we seek an inductive
assertion map η over the entire program such that η(`) � ϕ.

We now formally define the notion of a reflective abstraction, which abstracts a parametrized
system by:

• a system with k > 0 materialized threads; and
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• a MIRROR thread that models the interference of the remaining threads on the shared global
variables Vglobal.

The key result is that an invariant of a reflective abstraction is that of a parametrized system.
Despite reflective abstraction can be used to infer k-indexed invariants, with k > 1, in the rest of
the chapter we will describe reflective abstractions with a single thread in order to simplify the
presentation.

Now, let η be an assertion map over the locations of a parametrized system P. Our goal is to
define a sequential system REFLECTP(η). This sequential system contains transitions to model one
specific thread instance, named the materialized thread, and the MIRROR thread, which models
the influence of the other threads on the global variables.

Definition 5.5 (Reflective Abstraction).
The reflective abstraction of a parametrized system P : 〈Σparam, Vparam,Θparam, Tparam〉 associated
to program P with respect to an assertion map η is a sequential transition system, written
REFLECTP(η), over variables Vparam, with locations given by Locs and transitions given by:

Tparam ∪ { MIRROR(τ, η, `) | τ ∈ Tparam and ` ∈ Locs }

Here, the original transitions Tparam model the materialized thread, while the MIRROR transi-
tions model the visible effects of the remaining threads.

For a transition τ : 〈`src, `tgt, ρ〉 and some location ` ∈ Locs, the corresponding MIRROR

transition MIRROR(τ, η, `) is defined as follows:

〈
`, `, pres(Vlocal) ∧ (∃ Y, Y ′)

(
η(`src)[Vglobal, Y ] ∧ ρ[Vglobal, Y, V

′
global, Y

′]
)〉

The initial location of the reflective abstraction is `0 and the initial condition is Θparam, as it comes
directly from the parametrized system. y

Note that each MIRROR transition is a self-loop at location ` of the materialized thread.
Equivalently, MIRROR can be seen as a process with a single location and self-looping transitions
that is composed concurrently with the materialized thread. Note that each MIRROR transition
preserves the local variables of the materialized thread, as they describe only the effect of each
transition over the global shared variables.

Also, observe that the guard η(`src)[Vglobal, Y ] of the MIRROR transition includes the invariant
η(`src) of the interfering thread at the pre-location, which can be seen as reflecting the invariant
of the materialized thread at `src on to the interfering thread.

Finally, the local variables are projected away from the transition relation using existential
quantification to model the effect of the materialized transition on the shared variables. In
Definition 5.5 this is done by existentially quantifying Y and Y ′.

Example 5.5 (Reflective Abstraction)
We now present as an example part of an assertion map η for program WORKSTEAL introduced
in Example 5.1. In this example, we use ρ(τ) to describe the transition relation of transition τ
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in the original parametrized system P and we use ρ(m) for the transition relation of a MIRROR

transition in the reflective abstraction. Note that the assertion map η is not necessarily inductive.

Let us consider first program line 1 for which the assertion map is η(`1) : next = 0 ∧ c =

0 ∧ end = 10. Now, program line 1 is associated to two possible transition relations. One when
the guard of the conditional holds and another one in the case it does not hold. In the first case
we have that the transition relation associated to program line 1 is:

ρ(τ1 : 〈`1, `2, ρ1〉) : next + 10 ≤ len ∧




c′ = next ∧
next ′ = next + 10 ∧
end ′ = next + 10


 ∧ pres({len})

Then, using this assertion map and the transition relations stated above, we have that the
transition relation of the MIRROR transition m1 is derived from the original transition τ1 by
computing the MIRROR self-loop:

ρ(m1 : MIRROR(τ1, η, _)) : pres({c, end}) ∧ (∃c, end , c′, end ′) η(`1) ∧ ρ1

Which, after replacing η(`1) and ρ1, we obtain:

pres({c, end}) ∧ (∃ c, end , c′, end ′)




next = 0 ∧ c = 0 ∧ end = 10 ∧
next + 10 ≤ len ∧ c′ = next ∧

next ′ = end ′ = next + 10 ∧ pres({len})


 (5.3)

Since transition ρ(m1 : MIRROR(τ1, η, _)) expresses solely the effect of the transition over the
global variables, we have that (5.3) is finally reduced to:

ρ(τ0 : 〈`1, `2, ρ1〉) : next + 10 ≤ len ∧ c′ = next ∧ next ′ = end ′ = next + 10 ∧ pres({len})

Now, let’s consider the second transition relation associated to program line 1. That is:

ρ(τ ′1 : 〈`1, `2, ρ′1〉) : next + 10 > len ∧ pres({next , len, c, end})

The MIRROR transition relation associated to this program transition is:

ρ(m′0 : MIRROR(τ ′0, η, _)) : 10 > len ∧ pres({next , len, c, end})

As another example, consider the assertion map η associated to program location 3:

η(`3)next ≥ 0 ∧ c ≥ 0 ∧ c < end

In this case, as the transition relation associated to program location 4 is:

ρ(τ4 : 〈`4, `5, ρ4〉) : c′ = c+ 1 ∧ pres({next , len, end})
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We have that the transition relation associated to the MIRROR process is:

ρ(m4 : MIRROR(τ4, η, _)) : next ≥ 0 ∧ pres({next , len, c, end})

Note that the only MIRROR transition which modifies global variables is the one associated to m1

(that is the transition highlighted in Fig. 5.3). All other MIRROR transitions preserve the value of
the global variables next and len and thus they can be omitted. y

We now present the main result involving reflective abstractions which establishes that if η is
an inductive invariant of the reflective abstraction REFLECTP(η) for a parametrized program P ,
then for every location `, the assertion η(`) is a 1-indexed invariant according to Definition 5.3.

Theorem 5.1 (Reflection Soundness):
Let η be an assertion map such that η is inductive for the system REFLECTP(η). It follows that for
each location ` of P, η(`) is a 1-index invariant of P. y

Proof. The proof proceeds by induction, considering all the states reachable in m steps.

• Base case: For the base case, we consider all states reachable in 0 steps. LetM > 0 represent
the number of thread instances. Each initial state is of the form (L0,V0) where L0(i) = `0

and V0(Vglobal),V0(Vlocal[i]) � Θ(Vglobal, Vlocal). Since, Θ � η(`0), we have L0(i) = `0 and
V0(Vglobal),V0(Vlocal[i]) � η(`0). This implies the base case.

• Inductive case: Let us assume that for every state ξm : (Lm,Vm) reachable in some m ≥ 0

steps by M > 0 thread instances:

Vm(Vglobal),Vm(Vlocal[i]) � η(Lm(i)), for all i ∈ [M ]

Consider an arbitrary state ξm+1 : (Lm+1,Vm+1) reachable in one step from ξm by the

execution of some transition τ [im] for im ∈ [M ]. That is, ξm
τ [im]−−−→ ξm+1. We wish to prove

that

Vm+1(Vglobal),Vm+1(Vlocal[j]) � η(Lm+1(j)), for all j ∈ [M ]

We need now to consider two possible cases.

1. Case j = im. By our induction hypothesis we have Vm(Vglobal),Vm(Vlocal[im]) �
η(Lm(im)). Moreover:

Vm(Vglobal),Vm(Vlocal[im]),Vm+1(Vglobal),Vm+1(Vlocal[im]) � ρτ

Therefore, Vm+1(Vglobal),Vm+1(Vlocal[im]) � post(η(Lm(im)), τ). Applying consecu-
tion of η for τ , we get:

Vm+1(Vglobal),Vm+1(Vlocal[im]) � post(η(Lm(im)), τ) � η(Lm+1(im))
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2. Case j 6= im. Let j 6= im refer to some thread instance whose local state remains
unchanged due to the execution of τ [im]:

Vm(Vlocal[j]) = Vm+1(Vlocal[j])

The execution of τ [im] can be treated as a transition of the MIRROR thread. In particular,
the local variables of the thread instance im simulated by the MIRROR thread satisfy
η(Lm(im)) by the induction hypothesis. Therefore, we have:

(Vm(Vglobal),Vm+1(Vglobal)) � (∃ X,X ′) η(Lm(im)) ∧ ρτ (Vglobal, X, V
′

global, X
′)

Therefore,

Vm(Vglobal),Vm(Vlocal[j]),Vm+1(Vglobal),Vm+1(Vlocal[j]) �
pres(Vlocal) ∧ (∃ Y, Y ′) η(Lm(im)) ∧ ρτ (Vglobal, Y, V

′
global, Y

′)
︸ ︷︷ ︸

MIRROR(τ,η,Lm(j))

(5.4)

We have Vm(Vglobal),Vm(Vlocal[j]) � η(Lm(j)) by the inductive hypothesis. Since η is an
inductive assertion for the reflective abstraction REFLECTP(η), it satisfies consecution
with respect to the transition MIRROR(τ, η, Lm(j)):

post(η(Lm(j)),MIRROR(τ, η, Lm(j))) � η(Lm(j)) (5.5)

Combining (5.4) and (5.5) we obtain:

Vm+1(Vglobal),Vm+1(Vlocal[j]) � post(η(Lm(j)),MIRROR(τ, η, Lm(j)))

� η(Lm(j)) (= η(Lm+1(j)))

This completes our induction proof. �

To generalize reflective abstraction to k > 1 materialized threads, we first construct a transition
system that is the product of k-copies of the parametrized program P . This transition system uses
k-copies of the locals and a single instance of the globals from P . Then, given an assertion map η,
we add MIRROR transitions to construct the reflective abstraction following Definition 5.5 on this
product system. Finally, each transition τ is projected onto the global shared variables guarded
by the assertion given by η in the transition’s pre-location. This way, an inductive assertion
derived on the reflective abstraction of the product system is a k-indexed invariant for the original
parametrized system.

5.3 Reflective Abstract Interpretation

In this section, we present an iterative procedure to generate invariants of a parametrized system
by applying abstract interpretation on reflective abstractions. The basic idea is to iteratively
alternate between constructing a reflective abstraction REFLECTP(ηi) using a candidate invariant
map ηi and generating the next candidate invariant map ηi+1 using abstract interpretation on
REFLECTP(ηi). We also consider various approaches to reflective abstract interpretation and we
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compare reflective abstraction with interference abstraction, a commonly-used approach when
analyzing multi-thread programs [155].

First, we briefly need to recall the theory of abstract interpretation [29, 57, 58] for finding
inductive assertion maps as the fixed point of a monotone operator over an abstract domain.

Abstract interpretation is based on the observation that invariants of a program are over-
approximations of the concrete collecting semantics η∗, an assertion map that associates each
location ` with a first-order assertion η∗(`) characterizing all reachable states at the location `.

Formally, we write:

η∗ = lfp FS(false)

In the definition above, FS(η) is a “single-step” semantics. That is, a monotone operator over the
lattice of assertion maps that collects all the states reachable in at most one step of the system S,
and false maps every location to false. Here, we will make the transition system S an explicit
argument of F , rather than fixed:

η∗ = lfp F(false,S) (5.6)

We can also define a structural pre-order on sequential transition systems. We say a sequential
system S structurally refines other sequential system S ′, written S � S ′, as simply saying that
S and S ′ have the same structure—in terms of their variables, locations, and transitions—and
where the initial conditions and the corresponding transition relations are ordered by �. Formally
speaking, structural pre-order between sequential transition systems is described by the following
definition.

Definition 5.6 (Structural Pre-Order).
A sequential transition system

S : 〈V,Θ, T 〉 structurally refines S ′ : 〈V ′,Θ′, T ′〉

written S � S ′, if and only if the following conditions hold:

1. the program variables of S and S ′ are the same. That is, V = V ′;

2. the initial condition of S ′ over-approximates the initial condition of S. That is, Θ � Θ′; and

3. for any transition τ ′ : 〈`′src, `′tgt, ρ
′〉 ∈ T ′, there is a transition

τ : 〈`src, `tgt, ρ〉 ∈ T

such that the pre-locations and post-locations are the same and the transition relation of τ ′

over-approximates the transition relation of τ . That is, `src = `′src, `tgt = `′tgt, and ρ � ρ′. y

It is clear that if S � S ′, then the behaviors of S ′ over-approximate the behaviors of S. Now,
we can see that the concrete collecting semantics functional F(η,S) is monotone over both
arguments:
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1. over concrete assertion maps ordered by � location-wise; and

2. over sequential transition systems using the structural pre-order.

The abstract interpretation framework allows to approximate the collecting semantics of
programs in an abstract domain A : 〈A,v,⊥,>,t,u〉 defined by a lattice. The abstract lattice is
related to the concrete lattice of first-order assertions Γ[X] through a Galois connection described
by:

• an abstraction function α : Γ[X] → A that maps assertions in the concrete domain to
abstract objects; and

• γ : A → Γ[X] that interprets abstract objects as concrete assertions representing sets of
states.

In the abstract interpretation framework, we lift the operator F defined over the concrete
domain to the corresponding monotone operator F̂ over the abstract domain A. Analogously, we
write η̂ : Locs ⇀fin A for an abstract assertion map. A fixed point computation in Equation (5.6)
is then expressed in terms of the abstract domain A as follows:

η̂∗ = lfp F̂(⊥,S)

Here, ⊥ is the abstract assertion map that maps every location to the bottom element ⊥ of
the abstract domain. If A is an abstract domain, then it follows that γ ◦ η̂∗ yields an inductive
assertion map over the concrete domain.

If the domain A is finite or has the ascending chain condition, the least-fixed point lfp

operator may be computed iteratively. On the other hand, many domains of interest fail to satisfy
these conditions. Herein, abstract interpretation provides us a framework using the widening
operator that can be repeatedly applied to guarantee convergence to a post-fixed point that
over-approximates the least-fixed point. Concretizing this post-fixed point leads to a valid but
weaker inductive assertion map.

5.3.1 Abstract Interpretation using Reflection

The overall idea behind our invariant generation technique is to alternate between constructing
a sequential reflective abstraction of the given parametrized system P and applying abstract
interpretation for sequential systems on the computed reflective abstraction. We distinguish two
abstract interpretation schemes: lazy and eager.

Lazy Reflective Abstract Interpretation: Lazy reflective abstract interpretation for a parame-
trized system P proceeds as follows:

1. First, begin with an initial abstract candidate invariant map η̂0 that maps each location
to the least abstract element ⊥.

2. Then, iterate the following steps until convergence:

(a) compute the reflective abstraction Sj using η̂j;

(b) on the reflective abstraction Sj , apply an abstract interpreter for sequential systems
to obtain the next candidate invariant map η̂j+1;
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(c) terminate the iteration whenever η̂j+1(`) v η̂j(`) for all ` ∈ Locs.

We now formally derive the lazy abstract interpretation scheme above. Let ĜLAZY,P be the
following operator defined over the abstract lattice:

ĜLAZY,P(η̂)
def
= lfp F̂(⊥,REFLECTP(γ ◦ η̂)) (5.7)

Given a map η̂ associating locations with abstract objects, the operator ĜLAZY,P is imple-
mented by:

1. concretizing η̂ to compute REFLECTP(γ ◦ η̂), the reflective abstraction; and

2. applying the least fixed point of F̂ over the reflection.

We note that the monotonicity of ĜLAZY holds where lfp is computable. In particular, note
that REFLECTP(η) is a monotone operator. In conclusion, the overall scheme for inferring
invariants of the original system P consists of computing the following:

η̂∗ = lfp ĜLAZY,P(⊥) and let ηinv
def
= γ ◦ η̂∗ (5.8)

Then, for each location `, ηinv(`) is a 1-index invariant of the system P.

Soundness follows from the soundness of abstract interpretation and reflection soundness
proved in Theorem 5.1. In practice, we implement the operator ĜLAZY by constructing a
reflective abstraction and calling an abstract interpreter as a black-box. Note that if the
abstract interpreter uses widening to enforce convergence, ĜLAZY is not necessarily monotone
since the post-fixed point computation cannot be guaranteed to be monotone. We revisit
these considerations in Section 5.3.3.

Eager Reflective Abstract Interpretation: In contrast with the lazy scheme, it is possible to
construct an eager scheme that weaves the computation of a least-fixed point and the
reflective abstractions in a single iteration. This scheme can be thought of as abstract
interpretation on the Cartesian product of the abstract domain A and the space of reflective
abstractions REFLECTP(γ ◦ η̂) for η̂ ∈ (Locs ⇀fin A) ordered by the structural pre-order
relation �.

The eager scheme consists of using an eager operator and an eager reflective abstract
interpretation as a least-fixed point computation with that operation starting at ⊥:

ĜEAGER,P(η̂)
def
= F̂(η̂,REFLECTP(γ ◦ η̂)) and η̂∗ = lfp ĜEAGER,P(⊥) (5.9)

In other words, we apply a single step of the abstract operator F̂ starting from the map η̂
over the reflective abstraction from γ ◦ η̂.

5.3.2 Interference Abstraction versus Reflective Abstraction

We now compare the eager and lazy reflective abstraction approaches with the commonly used
interference abstraction. The goal of interference abstraction [155] is to capture the effect
of interfering transitions flow-insensitively much like a reflective abstraction. The interference
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semantics can be expressed concisely in the formalism developed in this section by the following
operator:

η̂∗ = lfp F̂(⊥,S>) where S> def
= REFLECTP(true) (5.10)

Here > represents the abstract assertion map that associates each location with > ∈ A. In
particular, the mirror process is fixed to say that any transition in P of an interfering thread can
fire at any point.

Example 5.6
As a concrete example, consider the parametrized system constructed with program COUNTINCR-
GLOBAL presented in Fig. 5.4.

This program declares a global variable g and a local variable x. A thread executing program
COUNTINCRGLOBAL waits at line 1 until the value of the global variable g is positive. As part
of the same operation, it saves that value into the local variable x while setting g to 0. Then, it
increments the locally saved value and writes it back to the global variable g.

Our first goal is to establish that g ≥ 0 at every program location. Consider the transition
associated to program location `3. Following the framework described in this chapter, the ideal
transition relation for the corresponding MIRROR transition is:

(∃ x) η∗(`3) ∧ g′ = x

Our approach builds η incrementally starting from ⊥, updating the MIRROR transitions in an
eager or a lazy fashion and obtaining x ≥ 0 everywhere. The interference semantics, on the
other hand, is obtained by setting η to >, essentially dropping the guards related to the invariant
candidates we have computed. Such a semantics will be too coarse to prove an assertion involving
x. Specifically, in the absence of any information about η(`3), the interference due to the transition
associated to line 3 is written as a non-deterministic update of x. The incremental construction of
the reflective abstraction presented here prevents this situation by building invariants on g that
can then be used to prove x ≥ 0.

However, the reflective abstraction approach is not complete either. For instance, reflective
abstractions cannot be used to establish the invariant g = 0 when all threads are at line 2 or line
3 without the use of additional auxiliary variables. y

global
Int g ≥ 0

procedure CountIncrGlobal()
Int x = 0

begin

1:

〈 await g > 0
x := g
g := 0

〉

2: x := x+ 1
3: g := x

end procedure

Figure 5.4: COUNTINCRGLOBAL: a simple global counter example.
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5.3.3 The Effect of Widening

So far, we have defined all iterations via least-fixed points of monotone operators, implicitly
assuming abstract domains for which the least-fixed point is computable. However, in practice,
abstract interpretation is used with abstract domains that do not enjoy this property. In particular,
we want to be able to use abstract domains that rely on widening to enforce convergence to a
post-fixed point that over-approximates the least-fixed point.

Applying abstract interpretation with widening instead of lfp in the previous definitions of this
section raises a number of issues in an implementation. First, the lazy reflective operator ĜLAZY

defined in Equation (5.7) is not necessarily monotonic. To solve this, in our implementation we
enforce monotonicity by applying an outer join that joins the assertion maps from the previous
iteration with the one from the current iteration. To enforce convergence of this iteration, we
must apply an outer widening.

Another consequence is that the relative precision of the reflective abstract interpretation
schemes are unclear. Perhaps counter-intuitively, the interference abstraction approach de-
scribed in Section 5.3.2 is not necessarily less precise than the reflective abstract interpretation
with ĜEAGER as defined in Equation (5.9). To see this possibility, let η̂∗EAGER be the fixed point
abstract assertion map computed by iterating ĜEAGER. While the final reflective abstraction
SEAGER : REFLECTP(γ ◦ η̂∗EAGER) using ĜEAGER is trivially no less precise than the interference abstrac-
tion SINTERFERE : REFLECTP(true), the abstract interpretation with widening is not guaranteed to be
monotonic. Instead, this observation suggests another scheme, which we call eager+. The eager+
scheme runs ĜEAGER to completion to get SEAGER and then applies standard abstract interpretation
over this sequential transition system. In other words, the eager+ scheme is defined as follows:

η̂∗EAGER = lfp ĜEAGER,P(⊥) η̂∗EAGER+ = lfp F̂(⊥,REFLECTP(γ ◦ η̂∗EAGER)) (5.11)

Empirical evaluation using our parametrized invariant generation approach is presented in
Section 10.6 in Chapter 10. There, we present further examples, we evaluate our parametrized
invariant generation method and we analyze the advantages and disadvantages of the lazy, eager
and eager+ schemes applied to various examples.

5.4 Summary

In this chapter we have described the reflective abstraction approach for automatically inferring
k-indexed invariants of parametrized systems. This method can be seen as an effective way to
automatically infer invariants for supporting the verification methods described in Chapter 3 and
Chapter 4.

A novel aspect of the technique presented in this chapter is that it enables the use of off-
the-shelf abstract interpretation-based sequential invariant generators for the generation of
parametrized invariants. The central idea of our approach is that inferences made on materialized
threads can be transferred or reflected on to the summarized threads represented by the MIRROR

thread. In order to study the behaviour of our method, we introduced three variants of reflective
abstraction named lazy, eager and eager+. Later, in Chapter 10 we present some results we
have obtained from the empirical evaluation of these schemes on a collection of parametrized
programs.
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Decision Procedures





6
TL3:
A Decidable Theory
of Concurrent Lists

“ Part of the inhumanity of the computer is that,
once it is competently programmed and working
smoothly, it is completely honest. ”

Isaac Asimov

In Chapter 3 and Chapter 4 we introduced deductive techniques to verify safety and liveness
properties of parametrized systems. Such deductive methods discharge a collection of verification
conditions that needs to be validated. With the assistance of specialized decision procedures for
complex data types, such as linked lists, it is possible to automatically verify the validity of the
generated verification conditions.

In this chapter we present TL3—the Theory of Linked Lists with Locks— a decidable theory
for single-linked lists, which is also equipped with features to reason about concurrency. We
use TL3 to study the verification problem of concurrent data types that manipulate dynamic
memory in the heap in the shape of single-linked lists. Later, in Chapter 10 we show how to use
an implementation of our TL3 decision procedure in order to verify list shape preservation and
functional correctness of implementations of many single-linked list data structures, including
lock-coupling lists, lock-based unbounded queues and lock-free queues and stacks.

We show that TL3 enjoys the so called bounded model property. This property states that if a
TL3 formula has a model, then it must also have a model within a bounded domain. By showing
that models of TL3 formulas can be bounded just by analyzing the literals in the formula, we
can conclude that the satisfiability problem for quantifier-free TL3 formulas is decidable. This
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decidability result comes from the fact that if there exist bounds for the domains, then enumerate
all possible models within the bounds.

The core of TL3 is a decidable theory for sequential lists introduced in [178]. The theory TL3
incorporates native built-in predicates that make its quantifier-free fragment powerful enough to
describe rich properties of concurrent programs that manipulate single-linked lists. In TL3 it is
possible to express list-like data structures, pointers, explicit heap regions with region separation
and lock ownership. This expressive power allows TL3 to verify many concurrent data types
lists such as concurrent queues and stacks. As we will see in future chapters, TL3 serves as an
essential building block in the construction of richer theories for more sophisticated memory
shapes. For example, in Chapter 7 we show how to extend TL3 into TSLK, a family of theories
capable of reasoning about concurrent skiplists.

The rest of the chapter is structured as follows. Section 6.1 presents some concurrent data
types that manipulate single-linked lists shapes. Section 6.2 formally presents the theory TL3.
Section 6.3 shows that TL3 is decidable by stating and proving a bounded model theorem. Finally,
Section 6.4 presents a summary of what have been discussed in this chapter. Later, in Chapter 10
we report the results of our empirical evaluation using an implementation of a TL3 decision
procedure based on the bounded model theorem of this chapter.

6.1 Concurrent Data Types that Manipulate Lists

In this section we introduce concurrent data types that manipulate lists in the heap. We present
implementations of four different concurrent data structures based on single-linked lists:

(a) An implementation of a concurrent lock-coupling single-linked list.

(b) An implementation of an unbounded concurrent queue which uses a single lock.

(c) An implementation of a lock-free stack.

(d) An implementation of a lock-free non-blocking queue.

6.1.1 A Concurrent Lock-coupling List

A lock-coupling concurrent list [107, 207] is a concurrent data type that implements a set by
maintaining in the heap an ordered single-linked list with non-repeating elements. Each node in
the list is protected by a lock which guarantees that a single thread can access a list node at the
same time. When a thread traverses the list, it acquires the lock of the node that it visits, and
only releases this lock after the lock of the successor node has been successfully acquired. This
technique of protecting cells with locks (instead of protecting the whole data-structure with a
single coarse-grain lock) is known as fine-grained locking.

Nodes of a concurrent lock-coupling list are instances of the following ListNode class:

class ListNode { Elem data;

Addr next ;

Lock lock ; }

An object of class ListNode contains the following fields:
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• data, the value stored in the node, which is also used to keep the list ordered;

• next , a pointer that stores the address of the next node in the list; and

• lock , which contains the lock protecting the node.

We assume that the operating system provides the atomic operations lock and unlock to lock
and unlock the lock of a node. It is easy to adapt this framework with additional fields in ListNode.
For instance, we could use different fields for the element stored (for example a value) and for
the data used to keep the list ordered (a key).

Our implementation of concurrent lock-coupling lists maintains two global addresses head

and tail , and two ghost global variables reg and elems:

global
Addr head
Addr tail
Set〈Addr〉 reg
Set〈Elem〉 elems

The declared global program variables are:

(a) A variable head , of type address (pointer), which points to the first node of the list.

(b) A variable tail , of type address (pointer), which points to the last node of the list.

(c) A ghost variable reg , of type set of addresses, which is used to keep track of the portion of
the heap whose cells form the list.

(d) A ghost variable elems, of type set of elements, which represents the collection of elements
stored in the list.

In our implementation, head and tail point to the nodes with the lowest and highest possible
values, −∞ and +∞ respectively. We consider head and tail sentinel nodes which are neither
removed nor modified and we assume that the list is initialized with head and tail already set.
The set reg is initialized containing solely the addresses of head and tail . Similarly, the set elems

is initialized containing only the elements initially stored at the nodes pointed by head and tail .
We now present the code of an implementation of concurrent lock-coupling lists. This

implementation contains three main operations named SEARCH, INSERT and REMOVE:

SEARCH: described in Fig. 6.1, receives an element e and traverses the list in order to determine
whether e is stored in the list. The procedure uses two local auxiliary pointers (prev and
curr) to traverse the list.

Initially, prev points to the head of the list (line 1) and curr to the node immediately after
head (line 3). When a thread begins executing procedure SEARCH, it gets the lock of both
prev and curr (line 2 and 4) in order to prevent other threads from modifying these nodes
concurrently.

The loop (lines 5 to 11) performs the search of a node containing e. In the loop, an auxiliary
pointer aux is used while prev is reassigned to point to curr (line 7). This is the way a
thread traverses the list. Once prev points to the same node as curr and the thread has
released the lock at the node previously pointed by prev (line 8), curr can be modified in
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procedure Search(Elem e)
Addr prev , curr , aux
Bool found

begin
1: prev := head
2: lock(prev→lock)
3: curr := prev→next
4: lock(curr→lock)
5: while curr→data < e do
6: aux := prev
7: prev := curr
8: unlock(aux→lock)
9: curr := curr→next

10: lock(curr→lock)
11: end while
12: found := (curr→data = e)
13: unlock(prev→lock)
14: unlock(curr→lock)
15: return found

end procedure

Figure 6.1: SEARCH procedure for concurrent lock-coupling lists.

order to point to the next node in the list (line 9). Once prev is set, the thread grabs the
lock at the node currently pointed by curr (line 10). At the end of the loop, the following
holds:

prev→data < e ∧ curr→data ≥ e

Hence, if the list is ordered, it can be determined whether e was present in the list or not
(line 12) just by checking the value stored at the node pointed by curr . If element e was
in the list then found is set to true, otherwise found is set to false. Finally, the locks at
the nodes pointed by prev and curr are released (line 13 and 14) and found is returned.
Procedure SEARCH returns true if e was found and false otherwise.

INSERT: depicted in Fig. 6.2, receives an element e and attempts to insert it into the list. INSERT

first determines the position at which e should be inserted and then manipulates the pointers
of the neighbor nodes appropriately.

This procedure initially behaves as SEARCH, looking for the position at which element e
should be inserted into the list. In fact, from line 1 to 11 procedure SEARCH and INSERT are
identical. Note that, again, after the initial loop of INSERT (line 12) the following holds:

prev→data < e ∧ curr→data ≥ e

Hence, as curr→data ≥ e, the conditional at line 12 checks whether the element stored at
the node pointed by curr is e or not. If the test at line 12 is false, then curr→data = e and
the element e is already present in the list. In this case we do not need proceed with the
insertion element e and we just require to release the locks on prev and curr (lines 16 and
18) before exiting. On the contrary, if the test at 12 holds, e is not in the list and we need to
insert it.
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procedure Insert(Elem e)
Addr prev , curr , aux , newnode

begin
1: prev := head
2: lock(prev→lock)
3: curr := prev→next
4: lock(curr→lock)
5: while curr 6= null ∧ curr→data < e do
6: aux := prev
7: prev := curr
8: unlock(aux→lock)
9: curr := curr→next

10: lock(curr→lock)
11: end while
12: if curr 6= null ∧ curr→data > e then
13: newnode := malloc(e)
14: newnode→next := curr
15: prev→next := newnode

reg := reg ∪ {newnode}
elems := elems ∪ {e}

16: end if
17: unlock(prev→lock)
18: unlock(curr→lock)
19: return

end procedure

Figure 6.2: INSERT procedure for concurrent lock-coupling lists.

To insert e in the list, a new node is created (line 13) and assigned value e. We assume that
the node created by a call to malloc is initialized with next = null and lock = #. At this
point:

prev→data < e ∧ curr→data > e

Hence node newnode, which contains element e, needs to be inserted between the nodes
pointed by prev and curr . At line 14 we modify newnode ’s next pointer to point to curr

and at line 15 we make prev ’s next pointer point to newnode, finally connecting newnode

to the rest of the list. Line 15 is annotated with ghost code which updates reg and elems to
keep track of the new cell and element inserted in the list. After INSERT has been executed,
e is guaranteed to be present in the list.

REMOVE: described in Fig. 6.3, receives as argument an element e and removes the node
containing element e from the list by redirecting the next pointer of the previous node
appropriately.

The first section of REMOVE (line 1 to 11) behaves again similar to SEARCH, looking for the
position in the list at which element e should be. After the loop (line 12):

prev→data < e ∧ curr→data ≥ e

Again the test at line 12 captures whether the node pointed by curr contains e and whether
it is not tail . This check can be omitted if we assume that element e cannot be neither −∞
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procedure Remove(Elem e)
Addr prev , curr , aux

begin
1: prev := head
2: lock(prev→lock)
3: curr := prev→next
4: lock(curr→lock)
5: while curr 6= tail ∧ curr→data < e do
6: aux := prev
7: prev := curr
8: unlock(aux→lock)
9: curr := curr→next

10: lock(curr→lock)
11: end while
12: if curr 6= tail ∧ curr→data = e then
13: aux := curr→next
14: prev→next := aux

reg := reg − {curr}
elems := elems − {e}

15: end if
16: unlock(prev→lock)
17: unlock(curr→lock)
18: return

end procedure

Figure 6.3: REMOVE procedure for concurrent lock-coupling lists.

nor +∞. If the node pointed by curr contains a value different from e or curr is pointing to
tail , then REMOVE does nothing except releasing the locks of prev and curr (line 16 and 17).
On the contrary, if curr points to a node different form tail which stores element e, then we
use pointer aux to overrun the node pointed by curr . To do so, first, aux is assigned the
node immediately after curr (line 13). Then, the next pointer of the node pointed by prev

is modified in order to point to aux (line 14), making curr unreachable from the head of
the list. Line 14 also contains the ghost code which updates the values of reg and elems,
tracking the effect of the actual removal of the node.

procedure MGCList()
Elem e

begin
1: while true do
2: e := havocListElem()
3: nondet choice
4: call Search(e)
5: or call Insert(e)
6: or call Remove(e)
7: end choice
8: end while

end procedure

Figure 6.4: Most general client procedure MGCLIST for concurrent lock-coupling lists.
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It is easy to see that, in fact, line 15 of procedure INSERT and line 14 of procedure REMOVE

correspond to the linearization points of the concurrent data type. Finally, in order to verify
the data type against all possible clients, we create the most general client of the concurrent
lock-coupling list, called MGCLIST. The most general client is presented in Fig. 6.4. This program
consists of an infinite loop which simply invokes non-deterministically any of the procedures
SEARCH, INSERT and REMOVE that implements the data type, with an arbitrary parameter.

Example 6.1
The following figure shows an example of a memory snapshot of the heap maintained by a
concurrent lock-coupling list.

list
head tail

+∞1710953−∞
0x01 0x02 0x03 0x04 0x05 0x06 0x07

This list stores the set of elements {3, 5, 9, 10, 17}. The elements −∞ and +∞ correspond
to the sentinel values stored at the nodes pointed the head and tail . In this example, we use
0x01 . . . 0x07 to denote memory addresses. This particular memory snapshot is obtained as a
result of an execution in which a thread has acquired the locks protecting the nodes stored in
memory addresses 0x03 and 0x04. y

6.1.2 An Unbounded Queue

We now present other data types based on single-linked lists memory shapes. The data type we
present now is a concurrent unbounded queue [107]. This queue is unbounded because it can
potentially store any number of elements.

A queue is a data structure capable of storing elements and later retrieving them in the same
order as they were inserted. Because of this, it is also called first-in, first-out queue.

Our implementation of an unbounded concurrent queue is depicted in Fig. 6.5. The imple-
mentation contains three global program variables:

(a) A variable head , of type address (pointer), which points to the first node in the queue, that is,
the oldest element residing in the queue.

(b) A variable tail , of type address (pointer), which points to the last node in the queue, that is,
the latest element inserted into the queue.

(c) A single global lock, named queueLock , to protect the access to the queue allowing that a
single thread at a time modifies the queue.

This technique of protecting the whole data structure with a single global locks is known
as coarse-grained locking. Nodes of an unbounded concurrent queue are implemented by the
UnboundedQueueNode class:

class UnboundedQueueNode { Elem data;

Addr next ; }
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Instances of UnboundedQueueNode contains only two fields. A field data, to represent values
stored in the node, and a field next which contains a pointer to the following node in the queue.
In this case, the list need not be ordered.

The implementation offers two procedures, one for inserting elements and another for
removing elements from the queue:

ENQUEUE: This procedure receives an element e and inserts it into the queue. To do so, first the
thread gets the global lock (line 1). Then, a new node newnode is created (line 2) storing
element e. As new nodes are connected to the tail of the queue, we require to assign null to
the next pointer of the new node (line 3) so that once connected, the queue will remain
null terminated. At this point, we can modify the current last node of the queue, pointed by
tail , to make it point to the new node (line 4). This way, after this step, newnode comes to
be the last node in the list that represents the queue. As global variable tail should always
point to the last node in the queue, at line 5 we modify tail to make it point to the new
node. Finally, the thread releases the global lock (line 6) and the procedure finishes.

DEQUEUE: This procedure is in charge of removing elements from the queue. A thread running
this procedure begins by performing a wait on the global lock lock (line 8). Then it checks
whether the queue is empty (line 9). If head→next happens to be null , then this means
that there are no elements to be removed from the queue. This happens because, in fact,
the queue’s actual head is not the node referenced by head . Instead, the actual head is
the successor of the node referenced by head . The node pointed by head is just used as
a sentinel node. So, in case head→next = null , it means that there are no elements to
remove from the queue, in which case the global lock is released and an EmptyException

is raised. On the contrary, if the queue is not empty, then the element at the queue’s head
is stored in the local program variable result (line 13). Then, head is modified to point to
the successor node of the node previously pointed by head (line 14). This is equivalent to
making the old node pointed by head unreachable from the new head . Finally, the thread

global
Addr head , tail
Lock queueLock

procedure Enqueue(Elem e)
Addr n

begin
1: lock(queueLock)
2: newnode := malloc(e)
3: newnode→next := null
4: tail→next := newnode
5: tail := newnode
6: unlock(queueLock)
7: return()

end procedure

procedure Dequeue()
Elem result

begin
8: lock(queueLock)
9: if head→next = null then
10: unlock(queueLock)
11: raise(EmptyException)
12: end if
13: result := head→next→data
14: head := head→next
15: unlock(queueLock)
16: return(result)
end procedure

Figure 6.5: A coarse-grain locking unbounded queue implementation.
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releases the global lock (line 15) and returns the element stored at result (i.e., the one that
used to be at queue’s head) at line 16.

6.1.3 An Unbounded Lock-free Stack

The queue implementation presented in Section 6.1.2 uses a single global lock which provides a
coarse synchronization method. This can be a concurrency bottleneck, because the access to the
data structure is limited to a single thread at a time.

A more efficient approach consists of using lock-free algorithms. A lock-free algorithms does
not rely on locks for synchronization, but uses compare-and-swap (CAS) operations instead.

Here we present a lock-free implementation of a stack from [107]. A stack, in contrast with a
queue, is a last-in, first-out data type. This means that the latest element being inserted will be the
first one to be removed from the stack. The implementation we show here is based on a single-
linked list. Nodes of the list implementing a stack are instances of the LockfreeStackNode class,
which is identical to the UnboundedQueueNode class presented in Section 6.1.2. An object of class
LockfreeStackNode contains two fields, data which stores the value and next which references to
the next node in the stack.

Fig. 6.6 presents an implementation of a lock-free stack. This implementation uses a single
global program variable top, of type address, which is used to keep a reference to the node at the
top of the stack. The implementation provides two procedures, one for inserting elements and
the other for removing them from the stack.

PUSH: receives an element e as argument and inserts it at the top of the stack. To do so, it first
creates a new node, called newnode, which stores the value e (line 1). Then, the loop (line
2 to 8) inserts the element e into the stack. The loop uses the local program variable oldTop

to point to the same node as top (line 3). Then it modifies the next pointer of newnode to
make it reference the addresses pointed by oldTop (line 4). When line 5 is reached, the CAS

global
Addr top

procedure Push(Elem e)
Addr oldTop, newTop, n

begin
1: newnode := malloc(e)
2: while true do
3: oldTop := top
4: newnode→next := oldTop
5: if CAS(top, oldTop, n) then
6: return()
7: end if
8: end while

end procedure

procedure Pop()
Addr oldTop, newTop

begin
9: while true do

10: oldTop := top
11: if oldTop = null then
12: raise(EmptyException)
13: end if
14: newTop := oldTop→next
15: if CAS(top, oldTop,newTop) then
16: return(oldTop→data)
17: end if
18: end while

end procedure

Figure 6.6: An unbounded lock-free stack implementation.
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Figure 6.7: Sequence of states reached changes suffered by a lock-free stack during the execution
of CAS operation at procedure PUSH: (a) the state of the stack when reaching line 5; (b) the
condition of the CAS operation holds; (c) after successful execution of CAS operation; (d) the
condition of the CAS operation does not hold; (e) after unsuccessful execution of CAS operation.

operation compares the address referenced by top with the address referenced by oldTop.
At this point, two things may happen (Fig.6.7(a)):

(1) If no other thread has tried in parallel to insert a new element, the value of top has
not been modified by other thread (Fig. 6.7(b)), then the operation CAS succeeds, and
top points to newnode (Fig. 6.7(c)). In this situation, element e has been successfully
inserted into the stack.

(2) If another thread has inserted a new element in the node while the original thread was
still executing the statements at line 3 or 4, then top will not match oldTop any longer
(Fig. 6.7(d)). In this case, when the procedure compares the addresses pointed by top

and oldTop (line 5), the CAS operation fails and the loop is executed once again. In
the next round of the loop, oldTop will be assigned the new current value of top and
the comparison will be performed again until it succeeds (Fig. 6.7(e)).

POP: returns the value stored in the node at the top of the stack and removes such node from
the data structure. The procedure begins by storing in the local program variable oldTop

the address pointed by top (line 10). Then checks whether oldTop points to null (line 11).
This test implies that the stack is empty and no node can be removed from the stack. So, in
this case the procedure returns an EmptyException. If the stack is not empty, then POP uses
its local program variable newTop to store the address of the node that follows oldTop (line
14). Then, the procedure checks whether the global program variable top and the local
program variable oldTop point to the same node. If they both point to the same address, it
means that no node has been removed and that no new node has been added to the stack
while the thread was between line 10 and 15. As happened with procedure PUSH, if at
line 15 top and oldTop point to the same address, then top is modified to point to newTop,
that is, the node following the top of the stack. If this CAS operation succeeds, then the
procedure ends returning the value stored at the old top node of the stack. If the CAS
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operation fails, then the procedure tries to perform the removal again in the next iteration
of the loop.

6.1.4 An Unbounded Lock-free Queue

In Section 6.1.2 we presented an unbounded queue implemented on top of a single-linked list
which uses a single global lock to prevent the simultaneous access of multiple threads to the
queue. Now we present a lock-free non-blocking implementation of an unbounded queue [153]
known as Michael-Scott queue.

As before, the queue data structure is implemented as a list of nodes of class LockfreeQueueNode.
Instances of LockfreeQueueNode, as instances of LockfreeStackNode, maintain two fields:

(a) A data field, of type Elem, for the node’s value.

(b) A next field, of type Addr (pointer), which keeps the reference of the successor node.

The implementation of the lock-free queue is presented in Fig. 6.8. This implementation uses
two global program variables of type Addr :

(a) Global variable head , pointing to the first node in the queue.

(b) Global variable tail , pointing to the last node in the queue.

As in the unbounded queue presented in Section 6.1.2, here the node pointed by head is a sentinel
node and its value is not used. The implementation provides two procedures for manipulating
the queue:

ENQUEUE: receives an element e and proceeds to insert it at the tail of the queue. An interesting
aspect of ENQUEUE is that it is lazy, in the sense that the complete insertion of a new element
takes place in two steps. First, a CAS operation (line 8) connects the new node to the queue.
Then, if no new nodes have been added between last and tail , then pointer tail is updated
by the same thread through the CAS operation at line 16. On the contrary, if the new node
could not have been connected to the queue because another thread inserted a different
node before the CAS operation at line 8 took place, then the thread running ENQUEUE just
updates the reference of tail (line 12). In this case, a new attempt to insert newnode will be
made in the next iteration of the loop. This means that, in order to make the procedure
lock-free, threads may need to help each other in order to fully insert a new element.

Now, if we follow the execution of ENQUEUE step by step, the procedure begins by creating
the new node to be inserted (line 1), assigning to it the value e and making its next field to
point to null (line 2). The graph in Fig. 6.9 shows a representation of a scenario in which a
thread tries to insert a new element into the lock-free queue.

At line 4, a thread running procedure ENQUEUE stores in its local program variable last

what at that moment appears to be the address of the last node in the queue (Fig. 6.9(a)).
Then, it assigns to local program variable nextptr the address of the successor node of last

(line 5). When this assignment is done, as the data type is not protected by a lock, two
things may have happened:

• some other thread has inserted a new node in the queue before line 5 is executed, so
nextptr may not point to null (Fig. 6.9(b)); or
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global
Addr head , tail

procedure Enqueue(Elem e)
Addr last , nextptr , n

begin
1: newnode := malloc(e)
2: newnode→next := null
3: while true do
4: last := tail
5: nextptr := last→next
6: if last = tail then
7: if nextptr = null then
8: if CAS(last→next ,nextptr ,newnode) then
9: break

10: end if
11: else
12: CAS(tail , last ,nextptr)
13: end if
14: end if
15: end while
16: CAS(tail , last ,newnode)
17: return()

end procedure

procedure Dequeue()
Addr first , last , nextptr
Elem value

begin
18: while true do
19: first := head
20: last := tail
21: nextptr := first→next
22: if first = head then
23: if first = last then
24: if nextptr = null then
25: raise(EmptyException)
26: end if
27: CAS(tail , last ,nextptr)
28: else
29: value := nextptr→data
30: if CAS(head ,first ,nextptr) then
31: break
32: end if
33: end if
34: end if
35: end while
36: return(value)

end procedure

Figure 6.8: An unbounded lock-free queue implementation.
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• no other node has been inserted after the node pointed by last , and hence nextptr

indeed points to null (Fig. 6.9(c)).

Line 6 checks whether last and tail do still reference to the same address. Let’s first consider
what happens in the case of the state shown in Fig. 6.9(b). In this case, if last is not pointing
to the same address as tail (Fig. 6.9(e)), then the condition of line 6 fails and the algorithm
needs to try again the insertion, reassigning again last to the current tail of the queue
and returning to the state shown in Fig. 6.9(a). On the contrary, if last and tail do point
to the same address (Fig. 6.9(f)), then condition at line 7 fails as we are considering the
scenario at which nextptr is not null . This situation happens when, while we were inserting
newnode, another thread inserted a new node after last but it could not finished with the
update of tail , and hence, pointer tail is not currently pointing to the last node in the queue.
In order to assist in the update of tail , the CAS operation at line 12 is executed on behalf
of the other thread. If the CAS operation succeeds then tail is modified in order to point
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Figure 6.9: Sequence of steps for inserting a new element into a lock-free queue implementation.
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(a) (b) (c)

a

head tail

ba

head tail tail head

ba

Figure 6.10: Potential problem in the lock-free queue implementation if DEQUEUE does not assist
ENQUEUE in advancing tail pointer.

to nextptr (Fig. 6.9(g)). In this scenario the new element e has not been inserted into the
queue, but at least we contributed updating the value of tail . As e was not successfully
inserted, we restart the process and try once again to insert e into the queue (Fig. 6.9(a)).
Now, it is possible that in the interleaving between the moment in which last is compared
to be equal to tail (line 6) and the execution of the CAS operation (line 12) the value of
tail is updated. In this case, the CAS operation fails (Fig. 6.9(h)) and the procedure will
require to try to insert the element in a new iteration of the loop (Fig. 6.9(a)).

Let’s consider now the case shown in Fig. 6.9(c) right before executing line 6. Again, if
tail has been updated by another thread, then the condition in line 6 will fail (Fig. 6.9(i))
and the procedure will require a new iteration of the loop in order to insert element e
(Fig. 6.9(a)). On the contrary, if the conditional at line 6 succeeds, then condition at line 7
will clearly also succeed. Then, the CAS operation at line 8 is executed. If the CAS operation
fails, it means that new nodes have been inserted by other threads between last and null

(Fig. 6.9(l)) and hence a new iteration of the loop is required in order to insert element e
in the queue. If the CAS operation succeeds, this means that the new node newnode with
value e has been successfully inserted into the queue (Fig. 6.9(m)). Then, we just require
to update tail to reflect that a new node has been inserted at the tail of the queue. The
process of updating tail is done by the last CAS operation at line 16. If at line 16 tail and
last points to the same address (Fig. 6.9(n)) then CAS operation is successful and tail is
updated pointing to the new inserted node (Fig. 6.9(o)). On the contrary, if at line 16 tail

does not point to the same address as last , this means that tail has been updated by another
thread through the CAS operation at line 12 and consequently procedure ENQUEUE does
not need to perform any other update (Fig. 6.9(p)).

DEQUEUE: removes the element that is at the head of the queue and returns the value that was
stored in such node. The removal is made by changing head from the sentinel node to its
successor, making the successor node the new sentinel.

The procedure begins by assigning to local program variables first and last the addresses of
the nodes pointed at that moment by head and tail respectively (line 19 and 20). Then, the
procedure makes a local copy at program variable nextptr of the address that follows head

in the queue. Line 22 checks whether head has been modified since the moment its value
was assigned to first . If so, then the procedure starts again in the next iteration of the loop.

There may be a problem when ENQUEUE and DEQUEUE interact. Consider the situation of
a queue with a single node, where head and tail point to the same node. This situation is
depicted in Fig. 6.10(a). Here head and tail point to the same node a. Now, imagine that
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one thread enqueuing b has redirected a’s next pointer to b but has not yet redirected tail

form a to b (Fig. 6.10(b)). At this point, if another thread starts dequeuing, it will read b’s
value and redirect head from a to b, removing a while tail is still pointing to it (Fig. 6.10(c)).
To prevent this problem from happening, procedure DEQUEUE must assist in advancing tail

from a to b before redirecting head . Line 23 checks whether first and tail point to the same
address. If they do point to the same address and its successor is null , then an exception
is raised indicating that the queue is empty (line 25). If the queue is not empty, then the
tail pointer is advanced until nextptr (line 27) and the DEQUEUE procedure proceeds to
try the dequeuing in the next iteration of the loop. On the other hand, if first and last do
not match, then the value stored in the node following last is retrieved (line 29) and a
CAS operation is performed (line 30). The CAS operation checks whether no other thread
has performed a DEQUEUE operation modifying the reference of head . If head still matches
first , then the sentinel node head is removed, nextptr becomes the new sentinel node and
the procedure returns the value retrieved in line 29. If head does not match first , then the
procedure for removing a node starts again in the next iteration of the loop.

6.2 TL3: A Theory of Concurrent Single-Linked Lists

In this section we present the Theory of Linked Lists with Locks TL3, a theory we have developed
for describing linked-list heap memory layouts. TL3 is powerful enough as to cope with the
examples we have presented in the previous sections, as we will see later.

The theory TL3 is a multi-sorted first-order theory. We formally define the Theory of Linked
Lists with Locks TL3 as a combination of theories TL3 = (ΣTL3,TL3), where

ΣTL3 := Σcell ∪ Σmem ∪ Σsetaddr ∪ Σsettid ∪ Σsetelem ∪ Σreach ∪ Σbridge

and TL3 is a class of models of interest presented later in Section 6.2.3.
Informally, Σcell models cells, structures containing an element (data), an address (pointer)

and a lock owner, which represents a node in a linked list. Σmem models the memory. Σsetaddr

models sets of addresses. Σsettid models sets of thread identifiers. Σsetelem models sets of elements.
Σreach models finite sequences of non-repeating addresses, to represent acyclic paths in memory.
Finally, Σbridge is a bridge theory containing auxiliary functions, for example, that allow to map
paths of addresses to set of addresses, or to obtain the set of addresses reachable from a given
address following a chain of next fields.

We describe now the sorts, the signature and restrictions on the interpretation for each of the
theories in TL3.

6.2.1 Sorts

The sorts shared among these theories are cell, elem, addr, tid, mem, path, setaddr, settid and
setelem. The intended meaning of these sorts is:

• cell: instances of the class ListNode representing a node in the list.

• elem: elements stored in these cells.

• addr: memory addresses.
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• tid: thread identifiers.

• mem: heaps, as maps from addresses to cells.

• path: paths, as finite sequences of non-repeating addresses.

• setaddr: sets of addresses.

• settid: sets of thread identifiers.

• setelem: sets of elements.

Interpretations A restrict the domains of sorts to satisfy the following:

(a) Aelem, Atid and Aaddr are discrete sets.

(b) Acell = Aelem ×Aaddr ×Atid.

(c) Amem = AAaddr

cell .

(d) Apath is the set of all finite sequences of (pairwise) distinct elements of Aaddr.

(e) Asetaddr is the power-set of Aaddr.

(f) Asettid is the power-set of Atid.

(g) Asetelem is the power-set of Aelem.

6.2.2 Signature

We describe next the signature of each theory, listing the sorts used and each of the functions and
predicates with their signatures:

a) Σcell: The sorts used are cell, elem, addr and tid. The function symbols are:

error : cell

mkcell : elem× addr × tid→ cell

_.data : cell→ elem

_.next : cell→ addr

_.lockid : cell→ tid

_.lock : cell→ tid→ cell

_.unlock : cell→ cell

The cell error is used to model the return of an incorrect memory dereference. The function
mkcell is the constructor of cells. The corresponding selectors are the functions data, next

and lockid . Finally, the functions lock and unlock model the effect of acquisition and release
of locks. There are no predicate symbols in Σcell except from cell equality.

b) Σmem: The sorts used are mem, addr and cell. The function symbols are:

null : addr

_[_] : mem× addr→ cell

upd : mem× addr × cell→ mem
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The function null models the null address. The function _[_] models a memory dereference
which returns a cell given a memory and an address. Finally, the function upd is used to
create a modified heap given a heap, an address and the cell to be stored in that address.
There are no predicate symbols in Σcell except from memory equality.

c) Σsetaddr: The sorts used are addr and setaddr. The function symbols are:

∅ : setaddr

{_} : addr→ setaddr

∪, ∩, \ : setaddr × setaddr→ setaddr

The predicate symbols in Σsetaddr, in addition to set equality, are:

∈ : addr × setaddr

⊆ : setaddr × setaddr

The intended interpretation of these symbols is their usual meaning in set theory, for sets of
addresses.

d) Σsettid: The sorts used are tid and settid. The function symbols are:

∅T : settid

{_}T : tid→ settid

∪T , ∩T , \T : settid× settid→ settid

The predicate symbols in Σsettid, in addition to set equality, are:

∈T : tid× settid

⊆T : settid× settid

Again, the intended interpretation of these symbols is their usual meaning in set theory, for
sets of thread identifiers.

e) Σsetelem: The sorts used are elem and setelem. The function symbols are:

∅E : setelem

{_}E : elem→ setelem

∪E,∩E, \E : setelem× setelem→ setelem

The predicate symbols in Σsetelem, in addition to set equality, are:

∈E : elem× setelem

⊆E : setelem× setelem

Once again, the intended interpretation of these symbols is their usual meaning in set theory,
for sets of elements.
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f) Σreach: The sorts used are mem, addr and path. The function symbols are:

ε : path

[_] : addr→ path

The constant ε models the empty path, and the function [_] allows to build a singleton path
with one address in it. The predicate symbols in Σreach, in addition to path equality, are:

append : path× path× path

reach : mem× addr × addr × path

The predicate append relates two paths with its concatenation. A path must be a sequence
of non-repeated elements, so some pairs of paths cannot be concatenated, if they contain
common elements. The predicate reach relates two addresses with the path that connects
them in a given memory.

g) Σbridge: The sorts used are mem, addr, setaddr and path. The function symbols are:

path2set : path→ setaddr

addr2set : mem× addr→ setaddr

getp : mem× addr × addr→ path

fstlock : mem× path→ addr

The function path2set returns the set of addresses present in a given path. The function
addr2set returns the set of addresses reachable from a given address by following the next

pointers. The function getp returns the path that connects two addresses in a given heap,
if there is one (or the empty path otherwise). Finally, the function fstlock returns the first
address in a given path that is locked by some thread. There are no predicate symbols in
Σbridge.

