
THEME ARTICLE: TOP PICKS FROM THE 2022 COMPUTER
ARCHITECTURE CONFERENCES

Revizor: Testing Black-Box CPUs against
Speculation Contracts
Oleksii Oleksenko, Microsoft, Cambridge, CB1 2FB, UK

Christof Fetzer, TU Dresden, Dresden, 01187, Germany

Boris Köpf, Microsoft, Cambridge, CB1 2FB, UK

Mark Silberstein, Technion, Haifa, 3200003, Israel

Abstract—Speculative execution attacks such as Spectre and Meltdown exploit
microarchitectural optimizations to leak information across security domains.
These vulnerabilities often stay undetected for years, because we lack the tools for
systematic analysis of CPUs to find them. In this article, we introduce such a tool,
called Revizor, which automatically detects microarchitectural leakage in black-box
CPUs. The key idea is to employ speculation contracts to model the expected
information leaks and then to use randomized testing to compare the CPU’s
leakage against the model and thus detect unexpected leaks. We showcase the
effectiveness of this approach on Intel CPUs, where we demonstrate that Revizor
is capable of detecting both known and previously-unknown speculative leaks.

T he instruction set architecture (ISA) specifies
the functional behavior of a CPU but abstracts
from its implementation details (microarchitec-

ture). This abstraction enables development of hard-
ware optimizations without requiring changes to the
software stack; unfortunately, it also obscures the
security impact of these optimizations. Indeed, over
the last decade researchers discovered numerous mi-
croarchitectural vulnerabilities, including Spectre-style
attacks that use microarchitectural state to exfiltrate se-
cret information obtained during transient execution [4].
The problem is expected to get worse as Moore’s
law subsides and CPU architects apply ever more
aggressive optimizations [7].

Yet the search for microarchitectural vulnerabilities
in commercial CPUs remains unsystematic. Most of
these vulnerabilities (e.g., Spectre [4]) have been dis-
covered in a manual effort, by analysing public docu-
mentation, patents, and by laborious experimentation,
which is inevitably incomplete.

In this article, we present Revizor, a tool for princi-
pled detection of information leaks in black-box CPUs.
Its main distinguishing feature is reliance on a leak-

XXXX-XXX © 2023 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

age model—called speculation contract—to precisely
describe the information that we expect a given CPU
to expose via a given side channel. Revizor uses
the leakage model to differentiate between expected
and unexpected information leaks on the CPU under
test. To achieve this, Revizor generates random test
cases comprised of random programs and their inputs,
and compares the information exposed during their
execution according to the leakage model, and the one
exposed by a real CPU. If the CPU exposes information
that the model does not, Revizor reports it as an
unexpected leak, which often indicates the presence
of a microarchitectural vulnerability.

Such a model-based approach enables systematic
testing of black-box CPUs. As Revizor does not as-
sume any specific leakage mechanism, it is capable of
detecting various leakage types, even those that have
not been discovered before. Importantly, the model
remains abstract because Revizor does not directly
compare the behavior of the model with that of the tar-
get CPU, rather it searches for the difference between
the information they expose. As such, the model needs
to contain only the bare minimum microarchitectural
details necessary for describing leaks, and this permits
us to test complex commercial CPUs without having to
know the details of their design.

Month Published by the IEEE Computer Society IEEE Micro 1



TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

Observation Execution
Clause Clause

Load expose: None
ADDRESS

Store expose: None
ADDRESS

Other None None

TABLE 1. Summary of MEM-SEQ. The observation clause
describes expected leakage through caches, and the execu-
tion clause declares that no speculation is expected.

1 x ← 10
2 y ← load(100)
3 if(x < 0)
4 y ← load(200)

FIGURE 1. A program that exposes only one load address
according to MEM-SEQ, while accordingly to MEM-COND
both loads are exposed.