6.2.3 Interpretations

We restrict the class of models to TL3, a class of ΣTL3-structures that satisfy the following
conditions:

a) Σcell: Every interpretation A of Σcell must satisfy that for every element e ∈ Aelem, every
address a ∈ Aaddr and every thread identifiers t, t1 ∈ Atid:

• mkcellA(e, a, t) = 〈e, a, t〉

• 〈e, a, t〉.dataA = e

• 〈e, a, t〉.nextA = a

• 〈e, a, t〉.lockidA = t

• 〈e, a, t〉.lockA(t1)= 〈e, a, t1〉

• 〈e, a, t〉.unlockA = 〈e, a,�〉

• errorA.nextA = nullA
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Essentially, the models in TL3 restrict cells to be records consisting of an element, an address
and a thread identifier. The functions lock and unlock allow to assign and query the thread
identifier.

b) Σmem: For each m ∈ Amem, a ∈ Aaddr and c ∈ Acell:

• m[a]
A

= m(a)

• updA(m, a, c) = ma7→c

• mA(nullA) = errorA

In models in TL3, the memory dereference function returns the cell associated with a given
address. The memory update simply transforms the memory into a memory that differs only
in the modified address, which points to the given cell. Above, ma7→c denotes a memory
map that matches in every address with m, except for address a, which is mapped to cell c.
Finally, dereferencing null must return the error cell.

c) Σsetaddr,Σsetelem,Σsettid: The symbols ∅, {_}, ∪, ∩, \, ∈ and ⊆ are interpreted according to
their standard interpretation over sets of addresses. Similarly, the symbols ∅E, {_}E, ∪E, ∩E,
\E, ∈E and ⊆E, and the symbols ∅T, {_}T, ∪T, ∩T, \T, ∈T and ⊆T are interpreted according to
their standard interpretations over sets of elements and threads respectively.

d) Σreach: The symbol ε is interpreted as the empty sequence, and [i ]
A must be the singleton

sequence containing i ∈ Aaddr as its only element.

• In the case of append :

([i1, . . . , in] , [j1, . . . , jm] , [i1, . . . , in, j1, . . . , jm]) ∈ appendA

if and only if all i1, . . . , in, j1, . . . , jm are all pairwise distinct.

• In the case of reach:
(m, i, j, p) ∈ reachA

if and only if one of the following conditions hold:

(a) i = j and p = ε; or

(b) there exist addresses i1, . . . , in ∈ Aaddr such that:

(1) p = [i1, . . . , in] (3) m(ir).nextA = ir+1, for 1 ≤ r < n

(2) i1 = i (4) m(in).nextA = j

Note that according to the definition of reach, the path p that goes from address i to j
must include all addresses reachable through next from i to j, except from j which is
not included in p.

e) Σbridge: The interpretation of addr2set , path2set , getp and fstlock are restricted as follows:

• In the case of addr2set:

addr2setA(m, i) =
{
j ∈ Aaddr | ∃p ∈ Apath s.t. (m, i, j, p) ∈ reach

}
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• In the case of path2set , for every i1, . . . , in ∈ Aaddr, if p = [i1, . . . , in] ∈ Apath, then

path2setA(p) = {i1, . . . , in}

• In the case of getp, for each m ∈ Amem, p ∈ Apath and i, j ∈ Aaddr:

getpA(m, i, j) =




p if (m, i, j, p) ∈ reachA

ε otherwise

• In the case of fstlock , for each m ∈ Amem and i1, . . . in ∈ Aaddr:

fstlockA (m, [i1, . . . , in]) =





ik if there is 1 ≤ k ≤ n such that

for all 1 ≤ j < k,m[ij ].lockid = �
and m[ik].lockid 6= �

null otherwise

Example 6.2
Consider again the following list, which was presented in Example 6.1:

list
head tail

+∞1710953−∞
0x01 0x02 0x03 0x04 0x05 0x06 0x07

Assuming that nodes are locked by thread T1 the following interpretation A is in the class
TL3:

Aaddr = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07}
Aelem = {−∞, 3, 5, 9, 10, 17,+∞}
Atid = {T1,�}
Amem = {m : Aaddr → Acell}

where
nullA = 0x00

errorA = 〈 −∞ , 0x00 , � 〉
m(0x00) = 〈 −∞ , 0x00 , � 〉
m(0x01) = 〈 −∞ , 0x02 , � 〉
m(0x02) = 〈 3 , 0x03 , � 〉
m(0x03) = 〈 5 , 0x04 , T1 〉
m(0x04) = 〈 9 , 0x05 , T1 〉
m(0x05) = 〈 10 , 0x06 , � 〉

m(0x06) = 〈 17 , 0x07 , � 〉
m(0x07) = 〈 +∞ , 0x00 , � 〉
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It is easy to check that all restrictions in the class TL3 are met.

For predicates append and reach we have, for instance, that:

([0x01,0x02], [0x03], [0x01,0x02,0x03]) ∈ appendA

([0x01], [0x01], [0x01,0x01]) /∈ appendA

([0x01,0x02], [0x03,0x04], [0x01,0x02,0x03]) /∈ appendA

(m,0x01,0x01, ε) ∈ reachA

(m,0x01,0x01, [0x01]) /∈ reachA

(m,0x01,0x04, [0x01,0x02,0x03]) ∈ reachA

For functions addr2set , path2set , getp and fstlock we have, for example:

addr2setA(m,0x01) = {0x01,0x02,0x03,0x04,0x05,0x06,0x07}

path2setA([0x01,0x02]) = {0x01,0x02}

getpA(m,0x01,0x01) = ε

getpA(m,0x01,0x04) = [0x01,0x02,0x03]

getpA(m,0x03,0x01) = ε

fstlockA(m, [0x02,0x03,0x04]) = 0x03

fstlockA(m, [0x02,0x04,0x03]) = 0x04

fstlockA(m, [0x01,0x02]) = null y

6.2.4 Satisfiability of TL3

We now show that the satisfiability problem of quantifier-free first order formulas in TL3 is
decidable. Following this result, Later we can use a TL3 decision procedure in the automatic
verification of verification conditions as long as these verification conditions are quantifier-free,
which is usually the case. Given a formula ϕ, we first transform ϕ into its disjunctive normal form
ϕ1 ∨ · · · ∨ ϕn, where each ϕi is a conjunction of flat TL3 literals. We then consider a subset of
TL3-literals, called normalized literals. All other literals can be rewritten into equivalent formulas
that use only normalized literals. Considering only normalized literals aids in simplifying the
theoretical developments later.

Definition 6.1 (TL3-normalized Literals).
A TL3-literal is normalized if it is a flat literal of the form:
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e1 6= e2 a1 6= a2

a = null c = error

c = mkcell(e, a, t) c = m[a] m2 = upd(m1, a, c)

s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3

r = {t}T r1 = r2 ∪T r3 r1 = r2 \T r3

x = {e}E x1 = x2 ∪E x3 x1 = x2 \E x3

p1 6= p2 p = [a]

s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)

s = addr2set(m, a) p = getp(m, a1, a2)

t1 6= t2 a = fstlock (m, p)

where e, e1 and e2 are elem-variables, a, a1 and a2 are addr-variables, c is a cell-variable, m,
m1 and m2 are mem-variables, p, p1, p2 and p3 are path-variables, s, s1, s2 and s3 are setaddr-
variables, r, r1, r2 and r3 are settid-variables, x, x1, x2 and x3 are setelem-variables, and t, t1 and
t2 are tid-variables. y

Lemma 6.1 (TL3 Normalization):
Every non-normalized TL3-literal can be rewritten into an equivalent formula that contains only
TL3-normalized literals. y

Proof. We use the following equivalences to convert each non-normalized TL3-literal into formu-
las containing only TL3-normalized literals:

e = c.data ↔ (∃addra ∃tidt) [c = mkcell (e, a, t)] (6.1)

a = c.next ↔ (∃eleme ∃tidt) [c = mkcell (e, a, t)] (6.2)

t = c.lockid ↔ (∃eleme ∃addra) [c = mkcell (e, a, t)] (6.3)

c1 = c2.lock (t) ↔
(

(∃eleme ∃addra ∃tidt1)

c1 = mkcell(e, a, t) ∧ c2 = mkcell(e, a, t1)

)
(6.4)

c1 = c2.unlock ↔
(

(∃eleme ∃addra ∃tidt1)

c1 = mkcell(e, a,�) ∧ c2 = mkcell(e, a, t1)

)
(6.5)

c1 6=cell c2 ↔




(∃eleme1, e2 ∃addra1, a2 ∃tidt1, t2)

c1 = mkcell(e1, a1, t1) ∧
c2 = mkcell(e2, a2, t2) ∧
(e1 6= e2 ∨ a1 6= a2 ∨ t1 6= t2)




(6.6)

m1 6=mem m2 ↔ (∃addra) (m1[a] 6= m2[a]) (6.7)

s1 6=setaddr s2 ↔ (∃addra) [a ∈ (s1 \ s2) ∪ (s2 \ s1)] (6.8)

s = ∅ ↔ s = s \ s (6.9)

s3 = s1 ∩ s2 ↔ s3 = (s1 ∪ s2) \ ((s1 \ s2) ∪ (s2 \ s1)) (6.10)

a ∈ s ↔ {a} ⊆ s (6.11)
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s1 ⊆ s2 ↔ s2 = s1 ∪ s2 (6.12)

r1 6=settid r2 ↔ (∃tidt) [t ∈T (r1 \T r2) ∪T (r2 \T r1)] (6.13)

r = ∅T ↔ r = r \T r (6.14)

r3 = r1 ∩T r2 ↔ r3 = (r1 ∪T r2) \T ((r1 \T r2) ∪T (r2 \T r1)) (6.15)

t ∈T r ↔ {t}T ⊆T r (6.16)

r1 ⊆T r2 ↔ r2 = r1 ∪T r2 (6.17)

x1 6=setelem x2 ↔ (∃eleme) [e ∈E (x1 \E x2) ∪E (x2 \E x1)] (6.18)

x = ∅E ↔ x = x \E x (6.19)

x3 = x1 ∩E x2 ↔ x3 = (x1 ∪E x2) \E ((x1 \E x2) ∪E (x2 \E x1)) (6.20)

e ∈E x ↔ {e}E ⊆E x (6.21)

x1 ⊆E x2 ↔ x2 = x1 ∪E x2 (6.22)

p = ε ↔ append(p, p, p) (6.23)

reach(m, a1, a2, p) ↔ a2 ∈ addr2set(m, a1) ∧ p = getp(m, a1, a2) (6.24)

We prove each equivalence separately. In each case we assume a model A of the non-
normalized literal on the left hand side of the equivalence and show that A is a model of the
corresponding formula on the right hand side of the equivalence. Similarly, we assume a model B
of the formula on the right and prove that B is a model of the literal on the left.

• Equivalence (6.1). Given A, cA is an element of Acell = Aelem ×Aaddr ×Atid, so there are
n in Aelem, x in Aaddr and j in Atid with cA = (n, x, j). By the restriction on the class TL3
of models (in particular for data) A must satisfy that eA = n, and mkcellA(n, x, j) = cA.
Hence, by taking aA = x and tA = j it follows that (∃addra ∃tidt) [c = mkcell (e, a, t)] holds
in A.

For the other direction, we assume B is a model of (∃addra ∃tidt) [c = mkcell (e, a, t)] It
follows, by the interpretation in B of data, that cB.dataB is eB as desired.

• Equivalences (6.2) and (6.3). Analogous to equivalence (6.1).

• Equivalence (6.4). Let A be a model of c1 = c2.lock (t). It follows that cA1 = 〈e, a, tA〉
for some e ∈ Aelem, a ∈ Aaddr and that cA2 = 〈e, a, j〉 for some j in Atid. Hence, c1 =

mkcell(e, a, t) and c2 = mkcell(e, a, j) hold in A. For the other direction, every model B of:

c1 = mkcell(e, a, t) ∧ c2 = mkcell(e, a, t1)

is such that cB1 = 〈eB, aB, tB〉 and cB2 = 〈eB, aB, j〉, for some j. If follows, by the interpreta-
tion of lock that both cB1 and cB2 .lockB(tB) are the cell 〈eB, aB, tB〉.

• Equivalence (6.5). Analogous to equivalence (6.4).
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• Equivalence (6.6). Consider a modelA of c1 6=cell c2 and let cA1 = 〈n, a, i〉 and cA2 = 〈m, b, j〉.
Since (c1 6=cell c2)A holds, it follows that either:

– n 6= m, or

– a 6= b, or

– i 6= j.

For the other direction, consider a model B of:

c1 = mkcell(e1, a1, t1) ∧ c2 = mkcell(e2, a2, t2) ∧ (e1 6= e2 ∨ a1 6= a2 ∨ t1 6= t2)

In this case, cB1 = 〈eB1 , aB1 , tB1 〉 and cB2 = 〈eB2 , aB2 , tB2 〉. Then, if eB1 6= eB2 , aB1 6= aB2 or tB1 6= tB2 it
follows that cB1 6=cell c

B
2 .

• Equivalence (6.7). This equivalence follows easily from the restriction in the class of models
TL3 of Amem to be functions from addresses to cells. The extensionality principle then
implies that two functions are different precisely when they differ for some input.

• Equivalences (6.8), (6.9), (6.10), (6.11) and (6.12) are simple tautologies in the theory of
sets, applied to sets of addresses (restricted in the class of models TL3).

• Equivalences (6.13), (6.14), (6.15), (6.16) and (6.17) are the corresponding tautologies
for the theory of sets of thread identifiers.

• Equivalences (6.18), (6.19), (6.20), (6.21) and (6.22) are the corresponding tautologies
for the theory of sets of elements.

• Equivalence (6.23). A model A of p = ε makes pA be the empty path. Hence, append(p, p, p)

holds in A because TL3 restricts the class of models to those in which append concatenates
the empty path with itself to resulting in the empty path. Similarly, if append(p, p, p) holds
in B it follows that pB is the empty path (otherwise the resulting p would have repeated
elements). Hence p = ε holds in B.

• Equivalence (6.24). Assume that in model A, the literal reach(m, a1, a2, p) holds. The
interpretation in TL3 of reach forces:

addr2setA(mA, aA1 ) = {j ∈ Aaddr | ∃pathp s.t. (m, i, j, p) ∈ reachA}

Since (mA, aA1 , a
A
2 , p

A) ∈ reachA, it follows that aA1 ∈ addr2setA(mA, aA1 ) as desired.
Similarly, getpA(mA, aA1 , a

A
2 ) = pA. For the other direction, let B be a model of

a2 ∈ addr2set(m, a1) ∧ p = getp(m, a1, a2)

The second conjunct, (p = getp(m, a1, a2)), implies that (mB, aB1 , a
B
2 , p
B) ∈ reachB and then

reach(m, a1, a2, p) holds in B.

All (6.1)–(6.24) are valid TL3 equivalences. �
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Orienting the (6.1)–(6.24) equivalences from left to right allows to eliminate non-flat literals
from a given formula, resulting in a formula that only contains normalized literals. Note also,
that all quantifiers introduced in these equivalences are existential quantifiers, which can be
pushed (with renaming to avoid capturing if necessary) to the front of the formula. Hence, a
quantifier-free formula (which is implicitly existentially quantified) results into a quantifier-free
formula after the rewriting step.

Example 6.3
Consider once again the list presented in Example 6.1 and consider the non-normalized formula:

ϕnonNorm
def
= reach(m, head , tail , getp(m, head , tail)) ∧ m[tail ].next = null

This formula states that in the list, the cell pointed by tail is reachable from head following the
path obtained by getp. Additionally, this formula states that the cell pointed by tail is followed by
null . If we rewrite this formula using only normalized literals, we have:

{tail} ∈ s ∧
s = addr2set(m, head) ∧
p = getp(m, head , tail) ∧
c = m[tail ] ∧
c = mkcell(e, a, t) ∧
a = null y

The formula obtained after normalization can be converted into its disjunctive normal form,
obtaining the following result.

Lemma 6.2 (Normalized Literals):
Every TL3-formula is equivalent to a disjunction of conjunctions of normalized TL3-literals. y

Proof. Take the TL3-formula and normalize all its literals, transforming all non-normalized
literals using Lemma 6.1. Finally, from the resulting formula containing only normalized literals,
compute the disjunctive normal. �

6.3 Decidability of TL3

The theory TLL enjoys of the finite model property, as shown in [178]. We now prove that TL3
enjoys the bounded model property presented in Definition 2.2 with respect to domains elem, addr

and tid. Moreover, we will show how to compute for a given formula ϕ, a (polynomial) bound
on the size of Aelem, Aaddr and Atid of a sufficiently large model A. In other words, if there is no
model within the bounds, then ϕ is unsatisfiable. Note that a bound on the domain of the sorts
elem, addr and tid is enough to also obtain bounds on the domains of the remaining sorts (cell,
mem, path, setaddr, setelem and settid) because the domains of these latter sorts are constructed
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from the domains of elem, addr and tid due to the restrictions imposed in the class of models TL3.
These bounds imply that TL3 is decidable because one can enumerate all ΣTL3-structures up to
the cardinality given by the bound of the finite model theorem, and check whether each of the
structures is indeed a model of the given formula.

Consider an arbitrary TL3-interpretation A satisfying a conjunction of normalized TL3-literals
Γ. We will construct domains Belem, Baddr and Btid with bounded cardinalities (with the bound
depending on Γ), and then construct a finite interpretation B which also satisfies Γ.

6.3.1 Auxiliary Functions for Model Transformation

Before proceeding with the proof that TL3 enjoys the bounded model property, we first define
some auxiliary functions.

Definition 6.2 (TL3 Many Jumps).
Given a memory m and an address a, we use the following notation for s ≥ 1:

m[s](a).next =

{
m(a).next if s = 1

m(m[s−1](a).next).next if s > 1 y

We start by defining the function first , whose intended meaning is to give the first relevant
element of the domain of addresses that is necessary to preserve the valuation of all functions
and predicates. Later, all irrelevant elements will be removed from the large domain to obtain
the bounded domain. Let X ⊆ Aaddr, m : Aaddr → Aelem ×Aaddr ×Atid and a ∈ X be an address.
The function first(m, a,X ) is defined by

first(m, a,X ) =





null if for all r ≥ 1, m[r](a).next(l) /∈ X

m[s] (a) .next(l) if for some s ≥ 1, m[s](a).next(l) ∈ X

and for all r < s, m[r](a).next(l) /∈ X

Basically, given a set of addresses X , function first chooses the next address in X that can be
reached from a given address by repeatedly following the next pointer. We will later filter out
unnecessary intermediate nodes and use first to bypass properly the removed nodes, preserving
the important connectivity properties.

Lemma 6.3 (Function first):
Let X ⊆ Aaddr, m1 and m2 : Aaddr → Aelem ×Aaddr ×Atid, a1 and a2 ∈ X , c ∈ Aelem × X ×Atid

and a1 6= a2. Then:

(a) If m1(a1).next ∈ X then first(m1, a1,X ) = m1(a1).next

(b) If m1 = upd(m2, a1, c) then first(m1, a2,X ) = first(m2, a2,X ) y

Proof. We proof (a) and (b) separately.
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(a) Immediate from the definition of first .

(b) Let m1 = upd(m2, a1, c). We consider two possible cases:

(1) m
[r]
1 (a2).next /∈ X for all r ≥ 1. By induction we can show that m[r]

1 (a2) = m
[r]
2 (a2) for

each r ≥ 1. It follows that first(m1, a2,X ) = null = first(m2, a2,X ).

(2) m
[s]
1 (a2).next ∈ X for some s ≥ 1. In this case, assume without loss of generality that

first(m1, a2,X ) = m
[s]
1 (a2).next . By induction it can be shown that m[r]

1 (a2) = m
[r]
2 (a2)

for each 1 ≤ r < s. It follows that first(m1, a2,X ) = m
[s]
1 (a2).next = m

[s]
2 (a2).next =

first(m2, a2,X ). �

Next, we define the compress function which, given a path p and a set X of addresses, returns
the path obtained from p by removing all the addresses that do not belong to X .

compress([i1, . . . , in],X ) =





ε if n = 0

[i1]◦compress ([i2, . . . , in] ,X ) if n > 0 and i1 ∈ X

compress ([i2, . . . , in] ,X ) otherwise

In the definition above, we use ◦ to denote the concatenation of paths. That is, [i1, . . . , ik] ◦
[j1, . . . , jl] = [i1, . . . , ik, j1, . . . , jl].

Lemma 6.4 (Function compress):
Let a be an address, let X be a set of addresses and let p1 and p2 be paths. Then:

(a) if a ∈ X then compress([a],X ) = [a]

(b) path2set(p1) ∩X = path2set(compress(p1,X ))

(c) If path2set(p1) ∩ path2set(p2) = ∅, then

compress(p1 ◦ p2,X ) = compress(p1,X ) ◦ compress(p2,X ) y

Proof. Immediate from definition of function compress. �

The third auxiliary function we need is diseq , already introduced in [178], which provides a
set of addresses that witness the inequality of two given paths:

diseq([i1, . . . , in], [j1, . . . , jm]) =





∅ if n = m = 0

{i1} if n > 0 and m = 0

{j1} if n = 0 and m > 0

{i1, j1} if n,m > 0 and i1 6= j1

diseq([i2, . . . , in], [j2, . . . , jm]) otherwise

Note that the set that diseq returns has at most two elements.
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Lemma 6.5 (Function diseq):
For all paths p1 and p2 and for any set of addresses X , if p1 6= p2 and diseq(p1, p2) ⊆ X , then
compress(p1,X ) 6= compress(p2,X ) y

Proof. Immediate from definition of diseq and compress. �

Finally, the last function is common, which outputs an element common to two paths, that is,
an element that witnesses that (path2set(p) ∩ path2set(q) 6= ∅):

common([i1, . . . , in], p) =





∅ if n = 0

{i1} if n > 0 and i1 ∈ path2set(p)

common([i2, . . . , in], p) otherwise

6.3.2 A Bounded Model Theorem for TL3

We are now ready to establish the main result of this chapter. Before doing so, we will proof an
auxiliary lemma.

Lemma 6.6 (TL3 Reachability Preservation):
Let A and B be two TL3 models such that:

• For each e ∈ Velem, eA = eB.

• For each a ∈ Vaddr, aA = aB.

• For each t ∈ Vtid, tA = tB.

• For eachm ∈ Vmem and a ∈ Baddr, mB(a) =
(

mA(a).dataA,first(mA, a,Baddr),mA(a).lockidA
)

.

Then, for any a, b ∈ Vaddr and m ∈ Vmem:

if mB(aB).nextB = bB then mA
[s]

(aA).nextA = bA, for some s ≥ 1 y

Proof. According to the lemma assumptions we have that aA = aB, bA = bB and mB(aB).nextB =

first(mA, aA,Baddr). Following these equalities we have that

bA = bB

= mB(aB).nextB

= first(mA, aA,Baddr)

Assume that for all r ≥ 1, mA(aA).nextA /∈ Baddr. This is a contradiction, as first(mA, aA,Baddr) =

bA = bB ∈ Baddr. Then is must be that, mA(aA).nextA ∈ Baddr and moreover, because of the
definition of first , first(mA, aA,Baddr) = mA

[s]
(aA).nextA for some s ≥ 1. �

Now, we are ready for the main result of this chapter. The following theorem establishes the
existence of a small model with bounded domains whenever a TL3 formula is satisfiable.
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Theorem 6.1 (TL3 Bounded Model Property):
Let Γ be a conjunction of normalized TL3-literals. Let E = |Velem (Γ)|, A = |Vaddr (Γ)|, M =

|Vmem (Γ)|, P = |Vpath (Γ)| and T = |Vtid (Γ)|. Then the following are equivalent:

1. Γ is TL3-satisfiable (i.e., Γ is true in some TL3 interpretation A).

2. Γ is true in some TL3 interpretation B such that

|Baddr| ≤ A + 1 + M× A + 2× P2 + 2× P3

|Btid| ≤ T + M× |Baddr| + 1

|Belem| ≤ E + M× |Baddr| y

Proof. (2→ 1) is immediate, since B is a model of Γ. We now show the other direction: (1→ 2).
We first construct the small model candidate B from A and then show that all literals hold in B
precisely when they hold in A. Let A be a TL3-interpretation satisfying Γ. The domain Baddr is
defined as follows:

Baddr = VAaddr ∪
{

nullA
}

∪ (6.25)
{

mA(vA).nextA | m ∈ Vmem and v ∈ Vaddr

}
∪ (6.26)

{
diseq(pA, qA) | the literal p 6= q is in Γ

}
∪ (6.27)

{
common(p1

A, p2
A) | the literal ¬append(p1, p2, p3) is in Γ and

path2setA(p1
A) ∩ path2setA(p2

A) 6= ∅
}

∪ (6.28)
{

common(p1
A ◦ p2

A, p3
A) | the literal ¬append(p1, p2, p3) is in Γ and

path2setA(p1
A) ∩ path2setA(p2

A) = ∅
}

(6.29)

Essentially, Baddr is a subset of Aaddr in which the following addresses are preserved:

• Because of (6.25), all the address in the domain Aaddr that correspond to variables are
preserved in Baddr. There are at most A of these addresses. The element modeling null in
Aaddr is also kept.

• In (6.26) we ensure that for each variable of sort address and each variable of sort memory,
the next address is also preserved. There are at most (M× A) of these addresses.

• Then, (6.27) ensures that one or two addresses (as returned by diseq) are kept for every
literal p 6= q. Since there are at most P paths, there are at most (P2) literals p 6= q, which
results in preserving at most (2× P2) addresses.

• Finally, there are two reasons that explain why a literal (¬append(p1, p2, p3)) holds in A.
The first case is when paths p1 and p2 share addresses. In this case, their concatenation is
not a legal path, because legal paths cannot contain repeated addresses, so (6.28) keeps a
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common address present in both paths to witness this sharing. In the second case, paths p1

and p2 do not share any address, so their concatenation is a legal path, but this resulting
path is not equal to p3. In this case, (6.29) keeps one or two addresses as return by diseq to
witness this difference. Since there are P paths in Γ there are at most (P3) literals of the
form ¬append(p1, p2, p3) which result in at most (2× P3) variables preserved.

The domains for sorts tid and elem are as follows:

Btid = VAtid ∪
{

mA(a).lockidA |m ∈ Vmem and a ∈ Baddr
}
∪

{
�
}

Belem = VAelem ∪
{

mA(a).dataA |m ∈ Vmem and a ∈ Baddr
}

Again, the domain Btid is built by pruning Atid. The interpretations of all variables of sort
tid in the formula are kept, and the invalid thread identifier � is also kept. Finally, the domain
Btid also contains the thread identifiers that appear in fields of cells that are obtained from
preserved address kept in Baddr by memory variables. Similarly, Belem is built from Aelem by
keeping interpretations of variables of sort elem and fields of preserved cells.

The domains Baddr, Btid and Belem satisfy the cardinality constraints expressed in the statement
of Theorem 6.1. The interpretations of the rest of domains are obtained using the restrictions of
TL3, shown in Section 6.2:

• Bcell = Belem × Baddr × Btid.

• Bmem = BBaddr

cell .

• Bpath is the set of all finite sequences of (pairwise) distinct elements of Baddr.

• Bsetaddr is the power-set of Baddr.

• Bsettid is the power-set of Btid.

• Bsetelem is the power-set of Belem.

All these domains are finite, because Baddr, Btid and Belem are finite.

We are left to show the interpretation of all variables and function symbols, and to prove that
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B is a model of Γ. The interpretation of variables and symbols in B is:

errorB = errorA

nullB = nullA

eB = eA for each e ∈ Velem

vB = vA for each v ∈ Vaddr

cB = cA for each c ∈ Vcell

tB = tA for each t ∈ Vtid

mB(a) =
〈

mA(a).dataA,first(mA, a,Baddr),mA(a).lockidA
〉

for each m ∈ Vmem, a ∈ Baddr
sB = sA ∩ Baddr for each s ∈ Vsetaddr

rB = rA ∩ Btid for each r ∈ Vsettid

xB = xA ∩ Belem for each x ∈ Vsetelem

pB = compress(pA,Baddr) for each p ∈ Vpath

The interpretation of error and null and of all variables is preserved from A. Sets are pruned
to contain only elements kept in Baddr, Btid and Belem. The interpretation of path variables is the
path reduced to contain only elements in Baddr, using the compress function. Finally, memory
variables are interpreted as maps from address in Baddr into cells, where the next field is modified
to be in Baddr, using the function first . It is easy to check that B is an interpretation of Γ and
hence a candidate model of Γ

It remains to be seen that B satisfies all literals in Γ assuming that A does, concluding that B
is indeed a model of Γ. We reason by cases considering all possible literals:

Literals of the form e1 6= e2, a1 6= a2 and t1 6= t2:
Immediate, because these are preserved from A into B. For instance, consider the case
of the literal t1 6= t2. Since the valuation for variables is preserved, tB1 = tA1 and tB2 = tA2 .
Hence t1 6= t2 holds in B because it holds in A.

Literals of the form a = null and c = error :
Immediate, following a reasoning similar to the previous case.

Literals of the form c = mkcell(e, a, t):
In this case

cB = cA

= mkcellA(e, a, t)

= 〈eA, aA, tA〉
= 〈eB, aB, tB〉
= mkcellB(e, a, t)

Literals of the form c = m[a]:
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In this case we have that:

(
m[a]

)B
= mB(aB)

= mB(aA)

=
(

mA(aA).dataA,first(mA, aA,Baddr),mA(aA).lockidA
)

=
(

mA(aA).dataA,mA(aA).nextA,mA(aA).lockidA
)

(6.30)

= mA(aA)

= cA

= cB

where (6.30) is justified by Lemma 6.3(a) and (6.26).

Literals of the form m = upd(m̃, a, c):
We want to prove that mB = m̃BaB 7→cB . Consider two cases:

• m(a): In this case,

mB(aB) = mA(aA) = cA = cB

• m(d) for d 6= a: In this case,

mB(d) =
(

mA(d).dataA,first(mA, d,Baddr),mA(d).lockidA
)

=
(

m̃A(d).dataA,first(m̃A, d,Baddr), m̃A(d).lockidA
)

(6.31)

= m̃B(d)

Where (6.31) is justified by Lemma 6.3(b)

Literals of the form s = {a}:

sB = sA ∩ Baddr = {aA} ∩ Baddr = {aB} ∩ Baddr = {aB}

Literals of the form r = {t}T and x = {e}E:
Analogous to the previous case.

Literals of the form s1 = s2 ∪ s3:

sB1 = sA1 ∩ Baddr
=

(
sA2 ∪ sA3

)
∩ Baddr

=
(
sA2 ∩ Baddr

)
∪
(
sA3 ∩ Baddr

)

= sB2 ∪ sB3

Literals of the form r1 = r2 ∪T r3 and x1 = x2 ∪E x3:
Analogous to the previous case.
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Literals of the form s1 = s2 \ s3:

sB1 = sA1 ∩ Baddr
=

(
sA2 \ sA3

)
∩ Baddr

=
(
sA2 ∩ Baddr

)
\
(
sA3 ∩ Baddr

)

= sB2 \ sB3

Literals of the form r1 = r2 \T r3 and x1 = x2 \E x3:
Analogous to the previous case.

Literals of the form p1 6= p2:
Assume that literal p1 6= p2 holds in A. Hence, due to the way we construct Baddr we
have that diseq(p1

A) ∈ Baddr. Then, by Lemma 6.5, we have that compress(p1
A,Baddr) 6=

compress(p2
A,Baddr). Finally, because of the interpretation of paths in B, we know that for

all variables of sort path, pB = compress(pA,Baddr). Consequently, p1
B 6= p2

B.

Literals of the form p = [a]:
By Lemma 6.4(a), we have that

pB = compress(pA,Baddr) = compress([aA],Baddr) = [aB]

Literals of the form s = path2set(p):
By Lemma 6.4(b), we have that

sB = sA ∩ Baddr
= path2setA(pA) ∩ Baddr
= path2setA(compress(pA,Baddr))
= path2setA(pB)

Literals of the form append(p1, p2, p3):
Assume that (pA1 , p

A
2 , p

A
3 ) ∈ appendA. Then pA1 ∩ pA2 = ∅ and pA1 ◦ pA2 = pA3 . By

Lemma 6.4(c) this implies that:

• path2set(compress(pA1 ,Baddr)) ∩ path2set(compress(pA2 ,Baddr)) = ∅, and

• compress(pA1 ,Baddr) ◦ compress(pA2 ,Baddr) = compress(pA3 ,Baddr)

This means that path2set(pB1 ) ∩ path2set(pB2 ) = ∅ and pB1 ◦ pB2 = pB3 . Consequently
(pB1 , p

B
2 , p

B
3 ) ∈ appendB.

Literals of the form ¬append(p1, p2, p3):
Assume that (pA1 , p

A
2 , p

A
3 ) /∈ appendA. If path2set(pA1 ) ∩ path2set(pA2 ) 6= ∅ then we have

that common(pA1 , p
A
2 ) 6= ∅ which implies that path2set(pB1 ) ∩ path2set(pB2 ) 6= ∅ and thus

(pB1 , p
B
2 , p

B
3 ) /∈ appendB. On the other hand, if path2set(pA1 ) ∩ path2set(pA2 ) = ∅, then

diseq(pA1 ◦ pA2 , p
A
3 ) 6= ∅, and thus diseq(pB1 ◦ pB2 , p

B
3 ) 6= ∅ and then (pB1 , p

B
2 , p

B
3 ) /∈ appendB.
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Literals of the form s = addr2set(m, a):
Let x = aB = aA. Then,

sB = sA ∩ Baddr
=

{
y ∈ Aaddr | for some p ∈ Apath, (mA, x, y, p) ∈ reachA

}
∩ Baddr

=
{
y ∈ Baddr | for some p ∈ Apath, (mA, x, y, p) ∈ reachA

}

=
{
y ∈ Baddr | for some p ∈ Bpath, (mB, x, y, p) ∈ reachB

}

It just remains to see that the last equality holds. Let,

SB =
{
y ∈ Baddr | for some p ∈ Bpath, (mB, x, y, p) ∈ reachB

}
, and

SA =
{
y ∈ Baddr | for some p ∈ Apath, (mA, x, y, p) ∈ reachA

}

We now show that SA = SB by showing that SA ⊆ SB and SB ⊆ SA:

(1) We first show that SA ⊆ SB. Let y ∈ SA. Then, there exists p ∈ Apath such that
(mA, x, y, p) ∈ reachA and by definition of reach there are two possible cases.

• If p = ε and x = y, then (mB, x, y, εB) ∈ reachB and therefore y ∈ SB.

• Otherwise, there exist a1, . . . , an ∈ Aaddr s.t.,

i) p = [a1, . . . , an] iii) mA(ar).nextA = ar+1, for 1 ≤ r < n

ii) x = a1 iv) mA(an).nextA = y

We proceed by induction on n.

– If n = 1, then p = [a1] and since a1 = x, mA(a1).nextA = y and y ∈ Baddr, we
have that y ∈ SB.

– If n > 1, then let ai = first(mA, x,Baddr). Then, since p = a1, . . . , ai, ai+1, . . . , an

we have that considering path p̃ = [ai, . . . , an] it holds that (mA, ai, y,Baddr) ∈
reachA. Then, by inductive hypothesis

y ∈
{
y ∈ Baddr | for some p ∈ Bpath, (mB, ai, y, p) ∈ reachB

}

Moreover, as ai = first(mA, x,Baddr) = mB(x).nextB we have that y ∈ SB.

(2) We show now that SB ⊆ SA. Let y ∈ SB. Then, there exists q ∈ Bpath such that
(mB, x, y, q) ∈ reachB. By definition of reach there are two possible cases.

• If q = ε and x = y, then (mA, x, y, εA) ∈ reachA and therefore y ∈ SA.

• Otherwise, there exist ã1, . . . , ãs ∈ Baddr such that:

i) q = [ã1, . . . , ãs] iii) mA(ãr).nextA = ãr+1, for 1 ≤ r < s

ii) x = ã1 iv) mA(ãs).nextA = y

We proceed by induction on s.
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– If s = 1, then q = [ã1] and since ã1 = x, mB(ã1).nextB = y and y ∈ Baddr, we
have that y ∈ SA.

– If s > 1, then we have that ã1 = x. Let ai = first(mA, x,Baddr). As because of
iii) we have that mB(ã1).nextB = ã2 and

ã2 = mB(ã1).nextB (6.32)

= first(mA, x,Baddr) (6.33)

= ai

Hence, ai = ã2. As

y ∈
{
y ∈ Baddr | for some q ∈ Bpath, (mB, ã2, y, p) ∈ reachK

B
}

by inductive hypothesis we have that

y ∈
{
y ∈ Baddr | for some p ∈ Apath, (mA, ã2, y, p) ∈ reachA

}

Finally, because of (6.32), (6.33) and Lemma 6.6 we have that y ∈ SA.

Literals of the form p = getp(m, a, b):
We consider two possible cases.

(1) Case bA ∈ addr2set(mA, aA).

Since (mA, aA, bA, pA) ∈ reachA, it is enough to prove:

if (mA, x, y, q) ∈ reachA then (mB, x, y, compress(q,Baddr)) ∈ reachB

for each x, y ∈ Baddr and q ∈ Apath.

• If (mA, x, y, q) ∈ reachA, x = y and q = ε, then (mB, x, y, compress(q,Baddr)) ∈
reachB.

• Otherwise, there exist a1, . . . , an ∈ Aaddr such that:

i) q = [a1, . . . , an] iii) mA(ar).nextA = ar+1, for 1 ≤ r < n

ii) x = a1 iv) mA(an).nextA = y

We proceed by induction on n.

– If n = 1, then q = [a1] and therefore compress(q,Baddr) = [a1], because x =

a1 ∈ Baddr. Moreover, mA(a1).nextA = y which implies that mB(a1).nextB = y.
Hence, (mB, x, y, compress(q,Baddr)) ∈ reachB.

– If n > 1, then let ai = first(mA, x,Baddr). Since

q = [x = a1, a2, . . . , ai, ai+1, . . . , an]

we have that

compress(q,Baddr) = [x = a1] ◦ compress([ai, ai+1, . . . , an],Baddr)
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Now (mA, ai, y, [ai, ai+1, . . . , an]) ∈ reachA, so by inductive hypothesis we
have that

(mB, ai, y, compress([ai, ai+1, . . . , an],Baddr)) ∈ reachB

Moreover, mB(x).nextB = ai and therefore

(mB, x, y, compress(q,Baddr)) ∈ reachB

(2) Case bA /∈ addr2set(mA, aA).

In this case we have that pA = ε, which implies that pB = ε. Then using a reasoning
similar to the previous case we can deduce that bB /∈ addr2set(mB, aB).

Literals of the form a = fstlock(m, p):
We consider two cases separately:

• pB = ε. In this case fstlockA(mA, εA) = nullA. Now, since εB = compress(εA,Baddr),
then fstlockB(mB, εB) = nullB.

• pB = [a1, . . . , an]. There are two sub-cases:

– If for all 1 ≤ k ≤ n, mA(aAk ).lockidA = �, then we have that

fstlockA(mA, pA) = nullA

The path returned by compress satisfies that all its addresses also belong to the
received path. Therefore, if we have [ã1, . . . , ãm] = pB = compress(pA,Baddr)
then for all 1 ≤ j ≤ m, mB(ãj).lockidB = mA(ãj).lockidA = �, because aj is
present in pA. Hence, fstlockB(mB, pB) = nullB.

– There is a 1 ≤ k ≤ n such that for all 1 ≤ j < k, mA(aAj ).lockidA = �
and mA(aAk ).lockidA 6= �. Now, by the construction of B, aB = aA. Let
[ã1, . . . , ãi, . . . , ãm] = compress(pA,Baddr) such that ãi = aAk . The existence of
aAk in pB is guaranteed because aAk = aBk ∈ Baddr. A property of compress is
that it preserves the order of the elements, that is, if two address are not fil-
tered, then they appear in the same order. It follows that for all 1 ≤ s < k,
aBs .lockidB = aAs .lockidA = �. Since aBi .lockidB = aAi .lockidA 6= �, then
fstlockB(mB, pB) = aBi = aBk , as desired.

All literals hold in B, so B is a model of Γ. �

Example 6.4
Consider again the formula ϕnonNorm presented in Example 6.3:

ϕnonNorm
def
= reach(m, head , tail , getp(m, head , tail)) ∧ m[tail ].next = null

Once it is normalized, we can compute the bounds for the domains of addresses, elements and
thread identifiers for proving the satisfiability of ϕnonNorm according to Theorem 6.1.
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Addresses: We require a domain with at most 9 addresses. We obtain this result because we
require 2 addresses for variables head and tail , 1 for null , 2 more addresses due to the
multiplication between the number of memory variables (only m) and the address variables
(head and tail), 2 due to the possible inequalities between paths and finally 2 due to possible
existence of negations of predicates append .

Elements: We require a domain with at most 10 elements. We obtain this results since we need 1

element for variable e, and 9 elements because of the multiplication of variable m with the
9 addresses in the domain of addresses.

Thread identifiers: We require a domain with at most 11 thread identifiers. This happens
because we require 1 thread identifier due to the variable t plus 9 identifiers, one for each of
the memory variables and the size of the address domain, plus 1 for the special identifier �.

In this example we can see that the bounds computed by Theorem 6.1 are theoretical, but in
practice they can be reduced to more tighter bounds. For instance, the normalized formula does
not contain any path inequality or negation of append , so, the bounds for the domain of addresses
can be safely reduced to 5 elements. y

6.4 Summary

In this chapter we presented TL3, the Theory of Linked Lists with Locks. TL3 is obtained as
a combination of theories including addresses, elements, cells, memories and paths. TL3 is
specifically designed for describing rich properties of concurrent data structures with the memory
shape of single-linked lists. This theory is powerful enough to describe the structure of list-like
data types, pointer manipulation, explicit heap regions with region separation and lock ownership.
All these features make TL3 suitable for describing structural and functional properties of single-
linked lists and similar concurrent data types such as stacks and queues.

We showed TL3 to be decidable for quantifier-free formulas. We presented a bounded model
theorem, which ensures that given a quantifier-free TL3 formula, it is possible to compute the
bounds of the domains for a model of the formula, if one such model exists. The bounds are
computed considering only those literals occurring in the TL3 formula. Following this result, the
decision procedure for TL3 can determine the satisfiability of a TL3 formula by enumerating all
possible models of the given formula.

TL3 remains crucial in the verification of parametrized programs that manipulates single-
linked lists. It can automatically determine the validity of the quantifier-free verification conditions
generated by the parametrized invariance rules and the parametrized verification diagrams
presented in Chapter 3 and Chapter 4 respectively. Examples of the use of TL3 decision procedure
for the verification of concurrent data types can be seen in Chapter 10. TL3 is also a building
block for richer theories. For instance, TL3 is the backbone of the theories of skiplists that we
present in Chapter 7 and Chapter 8.

An alternative to the model based decision procedure presented in this chapter would consist
on using a combination methods like Nelson-Oppen [162]. In this case, we would require decision
procedures for each independent theory that conforms TL3 and we would need to propagate
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equalities and inequalities through a TL3 formula. However, this approach is left as an idea for
future development, as discussed in Chapter 11.

In this chapter we have presented various concurrent data types with the memory shape
of single-linked lists. Later, in Chapter 10 we present the results from using the TL3 decision
procedure described here in the verification of these concurrent data types.
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7
TSLK:
Decidable Theories of
Skiplists of Bounded Height

“ People think that computer science is the art of
geniuses but the actual reality is the opposite, just
many people doing things that build on eachother,
like a wall of mini stones. ”

Donald Knuth

In order to attack the verification problem of parametrized systems we implicitly interpret
the operational semantics of the program as a state transition system. Then, using the deductive
techniques presented in Chapter 3 and Chapter 4 we reduce the verification problem to a proof of
validity of a finite collection of verification conditions. These verification conditions capture the
state of the program (including the data that the program manipulates) and small changes in this
data. When dealing with programs that manipulate the skiplist data structures [171], we require
decision procedures capable of dealing with skiplist memory shapes in order to automatically
prove these verification conditions.

A skiplist is a data structure used to implement sets by maintaining several ordered singly-
linked lists in memory, where each level is a sublist of the level below. Skiplists are heavily used in
practice because they offer a performance comparable to balanced binary trees and are amenable
to more efficient implementation. Skiplists are difficult to reason about automatically because of
the sharing between the different layers.

In this chapter we present TSLK—the Family of Theories of Concurrent Skiplists with at Most K
Levels— a decidable family of theories that allow to reason about the skiplist memory layout, for
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skiplists of unbounded length but bounded height. We construct TSLK from TL3, the quantifier-
free theory of single-linked lists presented in Chapter 6 by extending TL3 in a non-trivial way
with order and sublist of ordered lists. The family of theories TSLK is capable of expressing
skiplist-like properties of skiplist memory shapes up to a constant number of levels. The TSLK

family plays a crucial role in the construction and decidability proof of TSL, a theory for skiplists
with arbitrary many levels, presented in Chapter 8.

In this chapter we also show that the satisfiability problem for quantifier-free TSLK formulas
is decidable, making it applicable to the verification of skiplists implementations. The fact that
TSLK can express skiplist-like properties without using quantifiers, allows TSLK to be combined
with other theories.

The rest of the chapter is structured as follows. Section 7.1 presents the skiplist data structure
including an implementation with bounded levels. Section 7.2 formally presents the family of
theories TSLK. Section 7.3 shows that TSLK is decidable by stating and proving a bounded model
theorem. Finally, Section 7.4 presents a summary of what have been introduced in this chapter.

7.1 Skiplists

We begin by describing the skiplist data structure. A skiplist [171] is an imperative data structure
that implements sets, maintaining several sorted singly-linked lists in dynamic memory. Skiplists
are structured in multiple levels, each level consisting of a single linked list. The skiplist property
establishes that the list at level i+ 1 is a sublist of the list at level i. Each node in a skiplist stores
a value and at least the pointer corresponding to the lowest level list. Some nodes also contain
pointers at higher levels, pointing to the next element present at that level. Due to their simple
layout, the main advantage of skiplists is that they are simpler and more efficient to implement
than search trees, while search is still (probabilistically) logarithmic.

Fig. 7.1 presents an example of a skiplist with 4 levels (levels are labeled from 0 to 3). The
skiplist contains two sentinel nodes pointed by head and tail . A skiplist maintains all its nodes
ordered and the nodes pointed by head and tail point to the nodes with the lowest and highest
possible values, in this case denoted by −∞ and +∞. As can be seen in the figure, there cannot
be any node in the skiplist with a level higher than the levels present in head and tail . In the
example presented in Fig. 7.1 we use 0x01 . . . 0x08 to denote memory addresses. The set of
nodes reachable at each level is a subset of the set of reachable nodes at the level immediately
below.

Contrary to single-linked lists implementations, higher-level pointers allow to skip many
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level 0
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level 2
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0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

Figure 7.1: A skiplist with 4 levels.

144



7.1. Skiplists

elements during the search, that is why this data structure is called skiplist.

Example 7.1
Consider again the skiplist presented in Fig. 7.1. Imagine now that a thread wants to check
whether value 20 is in the skiplist. In a traditional single-linked lists all nodes are connected at
a unique level and hence, a thread looking for value 20 would require to start from head and
traverse the list visiting each node until the node with value 20 is found. Roughly speaking, if we
consider the skiplist in Fig. 7.1, this is equivalent to start from head and advance just using the
pointers at level 0.

On the other hand, Fig. 7.2 describes how a thread traverses the skiplist while searching
for value 20. We use gray to mark the path followed by a thread advancing from head to the
node with value 20. The thread performs the search from left to right in a top down fashion,
progressing as much as possible in a level without going beyond the value it is searching for
before descending.

In a skiplist, a search for value 20 starts at level 3 of node head . As the node pointed by head

contains a value lower than 20, the thread advances in the skiplist at level 3 checking whether
the following node at level 3 contains a value higher or equal than 20. In our example, when the
thread is at level 3 in the node pointed by head it looks ahead following the pointer at level 3

and determines that the next node at such level is tail and contains +∞, a value greater than 20.
Therefore, the search algorithm decides to move down one level, to level 2 of node head . At level
2, the successor of head contains value 8, which is smaller than 20. Hence, as a skiplist keeps the
values of the nodes ordered, it is safe to go to node 8 (stored at address 0x03) at level 2 since we
are sure that the nodes we are skipping (0x02 in our example) must contain a value lower than 8.
This way, the search continues at level 2 until a node containing a greater value is found. As the
following node at level 2 is again tail , which contains a value greater that 20, the search moves
down one level again and advances until the node with value 16 is reached. Finally, once we
descend to level 1, the thread finds that the next node contains value 20, finishing the search. y

Note that through the search procedure we have skipped some nodes. This capability of
skipping unnecessary nodes is what gives the data structure its name. The search is expected to
be logarithmic because the probability of any given node occurring at a certain level decreases by
1/2 as a level increases (see [171] for an analysis of the running time of skiplists).

We now present an implementation of a concurrent bounded skiplist. The implementation we
present here corresponds to a fine-grained locking implementation which contains for each node
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Figure 7.2: Skiplist traversal while searching for value 20.
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and level, a lock which protects the pointer at such level. This implementation behaves similar to
a lock-coupling single-linked list, in the sense that when a thread traverses the skiplist, it acquires
the lock of the node level that it visits, and only releases this lock after the lock of the successor
node has been successfully acquired.

Class BoundedSkiplistNode defines the nodes of a concurrent skiplist of K levels as follows:

class BoundedSkiplistNode { Elem data;

Array〈Addr〉(K) next ;

Array〈Lock〉(K) locks; }

As can be seen, an object of class BoundedSkiplistNode contains the following fields:

• data, which keeps the current element stored in the node;

• next , an array of length K of pointers which keeps the addresses of the next node in the
skiplist at each level;

• locks, an array of length K of locks which protect each pointer at all possible levels.

As usual, we assume that the operating system provides the atomic operations lock and unlock

to lock and unlock each of the locks. As for lists, in this case it is also easy to adapt the framework
with additional fields in BoundedSkiplistNode. For example, we could use different fields for the
element stored (for example a value) and for the data used to keep the list ordered (a key).

Our implementation of a concurrent bounded skiplist maintains two global addresses head

and tail , and two ghost global variables reg and elems:

global
Addr head
Addr tail
Set〈Addr〉 reg
Set〈Elem〉 elems

The global program variables are:

(a) A variable head , of type address (pointer), which points to the first node of the skiplist.

(b) A variable tail , of type address (pointer), which points to the last node of the skiplist.

(c) A ghost variable reg , of type set of addresses, which is used to keep track of the portion of
the heap that forms the skiplist.

(d) A ghost variable elems, of type set of elements, which represents the collection of elements
stored in the skiplist.

In our implementation, head and tail point to the nodes with the lowest and highest possible
values, −∞ and +∞ respectively. The nodes pointed by head and tail are sentinel nodes which
are neither removed nor modified. We assume that the list is initialized with head and tail already
allocated and initialized. The set reg is initialized containing only the addresses of head and
tail . Similarly, the set elems is initialized containing only the elements initially stored at the
nodes pointed by head and tail . We also assume that K is a constant value, representing the
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maximum number of levels in the skiplist. Each verification effort then, proves correctness of the
implementation for a particular value of K, for example K = 3.

Our implementation of a concurrent skiplist with at most K levels contains three operations
named SEARCH, INSERT and REMOVE:

SEARCH: described in Fig. 7.3, receives an element e and traverses the skiplist in order to
determine whether e is stored in the skiplist.

The procedure uses four local variables. An integer local variable i to denote the current
level, two local pointers prev and curr which are used to traverse the skiplist and a Boolean
found which is set in case element e is found in the skiplist.

As we showed in Example 7.1, the procedure searches element e from left to right and from
the highest to the lowest possible level. Initially i is set to the highest level K− 1 (line 1),
prev points to head (line 2) and curr points to the node immediately after head at level i

procedure Search(Elem e)
Int i
Addr prev , curr
Bool found

begin
1: i := K− 1
2: prev := head
3: lock(prev→locks[i])
4: curr := prev→next [i]
5: lock(curr→locks[i])
6: while 0 ≤ i ∧ curr→data 6= e do
7: if i < K− 1 then
8: lock(prev→locks[i])
9: curr := prev→next [i]

10: lock(curr .locks[i])
11: unlock(prev→next [i+ 1]→locks[i+ 1])
12: unlock(prev→locks[i+ 1])
13: end if
14: while curr .data < e do
15: unlock(prev→locks[i])
16: prev := curr
17: curr := prev→next [i]
18: lock(curr→locks[i])
19: end while
20: i := i− 1
21: end while
22: found := (curr→data = e)
23: if i = K− 1 then
24: unlock(curr→locks[i])
25: unlock(prev→locks[i])
26: else
27: unlock(curr→locks[i+ 1])
28: unlock(prev→locks[i+ 1])
29: end if
30: return found

end procedure

Figure 7.3: SEARCH procedure for concurrent skiplists of K levels.
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(line 4). Then, the locks at level i in the nodes pointed by prev and curr are locked (lines 3
and 5). Intuitively, curr is used to mark the node that is currently being traversed by the
procedure and prev is used to point to the node immediately preceding curr at level i.

The loop that follows (lines 6 to 21) is in charge of looking for the node storing element e.
This loop runs while we have not reached the bottom of the skiplist (0 ≤ i) and the element
has not been found yet (curr .data 6= e). The conditional within the loop (lines 7 to 13) is
in charge of releasing the locks in upper levels once the search goes down a level. Because
of this, the branch is disabled in the first iteration of the loop, when i = K− 1.

To have a better understanding, the sequence of steps taken for the procedure between line
8 and 12 is depicted as a sequence of snapshots in Fig. 7.4. The first snapshot (Fig. 7.4(a))
corresponds to the moment at which prev points to head , curr points to tail and the locks
at level 3 are acquired for both nodes. This corresponds exactly to the state of the skiplist
presented in Example 7.1, when a thread searching for value 20 has executed lines 1
through 7. As the last statement within the external loop (line 20) decrements the value of
i, at this point we have that i = 2 and head and tail at level 3 remain locked. When line 8
is executed, the lock at level 2 is also grabbed at the node pointed by prev (Fig. 7.4(b)). At
this point, curr is modified to point to the successor node of prev at level i = 2 (Fig. 7.4(c)).
Line 10 gets the lock at level i corresponding to the node pointed by curr (Fig. 7.4(c)).
Finally, lines 11 and 12 release the locks at level i + 1 = 3, what leaves the skiplist with
only nodes prev and curr locked at level i (Fig. 7.4(d)).

The inner loop between lines 14 and 19 makes the procedure advance through the skiplist
at level i. To do so, it first releases the lock at the node pointed by prev (line 15) and then
makes prev to advance to point to the same node as curr (line 16). Then, pointer curr is
advanced at level i (line 17) and finally the procedure grabs the lock at level i in the new
node pointed by curr (line 18). In this sense, the way the procedure advances through
the skiplist for a fixed level is similar to the one employed at the lock-coupling concurrent
single-linked list presented in Section 6.1.1. This way of progressing is called hand-in-hand
locking.

At the end of the loop between lines 6 and 21, the following holds:

prev→data < e ∧ curr→data ≥ e

Hence, since the nodes in the skiplist are ordered, at line 22 it is possible to determine
whether element e is in the skiplist just by checking if curr→data = e. The final section
of the procedure (line 23 to 29) releases the locks that were left on the nodes pointed by
prev and curr . There is a subtle difference regarding the level at which the locks need to be
released. If the loop that goes from line 6 to 21 has not been executed because, for example,
initially curr pointed at a node which stores value e, then i is never decremented and thus
the locks remain at level i = K − 1. On the other hand, if the loop that goes from line 6
to 21 has been executed, it means that i has been decremented and the locks remains at
one level higher than the one currently declared by i. Because of this, in this latter case the
locks to be released are at level i+ 1.

The procedure finishes by returning the value of found which indicates whether element e
was found in a node of the skiplist.
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INSERT: shown in Fig. 7.5, receives an element e and attempts to insert it into the skiplist.
INSERT first determines the position at which e should be inserted and then manipulates
the pointers of the neighbour nodes accordingly.

The procedure begins by randomly choosing the maximum level of the new node to be
inserted (line 1), in case no node with value e is found in the skiplist. Then, from line 2 to
6 the procedure behaves exactly like SEARCH, making prev point to head and curr point to

prev
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Figure 7.4: Snapshots of the execution of process SEARCH over a concurrent skiplist when
descending a level.
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the successor of head at level K− 1. Moreover, this procedure grabs the locks at level K− 1

for the nodes pointed by prev and curr .

procedure Insert(Elem e)
Int i
Addr prev , curr
Array〈Addr〉(K) upd

begin
1: lvl := randomLevel(K)
2: i := K− 1
3: prev := head
4: lock(prev→locks[ı])
5: curr := prev→next [i]
6: lock(curr→locks[i])
7: while i ≥ 0 do
8: if i < K− 1 then
9: lock(prev→locks[i])

10: curr := prev→next [i]
11: lock(curr→locks[i])
12: if i ≥ lvl then
13: unlock(curr→locks[i+ 1])
14: unlock(prev→locks[i+ 1])
15: end if
16: end if
17: while curr→val < e do
18: unlock(prev→locks[i])
19: prev := curr
20: curr := prev→next [i]
21: lock(curr→locks[i])
22: end while
23: upd [i] := prev
24: i := i− 1
25: end while
26: if curr→data = e then
27: for i := 0 to lvl do
28: unlock(upd [i]→next [i]→locks[i])
29: unlock(upd [i]→locks[i])
30: end for
31: else
32: newnode := CreateNode(lvl , e)
33: for i := 0 to lvl do
34: newnode→next [i] := upd [i]→next [i]
35: upd [i]→next [i] := newnode

if i = 0 then
reg := reg ∪ {newnode}
elems := elems ∪ {e}

36: unlock(newnode→next [i]→locks[i])
37: unlock(upd [i]→locks[i])
38: end for
39: end if
40: return

end procedure

Figure 7.5: INSERT procedure for concurrent skiplists of K levels.
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From line 7 to 25 there is a loop that behaves similarly to the outer loop of procedure
SEARCH we described above. There are, however, two key differences:

(1) We use an array of addresses upd to keep the values of prev pointers before decre-
menting a level (line 23). This is needed because, after the procedure has reached the
position where the new node needs to be inserted, it is required to modify pointers
belonging to different nodes and at different levels and hence it needs to remember
which are these pointers.

(2) The procedure needs to acquire some locks because when it inserts a new node some
pointers need to me modified. Because of this, once we descend a level, we will release
the locks of the upper level only if we are sure they will not be needed in case a new
node needs to be inserted (line 12 to 15).

To illustrate why we need to keep the prev pointers and why we cannot release the locks
below lvl , let’s consider an example. Imagine the INSERT procedure is trying to insert a
node with lvl = 2 containing value 15 in the skiplist depicted in Fig. 7.6(a). Fig. 7.6(b) and
Fig. 7.6(c) show the changes that are required in order to insert such node. Fig. 7.6(b)
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Figure 7.6: Example of inserting a node of 3 levels and value 15 into a skiplist. (a) shows that
original skiplist, (b) shows the state before the node is connected and (c) shows the state after
the node is connected. We color in gray the pointers that are modified.
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shows the skiplist before the node is inserted. We color in gray the pointers that need to
be modified when connecting the new node to the skiplist. Note that the gray pointers
correspond to the ones stored in the upd array. Additionally, as we need to protect these
pointers, the locks at each of these levels are kept thanks to the conditional that goes from
line 12 to 15. Finally, the figure at the bottom (Fig. 7.6(c)) shows the state of the skiplist
after the new node has been connected.

As usual, once we have finished with the initial loop, the following holds:

prev→data < e ∧ curr→data ≥ e

Therefore, if at line 26 we have that curr→data = e, then there is already another node in
the skiplist with value e in which case we do not need to insert a new node. In this case,
the procedure just releases the locks it had acquired (lines 27 to 30).

On the other hand, if curr→data 6= e, a new node needs to be inserted. In this case the
procedure proceeds to allocate a fresh node newnode of height lvl which stores value e (line
32). Finally, in a bottom-up fashion it proceeds to connect newnode to the rest of the skiplist
modifying the pointers stored at upd array and releasing all unnecessary locks. Note that
newnode starts being part of the skiplist as soon as it is fully connected at level 0, and hence
we require to update the ghost variables reg and elems accordingly at line 35 in order to
reflect this insertion.

REMOVE: presented in Fig. 7.7, receives as argument an element e and removes the node
containing such element form the skiplist by redirecting the next pointer of the previous
nodes at all levels appropriately.

Initially, procedure REMOVE acts as SEARCH or INSERT, by making prev point to head (line
2), curr point to the successor of head at the highest possible level (line 4) and setting the
locks of both nodes at level i (lines 3 and 5). Similarly, as in SEARCH and REMOVE, the first
loop (lines 6 to 20) is in charge of finding the position where the node with value e should
be

To do so, the procedure advances through the skiplist from left to right on a top-down way.
The main difference in the case of REMOVE is that when the execution goes down one level
in the skiplist, it keeps the lock of prev at the level immediately above. This is done because,
a priori, it is not known the maximum level at which the pointers will be modified when
the node with value e is removed.

Once REMOVE determines the position at which the node with value e should be in the
skiplist, it executes a loop (line 21 to 29) to disconnects the node. The loop disconnects the
node in a top-down fashion to guarantee that the skiplist property (each level is a sublist of
the level immediately below holds). The conditional inside the final loop (line 22) checks
whether the successor of the pointer stored in upd at each level points to the node with
value e. If so, then the node with value e can be disconnected at level i from the rest of the
skiplist (line 23) and its lock can be released (line 24). If the conditional at line 22 does not
hold, then we only need to release the lock at the successor of upd at level i (line 26).

Note that the node is disconnected in a top-down way, so the node is not fully removed form
the skiplist until it has not been disconnected at level 0. Hence, when level 0 is reached, we
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procedure Remove(Elem e)
Int i
Addr prev , curr
Array〈Addr〉(K) upd

begin
1: i := K− 1
2: prev := head
3: lock(prev→locks[i])
4: curr := prev→next [i]
5: lock(curr→locks[i])
6: while i ≥ 0 do
7: if i < K− 1 then
8: lock(prev→locks[i])
9: curr := prev→next [i]

10: lock(curr→locks[i])
11: end if
12: while curr .data < e do
13: unlock(prev→locks[i])
14: prev := curr
15: curr := prev→next [i]
16: lock(curr→locks[i])
17: end while
18: upd [i] := prev
19: i := i− 1
20: end while
21: for i := K− 1 downto 0 do
22: if upd [i]→next [i] = curr ∧ curr→data = e then
23: upd [i]→next [i] := curr→next [i]

if i = 0 then
reg := reg − {curr}
elems := elems − {e}

24: unlock(curr→locks[i])
25: else
26: unlock(upd [i]→next [i]→locks[i])
27: end if
28: unlock(upd [i]→locks[i])
29: end for
30: if curr→data = e then
31: free (curr)
32: end if
33: return

end procedure

Figure 7.7: REMOVE procedure for concurrent skiplists of K levels.

can update the ghost variables reg and elems to reflect the complete removal of the node
(line 23).

Finally, the lock at the node pointed by upd at level i can be released (line 28) as all changes
on the skiplist at such level has been completed. The procedure finishes by freeing the node
containing element e in case it has been removed from the skiplist.

It is easy to see that, line 35 of INSERT and line 23 of REMOVE correspond to the linearization
points of these methods of the concurrent data type. As usual, in order to verify the data type
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procedure MGCSkiplistK()
Elem e

begin
1: while true do
2: e := havocSkiplistElem()
3: nondet choice
4: call Search(e)
5: or call Insert(e)
6: or call Remove(e)
7: end choice
8: end while

end procedure

Figure 7.8: Most general client procedure MGCSKIPLISTK for concurrent skiplist of K levels.

against all possible clients, we create the most general client of the concurrent skiplist, called
MGCSKIPLISTK. This most general client is presented in Fig. 7.8. This program consists of an
infinite loop which simply invokes non-deterministically any of the procedures SEARCH, INSERT

and REMOVE that implements the data type, with an arbitrary parameter.

7.2 TSLK: A Family of Theories for Skiplists of Bounded Height

In this section we formally present the family of theories TSLK which is capable of describing
skiplists of bounded height with at most K levels for a fixed constant K. This family of theories
is powerful enough to describe rich properties of skiplist heap memory layouts. As with TL3
presented in Chapter 6, each member of the TSLK family is a multi-sorted first-order theory.

Each theory member in the family TSLK is a decidable theory with capabilities to reason about
reachability in single-linked lists, locks, ordered lists, and sublists of ordered lists. We show that
TSLK enjoys a bounded model property and we provide computable bounds on the size of a
large enough model. Again, this fact implies that each theory in TSLK is decidable simply by
performing a search in the finite space of candidate models.

The theory TSLK to reason about skiplists of height K combines different theories and is built
as an extension of the Theory of Concurrent Linked Lists (TL3) presented in Chapter 6 in the
following way:

• the reasoning about single level lists is extended to all the K levels. This means that all
functions and predicates to reason about single level lists are replicated for all K levels.

• we introduce new functions and predicates to model ordered lists and the sub-paths relation
between lists.

We formally define the Theories of Concurrent Skiplists with bounded Levels, TSLK for short, as
a combination of theories TSLK = (ΣTSLK ,TSLK), where

ΣTSLK = ΣlevelK ∪ ΣcellK ∪ ΣmemK
∪ Σsetaddr ∪ Σsettid ∪ Σsetelem ∪ ΣreachK ∪ ΣbridgeK

Informally, ΣlevelK models the K levels of the skiplist. ΣcellK models cells, structures containing
an element which is also used to keep order between nodes (key), K different addresses (pointers)
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and K locks which protect each of the successor pointers. A cell represents a node in the
skiplist. ΣmemK

models the memory again as a map from addresses to cells. Σsetaddr models sets
of addresses. Σsettid models sets of thread identifiers. Σsetelem models sets of elements. ΣreachK

models finite sequences of non-repeating addresses, to represent acyclic paths in memory. Finally,
ΣbridgeK is a bridge theory containing auxiliary functions that allow to map paths of addresses to
set of addresses, or to obtain the set of addresses reachable from a given address following a
chain of next fields.

We describe now the sorts, the signature and restrictions on the interpretation for each of the
theories in TSLK.

7.2.1 Sorts

The sorts shared among these theories are levelK, elem, tid, addr, cellK, memK, path, setaddr,
setelem and settid. The intended meaning of these sorts is:

• levelK: levels of the skiplist.

• elem: elements stored in these cells.

• tid: thread identifiers.

• addr: memory addresses.

• cellK: instances of the class BoundedSkiplistNode above, stored in the heap.

• memK: heaps, as maps from addresses to cells.

• path: paths, as finite sequences of non-repeating addresses.

• setaddr: sets of addresses.

• settid: sets of thread identifiers.

• setelem: sets of elements.

The class of models TSLK restrict the domain of candidate interpretations A to satisfy the
following:

(a) AlevelK is the finite collection of levels 0, . . . ,K− 1.

(b) Aelem, Atid and Aaddr are discrete sets. We require Aelem to be a totally ordered set and Atid

to contain a special symbol �.

(c) AcellK = Aelem ×AK
tid ×AK

addr.

(d) AmemK
= AAaddr

cellK
.

(e) Apath is the set of all finite sequences of (pairwise) distinct elements of Aaddr.

(f) Asetaddr is the power-set of Aaddr.

(g) Asettid is the power-set of Atid.

(h) Asetelem is the power-set of Aelem.
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7.2.2 Signature

We describe now the signature of each theory, listing the sorts used and each of the functions and
predicates with their signatures:

a) ΣlevelK: The only sort used is levelK. The function symbols are:

0, . . . ,K−1 : levelK

The constant functions 0, . . . ,K− 1 model each of the K levels of the skiplist. The predicate
symbols, apart from equality between levels, are:

< : levelK × levelK

The predicate < describes the order relation between two given skiplist levels.

b) Σelem: The only sort used is elem. This theory contains two function symbols:

−∞ : elem

+∞ : elem

The constant functions −∞ and +∞ model the lowest and highest possible values in the
domain of elements respectively. The only predicate symbol it contains the theory, apart
from equality between elements, is:

� : elem× elem

The predicate� describes the order relation between skiplist elements. For instance, e1 � e2,
states that element e1 is lower or equal than element e2.

c) ΣcellK: The sorts used are cellK, levelK, elem, tid and addr. The function symbols are:

error : cellK

mkcell : elem× addrK × tidK → cellK

_.data : cellK → elem

_.next [_] : cellK × levelK → addr

_.lockid [_] : cellK × levelK → tid

_.lock [_, _] : cellK × levelK × tid→ cellK

_.unlock [_] : cellK × levelK → cellK

The cell error is used to model the return of a memory dereference. The function mkcell

is the constructor of cells. The corresponding selectors are the functions data, next and
lockid . Selector data is used to access the element in a cell. As we assume that the domain
of elements is a total ordered set, selector data can be used to give an order between cells.
Meanwhile, selector next can be used to access the addresses of the successor node at each
skiplist level while lockid is used to access the locks that protect the pointers at each level.
The function lock receives a cell c, a level l and a thread identifier t and returns a new cell
which matches c in every field except that the lock at level l is now assigned to thread t.

156



7.2. TSLK: A Family of Theories for Skiplists of Bounded Height

Similarly, the function unlock receives a cell c and a level l and returns a new cell which
coincides with c in every field except that the lock at level l is released (assigned to �).
There are no predicate symbols in ΣcellK except from equality between cells.

d) ΣmemK
: The sorts used are memK, addr and cellK. The function symbols are:

null : addr

_[_] : memK × addr→ cellK

upd : memK × addr × cellK → memK

The function null models the null address. The function _[_] models a memory dereference
that returns a cell given a memory and an address. Finally, the function upd is used to
create a modified memory given a memory, an address and the cell stored in that address.
There are no predicate symbols in ΣmemK

except from equality between memories.

e) Σsetaddr: The sorts used are addr and setaddr. The function symbols are:

∅ : setaddr

{_} : addr→ setaddr

∪, ∩, \ : setaddr × setaddr→ setaddr

The predicate symbols, in addition to set equality, are:

∈ : addr × setaddr

⊆ : setaddr × setaddr

The intended interpretation of these symbols is their usual meaning in set theory, for finite
sets of addresses.

f) Σsettid: The sorts used are tid and settid. The function symbols are:

∅T : settid

{_}T : tid→ settid

∪T , ∩T , \T : settid× settid→ settid

The predicate symbols in Σsettid, in addition to set equality, are:

∈T : tid× settid

⊆T : settid× settid

Again, the intended interpretation of these symbols is their usual meaning in set theory, for
finite sets of thread identifiers.

g) Σsetelem: The sorts used are elem and setelem. The function symbols are:

∅E : setelem

{_}E : elem→ setelem

∪E,∩E, \E : setelem× setelem→ setelem
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The predicate symbols in Σsetelem, in addition to set equality, are:

∈E : elem× setelem

⊆E : setelem× setelem

Once again, the intended interpretation of these symbols is their usual meaning in set theory,
for finite sets of elements.

h) ΣreachK: The sorts used are memK, addr, levelK and path. The function symbols are:

ε : path

[_] : addr→ path

The constant ε models the empty path, and the function [_] allows to build a singleton path
with only the provided address in it. The predicate symbols in ΣreachK , apart from equality
between paths, are:

append : path× path× path

reachK : memK × addr × addr × levelK × path

The predicate append relates two paths with its concatenation. A path must be a sequence
of non-repeated elements, so some pairs of paths cannot be concatenated, if they contain
common elements. The predicate reachK relates two addresses with the path that connects
them in a given heap at a certain skiplist level.

i) ΣbridgeK: The sorts used are memK, addr, levelK, setaddr and path. The function symbols are:

path2set : path→ setaddr

getpK : memK × addr × addr × levelK → path

addr2setK : memK × addr × levelK → setaddr

The function path2set receives a path and returns the set of addresses present in the given
path. The function addr2setK returns the set of addresses reachable from a given address by
following the next pointers at a certain skiplist level. The function getpK returns the path
that connects two addresses in a given heap at a certain level, if there is one (or the empty
path otherwise). The predicate symbols are:

ordPath : memK × path

The predicate ordPath captures whether the data stored at the cells obtained from the
addresses in a given path when mapped through the given heap are ordered.

7.2.3 Interpretations

We restrict the class of models to TSLK, a class of ΣTSLK -structures that satisfy the following
conditions:

a) ΣcellK: Every interpretation A of ΣcellK must satisfy, for every element e ∈ Aelem, every tuple
of addresses a0..K−1 ∈ Aaddr, every tuple of thread identifiers t0..K−1 ∈ Atid, and every
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l ∈ AlevelK :

• mkcellA(e, a0..K−1, t0..K−1) = 〈e, a0..K−1, t0..K−1〉
• 〈e, a0..K−1, t0..K−1〉.dataA = e

• 〈e, a0..K−1, t0..K−1〉.nextA[l] = al

• 〈e, a0..K−1, t0..K−1〉.lockidA[l] = tl

• 〈e, a0..K−1, t0..K−1〉.lockA[l, t] = 〈e, a0..K−1, t0..l−1, t, tl+1..K−1〉
• 〈e, a0..K−1, t0..K−1〉.unlockA[l, t] = 〈e, a0..K−1, t0..l−1,�, tl+1..K−1〉
• errorA.nextA[l] = nullA

Essentially, the models in TSLK restrict cells to be records consisting of an element, a key to
maintain the order between nodes, K addresses, and K thread identifiers which describe
the locks at each skiplist level.

b) ΣmemK
: For each m ∈ AmemK

, a ∈ Aaddr and c ∈ AcellK :

• m[a]
A

= m(a)

• updA(m, a, c) = ma7→c

• mA(nullA) = errorA

In models in TSLK, the memory dereference function returns the cell associated with a
given address. The memory update simply transforms the memory into a memory that
differs only in the modified address, which points to the given cell. Above, we use ma7→c to
denote a memory map that agrees with m in every address, except for address a, which is
mapped to cell c. Finally, dereferencing null returns the error cell.

c) Σsetaddr: The symbols ∅, {_}, ∪, ∩, \, ∈ and ⊆ are interpreted according to their standard
interpretation over finite sets of addresses. Similarly, the symbols ∅E, {_}E, ∪E, ∩E, \E, ∈E

and ⊆E, and the symbols ∅T, {_}T, ∪T, ∩T, \T, ∈T and ⊆T are interpreted according to their
standard interpretations over finite sets of elements and threads respectively.

d) ΣreachK: The symbol ε is interpreted as the empty sequence, and [a]
A is the singleton sequence

containing a ∈ Aaddr as its only element.

• In the case of append , its interpretation is as in TL3:

([i1, . . . , in] , [j1, . . . , jm] , [i1, . . . , in, j1, . . . , jm]) ∈ appendA

if and only if all i1, . . . , in, j1, . . . , jm are all pairwise distinct.

• In the case of reachK we need to consider now the levels of the skiplist:

(m, i, j, l, p) ∈ reachK
A

holds whenever one of the following conditions hold:

(a) i = j and p = ε; or
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(b) there exist addresses i1, . . . , in ∈ Aaddr such that:

(1) p = [i1, . . . , in] (3) m(ir).nextA[l] = ir+1, for 1 ≤ r < n

(2) i1 = i (4) m(in).nextA[l] = j

e) ΣbridgeK: The interpretation of addr2set , path2set , getpK and ordPath are restricted as follows:

• addr2setA(m, a, l) =
{
b ∈ Aaddr | for some p ∈ Apath, (m, a, b, l, p) ∈ reachK

}

• path2setA(p) = {a1, . . . , an} for p = [a1, . . . , an] ∈ Apath

• for each m ∈ AmemK
, p ∈ Apath, l ∈ AlevelK and ainit, aend ∈ Aaddr:

getpK
A(m, ainit, aend, l) =




p if (m, ainit, aend, l, p) ∈ reachK

A

ε otherwise

• ordPathA(m, p) if and only if:

– p = ε, or

– p = [a], or

– p = [a1, . . . , an] with n ≥ 2 and m(ai).keyA � m(ai+1).keyA for all 1 ≤ i < n.

Example 7.2
Consider the skiplist snapshot depicted in Fig. 7.6(c):

8 11 14

head tail

−∞ +∞16 202
0

1

lvl = 2

3

0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

15

0x09

This snapshot represents an intermediate state of a skiplist while a new node in being inserted.
Assuming that locks shown in the figure are owned by thread T1, the following interpretation A
is in the class TSLK:

Aaddr = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08}
Aelem = {−∞, 2, 8, 11, 14, 16, 20,+∞}
Atid = {T1,�}

AmemK
= {m : Aaddr → AcellK}

where

nullA = 0x00

errorA = 〈 −∞ , 0x00 , 0x00 , 0x00 , 0x00 , � , � , � , � 〉
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m(0x00) = 〈 −∞ , 0x00 , 0x00 , 0x00 , 0x00 , � , � , � , � 〉
m(0x01) = 〈 −∞ , 0x02 , 0x02 , 0x03 , 0x08 , � , � , � , � 〉
m(0x02) = 〈 2 , 0x03 , 0x03 , 0x00 , 0x00 , � , � , � , � 〉
m(0x03) = 〈 8 , 0x04 , 0x06 , 0x08 , 0x00 , � , T1 , T1 , � 〉
m(0x04) = 〈 11 , 0x05 , 0x00 , 0x00 , 0x00 , � , � , � , � 〉
m(0x05) = 〈 14 , 0x06 , 0x00 , 0x00 , 0x00 , T1 , � , � , � 〉
m(0x06) = 〈 16 , 0x07 , 0x08 , 0x00 , 0x00 , � , � , � , � 〉
m(0x07) = 〈 20 , 0x08 , 0x00 , 0x00 , 0x00 , � , � , � , � 〉
m(0x08) = 〈 +∞ , 0x00 , 0x00 , 0x00 , 0x00 , � , � , � , � 〉

For predicates reachK and ordPath we have, that:

(m,0x01,0x01, 0, ε) ∈ reachA

(m,0x01,0x01, 0, [0x01]) /∈ reachA

(m,0x01,0x08, 1, [0x01,0x02,0x03,0x06]) ∈ reachA

(m,0x01,0x08, 2, [0x01,0x03]) ∈ reachA

(m,0x01,0x08, 3, [0x01]) ∈ reachA

(m, ε) ∈ ordPathA

(m, [0x04]) ∈ ordPathA

(m, [0x03,0x05,0x07]) ∈ ordPathA

(m, [0x03,0x06,0x03]) /∈ ordPathA

For functions next and lockid we have:

〈8,0x04,0x06,0x08,0x00,�, T1, T1,�〉.nextA[0] = 0x04

〈8,0x04,0x06,0x08,0x00,�, T1, T1,�〉.nextA[1] = 0x06

〈8,0x04,0x06,0x08,0x00,�, T1, T1,�〉.nextA[3] = 0x00

〈8,0x04,0x06,0x08,0x00,�, T1, T1,�〉.lockidA[0] = �
〈8,0x04,0x06,0x08,0x00,�, T1, T1,�〉.lockidA[2] = T1

If, for instance, cA is the interpretation given above for the cell stored at address 0x03, we
have for functions lock and unlock that:

c.lockA[0, T2] = 〈8,0x04,0x06,0x08,0x00, T2, T1, T1,�〉
c.lockA[1, T2] = 〈8,0x04,0x06,0x08,0x00,�, T2, T1,�〉
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c.unlockA[0] = 〈8,0x04,0x06,0x08,0x00,�, T1, T1,�〉
c.unlockA[1] = 〈8,0x04,0x06,0x08,0x00,�,�, T1,�〉

Finally, for functions addr2setK and getpK we have, for instance:

addr2setK
A(m,0x01, 1) = {0x01,0x02,0x03,0x06,0x08}

addr2setK
A(m,0x01, 2) = {0x01,0x03,0x08}

getpK
A(m,0x01,0x01, 1) = ε

getpK
A(m,0x01,0x04, 1) = ε

getpK
A(m,0x01,0x08, 2) = [0x01,0x03]

y

7.2.4 Satisfiability of TSLK

We now show that the satisfiability problem of quantifier-free first order TSLK formulas is
decidable by showing that enjoys the bounded model property in the following sense. Given
a formula ϕ, there are bounds for the sizes of the domains of all sorts, such that if there is a
model of ϕ then there is a model within the bounds. Moreover, these bounds can be effectively
computed from ϕ. The fact that TSLK has the bounded model property with respect to domains
elem, addr, and levelK, implies that TSLK is decidable because one can enumerate all possible
ΣTSLK -structures up to the cardinality provided by the bounds.

To compute the domain bounds we proceed this way. First, given a formula ϕ we consider
a subset of TSLK-literals, called normalized literals. All other literals can be rewritten using
only normalized literals. As usual, considering only normalized literals aids in simplifying the
theoretical developments later. Then, after normalizing all literal occurring in ϕ, we transform ϕ

into its disjunctive normal form ϕ1 ∨ · · · ∨ ϕn, where each ϕi is a conjunction of flat TSLK literals.
We now define the set of normalized TSLK-literals.

Definition 7.1 (TSLK-normalized Literals).
A TSLK-literal is normalized if it is a flat literal of the form:

e1 6= e2 a1 6= a2 l1 6= l2

a = null c = error t1 6= t2

e1 � e2 m2 = upd(m1, a, c) c = m[a]

l1 < l2 c = mkcell(e, a0..K−1, t0..K−1)

s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3

r = {t}T r1 = r2 ∪T r3 r1 = r2 \T r3

x = {e}E x1 = x2 ∪E x3 x1 = x2 \E x3

p1 6= p2 p = [a]
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s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)

s = addr2setK(m, a, l) p = getpK(m, a1, a2, l) ordPath(m, p)

where e, e1 and e2 are elem-variables; a, a0, a1, a2, . . . , aK−1 are addr-variables; t, t0, t1,
t2, . . . , tK−1 are tid-variables; c is a cellK-variable; m, m1 and m2 are memK-variables; p, p1,
p2 and p3 are path-variables; s, s1, s2 and s3 are setaddr-variables; r, r1, r2 and r3 are settid-
variables; x, x1, x2 and x3 are setelem-variables and l, l1 and l2 are levelK-variables. y

Lemma 7.1 (TSLK Normalization):
Every non-normalized TSLK-literal can be rewritten into an equivalent quantifier-free formula
that contains only TSLK-normalized literals. y

Proof. We use the following equivalences to convert each non-normalized TSLK literal into
formulas containing only TSLK-normalized literals:

e = c.data ↔
(

(∃addra0..K−1 ∃tidt0..K−1)

[c = mkcell (e, a0..K−1, t0..K−1)]

)
(7.1)

a = c.next [l] ↔
(

(∃eleme ∃addra0..l−1, al+1..K−1 ∃tidt0..K−1)

[c = mkcell (e, a0..l−1, a, al+1..K−1, t0..K−1)]

)
(7.2)

t = c.lockid [l] ↔
(

(∃eleme ∃addra0..K−1 ∃tidt0..l−1, tl+1..K−1)

[c = mkcell (e, a0..K−1, t0..l−1, t, tl+1..K−1)]

)
(7.3)

c1 = c2.lock [l, t] ↔




(∃eleme ∃addra0..K−1 ∃tidt0..K−1)

c1 = mkcell(e, a0..K−1, t0..l−1, t, tl+1..K−1) ∧
c2 = mkcell(e, a0..K−1, t0..K−1)


 (7.4)

c1 = c2.unlock [l] ↔




(∃eleme ∃addra0..K−1 ∃tidt0..K−1)

c1 = mkcell(e, a0..K−1, t0..l−1,�, tl+1..K−1) ∧
c2 = mkcell(e, a]0..K−1, t0..K−1)


 (7.5)

c1 6=cellK c2 ↔




(
∃eleme1, e2 ∃addra0..K−1, b0..K−1 ∃tidt0..K−1, w0..K−1

)

c1 = mkcell(e1, a0..K−1, t0..K−1) ∧
c2 = mkcell(e2, b0..K−1, w0..K−1) ∧
(
e1 6= e2 ∨

K−1∨
n=0

an 6= bn ∨
K−1∨
n=0

tn 6= wn

)




(7.6)

m1 6=memK
m2 ↔ (∃addra) [m1[a] 6= m2[a]] (7.7)

s1 6=setaddr s2 ↔ (∃addra) [a ∈ (s1 \ s2) ∪ (s2 \ s1)] (7.8)

s = ∅ ↔ s = s \ s (7.9)

s3 = s1 ∩ s2 ↔ s3 = (s1 ∪ s2) \ ((s1 \ s2) ∪ (s2 \ s1)) (7.10)

a ∈ s ↔ {a} ⊆ s (7.11)

s1 ⊆ s2 ↔ s2 = s1 ∪ s2 (7.12)

r1 6=settid r2 ↔ (∃tidt) [t ∈T (r1 \T r2) ∪T (r2 \T r1)] (7.13)
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r = ∅T ↔ r = r \T r (7.14)

r3 = r1 ∩T r2 ↔ r3 = (r1 ∪T r2) \T ((r1 \T r2) ∪T (r2 \T r1)) (7.15)

t ∈T r ↔ {t}T ⊆T r (7.16)

r1 ⊆T r2 ↔ r2 = r1 ∪T r2 (7.17)

x1 6=setelem x2 ↔ (∃eleme) [e ∈E (x1 \E x2) ∪E (x2 \E x1)] (7.18)

x = ∅E ↔ x = x \E x (7.19)

x3 = x1 ∩E x2 ↔ x3 = (x1 ∪E x2) \E ((x1 \E x2) ∪E (x2 \E x1)) (7.20)

e ∈E x ↔ {e}E ⊆E x (7.21)

x1 ⊆E x2 ↔ x2 = x1 ∪E x2 (7.22)

p = ε ↔ append(p, p, p) (7.23)

reachK(m, a1, a2, l, p) ↔ a2 ∈ addr2setK(m, a1, l) ∧ p = getpK(m, a1, a2, l) (7.24)

¬ordPath(m, p) ↔




∃addra1, a2 ∃cellKc1, c2


append(p1, p2, p) ∧
a1 ∈ path2set(p1) ∧
a2 ∈ path2set(p2) ∧
c1 = m[a1] ∧
c2 = m[a2] ∧
c1 = mkcell(e1, b0..K−1, t0..K−1) ∧
c2 = mkcell(e2, d0..K−1, w0..K−1) ∧
e2 � e1 ∧
e2 6= e1







(7.25)

We prove each equivalence separately. In each case, we assume a model A of the left hand
side of the equivalence and show that A is a model of the corresponding formula on the right
hand side of the equivalence. Similarly, we assume a model B of the formula on the right and
prove that B is a model of the literal on the left.

• Equivalence (7.1). Let A be a model of the literal e = c.data. Then, cA is an element of
AcellK = Aelem×AK

addr×AK
tid, so there are x in Aelem, i0..K−1 in Aaddr and u0..K−1 in Atid with

cA = (x, i0..K−1, u0..K−1). By the restriction on the class TSLK of models, A must satisfy that
eA = x, and mkcellA(x, b0..K−1, u0..K−1) = cA. Hence, by taking aA0 = i0, . . . , a

A
K−1 = iK−1

and tA0 = u0, . . . , t
A
K−1 = uK−1 it follows that

(∃addra0..K−1 ∃tidt0..K−1) [c = mkcell (e, a0..K−1, t0..K−1)] (7.26)

holds in A. For the other direction, we assume B is a model of (7.26). It follows, by the
interpretation in B of data, that cB.dataB is eB as desired.

• Equivalences (7.2) and (7.3) are analogous to equivalence (7.1).
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• Equivalence (7.4). Let A be a model of c1 = c2.lock [l, t]. It follows that

cA1 = 〈x, i0..K−1, u0..l−1, t
A, ul+1..K−1〉 and cA2 = 〈x, i0..K−1, u0..K−1〉

for some x ∈ Aelem, i0..K−1 ∈ Aaddr and u0..K−1 ∈ Atid. Hence, by taking eA = x, aA0 =

i0, . . . , a
A
K−1 = iK−1 and tA0 = u0, . . . , t

A
K−1 = uK−1 it follows that:

c1 = mkcell(e, a0..K−1, t0..l−1, t, tl+1..K−1) and c2 = mkcell(e, a0..K−1, t0..K−1)

hold in A. For the other direction, every model B of

c1 = mkcell(e, a0..K−1, t0..l−1, t, tl+1..K−1) ∧ c2 = mkcell(e, a0..K−1, t0..K−1)

is such that

cB1 = 〈eB, aB0 , . . . , aBK−1, t
B
0 , . . . , t

B
l−1, t

B, tBl+1, . . . , t
B
K−1〉 and

cB2 = 〈eB, aB0 , . . . , aBK−1, t
B
0 , . . . , t

B
K−1〉

If follows, by the interpretation of lock that both cB1 and cB2 .lockB(lB, tB) are the cell
〈eB, aB0 , . . . , aBK−1, t

B
0 , . . . , t

B
l−1, t

B, tBl+1, . . . , t
B
K−1〉.

• Equivalence (7.5). Analogous to (7.4).

• Equivalence (7.6). Consider a model A of c1 6=cell c2 and let cA1 = 〈x, i0..K−1, u0..K−1〉 and
cA2 = 〈y, j0..K−1, w0..K−1〉. Since (c1 6=cell c2)A holds, it follows that either:

– x 6= y, or

– in 6= jn for some n ∈ 0, . . . ,K− 1, or

– un 6= wn for some n ∈ 0, . . . ,K− 1.

For the other direction, consider a model B of

c1 = mkcell(e1, a0..K−1, t0..K−1) ∧
c2 = mkcell(e2, b0..K−1, w0..K−1) ∧

(
e1 6= e2 ∨

K−1∨
n=0

an 6= bn ∨
K−1∨
n=0

tn 6= wn

)

Hence,
cB1 = 〈eB1 , aB0 , . . . , aBK−1, t

B
0 , . . . , t

B
K−1〉 and

cB2 = 〈eB2 , bB0 , . . . , bBK−1, w
B
0 , . . . , w

B
K−1〉

Then, if eB1 6= eB2 , aBn 6= bBn or tBn 6= wBn for some n ∈ 0, . . . ,K− 1 we have that cB1 6= cB2 .

• Equivalence (7.7). The proof is analogous to the proof for equivalence (6.7) from Lemma 6.1
introduced in Chapter 6.

• Equivalences (7.8), (7.9), (7.10), (7.11) and (7.12). The proof is analogous to the proof
for equivalences (6.8), (6.9), (6.10), (6.11) and (6.12) involving sets of addresses from
Lemma 6.1 introduced in Chapter 6.
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• Equivalences (7.13), (7.14), (7.15), (7.16) and (7.17). The proof is analogous to the proof
for equivalences (6.13), (6.14), (6.15), (6.16) and (6.17) involving sets of thread identifiers
from Lemma 6.1 introduced in Chapter 6.

• Equivalences (7.18), (7.19), (7.20), (7.21) and (7.22). The proof is analogous to the proof
for equivalences (6.18), (6.19), (6.20), (6.21) and (6.22) involving sets of elements from
Lemma 6.1 introduced in Chapter 6.

• Equivalence (7.23). Is analogous to the proof for equivalence (6.23) from Lemma 6.1
introduced in Chapter 6.

• Equivalence (7.24). Assume that in model A, the literal reachK(m, a1, a2, l, p) holds. The
interpretation in TSLK of reachK makes:

addr2setK
A(mA, aA1 , l

A) = {j ∈ Aaddr | for some path p, (mA, aA1 , j, l
A, pA) ∈ reachK

A}

Since (mA, aA1 , a
A
2 , l
A, pA) ∈ reachK

A, it follows that aA2 ∈ addr2setK
A(mA, aA1 , l

A) as
desired. Similarly, getpK

A(mA, aA1 , a
A
2 , l
A) = pA.

For the other direction, let B be a model of:

a2 ∈ addr2setK(m, a1, l) ∧ p = getpK(m, a1, a2, l)

The second conjunct, (p = getpK(m, a1, a2, l)), implies that (mB, aB1 , a
B
2 , l
B, pB) ∈ reachK

B

and then reachK(m, a1, a2, l, p) holds in B.

• Equivalence (7.25). Let A be a model of ¬ordPath(m, p). Then, according to the restriction
of TSLK models, we have that p is neither ε nor a path containing a single address. Then,
we have that p should be [a1, . . . , an] with n ≥ 2 such that there exists an 1 ≤ i < n for
which m(ai).dataA 6� m(ai+1).dataA, which is equivalent to:

m(ai+1).dataA � m(ai).dataA ∧ m(ai+1).dataA 6= m(ai).dataA

This implies that there are elements x1, x2 in Aelem; z1, z2 in AcellK , r0..K−1, s0..K−1 in Aaddr

and t0..K−1, w0..K−1 in Atid such that:

z1 = m(ai) ∧ z1 = 〈x1, b0..K−1, t0..K−1〉 ∧ x2 �A x1 ∧
z2 = m(ai+1) ∧ z2 = 〈x2, d0..K−1, w0..K−1〉 ∧ x2 6= x1

Moreover, there exist paths q1, q2 in Apath such that:

appendA(q1, q2, p) ∧ ai ∈ path2set(q1) ∧ ai+1 ∈ path2set(q2)

In particular, ai is the last address in path q1 and ai+1 in the first address in path q2. Hence,
by taking cA1 = z1, cA2 = z2, eA1 = x1, eA2 = x2, pA1 = q1, pA2 = q2, nA1 = ai, nA2 = ai+1 and
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for all 0 ≤ j < K both, bAj = rj and dAj = sj , it follows that:

(
∃addrn1, n2 ∃cellKc1, c2 ∃eleme1, e2 ∃pathp1, p2

∃addrb0..K−1, d0..K−1 ∃tidt0..K−1, w0..K−1

)




append(p1, p2, p) ∧
n1 ∈ path2set(p1) ∧
n2 ∈ path2set(p2) ∧
c1 = m[n1] ∧
c2 = m[n2] ∧
c1 = mkcell(e1, b0..K−1, t0..K−1) ∧
c2 = mkcell(e2, d0..K−1, w0..K−1) ∧
e2 � e1 ∧
e2 6= e1




holds in A as desired.

For the other direction, let B be a model of:

(
∃addrn1, n2 ∃cellKc1, c2 ∃eleme1, e2 ∃pathp1, p2

∃addrb0..K−1, d0..K−1 ∃tidt0..K−1, w0..K−1

)

n1 ∈ path2set(p1) ∧ (7.27)

n2 ∈ path2set(p2) ∧ (7.28)

c1 = m[n1] ∧ (7.29)

c2 = m[n2] ∧ (7.30)

c1 = mkcell(e1, b0..K−1, t0..K−1) ∧ (7.31)

c2 = mkcell(e2, d0..K−1, w0..K−1) ∧ (7.32)

e2 � e1 ∧ (7.33)

e2 6= e1 (7.34)

Due to (7.27) and (7.28), p cannot be ε. Moreover, conditions (7.27) to (7.34) imply that
p is a path composed by at least two different addresses. Then, let p = [x1, . . . , xn] with
x1, . . . , xn in Baddr. Conditions (7.27) to (7.34) imply that there are y1 and y2 in x1, . . . , xn

such that
m(y1).dataB 6� m(y2).dataB

Even more, y1 occurs in path p before y2. Hence, we can choose y1 and y2 from x1, . . . , xn

to be consecutive. If y1 and y2 happen not to be consecutive, then there are xs, . . . , xt
between y1 and y2. However, we can get rid of all the addresses in xs, . . . , xt as follows. If
m(y1).dataB � m(xs).dataB, then we can pick xs as the new y1 and proceed inductively
with xs+1, . . . , xt addresses. On the other hand, if m(y1).dataB 6� m(xs).dataB then we can
simply take xs as y2. Hence, we can conclude that ¬ordPathB(m, p).

All (7.1)–(7.25) are valid TSLK equivalences, which concludes the proof. �
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Orienting the (7.1)–(7.25) equivalences from left to right allows us to eliminate non-normalized
literals from a given TSLK formula, resulting in a TSLK formula that only contains normalized
literals. Note also, that all quantifiers introduced in these equivalences are existential quanti-
fiers, which can be pushed (with renaming to avoid capturing if necessary) to the front of the
formula. Hence, a quantifier-free formula (which is implicitly existentially quantified) results into
a quantifier-free formula after the rewriting step.

Example 7.3
Consider again this skiplist, introduced in Fig. 7.6(c):

8 11 14

head tail

−∞ +∞16 202
0

1

lvl = 2

3

0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

15

0x09

Let heap be a variable of sort memK representing the heap and let a1, a2 and a3 be arbitrary
variables of sort addr. Consider now the following predicate:

¬ordPath(heap, [a1, a2, a3]) (7.35)

According to Definition 7.1, literal 7.35 is not normalized. In fact, according to Lemma 7.1,
we can normalize this literal by translating it into the following formula:

(
∃addrx1, x2 ∃cellKc1, c2 ∃eleme1, e2 ∃pathq1, q2, q3, q4, p1, p2

∃addrb0, b1, b2, b3 ∃addrd0, d1, d2, d3 ∃tidt0, t1, t2, t3 ∃tidw0, w1, w2, w3

)




q1 = [a1] ∧ q2 = [a2] ∧ q3 = [a3] ∧ append(q1, q2, q4) ∧ append(q4, q3, p) ∧
append(p1, p2, p) ∧ x1 ∈ path2set(p1) ∧ x2 ∈ path2set(p2) ∧
c1 = m[x1] ∧ c2 = m[x2] ∧ e2 � e1 ∧ e2 6= e1 ∧
c1 = mkcell(e1, b0, b1, b2, b3, t0, t1, t2, t3) ∧
c2 = mkcell(e2, d0, d1, d2, d3, w0, w1, w2, w3)




(7.36)

Moreover, according to the interpretation A introduced in Example 8.3, there is an assignment
to variables a1, a2 and a3 which makes literal (7.35) (and thus formula (7.4)) satisfiable. Consider,
for instance the assignment:

a1 = 0x03 a2 = 0x06 a3 = 0x05

The variables introduced by the existential quantifiers in (7.4) can be instantiated as follows:

x1 = 0x06 b0 = 0x07 d0 = 0x09 p = [0x03,0x06,0x05]

x2 = 0x05 b1 = 0x08 d1 = 0x00 p1 = [0x03,0x06]
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e1 = 16 b2 = 0x00 d2 = 0x00 p2 = [0x05]

e2 = 14 b3 = 0x00 d3 = 0x00

t0 = � t1 = t2 = t3 = �
w0 = T1 w1 = w2 = w3 = �

forming a model of formula (7.4). y

Following the result of Lemma 7.1, the resulting formula after normalization can then be
converted into its disjunctive normal form, obtaining the following result.

Lemma 7.2 (Normalized Literals):
Every TSLK-formula is equivalent to a disjunction of conjunctions of normalized TSLK-literals.y

The phase of normalizing a formula is commonly known (e.g. [177]) as the variable abstraction
phase. Note that after the normalization process each normalized literal belongs to just one
theory.

7.3 Decidability of TSLK

As TL3, the theory TSLK enjoys of the finite model property. In this section we prove that TSLK

does in fact enjoy the bounded model property presented in Definition 2.2 with respect to domains
levelK, elem, addr and tid. Moreover, we show how to compute for a given TSLK formula ϕ, a
(polynomial) bound on the size of levelK, elem, addr and tid of a sufficiently large model. In other
words, if there is no model within the bounds, then ϕ is unsatisfiable. As with TL3, note that a
bound on the domain of the sorts levelK, elem, addr and tid is enough to also obtain bounds on
the domains of the remaining sorts (cellK, memK, path, setaddr, setelem and settid) because the
domains of these latter sorts are constructed from the domains of levelK, elem, addr and tid due to
the restrictions imposed in the class of models TSLK. Once again, these bounds imply that TSLK

is decidable because one can enumerate all ΣTSLK -structures up to the cardinality given by the
bound of the finite model theorem, and check whether any of the structures is indeed a model of
the given formula.

Consider an arbitrary TSLK-interpretation A satisfying a conjunction of normalized TSLK-
literals Γ. We show that if A contains domains AlevelK , Aelem, Aaddr and Atid then there are finite
sets BlevelK , Belem, Baddr and Btid with bounded cardinalities, where the finite bound on the sizes
can be computed from Γ. These sets can in turn be used to obtain a finite interpretation B
satisfying Γ, since all the other sorts are bounded by the sizes of these sets.

7.3.1 Auxiliary Functions for Model Transformation

Before proceeding with the proof that TSLK enjoys the bounded model property, we first define
some auxiliary functions.
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Definition 7.2 (TSLK Many Jumps).
Given a memory m, an address a and a level l, we use the following notation for s ≥ 1:

m[s](a).next [l] =

{
m(a).next [l] if s = 1

m(m[s−1](a).next [l]).next [l] if s > 1

This definition is a generalization of Definition 6.2 for K levels. y

We start by defining the function firstK. This function returns the first relevant element of the
domain of addresses at a given level which is necessary to maintain the valuation of all functions
and predicates. Later, all irrelevant elements will be removed from the large domain to obtain
the bounded domain.

Let X ⊆ Aaddr, m : Aaddr → Aelem ×AK
addr ×AK

tid, let a be an address in X and let l be a level
in AlevelK . Then, the function firstK(m, a, l,X ) is defined as follows:

firstK(m, a, l,X ) =





null if for all r ≥ 1

m[r](a).next [l] /∈ X

m[s] (a) .next [l] if for some s ≥ 1

m[s](a).next [l] ∈ X ,

and for all r < s

m[r](a).next [l] /∈ X

Basically, given a set of addresses X , firstK chooses the next address in X that can be reached
from a given address by repeatedly following the next [l] pointer at a given level l. We will build
later a small model by filtering out unnecessary intermediate nodes and use firstK to bypass
properly all removed nodes, preserving the important connectivity properties.

Lemma 7.3 (Function firstK):
Let X ⊆ Aaddr, m1,m2 : Aaddr → Aelem × AK

addr × AK
tid, a1, a2 ∈ X such that a1 6= a2, c ∈

Aelem ×X K ×AK
tid and l ∈ AlevelK . Then:

(a) If m1(a1).next [l] ∈ X , then firstK(m1, a1, l,X ) = m1(a1).next [l].

(b) If m1 = upd(m2, a1, c), then firstK(m1, a2, l,X ) = firstK(m2, a2, l,X ). y

Proof. We proof (a) and (b) separately.

(a) Immediate from the definition of firstK.

(b) Let m1 = upd(m2, a1, c). We consider two possible cases:

(1) m
[r]
1 (a2).next [l] /∈ X for all r ≥ 1. By induction it can be shown that m[r]

1 (a2) = m
[r]
2 (a2)

for each r ≥ 1. It follows that firstK(m1, a2, l,X ) = null = firstK(m2, a2, l,X ).
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(2) m
[s]
1 (a2).next [l] ∈ X for some s ≥ 1. In this case, assume without loss of generality

that firstK(m1, a2, l,X ) = m
[s]
1 (a2).next [l]. By induction it can be shown that m[r]

1 (a2) =

m
[r]
2 (a2) for each 1 ≤ r < s. It follows that firstK(m1, a2, l,X ) = m

[s]
1 (a2).next [l] =

m
[s]
2 (a2).next [l] = firstK(m2, a2, l,X ). �

Now, we define the function unordered which given a memory m and a path p, returns a set
containing two addresses within p that witness the failure to preserve the data order in p:

unordered(m, [i1, . . . , in]) =





∅ if n = 0 or n = 1

{i1, i2} if m(i2).data � m(i1).data

and m(i2).data 6= m(i1).data

unordered(m, [i2, . . . , in]) otherwise

If there exist two addresses that witness an order violation, then unordered returns the first
two consecutive addresses whose keys violate the order.

Lemma 7.4 (Function unordered):
Let p be a path such that p = [a1, . . . , an] with n ≥ 2 and let m be a memory. If there is ai
with 1 ≤ i < n, such that m(ai+1).data � m(ai).data and m(ai+1).data 6= m(ai).data, then
unordered(m, p) 6= ∅. y

Proof. We proceed by induction. Consider n = 2 and let p = [a1, a2] such that m(a2).data �
m(a1).data and m(a2).data 6= m(a1).data. Then, by definition of unordered , we have that
unordered(m, p) = {a1, a2} 6= ∅.

Now assume n > 2 and let p = [a1, . . . , an]. If m(a2).data � m(a1).data and m(a2).data 6=
m(a1).data, then unordered(m, p) = {a1, a2} 6= ∅. On the other hand, ifm(a1).data � m(a2).data,
we know that there is a ai, with 2 ≤ i < n, with m(ai+1).data � m(ai).data and m(ai+1).data 6=
m(ai).data. Therefore, by induction we have that unordered(m, [a2, . . . , an]) 6= ∅ and by definition
of unordered :

unordered(m, p) = unordered(m, [a2, . . . , an]) 6= ∅ �

Throughout the proof that TSLK enjoys of the bounded model property, we will also require
the use of the following auxiliary functions:

• compress: given a path p and a set X of addresses, compress filters out all addresses in p
which do not belong to set X .

• diseq: given two paths p and q, diseq returns a set of addresses which is responsible for the
inequality between q and p.

• common: given two paths p and q, common returns an address which is common to both p
and q.

All these auxiliary functions were already defined in Section 6.3.1.
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7.3.2 A Bounded Model Theorem for TSLK

The following theorem establishes the existence of a small model with bounded domains whenever
a TSLK formula is satisfiable.

Theorem 7.1 (TSLK Bounded Model Property):
Let Γ be a conjunction of normalized TSLK-literals. Let E = |Velem (Γ)|, A = |Vaddr (Γ)|, M =

|VmemK
(Γ)| and, P = |Vpath (Γ)|. Then the following are equivalent:

1. Γ is TSLK-satisfiable.

2. Γ is true in a TSLK interpretation B such that

|Baddr| ≤ A + 1 + K×M× A + 2× P2 + 2× P3 + 2×M× P

|Belem| ≤ E + M× |Baddr|
|Btid| ≤ T + K×M× |Baddr| + 1 y

Proof. We show both directions separately.
(2→ 1) is immediate, because a bounded model is a model, so the formula is satisfiable.
We now consider the other direction: (1→ 2). Let A be a TSLK-interpretation satisfying a set

of normalized TSLK-literals Γ. We use A to construct a TSLK-interpretation B which satisfies Γ,
using the auxiliary definitions introduced above, and show that the domains in B are bounded as
in the statement of the theorem. In particular, for each domain we have:

• In B, BlevelK = AlevelK = [0 . . .K − 1]

• The domain Baddr for sort addr is defined as follows:

Baddr = VAaddr ∪
{

nullA
}

∪ (7.37)
{

mA(aA).nextA[l] |

for every m ∈ VmemK
, a ∈ Vaddr and l ∈ BlevelK

}
∪ (7.38)

{
diseq(pA, qA) | for each literal p 6= q in Γ

}
∪ (7.39)

{
common(p1

A, p2
A) |

for each literal ¬append(p1, p2, p3) in Γ with

path2setA(p1
A) ∩ path2setA(p2

A) 6= ∅
}

∪ (7.40)
{

common(p1
A ◦ p2

A, p3
A) |

for each literal ¬append(p1, p2, p3) in Γ with

path2setA(p1
A) ∩ path2setA(p2

A) = ∅
}

∪ (7.41)
{

unordered(mA, pA) | for each literal ¬ordPath(m, p) in Γ
}

(7.42)
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Essentially, Baddr is a subset of Aaddr where the following addresses are preserved in the
domain of sort addr:

– Because of (7.37), all the addresses in the domain Aaddr that correspond to variables
are preserved in Baddr. There are at most A of these addresses. The element modeling
null in Aaddr is also kept.

– According to (7.38) for each variable of sort address, each variable of sort memory
and each level, the address accessible through next is also preserved. There are at
most K×M× A of these addresses.

– (7.39) ensures that one or two addresses (as returned by diseq) are kept for every
literal of the form p 6= q. Since there are at most P paths in Γ, there are at most P2

literals of the form p 6= q, which results in preserving at most 2× P2 addresses.

– There are two reasons that can explain why a literal (¬append(p1, p2, p3) holds in A.
The first one is when both paths p1 and p2 share addresses. In this case, their concate-
nation is not a legal path, because legal paths cannot contain repeated addresses, so
(7.40) keeps a common address present in both paths to witness this sharing. In the
second case, paths p1 and p2 do not share any address, so their concatenation is a legal
path, but this resulting path is not equal to p3. In this case, (7.41) keeps one or two
addresses as returned by diseq to witness this difference. Since there are P paths in Γ

there are at most P3 literals of the form ¬append(p1, p2, p3) in Γ, which results in at
most 2× P3 addresses preserved.

– Finally, if a literal (¬ordPath(m, p)) holds there exist two addresses in path p whose
values, according to the map provided by memory m, are not ordered. Since there are
at most M variables of sort memK and P variables of sort path, then we may require
at most 2 × M × P addresses to preserve literal (¬ordPath(m, p)). These required
addresses are considered by (7.42).

• The domain Belem for sorts elem is as follows:

Belem = VAelem ∪
{

mA(v).dataA | m ∈ VmemK
and v ∈ Baddr

}

The domain Belem is built from Atid by simply keeping interpretations of variables of sort tid

and the values stored at addresses that have already been kept in Baddr.

• Finally, the domain Btid for sort tid is obtained as follows:

Btid = VAtid ∪
{

mA(aA).lockidA[l] | m ∈ VmemK
, a ∈ Vaddr and l ∈ BlevelK

}
∪
{
�
}

As can be seen, the domain Btid is constructed from Aelem by keeping interpretations of
variables of sort elem, the thread identifiers used at cells pointed by addresses that has
already been kept in Baddr and finally � to represent the absent of a thread identifier.

The domains BlevelK , Belem, Baddr and Btid described above clearly satisfy the cardinality con-
straints expressed in Theorem 7.1. The interpretations of the rest of the domains are obtained
using the restrictions of TSLK, shown in Section 7.2.3:
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• BcellK = Belem × BK
addr × BK

tid.

• BmemK
= BBaddr

cellK
.

• Bpath is the set of all finite sequences of (pairwise) distinct elements of Baddr.

• Bsetaddr is the power-set of Baddr.

• Bsettid is the power-set of Btid.

• Bsetelem is the power-set of Belem.

All these domains are finite, because BlevelK , Belem, Baddr and Btid are finite.

We are left to show the interpretation of all variables and function symbols, and to prove that
B is a model of Γ. The interpretation of variables and symbols in B is:

errorB = errorA

nullB = nullA

lB = lA for each l ∈ VlevelK

eB = eA for each e ∈ Velem

aB = aA for each a ∈ Vaddr

tB = tA for each t ∈ Vtid

cB = cA for each c ∈ VcellK

mB(v) =




mA(v).dataA ,

firstK(mA, v, 0,Baddr) ,

. . . ,

firstK(mA, v,K− 1,Baddr) ,

mA(v).lockidA[0] ,

. . . ,

mA(v).lockidA[K− 1]




for each m ∈ VmemK
and v ∈ Baddr

sB = sA ∩ Baddr for each s ∈ Vsetaddr

rB = rA ∩ Btid for each r ∈ Vsettid

xB = xA ∩ Belem for each x ∈ Vsetelem

pB = compress(pA,Baddr) for each p ∈ Vpath

All variables and constants in B are interpreted as in A except that next pointers use firstK to
point to the next reachable address at each level that has been preserved in Baddr. Similarly, sets
of addresses, elements and thread identifiers are pruned to contain only elements kept in Baddr,
Belem and Btid respectively. Finally, paths are filtered out so that they contain only addresses in
Baddr using the function compress. It is easy to check that B is an interpretation of Γ and hence a
candidate model of Γ.

So, it just remains to be seen that B satisfies all literals in Γ assuming that A does, which let
us conclude that B is indeed a model of Γ. We reason by cases considering all possible literals:
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Literals of the form e1 6= e2, a1 6= a2, l1 6= l2, k1 6= k2, t1 6= t2, l1 < l2 and e1 � e2:
Immediate, because the interpretation of all variables is preserved from A into B. For
instance, consider the case of the literal l1 < l2. Since the valuation for variables is
preserved, lB1 = lA1 and lB2 = lA2 . Hence l1 < l2 holds in B because it holds in A.

Literals of the form a = null and c = error :
Immediate, following a reasoning similar to the previous case.

Literals of the form c = mkcell(e, a0, . . . , aK−1, t0, . . . , tK−1) :

cB = cA

=
(
eA, a0

A, . . . , aK−1
A, t0

A, . . . , tK−1
A)

=
(
eB, a0

B, . . . , aK−1
Bt0
B, . . . , tK−1

B)

Note that for all 0 ≤ i < K, ai
A = ai

B because ai occurs in Γ and ai ∈ VAaddr. Then, due to
(7.37) from Theorem 7.1 we know that the interpretation of all variables of sort addr in A
are also in B. This implies that ai

B = ai
A.

Literals of the form c = m[a]:

(
m[a]

)B
= mB(aB)

= mB(aA)

=

(
mA(aA).dataA,

firstK(mA, aA, 0,Baddr), . . . ,firstK(mA, aA,K− 1,Baddr),

mA(aA).lockidA(0), . . . ,mA(aA).lockidA(K− 1)

)

=

(
mA(aA).dataA,

mA(aA).nextA(0), . . . ,mA(aA).nextA(K− 1), (7.43)

mA(aA).lockidA(0), . . . ,mA(aA).lockidA(K− 1)

)

= mA(aA)

= cA

= cB

where step (7.43) is justified by Lemma 7.3(a) and (7.38) from the proof of Theorem 7.1.

Literals of the form m = upd(m̃, a, c):
We want to prove that mB = m̃BaB 7→cB . We consider two cases:

• m(a): In this case,

mB(aB) = mA(aA) = cA = cB
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• m(d) for d 6= a: In this other case,

mB(d) =

(
mA(d).dataA,

firstK(mA, d, 0,Baddr), . . . ,firstK(mA, d,K− 1,Baddr)

mA.lockidA(0),mA.lockidA(K− 1)

)

=

(
m̃A(d).dataA,

firstK(m̃A, d, 0,Baddr), . . . ,firstK(m̃A, d,K− 1,Baddr) (7.44)

mA.lockidA(0),mA.lockidA(K− 1)

)

= m̃B(d)

Where step (7.44) is justified by Lemma 7.3(b).

Literals of the form s = {a}, s1 = s2 ∪ s3 and s1 = s2 \ s3:
Analogous to the normalization of literals for sets of addresses presented in the proof of
Theorem 6.1.

Literals of the form x = {e}E, x1 = x2 ∪E x3 and x1 = x2 \E x3:
Analogous to the normalization of literals for sets of elements presented in the proof of
Theorem 6.1.

Literals of the form r = {t}T, r1 = r2 ∪T r3 and r1 = r2 \T r3:
Analogous to the normalization of literals for sets of thread identifiers presented in the
proof of Theorem 6.1.

Literals of the form p1 6= p2, p = [a], s = path2set(p), append(p1, p2, p3) and
¬append(p1, p2, p3):

Analogous to the proof of literals (p1 6= p2), (p = [a]), (s = path2set(p)), (append(p1, p2, p3))

and (¬append(p1, p2, p3)) presented in the proof of Theorem 6.1.

Literals of the form s = addr2setK(m, a, l):
The proof is analogous to the proof of addr2setK(m, a, l) presented in Theorem 6.1, with
the difference that now, for the TSLK literal addr2setK, we need to reason about levels.

Literals of the form p = getpK(m, a, b, l):
The proof is analogous to the proof of getp(m, a, b) presented in Theorem 6.1, with the
difference that now, for the TSLK literal getpK, we need to reason about levels.

Literals of the form ordPath(m, p):
Assume that (mA, pA) ∈ ordPathA. We need to show that (mB, pB) ∈ ordPathB, that is
(mB, compress(pA,Baddr)) ∈ ordPathB. We proceed by induction on p.

• If p = ε, by definition of compress and ordPath, we have that (mB, εB) ∈ ordPathB.

• If p = [a1], we know that (mA, [a1 ]
A

) ∈ ordPathA and therefore we can conclude that
pB = compress(pA,Baddr). Then, if aA1 ∈ Baddr, we have that pB = [a1 ]

B and then
(mB, pB) ∈ ordPathB holds. On the other hand, if aA1 /∈ Baddr, then pB = εB and once
more (mB, pB) ∈ ordPathB holds.
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• If p = [a1, . . . , an+1] with n ≥ 1, then we have two possible cases:

(1) aA1 /∈ Baddr. In this case:

compress(pA,Baddr) = compress([a2 , . . . , an+1 ]
A
,Baddr)

and by induction:

(mB, compress([a2 , . . . , an+1 ]
A
,Baddr)) ∈ ordPathB

we conclude that (mB, compress([a1 , a2 , . . . , an+1 ]
A
,Baddr)) ∈ ordPathB.

(2) aA1 ∈ Baddr. In this case, by induction:

(mB, compress([a2 , . . . , an+1 ]
A
,Baddr)) ∈ ordPathB

Moreover, since mA(aA1 ).dataA � mA(aA2 ).dataA then mB(aA1 ).dataB � mB(aA2 ).dataB.
Hence,

(mB, compress([a1 , a2 , . . . , an+1 ]
A
,Baddr)) ∈ ordPathB

Since the value of each normalized literal is preserved in B with respect to A, then B is a model
of Γ that satisfies the cardinality constraints. �

Example 7.4
Consider the following TSLK formula, introduced in Example 7.3, which corresponds to the
normalization of the TSLK formula (¬ordPath(heap, [a1, a2, a3])):

∃addrx1, x2 ∃cellKc1, c2 ∃eleme1, e2 ∃pathq1, q2, q3, q4, p1, p2

∃addrb0, b1, b2, b3 ∃addrd0, d1, d2, d3 ∃tidt0, t1, t2, t3 ∃tidw0, w1, w2, w3

)




q1 = [a1] ∧ q2 = [a2] ∧ q3 = [a3] ∧ append(q1, q2, q4) ∧ append(q4, q3, p) ∧
append(p1, p2, p) ∧ x1 ∈ path2set(p1) ∧ x2 ∈ path2set(p2) ∧
c1 = m[x1] ∧ c2 = m[x2] ∧ e2 � e1 ∧ e2 6= e1 ∧
c1 = mkcell(e1, b0, b1, b2, b3, t0, t1, t2, t3) ∧
c2 = mkcell(e2, d0, d1, d2, d3, w0, w1, w2, w3)




The result of Theorem 7.1 establishes that we can compute bounds for the domains of levels,
elements, ordered keys, addresses and thread identifiers such that if the formula is satisfiable,
then there exists a TSLK model with it domains within these bounds. According to Theorem 7.1
we require:

Levels: All levels are preserved.

Addresses: We would require at most 582 addresses. This result comes from the following
calculation:

• 13, due to the number of variables of sort address present in the formula;
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• 1, for the special null address;

• 52, considering the next pointers at all 4 possible skiplist levels (4× 1× 13);

• 504, due to the possible inequality between paths (2× 62 and 2× 63 respectively);

• 12, because of the possible existence of negations of predicates append .

Elements: We would require a domain with a maximum number of 584 elements as we need 2

elements because of the 2 variables of sort element and 582 elements due to the elements
that may be stored at each cell pointed by the addresses in the domain of addresses (1×582).

Thread identifiers: We would require a domain with a maximum of 2333 thread identifiers. We
come to this conclusion considering:

• 4 thread identifiers because of the variables of sort tid appearing in the formula.

• 2328 thread identifiers in case there exists the need to lock all cells pointed by addresses
in the computed domain at all possible levels (4× 1× 582).

• 1 special thread identifier to represent the special identifier �.

Once again, the bounds computed by Theorem 7.1 are theoretical. In practice, it would be very
inefficient to analyze all possible models with a domain of 574 addresses, for instance. As before,
some considerations can be taken into account in order to tighten the bounds of the computed
domains. For example, in formula 7.4 there are neither path inequalities nor occurrences of
negation of the append predicate. This allows to discard 516 addresses. Moreover, if we are trying
to check the satisfiability of literal (¬ordPath(heap, [a1, a2, a3])) of a skiplist like the one depicted
in Fig. 7.6(b) we can use, for instance, variable propagation in order to reduce the number of
needed variables. For example, we know that b2, b3, d1, d2 and d3 point to the same element null ,
hence we can simply replace the occurrences of these variables with null without affecting the
satisfiability of the formula. This way we need to consider only 8 variables of sort address, which
reduces the maximum size of the required address domain to 61.

Later, in Section 9.2.4, we will describe in more detail other tactics and considerations that
help in reducing the size of the computed domains. y

7.4 Summary

In this chapter we presented TSLK, the Family of Theories of Concurrent Skiplists with at Most
K Levels. Each member of the TSLK family is a theory capable of reasoning about concurrent
skiplists with a fixed number of levels.

As for TL3, TSLK is obtained as a combination of theories of addresses, elements, cells,
heaps and paths among others. In fact, TSLK extends non-trivially TL3 by adding functions
and predicates of single-linked list to all levels of a skiplist. Moreover, TSLK introduces built-in
predicates to reason about order of single-linked lists.

Each theory within TSLK is suitable for describing structural and functional properties of
concurrent and non concurrent implementations of skiplists with a bounded and fixed number of
levels.
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In this chapter we showed that the satisfiability problem for TSLK quantifier-free formulas is
decidable. We presented a bounded model theorem, which ensures that given a quantifier-free
TSLK formula, it is possible to compute the bounds of the domains for a model of the formula (if
such model exists) considering only the literals occurring in the formula. Following this result,
the TSLK decision procedure can determine the satisfiability of a TSLK formula by enumerating
all possible models of the given formula.

The TSLK family remains crucial in the verification of parametrized programs that manipulates
data structures of the shape of a skiplist. The decision procedure presented in this chapter can be
used to automatically verify the validity of the quantifier-free verification conditions generated
using the parametrized invariance rules and the parametrized verification diagrams techniques
presented in Chapter 3 and Chapter 4. Examples of the use of TSLK decision procedure can be
consulted in Chapter 10.

Additionally, TSLK is a fundamental building block in the construction of even more powerful
skiplist theories. In Chapter 8 we present TSL, a theory for skiplists with an unbounded number
of levels. The decidability of TSL relies, among other things, on the fact that the satisfiability
of TSLK quantifier-free formulas is decidable. The decision procedure for TSL quantifier-free
formulas we present in the next chapter uses a decision procedure for TSLK quantifier-free
formulas.
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8
TSL:
A Decidable Theory
for Skiplists with
Unbounded Levels

“ No matter how beautiful the theory, one irritating
fact can dismiss the entire formulism, so it has to
be proven. ”

Michio Kaku

In Chapter 7 we presented TSLK, a family of decidable theories capable of describing rich
structural and functional properties of data structures with the shape of a skiplist. The main
disadvantage of the theory of families TSLK is that they are restricted to skiplists with a fixed
number of K levels, which makes these theories unsuitable for the efficient verification of real
world skiplist implementations. The problem of skiplists with a fixed number of levels is that its
average performance decreases as more elements are inserted, as the skiplist saturates and it
loses its ability to skip many nodes with a single jump. Because of this, most implementations of
skiplists either can grow dynamically to any height or limit the maximum height of any node to a
large value like 32, making impractical the use of TSLK. In both cases, implementations use a
program variable to store the current highest level in use.

In this chapter we present TSL, The Theory of Skiplists with Unbounded Levels. TSL is a
theory suitable for the formal verification of skiplists with an arbitrary number of levels, whose
number can additionally be dynamically modified. In this chapter we formally introduce TSL,
we show can it can be used in the verification of real world skiplist implementations and we
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show it decidable. The TSL decision procedure we present in this chapter works by reducing
the satisfiability problem of a TSL quantifier-free formula to queries to the TSLK and Presburger
arithmetic decision procedures. Despite using TSLK as a backbone decision procedure, the version
of TSL that we present here is capable of reasoning only about sequential implementations of
skiplists. We leave the problem of a concurrent version of TSL as future work.

The rest of the chapter is structured as follows. Section 8.1 presents an implementation of
a skiplist with an unbounded number of levels. Section 8.2 formally presents TSL. Section 8.3
describes the procedure for normalizing TSL formulas. Section 8.4 demonstrates that TSL is
decidable by reducing the satisfiability problem of TSL quantifier-free formulas to queries to
decision procedures for TSLK and Presburger arithmetic. Finally, Section 8.5 concludes.

8.1 A Skiplist with an Unbounded Number of Levels

In Section 7.1 of Chapter 7 we introduced the skiplist data structure and we presented some
of the basic conditions and properties satisfied by a skiplist, such as list inclusion between the
nodes connected at a certain level and the nodes connected at the level immediately below. A
disadvantage of the skiplist presented in that chapter is that it contains a constant number K
of levels, where K could be arbitrary large, but fixed. This constraint on the number of levels,
makes a skiplist inefficient as more elements are inserted into the skiplist. The efficiency of a
skiplist comes from its ability to skip the traversal of nodes only connected at levels lower than
the current level.

Because of this, real world implementations usually either fix a large number of levels
(generally 32) or they store the current maximum level in a variable that can grow. By doing so,
the skiplist can have arbitrary as many levels as it requires, preserving the average performance
of operations over the skiplist.

In order to illustrate the use of the decision procedure for skiplists of unbounded height we
present in this chapter, we will first present an implementation of a skiplist which keeps the
maximum number of levels in a variable, letting it grow as required.

The nodes of a skiplist with an unbounded number of levels are defined as instances of the
UnboundedSkiplistNode class, declared as follows:

class UnboundedSkiplistNode { Elem data;

Array〈Addr〉 next ;

Int @level ; }

An object of class UnboundedSkiplistNode contains the following fields:

• data, which contains the actual value stored in the node;

• next , an (unbounded) array of pointers which keeps the addresses of the next node in the
skiplist at each level;

• level , a ghost field which stores the highest level stored in next which is not null . In other
words, the size of array next .

As usual, in order to simplify the presentation, we assume that the elements stored in data

are used to keep the order. It is easy to modify the UnboundedSkiplistNode class to store pairs

182



8.1. A Skiplist with an Unbounded Number of Levels

(data, key) of values and keys, where data keeps the elements of the skiplist and key keeps a key
to maintain the nodes of the skiplist ordered.

The implementation of the skiplist with an unbounded number of levels we present here
maintain two global addresses head and tail , one global integer variable maxLevel and two ghost
global variables reg and elems:

global
Addr head
Addr tail
Int maxLevel
Set〈Addr〉 reg
Set〈Elem〉 elems

We describe now the intended meaning of these global variables:

(a) A variable head , of type address, which points to the first node of the skiplist.

(b) A variable tail , of type address, which points to the last node of the skiplist.

(c) A variable maxLevel , of type integer, which keeps the maximum current level of the whole
skiplist.

(d) A ghost variable reg , of type set of addresses, which is used to keep track of the portion of
the heap that forms the skiplist.

(e) A ghost variable elems, of type set of elements, which represents the collection of elements
stored in the skiplist.

As before, we assume that the nodes pointed by head and tail store −∞ and +∞, that is,
the lowest and highest possible values respectively. Additionally, the nodes pointed by head and
tail are sentinel nodes which we assume are initialized to two different nodes which conform
an empty skiplist containing only the −∞ and +∞ values. The nodes pointed by head and tail

cannot be removed from the skiplist or have their data field modified. Similarly, reg is initialized
containing only the addresses of head and tail , and elems is initialized containing only −∞ and
+∞.

Example 8.1 (Unbounded Skiplist Initialization)
According to the description we gave above, Fig. 8.1 shows the representation of an unbounded

global
head = 0x01
tail = 0x02
maxLevel = 0
reg = {0x01, 0x02}
elems = {−∞,+∞}

−∞

head tail

level 0

0x01 0x02

level 0
+∞
0

Figure 8.1: An initialized unbounded skiplist.

initialized skiplist. y
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8 11 14

head tail

−∞ +∞16 202

level 0

level 1

level 2

level 3

0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

3level 01 2 0 01 3

Figure 8.2: An example of an unbounded skiplist.

Example 8.2
Fig. 8.2 presents an example of an unbounded skiplist after some elements have been inserted.
Note how each node contains an unbounded array of addresses which are used to store the
pointers to the following nodes at all skiplist levels. As can be seen, the level field is used to store
the maximum level of the node which does not points to null . In the figure, we gray out the array
levels which point to null . For example, the node stored at address 0x03 contains value 8 and
an array next with all levels from level 0 up to level 2 containing pointers different than null .
Note that, to be a valid skiplist, the data structure cannot contain nodes with some null level in
between of two non null levels.

As all used levels in this particular example are between 0 and 3, we have that in this case
maxLevel is 3.

The implementation of the unbounded skiplist provides three main operations to manipulate
the data structure. These operations are SEARCH, INSERT and REMOVE:

SEARCH: described in Fig. 8.3, receives an element e and traverses the skiplist in order to
determine whether e is present or not in the skiplist. Procedure SEARCH uses 3 local
variables:

• An integer variable i, which denotes the level of the skiplist being currently traversed.

• Two variables, prev and curr , of sort address which are used to keep track of the
position at a certain level of the skiplist while it is traversed.

The procedure presented here is slightly simpler than the SEARCH procedure presented in
Section 7.1, mainly because now we do not need to manipulate locks protecting sections
of the skiplist. The procedure begins by assigning prev to the head of the skiplist (line 1).
Then, it assigns curr to the node following head at the currently highest possible level of
the skiplist (line 2) and assigns to local variable i the highest level of the skiplist (line 3).

The loop (lines 4 to 11) performs the search of the element e in the skiplist. The loop
executes while there are levels in the skiplist to explore (0 ≤ i) and the element e has not
yet been found (curr→data 6= e). Inside the loop, curr is assigned to the element following
prev at level i (line 5). This corresponds to starting the search on a new level.
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procedure Search(Elem e)
Int i
Addr prev , curr

begin
1: prev := head
2: curr := prev→next [maxLevel ]
3: i := maxLevel
4: while 0 ≤ i ∧ curr→data 6= e do
5: curr := prev→next [i]
6: while curr→data < e do
7: prev := curr
8: curr := prev→next [i]
9: end while

10: i := i− 1
11: end while
12: return curr→data = e

end procedure

Figure 8.3: SEARCH procedure for an unbounded skiplists.

The internal loop (line 6 to 9) performs the search using pointers prev and curr to explore
the skiplist at level i. This inner loop is executed while the element e has not been found
in the current level. As the nodes in the skiplist are ordered, this corresponds to checking
whether (curr→data < e). If this condition holds, then pointers prev and curr advance one
node of the skiplist by assigning prev to the current node pointed by curr (line 7) and curr

to the node following prev at level i (line 8). At the end of this inner loop we have that
curr→data ≥ e, meaning that e was not found in level i and thus we can safely decrement
i (line 10) to perform the search at a lower level in the next iteration of the outer loop.

At the end of SEARCH, if curr points to the node containing e then true is returned, otherwise
SEARCH returns false to denote that e was not in the skiplist (line 12).

INSERT: presented in Fig. 8.4, this procedure receives an element e as argument and proceeds to
insert e into the skiplist. If e was already in the skiplist, then INSERT does not modify the
skiplist.

Procedure INSERT uses 6 local variables:

• Two integer variables, i and lvl , which are used to maintain the current skiplist level
being traversed and the level of the new node to be inserted respectively.

• Two variables prev and curr of type address, which are used to keep track of the nodes
the procedure is traversing.

• An array of addresses upd , which stores the pointers that need to be modified in order
to insert the new node in the skiplist.

• A Boolean variable valueWasIn, which indicates if e was already in the skiplist, and
consequently indicates whether INSERT does not require to modify the skiplist.

INSERT begins by initializing valueWasIn to false (line 1). That is equivalent to initially
assuming that e is not in the skiplist. Then INSERT randomly decides the level of the new
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node to be inserted by performing a call to the randomLevel and storing the random level
in local variable lvl (line 2).

At this point two things can happen: the level assigned to lvl is lower or equal to the current
maxLevel , or it is greater than the current maxLevel . If lvl is higher that maxLevel , then the
height of the sentinel nodes head and tail needs to be updated in lines 3 to 11. Additionally,

procedure Insert(Elem e)
Int i, lvl
Addr prev , curr
Array〈Addr〉 upd
Bool valueWasIn

begin
1: valueWasIn := false
2: lvl := randomLevel()
3: if lvl > maxLevel then
4: i := maxLevel + 1
5: while i ≤ lvl do
6: head→next [i] := tail
7: tail→next [i] := null
8: maxLevel := i
9: i := i+ 1

10: end while
11: end if
12: upd := newArray〈Addr〉(maxLevel + 1)
13: prev := head
14: curr := prev→next [maxLevel ]
15: i := maxLevel
16: while 0 ≤ i ∧ ¬valueWasIn do
17: curr := prev→next [i]
18: while curr→data < e do
19: prev := curr
20: curr := prev→next [i]
21: end while
22: upd [i] := prev
23: i := i− 1
24: valueWasIn := (curr→data = e)
25: end while
26: if ¬valueWasIn then
27: newnode := CreateNode(lvl , e)
28: i := 0
29: while i ≤ lvl do
30: newnode→next [i] := upd [i]→next [i]
31: upd [i]→next [i] := newnode

if i = 0 then
reg := reg ∪ {newnode}
elems := elems ∪ {e}

32: i := i+ 1
33: end while
34: end if
35: return ¬valueWasIn

end procedure

Figure 8.4: Procedure INSERT for unbounded skiplists.
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the value of maxLevel is also updated (line 8). At line 11, lvl ≤ maxLevel always holds.

At this point, INSERT allocates upd with maxLevel slots (line 12). Pointer prev is then
initialized to point head (line 13), curr is initialized to point to the node following head at
the current maximum skiplist level (line 14) and i is initialized with the current value of
maxLevel .

INSERT now is ready to start the search of e in the skiplist. The loop between lines 16 and
25 is similar to the inner loop of SEARCH. In this loop, pointers prev and curr advance in
the current level as far as possible until curr points to a node whose element in greater of
equal than e. A novelty at INSERT is that when curr finds an element greater or equal than
e, the node pointed by prev is stored in the upd array (line 22). This ensures that at the
end of the loop, for all possible level j between 0 and maxLevel , the following holds:

upd [j]→data < e ∧ upd [j]→next [j]→data ≥ e

This way, upd is used to store all pointers to the nodes that need to be modified once
the node containing element e is inserted. Similarly, inside the loop the Boolean variable
valueWasIn is updated to reflect whether a node with element e is present in the skiplist.

After exiting the loop, if e was not found in the skiplist, then a new node with e is inserted
into the skiplist (lines 26 to 34). First INSERT creates a new node newnode which contains
element e and lvl levels in its next array (line 27). Then, newnode is connected to the rest
of the skiplist by modifying the next array of newnode and the next array at the nodes
pointed by upd (lines 29 to 33). Note that the connection of newnode is done increasingly,
starting from level 0 up to level lvl . By connecting newnode this way, we ensure that the
skiplist property is preserved. As soon as newnode is connected to the skiplist (that is, it is
connected at level 0), the node can be considered part of the skiplist, so the ghost variables
reg and elems can be updated accordingly (line 31). Finally, the procedure returns true if a
new node with element e was created and inserted into the skiplist and false if element e
was already in the skiplist, and thus it was not needed to be inserted.

REMOVE: shown in Fig. 8.5, this procedure receives an element e as argument and proceeds
to remove it from the skiplist. If e is not in the skiplist, then the data structure is left
unchanged.

Procedure REMOVE uses 6 local variables:

• Two integer variables, i and removeFrom, which are used to denote the current skiplist
level being traversed and the highest level at which the node containing element e is
connected to the rest of the skiplist respectively.

• Two variables prev and curr of type address for the traversal.

• An array of addresses upd , which keeps the pointers that needs to be modified in order
to remove the node containing element e from the skiplist.

• A Boolean variable valueWasIn which is used to store whether a node containing e
was found in the skiplist.

REMOVE begins by assigning to removeFrom the highest possible level, that is, maxLevel

(line 1). Then, REMOVE proceeds to initialize pointers prev and curr so that they point to
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the head of the skiplist and the node following the head at the highest possible level (line 2
and 3). As the search for the position where e should be in the skiplist is done in a top-down
fashion, the procedure initializes i with the highest possible level of the skiplist (line 4).

At this point, the procedure looks for e in the skiplist. This search is done in the loop that
goes from line 5 to line 16. The loop itself is very similar to the loops in SEARCH and
INSERT. This loop updates upd array to keep a record of the pointers it needs to modify
once the node containing element e is found. Note that if while traversing a level the node
containing element e was not found, then the value of removeFrom is decreased (line 12).
Once the loop has finished, we have that for every level j between 0 and maxLevel , the
following holds:

upd [j]→data < e ∧ upd [j]→next [j]→data ≥ e

procedure Remove(Elem e)
Int i, removeFrom
Addr prev , curr
Array〈Addr〉(maxLevel + 1) upd
Bool valueWasIn

begin
1: removeFrom := maxLevel
2: prev := head
3: curr := pred→next [maxLevel ]
4: i := maxLevel
5: while i ≥ 0 do
6: curr := prev→next [i]
7: while curr→data < e do
8: prev := curr
9: curr := prev→next [i]

10: end while
11: if curr→data 6= e then
12: removeFrom := i− 1
13: end if
14: upd [i] := prev
15: i := i− 1
16: end while
17: valueWasIn := (curr→data = e)
18: if valueWasIn then
19: i := removeFrom
20: while i ≥ 0 do
21: upd [i]→next [i] := curr→next [i]

if i = 0 then
reg := reg − {curr}
elems := elems − {e}

22: i := i− 1
23: end while
24: free (curr)
25: end if
26: return valueWasIn

end procedure

Figure 8.5: REMOVE procedure for an unbounded skiplists.
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Moreover, removeFrom equals to the highest level at which the node with element e is
connected with the rest of the skiplist if such node was found or (−1) if no node storing e
was found in the skiplist.

At this point, the Boolean variable valueWasIn is set to reflect whether e was present in the
skiplist (line 17). If e was not found, then REMOVE returns. On the contrary, if e was found,
then the procedure proceeds to remove it from the skiplist (line 18 to 25). In order to
preserve the skiplist shape of the data structure, the node containing e is unlinked starting
from removeFrom level and proceeding down to level 0. In order to remove the node storing
e, REMOVE modifies the pointers stored at upd (line 21). Once the node with element e is
disconnected at level 0, REMOVE modifies the ghost sets reg and elems to reflect that e is
not in the skiplist (line 21). Finally, after the node has been completely disconnected form
the skiplist, the memory from this node can be reclaimed (line 24). REMOVE returns true if
e was removed from the skiplist or false if e was not present in the skiplist.

Once again, in order to verify the data type against all possible clients, we can create the
most general client of the unbounded skiplist, called MGCSKIPLIST. The most general client is
presented in Fig. 8.6. The most general client non-deterministically performs calls to all skiplist
operations, to exercise all possible sequences of calls. We later use procedure MGCSKIPLIST to
verify properties like skiplist preservation.

8.2 TSL: A Theory for Skiplists with Unbounded Levels

In this section we formally present TSL, a multi-sorted first-order theory which is amenable for
describing rich properties of skiplists with an unbounded number of levels. Later, we will show
that TSL is decidable by proving that the decision problem of the satisfiability of TSL formulas
can be reduced to a satisfiability problem of TSLK formulas, the decidable family of theories
presented in Chapter 7.

We define the Theory of Skiplists with Unbounded Levels TSL as a combination of theories
TSL = (ΣTSL,TSL), where

ΣTSL = Σlevel ∪ Σarray ∪ Σcell ∪ Σmem ∪ Σsetaddr ∪ Σsetelem ∪ Σreach ∪ Σbridge

procedure MGCSkiplist()
Elem e

begin
1: while true do
2: e := havocSkiplistElem()
3: nondet choice
4: call Search(e)
5: or call Insert(e)
6: or call Remove(e)
7: end choice
8: end while

end procedure

Figure 8.6: Most general client procedure MGCSKIPLIST for unbounded skiplists.
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Informally, Σlevel models levels of the skiplist. The main difference between Σlevel form TSL
and ΣlevelK from TSLK is that ΣlevelK models levels as a finite set {0, . . . ,K−1}, while Σlevel contains
all natural numbers. Σarray models arrays indexed by levels that store addresses. Σcell models
cells, structures containing an element (data) which is also used to keep cells ordered, an array
from levels to addresses (pointers to the successor node at each level) and the current maximum
level of the cell. A cell represents a node in a skiplist. The main difference between the signature
Σcell introduced here and the signature ΣcellK presented in Chapter 7 is that Σcell contains an
array of addresses, while ΣcellK keeps K pointers to the next cells. Σmem models the memory.
Σreach, as ΣreachK from TSLK, models finite sequences of non-repeating addresses, which is used to
represent acyclic paths in the memory. The main difference between ΣreachK and Σreach is that the
latter operates on levels in Σlevel instead of ΣlevelK . Finally, as in TSLK, Σbridge is a bridge theory
containing auxiliary functions similar to the ones contained in Σbridge presented in Chapter 7. The
main difference in this case is the introduction of a predicate skiplist which captures whenever
there is a shape of a well formed skiplist in the heap.

We describe now the sorts, the signature and restrictions on the interpretation for each of the
theories in TSL.

8.2.1 Sorts

The sorts shared among these theories are level, elem, addr, array, cell, mem, path, setaddr and
setelem. The intended meaning of these sorts is:

• level: levels of the skiplist.

• elem: elements stored in the skiplist.

• addr: memory addresses.

• array: arrays from levels to addresses.

• cell: skiplist nodes stored in the heap.

• mem: heaps, represented as maps from addresses to cells.

• path: paths, as finite sequences of non-repeating addresses.

• setaddr: sets of addresses.

• setelem: sets of elements.

The class of ΣTSL-structures restrict the domain of the sorts to interpretations A that satisfy
the following:

(a) Alevel is the set of natural numbers with their usual order.

(b) Aelem and Aaddr are discrete sets.

(c) Aarray = AAlevel

addr .

(d) Acell = Aelem ×Aarray ×Alevel.

(e) Amem = AAaddr

cell .
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(f) Apath is the set of all finite sequences of (pairwise) distinct elements of Aaddr.

(g) Asetaddr is the power-set of Aaddr.

(h) Asetelem is the power-set of Aelem.

8.2.2 Signature

The functions and predicates for theory Σelem, Σsetaddr and Σsetelem are the same as the ones
presented in Section 7.2.2 of Chapter7 for TSLK. Something similar happens with Σmem, for
which the only difference between the signature ΣmemK

presented in Section 7.2.2 of Chapter 7
and the signature Σmem presented here is that Σmem maps addresses to unbounded skiplist cells
as captured by Σcell instead of the bounded cells of K levels described by ΣcellK . We now focus on
the theories that TSL does not share with TSLK. For each of these new theories we list now their
sorts and each of the functions and predicates with their signatures:

a) Σlevel: The only sort used is levelK. The function symbols are:

0 : level

s : level→ level

The constant function 0 models the natural number 0. Function s models the successor
operation. Given a variable l of sort level, we generally use l+ 1 for s(l). The only predicate
symbol in this theory, apart from equality, is:

< : level→ level

The predicate < describes the order relation between natural numbers.

b) Σarray: The sorts used are array, level and addr. The function symbols are:

_[_] : array × level→ addr

_{_← _} : array × level× addr→ array

The function _[_] models an array dereference that returns an address given an array and a
level. The function _{_← _} is used to create a modified array given an array, a level and
the address to be stored in the new array at the given level. There are no predicate symbols
in Σarray, except array equality.

c) Σcell: The sorts used are cell, level, elem, array and addr. The function symbols are:

error : cell

mkcell : elem× array × level→ cell

_.data : cell→ elem

_.arr : cell→ array

_.max : cell→ level

The cell error is used to model the return of an incorrect memory dereference. Function
mkcell is the constructor of cells. The corresponding selectors are the functions data, arr
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and max . Selector data accesses the data stored in the cell, arr returns the array with the
pointers to the successor nodes and max provides the maximum current level of successor
pointers in the node. There are no predicate symbols in Σcell except equality between cells.

d) Σreach: The sorts used are mem, addr, level and path. The function symbols are:

ε : path

[_] : addr→ path

As in TSLK, the constant ε models the empty path, and the function [_] allows to build
a singleton path from the provided address. The predicate symbols in Σreach, apart from
equality, are:

append : path× path× path

reach : mem× addr × addr × level× path

As in TSLK, the predicate append relates two paths with its concatenation. The predicate
reach relates two addresses with the path that connects them in a given heap at a certain
skiplist level.

d) Σbridge: The sorts used are mem, addr, level, setaddr and path. The function symbols are:

path2set : path→ setaddr

getp : mem× addr × addr × level→ path

addr2set : mem× addr × level→ setaddr

As in TSLK, the function path2set returns the set of addresses presented in a given path. The
function addr2set returns the set of addresses reachable from a given address by following
the successor pointers at a certain skiplist level. Similarly, the function getp returns the path
that connects two addresses in a given heap at a certain level, if there is one (or the empty
path otherwise).

The predicate symbols in Σbridge are:

ordPath : mem× path

skiplist : mem× setaddr × level× addr × addr

Predicate ordPath holds whenever the data stored at the cells obtained by dereferencing
the addresses in the path (using the given memory) are ordered. Predicate skiplist captures
whether the cells stored in a region of the heap have the shape of a skiplist. This predicate
relates the cells accessible between the provided addresses considering pointers up to the
given level. The predicate skiplist also checks that the addresses of all cells conforming
the skiplist are exactly the ones stored in the given set of addresses. Contrary to TSLK, the
predicate skiplist is a native predicate in the theory, not a predicate defined in terms of
other predicates.
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8.2.3 Interpretations

We restrict the class of models to TSL, a class of ΣTSL-structures that satisfy the following
conditions:

a) Σmem,Σsetaddr,Σsetelem: These theories are interpreted as in TSLK.

b) Σlevel: In TSL, an interpretation A of Σlevel interprets the functions and predicates of Σlevel as
the natural numbers with addition and order. That is, for every level l ∈ Alevel:

• 0A = 0

• sA(l) = l + 1

Also, l < l′ is interpreted as the usual order within the natural numbers.

c) Σarray: Every interpretation A of Σarray must satisfy, that for every array A,B ∈ Aarray, level
l ∈ Alevel, and address a ∈ Aaddr:

• A[l]A = A(l)

• A{l← a}A = Anew , where Anew (l) = a and Anew (i) = A(i) for i 6= l

d) Σcell: Every interpretationA of Σcell must satisfy, for every element e ∈ Aelem, array A ∈ Aarray

and level l ∈ Alevel:

• mkcellA(e,A, l) = 〈e,A, l〉

• errorA.arrA(l) = nullA

• 〈e,A, l〉.dataA = e

• 〈e,A, l〉.arrA = A

• 〈e,A, l〉.maxA = l

Essentially, TSL models restrict cells to be records consisting of an element, an array of
addresses and a level.

e) Σreach: The symbols ε, [_], append and reach are interpreted as in TSLK.

f) Σbridge: The interpretation of addr2set , path2set , getp and ordPath are restricted as in TSLK.
For the predicate skiplist we force every interpretation A of Σbridge to satisfy for every
memory m ∈ Amem, path p ∈ Apath, set of address r ∈ Asetaddr, level l ∈ AlevelK and
addresses a, b ∈ Aaddr the following:
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skiplistA(m, r, l, a, b) iff



r = addr2setA(m, a, 0) ∧ ordListA(m, getpA(m, a,null , 0)) ∧
b ∈ addr2setA(m, a, l) ∧ for all x ∈ r . m(x).maxA ≤ l ∧
m(b).arrA(l) = nullA ∧


(0 = l) ∨


for some lp . sA(lp) = l ∧
for all i ∈ 0, . . . , lp .


b ∈ addr2setA(m, a, i) ∧
m(b).arrA(i) = nullA ∧

path2setA(getpA(m, a,null , sA(i))) ⊆
path2setA(getpA(m, a,null , i))













(8.1)

Example 8.3
Consider again the following skiplist snapshot, introduced in Fig. 8.2:

8 11 14

head tail

−∞ +∞16 202

level 0

level 1

level 2

level 3

0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

3level 01 2 0 01 3

The following interpretation A is in the class TSL:

Aaddr = {0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08}
Aelem = {−∞, 2, 8, 11, 14, 16, 20,+∞}
Amem = {m : Aaddr → Acell}

where
nullA = 0x00

errorA = 〈 −∞ , Anull , 0 〉

and Anull is the array from levels to addresses that for all natural i, Anull [i] = null . Moreover,

m(0x00) = 〈 −∞ , Anull , 0 〉
m(0x01) = 〈 −∞ , A1 , 3 〉
m(0x02) = 〈 2 , A2 , 1 〉
m(0x03) = 〈 8 , A3 , 2 〉
m(0x04) = 〈 11 , A4 , 0 〉
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m(0x05) = 〈 14 , A5 , 0 〉
m(0x06) = 〈 16 , A6 , 1 〉
m(0x07) = 〈 20 , A7 , 0 〉
m(0x08) = 〈 +∞ , A8 , 8 〉

where for each of the arrays used above, we have:

A1[0] = 0x02 A1[1] = 0x02 A1[2] = 0x03 A1[3] = 0x08 A1[i] = 0x00 for all i ≥ 4

A2[0] = 0x03 A2[1] = 0x03 A2[i] = 0x00 for all i ≥ 2

A3[0] = 0x04 A3[1] = 0x06 A3[2] = 0x08 A3[i] = 0x00 for all i ≥ 3

A4[0] = 0x05 A4[i] = 0x00 for all i ≥ 1

A5[0] = 0x06 A5[i] = 0x00 for all i ≥ 1

A6[0] = 0x07 A6[1] = 0x08 A6[i] = 0x00 for all i ≥ 2

A7[0] = 0x08 A7[i] = 0x00 for all i ≥ 1

A8[i] = 0x00 for all i ≥ 0

According to this interpretation we have, for instance, that:

(m, {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08}, 3,0x01,0x00) ∈ skiplistA (8.2)

(m, {0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08}, 4,0x01,0x00) ∈ skiplistA (8.3)

(m, {0x01,0x02,0x03,0x04,0x06,0x07,0x08}, 3,0x01,0x00) /∈ skiplistA (8.4)

(m, {0x01,0x02,0x03}, 2,0x01,0x04) /∈ skiplistA (8.5)

(m, {0x06,0x07,0x08}, 1,0x06,0x00) ∈ skiplistA (8.6)

In the case of (8.2), the predicate holds because it represents the whole skiplist depicted in
Fig. 8.2. This example shows that after removing arbitrary many levels from the top of a skiplist,
the resulting structure keeps the shape of a skiplist. On the contrary, considering higher levels
may not lead to a skiplist structure. For example, (8.3) does not hold because at level 4, the
address 0x08 is not reachable from 0x01. In the case of (8.4), the predicate does not hold because
address 0x05 is missing in the set of addresses. Predicate (8.5) fails because address 0x03 is not
null terminated all all levels from level 0 to level 2. However, note how predicate (8.6) does hold
since if we consider the portion of the memory that goes from address 0x06 to address 0x08 from
level 0 up to level 1 the resulting structure has the shape of a skiplist. y

8.3 Normalization of TSL

In this section we prove the decidability of the satisfiability problem of quantifier-free TSL
formulas. The decision procedure proceeds by reducing the satisfiability problem of quantifier-free
TSL formulas to the satisfiability of quantifier-free TSLK formulas and quantifier-free Presburger
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arithmetic formulas. We start from a TSL formula ϕ in disjunctive normal form: ϕ1 ∨ · · · ∨ ϕn so
the procedure only needs to check the satisfiability of a conjunction of TSL literals in ϕi. The rest
of this section describes the decision procedure and proves its correctness.

We begin by identifying the set of normalized literals of TSL.

Definition 8.1 (TSL-normalized literals).
A TSL-literal is normalized if it is a flat literal of the form:

e1 6= e2 a1 6= a2 l1 6= l2

e1 � e2 a = null c = error

c = mkcell(e,A, l) m2 = upd(m1, a, c) c = m[a]

l1 < l2 l = q l1 = s(l2)

s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3

x = {e}E x1 = x2 ∪E x3 x1 = x2 \E x3

a = A[l] B = A{l← a}
p1 6= p2 p = [a] ordList(m, p)

s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)

s = addr2set(m, a, l) p = getp(m, a1, a2, l) skiplist(m, s, l, a1, a2)

where e, e1 and e2 are elem-variables; a, a1 and a2 are addr-variables; c is a cell-variable; m,
m1 and m2 are mem-variables; p, p1, p2 and p3 are path-variables; s, s1, s2 and s3 are setaddr-
variables; x, x1, x2 and x3 are setelem-variables; A and B array-variables; l, l1 and l2 are
level-variables and q is an level constant. y

The set of non-normalized literals consists of all flat literals not given in Definition 8.1.

Lemma 8.1:
Every non-normalized TSL-literal can be rewritten into an equivalent formula that contains only
TSL-normalized literals. y

Proof. As in the proof of Lemma 7.1 that allows to normalize TSLK literals, we present equiv-
alences and prove their validity. The left hand sides of these equivalences correspond to non-
normalized TSL literals. Note that the right hand sides are quantifier free and contain only
normalized literals. These equivalences allow to substitute non-normalized literals with equiva-
lent formulas containing only normalized literals. We now present only the equivalences that
correspond to new functions or predicates not present nor similar to the ones that belong to TSLK.
These are:

e = c.data ↔ (∃arrayA ∃levell) [c = mkcell (e,A, l)] (8.7)

A = c.arr ↔ (∃eleme ∃levell) [c = mkcell (e,A, l)] (8.8)

l = c.max ↔ (∃eleme ∃arrayA) [c = mkcell (e,A, l)] (8.9)

m1 6=mem m2 ↔ (∃addra) [m1[a] 6= m2[a]] (8.10)
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For normalizing the literal ¬skiplist(m, r, l, ai, ae) we present the following equivalence. For
simplicity in the presentation, the right hand-side contains non-normalized literals (not including
¬skiplist), which in turn can be normalized using the other equivalences:

¬skiplist(m, r, l, ai, ae) ↔[
(∃p : path)

p = getp(m, ai,null , 0) ∧ ¬ordList(m, p)

]
∨ (NSL1)

[
(∃a : addr)(∃c : cell)

a ∈ r ∧ c = m[a] ∧ l < c.max

]
∨ (NSL2)




(∃s : setaddr)

s = addr2set(m, ai, 0) ∧ s 6= r


 ∨ (NSL3)

[
(∃l1 : level)(∃c : cell)

0 ≤ l1 ∧ l1 ≤ l ∧ c = m[ae] ∧ c.next(l1) 6= null

]
∨ (NSL4)

[
(∃l1 : level)(∃s : setaddr)

0 ≤ l1 ∧ l1 ≤ l ∧ s = addr2set(m, ai, l1) ∧ ae /∈ s

]
∨ (NSL5)




(∃llow , lhigh : level)(∃plow , phigh : path)(∃slow , shigh : setaddr)

0 ≤ llow ∧ lhigh ≤ l ∧ lhigh = s(llow ) ∧
plow = getp(m, ai, ae, llow ) ∧ slow = path2set(plow ) ∧
phigh = getp(m, ai, ae, lhigh) ∧ shigh = path2set(phigh) ∧

¬(shigh ⊆ slow )




(NSL6)

For literals of the form (m1 6=mem m2), (s1 6=setaddr s2), (s = ∅), (s3 = s1 ∩ s2), (s1 ⊆ s2), (a ∈
s), (x1 6=setelem x2), (x = ∅E), (x3 = x1 ∩E x2), (x1 ⊆E x2), (e ∈E x), (p = ε), (reach(m, a1, a2, l, p))

and (¬ordList(m, p)) the proof of the equivalences are identical to the one presented for TSLK in
Lemma 7.1. We prove the rest of the equivalences separately. For each case we assume a model
A of the first literal and show that A is a model of the corresponding formula in the right hand
side. Similarly, we assume a model B of the formula on the right and prove that B is a model of
the literal on the left.

• Equivalence (8.7). Given A, cA is an element of Acell = Aelem ×Aarray ×Alevel, so there are
x in Aelem, w in Aarray and n in Alevel with cA = (x,w, n). By the restriction on the class
TSL of models, A must satisfy that eA = x, and mkcellA(x,w, n) = cA. Hence, by taking
AA = w and lA = n the following holds in A:

(∃arrayA ∃levell) [c = mkcell (e,A, l)]

For the other direction, we assume B is a model of

(∃arrayA ∃levell) [c = mkcell (e,A, l)]

It follows, by the interpretation in B of data, that cB.dataB is eB as desired.

• Equivalences (8.8) and (8.9). The proof is analogous to (8.7).

• Equivalence (8.10). This equivalence follows easily from the extensionality principle for
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arrays.

• ¬skiplist(m, r, l, ai, ae). The translation encodes all conditions that are needed in order to
violate the skiplist shape according to the restriction to TSL interpretations. Specifically:

– Formula (NSL1) captures whether the path that connects address ai to address ae at
level 0 is not ordered.

– Formula (NSL2) holds whenever there is a node in the skiplist whose height is higher
than the maximum level of the skiplist.

– Formula (NSL3) captures whether some node of the skiplist is stored at an address
which does not belong to region r or whether some address in r is not reachable from
ai. Equivalently, whether r is indeed the region of the skiplist.

– Formula (NSL4) captures whether ae, that is the last node of the skiplist, at any level
between 0 and l is not null terminated.

– Formula (NSL5) holds whenever address ae cannot be reached from ai at any level
between 0 and l.

– Finally, formula (NSL5) is satisfied whenever some node at some level is not included
into the set of nodes at the level immediately below.

Predicates (NSL1), (NSL2), (NSL3), (NSL4), (NSL5) and (NSL6) are obtained by negating
the interpretation of skiplist in TSL and splitting all cases of (8.1).

It follows that if a model A of literal ¬skiplist(m, r, l, ai, ae) holds, then A is also a model
of the formula obtained by the disjunction of (NSL1) to (NSL6). Similarly, if we assume a
model B then it is also easy to see that it is a model of the literal ¬skiplist(m, r, l, ai, ae).

Hence, all the equivalences presented above are valid TSL equivalences, which concludes the
proof. �

Orienting these equivalences from left to right allows us to eliminate non-flat literals from a
given TSL formula, resulting in a TSL formula that only contains normalized literals. Note also
that, once again, all quantifiers introduced in these equivalences are existential quantifiers, which
can be pushed (with renaming to avoid capturing if necessary) to the front of the formula. Hence,
a quantifier-free formula (which is implicitly existentially quantified) results into a quantifier-free
formula after the rewriting step.

Example 8.4
We now present some TSL formulas we will use as running examples for the rest of the section.
Consider once again the following skiplist, presented in Fig. 8.2:

8 11 14

head tail

−∞ +∞16 202

level 0

level 1

level 2

level 3

0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08

3level 01 2 0 01 3
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and the following formula ψSAT:

ψSAT : i = 0 ∧ A = heap[head ].arr ∧ B = A{i← tail}

This formula establishes that A is the array stored at the node pointed by head in the memory
heap and that B is the array obtained by replacing in array A the pointer at level i with tail .
Clearly, ψSAT describes a formula which is satisfiable. We can now normalize ψSAT, obtaining:

ψnorm
SAT : i = 0 ∧

(
c = heap[head ] ∧
c = mkcell(e,A, l)

)
∧ B = A{i← tail}.

Let us now consider a little more complex TSL formula ψUNSAT, which is unsatisfiable:

ψUNSAT :





skiplist(heap, reg , l, head , tail) ∧ l = 3 ∧ (U1)

head 6= null ∧ tail 6= null ∧ head 6= tail ∧ (U2)

i < l ∧ a 6= tail ∧ a 6= null ∧ a ∈ addr2set(heap, head , i) ∧ (U3)

c.arr = heap[a].arr{i← null} ∧ m = upd(heap, a, c) ∧ (U4)

skiplist(m, reg , l, head , tail) (U5)

The formula ψUNSAT describes a situation in which an incorrect manipulation of a skiplist of height
3 (like the one depicted in Fig. 8.2) leads to a data structure which does not satisfy the skiplist
shape property anymore. In ψUNSAT, we have that:

• Condition (U1) states that there is a skiplist of height 3 stored in the memory heap which
goes from address head up to address tail .

• Condition (U2) sets some conditions for the addresses head and tail , like they must not be
equal between them, nor equal to null .

• Condition (U3) establishes the presence of an address a, different from tail and null , which
is reachable form head at an arbitrary level i which is strictly lower than l.

• Condition (U4) says that c is a cell whose array of pointers arr matches the array of pointers
stored at the cell pointed by a in heap, except for the address at level i, which is set to null .
This condition also establishes that memory m is a copy of memory heap, except that the
cell at address a is replaced by cell c.

• Finally, condition (U5) says that in memory m has the shape of a skiplist of height 3 that
goes from head up to tail and whose cells are stored in the addresses that make the set of
addresses reg .

Formula ψUNSAT is unsatisfiable because conditions (U1), (U2), (U3) and (U4) clearly break the
skiplist layout of the data structure, and hence condition (U5) cannot hold. The key to make
formula ψUNSAT unsatisfiable is that we are making null terminated a level lower than l at a
cell that is not tail . This change prevents the set of addresses reachable from head in the level
immediately on top of level i to be included into the set of addresses reachable from head at level
i, which is one of the required conditions for a layout to have the shape of a skiplist.
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We can now normalize formula ψUNSAT, obtaining ψnorm
UNSAT:

ψnorm
UNSAT :





skiplist(heap, reg , l, head , tail) ∧ l = 3 ∧ (UN1)

n = null ∧ head 6= n ∧ tail 6= n ∧ head 6= tail ∧ (UN2)

i < l ∧
(
a 6= tail ∧
a 6= n

)
∧




s = addr2set(heap, head , i)

∧
a ∈ s


 ∧ (UN3)




d = heap[a] ∧
d = mkcell(e1, A, j1) ∧
c = mkcell(e2, B, j2) ∧

B = A{i← n}



∧ m = upd(heap, a, c) ∧ (UN4)

skiplist(m, reg , l, head , tail) (UN5)

Here (UN1), (UN2), (UN3), (UN4) and ,(UN5) correspond to the normalized version of (U1),
(U2), (U3), (U4) and (U5) respectively. y

Following the result of Lemma 8.1, the resulting formula after normalization can then be
converted into its disjunctive normal form, what let us obtain the following result.

Lemma 8.2 (Normalized Literals):
Every TSL-formula is equivalent to a disjunction of conjunctions of normalized TSL-literals. y

8.4 Decidability of TSL

We now proceed to present the decision procedure for quantifier-free TSL normalized formulas
sketched in Fig. 8.7. This procedure reduces the decision problem of quantifier-free TSL formulas
to the satisfiability of quantifier-free TSLK formulas and quantifier-free Presburger arithmetic
formulas.

Our procedure starts from a TSL formula ϕ expressed as a normalized conjunction of literals.
The main idea is to guess a feasible arrangement between level variables, and then extract
from ϕ the relevant levels, generating a TSLK formula that uses only relevant levels and respects
the guessed arrangement. The original TSL formula is satisfiable and compatible with the
arrangement if and only if the generated TSLK formula is satisfiable. To formally prove this, we
proceed constructively populating the missing levels (after ignoring the literals l = q) by cloning
intermediate levels as needed.

The main problem to perform this reduction is that literals of the form l = q for some constant
q (like l = 3 for example) preclude the removal of levels and the generation of the TSLK formula.
Our procedure includes a transformation that preservers satisfiability and allows to exclude
literals of the form l = q in the formula generated that is subsequently reduced to TSLK (see
Fig. 8.8).

We now proceed to describe each step of the decision procedure separately.
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To decide whether ϕin : TSL is SAT:

STEP 1. Sanitize: ϕ := ϕin ∧
∧

B=A{l←a}∈ϕin

(lnew = l + 1)

STEP 2. Guess arrangement α of Vlevel(ϕ).

STEP 3. Split ϕ into (ϕPA ∧ α) and (ϕNC ∧ α).

STEP 4. Check SAT of (ϕPA ∧ α). If UNSAT→ return UNSAT

STEP 5. Check SAT of (ϕNC ∧ α) as follows:

STEP 5.1 Let k = |Vlevel(ϕNC ∧ α)|.

STEP 5.2 Check pϕNC ∧ αq : TSLK(k). If SAT→ return SAT
else return UNSAT.

Figure 8.7: Steps of the decision procedure for the satisfiability of TSL formulas.

8.4.1 STEP 1: Sanitization

The decision procedure begins by sanitizing the normalized collection of literals received as input.
The sanitization process guarantees that the satisfiability is preserved in the split step. Formally,
this preservation will be proven by showing that a model of the original formula can be built
from a model of the split formulas, populating the removed intermediate levels.

Definition 8.2 (Sanitized).
A conjunction of normalized literals is sanitized if for every literal B = A{l← a} there is a literal
of the form l2 = l + 1. y

A formula can be easily sanitized by adding a fresh variable lnew and a literal lnew = l + 1 for
every literal B = A{l ← a} in case there is no literal of the form l2 = l + 1 for some l2 already
in the formula. The fresh level variables in sanitized formulas will be later used in the proof of
Theorem 8.1 to construct a proper model of the TSL formula by replicating level lnew instead
of level l. Sanitization allows to show the existence of models with constants from models of
sub-formulas without constants.

Sanitizing a formula does not affect its satisfiability because it only adds an arithmetic
constraint (lnew = l + 1) where lnew is a fresh new level variable. Hence, a model of ϕ (the

l = q

l 6= l2

l = l + 1

Σord
Σarray

Σcell

Σmem
Σreach

Σbridge

l < l2ϕPA

ϕNC

Figure 8.8: A split of ϕ obtained after STEP 1 into ϕPA and ϕNC.
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sanitized formula) is a model for ϕin (the input formula), and from a model of ϕin one can
immediately build a model of ϕ by computing the values of the fresh variables lnew.

Example 8.5
Consider again the normalized formulas ψnorm

SAT and ψnorm
UNSAT introduced in Example 8.4. After

sanitizing these formulas we obtain ψsanit
SAT and ψsanit

UNSAT:

ψsanit
SAT : ψnorm

SAT ∧ lnew = i+ 1

ψsanit
UNSAT : ψnorm

UNSAT ∧ lnew = i+ 1 y

8.4.2 STEP 2: Order Arrangements

A model of a TSL formula maps a level variable to a natural number. Hence, every two variables
are either assigned the same value or their values are ordered by the usual order between natural
numbers. That is, in a given modelM of a formula ϕ, for every pair of level variables l1 and
l2 occurring in ϕ, there is exactly one of the formulas l1 = l2, l1 < l2 and l2 < l1 that hold in
M. We call the arithmetic formulas that capture the relations between level variables an order
arrangement.

Definition 8.3 (Order Arrangement).
Given a sanitized formula ϕ, an order arrangement is a collection of literals containing, for every
pair of level variables l1, l2 ∈ Vlevel(ϕ), exactly one of the following:

l1 = l2 l1 < l2 l2 < l1 y

For instance, an order arrangement of ψsanit
SAT is {i < lnew, i < l, lnew < l}. Since there is a finite

number of level variables in a formula ϕ, there is a finite number of order arrangements. Note
also that a formula ϕ is satisfiable if and only if there is an order arrangement α such that ϕ ∧ α
is satisfiable. STEP 2 of the decision procedure consists of guessing an order arrangement α for
the given sanitized formula.

8.4.3 STEP 3: Split

This step of the decision procedure begins by splitting the sanitized formula ϕ into ϕPA, which
contains precisely all those literals in the theory of arithmetic Σlevel, and ϕNC containing all literals
from ϕ except those involving constants of sort level (l = q). Clearly, ϕ is equivalent to ϕNC ∧ ϕPA.

Example 8.6
Consider the sanitized formulas ψsanit

SAT and ψsanit
UNSAT defined in Example 8.5. In the case of ψsanit

SAT ,
the formula is split into ψPA

SAT and ψNC
SAT:

ψPA
SAT : i = 0 ∧ lnew = i+ 1

ψNC
SAT :

(
c = heap[head ] ∧
c = mkcell(e,A, l)

)
∧ B = A{i← tail} ∧ lnew = i+ 1
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Similarly, formula ψsanit
UNSAT is split into ψPA

UNSAT and ψNC
UNSAT:

ψPA
UNSAT : l = 3 ∧ i < l ∧ lnew = i+ 1

ψNC
UNSAT :





skiplist(heap, reg , l, head , tail) ∧
n = null ∧ head 6= n ∧ tail 6= n ∧ head 6= tail ∧
(

i < l ∧
lnew = i+ 1

)
∧
(
a 6= tail ∧
a 6= n

)
∧




s = addr2set(heap, head , i)

∧
a ∈ s


 ∧




d = heap[a] ∧
d = mkcell(e1, A, j1) ∧
c = mkcell(e2, B, j2) ∧

B = A{i← n}



∧ m = upd(heap, a, c) ∧

skiplist(m, reg , l, head , tail) y

STEP 3 uses the order arrangement guessed in STEP 2 to reduce the satisfiability of a
sanitized formula ϕ that follows an order arrangement α into:

1) the satisfiability of a Presburger arithmetic formula (ϕPA ∧ α), which will be checked later in
STEP 4; and

2) the satisfiability of a sanitized formula without constants (ϕNC ∧ α), which will be checked in
STEP 5.

We now show that ϕ is satisfiable if and only if for some arrangement α bot (ϕPA ∧ α) and
(ϕNC ∧ α) are satisfiable.

An essential notion to show the correctness of this split and reduction is that of a gap, which
is a level in a model that is not named explicitly by a level variable.

Definition 8.4 (Gap).
Let A be a model of ϕ. We say that a natural number n is a gap in A if there are variables l1, l2 in
Vlevel(ϕ) such that lA1 < n < lA2 , but there is no variable l in Vlevel(ϕ) with lA = n. y

Example 8.7
Consider the formula ψsanit

SAT introduced in Example 8.5, for which

Vlevel(ψ
sanit
SAT ) = {i, lnew, l}.

A model Aψsanit
SAT

of ψsanit
SAT that interprets variables i, lnew and l as 0, 1 and 3 respectively has a gap

at 2. y

A gap-less model is a model without gaps, either between two level variables or above any level
variable.

203



CHAPTER 8. TSL: A DECIDABLE THEORY FOR SKIPLISTS WITH UNBOUNDED LEVELS

Definition 8.5 (Gap-less model).
A model A of ϕ is a gap-less model whenever it has no gaps, and for every array C in the domain
arrayA:

C(n) = null

for every n with n > lA for all l ∈ Vlevel(ϕ). y

We prove now the existence of a gap-less model given that there is a model. We first need
one last auxiliary notion to ease the construction of similar models, by setting a condition under
which reachability at different levels is preserved.

Definition 8.6 (Sort agreement).
Two interpretations A and B of a formula ϕ agree on sorts σ whenever all of the following hold:

1. Aσ = Bσ. That is, the domains for sorts σ coincide.

2. For every v ∈ Vσ(ϕ), vA = vB. That is, the interpretations of variables coincide.

3. For every function symbol f with domain and co-domain from sorts in σ, fA = fB and for
every predicate symbol P with domain in σ, PA iff PB. y

Lemma 8.3:
Let A and B be two interpretations of a sanitized formula ϕ that agree on sorts addr, elem, path,
setaddr, setelem, and such that for every level variable l ∈ Vlevel(ϕ), m ∈ Vmem(ϕ), and a ∈ Aaddr:

mA(a).arrA(lA) = mB(a).arrB(lB) (8.11)

It follows that, for every p ∈ Vpath(ϕ), ainit ∈ Vaddr(ϕ) and aend ∈ Vaddr(ϕ):

reachA(mA, aAinit, a
A
end, l

A, pA) if and only if reachB(mB, aBinit, a
B
end, l

B, pB). y

Proof. Let A and B be two interpretations of ϕ satisfying the conditions established in the
statement of Lemma 8.3, and assume that reachA(mA, aAinit, a

A
end, l

A, pA) holds for some ainit, aend ∈
Vaddr(ϕ), m ∈ Vmem(ϕ) and p ∈ Vpath(ϕ). Note that, by assumption, aAinit = aBinit, a

A
end = aBend and

pA = pB. We consider the cases for pA:

(1) If pA = ε then aAinit = aAend. Consequently, pB = ε and aBinit = aBend, so for interpretation B, the
predicate reachA(mB, aBinit, a

B
end, l

B, pB) also holds.

(2) The other case is: p = [a1, . . . , an] with a1 = ainit and mA(an).arrA(lA) = aend, and for every
r < n, mA(ar).arrA(lA) = ar+1. It follows, by

mA(a).arrA(lA) = mB(a).arrB(lB)

that mB(an).arrB(lB) = aend, and for every r < n, mB(ar).arrB(lB) = ar+1. Hence,
reachA(mB, aBinit, a

B
end, l

B, pB).
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The other direction follows by symmetry. �

At the end of the split phase in STEP 3 we obtain a sanitized formula without constants. We
show now that if a sanitized formula without constants has a model then it has a model without
gaps.

Lemma 8.4 (Gap-reduction):
Let A be a model of a sanitized formula ϕ without constants, and let A have a gap at n. Then,
there is a model B of ϕ such that, for every l ∈ Vlevel(ϕ):

lB =




lA if lA < n

lA − 1 if lA > n

That is, the number of gaps in B is one less than in A. y

Proof. Let A be a model of ϕ with a gap at n. We build a model B with the condition in the
lemma as follows. The model B agrees with A on addr, elem, path, setaddr and setelem. In
particular, vB = vA for variables of these sorts. For the other sorts σ ∈ {level, array, cell,mem}, we
let Bσ = Aσ. We define the following transformation maps that capture how the elements in the
domains in B are built from elements in the corresponding domain in A:

βlevel(j) =




j if j < n

j − 1 otherwise
βarray(A)(i) =





A(i) if i < n

A(i+ 1) if i ≥ n

βcell((e,A, l)) = (e, βarray(A), βlevel(l)) βmem(m)(a) = βcell(m(a))

Now we are ready to define the valuations of variables l ∈ Vlevel(ϕ), A ∈ Varray(ϕ), c ∈ Vcell(ϕ)

and m ∈ Vmem(ϕ):

lB = βlevel(l
A) AB = βarray(A

A) cB = βcell(c
A) mB = βmem(mA)

The interpretation of all functions and predicates is preserved from A into B.
The next step is to show that B is indeed a model of ϕ. All literals of the following form hold

in B if and only if they hold in A, because the valuations and interpretations of functions and
predicates of the corresponding sorts are preserved:

e1 6= e2 a1 6= a2 l1 6= l2

e1 � e2 a = null c = error

l1 < l2 l = q

s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3

x = {e}E x1 = x2 ∪E x3 x1 = x2 \E x3

p1 6= p2 p = [a] ordList(m, p)

s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)

Literals of the form c = m[a] and m2 = upd(m1, a, c) hold in B whenever they do in A,
because the same transformations are performed on both sides of the equation.
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Finally, we show the remaining literals:

• Literal c = mkcell(e,A, l). Assuming cA = mkcell(eA, AA, lA) we have that:

mkcell(eB, AB, lB) = mkcell(eA, βarray(A
A), βlevel(l

A)) = βcell(c
A) = cB

• Literal a = A[l]. Assuming aA = AA[lA], we have two possible cases for lA:

1. Case lA < n. In this case, we have that:

AB[lB] = AA[lA] = aA = aB

2. Case lA > n. In this case, we have that:

AB[lB] = AA[(lA − 1) + 1] = AA[lA] = aA = aB

Note that it is critical that the removed level was not named by a variable (which is true
because we are removing a gap), so the two cases above are exhaustive.

• Literal B = A{l← a}. Assume that BA = AA{lA ← aA} and consider an arbitrary m ∈ N.
We have three possible cases:

1. Case m = lB. In this case, we have that:

(AB{lB ← aB})(m) = (βarray(A
A){lB ← aB})(m) = aB

2. Case m 6= lB and m < n. In this case, we have that:

(AB{lB ← aB})(m) = (βarray(A
A){lB ← aB})(m)

= (βarray(A
A))(m)

= AA(m)

= BA(m)

= βarray(B
A(m))

= BB(m)

3. Case m 6= lB and m ≥ n. In this case, we have:

(AB{lB ← aB})(m) = (βarray(A
A){lB ← aB})(m)

= (βarray(A
A))(m)

= AA(m+ 1)

= BA(m+ 1)

= βarray(B
A)(m)

= BB(m)

Again, the cases are exhaustive because the removed level is not named by any level variable,
including l.
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• Literals s = addr2set(m, a, l) and p = getp(m, a1, a2, l). We first prove that for all variables
m and l, elements of the address domain ainit and aend and paths p, reach(mA, ainit, aend, l

A, p)

if and only if reach(mB, ainit, aend, l
B, p). Assume reach(mA, ainit, aend, l

A, p), then either
ainit = aend and p = ε, in which case reach(mB, ainit, aend, l

B, p), or there is a sequence of
addresses a1, . . . , ak with

(a) p = [a1 . . . ak]

(b) a1 = ainit

(c) mA(ar).arrA(lA) = ar+1, for r < k

(d) mA(ak).arrA(lA) = aend

Consider an arbitrary r < k. Either lA < n or lA > n (recall that lA is either strictly under
or strictly over the gap). In either case,

mB(ar).arrB(lB) = mA(ar).arrA(lA) = ar+1

And also,

mB(ak).arrB(lB) = mB(ak).arrB(lB) = aend.

Hence, conditions (a), (b), (c) and (d) hold for B and then reach(mB, ainit, aend, l
B, p). Es-

sentially, predicate reach only depends on pointers at level l and all relevant connectivity
properties at level l are preserved from interpretation A to interpretation B. The other
direction holds similarly. From the preservation of the reach predicate it follows that, if
addr2set(mA, aA, lA) = sA then

addr2set(mB, aB, lB) = {a′ | ∃p ∈ Bpath . (m, a, a′, l, p ∈ reachB}
= {a′ | ∃p ∈ Apath . (m, a, a′, l, p ∈ reachA}
= addr2set(mA, aA, lA)

= sA

= sB

Finally, assume that pA = getp(mA, aA1 , a
A
2 , l
A). If (mA, aA1 , a

A
2 , l
A, pA) ∈ reachA then

(mB, aB1 , a
B
2 , l
B, pB) ∈ reachB and hence pB = getp(mB, aB1 , a

B
2 , l
B). The other possible case

is that ε = getp(mA, aA1 , a
A
2 , l
A) when

for no path p, (mA, aA1 , a
A
2 , l
A, p) ∈ reachA

but then also

for no path p, (mB, aB1 , a
B
2 , l
B, p) ∈ reachB

and then ε = getp(mB, aB1 , a
B
2 , l
B), as desired.

• Literal skiplist(m, r, l, a1, a2). We assume skiplist(mA, rA, lA, aA1 , a
A
2 ). This implies:
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i) ordListA(mA, getpA(aA1 , a
A
2 , 0)).

Let p be an element of Apath such that p = getpA(aA1 , a
A
2 , 0)). As shown previously,

p = getpB(aB1 , a
B
2 , 0)). Then

ordListB(mB, getpB(aB1 , a
B
2 , 0))

holds because

ordListA(mA, getpA(aA1 , a
A
2 , 0))

holds.

ii) rA = path2setA(getpA(mA, aA1 , a
A
2 , 0)).

In this case, we have that

rB = path2setB(getpB(mB, aB1 , a
B
2 , 0))

because we have that

getpB(mB, aB1 , a
B
2 , 0) = getpA(mA, aA1 , a

A
2 , 0)

iii) for every a ∈ rA, mA(aA).maxA ≤ lA.
Since rB = rA and mB(a) = βcell(m

A(a)), it is enough to consider two cases:

1) mA(a).maxA = lA, in which case mB(a).maxB = lB.

2) mA(a).maxA < lA, in which case mA(a).maxA ≤ lA.

iv) If (0 = lA) then (0 = lB).

v) If (0 < lA), and for all i within 0 < i < lA:

mA(aA2 ).arrA(i) = nullA

aA2 ∈ addr2setA(mA, aA1 , i)

path2setA(getpA(mA, aA1 , a
A
2 , i+ 1)) ⊆ path2setA(getpA(mA, aA1 , a

A
2 , i))

Note that 0 < lB, because 0 is never removed. Then for all i within 0 < i < lB:

1) Since nullB = nullA and mB(a2) = βcell(m
A(a2)), we have that

mB(a2).arrB(i) = nullB

2) If aA2 ∈ addr2setA(mA, aA1 , i), from what we have show before, we have that
addr2setA(mA, aA1 , i) = addr2setB(mB, aB1 , i) and as aA2 = aB2 , we have that:

aB2 ∈ addr2setB(mB, aB1 , i)

3) If path2setA(getpA(mA, aA1 , a
A
2 , i + 1)) ⊆ path2setA(getpA(mA, aA1 , a

A
2 , i)), from

what we have shown before, we have that:

getpB(mB, aB1 , a
B
2 , i+ 1) = getpA(mA, aA1 , a

A
2 , i+ 1) and

getpB(mB, aB1 , a
B
2 , i) = getpA(mA, aA1 , a

A
2 , i)
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Hence,

path2setB(getpB(mB, aB1 , a
B
2 , i+ 1)) ⊆ path2setB(getpB(mB, aB1 , a

B
2 , i))

This concludes the proof. �

Example 8.8
Consider the formula ψsanit

SAT introduced in Example 8.5:

ψsanit
SAT : i = 0 ∧

(
c = heap[head ] ∧
c = mkcell(e,A, l)

)
∧ B = A{i← tail} ∧ lnew = i+ 1

Let A be the model Aψsanit
SAT

presented in Example 8.7, in which:

iA = 0 lAnew = 1 lA = 3

We can then construct a model B of ψsanit
SAT by reducing one gap from A by stating that

iB = iA lnew
B = lnew

A lB = 2

completely ignoring arrays in model A at level 2. y

With the previous Lemma we have shown that if a sanitized TSL formula without constants
has a model, then it has a model without gaps. We now present a Lemma that allows to remove
levels above any level mentioned in the formula.

Lemma 8.5 (Top-reduction):
Let A be a model of ϕ, and n a level such that n > lA for all l ∈ Vlevel(ϕ). Let A ∈ Aarray be such
that A(n) 6= null . Then the interpretation B obtained from A by replacing A(n) = null is also a
model of ϕ. y

Proof. By a simple exhaustive case analysis on the literals of ϕ using Lemma 8.3. �

Thanks to the previous two Lemmas, we know that if a TSL formula ϕ has a model A, then it
is possible to construct a model B which preserves the satisfiability of ϕ and such that B has no
gaps.

Corollary 8.1:
Let ϕ be a sanitized formula without constants. Then, ϕ has a model if and only if ϕ has a gap-less
model. y

We are now ready to show that the guess in STEP 2 and the split in STEP 3 preserve
satisfiability. Theorem 8.1 below allows to reduce the satisfiability of ϕ to the satisfiability of a
Presburger arithmetic formula and the satisfiability of a TSL formula without constants. We will
then show how to decide this fragment of TSL.
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Theorem 8.1:
A sanitized TSL formula ϕ is satisfiable if and only if for some order arrangement α, both
(ϕPA ∧ α) and (ϕNC ∧ α) are satisfiable. y

Proof. The “⇒” direction follows immediately, since a model of ϕ contains a model of its
subformulas ϕPA and ϕNC, and a model of ϕPA induces a satisfying order arrangement α.

For “⇐”, let α be an order arrangement for which both (ϕPA ∧ α) and (ϕNC ∧ α) are satisfiable,
and let N be a model of (ϕNC ∧ α) and P be a model of (ϕPA ∧ α). By Corollary 8.1, we assume
that N is a gap-less model. In particular, for all variables l ∈ Vlevel(ϕ), then lN < K, where
K = |Vlevel(ϕ)|, and for all cells c ∈ Ncell, with c = (e,D, l), lN < K. We construct the modelM of
ϕ forcingM to assign values to variables from Vlevel(ϕ) that are consistent with α. The obstacle
is that the values for level variables in N and in P may be different, so the models cannot be
immediately merged. We will build a modelM of ϕ using N and P.

InM, all levels will receive lM = lP and contents of cells will be filled using information from
cells in N . In particular, cells at level lM are copied from the corresponding cells at level lN . The
remaining issue is how to fill in cells inM at intermediate levels, not existing in N . We show that
these levels can be populated by cloning existing levels from N , illustrated in Fig. 8.9(a). The
two reasonable candidates to populate the necessary levels between lM1 and lM2 , are level lN1 and
level lN2 , but without sanitization both options can lead to a predicate changing its truth value
between models N andM, as illustrated in Fig. 8.9(b) and Fig. 8.9(c). With sanitization, level
lnew can be used to populate the intermediate levels, preserving the truth values of all predicates
between models N andM.

Let KPA be the largest value assigned by P to any variable from Vlevel(ϕ). In the rest of this
chapter we will use [K] as a short for the set 0 . . .K− 1. We start by defining the following maps:

up : [K] → [KPA] fill : [KPA] → [K]

lN 7→ lP n 7→ max{k ∈ [K] | up(k) ≤ n}

Essentially, fill provides the level from N that will be used to fill the missing level in modelM.
Some easy facts that follow from the choice of the definition of up and fill are that, for every
variable l in Vlevel(ϕ), fill(up(lN )) = lN .

l2

l1l1

l2
?

l1

lnew

l2

(a) (b) (c) (d)

Figure 8.9: Pumping a model N of ϕNC (on the left of (a), (b), (c) and (d)) to a modelM of ϕ
(on the right of (a), (b), (c) and (d)) is allowed thanks to the fresh level lnew. In (b) the truth
value of C = D{l1 ← e} is not preserved. In (c) C = D{l2 ← e} is not preserved. In (d) all
predicates are preserved.
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Also, every literal of the form:

C = D{l← a} satisfies that fill(l + 1) = fill(l) + 1 (8.12)

because a sanitized formula ϕ contains a literal lnew = l+ 1 for every literal C = D{l← a} that is
present in ϕ.

We describe now how to build a modelM of ϕ. The only literals missing in ϕNC with respect
to ϕ are literals of the form l = q for constant level q. The interpretationM agrees with N on
sorts addr, elem, path, setaddr, setelem. Also, we set the domainMlevel to be the naturals with
order, and

Mcell = Melem ×Marray ×Mlevel

Mmem = MMaddr

cell

For level variables, we let vM = vP , where vP is the interpretation of variable v in P, the model
of (ϕPA ∧ α). Note that vM = vP = up(vN ). For arrays, we defineMarray to be the set of arrays
of addresses indexed by naturals, and define the transformation βarray : Narray →Marray defined
as follows:

βarray(D)(i) = D(fill(i))

Elements of sort cell c : (e,D, l) are transformed into:

βcell(c) = (e, βarray(D),fill(l))

Variables D of sort array and variables c of sort cell are interpreted as:

DM = βarray(D
N ) cM = βcell(c

N )

Finally, heaps are transformed by returning the transformed cell. That is, for every v ∈ Vmem, we
let:

vM(a) = βcell(v
N )(a)

We only need to show thatM is indeed a model of ϕ. Interestingly, all literals l = q inM are
immediately satisfied because lM = lP and qM = qP , and the literal (l = q) holds in the model
P of (ϕPA ∧ α). The rest of the arithmetic literals also hold inM because they hold in P and
the values of the terms involved are copied from P intoM: l1 < l2, l1 = l2 + 1 and l1 6= l2. The
following literals hold inM because they hold in N and their subformulas either receive the
same values inM as in N or the transformations are the same on both sides:

e1 6= e2 a1 6= a2

e1 � e2 a = null c = error

c = mkcell(e,A, l) m2 = upd(m1, a, c) c = m[a]

l1 < l2 l = q l1 = s(l2)

s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3

x = {e}E x1 = x2 ∪E x3 x1 = x2 \E x3
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p1 6= p2 p = [a] ordList(m, p)

s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)

Finally, observe that (s = addr2set(m, a, l)) and (p = getp(m, a1, a2, l)) hold inM whenever
they hold in N , directly from Lemma 8.3. The remaining literals are:

• Literal a = D[l]. Assume aN = DN [lN ]. Then, inM, aM = aN and

DM[lM] = βarray(D
N )[lM]

= DN (fill(lP))

= DN (fill(up(lN )))

= DN (lN )

= aN

= aM

• Literal C = D{l← a}. We distinguish the two possible cases:

1) First, let n = lM. Then,

CM{lM ← a}(n) = CM{lM ← a}(lM) = a

and

DM(n) = DM(lM) = DN (fill(lM)) = DN (fill(up(lN ))) = DN (lN ) = a

2) The second case is n 6= lM. Then,

CM{lM ← a})(n) = CM(n) = CN (fill(n))

and

DM(n) = DN (fill(n))

Now, we have that fill(n) 6= lN . To show this we consider the two cases for n 6= lM:

– If n < lM then, since fill(n) = max{k ∈ [K]|up(k) ≤ n} by definition, up(lN ) =

lM > n and fill(n) < lN which implies that fill(n) 6= lN .

– If n > lM then n ≥ lM + 1. By (8.12) above, there is a different literal lnew = l + 1

for which fill(n) ≥ fill(lMnew) > fill(lM) = lN

Now, since in both cases fill(n) 6= lN , then

DM(n) = DN (fill(n))

= CN (fill(n))

= CN {lN ← a}(fill(n))

= CM{lM ← a}(n)

Essentially, the introductions of a variable lnew = l + 1 restricts the replication of identical
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levels to only the level l in D = C{l← a}. All higher and lower levels are replicas of levels
different than l (where C and D agree as in model N ).

• Literals s = addr2set(m, a, l) and p = getp(m, a1, a2, l). By induction on the length of paths,
we have that for all lN :

(mN , aN , bN , lN , pN ) ∈ reachN iff (mM, aM, bM, lM, pM) ∈ reachM (8.13)

It follows that sN = addr2set(mN , aN , lN ) implies sM = addr2set(mM, aM, lM). Also
pN = getp(mN , aN1 , a

N
2 , l
N ) implies that pM = getp(mM, aM1 , aM2 , lM). Essentially, since

level lM inM is a replica of level lN in N , the transitive closure of following pointers is
the same paths (for getp) and also the same sets (for addr2set).

• skiplist(m, r, l, a1, a2). We assume skiplist(mN , rN , lN , aN1 , a
N
2 ). This implies all of the

following in N :

i) ordListN (mN , getpN (aN1 , a
N
2 , 0)).

Let p be such that p = getpN (aN1 , a
N
2 , 0)). As a consequence of (??) we have that

p = getpM(aM1 , aM2 , 0)), and then:

ordListN (mN , getpN (aN1 , a
N
2 , 0)) implies ordListM(mM, getpM(aM1 , aM2 , 0))

ii) rN = path2setN (getpN (mN , aN1 , a
N
2 , 0)).

Because getpM(mM, aM1 , aM2 , 0) = getpN (mN , aN1 , a
N
2 , 0), we also have that:

rM = path2setM(getpM(mM, aM1 , aM2 , 0))

iii) 0 ≤ lN , which implies 0 ≤ lM.

iv) For all a ∈ rN , the following holds mN (aN ).maxN ≤ lN . Since rM = rN and
mM(a) = βcell(m

N (a)) it is enough to consider two cases:

1) mN (a).maxN = lN , in which case mM(a).maxM = lM.

2) mN (a).maxN < lN , in which case mN (a).maxN ≤ lN .

v) If (0 = lN ) then (0 = lM).

vi) If (0 < lN ), then 0 < lM. Also, for all i from 0 to lN :

mN (aN2 ).arrN (i) = nullN

aN2 ∈ addr2setN (mN , aN1 , i)

path2setN (getpN (mN , aN1 , a
N
2 , i+ 1)) ⊆ path2setN (getpN (mN , aN1 , a

N
2 , i))

Consider an arbitrary i between 0 and lM. It follows that fill(i) ≤ fill(lM) so fill(i) ≤ lN
and then:

1) mM(a2).arrM(i) = mM(a2).arrN (fill(i)) = nullN = nullM

2) As aN2 ∈ addr2setN (mN , aN1 , i) and aM2 = aN2 , then:

aM2 = aN2 ∈ addr2setN (mN , aN1 ,fill(i)) = addr2setM(mM, aM1 , i)
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3) For path2set we have:

path2setM(getpM(mM, aM1 , aM2 , i+ 1)) =

path2setN (getpN (mN , aN1 , a
N
2 ,fill(i+ 1))) ⊆

path2setN (getpN (mN , aN1 , a
N
2 ,fill(i))) =

path2setM(getpM(mM, aM1 , aM2 , i))

This concludes the proof. �

8.4.4 STEP 4: Presburger Constraints

At this point, the formula (ϕPA ∧ α) contains only literals of the form l1 = q, l1 6= l2, l1 = l2 + 1,
and l1 < l2 for integer variables l1 and l2 and integer constant q. The satisfiability of this kind of
formulas can be easily decided with off-the-shelf SMT solvers or other decision procedures for
Presburger arithmetic. If (ϕPA ∧ α) is unsatisfiable, then the original formula (for the guessed
order arrangement) is also unsatisfiable. If (ϕPA ∧ α) is satisfiable, then we need to check the
satisfiability of (ϕNC ∧ α) in the next step of our decision procedure.

8.4.5 STEP 5: Deciding Satisfiability of Formulas Without Constants

In steps 1 to 4 we have reduced the satisfiability check of a given TSL formula into guessing
an arrangement, checking the satisfiability of a Presburger arithmetic formula and checking the
existence of a gap-less model of a sanitized formula with no constants.

We show here a reduction of the satisfiability of a sanitized formula without constants to the
satisfiability of a formula in the decidable theory TSLK for a sufficiently large K. That is, we
detail how to generate from a sanitized formula without constants ψ (formula (ϕNC ∧ α) in
Fig. 8.7 and Fig. 8.8) an equisatisfiable TSLK formula pψq for a finite value K computed from the
formula. The bound for K is the number of equivalence classes within the arrangement α, which
is certainly lower or equal than |Vlevel(ψ)|. This bound limits the number of levels required in the
reasoning.

Example 8.9
For the formula ψsanit

SAT defined in Example 8.5 we have that Vlevel(ψ
sanit
SAT ) = {i, l, lnew} and thus

we need to construct a formula in, at most, TSL3. For example, if for such formula we would
have guessed the arrangement {i < lnew, i < l, lnew = l}, we would require to construct a formula
in TSL2. On the other hand, for formula ψsanit

UNSAT we have that Vlevel(ψ
sanit
UNSAT) = {i, l, lnew, j1, j2}

and hence we need to construct a formula in, at most, TSL5. y

The translation from ψ into pψq works as follows. For every variable D of sort array appearing
in some literal in ψ we introduce K fresh new variables vD[0], . . . , vD[K−1] of sort addr. These
variables correspond to the addresses from D that the decision procedure for TSLK needs to
reason about. All literals from ψ are left unchanged in pψq except (c = mkcell(e,D, l)), (a = D[l]),
(C = D{l← a}) and skiplist(m, s, l, a1, a2) that are changed as follows:
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• Literal c = mkcell(e,D, l) is transformed into:

c = (e, vD[0], . . . , vD[K−1])

• Literal a = D[l] gets translated into:

∧

i∈[K]

l = i→ a = vD[i]

• Literal C = D{l← a} is translated into:

( ∧

i∈[K]

l = i→ a = vC[i]

)
∧

( ∧

j∈[K]

l 6= j → vC[j] = vD[j]

)
(8.14)

• Literal skiplist(m, r, l, a1, a2) gets translated into:




ordList(m, getp(m, a1, a2, 0)) ∧ r = path2set(getp(m, a1, a2, 0)) ∧
∧

i∈[K]

m[a2].arr [i] = null ∧
∧

i∈[K]

a2 ∈ addr2set(m, a1, i) ∧
∧

i∈[K−1]

path2set(getp(m, a1, a2, i+ 1)) ⊆ path2set(getp(m, a1, a2, i))




(8.15)

Note that a conjunct of the form
∧
i∈[K]

is simply a notation for a finite collection of conjuncts

for the previously fixed value K. For example, for K = 3,

∧

i∈[K]

l = i→ a = vA[i]

is simply (
l = 0→ a = vA[0]

)
∧
(
l = 1→ a = vA[1]

)
∧
(
l = 2→ a = vA[2]

)

The formula pϕq obtained using these translations belongs to the theory TSLK.

Example 8.10
For instance, if we consider the formula ψNC

SAT presented in Example 8.6, we have:

pψNC
SATq :




i = 0→ tail = vB[0] ∧ i = 1→ tail = vB[1] ∧ i = 2→ tail = vB[2] ∧
i 6= 0→ vB[0] = vA[0] ∧ i 6= 1→ vB[1] = vA[1] ∧ i 6= 2→ vB[2] = vA[2] ∧
c = heap[head ] ∧ c = mkcell(e, vA[0], vA[1], vA[2]) ∧ lnew = i+ 1




y

The following Lemma establishes the correctness of the translation.
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Lemma 8.6:
Let ψ be a sanitized TSL formula with no constants. Then, ψ is satisfiable if and only if pψq is
also satisfiable. y

Proof. Directly from Lemmas 8.7 and 8.8 below. �

Lemma 8.7:
Let ϕ be a normalized set of TSL literals with no constants. Then, if ϕ is satisfiable then pϕq is
also satisfiable. y

Proof. Assume ϕ is satisfiable. By Corollary 8.1, ϕ has a gap-less model A. This model A satisfies
that for every natural i from 0 to K− 1 there is a level l ∈ Vlevel(ϕ) with lA = i.

Building a Model B. We now construct a model B of pϕq. For the domains:

Baddr = Aaddr Belem = Aelem Bpath = Apath Bsetaddr = Asetaddr Bsetelem = Asetelem

and:
Blevel = [K] Bcell = Belem × BK

addr Bmem = BBaddr

cell

For the variables, we let vB = vA for sorts addr, elem, path, setaddr and setelem. For level,
we assign lB = lA, which is guaranteed to be within 0 and K− 1. For cell, let c = (e,D, l)

be an element of Acell. The following function δcell maps c into an element of Bcell:

δcell(e,D, l) = (e,D(0), . . . , D(K− 1))

Essentially, cells in B only record information of relevant levels from the corresponding
cells in A, which are those levels for which there is a level variable. All upper levels are
ignored. Every variable v of sort cell is interpreted as vB = δcell(v

A). A variable v of sort
mem is interpreted as a function that maps an element a of Baddr into δcell(vA(a)), essentially
mapping addresses to the corresponding transformed cells. Finally, for all array variables D
in the formula ϕ, we assign vBD[i] = DA(i).

Checking the Model B. We are ready to show, by case analysis on the literals of the original
formula ϕ, that B is indeed a model of pϕq. The following literals hold in B, directly from
the choice of assignments in B because the corresponding literals hold in A:

e1 6= e2 a1 6= a2 l1 6= l2

e1 � e2 a = null c = error

m2 = upd(m1, a, c) c = m[a]

l1 < l2 l = q

s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3

x = {e}E x1 = x2 ∪E x3 x1 = x2 \E x3

p1 6= p2 p = [a] ordList(m, p)

s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)

The remaining literals are:
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• Literal c = mkcell(e,D, l). Clearly the data field of cB and the translation of mkcellB(e, . . .)

coincide. Similarly, by the δcell map for elements of Bcell, the array entries coincide with
the values of the variables vD[i]. Hence, c = mkcell(e, vD[0], . . . , vD[K−1]) holds in B.

• Literal a = D[l]. Our choice of vBD[i] makes, for i = lB:

vBD[i] = DA(lB) = DA(lA) = aA = aB

so the clause generated from a = D[l] in pϕq holds in B.

• Literal C = D{l ← a}. In this case, for j = lA = lB, vBC[j] = CA(lA) = aA = aB.
Moreover, for all other indices i:

vBC[i] = CA(i) = DA(i) = vBD[i]

so the clause (8.14) generated from C = D{l← a} in pϕq holds in B.

• Literal s = addr2set(m, a, l). By induction on the length of paths for all lA:

(mA, aA, bA, lA, pA) ∈ reachA iff (mB, aB, bB, lB, pB) ∈ reachB (8.16)

It follows that:

sA = addr2set(mA, aA, lA) implies sB = addr2set(mB, aB, lB)

• Literal p = getp(m, a1, a2, l). Fact (8.16) also implies immediately that if literal
p = getp(m, a1, a2, l) holds in A then p = getp(m, a1, a2, l) holds in B.

• Literal skiplist(m, s, l, a1, a2). Following (8.15), the five disjuncts (1) the lowest level
is ordered, (2) the region contains exactly all low level, (3) the last sentinel cell has
null successors, (4) the last sentinel cell is reachable from the initial cell at all levels,
and (5) each level is a subset of the lower level, hold in B, because they corresponding
disjunct holds in A.

This shows that B is a model of pϕq and therefore pϕq is satisfiable. �

Lemma 8.8:
Let ϕ be a normalized set of TSL literals with no constants. If pϕq is satisfiable, then ϕ is also
satisfiable. y

Proof. We start from a TSLK model B of pϕq and we construct a model A of ϕ.

Building a Model A. We now proceed to show that ϕ is satisfiable by building a model A. For
the domains, we let:

Aaddr = Baddr Aelem = Belem Apath = Bpath Asetaddr = Bsetaddr Asetaddr = Bsetelem

Also, Alevel is the naturals with order, and

Acell = Aelem ×Aarray ×Alevel Amem = AAaddr

cell
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For the variables, we let vA = vB for sorts addr, elem, path, setaddr and setelem. For level,
we also assign lA = lB. For cell, let c = (e, a0, . . . , aK−1) be an element of Bcell. Then the
following function γcell maps c : (e, a0, . . . , aK−1) into an element of Acell:

γcell((e, a0, . . . , aK−1)) = (e,D, l) (8.17)

where:

l = K

D(i) =




ai if 0 ≤ i < l

null if i ≥ l

Every variable v of sort cell is interpreted as vA = γcell(v
B). Finally, a variable v of sort

mem is interpreted as a function that maps an element a of Aaddr into γcell(vB(a)), mapping
addresses to transformed cells.

Finally, for all arrays variables D in the original formula ϕ, we assign:

DA(i) =




vBD[i] if i < K

null otherwise
(8.18)

Checking the Model A. We are ready to show, by cases on the literals of the original formula ϕ
that A is indeed a model of ϕ. The following literals hold in A because the corresponding
literals hold in B:
e1 6= e2 a1 6= a2 l1 6= l2

e1 � e2 a = null c = error

m2 = upd(m1, a, c) c = m[a]

l1 < l2 l = q

s = {a} s1 = s2 ∪ s3 s1 = s2 \ s3

x = {e}E x1 = x2 ∪E x3 x1 = x2 \E x3

p1 6= p2 p = [a] ordList(m, p)

s = path2set(p) append(p1, p2, p3) ¬append(p1, p2, p3)

The remaining literals are:

• Literal c = mkcell(e,D, l). Clearly the data field of cA and the translation of mkcellA(e, . . .)

given by (8.17) coincide. By the choice of array variables DA(i) = vBD[i] = ai, so A
and the array part of c coincide at all positions. For lA we choose K for all cells.

• Literal a = D[l]. It holds since

aA = aB = vBD[lB] = DA(lB) = DA(lA)

• Literal B = D{l← a}. We have that the translation of C = D{l← a} for pϕq given by
(8.14) holds in B. Consider an arbitrary level m < K. If m = lB = lA then a = vC[m] =

CA(m). If m 6= lB then vC[m] = vD[m] and hence CA(m) = vC[m] = vD[m] = DA(m).

• Literal A = B. The clause (8.18) generated from A = B in pϕq holds in B, by
assumption. For an arbitrary j from [K]:
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AA(j) = vBA[j] = vBB[j] = BA(j)

Moreover, for j ≥ K, then AA(j) = null = BA(j) and consequently AA = BA as
desired.

• Literal s = addr2set(m, a, l). By induction on the length of paths, for all lA:

(mA, aA, bA, lA, pA) ∈ reachA iff (mB, aB, bB, lB, pB) ∈ reachB (8.19)

It follows that sA = addr2set(mA, aA, lA) implies sA = addr2set(mA, aA, lA).

• Literal p = getp(m, a1, a2, l). Fact (8.19) also implies immediately that if literal
p = getp(m, a1, a2, l) holds in A then p = getp(m, a1, a2, f(l)) holds in B.

• Literal skiplist(m, s, l, a1, a2). Following (8.15) and the way arrays are translated from
a model A into a model B, we have that the five disjuncts (1) the lowest level is
ordered, (2) the region contains exactly all low addresses in the lowest level, (3) the
last sentinel cell has null successors, (4) the last sentinel cell is reachable from the
initial sentinel cell at all levels, and (5) each level is a subset of the lower level, hold
in A, because their corresponding disjunct holds in B.

This shows that A is a model of ϕ and therefore ϕ is satisfiable. �

The main result of this section is the following decidability theorem, which follows from
Lemma 8.6, Theorem 8.1, the fact that every formula can be normalized and sanitized, and the
decidability of TSLK formulas.

Theorem 8.2:
The satisfiability problem of quantifier-free TSL-formulas is decidable. y

8.5 Summary

In this chapter we have presented TSL, the Theory of Skiplists with Unbounded Levels, a theory
which is capable of reasoning about skiplists with arbitrarily many levels. TSL is powerful enough
to reason about memory, cells, pointers, regions and reachability, ordered single-linked lists
and sublists, allowing the description of the skiplist property, and the representation of memory
modifications introduced by the execution of program statements. The main novelty of TSL,
contrary to TSLK presented in Chapter 7, is that it is not limited to skiplists with a fixed number
of levels.

In this chapter we showed that the quantifier-free TSL fragment is decidable by reducing
its satisfiability problem to TSLK. The complexity of deciding TSL is NP-complete, as one can
guess a model of polynomial size. Also, as part of the proposed decision procedure for TSL, we
described how to reduce a formula in TSL to a equisatisfiable formula in TSLK. Our reduction
illustrates that a decision procedure for TSL only needs to reason about those levels explicitly
mentioned in the (sanitized) formula.
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The decision procedure presented in this chapter has been implemented as part of LEAP, a pro-
totype of theorem prover which is presented in Chapter 9. Later, in Chapter 10 we will show that
theory TSL and its decision procedure are useful for automatically proving the verification condi-
tions generated during the practical verification of skiplist implementations, including the skiplist
implementation presented in Section 8.1 in this chapter and a skiplist implementation [123]
which is part of the KDE library [197].
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9
LEAP: A Verification Tool for
Parametrized Datatypes

“ That’s one small step for a man,
one giant leap for mankind ”

Neil Armstrong

In this chapter we present LEAP, a tool for the verification of parametrized systems and
concurrent data types that store both finite and infinite data. LEAP implements the parametrized
invariance techniques presented in Chapter 3 and the parametrized verification diagrams intro-
duced in Chapter 4. Additionally, LEAP implements some decision procedures, including the
decision procedures for lists and skiplists described in Part II of this work. All decision procedures
implemented by LEAP are constructed on top of state-of-the-art SMT solvers, such as Z3 [63],
Yices [69] and CVC4 [15,17].

The rest of this chapter is structured as follows. Section 9.1 presents a general description of
LEAP. Section 9.2 gives a brief introduction to the main features offered by LEAP. Section 9.3
describes how to use LEAP in order to verify some of the concurrent data types presented in this
work. Finally, Section 9.4 gives a summary of what is presented in this chapter.

9.1 General Overview

LEAP is a prototype theorem prover, currently under development at the IMDEA Software Institute,
which implements the ideas discussed in this work. LEAP is implemented in Ocaml [198] and
consists of about 70,000 lines of code. The source code is currently not accessible, but its
preliminary version and a set of application examples can be downloaded from its web site:
http://software.imdea.org/leap. Alternatively, there exists an online version of LEAP

accessible at: http://ares.software.imdea.org/leap.
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Figure 9.1: Schematic design of LEAP.

LEAP implements:

• The parametrized invariance proof rules for safety properties presented in Chapter 3.

• The parametrized verification diagrams, presented in Chapter 4, which enable the verifica-
tion of liveness properties.

• The decision procedure for TL3, presented in Chapter 6, which tackles the satisfiability of
data structures in the heap with the shape of single-linked lists.

• The decision procedure for TSLK, described in Chapter 7, which enables checking the
satisfiability of formulas describing concurrent skiplists with a bounded number of levels.

• The decision procedure for TSL, presented in Chapter 8, which tackles the satisfiability
problem of skiplists with an unbounded number of levels.

As we mentioned before, we follow a deductive approach based on the ideas of Manna-
Pnueli [144]. Because of that, we are willing to sacrifice full automation in exchange of being
able to deal with programs that manipulate complex data structures. Our target with LEAP is
wide applicability, while improving automation is an important secondary goal.

Fig. 9.1 shows a schematic representation of the structure of LEAP. LEAP receives as input a
program which is assumed to be executed concurrently by an unbounded number of threads.
The input program needs to be written in LEAP’s own programming language. The language
accepted by LEAP is very close to SPL, which is presented in Section 2.1, and includes conditionals,
loops, atomic sections, pointer manipulation, ghost code notation and line labeling among other
features. Appendix B.2.1 contains a detailed description of the syntax for programs accepted by
LEAP.

In addition to the input program description, LEAP can receive further input files depending
on the kind of verification to be carried out:
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• For safety properties, LEAP requires to receive as input:

1. A folder containing the set of files which describe the specifications of the invari-
ant candidates. Appendix B.2.2 contains a full description of the syntax that these
specifications need to follow.

2. A file describing the proof graph. The idea of a proof graph was introduced in
Section 3.2.4. Basically, a proof graph describes the relations and dependencies
between the invariant candidates that take part in the verification process. Additionally,
a proof graph contains extra information such as specialized tactics and heuristics
to follow in order to ease the verification process. Appendix B.2.3 contains a more
detailed explanation of the syntax accepted by LEAP for describing proof graphs.

• For liveness properties, LEAP needs to receive as input:

1. A description of the parametrized verification diagram. The idea of parametrized
verification diagrams was presented in Section 4.2. Basically, a parametrized verifi-
cation diagram describes the proof that a parametrized system executing the input
program satisfies a given temporal liveness property. Appendix B.2.4 presents a de-
tailed description of the syntax that needs to be followed by a file describing a temporal
parametrized verification diagram.

2. In general, a parametrized verification diagram will require some assumptions in order
to prove a temporal liveness property. Assumptions are system invariants described in
specification files that follow the same syntax as for invariant candidates. The folder
containing these assumptions can also be passed to LEAP as an input argument.

3. Usually, the verification process results easier with the assistance of tactics and heuris-
tics. This information can be provided on a separate input file. This file can op-
tionally describe which auxiliary support invariant is required in particular cases.
Appendix B.2.3 contains the syntax accepted by LEAP for this auxiliary input file.

Example 9.1
Fig. 9.2 presents an example of a program written in the programming language accepted by
LEAP. The program contains part of the algorithm for lock-coupling single linked lists introduced
in Section 6.1.1. The program in Fig. 9.2 includes two procedure. Procedure main corresponds to
the most general client while procedure insert corresponds to procedure INSERT. For simplicity,
we omit from this example the procedures SEARCH and REMOVE. y

Example 9.1 makes evident some aspects of the input program. As can be seen, the declaration
of global variables begins with the global keyword. The ghost modifier is used to declare ghost
variables. To specify some initial assumptions we can use the assume keyword just before the
procedure declaration. The initial assumptions are expressed as a LEAP formula. In the example
above the initial assumptions state, among other things, that initially region contains only head,
tail and null.

Every LEAP program must contain a main procedure which serves a special purpose, as it is
the first procedure to be called when a program execution begins. Therefore, in the program
described in Fig. 9.2 we use main as the most general client that any thread executing will run.
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global
addr head
addr tail
ghost addrSet region

assume
region = union(union({head}, {tail}), {null}) /\
rd(heap, head).data = lowestElem /\
rd(heap, tail).data = highestElem /\
head != tail /\
head != null /\
tail != null /\
head->next = tail /\
tail->next = null

procedure main()
elem e

begin
:main body[

1: while (true) do
2: e := havocListElem();
3: choice
4: call search(e);
5: or
6: call insert(e);
7: or
8: call remove(e);
9: endchoice

10: endwhile
11: return();

:main body]
end

procedure insert(e:elem)
addr prev
addr curr
addr aux

begin
12: prev := head;
13: prev->lock;
14: curr := prev->next;
15: curr->lock;
16: while (curr->data < e) do
17: aux := prev;
18: prev := curr;
19: aux->unlock;
20: curr := curr->next;
21: curr->lock;
22: endwhile
23: if (curr != null /\ curr->data > e) then
24: aux := malloc(e,null,#);
25: aux->next := curr;

:connect
26: prev->next := aux

$region := union(region, {aux});$
27: endif
28: prev->unlock;
29: curr->unlock;
30: return();

end

Figure 9.2: Example of a LEAP input program.
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Once the program input file is parsed, LEAP internally constructs a representation of a param-
etrized transition system in which all threads execute the same input program. Additionally, the
auxiliary input files which contain the invariant candidates, the proof graphs and the parametrized
verification diagrams are parsed and passed to a verification condition generator. The verification
condition generator internally implements the proof rules and formalisms described in Chapter 3
and Chapter 4. As output, the verification condition generator produces a collection of verification
conditions whose validity needs to be checked.

Each verification condition corresponds to a small step in the execution. All verification
conditions generated by LEAP are quantifier free as long as the specification is quantifier free.
So far, LEAP does not support the use of quantifiers. The generated verification conditions are
then discharged to specialized decision procedures which automatically decide their validity. In
order to check the validity of a given verification condition, LEAP transforms the verification
condition into its negation and checks its satisfiability using an appropriate decision procedure. If
the decision procedures conclude that all verification conditions are valid, then LEAP indicates
that the parametrized program satisfies the analyzed safety or liveness property. If a verification
condition is not valid, then the decision procedure generates a counter-model which corresponds
to an offending small step of the system that leads to a violation of the safety or liveness property.
The programmer can use this counter-model to either identify a bug or instrument the program
with intermediate invariants.

Currently, LEAP implements 6 decision procedures for different data types. Each of these
decision procedures are implemented on top of SMT solvers such as Yices, Z3 and CVC4. The
implemented decision procedures include:

• A simple decision procedure capable of reasoning about program locations. In general,
many of the generated verification conditions can be checked by simply reasoning about
program locations, abstracting the rest of literals that may deal with complex data manip-
ulation. Because of that, LEAP includes a simple decision procedure that reasons about
program locations only. Usually, when a verification condition needs to be checked, LEAP

first tries with this simple decision procedure which is fast and in many cases sufficient to
determine the validity of a given verification condition.

• A decision procedure for Presburger arithmetic with finite sets of integers, where sets
support operations such as union and intersection. This decision procedure is useful
for programs that manipulate integers and set of integers, such as the mutual exclusion
protocols presented in Example 2.2.

• A decision procedure for Presburger arithmetic with finite sets and pairs of integers
and thread identifiers which is useful for the cases in which a numeric program needs to
reason about pairs of integers and thread identifiers.

• A decision procedure for concurrent single-linked lists, inspired by the decision procedure
for TL3 presented in Chapter 6.

• A decision procedure for concurrent skiplists of unbounded width and bounded height,
which corresponds to the decision procedure for the TSLK family presented in Chapter 7.

• A decision procedure for skiplists of unbounded width and height, motivated by the
decision procedure for TSL described in Chapter 8.
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Using some of LEAP’s command line options, it is possible to instruct LEAP on which decision
procedure to use. Appendix B.1 provides a more detailed explanation of all available LEAP

command line options.

9.2 Features

LEAP implements some features with the purpose of easing the verification process. These features
include notation and ghost code which can be added to an input program as well as tactics and
heuristics to improve the verification process.

9.2.1 Programs

LEAP input programs are very similar to SPL, presented in Section 2.1, extended with some extra
features. One of these features is program labeling. LEAP allows to assign a label to a program
line, so that later it can be referred in a specification using this label. There are two kind of
program labels:

1. A simple program label which refers a single program line. This kind of labels are declared
using the “:” symbol followed by the label name.

2. A more complex program label which refers to a set of consecutive program lines. To
do this, we need to insert the same label identifier at two different position within the
program. All lines between both occurrences of the label identifier can then be referred
using this identifier. The first occurrence of the label identifier must begin with the “:”
symbol followed by the name of the label identifier and end with the “[” symbol. The
second occurence of the label identifier must begin with the “:” symbol followed by the
name of the label identifier, but in this case must end with the “]” symbol.

Example 9.2
Consider once again the program described in Fig. 9.2. In this program, label connect is a single
line label which refers program line 26. This means that we can later use “@connect(i).” in a
specification as a synonym for program line 26 for thread i.

On the other hand, label main_body is a multi-line label which denotes the program lines
between 1 and 11. This means that we can use “@main_body(i).” in a specification as a
synonym for the set of program lines that goes from line 1 to line 11 when run by thread i. y

LEAP input programs can also contain ghost code. As we mentioned above, ghost variables
are declared using the ghost modifier. Ghost code is added between dollar symbols “$” and can
contain sequences of assignments and conditional statements.

Another feature of LEAP input programs is atomic section. Atomic sections describe a set of
program instructions that are executed as a single program statement. These atomic sections are
written between braces: “{” and “}”.
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{
ticket := avail;
avail := avail + 1;
bag := iunion (bag, isingle(avail));

}

Figure 9.3: Example of LEAP atomic statement.

Example 9.3
Consider once again the mutual exclusion protocol presented in Example 2.2. In this example,
line 3 consists of a statement which, atomically:

• assigns to ticket the value of the integer variable avail ;

• increases the value of avail by one; and

• adds to the set bag the value of ticket .

Fig. 9.3 shows how we can express all these changes as a single LEAP atomic statement. In
this statement, isingle is the constructor for singleton sets of integers which contain a single
integer value and iunion is the union operator for set of integers. y

Other feature offered by LEAP is the possibility to add some initial assumptions about the
program variables. This feature results very useful in cases in which the user needs to assume
some initial conditions, like for instance the fact that the memory contains a data structure of the
shape of a list or skiplist, before the program is executed.

9.2.2 Specifications

Specifications can be used to define invariant candidates, when performing the verification of
a safety property, or for describing supporting invariants, when performing the verification a
liveness property.

A requirement imposed by LEAP is that all specifications must be written in files with the
“.inv” extension. Each of these specification files contains two sections. The first section
starts with the vars keyword and it is used for declaring all the variables that parametrize the
specification. In general, specification parameters are some variables of sort thread identifier,
however, it is possible to use variables of other sorts as parameters of a specification. The second
section starts with the invariant keyword followed by an identifier between brackets. This
identifier corresponds to the name that identifies the invariant candidate and which can later
be used to referred the specification in a proof graph or a parametrized verification diagram.
Following the specification name, it comes the formula which describes the invariant candidate
itself.

Example 9.4
Consider again the mutual exclusion protocol presented in Example 2.2. Fig. 9.4 contains the
LEAP specification which states the mutual exclusion property. This property states that 2 different
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vars:
tid i
tid j

invariant [mutex] :
(i != j) -> ~ (@crit(i). /\ @crit(j).)

Figure 9.4: Example of a LEAP specification.

threads cannot be in the critical section at the same time. In Fig. 9.4 we use the label crit to
denote program lines 5 and 6, which correspond to the critical section of the program.

In the figure above, we declare an invariant candidate named mutex which is parametrized
by two thread identifiers i and j. The formula for specification mutex states that if thread i and
j are not the same, then it is not possible that both threads are in the critical section at the same
time. y

In a specification formula it is only possible to use variables that have been declared as part
of the analyzed LEAP input program or as parameter of the current specification. Inside a LEAP

specification, global variables are accessed using their name. On the other hand, local variables
need to specify the procedure they belong to using the “::” operator.

Example 9.5
Fig. 9.5 presents another example of a LEAP specification, named activeLow. This specification
states that when a thread is at lines 4, 5 or 6, its ticket variable is lower than the global variable
avail . In this case, instead of using a label as we did in previous examples, we are referring the
program lines using their actual values (4, 5 and 6). Finally, note that as ticket is a local variable
of procedure setMutex, we need to write setMutex::ticket. y

A LEAP specification file can contain many formulas. In this case, LEAP considers all of them
to be part of a conjunction. It is also possible to label a specific formula, so that it can be
used later in isolation as part of a proof graph or a parametrized verification diagram without
considering the rest of the formulas declared in the same specification file. We can use the “#”
symbol to label a formula inside a specification file. Later, it is possible to use the “::” symbol
to access the formula associated to a label. This means that spec::inv refers to the formula
labeled by inv which is declared inside the specification identified with spec. It is also possible
to use braces to describe a collection of formulas within the same specification. This means
that spec::{inv1,inv2,inv3} refers to the formula constructed by the conjunction of the

vars:
tid i

invariant [activeLow] :
(@4(i). \/ @5(i). \/ $6(i).) -> setMutex::ticket(i) < avail

Figure 9.5: Example of a LEAP specification.
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vars:
tid i
tid j

invariant [combined] :

#mutex:
(i != j) -> ~ (@crit(i). /\ @crit(j).)

#activeLow:
( @4(i). \/ @5(i). \/ $6(i). ) -> setMutex::ticket(i) < avail

#others:
@crit(i). ->
( i = tid_of(spmin(bag)) /\
int_of(spmin(bag)) = setMutex::ticket(i)) /\

intidpair(i, bag) = @active(i).

Figure 9.6: Example of a combined LEAP specification.

formulas labeled with inv1, inv2 and inv3 which are declared inside the specification named
spec.

Example 9.6
Fig. 9.6 presents an example of a LEAP specification named combined, which is the result of the
combination of specifications mutex, activeLow and a couple of extra new formulas.

This means that we can use combined::mutex to refer to the mutual exclusion formula,
combined::activeLow to refer to the formula that states that each ticket is lower than avail

and finally combined::others to refer to the conjunction of the last two formulas in the speci-
fication. Similarly, the formula resulting from the conjunction of all the formulas declared within
specification combined can be described by combined::{mutex,activeLow,others}. y

9.2.3 Domain Cut-offs

The decision procedures implemented by LEAP, in general, are based on an exhaustive search
of the domain space. The bounds for a large enough domain are computed by each decision
procedure following the guidances given in Chapters 6, 7 and 8. However, depending on the
characteristics of the analyzed formula, the user may prefer to compute the cut-off for domain
bounds using different approaches. In general, a technique that computes a more exact domain
bound has the advantage of searching a smaller domain space at the price of a more exhaustive
analysis of the verification conditions, which may be time consuming. On the other hand, a
technique that computes a not so exact domain bound will be forced to search a bigger domain
space but requires less time to analyze the verification condition in order to compute such bound.
Independently of the selected cut-off method, LEAP implements some techniques for breaking
variable symmetry [19], which help in reducing the search in the domain space. LEAP currently
implements 3 techniques for computing the domain cut-offs:
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DNF: by computing the disjunctive normal form of the formula contained in the verification
condition it is possible to compute an exact bound for each domain, which results in a
smaller domain space. However, this cut-off technique may present an inconvenience. In
some situations, computing the disjunctive normal form of a formula results in a time
consuming task.

The worst case scenario presents when we have to compute the disjunctive normal form of
a formula that is in conjunctive normal formal. For example, consider the formula:

(A1 ∨ A2 ∨ A3 ∨ A4) ∧ (B1 ∨ B2 ∨ B3 ∨ B4)

In order to compute the disjunctive normal form of this formula, we need to distribute all
disjunctions over the conjunction, obtaining:

A1 ∧ B1 ∨ A1 ∧ B2 ∨ A1 ∧ B3 ∨ A1 ∧ B4

A2 ∧ B1 ∨ A2 ∧ B2 ∨ A2 ∧ B3 ∨ A2 ∧ B4

A3 ∧ B1 ∨ A3 ∧ B2 ∨ A3 ∧ B3 ∨ A3 ∧ B4

A4 ∧ B1 ∨ A4 ∧ B2 ∨ A4 ∧ B3 ∨ A4 ∧ B4

Pruning: the problem with computing the disjunctive normal form is the big number of opera-
tions between conjunctions and disjunctions. In the methods for computing domain bounds
for each of the theories presented in Part II, not all literals are required in order to compute
bounds. An alternative method which reduces the overhead of computing the disjunctive
normal form of a formula consists of removing from the formula all literals that are not
required for computing the domain bounds. This is what the pruning method does.

This pruning method traverses the formula and removes from the formula all literals that
are not required for the computation of domain bounds. The result is a formula with
less literals and consequently an easier disjunctive normal form. The pruning method
proceeds as follows. First, it computes the negation normal form of the formula, by pushing
all negations to the leaves of the formula. Then, all literals that are irrelevant for the
computation of the cut-off are removed from the formula. Finally, the disjunctive normal
form of the resulting formula is computed and the domain bounds are obtained as a result.
It is important to note that literals are removed only for computing the domain cut-offs, but
they are preserved in the formula on which satisfiability is checked.

Example 9.7
Consider the following formula:

( ¬b ∨ pc(i) = 4 ∨ pc(j) = 5 ∨ p 6= q ) ∧
( b ∨ pc(i) = 8 ∨ pc(j) = 9 ∨ p = getp(heap, head ,null) )

It is clear that neither the value of the Boolean variable b or the values of the program
counters do not affect the computation of the domain cut-offs for the decision procedures
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described in Part II. Therefore, we can get rid of these unnecessary literals using pruning.
Then, we obtain the formula:

p 6= q ∨ p = getp(heap, head ,null)

which, in this case, happens to be already in its disjunctive normal form. y

Union: this method avoids computing the disjunctive normal form at all. Instead, it traverses
the formula and tries to guess which would be the maximum size of the domains in case all
literals in the formula are present in the same conjunct. To do so, the union method begins
by considering all variables of sort addr, elem and tid occurring in the formula. Then, the
method considers all special cases, according to what is described in Theorem 6.1 for TL3
and in Theorem 7.1 for TSLK. The bounds computed following this method correspond
to the scenario in which, after computing the disjunctive normal form of the formula, all
variables and special literals are within one of the disjunctions. The cut-off obtained using
this method may be greater than the one obtained using pruning or DNF, but it is in general
faster to compute.

Example 9.8
Consider the following formula:

(head = null ∨ tail = null) ∧ p 6= q (9.1)

Following the DNF technique, we would first require to compute the disjunctive normal
form of the formula, obtaining:

(head = null ∧ p 6= q) ∨ (tail = null ∧ p 6= q)

and then, we would require to analyze each disjunction, concluding that we would require
a domain with 3 addresses, as:

• for the first disjunction we require 1 address for head , 1 address for null and 1 address
to act as the witness of the inequality between paths p and q.

• for the second disjunction we require 1 address for tail , 1 address for null and 1

address to act as the witness of the inequality between paths p and q.

On the contrary, union would just traverse formula 9.1 and would determine that it is
necessary a domain with 4 addresses: 1 for variable head , 1 for variable tail , 1 for null and
1 to act as witness of the inequality of p and q. Note how, using union instead of DNF, we
can conclude that we require a domain with 4 addresses instead of 3. y
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9.2.4 Tactics

An important feature of LEAP are tactics. Tactics represent heuristics that can ease the verification
process by simplifying the verification conditions under analysis.

Tactics start from a verification condition and guide the process of converting the verification
condition into queries to the decision procedures. A verification condition, as implemented in
LEAP, consists on three main components. These are:

• Support: A verification condition keeps a copy of all the formulas that it may require as
support.

• Transition relation: This component stores the transition relation of the statement under
analysis. That is, the relation between the variables in the pre and post states.

• Goal: As its name suggests it, this is the formula that the verification condition is trying to
prove in the post state assuming the conditions given by the support and the transformations
described by the transition relation.

Example 9.9
Consider once again program SETMUTEX presented in Example 2.2 and invariant candidates
activeLow and others presented in Example 9.5. Imagine we want to check whether when
thread k executes line 5 of program SETMUTEX using others as support, activeLow is pre-
served. Fig. 9.7 describes the components of a LEAP verification condition for this case.

Note that the formulas in the support are parametrized by arbitrary thread identifiers. The
final real parameters are instantiated later, during the second stage of tactics application. y

In general, applying a tactic to a verification condition does not result on an equivalent
verification condition. However, soundness follows if the validity of the verification condition
obtained by the application of a tactic implies the validity of the original verification condition.

There are 4 different stages of transformation that goes from the original verification condition
to the final queries passed to the decision procedures. These stages are:

Verification condition split: The first stage consists on splitting the original verification condi-
tion into simpler verification conditions. Currently there exists only one tactic implemented
for verification condition splitting:

Support:

@active(i1). -> setMutex::ticket(i1) < avail
intidpair(i2, bag) = @active(i2).

Transition relation:

pc(k) = 4 /\ pc’(k) = 5

Goal:

@active(k). -> setMutex::ticket(k) < avail

Figure 9.7: Example of a LEAP verification condition representation.
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• split-goal: This tactic receives a verification condition and analyzes the goal. If the
goal is a conjunction, then it generates as many verification conditions as elements in
the conjunction. Clearly, if all the verification conditions generated are valid, then the
original verification condition is also valid.

Support generation: The second stage is in charge of instantiating the support, transforming
the verification condition into a formula with the shape of an implication. The generated
implication contains, in the antecedent, the instantiated support and the transition relation.
Meanwhile, the consequent of the generated implication is simply the goal of the verification
condition. Currently, LEAP implements 4 different tactics for support generation:

• full: This tactic instantiates the support considering all partial substitutions from
parameters of the support to the vocabulary of the transition relation and the goal.
Remember that the vocabulary of a formula, according to Definition 2.4 is the set of
free variables of type tid appearing in the formula.

• reduce: This tactic proceeds as tactic full, but it only considers complete substitutions.
In practice, this leads to a reduced number of formulas as support, as it only considers
some of the generated thread identifier substitutions.

• reduce2: This tactic is similar to reduce, except that it removes duplicated formulas
when full support is applied.

• identity: This tactic does not perform any instantiation of the support, leaving the orig-
inal thread identifiers used in the support formulas. This is equivalent as considering
only the empty thread identifier substitutions.

Example 9.10
Consider once again the verification condition described in Example 9.9. In this verification
condition, the support is parametrized by the thread identifiers i1 and i2. Similarly, the
vocabulary of the transition relation and the goal in this verification condition is just {k}.
Table 9.1 shows the instantiated support that is obtained when using tactic full.

ID Resulting formula Substitution

(S1)
@active(i1). -> setMutex::ticket(i1) < avail

intidpair(i2, bag) = @active(i2).
{}

(S2)
@active(k). -> setMutex::ticket(k) < avail

intidpair(i2, bag) = @active(i2).
{k← i1}

(S3)
@active(i1). -> setMutex::ticket(i1) < avail

intidpair(k, bag) = @active(k).
{k← i2}

(S4)
@active(k). -> setMutex::ticket(k) < avail

intidpair(k, bag) = @active(k).
{k← i1, k← i2}

Table 9.1: Example of support generated using tactic full.
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Consider the formulas (S1), (S2), (S3) and (S4) generated using tactic full in Table 9.1. If
instead of tactic full we use tactic reduce, then only formula (S4) is generated. Finally, if
we use tactic identity, then only formula (S1) is generated. y

Formula split: The third stage is in charge of splitting the implications generated in the previous
stage into simpler implications. The idea is to simplify the work for the decision procedures
that will later check the validity of these implications. Currently, LEAP implements 2 different
tactics for this stage:

• split-consequent: This tactic receives as input an implication and produces a new
set of implications by splitting the consequent of the input implication. To do so, the
consequent of the input implication needs to be a conjunction. For the generated im-
plications, the antecedent remains untouched but each conjunction in the consequent
is used as a consequent for each of the new generated implications. That is, given an
implication of the form:

A → C1 ∧ C2 ∧ C3

Applying tactic split-consequent generates three new implications of the form:

A → C1

A → C2

A → C3

• split-antecedent-pc: This tactic analyzes the antecedent of an implication searching
for a disjunction of program locations. If the implication contains a disjunction of
program locations in the antecedent, then new implications are created, each of which
contains a single program location in the antecedent.

Example 9.11
Consider the following implication:

A ∧ (pc = 1 ∨ pc = 2) → C

The tactic split-antecedent-pc generates the following implications:

A ∧ pc = 1 → C

A ∧ pc = 2 → C

y

Formula simplification: The forth and final stage is to simplify the implications before passing
them to the decision procedures.

Currently, LEAP implements 6 different tactics for formula simplification:
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• simplify-pc: This tactic analyzes the antecedent of the implication searching for
program location equalities of the form pc = n. If it finds some contradiction, then
assumes the implication to be true. On the other hand, if there is no contradiction,
then it propagates these equalities to the whole formula. The effect of this tactic is to
remove from the implication subformulas which are not required except for program
locations.

• simplify-pc-plus: This tactic operates in two steps. First, it applies tactic simplify-pc
and then it analyzes the resulting implication. If the consequent of the implication
resulting from applying tactic simplify-pc is of the form A → (B → C) and B is
a restriction over program locations, then this tactic further uses B as a fact and
propagates facts in B about program locations through A.

• propositional-propagate: This tactic analyzes the antecedent of the implication. If
the antecedent is a conjunction, then each of the conjuncts are considered to be facts.
Each of these facts are propagated to the whole formula.

• filter-strict: This tactic analyzes the implication and eliminates from the antecedent
all literals that do not have variables in common with literals from the consequent.

• propagate-disj-conseq-fst: This tactic simplifies the implication by using facts from
the consequent, following an approach similar to tactic simplify-pc-plus. If the implica-
tion is of the form A→ (l→ C), where l is a literal, then it adds l to the consequent
and uses it to further simplify A and C.

• propagate-disj-conseq-fst: This tactic is very similar to tactic propagate-disj-conseq-
fst, with the difference that it considers implications of the form A→ (B → l). In this
case, assumes ¬l as a fact and propagates it in the whole implication.

Example 9.12
Consider the following implication:




pc = 2 ∧ pc′ = 3 ∧ A1 ∧
(pc = 2→ A2) ∧
(pc = 6→ A3) ∧

(pc = 8 ∨ pc = 9)→ A4)



→




C1 ∧
(pc′ = 3→ C2) ∧
(pc′ = 6→ C3)




Analyzing the antecedent, the tactic determines that pc = 2 and pc′ = 3 are two facts. Then,
propagating them results in the following simplified implication:

A1 ∧ A2 → C1 ∧ C2 y

Example 9.13
Consider the following implication:

(
a = null ∧ a 6= b

)
→

(
a = null → reg = ∅ ∧
a = b→ elems = ∅

)
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In this case, from the antecedent we can learn that a = null and a 6= b. Hence, applying
tactic propositional-propagate with the facts stated above, we can reduce the original
implication to (a = null ∧ a 6= b ∧ reg = ∅). y

9.3 Verification using LEAP

As LEAP implements the parametrized verification techniques presented in this work, it can be
used for the verification of both safety and liveness properties. Safety properties are verified
with the assistance of proof graphs, while liveness properties are verified using parametrized
verification diagrams. We now illustrate with a simple example the verification of safety and
liveness properties in LEAP.

9.3.1 Safety Properties

In order to prove that a program executed by an unbounded number of threads satisfies a
temporal safety specification, LEAP requires the following elements:

1. the program;

2. a collection of invariant candidates, which can be used as goals or as support; and

3. a proof graph, which declares how invariant candidates relate with each other and which
tactics are required to be used in each case.

Currently, the program needs to be written in the internal format of LEAP. See, for instance,
Example 9.1. The full syntax for LEAP input programs can be found in Appendix B.2.1.

The collection of invariants follow the syntax for LEAP specifications. We have already seen
some examples in Example 9.4 and Example 9.5. Again, the full syntax for LEAP specifications
can be consulted in Appendix B.2.2.

Finally, the proof graph is used by LEAP to exploit the inter-dependency between invariant
candidates. Additionally, the proof graph contains some hints in the form of tactics on how
to assist the verification process. Proof graphs are designed to improve the efficiency of proof
development and proof checking, by establishing the necessary support for proving consecution
and optionally specifying tactics and heuristics. The full syntax for LEAP proof graphs can be seen
in Appendix B.2.3.

Example 9.14
Consider specifications mutex and activeLow presented in Example 9.4 and Example 9.5.
Fig. 9.8 shows an example of a proof graph which uses these two specifications in addition to a
couple of new invariant candidates named notSame and minTicket. The proof graph shown
in the figure shows that program SETMUTEX satisfies the safety specification mutex. In the
figure, on the left is the graphic representation of the proof graph, showing the inter-dependency
between invariant candidates. On the right, the figure shows a description of the proof graph
using LEAP syntax. y
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mutex

activelow

minticket notsame

=> activeLow
{pruning :

| reduce2
|
| simplify-pc}

=> notSame [3:S:activeLow]
{pruning :

| reduce2
|
| simplify-pc}

=> minTicket [3:activeLow;
6:O:activeLow, notSame]

{pruning :
| reduce2
|
| simplify-pc}

=> mutex [4:S:notSame, minTicket]
{pruning :

| reduce2
|
| simplify-pc}

(a) Graphical representation (b) LEAP proof graph’s syntax

Figure 9.8: Example of a LEAP proof graph.

A proof graph is a collection of rules, each of which tells LEAP how to prove a specific invariant
candidate. Note that each rule starts with the “=>” operator. Following this operator, it is the
name of the invariant candidate to be proven. The double arrow operator “=>” indicates the
use of parametrized proof rules. Optionally, we could use the single arrow operator “->” to
specify the use of traditional non-parametrized invariance proof rules to verify non-parametrized
programs. This feature allows LEAP to analyze sequential closed systems composed by a single
thread.

Specifications which are required as support by an invariant candidate can be specified
between brackets following the invariant candidate identifier. For example, note how in Fig. 9.8
invariant candidates notSame, minTicket and mutex are followed by specifications between
brackets, while specification activeLow is not. This is because invariant candidate activeLow
is inductive, and hence it does not require any support.

The support provided between brackets can be restricted to certain transitions and premises.
By doing so, we are reducing the size of the resulting formulas and easing the job of the decision
procedures. For a support specification we can indicate:

1. the program line for which such specification needs to be instantiated; and

2. a switch indicating whether the support needs to be instantiated when considering a thread
appearing in the formula (S) or other fresh thread (O).

Alternatively, support specifications can be declared preceding the arrow operator. In this case,
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the support is instantiated for all transitions and proof rules.

Example 9.15
Consider the following rule from the proof graph presented in Fig. 9.8(b):

=> minTicket [3:activeLow;

6:O:activeLow, notSame]

This part says that, in order to prove minTicket invariant, it is useful to instantiate
activeLow as support for line 3. Additionally, this entry also suggests to instantiate activeLow
and notSame when considering line 6, but only when a fresh thread is executing this transition.

Alternative, we could write the above rule as:

activeLow, notSame => minTicket

In which case, specifications activeLow and notSame are instantiated for all transitions
and premises (self-consecution and others-consecution). y

The last component of a rule in a proof graph is a collection of cut-off methods and tactics
declared between braces. The format is, first the cut-off technique followed by the list of tactics.
The division between the cut-off strategy and the tactics is specified by a colon. A list of available
cut-off strategies can be found in Section 9.2.3. Tactics are declared in four different sections,
each of them limited by the “|” operator. Each of the sections correspond to each of the stages at
which tactics can be applied, as introduced in Section 9.2.4.

Example 9.16
Consider the following part of a rule. It is a variation of a rule declared in the proof graph
introduced in Fig. 9.8(b):

{pruning : split-goal

| reduce2

| split-consequent

| simplify-pc propositional-propagate}

The rule above says that:

1. strategy pruning is used for computing the domain cut-offs;

2. tactic split-goal is used in order to split the original verification condition into simpler ones;

3. tactic reduce2 is used for instantiating the support;

4. tactic split-consequent is used for splitting the implications resulting from the previous
stage into simpler formulas; and finally

5. tactics simplify-pc and propositional-propagate are used for simplifying the formulas before
passing them to the decision procedures. y
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Once LEAP receives the program description, the collection of invariant candidates and the
proof graph, LEAP analyzes them and outputs whether the invariant candidates declared in the
proof graph are in fact invariants of the parametrized system.

9.3.2 Liveness Properties

The verification of liveness properties using LEAP is similar to the verification of safety properties.
It requires a collection of input files. The data required by LEAP in order to verify a liveness
property is:

1. the program;

2. a collection of specifications, which is used as support during the verification process;

3. a parametrized verification diagram, which represents the diagram that acts as witness
of the proof; and

4. a tactics file, which indicates the tactics and support to be used.

The program and each of the specifications needs to be written in the LEAP format, as specified
in Appendix B.2.1 and Appendix B.2.2.

The parametrized verification diagram, on the other hand, follows the syntax described in
Appendix B.2.4. A PVD is a witness that the parametrized system composed by an unbounded
number of threads executing the concurrent program provided as input does satisfy a temporal
property. The file describing the PVD is divided into sections, each describing a particular element
of the diagram. Each section is identified with a special keyword and they must be declared
following a strict order:

Diagram: this keyword must appear at the beginning of every PVD to indicate the starting point
of a new PVD declaration and it is followed by a string which identifies the PVD.

Nodes: to indicate the declaration of the nodes of the PVD. Each node consists of a identifier
and a formula labeling the node. The formula labeling a node must be written between
braces and follows the same syntax as for formulas declared in LEAP invariant specifications.
Finally, each node declaration must be separated by a comma.

Boxes: this keyword is used to declare boxes in the PVD. Boxes must be declared inside braces
and consist of an identifier, a thread identifier which parametrizes the box and the list of
nodes included in the box.

Initial: this keyword is used to indicate the initial node of the PVD.

Edges: this keyword precedes the declaration of the edges of the PVD. Each edge consists of two
node identifiers connected by an arrow “-->”. The arrow can optionally be labeled with
a program transition and each edge needs to be terminated with a semicolon. Finally, an
edge can be placed inside brackets, meaning that the edge connects two nodes within a box
preserving the box variable.
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Acceptance: This keyword indicates that the acceptance conditions of the PVD are going to
be declared. An acceptance condition is declared between “<<>>” and consists of three
sections. The first section starts with the Bad keyword and indicates the edges which should
strictly decrease the ranking function. The second section starts with the Good keyword
and declares the edges for which the ranking function has no restriction. The third section
is the ranking function itself expressed as a state expression and a binary predicate. An
important feature is that LEAP supports ranking functions including lexicographic orders.

Example 9.17
Consider the PVD desceribed in Fig. 4.6 from Chapter 4. We can declare nodes n1, n2, n3 and n4

of the diagram as:

Nodes : n1 { @3(k).},

n2 { @4(t). /\ k!=t /\ @4(k). /\

int_of(spmin(bag)) = main::ticket(t)},

n3 { @5(t). /\ k!=t /\ @4(k). /\

int_of(spmin(bag)) = main::ticket(t)},

n4 { @5(t). /\ k!=t /\ @4(k). /\

int_of(spmin(bag)) = main::ticket(t)}

where int_of(spmin(bag)) refers to the integer component of the minimum pair stored in
variable bag. For the same diagram, box b1 is parametrized by thread identifier t and contains
nodes n2, n3 and n4:

Boxes: {b1[t]:n2,n3,n4}

Furthermore, we can declare the edges connecting nodes n0 with n1, n1 with n2, n2 with n3,
n3 with n2 and n4 with n2 using the following syntax:

Edges: n0 --> n1;

n1 -{3(k)}-> n2;

[n2 -{4(t)}-> n3];

n3 -{6(t)}-> n2;

n4 -{6(t)}-> n2;

The declaration above establishes that node n0 is connected to node n1 by an edge with
no labels. Node n1 is connected to node n2 through an edge labeled by the transition that
corresponds to program line 3 when executed by thread k. Node n2 is connected to node n3
by an edge labeled with the transition that corresponds to program line 4 when executed by
thread t. The brackets indicate that this edge is contained within a box, and thus it must preserve
the parameter of the box. Finally, note that the edges labeled with transition 6(t) are not
surrounded by brackets even though they connect two nodes within a box. This means that the
edge in fact leaves the box before entering it again, which means that the box parameter (thread
identifier t in this case) does not need to be preserved when this edge is taken.

Now, consider the following acceptance condition:
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Acceptance:

<<Bad :{(n0,n1,any),(n1,n2,any)};

Good:{(n2,n3,any)};

[(main::ticket(k), less)] >>

The acceptance condition above states that when an edge connecting node n0 with node n1 or
connecting node n1 with node n2 is taken, then the ranking function should strictly decrease.
On the other hand, when taking the edge that connects node n2 with node n3, the value of
the ranking function is not taken into consideration. The ranking function for this acceptance
condition indicates that the value of ticket for thread k should decrease.

Note that the acceptance condition provided above does not represent the acceptance condition
for the PVD presented in Fig. 4.6 and it is just illustrative. y

Example 9.18
Consider once again the PVD shown in Fig. 4.6 in Chapter 4. Fig. 9.9 presents the declaration of a
slightly modified version of such PVD following the syntax accepted by LEAP and containing all
the elements that define a PVD. y

Diagram[ticketset]

Nodes: n0 {@1(k). \/ @2(k). \/ @7(k). \/ @8(k).},
n1 {@3(k).},
n2 {@4(t). /\ k!=t /\ @4(k). /\ int_of(spmin(bag))=main::ticket(t)},
n3 {@5(t). /\ k!=t /\ @4(k). /\ int_of(spmin(bag))=main::ticket(t)},
n4 {@6(t). /\ k!=t /\ @4(k). /\ int_of(spmin(bag))=main::ticket(t)},
n5 {@4(k). /\ int_of(spmin(bag)) = main::ticket(k)},
n6 {(@5(k). \/ @6(k).) /\ int_of(spmin(bag)) = main::ticket(k)}

Boxes: {b1[t]:n2,n3,n4}

Initial: n0

Edges: n0 --> n1;
n1 -{3(k)}-> n2;
n1 -{3(k)}-> n3;
n1 -{3(k)}-> n4;
n1 -{3(k)}-> n5;

[n2 -{4(t)}-> n3];
[n3 -{5(t)}-> n4];
n4 -{6(t)}-> n2;
n4 -{6(t)}-> n3;
n4 -{6(t)}-> n4;
n4 -{6(t)}-> n5;
n5 -{4(k)}-> n6;
n6 --> n0;

Acceptance:
<< Bad : { (n4,n2,any),(n4,n3,any),(n4,n4,any),(n4,n5,any) };

Good: { (n6,n0,any) };
[(splower(bag,main::ticket(k)), pairsubset_op)] >>

Figure 9.9: Full example of PVD in LEAP format.
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In general, in order to prove the conditions related to a PVD we assume some conditions for
the system. This assumptions, called facts, and some extra information such as cut-off strategies
and tactics are specified on an auxiliary support file passed to LEAP. This kind of support files
contain two main sections. The first section is labeled with the Tactics keyword and declares
the cut-off strategies and tactics to be used. The second section, labeled with the Facts keyword,
indicates the specifications that are required to be used as assumptions for specific transitions.
In general, these formulas are invariants that have already been proven to be system invariants
using the parametrized invariance rules presented in Chapter 3.

There are two kind of tactics which can be declared in the tactics section of a support file.
The most important are general tactics, which specifies the tactics that should be used in general
for the whole diagram. Additionally, it is possible to declare specific tactics to be used only on
particular transitions, nodes or PVD conditions. In the case of facts, they are related to specific
transitions.

Example 9.19
We present an example of a support file which declares some tactics and facts to be used in the
verification of a PVD:

Tactics :

{pruning : split-goal

| reduce2

|

| simplify-pc } ;

3 : [n1,n2|C] : {union :

| reduce2

|

| simplify-pc filter-strict } ;

Facts :

2:activeLow;

3:notSame,minTicket;

The supporting file declared above states that strategy pruning and tactics split-goal, reduce2
and simplify-pc are used in general for all cases. However, there is one exception. When we
consider the transition that corresponds to line 3 of the program and we are analyzing nodes
n1 and n2 under conditions (SelfConsec) and (OtherConsec), the declaration above says that we
need to use cut-off strategy union and tactics reduce2, simplify-pc and filter-strict.

Finally, the declarations states that specification activeLow needs to be used as an as-
sumption when considering the transition associated to program line 2. Similarly, specifications
notSame and minTicket are required as assumptions for verifying the transition associated to
program line 3. y

There is one last activity that needs to be performed, and it is that the PVD is in fact captured
by the liveness property we are trying to verify. This is done by checking condition (ModelCheck).
This check is currently not implemented as part of LEAP, but it can done using the diagram
translation described in Appendix A and an external off-the-shelf model checker.
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9.3.3 Decision Procedures

In Section 9.3.1 and Section 9.3.2 we briefly described how to use LEAP in order to check safety
and liveness properties of parametrized systems. In both cases, the intermediate object is a finite
collection of verification conditions. The validity of these verification conditions is automatically
checked using specialized decision procedures implemented as part of LEAP.

The validity of these verification conditions is automatically checked using specialized decision
procedures implemented as part of LEAP.

LEAP currently implements all the decision procedures presented in Part II of this work. LEAP

automatically transforms each verification condition into queries to the corresponding decision
procedures. Additionally, LEAP implements some simple decision procedures based on program
location reasoning, which help in checking the validity of many verification conditions before a
specialized decision procedure is required.

Finally, for each generated verification condition, LEAP indicates whether the verification
condition is valid or not. If a verification condition is not valid, then the decision procedure
generates a counter-model illustrating an offending small step of the system that leads a violation
of the property. This is typically a very small heap snippet that the programmer can use to
either identify a bug or instrument the program with intermediate invariants, or additionally
assumptions and facts.

9.4 Summary

In this chapter we have presented LEAP, a prototype theorem prover for the verification of
parametrized concurrent systems that manipulate complex data types. LEAP implements the
parametrized proof rules and the parametrized verification diagrams presented in Chapter 3 and
Chapter 4 respectively. Additionally, LEAP implements the decision procedures described in Part II
of this work

We have presented the main ideas behind LEAP and we have briefly described how LEAP

works and which are some of the features it implements. The modular design of LEAP makes
it straightforward to implement extensions for new program statements, theories and decision
procedures.

Later, in Chapter 10 we report the empirical results we have obtained so far using LEAP for the
verification of safety and liveness properties on some mutual exclusion protocols and programs
that manipulates concurrent data types such as stacks, queues, lists and skiplists.
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10
Experimental Results

“ The difference between screwing around and sci-
ence, is writing it down. ”

Adam Savage (The MythBusters)

In this chapter we report some experimental results we have obtained using LEAP (presented
in Chapter 9) on a set of programs that manipulate complex data types.

In Chapter 3 we introduce the technique of parametrized invariance for the verification of
safety properties of parametrized systems. Here we use parametrized invariance in combination
with the decision procedures presented in Part II in order to verify some implementations of
concurrent data structures.

LEAP is described in more detail in Chapter 9. Before using a full-fledged decision procedure,
LEAP first attempts to verify a verification condition using a simpler decision procedure that
is only capable to reason about program locations. This decision procedure allows to prove
simple formulas before performing complex model searches. In the case of safety, LEAP can prove
invariant candidates separately, relying on other invariant candidates, using a proof graph as
described in Section 3.2.4. If all verification conditions are verified, then we can conclude that
all formulas are indeed invariants. In the case of liveness properties, a parametrized verification
diagram is used, as described in Section 4.2.

All the experiments presented here were carried out using a computer with a 2.8 GHz processor
and 8GB of memory running a version of LEAP compiled for Linux. Through this chapter we
briefly describe the specifications and programs that were used to test our framework. In some
cases, we provide the full specification here. Properties and specifications not fully described in
this chapter can be consulted in LEAP’s website 1.

The rest of this chapter is structured as follows. Section 10.1 briefly shows the results we have
obtained verifying safety properties for the mutual exclusion protocol presented in Example 2.2.

1http://software.imdea.org/leap
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Section 10.2 presents the verification of some safety properties using the TL3 decision procedure
presented in Chapter 6 for concurrent lists, stacks and queues. Section 10.3 shows the verification
of some safety properties of bounded skiplists using an implementation of the TSLK decision
procedure introduced in Chapter 7. Section 10.4 describes the verification of safety properties
using the TSL decision procedure described in Chapter 8 over non-concurrent unbounded
implementations of skiplists, including an implementation which is part of the KDE library.
Section 10.5 presents some results we have obtained using parametrized verification diagrams
in order to verify liveness properties of a mutual exclusion protocol and an implementation
of concurrent lock-coupling lists. Finally, Section 10.6 presents the empirical evaluation of
using the parametrized invariant generation technique presented in Chapter 5 on a collection of
parametrized examples.

10.1 Verification of Safety Properties in Numeric Programs

In this section we describe our experience using LEAP for the verification of a mutual exclusion
protocol based on tickets. The protocol was presented in Chapter 2 as a motivating example. In
Example 2.2 we presented two versions of such protocol. INTMUTEX, which is based solely on
integers, and SETMUTEX, which uses a set for keeping the active tickets.

For program SETMUTEX we verify the following safety specifications:

setMutex: which specifies mutual exclusion:

setMutex(i, j)
def
=  (i 6= j → ¬(pc(i) = 5, 6 ∧ pc(j) = 5, 6))

setMinTicket: which states that a thread in the critical section must own the minimum ticket in
the set of tickets:

setMinTicket(i) def
=  (pc(i) = 5, 6→ min(bag) = main::ticket(i))

setNotSame: which establishes that if two different threads own a ticket, then these tickets
should be different:

setNotSame(i, j)
def
= 




i 6= j ∧
pc(i) = 4..6 ∧
pc(j) = 4..6


→ main::ticket(i) 6= main::ticket(j)

setActiveLow: which states that if a thread has a ticket, then this ticket is strictly lower than
the global ticket to be assigned to the next thread:

setActiveLow(i)
def
=  (pc(i) = 4..6→ main::ticket(i) < avail)

For program INTMUTEX we require similar safety specifications:

intMutex: identical to setMutex.

248



10.2. Verification of Safety Properties using TL3

form. info #solved VC single VC time(s.) num DP LEAP

id #VC pos num slowest average time(s) time(s)

setMutex 2 28 26 2 0.01 0.01 0.01 0.01

setMinTicket 1 19 17 2 0.01 0.01 0.01 0.01

setNotSame 2 28 26 2 0.01 0.01 0.02 0.01

setActiveLow 1 19 17 2 0.01 0.01 0.01 0.01

intMutex 2 28 26 2 0.01 0.01 0.02 0.01

intMinTicket 1 19 18 1 0.01 0.01 0.01 0.01

intNotSame 2 28 26 2 0.01 0.01 0.02 0.01

intActiveLow 1 19 17 2 0.01 0.01 0.01 0.01

Table 10.1: Verification conditions (VCs) proved and executing time using a numeric decision
procedure for verifying safety properties of a mutual exclusion protocol.

intMinTicket: which states that a thread in the critical section must own the minimum ticket:

intMinTicket(i) def
=  (pc(i) = 5, 6→ min = main::ticket(i))

intNotSame: which states that different threads own different tickets. The specification of this
property is identical to setNotSame.

intActiveLow: which states that if a thread has a ticket then the ticket must be lower than avail .
The specification of this property is the same as setActiveLow.

Table 10.1 presents the results obtained using LEAP to verify the aforementioned properties.
Each row in the table reports the empirical results obtained when proving a single candidate
invariant. The first column shows the index of the formula, i.e. the number of threads parametriz-
ing the safety property. The second column contains the total number of generated verification
conditions. The third column shows the number of verification conditions successfully proved by
a program location decision procedure. The fourth column reports the number of verification
conditions proved valid using the specialized decision procedure for numeric programs. For every
candidate invariant, all verification conditions are proved valid. The next three columns report the
fastest, slowest and average time for verifying the validity of a single verification condition using
the specialized decision procedure. Finally, the last columns report the total running time taken
by the decision procedure to check the validity of all verification conditions, and the total running
time taken by LEAP for the generation and discharge of all verification conditions (excluding the
running time of the decision procedures).

10.2 Verification of Safety Properties using TL3

In this section we report the results of the empirical evaluation using LEAP to verify the lock-
coupling list implementation presented in Section 6.1, the unbounded queue of Section 6.1.2, the
lock-free implementation of a stack shown in Section 6.1.3 and the lock-free queue presented in
Section 6.1.4.
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10.2.1 Lock-Coupling Lists

For lock-coupling concurrent lists we prove that the most general client of the data type shown in
Fig. 6.4 satisfies:

1. the layout in the heap is always that of a single-linked list;

2. the data type implements a set, whose elements correspond to those elements stored in the
ghost variable elems.

We define the following specifications and prove them to be invariants:

list: this specification models list shape preservation. The formula list is 0-index because it
only refers to global program variables. Unfortunately, list is not an inductive invariant,
so support invariants are needed to prove that list is an invariant. The required support
invariants are listed below.

region: is a 1-index formula that describes that when local variables prev , curr and aux point
to cells contained or not in region reg . This formula also captures how global program
variable reg is modified through the execution of the procedures which insert and remove
elements from the list.

next: specifies the relative position in the list of the cells pointed by head and tail and local
variables prev , curr and aux .

order: captures the order between the data stored at cells pointed by curr , prev and aux .
Additionally, it tracks the order relation between elements stored in the list and the element
e used as an argument of procedures SEARCH, INSERT and REMOVE.

lock: identifies those program locations at which a thread owns a cell in the heap by a previous
acquisition of its lock.

disj: encodes the fact that invocations to malloc by different threads return non-aliasing (sepa-
rated) cells. The formula disj is a 2-index formula, because it needs to refer to local variables
of two different threads.

The formal specification of all these invariants is quite large, and hence we do not show them
here. However, the full formal definition of each of these invariants can be found in the examples
section at LEAP’s website.

We also verify some functional properties of the concurrent lock-coupling list implementation.
For example, invariant funSchLin establishes that procedure SEARCH returns true if and only
if the searched element e is present at SEARCH’s linearization point. We can check that this
specification holds by verifying that at SEARCH’s linearization point (line 12):

funSchLin(i)
def
=  (pcSEARCH(i) = 12→ (heap[curr(i)].data = e(i)↔ e(i) ∈ elems))

For verifying other functional properties, we just need to slightly modify the lock-coupling
implementation presented in Section 6.1 adding more ghost code. For example, consider the
program depicted in Fig. 10.1. This code presents the modifications to the original lock-coupling
single-linked list implementation required to verify some functional properties. We introduce
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global
Addr head
Addr tail
Set〈Addr〉 reg
Set〈Elem〉 elems
Set〈Elem〉 histIns
Set〈Elem〉 histRem

procedure Search(Elem e)
Addr prev , curr , aux
Bool found
Set〈Elem〉 histInsCopy
Set〈Elem〉 histRemCopy

begin
· · ·

12: found := (curr→data = e)
histInsCopy := histIns
histRemCopy := histRem
· · ·
end procedure

procedure Insert(Elem e)
Addr prev , curr , aux , newnode

begin
· · ·

15: prev→next := newnode
reg := reg ∪ {newnode}
elems := elems ∪ {e}
histIns := histIns ∪ {e}

· · ·
end procedure

procedure Remove(Elem e)
Addr prev , curr , aux

begin
· · ·

14: prev→next := aux
reg := reg − {curr}
elems := elems − {e}
histRem := histRem ∪ {e}

· · ·
end procedure

Figure 10.1: Modifications needed to apply over the lock-coupling implementation of Section 6.1
in order to verify some functional properties.

two new global ghost program variables named histIns and histRem. These two program
variables are updated at INSERT and REMOVE procedure with the elements that are inserted and
removed respectively. Procedure SEARCH also declares two local ghost program variables named
histInsCopy and histRemCopy . These program variables keep a copy of histIns and histRem

when procedure SEARCH goes through its linearization point, at line 12.
We can now use the procedures SEARCH, INSERT and REMOVE extended with the new ghost

notation to prove the following functional properties:

funSchIns: this specification states that, if a call to SEARCH with argument e returns true, then
e has been previously inserted into the list. As the history of elements inserted into the
list is kept by the global program variable histIns, then we can prove this specification by
verifying that after SEARCH’s linearization point the following formula holds:

funSchIns(i)
def
=  (pcSEARCH(i) = 12→ (found(i)→ e ∈ histIns))

funSchRem: this specification captures the fact that if a search is unsuccessful then either e
was never inserted or it was removed. In any case, element e was not present at SEARCH’s
linearization point. That is:

funSchRem(i)
def
= 


pcSEARCH(i) = 12→




histIns ⊆ (elems ∪ histRem) ∧

¬ found(i)→
(
e(i) 6∈ histInsCopy ∨
e(i) ∈ histRemCopy

)






This formula states that:
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(a) If an element was at some point inserted into the list, then it is still in the list or it has
been removed by a call to REMOVE.

(b) If element e was not found by SEARCH, then either element e has never been inserted
or element e has been removed by a previous call to REMOVE.

The local copy of histIns and histRem at SEARCH serve as a snapshot of the composition of
the list at the linearization point of SEARCH.

We can verify other functional properties just by making a slight change to other parts of
the program. For example, we can modify the most general client of the lock-coupling list
implementation so that only a specific thread uses a specific argument and call. Following this
idea, we can declare some specifications such as funRemove, funInsert and funSearch, which
are restricted to the case in which one thread handles different elements than all other threads.
In this case, the specification is similar to a sequential functional specification: an element is
found if and only if it is in the list, an element is not present after removal, and an element is
present after insertion.

Fig. 10.2 shows the modifications that are required in order to verify funSearch. We pick a
chosen thread named chosen and a chosen element named chosen_e. The most general client for
this example consists of an infinite loop which checks whether the executing thread corresponds
to chosen. If so, the thread performs a call to SEARCH looking for chosen_e element. In the case
the executing thread is not chosen, then it gets an arbitrary element and, if this element is not
equal to chosen_e, non-deterministically performs a call to one of the operations implemented by
the list.

For verifying properties funInsert and funRemove we follow a similar approach. In the case
of funSearch, the property states that the result of a call to SEARCH over the chosen element

global
Addr head
Addr tail
Tid chosen
Elem chosen e
Set〈Addr〉 reg
Set〈Elem〉 elems

procedure MGC()
Elem e

begin
1: while true do
2: if me = chosen then
3: result := call Search(chosen e)
4: skip
5: else
6: e := havocListElem()
7: if e 6= chosen e then
8: nondet choice
9: call Search(e)

10: or call Insert(e)
11: or call Remove(e)
12: end if
13: end if
14: end while

end procedure

Figure 10.2: Modifications needed to apply over the lock-coupling implementation of Section 6.1
in order to verify funSearch properties.
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form. info #solved VC single VC time(s.) TL3 DP LEAP

id #VC pos TL3 slowest average time(s) time(s)

list 0 61 38 23 10.16 0.27 16.57 0.19

order 1 121 62 59 0.10 0.01 0.70 0.38

lock 1 121 76 45 0.72 0.01 1.38 0.15

next 1 121 60 61 0.66 0.01 1.56 0.50

region 1 121 102 19 8.88 0.09 10.62 0.19

disj 2 181 177 4 0.28 0.00 0.64 0.19

funSchLin 1 121 97 24 0.92 0.02 1.95 0.05

funSchIns 1 208 199 9 0.15 0.00 0.62 0.86

funSchRem 1 208 199 9 0.36 0.00 0.93 1.04

funSearch 1 208 197 11 0.40 0.01 1.21 0.78

funInsert 1 208 197 11 0.16 0.01 0.72 0.62

funRemove 1 208 197 11 0.35 0.02 1.07 0.82

Table 10.2: Verification conditions (VCs) proved and executing time using TL3 decision procedure
for verifying safety properties of a concurrent lock-coupling list.

should match the presence of the element in the list:

funSearch(i)
def
=  (pcMGC(i) = 4→ (chosen_e ∈ elems ↔ result(chosen)))

Table 10.2 presents the results we have obtained in the verification of the properties stated above.

10.2.2 Unbounded Lock-based Queue

For the coarse-grain lock-based concurrent queue presented in Section 6.1.2 we prove queue
shape preservation, expressed as follows:

unbQueuePres def
= 




null ∈ reg ∧
tail ∈ reg ∧
tail 6= null ∧
reg = addr2set(heap, head) ∧
head 6= null




In this case, similar to concurrent lock-coupling lists, we require auxiliary invariants such as
unbQueueNext, which describes the relation between pointers, and unbQueueLock, which
describes when locks are owned by a thread. The full specifications for these properties can be
found in LEAP’s website.

For this data type we also verify that unbQueueInc is an invariant. Formula unbQueueInc
specifies that all elements introduced in the queue are either still in the queue or they have been
extracted through a call to the dequeue function. In order to check this property, we need to add
auxiliary ghost variables enqueueSet and dequeueSet to keep track of the elements inserted and
removed form the queue through calls to ENQUEUE or DEQUEUE.
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procedure MGCUnboundedQueue()
Elem e

begin
1: while true do
2: e := havocQueueElem()
3: nondet choice
4: call Enqueue(e)
5: or call Dequeue(e)
6: end choice
7: end while
8: return()

end procedure

procedure Enqueue(Elem e)
Addr n

begin
9: lock(queueLock)

10: newnode := malloc(e)
11: newnode→next := null
12: tail→next := newnode

enqueueSet := enqueueSet ∪ {e}
13: tail := newnode
14: unlock(queueLock)
15: return()

end procedure

procedure Dequeue()
Elem result

begin
16: lock(queueLock)
17: if head→next = null then
18: unlock(queueLock)
19: raise(EmptyException)
20: end if
21: result := head→next→data
22: head := head→next

dequeueSet := dequeueSet∪{result}
23: unlock(queueLock)
24: return(result)
end procedure

global
Addr head , tail
Lock queueLock
Set〈Elem〉 enqueueSet
Set〈Elem〉 dequeueSet

Figure 10.3: Modifications needed to apply over the lock-based unbounded queue implementation
in order to verify unbQueueInc property.

As can be seen in Fig. 10.3, ENQUEUE and DEQUEUE are modified so that ghost variables
enqueueSet and dequeueSet are updated at their linearization points. In particular, as elements
stored in head and null are sentinel, property unbQueueInc can be expressed as:

unbQueueInc def
=  (enqueueSet = set2elemset(heap, reg − {head ,null}) ∪ dequeueSet)

Table 10.3 presents the results we have obtained using LEAP for verifying the properties stated
above. As can be seen, all properties were verified within less than a second.

form. info #solved VC single VC time(s.) TL3 DP LEAP

id #VC pos TL3 slowest average time(s) time(s)

unbQueuePres 0 23 18 5 0.08 0.01 0.18 0.00

unbQueueNext 1 45 35 10 0.01 0.00 0.05 0.04

unbQueueLock 1 45 33 12 0.01 0.00 0.05 0.02

unbQueueInc 0 23 19 4 0.09 0.01 0.22 0.01

Table 10.3: Verification conditions (VCs) proved and executing time using TL3 decision procedure
for verifying safety properties of an unbounded lock-based queue.
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10.2.3 Lock-free Stacks

We now prove some parametrized invariants for an implementation of a lock-free stack. The
data type was already presented in Section 6.1.3. A basic property we would like to verify is that
all operations performed by the lock-free stack preserve the shape of the data structure. This
property is expressed as lfStackPres, which simply states that null and the node pointed by top

are reachable within the region of the stack:

lfStackPres def
=  (null ∈ reg ∧ top ∈ reg ∧ reg = addr2set(heap, top))

As in previous examples, in this case we also require some extra auxiliary invariants in order to
prove lfStackPres. In particular:

lfStackNext: which specifies the relation between the pointers as the stack is traversed.

lfStackRegion: which declares how the region of the heap that corresponds to the stack is
modified.

lfStackVals: which states some relation between the values stored in the stack.

global
Addr top
Set〈Addr〉 reg
Set〈Elem〉 pushSet
Set〈Elem〉 popSet

procedure Push(Elem e)
Addr oldTop, newTop, n
Bool comparison

begin
1: newnode := malloc(e)
2: while true do
3: oldTop := top
4: newnode→next := oldTop

5:

〈 if (top = oldTop) then
top := n
comparison := true

end if

〉

if (top = oldTop) then
reg := reg ∪ {n}
pushSet := pushSet ∪ {e}

end if
6: if comparison then
7: return()
8: end if
9: end while

end procedure

procedure Pop()
Addr oldTop, newTop
Elem value

begin
10: while true do
11: oldTop := top
12: if oldTop = null then
13: raise(EmptyException)
14: end if
15: newTop := oldTop→next
16: value := oldTop→data

17:

〈 if (top = oldTop) then
top := newTop
comparison := true

end if

〉

if (top = oldTop) then
reg := reg − {oldTop}
popSet := pushSet ∪ {value}

end if
18: if comparison then
19: return(value)
20: end if
21: end while

end procedure

Figure 10.4: Modifications needed to apply over the lock-free stack implementation in order to
verify lfStackInc.
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form. info #solved VC single VC time(s.) TL3 DP LEAP

id #VC pos TL3 slowest average time(s) time(s)

lfStackPres 0 37 30 7 0.02 0.00 0.06 0.00

lfStackRegion 1 73 69 4 0.01 0.00 0.02 0.02

lfStackReach 1 109 90 19 1.44 0.04 3.99 0.42

lfStackNext 1 73 63 10 0.14 0.00 0.19 0.03

lfStackInc 0 37 30 7 0.01 0.00 0.04 0.01

lfStackDisj 2 109 105 4 0.01 0.00 0.08 0.11

lfStackVals 1 73 62 11 0.01 0.00 0.05 0.01

Table 10.4: Verification conditions (VCs) proved and executing time using TL3 decision procedure
for verifying safety properties of a lock-free stack.

lfStackReach: which deals with the relation between reachable nodes within the stack.

lfStackDisj: which states that nodes created by different threads must not intersect in the heap.

In addition to the invariants stated above, we can prove properties such as lfQueueInc which
states that all elements that has been inserted into the stack using a call to PUSH are still in the
stack unless a POP operation has removed them from the data structure:

lfStackInc def
=  (pushSet = (set2elemset(heap, reg − {null})) ∪ popSet)

In order to verify this property, we add some ghost annotations to the original lock-free stack
implementation. Fig. 10.4 shows the lock-free stack implementation presented in Section 6.1.3
including the new required modifications that enables the verification of property lfQueueInc.

In Fig. 10.4 we omit the specification of the most general client MGC, but its construction is
very similar to the MGC for unbounded queues presented in Fig. 10.3. Additionally, line 5 and
line 17 define the expanded semantics for the CAS operations.

As with previous examples, Table 10.4 presents the results from using LEAP for the verification
of the safety properties stated above.

10.2.4 Lock-free Queues

We now check some invariants of lock-free non-blocking queues, presented in Section 6.1.4, also
known as Michael-Scott queue.

Once again, one of the main properties we would like to verify is queue shape preservation,
which is expressed by lfQueuePres:

lfQueuePres def
= 




null ∈ reg ∧
tail ∈ reg ∧
tail 6= null ∧
head 6= null ∧
reg = addr2set(heap, head)



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procedure Enqueue(Elem e)
Addr last , nextptr , n
Bool comparison = false

begin
1: newnode := malloc(e)
2: newnode→next := null
3: while true do
4: last := tail
5: nextptr := last→next
6: if last = tail then

7:

〈 if (last→next = nextptr) then
last→next := n
comparison := true

end if

〉

if (last→next = nextptr) then
reg := reg ∪ {n}
enqueueSet := enqueueSet ∪ {e}

end if
8: if comparison then

9:

〈 if tail = last then
tail := n

end if

〉

10: return()
11: else

12:

〈 if tail = last then
tail := nextptr

end if

〉

13: end if
14: end if
15: end while
16: return()

end procedure

procedure Dequeue()
Addr first , last , nextptr
Elem value
Bool comparison = false

begin
17: while true do
18: first := head
19: last := tail
20: nextptr := first→next
21: if first = head then
22: if first = last then
23: if nextptr = null then
24: raise(EmptyException)
25: end if

26:

〈 if (tail = last) then
tail := nextptr

end if

〉

27: else
28: value := nextptr→data

29:

〈 if (head = first) then
head := nextptr
comparison := true

end if

〉

if (head = first) then
reg := reg − {first}
dequeueSet := dequeueSet − {value}

end if
30: if comparison then
31: return(value)
32: end if
33: end if
34: end if
35: end while

end procedure

global
Addr head , tail
Set〈Addr〉 reg
Set〈Elem〉 enqueueSet
Set〈Elem〉 dequeueSet

Figure 10.5: Modifications needed to apply over the lock-free queue implementation in order to
verify lfQueueInc.

In this case, as with other examples, we also require some auxiliary invariants:

lfQueueNext: which keeps track of the pointer assignments as a thread traverses the queue.

lfQueueRegion: which describes the structure of the region of the heap used by the queue.

lfQueueDisj: which states that new nodes created by different threads must not be allocated at
equal addresses within the heap.

lfQueueComp: which deals with the values taken by ghost program variable comparison.

Contrary to the lock-based queue example analyzed before, now we do not require an invariant
describing the state of the locks because the algorithm is lock-free. Instead, we define an invariant
lfQueueReach to describe the reachability between different nodes within the lock-free queue.
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form. info #solved VC single VC time(s.) TL3 DP LEAP

id #VC pos TL3 slowest average time(s) time(s)

lfQueuePres 1 52 40 12 0.12 0.01 0.40 0.02

lfQueueRegion 1 103 99 4 0.01 0.00 0.04 0.03

lfQueueReach 1 103 81 22 11.19 0.23 23.78 0.15

lfQueueNext 1 103 76 27 5.20 0.07 7.76 0.44

lfQueueInc 0 52 40 12 0.10 0.00 0.19 0.01

lfQueueComp 1 103 102 1 0.00 0.00 0.01 0.02

lfQueueDisj 2 154 150 4 0.03 0.00 0.13 0.17

Table 10.5: Verification conditions (VCs) proved and executing time using TL3 decision procedure
for verifying safety properties of a lock-free queue.

Once again, all complete specifications for each of the properties described above can be seen
in LEAP’s website. As for the lock-based implementation, lfQueueInc is a safety specification
that states that all elements inserted into the queue are still in the queue unless they have been
removed through a call to DEQUEUE:

lfQueueInc def
=  (enqueueSet = (set2elemset(heap, reg − {head ,null}) ∪ dequeueSet))

As before, in order to check property lfQueueInc we annotate the original lock-free stack program
with ghost variables. Fig. 10.5 shows the implementation of the lock-free stack introduced in
Section 6.1.4 with the additional ghost notation necessary to prove lfQueueInc property. Once
again, we present the results we have obtained using LEAP in the verification of the safety
specifications described above. The results are depicted in Table 10.5.

10.3 Verification of Safety Properties using TSLK

We now present the results of our experiments using LEAP for verifying skiplists with a bounded
number of levels. We consider programs SEARCH presented in Fig. 7.3, INSERT shown in Fig. 7.5
and REMOVE introduced in Fig. 7.7 from Chapter 7. In our experiments, we use a slightly modified
version of these procedures, so that they do not use locks.

We study bounded skiplist implementations of 1, 2, 3, 4 ans 5 levels. Each implementation has
K instantiated to the appropriated number of levels. For each implementation, the main property
we would like to verify is skiplist shape preservation. In the case of skiplists with 2 levels, this
property is described through the temporal specification skiplist2 which states:

skiplist2
def
= 




tail 6= null ∧ head 6= null ∧ head 6= tail ∧
ordList(heap, head , tail) ∧ reg = addr2setK(heap, head , 0) ∧
heap[tail ].next [0] = null ∧ heap[tail ].next [1] = null ∧
addr2setK(heap, head , 1) ⊆ addr2setK(heap, head , 0) ∧
heap[head ].data = −∞ ∧ heap[tail ].data = +∞ ∧
tail ∈ addr2setK(heap, head , 0) ∧ tailinaddr2setK(heap, head , 1)



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form. info #solved VC single VC time(s.) TSLK DP LEAP

id #VC pos TSLK slowest average time(s) time(s)

skiplist1 0 77 70 7 0.10 0.01 0.20 0.32
region1 1 77 50 27 0.14 0.01 0.37 0.28

next1 1 77 58 19 0.02 0.01 0.15 0.14
order1 1 77 52 25 0.02 0.01 0.58 0.11
value1 1 77 70 7 0.01 0.01 0.03 0.07

skiplist2 0 79 72 7 1.51 0.04 3.33 0.31
region2 1 79 52 27 0.33 0.01 1.12 0.49

next2 1 79 60 19 0.04 0.01 0.24 0.14
order2 1 79 54 25 0.56 0.01 0.86 1.01
value2 1 79 72 7 0.01 0.01 0.03 0.11

skiplist3 0 81 74 7 776.45 15.27 1, 221.52 0.45
region3 1 81 54 27 17.36 0.34 26.92 0.58

next3 1 81 63 19 0.09 0.01 0.47 0.20
order3 1 81 56 25 7.80 0.10 8.35 1.31
value3 1 81 74 7 0.01 0.01 0.03 0.10

skiplist4 0 83 76 7 T.O. T.O. T.O. 0.80
region4 1 83 56 27 226.08 4.30 348.44 0.79

next4 1 83 65 19 0.22 0.01 0.83 0.25
order4 1 83 58 25 43.97 0.56 45.28 1.83
value4 1 83 76 7 0.01 0.01 0.03 0.12

skiplist5 0 85 78 7 T.O. T.O. T.O. 0.89
region5 1 85 58 27 385.16 5.64 462.45 0.98

next5 1 85 67 19 0.24 0.01 1.08 0.31
order5 1 85 60 25 188.09 2.32 190.03 3.01
value5 1 85 78 7 0.01 0.01 0.03 0.11

Table 10.6: Verification conditions (VCs) proved and executing time using TSLK decision proce-
dure for verifying safety properties for bounded skiplists of 1, 2, 3, 4 and 5 levels.

The formula skiplist2 describes the heap shape of a skiplist with 2 levels. In order to verify skiplist2
as invariant, we use auxiliary invariants. These auxiliary properties, in the case of a skiplist with
2 levels, are:

next2: which states the relation between pointers head , tail , prev , curr and aux as a thread
traverses the skiplist.

region2: which keeps track of the composition of the region in the heap where the skiplist is
stored.

order2: which describes the order relation between the skiplist nodes.

value2: which controls the relation between the skiplist levels.

As before, the detailed specifications for each of these properties in the case of a skiplist of 2

levels can be found in LEAP’s website.
Similarly, we have also considered skiplist implementations of 1, 3, 4 and 5 levels. For each

of these implementations, we have analyzed a set of invariant candidates similar to the ones
described above. Table 10.6 shows the results we have obtained.

As shown in Table 10.6, the decision procedure for TSLK performs reasonably well. However,
as the number of levels of a skiplist grows, the decision procedure starts to degrade its performance.
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Our empirical evaluation suggests that TSLK would not scale to any number of levels. In the next
section we present the results we have obtained using TSL, which shows that TSL is a natural
candidate for the verification of arbitrary high skiplists.

10.4 Verification of Safety Properties using TSL

We now present experimental results using the decision procedure for skiplists of arbitrary height
described in Chapter 8. As TSL currently does not support concurrency, we verify these two
sequential implementation of a skiplist:

1. The skiplist implementation presented in Chapter 8; and

2. A skiplist implementation which is part of the KDE library [197].

In the case of the skiplist presented in Chapter 8, the operations we analyze are SEARCH,
INSERT and REMOVE, described in Fig. 8.3, Fig. 8.4 and Fig. 8.5 respectively. The first property
analyzed is skiplist shape preservation, which is described as follows:

skiplist def
= 




tail 6= null ∧ head 6= null ∧ head 6= tail ∧
skiplist(heap, reg ,max , head , tail , elems) ∧max ≥ 0 ∧
heap[head ].data = −∞ ∧ heap[tail ].data = +∞




We use the following auxiliary invariants:

next: which keeps track of the state of the pointers used to traverse the skiplist.

region: which specifies the structure of the heap region where the skiplist is allocated.

order: which keeps the order relation between the nodes that are part of the skiplist.

value: which declares the special conditions that need to be considered when the inserted or
removed element is present or not in the skiplist.

levels: which states the relation between every skiplist level and the integer variables that are
used to index them.

We also verify some functional properties. For functional verification we use the simple
specifications shown in Fig. 10.6. Fig. 10.6 presents three programs named FSEARCH, FINSERT

and FREMOVE. These programs require the declaration of a new ghost global variable, named
elemsBefore. The idea is that elemsBefore keeps a copy of the elements stored in the skiplist just
before a call to an especial element is performed. After a call to SEARCH, INSERT or REMOVE, it
is possible to check whether the set of elements that are part of the skiplist has been correctly
updated.

Using the programs described in Fig. 10.6 it is possible to verify the following properties:

funSearch: which states that a call to SEARCH does not modify the set of elements stored in the
skiplist and that the value returned by the call corresponds to the presence of the element
in the skiplist. This is specified by the following temporal formula:

funSearch(i)
def
= 

(
pcFSEARCH(i) = 4→

(
FSEARCH::result ↔ FSEARCH::e ∈ elems ∧
elemsBefore = elems

) )
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global
Addr head
Addr tail
Int maxLevel
Set〈Addr〉 reg
Set〈Elem〉 elems
Set〈Elem〉 elemsBefore

procedure FSearch()
begin

1: Set〈Elem〉 elemsBefore := elems
2: v := havocSkiplistElem()
3: result := call Search(v)
4: return()

end procedure

procedure FInsert()
begin

1: Set〈Elem〉 elemsBefore := elems
2: v := havocSkiplistElem()
3: result := call Insert(v)
4: return()

end procedure

procedure FRemove()
begin

1: Set〈Elem〉 elemsBefore := elems
2: v := havocSkiplistElem()
3: result := call Remove(v)
4: return()

end procedure

Figure 10.6: Functional specifications for SEARCH, INSERT and REMOVE

funInsert: which describes the fact that after a call to INSERT, the new element should be in the
skiplist. This can be expressed by the following temporal specification:

funInsert(i) def
= 

(
pcFINSERT(i) = 4→ elems = elemsBefore ∪ {v}

)

funRemove: which specifies that after a call to REMOVE with a certain element, such element
should not be part of the skiplist anymore. This property is described using the following
temporal formula:

funRemove(i)
def
= 

(
pcFREMOVE(i) = 4→ elems = elemsBefore − {v}

)

Additionally, we verify skiplist shape preservation of an unbounded skiplist implementation

form. info #Calls to DPs
#VC #PO pos TSL TSL1 TSL2 TSL3 TSL4 TSL5

skiplist 80 560 70 10 54 89 44 10 −
region 80 1583 45 35 113 176 76 − −

next 80 1899 55 25 30 41 22 − −
order 80 2531 47 33 160 250 116 − −

skiplistKDE 54 214 47 7 38 72 39 10 −
regionKDE 54 585 37 17 99 169 76 − −

nextKDE 54 1115 40 14 42 46 16 − −
orderKDE 54 797 35 19 107 158 76 − −

funSearch 76 76 74 2 24 − − − −
funInsert 75 75 68 7 9 2 − − −

funRemove 75 75 67 8 15 2 − − −

Table 10.7: Number of queries for the verification of unbounded skiplists. “−” means no calls to
the decision procedure were required. All TSL queries were ultimately decomposed into TSLK
for K ≤ 5.
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which is part of the KDE library [197]. This implementation is similar to the one presented
in Section 8.1. In order to verify the skiplist shape preservation we need to define slightly
modified invariant candidates named skiplistKDE, nextKDE, regionKDE and orderKDE which
describe properties similar to skiplist, next, region and order respectively.

In order to verify these properties we use the decision procedure for TSL introduced in
Chapter 8. This decision procedure reduces a TSL satisfiability problem into various queries to a
Presburguer arithmetic decision procedure and TSLK decision procedures. This is reflected in
Table 10.7, which shows that a single call to the TSL decision procedure may lead to numerous
calls to simpler decision procedures from the TSLK family. Table 10.7 shows, for each analyzed
invariant candidate:

1. #VC: the number of generated verification conditions.

2. #PO: the number of generated proof obligations as a consequence of applying different
tactics. We call a proof obligation to each of the implications obtained as a result of applying
the tactics presented in Section 9.2.4.

3. pos: the number of verification conditions solved using the simple decision procedure that
reasons on program locations.

4. TSL: the number of verification conditions solved using TSL decision procedure.

5. TSL1, TSL2, TSL3, TSL4 and TSL5: the number of calls to each decision procedure from
the TSLK family, exercised by the TSL decision procedure.

Finally, Table 10.8 shows the execution time for verifying each of the safety properties specified
for unbounded skiplists. The columns of Table 10.8 describe the slowest and average verification
time for a single verification condition; the total time required for all decision procedures to
check the validity of all generated verification conditions; and the total time required by LEAP to
generate all verification conditions. All verification conditions are checked as valid.

VC time (s.) Total time (s.)
slowest average DP LEAP

skiplist 18.41 0.94 75.58 0.15
region 20.82 0.74 59.92 0.58

next 3.27 0.07 5.95 1.21
order 1.89 0.07 6.28 2.12

skiplistKDE 18.21 0.52 28.16 0.05
regionKDE 26.22 0.66 36.11 0.21

nextKDE 13.18 0.25 13.68 0.76
orderKDE 1.12 0.06 3.32 0.59

funSearch 0.12 0.01 0.15 0.04
funInsert 0.02 0.01 0.05 0.04

funRemove 0.04 0.01 0.10 0.06

Table 10.8: Running times for the verification of safety properties over unbounded skiplists.
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10.5 Verification of Liveness Properties using PVD

In this section we describe some results we have obtained using the parametrized verification
diagrams introduced in Chapter 4. We use PVD to verify some liveness properties of parametrized
systems. In particular, we study 2 concrete examples:

• the mutual exclusion protocol introduced in Example 2.2 from Chapter 2; and

• the concurrent lock-coupling lists described as motivating example in Chapter 6.

10.5.1 Mutual Exclusion Protocol

We consider the mutual exclusion protocol SETMUTEX described in Example 2.2 in page 21. In
particular, for the verification of liveness properties, we consider the modified version presented
in Fig. 4.5 at Example 4.3 in page 83. For this program, we would like to verify that any thread
that wants to access the critical section, it eventually succeeds in accessing. This simple property
can be expressed by the following 1-index parametrized temporal formula:

eventually_critical(k)
def
=  (pc(k) = 3→pc(k) = 5)

In order to check this temporal property we use the parametrized verification diagram described
in Example 4.3. For this particular example, we will need to define some auxiliary invariants that
will act as support. These invariants are:

minticketActive: this invariant states that a thread with the minimum ticket in the bag is at
some point between lines 4 and 6:

minticketActive(i)
def
=  (i = πtid(minPair(bag)) ∧ pc(i) = 4..6)

bagIsActive: this invariant is more general, and describes the fact that a pair is in the set bag

if and only if the program execution that corresponds to the thread identifier associated
to this pair is at line 4, 5 or 6. For specifying this property, we use predicate inTidPair .
This predicate, which receives a thread identifier i and a set of pairs bag , checks whether
there is an integer n such that the pair (i, n) is in the set bag . We can then describe property
bagIsActive as:

bagIsActive(i)
def
=  (inTidPair(i, bag)↔ pc(i) = 4..6)

unique: this invariant specifies that there cannot be two pairs within bag with the same thread
identifier or integer component. To do so, we use the predicates uniqueInt and uniqueTid

from our theory of pairs which receive a set of pairs as argument and hold whenever there
are no repeated integers or repeated thread identifier components in such set. Specification
unique is:

unique def
=  (uniqueTid(bag) ∧ uniqueInt(bag))

We use LEAP to check that these auxiliary specifications are in fact invariants of program
SETMUTEX.
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The PVD that represents the proof that program SETMUTEX satisfies the liveness property
eventually_critical(k) for an arbitrary thread k, is depicted in Example 4.3. Fig. 10.7 shows the
PVD declaration in LEAP input format. Using this PVD, we use LEAP to automatically verify the
condition (Init) —for initiation—, conditions (SelfConsec) and (OtherConsec) —for consecution—,
conditions (SelfAcc) and (OtherAcc) —for acceptance— and conditions (En) and (Succ) —for

Diagram[ticketset]

Nodes: n0 { @1(k). \/ @2(k). },
n1 { @3(k). },
n2 { @4(t). /\ k!=t /\ @4(k). /\

int_of(spmin(bag)) = main::ticket(t) },
n3 { @5(t). /\ k!=t /\ @4(k). /\

int_of(spmin(bag)) = main::ticket(t) },
n4 { @6(t). /\ k!=t /\ @4(k). /\

int_of(spmin(bag)) = main::ticket(t) },
n5 { @4(k). /\ int_of(spmin(bag)) = main::ticket(k) },
n6 { (@5(k). \/ @6(k).) /\ int_of(spmin(bag)) = main::ticket(k) }

Boxes: {b1[t]:n2,n3,n4}

Initial: n0

Edges: n0 --> n1;
n1 -{3(k)}-> n2;
n1 -{3(k)}-> n3;
n1 -{3(k)}-> n4;
n1 -{3(k)}-> n5;

[n2 -{4(t)}-> n3];
[n3 -{5(t)}-> n4];
n4 -{6(t)}-> n2;
n4 -{6(t)}-> n3;
n4 -{6(t)}-> n4;
n4 -{6(t)}-> n5;
n5 -{4(k)}-> n6;
n6 --> n0;

// Self-loops
n0 --> n0;
n1 --> n1;

[n2 --> n2];
[n3 --> n3];
[n4 --> n4];
n5 --> n5;
n6 --> n6;

Acceptance:
<<Bad :{(n4,n2,any),(n4,n3,any),(n4,n4,any),(n4,n5,any)};

Good:{(n6,n0,any),
(n1,n1,any),(n1,n2,any),(n1,n3,any),(n1,n4,any),(n1,n5,any),
(n0,n0,any)};

[(splower(bag,main::ticket(k)), pairsubset_op)] >>

Figure 10.7: LEAP input representation for the PVD showing that SETMUTEX satisfies property
eventually_critical (k).
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MODULE main
VAR

state : {q0,q1,q2,q3,q4,q5,q6,g0,g1,g2,g3,g4,g5,g6,
b0,b1,b2,b3,b4,b5,b6};

k : 1..6;

INIT state = q0;

TRANS
case
state = q6 : next(state) in {g0};
state = g6 : next(state) in {g0};
state = q0 : next(state) in {q0,q1};
state = q1 : next(state) in {q1,q2,q3,q4,q5};
state = q2 : next(state) in {q2,q3};
state = q3 : next(state) in {q3,q4};
state = q4 : next(state) in {q2,q3,q4,q5};
state = q5 : next(state) in {q5,q6};
state = q6 : next(state) in {q6};
state = g0 : next(state) in {q0,q1};
state = g1 : next(state) in {q1,q2,q3,q4,q5};
state = g2 : next(state) in {q2,q3};
state = g3 : next(state) in {q3,q4};
state = g4 : next(state) in {q2,q3,q4,q5};
state = g5 : next(state) in {q5,q6};
state = g6 : next(state) in {q6};
state = b0 : next(state) in {b0,b1};
state = b1 : next(state) in {b1,b2,b3,b4,b5};
state = b2 : next(state) in {b2,b3};
state = b3 : next(state) in {b3,b4};
state = b4 : FALSE;
state = b5 : next(state) in {b5,b6};
state = b6 : next(state) in {b0,b6};
state = q0 : next(state) in {b0,b1};
state = q1 : next(state) in {b1,b2,b3,b4,b5};
state = q2 : next(state) in {b2,b3};
state = q3 : next(state) in {b3,b4};
state = q4 : next(state) in {b2,b3,b4,b5};
state = q5 : next(state) in {b5,b6};
state = q6 : next(state) in {b0,b6};

esac;

TRANS
case
state in {q0,g0,b0} : k != 3 & k != 5 & k != 6;
state in {q1,g1,b1} : k = 3;
state in {q2,g2,b2} : TRUE;
state in {q3,g3,b3} : TRUE;
state in {q4,g4,b4} : TRUE;
state in {q5,g5,b5} : TRUE;
state in {q6,g6,b6} : k = 5 | k = 6;

esac;

FAIRNESS (state in {g0,g1,g2,g3,g4,g5,g6,b0,b1,b2,b3,b4,b5,b6});
LTLSPEC G (k = 3 -> F (k = 5 | k = 6));

Figure 10.8: NuSMV input representation for checking condition (ModelCheck) for the PVD that
shows that program SETMUTEX satisfies property eventually_critical(k).
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#VC #solved VC single VC time(s.) DP LEAP

pos num slowest average time(s) time(s)

Initiation 1 0 1 0.01 0.01 0.01 0.01

Consecution 153 144 9 2.66 0.03 4.22 0.06

Acceptance 195 132 63 1.46 0.08 15.28 0.05

Fairness 24 20 4 0.03 0.01 0.10 0.02

Table 10.9: Running times for the verification of property eventually_critical(k) in program
SETMUTEX.

fairness—. Table 10.9 presents the results we have obtained for the verification of property
eventually_critical(k) for the mutual exclusion protocol SETMUTEX. The table shows, for each rule,
the total number of generated verification conditions, the number of verification conditions solved
using the location based decision procedures and the total number of verification conditions
checked using a decision procedure for Presburguer arithmetic. The table also presents the
slowest and average time for solving a single verification condition, the total time that takes the
decision procedures to check all generated verification conditions and the time it takes LEAP to
generate all these verification conditions.

It is easy to see that condition (Prop) holds. For condition (ModelCheck), we check whether
the propositional models of the diagram are included in traces of property eventually_critical(k).
To do so, we convert the edge-Streett non-deterministic automaton described by the PVD into
a non-deterministic Büchi automaton (NBW) using the translation described in Appendix A.
Then, we use the NuSMV [43] model-checker to test the resulting NBW against the temporal
formula eventually_critical(k). Fig. 10.8 shows the resulting NBW used to check (ModelCheck)
using NuSMV. This verification is performed in less than a second. As all verification conditions
are checked, we can conclude that program SETMUTEX satisfies property eventually_critical(k),
and that our PVD is a witness of such proof.

10.5.2 Lock-coupling Lists

We now use parametrized verification diagrams to verify a liveness property of the concurrent lock-
coupling single liked lists presented in Section 6.1.1. Consider a parametrized system composed
by an unbounded number of threads, each of which is executing the procedure MGCLIST, which
was described in Fig. 6.4 in page 110. A liveness property we would like to verify is that if an
arbitrary thread k in this system attempts to insert an element in the concurrent lock-coupling
list, then thread k eventually succeeds.

Before we proceed with the verification of this property, we present a variation of the imple-
mentation of concurrent lock-coupling single-linked lists first introduced in Section 6.1. Fig. 10.9
present this new implementation, which basically extends the original implementation by adding
some extra ghost code. In particular, this new ghost code will help us in computing the ranking
functions needed for checking the acceptance conditions of the PVD we will construct later. We
add 4 new global ghost variables of type set of thread identifiers:

• lockedSet contains the set of thread identifiers that owns at least a lock in the list. A thread
identifier is added to this set when the thread gets its first lock (which can happen at line 10,
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procedure MGCList()
Elem e

begin
1: while true do
2: e := havocListElem()
3: nondet choice
4: call Search(e)
5: or call Insert(e)
6: or call Remove(e)
7: end choice
8: end while

end procedure

procedure Search(Elem e)
Addr prev , curr , aux
Bool found

begin
9: prev := head

10: lock(prev→lock)
lockedSet := lockedSet ∪ {me}

11: curr := prev→next
12: lock(curr→lock)
13: while curr→data < e do
14: aux := prev
15: prev := curr
16: unlock(aux→lock)
17: curr := curr→next
18: lock(curr→lock)
19: end while
20: found := (curr→data = e)
21: unlock(prev→lock)
22: unlock(curr→lock)

lockedSet := lockedSet − {me}
aheadSet := aheadSet − {me}

23: return found
end procedure

procedure Insert(Elem e)
Addr prev , curr , aux , newnode

begin
24: prev := head
25: lock(prev→lock)

lockedSet := lockedSet ∪ {me}
lockedInsert := lockedInsert ∪ {me}
if (me = k) then

aheadSet := lockedSet
aheadInsert := lockedInsert

endif
26: curr := prev→next
27: lock(curr→lock)
28: while curr 6= null ∧ curr→data < e do
29: aux := prev
30: prev := curr
31: unlock(aux→lock)
32: curr := curr→next
33: lock(curr→lock)
34: end while
35: if curr 6= null ∧ curr→data > e then
36: newnode := malloc(e)
37: newnode→next := curr
38: prev→next := newnode

reg := reg ∪ {newnode}
elems := elems ∪ {e}
lockedInsert := lockedInsert − {me}
aheadInsert := aheadInsert − {me}

39: else
40: skip

lockedInsert := lockedInsert − {me}
aheadInsert := aheadInsert − {me}

41: end if
42: unlock(prev→lock)
43: unlock(curr→lock)

lockedSet := lockedSet − {me}
aheadSet := aheadSet − {me}

44: return
end procedure

global
Addr head
Addr tail
Set〈Addr〉 reg
Set〈Elem〉 elems
Set〈Tid〉 lockedSet
Set〈Tid〉 lockedInsert
Set〈Tid〉 aheadSet
Set〈Tid〉 aheadInsert

procedure Remove(Elem e)
Addr prev , curr , aux

begin
45: prev := head
46: lock(prev→lock)

lockedSet := lockedSet ∪ {me}
47: curr := prev→next
48: lock(curr→lock)
49: while curr 6= tail ∧ curr→data < e do
50: aux := prev
51: prev := curr
52: unlock(aux→lock)
53: curr := curr→next
54: lock(curr→lock)
55: end while
56: if curr 6= tail ∧ curr→data = e then
57: aux := curr→next
58: prev→next := aux

reg := reg − {curr}
elems := elems − {e}

59: end if
60: unlock(prev→lock)
61: unlock(curr→lock)

lockedSet := lockedSet − {me}
aheadSet := aheadSet − {me}

62: return
end procedure

Figure 10.9: Concurrent lock-coupling single-linked lists implementation with ghost code for the
verification of property eventually_insert(k).
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25 or 46). Then, the thread identifier is removed from lockedSet when the thread releases
its last lock (which can happen at line 22, 43 or 61).

• lockedInsert keeps the set of thread identifiers that own a lock and are executing procedure
INSERT but have not reached INSERT’s linearization point yet. A thread identifier is added to
set lockedInsert when it executes line 25 and is removed from the set when executing line
38 (in case the element e is inserted) or line 40 (in case there is no need to insert element e
because the element is already in the list).

• aheadSet contains the set of thread identifiers that own at least one lock in the list and
are ahead of thread k. Set aheadSet is set when thread k executes line 25 of procedure
INSERT. At this point, it holds that all threads that own a lock in the list are ahead of thread
k, and hence we can assign aheadSet to lockedSet . It is evident that at all time, aheadSet is
a subset of lockedSet .

• aheadInsert is similar to lockedInsert and keeps the set of thread identifiers that own a lock
in the list, are ahead of thread k and are executing procedure INSERT but have not still
reached INSERT’s linearization point (what happens at line 38).

On the other hand, ghost variables reg and elems are updated as in the implementation
presented in Section 6.1.

As before, in order to check this property valid, we need to define some auxiliary invariants that
act as support. These invariants specify properties such as “a thread executing procedure SEARCH,
INSERT or REMOVE does not have any lock in the list apart from prev , curr and occasionally aux ”,
“if a thread is executing SEARCH, INSERT or REMOVE, then it owns at least a lock in the list” or
“any thread executing INSERT that has not executed line 38 or 40 has a lock in lockedInsert”. We
do not give here the formal description of these auxiliary invariants, but they can be consulted at
LEAP’s website 2. As usual, we use LEAP to verify that all these auxiliary specifications are system
invariants.

The liveness property we verify is that if an arbitrary thread k wants to insert an element
in the list using procedure INSERT, then it eventually succeeds. We can express this property
through the 1-index temporal formula eventually_insert:

eventually_insert(k)
def
=  (pc(k) = 26→pc(k) = 42..44)

That is, whenever thread k gets its first lock in an attempt to insert an element (line 26 of
procedure INSERT) it eventually finishes the execution of the procedure (reaches the lines between
42 and 44 of INSERT).

Fig. 10.10 shows the parametrized verification diagram we require for proving that a system
composed by an unbounded number of threads executing the program shown in Fig. 10.9 satisfy
property eventually_insert(k). In the diagram, we use:

• sch_working(i), for pc(i) = 11..22. That is, thread i is executing procedure SEARCH and
owns a lock due to the execution of this procedure.

• ins_working(i) for pc(i) = 26..43. That is, thread i owns a lock as a consequence of been
executing procedure INSERT.

2http://software.imdea.org/leap
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ins working(k) ∧ pc(k) 6= 42, 43 ∧
leader(t) ∧ t 6= k

t

τ22(t)

τ43(t)

τ61(t)

τ38(t)

τ30(k)

τ44(k)

m3 :
working(t) ∧
pc(t) = 38

n0 : ¬ins working(k)

m1 :
working(t) ∧

pc(t) 6= 22, 38, 43, 61

m2 :
working(t) ∧
pc(t) = 22

m4 :
working(t) ∧
pc(t) = 43

m5 :
working(t) ∧
pc(t) = 61

n5 : pc(k) = 42..44

n4 : pc(k) = 38

n3 :
leader(k) ∧
pc(k) = 30

n2 :
leader(k) ∧
inserting(k)

τ38(k)

Figure 10.10: PVD for verifying that concurrent lock-coupling lists satisfy eventually_insert(k).

• rem_working(i) for pc(i) = 47..61. That is, thread i is executing procedure REMOVE and
owns a lock because of the execution of this procedure.

• inserting(i) for pc(i) = 26..29, 31..37, 39..42. That is, thread i is executing procedure INSERT

but is not at the program line in which pointer INSERT::prev is about to advance or at the
program line in which the node with the new element in connected to the rest of the list.

• working(i) for (sch_working(i) ∨ ins_working(i) ∨ rem_working(i)). That is, thread i owns a
lock and is executing procedure SEARCH, INSERT or REMOVE.

We also use leader(i) for:

i = heap[lstlock(heap, getp(heap, head ,null))].lockid

That is, for a thread i, leader(i) holds if and only if thread i owns the lock of a node in the list and
there is no other locked node between such node and tail . We call “the leader” to the thread i
that satisfies predicate leader(i), as it is the thread owning the lock closest to the tail of the list.

The diagram is formally defined by:

N
def
= {ni | i = 0, 2, 3, 4, 5} ∪ {mj | j = 1, 2, 3, 4, 5}

N0
def
= {n0}
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E
def
= {n0 → mj | j = 1, 2, 3, 4, 5} ∪
{n0 → n2, n2 → n3, n3 → n2, n2 → n4, n2 → n5, n4 → n5, n5 → n0} ∪
{mi → mj | i = 2, 4, 5 and j = 1, 2, 3, 4, 5} ∪ {m3 → m1} ∪
{mj → ni | j = 2, 4, 5 and i = 2, 3} ∪ {mj → ni | j = 1, 2, 3, 4, 5 and i = 4, 5} ∪
{mj → mj | j = 1, 2, 3, 4, 5} ∪ {ni → ni | i = 0, 2, 3, 4, 5}

within def
= {m1 → mj | j = 1, 2, 3, 4, 5} ∪ {m3 → m1}

B def
=

{(
{m1,m2,m3,m4,m5}, t

)}

µ(n0)
def
= ¬ins_working(k)

µ(m1)
def
= ins_working(k) ∧ pc(k) 6= 42, 43 ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) 6= 22, 38, 43, 61

µ(m2)
def
= ins_working(k) ∧ pc(k) 6= 42, 43 ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) = 22

µ(m3)
def
= ins_working(k) ∧ pc(k) 6= 42, 43 ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) = 38

µ(m4)
def
= ins_working(k) ∧ pc(k) 6= 42, 43 ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) = 43

µ(m5)
def
= ins_working(k) ∧ pc(k) 6= 42, 43 ∧ leader(t) ∧ t 6= k ∧ working(t) ∧ pc(t) = 61

µ(n2)
def
= leader(k) ∧ pc(k) = 26..29, 31..37, 39..41

µ(n3)
def
= leader(k) ∧ pc(k) = 30

µ(n4)
def
= leader(k) ∧ pc(k) = 38

µ(n5)
def
= leader(k) ∧ pc(k) = 42..44

η(e)
def
=





(τ38, t) if e ∈ {m3 → m1}

(τ22, t) if e ∈ {m2 → mj | j = 1, 2, 3, 4, 5}

(τ43, t) if e ∈ {m4 → mj | j = 1, 2, 3, 4, 5}

(τ61, t) if e ∈ {m4 → mj | j = 1, 2, 3, 4, 5}

(τ30, k) if e ∈ {n3 → n2}

(τ38, k) if e ∈ {n4 → n5}

F def
=

〈〈
{mi → mj | i = 2, 4, 5 and j = 1, 2, 3, 4, 5} ∪

{n3 → n2,m3 → m1} ,
{n0 → mj | j = 1, 2, 3, 4, 5} ∪
{n0 → n0, n0 → n2, n2 → n4, n2 → n5, n4 → n5, n5 → n5, n5 → n0} ∪
{mj → ni | j = 1, 2, 3, 4, 5 and i = 4, 5} ,

λn→ 〈aheadSet , aheadInsert , addr2set(heap, INSERT::prev(k))〉
〉〉

f(n)
def
=





pc(k) = 26 if n = m1,m2,m3,m4,m5, n2

pc(k) = 42..44 if n = n5

true otherwise
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The parametrized verification diagram described above represents the proof that an arbitrary
thread k trying to insert an element eventually succeeds. The diagram consists of 10 nodes which
are named ni (with i = 0, 2, 3, 4, 5) and mj (with j = 1, 2, 3, 4, 5). The initial node is n0. The PVD

also contains a box, which is labeled with thread t. This box encloses all nodes mi.
Node n0 describes the situation in which thread k has not yet get a lock from procedure

INSERT. All nodes ni with i = 2, 3, 4, 5 represent the situation in which thread k is executing
procedure INSERT and is the leader. This means that, in this case, thread k has no obstacle for
advancing through the list. In particular, node n2 represents the situation in which thread k is
within INSERT procedure and it is the leader. Node n3 is similar to node n2, except that it models
the case in which pointer INSERT::prev is about to advance in the list. Node n4 represents the
situation in which thread k is about to insert a new element in the list. Finally, node n5 describes
the situation in which the element has already been inserted and thus it just remains to release
the locks of the nodes pointed by INSERT::prev and INSERT::curr . That means, once at node n2,
n3, n4 or n5, the diagram states that no other thread can prevent thread k from progressing.

The situation in which another thread different from k is the leader is modeled by the box.
All nodes within the box represent the situation in which thread k has a lock in the list and is
executing procedure INSERT, but it is not k the thread which owns the lock closest to the tail of
the list. Instead, we use the box parameter t to denote the leader thread. Note how thread t can
be executing any of the procedures SEARCH, INSERT or REMOVE.

The diagram begins at node n0, until thread k gets its first lock due to the execution of
transition τ (k)

25 of procedure INSERT. When this transition is executed, if there is no other thread
with a lock in the list, then thread k becomes the leader and the diagram moves to node n2. On
the contrary, if some other thread t owns the lock closest to the tail, then the diagram moves to
any of the nodes within the box depending on the current program location of thread t. While
thread t is the leader, the diagram moves within the box, preserving the value of t. Thread t will
stop been the leader whenever it finishes executing procedure SEARCH, INSERT or REMOVE. The
situation in which thread t releases its last lock is modeled by transitions τ (τ)

22 , τ (τ)
43 and τ (τ)

61 . Note
how, when these transitions are taken, thread k becomes the new leader or a new t becomes
the leader. Once thread k becomes the leader, then it can advances through the list without any
interference from other threads.

For proving acceptance we use the ghost variables aheadSet and aheadInsert . The ranking
function associated to the acceptance condition is a triple that follows in fact a lexicographic
order. The first component is aheadSet . Remember aheadSet contains the set of thread identifiers
owning a lock ahead of thread k. The idea is that every time a thread t stops being the leader
(due to the execution of transition τ (t)

22 , τ (t)
43 or τ (t)

61 ), the cardinality of this set decrements. The
second component of our ranking function is aheadInsert , which keeps the threads that are
executing procedure INSERT and own a lock ahead of thread k. To understand the need of this
second component we need to first look the third component of the ranking function. The third
component is the distance between INSERT::prev and the tail of the list. As thread k progresses
through the list, the distance will decrement. However, there is one case in which the distance
between INSERT::prev would not decrement. A arbitrary thread j inserting an element between
the current location of INSERT::prev and tail will increment the distance between INSERT::prev

and tail when executing transition τ (j)
38 . However, when in this case transition τ (j)

38 is taken, the
set aheadInsert does decrement, making the ranking function to strictly decrement as desired.

Table 10.10 shows the results we have obtained using LEAP on our verification diagram
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MODULE main
VAR

state : {qn0,qn2,qn3,qn4,qn5,qm1,qm2,qm3,qm4,qm5,gn0,gn2,gn3,gn4,gn5,
gm1,gm2,gm3,gm4,gm5,bn0,bn2,bn3,bn4,bn5,bm1,bm2,bm3,bm4,bm5};

k_begins_insert : boolean;
k_finishes_insert : boolean;

INIT state = qn0;
TRANS

case
state = qn0 : next(state) in {gm1,gm2,gm3,gm4,gm5,gn0,gn2,

bn0,bm1,bm2,bm3,bm4,bm5,bn2};
state = qm1 : next(state) in {gn4,gn5,qm1,qm2,qm3,qm4,qm5,

bm1,bm2,bm3,bm4,bm5,bn4,bn5};
state = qm2 : next(state) in {gn4,gn5,qm1,qm2,qm3,qm4,qm5,qn2,qn3,

bm1,bm2,bm3,bm4,bm5,bn2,bn3,bn4,bn5};
state = qm3 : next(state) in {gn4,gn5,qm1,qm3,bm1,bm3,bn4,bn5};
state = qm4 : next(state) in {gn4,gn5,qm1,qm2,qm3,qm4,qm5,qn2,qn3,

bm1,bm2,bm3,bm4,bm5,bn2,bn3,bn4,bn5};
state = qm5 : next(state) in {gn4,gn5,qm1,qm2,qm3,qm4,qm5,qn2,qn3,

bm1,bm2,bm3,bm4,bm5,bn2,bn3,bn4,bn5};
state = qn2 : next(state) in {gn4,gn5,qn2,qn3,bn2,bn3,bn4,bn5};
state = qn3 : next(state) in {qn2,qn3,bn2,bn3};
state = qn4 : next(state) in {gn5,qn4,bn4,bn5};
state = qn5 : next(state) in {gn0,gn5,bn5,bn0};
state = gn0 : next(state) in {gm1,gm2,gm3,gm4,gm5,gn0,gn2};
state = gm1 : next(state) in {gn4,gn5,qm1,qm2,qm3,qm4,qm5};
state = gm2 : next(state) in {gn4,gn5,qm1,qm2,qm3,qm4,qm5,qn2,qn3};
state = gm3 : next(state) in {gn4,gn5,qm1,qm3};
state = gm4 : next(state) in {gn4,gn5,qm1,qm2,qm3,qm4,qm5,qn2,qn3};
state = gm5 : next(state) in {gn4,gn5,qm1,qm2,qm3,qm4,qm5,qn2,qn3};
state = gn2 : next(state) in {gn4,gn5,qn2,qn3};
state = gn3 : next(state) in {qn2,qn3};
state = gn4 : next(state) in {gn5,qn4};
state = gn5 : next(state) in {gn0,gn5};
state = bn0 : next(state) in {bn0,bm1,bm2,bm3,bm4,bm5,bn2};
state = bm1 : next(state) in {bm1,bm2,bm3,bm4,bm5,bn4,bn5};
state = bm2 : next(state) in {bm2,bn2,bn3,bn4,bn5};
state = bm3 : next(state) in {bm3,bn4,bn5};
state = bm4 : next(state) in {bm4,bn2,bn3,bn4,bn5};
state = bm5 : next(state) in {bm5,bn2,bn3,bn4,bn5};
state = bn2 : next(state) in {bn2,bn3,bn4,bn5};
state = bn3 : next(state) in {bn3};
state = bn4 : next(state) in {bn4,bn5};
state = bn5 : next(state) in {bn5,bn0};

esac;
TRANS

case
state in {qn0,gn0,bn0} : !k_begins_insert & !k_finishes_insert;
state in {qm1,gm1,bm1} : k_begins_insert & !k_finishes_insert;
state in {qm2,gm2,bm2} : k_begins_insert & !k_finishes_insert;
state in {qm3,gm3,bm3} : k_begins_insert & !k_finishes_insert;
state in {qm4,gm4,bm4} : k_begins_insert & !k_finishes_insert;
state in {qm5,gm5,bm5} : k_begins_insert & !k_finishes_insert;
state in {qn2,gn2,bn2} : k_begins_insert & !k_finishes_insert;
state in {qn3,gn3,bn3} : !k_begins_insert & !k_finishes_insert;
state in {qn4,gn4,bn4} : !k_begins_insert & !k_finishes_insert;
state in {qn5,gn5,bn5} : !k_begins_insert & k_finishes_insert;

esac;

FAIRNESS (state in {gn0,gm1,gm2,gm3,gm4,gm5,gn2,gn3,gn4,gn5,
bn0,bm1,bm2,bm3,bm4,bm5,bn2,bn3,bn4,bn5});

LTLSPEC G (k_begins_insert -> F k_finishes_insert);

Figure 10.11: NuSMV input representation for checking condition (ModelCheck) for the PVD that
shows that concurrent lock-coupling lists satisfy property eventually_insert(k).
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#VC #solved VC single VC time(s.) DP LEAP

pos TLL slowest average time(s) time(s)

Initiation 1 0 1 0.01 0.01 0.01 0.01

Consecution 1550 1343 207 3.80 0.05 78.12 3.42

Acceptance 5404 4352 1052 191.61 0.12 647.04 1.61

Fairness 48 20 28 0.42 0.16 7.82 0.14

Table 10.10: Running times for the verification of property eventually_insert(k) for a concurrent
lock-coupling list.

to verify property eventually_insert(k) for the concurrent lock-coupling lists. The rows in the
table correspond to the rules of initiation, consecution acceptance and fairness. For each rule
we present the total number of generated verification conditions, the number of verification
conditions solved using the location based decision procedure and the number of verification
conditions solved using the TL3 decision procedure. In all cases, all verification conditions are
verified as valid. Additionally, the last four columns in the table present the slowest and average
time for solving a single verification condition, the total time it takes the decision procedures to
check all verification conditions and the total time it takes LEAP to these verification conditions
from the diagram.

Finally, for checking that the propositional models of the diagram are included in traces of the
property eventually_insert(k), we translate the edge-Streett automaton represented by our PVD

into a non-deterministic Büchi automaton (NBW) following the rules described in Appendix A. We
use NuSMV to model-check whether our property eventually_insert(k) holds considering the NBW
automaton we have just constructed. Fig. 10.11 shows the representation of the model-checking
problem analyzed in NuSMV.

In all cases, all generated verification conditions are valid, which implies that the implementa-
tion of lock-coupling lists satisfies property eventually_insert(k).

10.6 Parametrized Invariant Generation

We now present the empirical evaluation we have done over a collection of examples using our
parametrized invariant generation technique presented in Chapter 5. We have implemented the
reflective and interference abstraction schemes in a prototype tool. The input language for our
prototype rule extends the simple programming language (SPL) presented in Section 2.1. After
compiling a parametrized program written in an imperative language into a transition system, we
generate inductive assertions using the lazy, eager, and eager+ reflective abstraction schemes and
the interference abstraction scheme. Our tool directly uses the abstract domains implemented in
the Apron library [118]. Narrowing is used for the eager, eager+, and interference schemes but
not the lazy scheme. The main questions that we seek to answer are:

1. how effective are each of these schemes at generating invariants of interest; and

2. how do the invariants generated by each scheme compare with each other in terms of
precision.

Second, we study the performance of the analysis for each scheme.
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global
Int count = N

procedure SimpleBarrier()
Int x = 0

begin
1: count := count − 1
2: await (count = 0)

end procedure

Figure 10.12: SIMPLEBARRIER: a simple synchronization barrier program.

We consider a set of five benchmarks, including:

1. A simple barrier algorithm [150];

2. a centralized barrier [150];

3. the work stealing algorithm presented in Example 5.1;

4. a generalized version of dinning philosophers with a bounded number of resources inspired
by [183]; and

5. a parametrized system model of autonomous swarming robots inside a m× n grid [56].

In order to study program locations, in our examples we use counting abstraction. That is, we
use integer variables to denote the number of threads located at a specific program location. In
general, we use M to denote the total number of threads in the system and M` to denote the
number of threads located at program line `.

We now describe in detail each of these examples before analyzing them. For each example,
we specify a set of target invariants, with the intention to check whether the invariants that are
generated automatically invariants imply a given program’s safety specification.

10.6.1 SIMPLEBARRIER: A Simple Barrier Algorithm

The first example is a simple barrier synchronization algorithm, described by program SIMPLE-
BARRIER. Fig. 10.12 presents the code for program SIMPLEBARRIER.

The program consists on 2 program locations, 3 transitions and 4 variables: global variable
count , and counting abstraction variables M , M1 and M2. In SIMPLEBARRIER, the global vari-
able count is initialized with the total number of threads. Then, each thread decrements the
global variable by one. Finally, no thread is allowed to end the program until all threads have
decremented the variable.

The list of the 4 invariant properties that form the specification of the system are:

• basic: which indicates that all threads are at some position. That is expressed by M1 +

M2 +M3 = M .

• bound: which states that variable count is equal to the number of threads at position 1.
That is, count = M1.

• l_bound: which establishes that variable count is always positive. That is, 0 ≤ count.
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• u_bound: which states an upper bound for variable count , indicating that count is not
greater than the total number of threads. That is, count ≤M .

10.6.2 CENTRALBARRIER: A Centralized Barrier Synchronization Algorithm

Program CENTRALBARRIER, depicted in Fig. 10.13 implements a memory barrier, similar to
SIMPLEBARRIER. This program consists on 8 program locations, 10 program transitions and 13

program variables. The memory barrier implemented by CENTRALBARRIER can be reused inside a
loop thanks to the use of the sense global variable. Initially, sense and localSense are both set to 0.
A thread executing program CENTRALBARRIER starts by changing its own localSense variable (line
1). Then, the thread makes a local copy of the global counter count and decrements the global
counter at line 2. At line 3, the thread checks whether it has been the last thread decrementing
the global counter. If so, then it set count again to M and changes variable sense. On the other
hand, if the thread is not the last thread decrementing count , then it waits in line 4 until some
other thread modifies sense.

The 9 invariant properties that conform the specification of the system are:

• basic: which describes the property that all threads are in some location. It is specified by
the condition: M =

∑7
i=1Mi

• sense_l_bound: which states that variable sense is positive. That is, 0 ≤ sense.

• sense_u_bound: which establishes that variable sense is not greater than 1. That is,
sense ≤ 1.

• localsense_l_bound: which indicates that variable localsense is positive. That is, 0 ≤
localSense.

global
Int sense = 0
Int count = N

procedure CentralBarrier()
Int localSense = 0
Int localCount = N

begin

1:

〈 if localSense 6= 0 then
localSense := 0

else
localSense := 1

end if

〉

2:

〈
localCount := count
count := count − 1

〉

3: if localCount > 1 then
4: await (sense = localSense)
5: else
6: count := N
7: sense := localSense
8: end if

end procedure

Figure 10.13: CENTRALBARRIER: a centralized synchronization barrier program.
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• localsense_u_bound: which states that variable localsense is never greater than 1. That is,
localSense ≤ 1.

• count_l_bound: which indicates that variable count is always positive. That is, 0 ≤ count.

• count_u_bound: which states that count is not greater than M . That is, count ≤M .

• localcount_l_bound: which establishes that variable localCount is positive. That is, 0 ≤
localCount.

• localcount_u_bound: which says that variable localCount is not greater than M . That is,
localCount ≤M .

10.6.3 WORKSTEAL: An Array Processing Work Stealing Algorithm

The program WORKSTEAL has already been introduced in Example 5.1. The program consists on
5 program locations, 6 transitions and 10 program variables including global, local and counting
abstraction variables. In this program, threads access an array concurrently and perform some
work on each element of the array independently.

For this program there are 5 invariant properties that we would like to prove. Their specifica-
tions are:

• basic: which states that all threads are at some position. That is, M1+M2+M3+M4 = M .

• c_l_bound: which indicates that variable c is always positive. That is, 0 ≤ c.

• c_u_bound: which establishes that variable c does not go beyond the position indicated by
len. That is, c ≤ len.

• nextpos_bound: which states that variable nextpos is positive. That is, 0 ≤ nextpos.

• last_bound: which indicates that variable last is bounded by len. That is, last ≤ len.

10.6.4 PHILOSOPHERS: Dining Philosophers With Bounded Resources

We now present program PHILOSOPHERS, a variation of dining philosophers inspired by [183]
in which an arbitrary number of philosophers can be eating at each table position simultane-
ously, with a bounded number of resources. Fig. 10.14 presents the algorithm for program
PHILOSOPHERS.

Program PHILOSOPHERS consists of 10 program locations, 16 transitions and 13 program
variables including global variables and counting abstraction variables. As it can be seen in the
algorithm, there are only 2 resources of type one while there are as many resources of type two
as philosophers in the system. As it can be seen in line 2, there is always a resource of type Two
available in order to prevent deadlock.

For program PHILOSOPHERS, we specify 14 invariants that should hold. These invariants are:

• basic: which indicates that all threads are in some location of the system. That is M =∑10
i=1Mi.

• cons1: which establishes that the quantity of resources of type one stays constant. That is,
2 = res1 + (M7 +M8 +M9) +M4.
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• cons2: which states that the quantity of resources of type two stays constant. That is,
2 = res2 + (M3 +M4 +M5) +M8.

• res1: which says that the quantity of resources of type one is always positive. That is,
res1 ≥ 0.

• res2: which indicates that the quantity of resources of type two is also always positive. That
is, res2 ≥ 0.

• use1: which establishes that if no resource of type one is available, then some thread is
using it. That is, res1 = 0→ (M7 +M8 +M9) +M4 ≥ 1.

• use2: which states that if no resource of type two is available, then some thread is using it.
That is, res2 = 0→ (M3 +M4 +M5) +M8 ≥ 1.

• actLim_res1: which indicates that the number of threads using resources of type one is
bounded by the number of resources. That is, (M7 +M8 +M9) +M4 ≤ 2. i

• actLim_res2: which states that the number of threads using resources of type two is
bounded by the number of resources. That is, (M3 +M4 +M5) +M8 ≤ 2.

• actLim_res0: which says that only one thread can own the last resource. That is, (M3 +

M4 +M5) ≤ 1.

• someProgress2_1: which establishes that if a resource of type two is required but unavail-
able, then some thread owns one and will release it. That is, (M2 > 0 ∧ res2 <= 1) →
(M3 +M4 +M5) +M8 ≥ 1.

• someProgress2_0: which indicates that if no resource of type two is available, then some
thread owns one and will release it. That is, res2 = 0→M8 ≥ 1.

global
Int res1 = 2
Int res2 = N

procedure Philosophers()
begin

1: nondet choice

2:

〈
await(res2 > 1)
res2 := res2 − 1

〉

3:

〈
await(res1 > 0)
res1 := res1 − 1

〉

4: res1 := res1 + 1
5: res2 := res2 + 1

6: or

〈
await(res2 > 0)
res1 := res1 − 1

〉

7:

〈
await(res2 > 0)
res2 := res2 − 1

〉

8: res2 := res2 + 1
9: res1 := res1 + 1

10: end choice
end procedure

Figure 10.14: PHILOSOPHERS: dining philosophers with a bounded number of resources.
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• someProgress1_1: which says that if a resource of type one is required but available, then
some thread owns one and will release it. That is, (M3 > 0 ∧ res1 = 0) → (M7 + M8 +

M9) +M4 ≥ 1.

• someProgress1_0: which states that if no resource of type tone is available, then some
thread owns one and will release it. That is, (M6 > 0 ∧ res1 = 0)→ (M7 +M8 +M9) +

M4 ≥ 1.

10.6.5 ROBOTS: Robot Swarm

The last example consists of a swarm of robots moving across an m × n grid. The example is
inspired in part by [56] which models a swarm of robots that perform inspections of tight spaces
such as the wing of an airplane.

Fig. 10.15 presents ROBOTS_2_2, an instance of this program in 2 × 2 board. Program
ROBOTS_2_2 consist of 25 program locations, 51 program transitions and 35 variables, including
program variables and counting abstractions. In the example, the robots communicate with a
central process that maps the number of robots in any grid cell. Each robot updates this central
process with its position. Likewise, the central process updates each robot with a global map
consisting of the number of robots in each cell. The details of this process are captured in our
model by a shared memory view of the number of robots in a given cell.

If a given cell has more than a minimal number of robots (line 1), some of the robots in the
cell may optionally migrate to a neighbouring cell. This cell is chosen non-deterministically and
the robot’s velocity vector is set to point towards the cell. The robot then subtracts itself from the
number of robots in the cell and moves for 10 time units in the specified direction (lines 3 to 12).
After the time units elapse, the robot re-evaluates its position and adds itself to the count of the
number of robots in whatever cell it finds itself in (lines 19 to 24).

The invariant properties that were analyzed for the example of ROBOTS_2_2 are:

• basic(i,j): we verify this property for all i and j, such that 1 ≤ i ≤ 2 and 1 ≤ j ≤ 2. The
property states that the number of robots in position i, j should never be negative. That is,
xiyj ≥ 0.

• velocity-bounds: which states that the velocity of the robots must stay within bounds:

−1 ≤ vx ≤ 1 ∧ −1 ≤ vy ≤ 1 ∧ −1 ≤ vx+ vy ≤ 1

• bounds: which indicates that (x, y) coordinates of robots must be within the grids.

0 ≤ x ≤ 20 ∧ 0 ≤ y ≤ 20

10.6.6 Results and Observations

We now compare the results we have obtained using the different schemes applied to each of the
examples described from Section 10.6.1 to Section 10.6.5. Table 10.11 presents a comparison
of timings and precision across the lazy, eager, eager+, and interference schemes. We study 8

algorithms, including:
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global
Int x1y1 = N
Int x1y2 = 0
Int x2y1 = 0
Int x2y2 = 0

procedure Robots()
Int x
Int y
Int vx = 0
Int vy = 0
Int j = 0

begin
1: await (x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10 ∧N ≥ 6)
2: while 1 = 1 do
3: nondet choice

4:

〈 await(x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10 ∧ x1y1 ≥ 2)
vx := 1
vy := 0
x1y1 := x1y1 − 1

〉

5: or

〈 await(x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10 ∧ x1y1 ≥ 2)
vx := 0
vy := 1
x1y1 := x1y1 − 1

〉

6: or

〈 await(x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 10 ∧ y ≤ 20 ∧ x1y2 ≥ 2)
vx := 1
vy := 0
x1y2 := x1y2 − 1

〉

7: or

〈 await(x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 10 ∧ y ≤ 20 ∧ x1y2 ≥ 2)
vx := 0
vy := −1
x1y2 := x1y2 − 1

〉

8: or

〈 await(x ≥ 10 ∧ x ≤ 20 ∧ y ≥ 0 ∧ y ≤ 10 ∧ x2y1 ≥ 2)
vx := 0
vy := 1
x2y1 := x2y1 − 1

〉

9: or

〈 await(x ≥ 10 ∧ x ≤ 20 ∧ y ≥ 0 ∧ y ≤ 10 ∧ x2y1 ≥ 2)
vx := −1
vy := 0
x2y1 := x2y1 − 1

〉

10: or

〈 await(x ≥ 10 ∧ x ≤ 20 ∧ y ≥ 10 ∧ y ≤ 20 ∧ x2y2 ≥ 2)
vx := −1
vy := 0
x2y2 := x2y2 − 1

〉

11: or

〈 await(x ≥ 10 ∧ x ≤ 20 ∧ y ≥ 10 ∧ y ≤ 20 ∧ x2y2 ≥ 2)
vx := 0
vy := −1
x2y2 := x2y2 − 1

〉

12: end choice
13: j := 0
14: while j ≤ 9 do
15: x := x+ vx
16: y := y + vy
17: j := j + 1
18: end while
19: nondet choice

20:

〈
await(x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 0 ∧ y ≤ 10)
x1y1 := x1y1 + 1

〉

21: or

〈
await(x ≥ 0 ∧ x ≤ 10 ∧ y ≥ 10 ∧ y ≤ 20)
x1y2 := x1y2 + 1

〉

22: or

〈
await(x ≥ 10 ∧ x ≤ 20 ∧ y ≥ 0 ∧ y ≤ 10)
x2y1 := x2y1 + 1

〉

23: or

〈
await(x ≥ 10 ∧ x ≤ 20 ∧ y ≥ 10 ∧ y ≤ 20)
x2y2 := x2y2 + 1

〉

24: end choice
25: end while

end procedure

Figure 10.15: ROBOTS_2_2: a set of robots moving around a 2× 2 grid.
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• Program SIMPLEBARRIER, presented in Section 10.6.1.

• Program CENTRALBARRIER, presented in Section 10.6.2.

• Program WORKSTEAL, introduced in Example 5.1 and Section 10.6.3.

• Program PHILOSOPHERS, described in Section 10.6.4.

• Four instances of the program ROBOTS, introduced in Section 10.6.5. The instances include
ROBOTS_2_2, described in Fig. 10.15 and also instances of 2 × 3, 3 × 3 and 4 × 4 boards
named ROBOTS_2_3, ROBOTS_3_3 and ROBOTS_4_4 respectively.

For each problem we study 3 different domains:

• Integers, labeled I in Table 10.11.

• Polyhedra, labeled P in Table 10.11.

• Octogons, labeled O in Table 10.11.

For each scheme we compute the total time (in seconds) that takes our tool to finish with the
generation of invariant candidates, the number of widening iterations (Wid) and the number of
properties that could be automatically generated (Prp). We use∞ to represent timeout of 5400

ID Dom Prps Lazy Eager Eager+ Interf.

Time Wid* Prp Time Wid Prp Time Wid Prp Time Wid Prp

SIMPLEBARRIER I 4 0.1 2 0 0.1 5 0 0.1 5 0 0.1 4 0
P 0.2 4 4 0.1 5 4 0.1 5 4 0.1 4 4
O 0.8 3 3 0.1 5 3 0.1 5 3 0.1 4 3

CENTRALBARRIER I 9 0.9 3 4 0.1 7 0 0.1 8 0 0.1 7 0
P ∞ 0 1.7 11 4 2.7 12 5 1.1 10 6
O ∞ 0 7.5 9 6 11.3 9 6 6.2 8 4

WORKSTEAL I 5 0.3 6 2 0.1 5 1 0.1 5 1 0.1 4 0
P 2.4 6 1 0.1 7 1 0.2 7 3 0.1 7 5
O 8.2 6 4 7.5 6 4 0.2 6 4 6.2 5 4

PHILOSOPHERS I 14 1.9 4 2 0.1 8 2 0.1 8 2 0.1 7 0
P 11.8 6 14 1.1 11 8 1.8 11 8 6.3 13 14
O ∞ 0 25 12 4 40 12 4 20 12 4

ROBOTS _2_2 I 16 31.3 8 4 0.4 10 4 0.4 11 4 0.2 10 0
P ∞ 0 9.3 22 3 15 23 3 5.8 15 4
O ∞ 0 142 25 3 225 26 3 105 18 3

ROBOTS _2_3 I 18 133 8 6 0.7 10 6 0.9 11 6 0.5 10 0
P ∞ 0 23 22 5 36.8 23 5 16 15 5
O ∞ 0 404 25 5 629 26 5 320 18 5

ROBOTS _3_3 I 23 1141 8 9 1.6 10 9 2.1 11 9 0.9 10 0
P ∞ 0 68.2 22 8 111.5 23 8 52 15 8
O ∞ 0 1414 25 8 2139 26 8 1168 18 8

ROBOTS _4_4 I 29 ∞ 0 6.7 11 16 9.4 11 16 3.2 11 0
P ∞ 0 49 23 15 396 23 15 303 15 15
O ∞ 0 ∞ 0 ∞ 0 ∞ 0

Table 10.11: Timing and precision results for Lazy, Eager, Eager+ and Interference abstract
interpretations. Legend: ID: benchmark identifier, Dom: abstract domains, I: intervals, O:
octagons, P: polyhedra, Prps: total number of properties to be proven, Time: seconds, Prp:
number of properties proved, Wid: number of widening iterations.
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ID Dom L:E L:E+ L:I E:I E+:I E:E+

SIMPLEBARRIER I −3 −3 +3 +3 +3 =3

P =3 =3 +1 =2 +1 =2 +1 =2 =3

O =3 =3 +1 =2 +1 =2 +1 =2 =3

WORKSTEAL I +4 +4 +4 +4 +4 =4

P +4 +1 6=3 =1 6=3 −2 6=2 +2−1 =1 −4

O =4 =4 +2 =2 +2 =2 +2 =2 =4

CENTRALBARRIER I +6 6=1 +6 6=1 +7 +7 +7 =7

P n.a. n.a. n.a. 6=7 +1 6=6 −7

O n.a. n.a. n.a. +7 +7 =7

PHILOSOPHERS I +1 =9 +1 =9 +10 +10 +10 =10

P +10 +10 +1 =9 −10 −10 =10

O n.a. n.a. n.a. +1 =9 +1 =9 =10

ROBOTS (2,2) I +22 +22 +22 +22 +22 =22

P n.a. n.a. n.a. +2−3 =17 +2−1 =19 −2 =20

O n.a. n.a. n.a. +1−4 =16 6=1 +2 =20 −5 =17

ROBOTS (2,3) I +30 +30 +30 +30 +30 =30

P n.a. n.a. n.a. +2−3 =25 +2−1 =27 −2 =28

O n.a. n.a. n.a. +1−7 =21 6=1 +2 =28 −8 =22

ROBOTS (3,3) I +43 +43 +43 +43 +43 =43

P n.a. n.a. n.a. +2−3 =38 +2−1 =40 −2 =41

O n.a. n.a. n.a. +1−10 =31 6=1 +2 =41 −11 =32

ROBOTS (4,4) I n.a. n.a. n.a. +74 +74 =74

P n.a. n.a. n.a. +3−3 =68 +3−1 =70 −2 =72

O n.a. n.a. n.a. n.a. n.a. n.a.

Table 10.12: Comparison of invariants of various schemes.

seconds. In the case of the lazy scheme, the number of widening iterations corresponds to the
number of external widening applications.

From our analysis, we can conclude that while interference abstractions are the fastest, as
expected, it is perhaps surprising to note that the lazy scheme was markedly slower than the
remaining techniques considered. In fact, the lazy scheme times out on many instances. Likewise,
we note that eager and eager+ were only a little slower on most of the benchmarks when
compared to interference abstraction. Also, the time for using polyhedra is generally faster than
octagons. According to the Apron authors, the execution time of polyhedra can vary widely
between good and bad cases, while the worst case and best case execution time of octagons is
the same, which may explain this observation. Other result that catches our attention is that
the interference semantics fares noticeably better than the other schemes for the polyhedral
domain but noticeably worse on the interval domain. Also, the interval domain itself seems to
fare surprisingly better than the polyhedral domain in terms of properties proved. In many cases,
however, the properties proved by these domains were non-overlapping. Perhaps the simplest
explanation for this result is that the properties themselves mostly concern proving bounds on
variables. It is not surprising then that the interval domain can establish this. Yet another factor
is the use of polyhedral widening. Since a widening needs to be carried out at every location in
the program, the loss of precision in the polyhedral domain can be considerable.

Table 10.12 compares each pair of methods in terms of the relative strengths of the invariants
inferred. In the table, we use “L” to denote the lazy scheme, “I” for the interference scheme, “E”
for the eager approach and “E+” for the eager+ scheme. In a comparison A : B, + indicates
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that A obtained a stronger invariant at a location, − means A obtained strictly weaker invariant,
= means A and B obtained equivalent location and 6= means A and B obtained incomparable
invariant. We use “n.a.” (not analyzed) when one of the analyzed schemes timed out and hence
it was not possible to make a comparison. The comparison shows outcomes and number of
locations as superscript.

From our experiments, some surprising patterns are revealed. For example, the lazy, eager
and eager+ schemes prove stronger invariants for the interval domain when compared to the
interference scheme. On the other hand, the trend is reversed for the polyhedral domain. In
many cases, the invariants are either incomparable or invariants of one technique are stronger
at some location and weaker at others. Conjoining the invariants in these cases can produce
stronger invariants overall.

In theory, all the methods presented can be viewed as post-fixed point computations in
the product domain representing sets of states and reflective abstractions. Our intuition with
abstract interpretation suggests that the interference scheme, which applies a single iteration
on the sequential system generated from the > reflection, should fare worse than the eager
scheme which computes a least fixed point using Kleene iteration. However, the experiments let
us conclude that the widening and the associated non-monotonicity play a significant role for
parametrized systems. This effect is much more evident than for sequential systems, where our
experience suggests that non-monotonicity of widening plays a more limited role.
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11
Conclusions

“ Exactly! So once you do know what the question
actually is, you’ll know what the answer means. ”

Deep Thought
(The Hitchhiker’s Guide to the Galaxy)

11.1 Summary

We have presented a novel framework based on deductive techniques for the verification of
temporal properties of concurrent parametrized systems. The current target is the verification
of concurrent data structures that manipulate the heap, but the framework can be extended to
support other parametrized systems.

A key novelty of the approach we have presented is that it cleanly differentiates the control
flow of the program from the data type being manipulated:

• The program control flow is analyzed using specialized parametrized proof rules and verifi-
cation techniques, named parametrized invariance and parametrized verification diagrams,
which were presented in Part I.

• The data types are analyzed using specialized decision procedures, as the ones presented in
Part II.

An advantage of this scheme is that the methods presented in Part I can be applied indepen-
dently of the data types the program manipulates, as far as a decision procedure for such data
type exists.

The parametrized invariance rules presented in Chapter 3 extend the classical deductive proof
rules for closed systems adapting them for parametrized systems executed by an unbounded
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number of threads. These proof rules are specifically designed for tackling the uniform verification
problem of safety properties of parametrized infinite state processes.

On the other hand, the parametrized verification diagrams introduced in Chapter 4 extend
generalized verification diagrams, enabling the verification of temporal properties, including
liveness properties, in concurrent systems executed by an unbounded number of processes. In
the case of PVDs, a diagram is designed so that it encodes in a single proof an evidence that all
instances of the parametrized system satisfy a given temporal specification.

In both cases, parametrized invariance rules and PVDs ultimately generate a finite collection
of verification conditions whose validity ensures that the property is satisfied when the system
is executed by an unbounded number of threads. A key characteristic of our approach is that
the size of this collection of verification conditions depends only on the program description and
the index of the formula to prove, but not on the number of threads in a particular instance.
Additionally, the verification conditions are quantifier-free as long as the initial specifications are
quantifier free.

So far, the proof rules for safety and liveness are amenable for fully symmetric systems in
which thread identifiers are only compared with equality, which encompasses many real systems.
However, other topologies like rings of processes or totally ordered collections of processes can be
handled with variations of our proof rules. In fact, it is straightforward to extend our framework
to a finite family of process classes. For example, in the current model, we consider all threads
explicitly appearing in the specification plus a single extra fresh thread which abstracts the effect
of the remaining threads. If we would like to model client-server systems, then we would just
need to consider a fresh client thread and a fresh server thread in order to abstract the remaining
threads of the system.

In Part II we presented a set of theories for some pointer based data structures such as
concurrent lists and skiplists. These theories were:

• Chapter 6 presented TL3, a Theory of Linked Lists with Locks capable of reasoning about
addresses, pointer manipulation, elements, cells, memories, paths, explicit heap regions and
lock ownership. The theory is specifically designed for describing rich properties, including
structural and functional properties, of concurrent data structures that preserve linked-lists.
This makes the theory also a candidate for the analysis of not only lists but also other data
structures alike such as stacks and queues.

• Chapter 7 introduced TSLK, a Family of Theories of Concurrent Skiplists with at Most K Levels.
Each member of the TSLK family is a theory capable of reasoning about concurrent skiplists
of unbounded length but with a bounded number of levels (at most K). The TSLK family
extends from TL3 by extending the functions and predicates of TL3 to the K levels of a
skiplist.

• Chapter 8 presented TSL, a Theory of Skiplists with Unbounded Levels which is suitable for
analyzing skiplist of both unbounded length and unbounded number of levels.

For each of these theories, we showed that the quantifier-free fragment is decidable and we
presented a decision procedure for each theory.

In the case of TL3 and TSLK we presented a bounded model theorem, which ensures that
given a quantifier-free TL3 or TSLK formula, it is possible to compute the bounds of the domains
for a model of the formula (if such model exists). These bounds depend only on the literals
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occurring in the formula. Hence, a decision procedure for TL3 and TSLK can determine the
satisfiability of a formula just by exploring the models up to the computed bounds.

In the case of TSL, we showed that the quantifier-free TSL fragment is decidable by reducing
its satisfiability problem to TSLK, which keeps the complexity of the satisfiability problem NP-
complete. When reducing the TSL satisfiability problem to TSLK, the proposed decision procedure
only needs to reason about those levels explicitly mentioned in the TSL formula.

In order to show the feasibility of the proposed verification techniques and decision procedures,
in Chapter 9 we presented LEAP, a prototype theorem prover which implements the ideas
presented in this work. We used LEAP to verify some implementations of realistic data structures
including concurrent lock-couping single-linked lists, lock-free stacks and queues, concurrent
bounded and unbounded skiplists, with very promising results, as shown in Chapter 10.

11.1.1 Answered Questions

At the beginning of this work, in Chapter 1, we presented the target problems we intend to tackle.
We can conclude that:

Parametrized Verification: One of the main objectives of this work was to study the verification
of concurrent parametrized systems. That is, given a program and a parametrized temporal
property, we try to answer the question of whether such temporal property is satisfied when
the program is executed by any number of threads.

Our novel deductive techniques solve this problem and is specifically designed for param-
etrized systems. Our technique is based on well known and used deductive methods for
closed systems. A key aspect of the methods we have presented is that they generate a
finite collection of verification conditions whose validity entails the satisfiability of the
parametrized temporal property. Moreover, the proposed methods do not rely on the data
type manipulated by the program, which make them suitable for the analysis of a wide
range of programs.

Safety and Livenes Verification: When we started this work, we wanted to find methods for
the verification of general temporal parametrized properties including safety and liveness
properties.

We have developed methods suitable for both kind of properties. The parametrized invari-
ance rules are specifically designed for the uniform verification problem of safety properties
of parametrized infinite state processes. On the other hand, the parametrized verification di-
agrams allow to prove temporal properties, specially of liveness, of parametrized concurrent
systems.

Analysis of Wide Range of Data Structures: A third objective we had was to make our tech-
niques capable of dealing with a wide range of different data structures, not limiting
ourselves to programs that manipulate only simple types like Boolean or integers.

We have accomplished this by developing a framework which separates the analysis of the
control flow (through the techniques described above) from the analysis of the data types
manipulated by the program. To show the feasibility of our framework, we have studied
decidable theories for complex pointer based concurrent data structures such as lists and
skiplists. We proved each theory to be decidable (for the quantifier-free fragment) and we
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have proposed a decision procedure for each theory. Moreover, we have used the proposed
decision procedures in combination with the parametrized verification techniques in order
to successfully verify structural and functional properties of pointer-based data structures.

Parametrized Invariant Generation: Related to the verification of parametrized systems, we
explored the possibility of automatically generate parametrized invariants. The result was
a technique capable of inferring multi-indexed invariants for parametrized systems, but
what is even more important, is that our method relies on off-the-shelf invariant generators
for sequential systems. Despite out research was limited to programs that manipulate only
integer values, the empirical evaluation we carried out have demonstrated the applicability
of this novel technique over a wide range of examples.

An advantage of the approach we have followed is that the verification techniques for parame-
trized systems and the decision procedures can be used in combination (as in our framework)
or independently, which enables the future analysis of more data structures as far a decision
procedure exists for such data structure.

11.2 Open Questions and Future Work

There are still some open questions which may lead to future work extending our framework.

11.2.1 Parametrized Invariance

Regarding the parametrized invariance rules, an interesting research direction is to relax the
requirement of full symmetry to cover other process topologies, like for example process rings or
totally order processes. Handling these topologies requires to specialize the proof rules presented
in Chapter 3 by adapting the premises that refer to threads not in the formula (premises P3, S3,
R3 and G3) to consider all cases according to the topology. For example, totally order processes
would require to split the case i 6= j into i < j and i > j.

Other interesting direction for future work includes invariant generation to simplify or even
automate proofs. A preliminary work involving the generation of invariants for parametrized
systems that manipulate integers was presented in Chapter 5. The idea we have presented
involves the use of off-the-shelf existing invariant generators for sequential systems, adapting
them for the use on parametrized systems. However we have not studied the applicability of a
invariant generator for more complex data types using the same technique. This is still an open
question.

Another interesting direction for future work involves the study of how to apply the decision
procedures for the calculation of precondition formulas (like [132]), extended to parametrized
systems, to effectively infer candidate invariants from the target specification. Similarly, it would
be interesting to study how to extend the “invisible invariant” approach [10,169,214] to processes
that manipulate infinite state, not only by instantiating small systems with a few threads (like
in invisible invariants) but also by limiting the counter-model exploration to a bounded size,
heuristically determined. The candidate invariants produced this way should then be verified
with the proof rules presented in this work for the unrestricted system. We envision this method
to be a smart exploration of the space of candidate invariants, but its fully feasibility is still an
open question.
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11.2.2 Parametrized Verification Diagrams

We have shown that PVDs are sound but we do not know whether they are a complete formalism.
The study of completeness for PVDs is still part of the future work.

As for parametrized invariance, PVDs currently are suitable for symmetric systems. Again, an
interesting area for future exploration involves the relaxations of the symmetry requirement.

Another interesting method for the verification of liveness properties is transition invari-
ants [170]. It would be interested to study how to adapt such method for the verification of
parametrized systems.

Finally, as PVDs highly rely on invariant candidates, it would be interesting to study invariant
generation methods (as the ones discussed previously in Section 11.2.1) for generating support
for PVDs.

11.2.3 Parametrized Invariant Generation

The invariant generation technique presented in Chapter 5 is an abstract interpretation-based
method which leverages existing off-the-shelf invariant generators for sequential systems, making
them suitable for the generation of parametrized invariants. However, all the invariant generators
that we have explored are limited to integers. An interesting direction for future work would
be the adaption of our framework for the use of invariant generators capable of handling more
complex data types and not only numerical domains. Related to this, it would also be interested to
study the development of novel invariant generators based on abstract-interpretation techniques,
even for sequential systems, which will allow us to explore further in the invariant generation for
complex systems.

Related to widening, a future direction of research is to focus on minimizing the use of
widening or avoiding widening altogether using constraint-based techniques [52], or recent
advances based on policy and strategy iterations [85,86].

Finally, another interesting approach is to explore the possibility of using the parametrized
invariance proof rules presented to enable a Horn-clause verification engine [95] to automatically
generate parametrized invariants guided by the invariant candidate goal.

11.2.4 Decision Procedures

In this work we have introduced some theories for concurrent data structures such as single-linked
lists and skiplists. We have also shown that the quantifier-free fragments of these theories are
decidable and we have proposed a decision procedure for each of them.

For future development, regarding TL3 and TSLK it would be interesting to study improve-
ments regarding the bounds of the finite model theorem which will lead to a more efficient
decision procedure. In order to improve these decision procedures, one possibility would be to
implement first-order resolution steps in combination with decision procedures. This way, we
could syntactically simplify and reduce the formula.

A possibility for improving the efficiency of TL3 and TSLK decision procedures would be to
implement a Nelson-Oppen version of them. To do so, we would need to implement decision
procedures for each independent subtheory and build a framework to propagate equalities and
inequalities and decide on splits. We would start consulting between the decision procedures
of the different theories. If new equalities/inequalities arises, then we need to propagate them

287



CHAPTER 11. CONCLUSION

between the different theories. When no more propagations are available, we need to start
splitting, guessing equalities (for instance, a = b and a 6= b). At most, when the formula is
saturated, we can get a conclusion whether the formula is satisfiable or not.

In the case of TSL, it would be interesting to extend this theory so that it can deal with
concurrent skiplists implementations. This extension may involve a considerable amount of
theoretical work, but it should be feasible, as TSL naturally extends from TSLK, which already
support concurrency. The concurrent extension of TSL would allow to deal with other industrial
skiplist implementations like the implementation in the java.concurrent standard library.

A different approach would be to experiment with local theory extensions [192] and its
combination methods [193], which can be used to reduce the satisfiability problem of a theory
into a satisfiability problem of the base theory from which the main theory extends.

A more general direction for future work is the study of more decidable theories for describing
complex data types. As interesting approach is to study how to extend the theories presented in
this work in the construction of richer theories. For instance, a theory of hash maps may use TL3
as a subtheory for describing the structure that stores elements within the same bucket.

11.2.5 LEAP

LEAP is a prototype tool under development, so there are numerous future extensions.
Currently, LEAP parses programs written in its own input language. It would be possible

to modify LEAP to parse programs written in real languages such as Java or C. For example, a
possibility could be using CIL/Frama-C [60,125,160] as a front-end for C.

Following some of the ideas for parametrized invariance and verification diagrams, a possibility
is to adapt LEAP to cover non-fully symmetric concurrent systems.

As the empirical evaluation suggests, the instantiation of support for parametrized invariance
and verification diagrams is critical to the efficiency of our decision procedures and hence to
the effectiveness of our verification method. This is because the size of the formula passed
to the decision procedure depends heavily on the instantiation of the support. The tactics
currently supported by LEAP for instantiating support are rather heuristic. A long term research
is to consider the study of more rigorous and sophisticated methods for instantiation, or even
to develop decision procedures that include instantiation. Promising directions for this study
are local theory extensions [192] and the search for natural proofs [172]. This line can also
potentially lead to complete methods for some class of programs and theories of data [201].
Automation can also be improved by the generation and propagation of invariants. Regarding
tactics, we believe that adding tactics based on first-order and theory related axioms could also
contribute in easing the proofs using LEAP.

Our experience with the use of LEAP suggests that general invariants for data structures are
widely used later for the verification of more specific properties. Hence, the creation of libraries
with collections of already verified properties and invariants associated to specific data structures
would ease the verification of further future specifications.
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begin, 18
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global, 17
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procedure, 17
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uniform verification problem, 54
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A
Checking that a PVD Satisfies
a Temporal Property

We show here how to check that L[M ]
p (D) ⊆ L[M ](ϕ), for a temporal property ϕ. The first

step is extracting the propositional alphabet from ϕ. Then, the main idea is to construct two
non-deterministic Büchi automata NBW: AD that captures the propositional computations of
the diagram, and A¬ϕ for the negation of the property (obtained by classical constructions).
Both automata use the propositional alphabet of the property. Then, an algorithmic check for
emptiness: AD ×A¬ϕ = ∅ allows to decide whether Lp(D) ⊆ Lp(ϕ).

We now show how to build an NBW for the propositional traces of the diagram.

A.1 The Intended Meaning of F
The intended meaning of each edge Streett condition 〈Bi, Gi, δi〉 is to ensure that in any accepting
trail of the diagram either some edge from Gi is visited infinitely often, or all edges from Bi

are visited finitely often. The verification conditions (SelfAcc) and (OtherAcc) show that the
ranking function δi is (strictly) decreasing in Bi edges, and non-increasing in Pi edges (that is,
E − (Gi ∪Bi) edges).

Without loss of generality we assume that Gi ∩Bi = ∅. The reason is that, otherwise the pair
〈Gi, B′i〉—where B′i = Bi \Gi—satisfies that

• Gi ∩B′i = ∅, and

• every trail π is accepting for (Gi, Bi) precisely when it is accepting for (Gi, B
′
i). To see this,

observe that a good trail that traverses Gi edges infinitely often is accepted for both. Also,
if a trail visits all Bi edges only finitely often,then it visits all B′i finitely often. For the other
direction, consider the cases:

1. If a trail visits all edges in B′i only finitely often but some edge in Bi \ B′i infinitely
often, then some edge in Gi is seen infinitely (because all edges in Bi \ B′i are Gi
edges), and the trail is accepting in both cases again.
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2. The last case is that all edges in B′i are traversed only finitely and alls edge in Bi \B′i
are also traversed only finitely often, which again is accepting for both

A.2 Edge Streett Automaton on Words

We define here an edge-Streett non-deterministic automaton on words (ESNW for short) as a
tuple 〈AP , Q,Q0, L, T, F 〉, where:

• AP is a finite set of propositions.

• Q is a finite set of states.

• Q0 ⊆ Q is the initial set of states.

• L is a map L : Q→ 2AP assigning predicates from AP to states.

• T ⊆ Q×Q is a transition function.

• F is an edge-Streett acceptance condition, F = 〈〈B1, G1〉, . . . , 〈Bk, Gk〉〉 described by a
finite collection of pairs, where Bj , Gj ⊆ T are sets of edges.

A trace of an ESNW is an infinite sequence s0t0s1t1 . . . of states and transitions where for each
position i, (si, si+1) ∈ ti. The set of edges from T seen infinitely often in a trace π is denoted by
infT (π).

A trace π of an ESNW is accepting whenever for all 1 ≤ j ≤ k, either:

• infT (π) ∩Gj 6= ∅, or

• infT (π) ∩Bj = ∅.

A.3 From ESNW into NBW

We show now how to translate an ESNW into an NBW that accepts the same language. Our
definition of NBW differs a bit from the common in the literature, so we introduce it here. An NBW
is a tuple 〈AP , Q,Q0, L, T, F 〉, where AP , Q, Q0, L and T are like in ESNW. The termination
condition F is a subset of Q. A trace is accepting whenever infQ(π) ∩ F 6= ∅.

The translation works as follow. Given an ESNW E we first generate an NBW Aj for each
edge Streett pair (Bj , Gj) separately. Aj : 〈AP , Qj , Ij , Lj , T j , F j〉 is as follows. Aj is essentially
composed of two sub-automata that we describe next: Qj = Q1 ∪ Q2 and T j = T1 ∪ T2 and
F j = F1 ∪ F2, Ij = I1 ∪ I2. We describe the two sub-automata separately:

• The set of states Q1 contains two copies qG1 and q1 for each state q in Q. Essentially, qG1
encodes that a good edge has just been taken, while q1 encodes that a good edge was not
taken to reach q.

• For edges:

– For every good edge p→ q in T ∩Gj we add an edge p1 → qG1 and an edge pG1 → qG1
into T1.
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– For every non-good edge p→ q we add an edge p1 → q1 and an edge pG1 → q1 into T1.

• The accepting states are F1 = {qG1 }.

• I1 = {q1 | q ∈ I}.

• L1(q1) = L(q), and L1(qG1 ) = L(q).

Accepting traces in A1 must visit qG1 states infinitely often. Since incoming edges to these
states are G edges, then good edges must be traversed infinitely often in the corresponding trace
in E . The other direction holds similarly.

The second component of Aj is A2 : 〈Q2, I2, L2, T2, F2〉 described as follows:

• Q2 contains one state q for each state q in Q.

• I2 = ∅.

• L2(q2) = L(q).

• F2 = Q2: all states are accepting.

• T2 contains an edge p2 → q2 whenever there is a non-B edge p→ q in T . Additionally, we
add one edge p1 → q2 for every edge p → q (good or bad) in T ; these additional edges
allow to jump from A1 into A2.

Note that there are not transitions back into A1 from A2, so if one of the jump transitions in a
trace is traversed, the trace stays in A2. Then, since all states in A2 are Büchi accepting and all
B edges are removed in A2, the trace that gets trapped in A2 corresponds to a trace in E that
only traverses B edges finitely often. Conversely, a trace in E that only traverses B edges finitely
often, will—at some finite point—not traverse B edges any longer. Then, E can jump at that
point in time to A2, and will be able to simulate the rest of trace in A2, which will guarantee the
acceptance of the accepting trace.

The construction described so far allows to translate an ESNW with only one pair (B,G) of
edge-Streett condition into an NBW. The size of the generating automaton is (|Q|+ |G|) + |Q|,
where |Q|+ |G| corresponds to A1 and the last |Q| term to A2.

In order to create a single NBW that captures the general case of k edge-Streett conditions, it
seems plausible to construct an alternating automaton, by merging all NBW computed for each of
the individual accepting conditions by simply letting I = I1 ∧ I2 ∧ . . . Ik. The resulting automaton
is an alternating Büchi automaton that can be easily converted into an NBW. Unfortunately, this
construction is not correct as illustrated with the following example:

Example A.1
E is as follows.
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1

0

2

e1 e3

e2 e4

B1 : {e3, e4}
G1 : {e1, e2}

B2 : {e1, e2}
G2 : {e3, e4}

We set L(n) = true for all nodes n.
For clarity we depict the two accepting edge conditions separately:

B1 : {e3, e4}
G1 : {e1, e2}

1

0

2

e1 e3

e2 e4

B2 : {e1, e2}
G2 : {e3, e4}

1

0

2

e1 e3

e2 e4

It is easy to see that E admits no computation. The reason is that there are only two traces:

0→ 1→ 1→ 1→ 1→ 1→ 1 . . .

and
0→ 2→ 2→ 2→ 2→ 2→ 2→ . . .

The first case is rejecting for (B2, G2) because no good edge is traversed infinitely often, but a
bad edge (namely e2 : (1 → 1)) is traversed infinitely often. Symmetrically, the second case is
rejecting for (B1, G1).

The two NBWs obtained by the construction above are:

a1 a2

b1 b2c1 c2

for pair (B1, G1), and the following for (B2, G2):

a1 a2

b1 b2c1 c2

The alternating automaton obtained by conjoining these two NBWs has the following accepting
run DAG:

(a1, a1)→ (b1, c1)→ (b1, c1)→ (b1, c1)→ (b1, c1)→ . . .
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The problem is that in the alternating automaton we allow each NBW to traverse different
edges independently, only checking that the labels of the states are compatible. In our case, all
states are compatible because all states are labeled true.

We fix this problem by building a unique NBW in which every component is forced to be in
the same state. y

The NBW A resulting from translating the full ESNW is built from the NBWs Ai obtained by
translating each of the edge-Streett conditions. The resulting automaton is 〈AP , Q, I, L, T, F 〉
where:

• Qf contains (Q× 3k × 2k). A state (q, v, o) represents that all automata are:

– in state q,

– that automaton Ai is in state q1 (if v[i] = 0), in state qG1 (if v[i] = 1) or instate q2 (if
v[i] = 2);

– that automaton A owes a visit to a final state (if o[i] = 1), or already visited a final
state since the last reset (see F below).

• label: L((q, v, o)) = L(q).

• initial states: (q, v, o)) ∈ I whenever q ∈ I, and v[i] = 0 for all i. For o, o[i] = 0 if and only
if qi1 ∈ F i. Otherwise o[i] = 1.

• transitions: (q, v, o)→ (p, v′, o′) ∈ T whenever, for all i, one of the following hold:

– (q1 → p1) ∈ T i, v[i] = 0 and v′[i] = 0.

– (q1 → pG1 ) ∈ T i, v[i] = 0 and v′[i] = 1.

– (qG1 → p1) ∈ T i, v[i] = 0 and v′[i] = 1.

– (qG1 → pG1 ) ∈ T i, v[i] = 1 and v′[i] = 1.

– (q1 → p2) ∈ T i, v[i] = 0 and v′[i] = 2.

– (qG1 → p2) ∈ T i, v[i] = 1 and v′[i] = 2.

– (q2 → p2) ∈ T i, v[i] = 2 and v′[i] = 2.

For the owing set o, if (q, v, o) ∈ F , then, for all i:

– o′[i] = 1 whenever v′[i] = 1 or v′[i] = 2.

– o′[i] = 0 whenever v′[i] = 0.

Finally, if (q, v, o) /∈ F , then, for all i:

– o′[i] = 1 whenever o[i] = 1 and v′[i] = 0.

– o′[i] = 0 whenever either o[i] = 0 or v′[i] = 1 or v′[1] = 2.

• accepting:
F = {(q, v, o) | for all i, o[i] = 0}

Informally, v serves to distinguish in which version of q each automaton is. The owing vector
o, inspired by the Miyano-Hayashi construction is introduced to remember which sub-automaton
has visited a final state since the last visit to a global final state, that only occurs when all
sub-automata have visited a final state.
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B
LEAP

This appendix provides more details about the syntax for invoking and describing programs
and properties in LEAP. The appendix is structured as follows. Section B.1 lists the available
command line options for invoking LEAP. Section B.2 presents the grammar which describes
the syntax accepted by LEAP. This section is composed by 4 subsections. Subsection B.2.1
describes the syntax accepted by LEAP’s programs. Subsection B.2.2 contains the syntax that
LEAP’s expressions need to follow. Subsection B.2.3 describes the syntax for LEAP’s proof graphs.
Finally, Subsection B.2.4 provides the description for LEAP’s parametrized verification diagrams.

B.1 LEAP Command Line Options

Here we describe how to invoke LEAP and the command line options that it supports. LEAP is
invoked through the following command line:

leap [options] [prg file]

where [prg file] is a file describing a program, following the syntax presented in Section B.2.1
and [options] are any of the following available command line options:

-g [file]: Provides the input file containing the proof graph for a safety verification. The file
given as input in [file] must follow the syntax described in Section B.2.3. This argument
is required when verifying a safety property.

-d [folder]: Provides the input folder where specifications and invariant candidates are
stored. LEAP will search in this folder for any file with the .inv extension and will consider
each of these files as a LEAP specification. Specifications need to follow the syntax described
in Section B.2.2. This argument is required when verifying a safety property and optional
when verifying a liveness property.

-pvd [file]: Provides the input file containing a parametrized verification diagram for the
verification of a liveness property. The file given as input in [file] must follow the syntax
described in Section B.2.4. This argument is required when verifying a safety property.
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-ps [file]: Describes the input file containing auxiliary support information for a param-
etrized verification diagram. This support information consists of a collection of tactics
and support invariants that are required for specific transitions and proof rules. The file
provided as argument must follow the syntax described in Section B.2.4. This argument is
optional when verifying a liveness property.

-focus [n1,n2,..]: This option tells LEAP to verify and generate verification conditions
solely for the transitions passed as argument. Transitions are described as a list of integers
separated by comma and each integer corresponds to the program line associated with
the transition relation. Dashes can be used to specify program line ranges. For instance,
1,2,5-7,9 denotes program lines 1, 2, 5, 6, 7 and 9.

-ignore [n1,n2,..]: This option tells LEAP not to verify nor generate verification conditions
for the transitions passed as argument. As the -focus options, this option receives a list of
transitions represented as a list of comma separated integers or ranges. Option -ignore

overrides option -focus. That means that is a transition is passed as argument to -focus
and to -ignore, it will finally be ignored by LEAP.

-pvdconds [c1,c2,..]: This option tells LEAP which conditions to bear in mind when
analyzing a parametrized verification diagram, in case only some conditions want to be
checked. Currently supported options are: initiation, consecution, acceptance
and fairness.

-pvdnodes [n1,n2,...]: This option tells LEAP which nodes of a parametrized verification
diagram consider when checking a liveness property. The list of nodes must be provided as
a list of comma separated node identifiers.

-dp [dp]: This option tells LEAP which specialized decision procedure use when trying to check
the validity of a verification condition. Argument [dp] denotes the decision procedure to
be used. Currently supported decision procedures are:

• num, a simple decision procedure for Presburger Arithmetic with finite sets.

• loc, a simple decision procedure that reasons on program locations.

• tll, a decision procedure for TL3, the theory presented in Chapter 6.

• tsl, a decision procedure for TSL, the theory of skiplists of unbounded height pre-
sented in Chapter 8.

• tslk[_], a decision procedure for TSLK, the theory of skiplists presented in Chapter 7.
Note that in this case, the maximum number of levels on which TSLK will reason
needs to be passed as argument. That is, for using TSL2, the appropriate option would
be: -dp tslk[2].

This option is mandatory for doing any verification.

-co [op]: This option specifies the general cutoff strategy to use in order to compute the
domain bounds when using a model based decision procedure. Currently supported options
for [op] are: dnf, union and pruning. By deafult, this option is set to dnf.

-z3: This option eanble the use of Z3 as SMT solver.
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-yices+z3: This option enbales the use of Yices for the reasoning about program locations and
Z3 to for the reasoning about non program locations.

-smt: This option enables the use of standard SMT-LIB translation for the queries passed to the
SMT solvers. This option enables the use of virtually any SMT solver that supports SMT-LIB
input format. The SMT-LIB translation is experimental and only some decision procedures
currently support it.

-q: This option enables the use of quantifiers over finite domains when constructing the queries
that are then passed to SMT solvers.

-si: This option tells LEAP to stop execution when an invalid verification condition is found. By
default, this option is disabled and LEAP will continue executing even if it finds any invalid
verification condition.

-sm: This option tells LEAP to present a counter model of any invalid verification condition. By
default, this option is disabled.

-show: This option tell LEAP to print in standard output the representation of the parsed program.
It is useful for finding out which transition relations are related to each program location.

-sl: When this option is enabled, LEAP prints through standard output a list of all labels declared
in the parsed program in addition the program lines each label is associated with.

-v [n]: This option indicates the verbosity level used by LEAP. Argument [n] corresponds to
an integer value and the greater is [n], the more information outputs LEAP.

-sf: If this option is enabled, then LEAP shows the path to the temporary files where the SMT
queries are written. By default, this option is disabled.

-ovc+: This option enables the output of the generated verification conditions to a specific folder.
The folder is specified using the -o option.

-o [folder]: This option indicates the folder where the generated verification conditions are
output when -ovc option is enabled.

-l [file]: This option indicates LEAP to print log information to a specific file, indicated by
[file].

-debug: This option enables the output of debug information.

-version: This option prints the current version of LEAP.

-help: Prints information of how to use LEAP and the command line options it supports.

--help: Same as -help option.
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B.2 LEAP Syntax

In this section we describe the syntax accepted by LEAP as input for its programs description,
expressions, proof graphs and parametrized verification diagrams.

We use standard grammar rules for describing the syntax. We use capital letters to denote
non-terminals and bold letters between quotes for terminal symbols. We use a bar | to denote
option and ? to represent 0 or 1 occurrence of a given symbol. Similarly, we use + and * to
denote 1 or more and 0 or more occurrences respectively.

B.2.1 LEAP Programming Language

In this section we present the syntax accepted by LEAP’s programs. Comments in a LEAP program
begins with a double slash // and expands until the end of the line. For LEAP’s programs, the
initial symbol describing the syntax is LEAP_PROG:

LEAP_PROG ::=

’global’ (GLOBAL_DECL *) INITIAL_ASSUMPTIONS PROC_LIST

GLOBAL_DECL ::=

KIND IDENT IDENT

| KIND IDENT IDENT ’:=’ TERM

| KIND IDENT IDENT ’:=’ FORMULA

| KIND IDENT IDENT ’<’ TERM

| KIND IDENT IDENT ’>’ TERM

| KIND IDENT IDENT ’<=’ TERM

| KIND IDENT IDENT ’>=’ TERM

| KIND IDENT IDENT ’in’ TERM

| KIND IDENT IDENT ’subSETeq’ TERM

| KIND IDENT IDENT ’tin’ TERM

| KIND IDENT IDENT ’tsubSETeq’ TERM

| KIND IDENT IDENT ’iin’ TERM

| KIND IDENT IDENT ’isubSETeq’ TERM

| KIND IDENT IDENT ’ein’ TERM

| KIND IDENT IDENT ’esubSETeq’ TERM

| KIND IDENT ’spin’ ’(’ IDENT ’,’ TERM ’)’

| KIND IDENT ’spsubSETeq’ ’(’ IDENT ’,’ TERM ’)’

INITIAL_ASSUMPTIONS ::=

(’assume’ FORMULA)?

PROC_LIST ::=

(PROCEDURE)+

PROCEDURE ::=
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’procedure’ IDENT ARGS PROCEDURE_SORT

(LOCAL_DECL*)

’begin’

PROGRAM

’end’

PROCEDURE_SORT ::=

(’:’ IDENT)?

ARGS ::=

’(’ (ARG_LIST)? ’)’

ARG_LIST ::=

ARG

| ARG ’,’ ARG_LIST

ARG ::=

IDENT ’:’ IDENT

LOCAL_DECL ::=

KIND IDENT IDENT

| KIND IDENT IDENT ’:=’ TERM

| KIND IDENT IDENT ’:=’ FORMULA

KIND ::=

(’ghost’)?

PROGRAM ::=

(STATEMENT_LIST)?

STATEMENT_LIST ::=

(LINE_LABEL*) STATEMENT (LINE_LABEL*)

| (LINE_LABEL*) STATEMENT STATEMENT_LIST

LINE_LABEL ::=

’:’ IDENT

| ’:’ IDENT ’[’

| ’:’ IDENT ’]’

STATEMENT ::=

STM_WITH_GHOST_AND_SEMICOLON (GHOST_BLOCK | ’;’)

| STM_WITH_GHOST (GHOST_BLOCK?)

| STM

STM_WITH_GHOST_AND_SEMICOLON ::=
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’skip’

| ’assert’

| ’await’

| ’noncritical’

| ’critical’

| TERM ’:=’ TERM

| IDENT ’:=’ TERM

| IDENT ’:=’ FORMULA

| TERM ’:=’ ’call’ IDENT ’(’ PARAMS ’)’

| IDENT ’:=’ ’CALL’ IDENT ’(’ PARAMS ’)’

| TERM ’->’ ’lock’ LOCK_POS

| TERM ’->’ ’unlock’ LOCK_POS

| ’call’ IDENT ’(’ PARAMS ’)’

| ’return’ ’(’ (TERM?) ’)’

STM_WITH_GHOST ::=

’if’ FORMULA ’then’ STATEMENT_LIST

(’else’ STATEMENT_LIST*)? ’endif’

| ’{’ (ATOMIC_STM+) ’}’

STM ::=

’while’ FORMULA ’do’ STATEMENT_LIST ’endwhile’

| ’choice’ STATEMENT_CHOICE ’endchoice’

STATEMENT_CHOICE ::=

(STATEMENT)+ (’_or_’ (STATEMENT+) )?

ATOMIC_STM ::=

’skip’ ’;’

| ’assert’ FORMULA ’;’

| ’noncritical’ ’;’

| ’critical’ ’;’

| TERM ’:=’ TERM ’;’

| IDENT ’:=’ TERM ’;’

| IDENT ’:=’ FORMULA ’;’

| ’if’ FORMULA ’then’ (ATOMIC_STM)+

(’else’ (ATOMIC_STM)+)? ’endif’

| ’while’ FORMULA ’do’ (ATOMIC_STM)+ ’endwhile’

| ’choice’ ATOMIC_CHOICE ’endchoice’

ATOMIC_CHOICE ::=

(ATOMIC_STM)+ (’_or_’ ATOMIC_CHOICE)?

GHOST_BLOCK ::=

’$’ (GHOST_STM*) ’$’
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GHOST_STATEMENT ::=

’skip’ ’;’

| ’assert’ FORMULA ’;’

| ’await’ FORMULA ’;’

| ’noncritical’ ’;’

| ’critical’ ’;’

| TERM ’:=’ TERM ’;’

| IDENT ’:=’ TERM ’;’

| IDENT ’:=’ FORMULA ’;’

| ’if’ FORMULA ’then’ (GHOST_STM+)

(’else’ GHOST_STM+)? ’endif’

| ’while’ FORMULA ’do’ (GHOST_STM+) ’endwhile’

| ’choice’ GHOST_CHOICE ’end_choice’

GHOST_CHOICE ::=

(GHOST_STM)+ (’_or_’ GHOST_CHOICE)?

LOCK_POS ::=

(’[’ TERM ’]’)?

PARAMS ::=

(PARAM_LIST)?

PARAM_LIST ::=

TERM

| TERM ’,’ PARAM_LIST

FORMULA ::=

’(’ FORMULA ’)’

| ATOM

| ’true’

| ’false’

| ’~’ FORMULA

| FORMULA ’/\’ FORMULA

| FORMULA ’\/’ FORMULA

| FORMULA ’->’ FORMULA

| FORMULA ’=’ FORMULA

| ’(’ IDENT ’)’

ATOM ::=

’append’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

| ’reach’ ’(’ TERM ’,’ TERM ’,’ TERM ’,’ TERM ’)’

| ’orderlist’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

| ’skiplist’ ’(’ TERM ’,’ TERM ’,’ TERM ’,’
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TERM ’,’ TERM ’,’ TERM ’)’

| ’in’ ’(’ TERM ’,’ TERM ’)’

| ’subSETeq’ ’(’ TERM ’,’ TERM ’)’

| ’tin’ ’(’ TERM ’,’ TERM ’)’

| ’tsubSETeq’ ’(’ TERM ’,’ TERM ’)’

| ’iin’ ’(’ TERM ’,’ TERM ’)’

| ’isubSETeq’ ’(’ TERM ’,’ TERM ’)’

| ’ein’ ’(’ TERM ’,’ TERM ’)’

| ’esubSETeq’ ’(’ TERM ’,’ TERM ’)’

| ’spin’ ’(’ TERM ’,’ TERM ’)’

| ’spsubSETeq’ ’(’ TERM ’,’ TERM ’)’

| TERM ’<’ TERM

| TERM ’>’ TERM

| TERM ’<=’ TERM

| TERM ’>=’ TERM

| TERM ’=’ TERM

| TERM ’!=’ TERM

TERM ::=

IDENT

| SET

| ELEM

| THID

| ADDR

| cell

| SETTH

| SETINT

| SETELEM

| SETPAIR

| PATH

| MEM

| INTEGER

| PAIR

| ARRAYLOOKUP

| ’(’ TERM ’)’

SET ::=

’empty’

| ’{’ TERM ’}’

| ’union’ ’(’ TERM ’,’ TERM ’)’

| ’intr’ ’(’ TERM ’,’ TERM ’)’

| ’diff’ ’(’ TERM ’,’ TERM ’)’

| ’path2set’ ’(’ TERM ’)’

| ’addr2set’ ’(’ TERM ’,’ TERM ’)’

| ’addr2set’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’
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ELEM ::=

TERM ’.’ ’data’

| TERM ’->’ ’data’

| ’havocListElem’ ’(’ ’)’

| ’havocSLElem’ ’(’ ’)’

| ’lowestElem’

| ’highestElem’

THID ::=

TERM ’.’ ’lockid’

| ’#’

| TERM ’->’ ’lockid’

| ’me’

| ’tid_of’ ’(’ TERM ’)’

ADDR ::=

’null’

| TERM ’.’ ’next’

| TERM ’.’ ’nextat’ ’[’ TERM ’]’

| TERM ’.’ ’arr’ ’[’ TERM ’]’

| ’firstlocked’ ’(’ TERM ’,’ TERM ’)’

| ’lastlocked’ ’(’ TERM ’,’ TERM ’)’

| ’malloc’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

| ’mallocSL’ ’(’ TERM ’,’ TERM ’)’

| ’mallocSLK’ ’(’ TERM ’,’ TERM ’)’

| TERM ’->’ ’next’

| TERM ’->’ ’nextat’ ’[’ TERM ’]’

| TERM ’->’ ’arr’ ’[’ TERM ’]’

CELL ::=

’error’

| ’mkcell’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

| ’mkcell’ ’(’ TERM ’,’ ’[’ TERM_list ’]’ ’,’

’[’ TERM_list ’]’ ’)’

| ’mkcell’ ’(’ TERM ’,’ TERM ’,’ TERM ’,’ TERM ’)’

| TERM ’.’ ’lock’

| TERM ’.’ ’unlock’

| ’rd’ ’(’ TERM ’,’ TERM ’)’

SETTH ::=

’tempty’

| ’tsingle’ ’(’ TERM ’)’

| ’tunion’ ’(’ TERM ’,’ TERM ’)’

| ’tintr’ ’(’ TERM ’,’ TERM ’)’
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| ’tdiff’ ’(’ TERM ’,’ TERM ’)’

SETINT ::=

’iempty’

| ’isingle’ ’(’ TERM ’)’

| ’iunion’ ’(’ TERM ’,’ TERM ’)’

| ’iintr’ ’(’ TERM ’,’ TERM ’)’

| ’idiff’ ’(’ TERM ’,’ TERM ’)’

SETELEM ::=

’eempty’

| ’esingle’ ’(’ TERM ’)’

| ’eunion’ ’(’ TERM ’,’ TERM ’)’

| ’eintr’ ’(’ TERM ’,’ TERM ’)’

| ’ediff’ ’(’ TERM ’,’ TERM ’)’

| ’set2elem’ ’(’ TERM ’,’ TERM ’)’

SETPAIR ::=

’spempty’

| ’spsingle’ ’(’ TERM ’)’

| ’spunion’ ’(’ TERM ’,’ TERM ’)’

| ’spintr’ ’(’ TERM ’,’ TERM ’)’

| ’spdiff’ ’(’ TERM ’,’ TERM ’)’

PATH ::=

’epsilon’

| ’singlePath’ ’(’ TERM ’)’

| ’getp’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

MEM ::=

’upd’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

INTEGER ::=

NUMBER

| ’-’ TERM

| TERM ’+’ TERM

| TERM ’-’ TERM

| TERM ’*’ TERM

| TERM ’/’ TERM

| ’setIntMin’ ’(’ TERM ’)’

| ’setIntMax’ ’(’ TERM ’)’

| ’havocLevel’ ’(’ ’)’

| ’int_of’ ’(’ TERM ’)’

PAIR ::=
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’(’ TERM ’,’ TERM ’)’

| ’spmin’ ’(’ TERM ’)’

| ’spmax’ ’(’ TERM ’)’

ARRAYLOOKUP ::=

TERM ’[’ TERM ’]’

IDENT ::=

[’A’-’Z’,’a’-’z’]

([’A’-’Z’,’a’-’z’,’0’-’9’,’_’,’/’,’’’,’@’])*

NUMBER ::=

([’0’-’9’])+

B.2.2 LEAP Expressions

In this section we describe the LEAP syntax for specification files and LEAP’s expression.
For specification files, the initial symbol is INVARIANT:

INVARIANT ::=

’vars’ ’:’ (VAR_DECL*)

’invariant’ (’[’ IDENT ’]’)? ’:’ FORMULA_DECL+

FORMULA_DECL ::=

FORMULA

| ’#’ IDENT ’:’ FORMULA

VAR_DECL ::=

IDENT IDENT

And for LEAP’s expression, the initial symbol is FORMULA:

FORMULA ::=

’(’ formula ’)’

| LITERAL

| ’true’

| ’false’

| ’~’ FORMULA

| FORMULA ’/\’ FORMULA

| FORMULA ’\/’ FORMULA

| FORMULA ’->’ FORMULA

| FORMULA ’=’ FORMULA
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| ’@’ NUMBER (TH_PARAM?) ’.’

| ’@’ IDENT (TH_PARAM?) ’.’

TH_PARAM ::=

’(’ IDENT ’)’

| ’(’ NUMBER ’)’

LITERAL ::=

’append’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

| ’reach’ ’(’ TERM ’,’ TERM ’,’ TERM ’,’ TERM ’)’

| ’reach’ ’(’ TERM ’,’ TERM ’,’ TERM ’,’ TERM ’,’ TERM ’)’

| ’orderlist’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

| ’skiplist’ ’(’ TERM ’,’ TERM ’,’ TERM ’,’

TERM ’,’ TERM ’,’ TERM ’)’

| ’in’ ’(’ TERM ’,’ TERM ’)’

| ’subSETeq’ ’(’ TERM ’,’ TERM ’)’

| ’tin’ ’(’ TERM ’,’ TERM ’)’

| ’tsubSETeq’ ’(’ TERM ’,’ TERM ’)’

| ’iin’ ’(’ TERM ’,’ TERM ’)’

| ’isubSETeq’ ’(’ TERM ’,’ TERM ’)’

| ’ein’ ’(’ TERM ’,’ TERM ’)’

| ’esubSETeq’ ’(’ TERM ’,’ TERM ’)’

| ’spin’ ’(’ TERM ’,’ TERM ’)’

| ’spsubSETeq’ ’(’ TERM ’,’ TERM ’)’

| ’inintPAIR’ ’(’ TERM ’,’ TERM ’)’

| ’intidPAIR’ ’(’ TERM ’,’ TERM ’)’

| ’uniqueint’ ’(’ TERM ’)’

| ’uniquetid’ ’(’ TERM ’)’

| TERM ’<’ TERM

| TERM ’>’ TERM

| TERM ’<=’ TERM

| TERM ’>=’ TERM

| TERM ’=’ TERM

| TERM ’!=’ TERM

| ’.’ ID ’.’

| ’.’ IDENT ’::’ IDENT TH_PARAM ’.’

TERM ::=

IDENT

| SET

| ELEM

| THID

| ADDR
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| CELL

| SETTH

| SETINT

| SETELEM

| SETPAIR

| PATH

| MEM

| INTEGER

| PAIR

| ARRAYS

| ADDRARR

| TIDARR

| ’(’ TERM ’)’

ID ::=

IDENT

| IDENT ’::’ IDENT

| IDENT ’::’ IDENT TH_PARAM

SET ::=

’empty’

| ’{’ TERM ’}’

| ’union’ ’(’ TERM ’,’ TERM ’)’

| ’intr’ ’(’ TERM ’,’ TERM ’)’

| ’diff’ ’(’ TERM ’,’ TERM ’)’

| ’path2set’ ’(’ TERM ’)’

| ’addr2set’ ’(’ TERM ’,’ TERM ’)’

| ’addr2set’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

ELEM ::=

TERM ’.’ ’data’

| ’lowestElem’

| ’highestElem’

THID ::=

TERM ’.’ ’lockid’

| ’#’

| ’tid_of’ ’(’ TERM ’)’

ADDR ::=

’null’

| TERM ’.’ ’next’

| TERM ’.’ ’nextat’ ’[’ TERM ’]’

| ’firstlocked’ ’(’ TERM ’,’ TERM ’)’

| ’firstlocked’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’
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| ’lastlocked’ ’(’ TERM ’,’ TERM ’)’

CELL ::=

’error’

| ’mkcell’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

| ’mkcell’ ’(’ TERM ’,’ TERM ’,’ TERM ’,’ TERM ’)’

| ’mkcell’ ’(’ TERM ’,’ ’[’ TERM_LIST ’]’ ’,’

’[’ TERM_LIST ’]’ ’)’

| TERM ’.’ ’lock’ ’(’ TERM ’)’

| TERM ’.’ ’lockat’ ’(’ TERM ’,’ TERM ’)’

| TERM ’.’ ’unlock’

| TERM ’.’ ’unlockat’ ’(’ TERM ’)’

| ’rd’ ’(’ TERM ’,’ TERM ’)’

TERM_LIST ::=

TERM ’,’ TERM

| TERM ’,’ TERM_LIST

SETTH ::=

’tempty’

| ’tsingle’ ’(’ TERM ’)’

| ’tunion’ ’(’ TERM ’,’ TERM ’)’

| ’tintr’ ’(’ TERM ’,’ TERM ’)’

| ’tdiff’ ’(’ TERM ’,’ TERM ’)’

| ’lockset’ ’(’ TERM ’,’ TERM ’)’

SETINT ::=

’iempty’

| ’isingle’ ’(’ TERM ’)’

| ’iunion’ ’(’ TERM ’,’ TERM ’)’

| ’iintr’ ’(’ TERM ’,’ TERM ’)’

| ’idiff’ ’(’ TERM ’,’ TERM ’)’

| ’setLower’ ’(’ TERM ’,’ TERM ’)’

SETPAIR ::=

’spempty’

| ’spsingle’ ’(’ TERM ’)’

| ’spunion’ ’(’ TERM ’,’ TERM ’)’

| ’spintr’ ’(’ TERM ’,’ TERM ’)’

| ’spdiff’ ’(’ TERM ’,’ TERM ’)’

| ’splower’ ’(’ TERM ’,’ TERM ’)’

SETELEM :
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’eempty’

| ’esingle’ ’(’ TERM ’)’

| ’eunion’ ’(’ TERM ’,’ TERM ’)’

| ’eintr’ ’(’ TERM ’,’ TERM ’)’

| ’ediff’ ’(’ TERM ’,’ TERM ’)’

| ’set2elem’ ’(’ TERM ’,’ TERM ’)’

PATH ::=

’epsilon’

| ’[’ TERM ’]’

| ’getp’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

| ’getp’ ’(’ TERM ’,’ TERM ’,’ TERM ’,’ TERM ’)’

MEM ::=

| ’upd’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

INTEGER ::=

NUMBER

| ’-’ TERM

| TERM ’+’ TERM

| TERM ’-’ TERM

| TERM ’*’ TERM

| TERM ’/’ TERM

| ’setIntMin’ ’(’ TERM ’)’

| ’setIntMax’ ’(’ TERM ’)’

| TERM ’.’ ’max’

| ’int_of’ ’(’ TERM ’)’

PAIR ::=

’(’ TERM ’,’ TERM ’)’

| ’spmin’ ’(’ TERM ’)’

| ’spmax’ ’(’ TERM ’)’

ARRAYS ::=

TERM ’[’ TERM ’]’

| ’arrUpd’ ’(’ TERM ’,’ TERM ’,’ TERM ’)’

ADDRARR ::=

TERM ’.’ ’arr’

TIDARR ::=

TERM ’.’ ’tids’

IDENT ::=

[’A’-’Z’,’a’-’z’,’$’]
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([’A’-’Z’,’a’-’z’,’0’-’9’,’_’,’/’,’’’,’@’])*

NUMBER ::=

([’0’-’9’])+

B.2.3 LEAP Proof Graphs and PVD Support

We now present the syntax for proof graph and parametrized verification diagram support files.
For proof graphs the initial symbol is GRAPH, while for support files for parametrized verification
diagrams the initial symbol is PVD_SUPPORT.

PVD_SUPPORT ::=

’Tactics’ ’:’ (TACTIC_CASE*) ’Facts’ ’:’ (FACT*)

TACTIC_CASE ::=

(TACTICS?) ’;’

| NUMBER ’:’ (TACTICS?) ’;’

| NUMBER ’:’ CONDITION ’:’ (TACTICS?) ’;’

| NUMBER ’:’ ’[’ IDENT_LIST BAR CONDITION_LIST ’]’

’:’ (TACTICS?) ’;’

FACT ::=

INV_LIST ’;’

| NUMBER ’:’ INV_LIST ’;’

| NUMBER ’:’ CONDITION ’:’ INV_LIST ’;’

GRAPH ::=

RULE*

RULE ::=

| (INV_LIST?) ’=>’ INV CASES (TACTICS?)

| (INV_LIST?) ’->’ INV SEQ_CASES (TACTICS?)

INV_LIST ::=

INV_GROUP

| INV

| INV_GROUP ’,’ INV_LIST

| INV ’,’ INV_LIST

INV_GROUP ::=

IDENT ’::’ ’{’ IDENT_LIST ’}’
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IDENT_LIST ::=

IDENT

| IDENT ’,’ IDENT_LIST

INV ::=

IDENT

| IDENT ’::’ IDENT

CASES ::=

(’[’ CASE_LIST ’]’)?

SEQ_CASES ::=

(’[’ SEQ_CASE_LIST ’]’)?

CASE_LIST ::=

CASE

| CASE ’;’ CASE_LIST

SEQ_CASE_LIST ::=

SEQ_CASE

| SEQ_CASE ’;’ SEQ_CASE_LIST

CASE ::=

NUMBER ’:’ (PREMISE?) (INV_LIST?) (TACTICS?)

SEQ_CASE ::=

NUMBER ’:’ (INV_LIST?) (TACTICS?)

PREMISE ::=

’S’ ’:’

| ’O’ ’:’

CONDITION ::=

’I’

’C’

’A’

’F’

CONDITION_LIST ::=

CONDITION

| CONDITION ’,’ CONDITION_LIST

TACTICS ::=

’{’ (SMP_STRATEGY?)

SUPP_SPLIT_TACTIC_LIST
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SUPP_TACTIC_LIST

FORMULA_SPLIT_TACTIC_LIST

(FORMULA_TACTIC_LIST?) ’}’

SMP_STRATEGY ::=

’union’ ’:’

| ’pruning’ ’:’

| ’dnf’ ’:’

SUPP_SPLIT_TACTIC_LIST ::=

| ’|’

| IDENT SUPP_SPLIT_TACTIC_LIST

SUPP_TACTIC_LIST ::=

| ’|’

| IDENT SUPP_TACTIC_LIST

FORMULA_SPLIT_TACTIC_LIST ::=

| ’|’

| IDENT FORMULA_SPLIT_TACTIC_LIST

FORMULA_TACTIC_LIST ::=

IDENT FORMULA_TACTIC_LIST

IDENT ::=

[’A’-’Z’,’a’-’z’]

([’A’-’Z’,’a’-’z’,’0’-,’9’,’/’,’’’,’@’,’_’,’-’])*

NUMBER ::=

([’0’-’9’])+

B.2.4 LEAP Parametrized Verification Diagrams

We now present the syntax for parametrized verification diagrams. The FORMULA non-terminal
used below corresponds to the one described in Section B.2.2. The initial symbol describing the
syntax for LEAP’s parametrized verification diagrams is PVD:

PVD ::=

’Diagram’ ’[’ IDENT ’]’

’Nodes’ ’:’ NODE_LIST

’Boxes’ ’:’ (BOX*)

’Initial’ ’:’ NODE_ID_LIST
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’Edges’ ’:’ (EDGE+)

’Acceptance’ ’:’ (ACCEPTANCE+)

NODE_LIST ::=

NODE

| NODE ’,’ NODE_LIST

NODE ::=

IDENT

| IDENT ’{’ FORMULA ’}’

node_id_list ::=

IDENT

| IDENT ’,’ NODE_ID_LIST

BOX ::=

’{’ IDENT ’[’ IDENT ’]’ ’:’ NODE_ID_LIST ’}’

TRANS_LIST ::=

TRANS

| TRANS ’,’ TRANS_LIST

TRANS ::=

NUMBER ’(’ IDENT ’)’

EDGE ::=

’[’ IDENT ’-->’ ’]’ ’;’

| IDENT ’-->’ IDENT ’;’

| ’[’ IDENT ’-{’ TRANS_LIST ’}->’ IDENT ’]’ ’;’

| IDENT ’-{’ TRANS_LIST ’}->’ IDENT ’;’

ACCEPTANCE ::=

’<<’ ’Bad’ ’:’ ’{’ (ACCEPT_EDGE_LIST?) ’}’ ’;’

’Good’ ’:’ ’{’ (ACCEPT_EDGE_LIST?) ’}’ ’;’

’[’ DELTA_LIST ’]’ ’>>’

ACCEPT_EDGE_LIST ::=

ACCEPT_EDGE

| ACCEPT_EDGE ’,’ ACCEPT_EDGE_LIST

ACCEPT_EDGE ::=

’(’ IDENT ’,’ IDENT ’,’ IDENT ’)’

DELTA_LIST ::+

DELTA
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| DELTA ’;’ DELTA_LIST

DELTA ::=

’(’ TERM ’,’ WF_OP ’)’

WF_OP ::=

’subset_op’

| ’pairsubset_op’

| ’addrsubset_op’

| ’elemsubset_op’

| ’tidsubset_op’

| ’less_op’
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