These unique properties of Revizor allowed us to
run a deep testing campaign on two Intel CPUs, which
we chose as the worst-case targets for our method:
both are superscalar CPUs with several unpatched
microarchitectural vulnerabilities, no detailed descrip-
tions of speculation mechanisms, and no direct control
over the microarchitectural state. Despite these com-
plications, Revizor managed to automatically detect
contract violations that represent all three of the known
types of speculative leakage—speculation of control
flow, address prediction, and speculation on hardware
exceptions—as well as a new variant of Spectre V1.
This result demonstrates the practicality of testing com-
plex real-world CPUs against speculation contracts; it
is further reinforced by our follow-up work [5], in which
Revizor found two new types of speculative leaks.

Revizor is an active open-source project
(https://github.com/microsoft/sca-fuzzer) with a
growing interest from hardware and software
developers as well as security researchers. It enjoys
a steady stream of contributions to extend its speed,
precision, and supported hardware platforms.

We next offer a brief overview of speculation con-
tracts, describe Revizor’s design, present the testing
campaign results, and discuss possible applications.

SPECULATION CONTRACTS
When a CPU executes a program, the execution
changes the CPU’s microarchitectural state. A co-
located attacker can observe some of these changes
via a side-channel attack.

Observation Execution
Clause Clause

Load expose: None
ADDRESS

Store expose: None
ADDRESS

Cond. None transient:
Jump if(INVERT_CONDITION){

IP = IP + TARGET}
Other None None

TABLE 2. Summary of MEM-COND. Note that the execution
clause describes the speculative behavior of a conditional
jump, as the jump takes place (IP is updated) if the condition
is false, the opposite of the non-speculative execution.

Speculation contracts [3] (short: contracts) specify
all the side-effects observable via a given microarchi-
tectural side channel.

Overview
A speculation contract augments the CPU’s ISA as
follows:
• For each instruction that may have an observable

side-effect, the contract declares an observation
clause. It describes the data exposed by the
instruction.
• For each instruction that may trigger spec-

ulative execution, the contract declares an
execution clause. It describes the effect of spec-
ulation, but without specifying the mechanism of
speculation.

Example 1. Consider a CPU that according to the
available information does not implement any specula-
tion. Thus, the execution clause for all its instructions
is empty, as shown in Table 1. We also know that it has
a shared cache, hence we expect loads and stores to
have observable side effects, as they change the cache
state (e.g., evict cache lines). A co-located attacker can
recover the addresses of loads/stores by observing
which of the cache sets changed their state via a cache
timing side-channel attack (e.g., Prime+Probe). We
encode these expectations in the observation clause
(Table 1) for loads and stores by specifying that they
expose their address. We call this contract MEM-SEQ
(memory access leakage with sequential execution).

When the program in Figure 1 is executed,
MEM-SEQ prescribes that the attacker can observe
an access to address 100 due to the load at line 2.

Example 2. Assume we find out that the CPU from
the previous example implements conditional branch
prediction. It means that branches can be mispre-
dicted, and the instructions in the mispredicted flow

2 IEEE Micro Month 2023

https://github.com/microsoft/sca-fuzzer


TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

are executed speculatively. We encode this in the
contract summarized in Table 2. The execution clause
for branches describes the effect of misprediction: con-
ditional branches first take a wrong target, then execute
a certain number of instructions, and then roll back
and go to the correct target. The observation clause
remains the same as in the previous example, implying
that the speculatively executed instructions expose
their addresses just as the non-speculative ones. The
resulting contract describes expected speculative leak-
age by declaring that any conditional branch can take
a wrong target (according to the execution clause)
and any memory access after the wrong target can
expose its address to the attacker (according to the
observation clause). We call this contract MEM-COND
(memory access leakage with conditional branch mis-
prediction).

When the program in Figure 1 is executed,
MEM-COND prescribes that the attacker can observe
two accesses: one to the address 100 due to the load
at line 2, and one to the address 200 due to the
misprediction at line 3 and the following load at line 4.

Contract Compliance
Intuitively, a CPU complies with a contract if any pro-
gram executed on the CPU will leak no more informa-
tion to an attacker than what the contract specifies.

For example, if a CPU implements only conditional
branch prediction, then it complies with MEM-COND.
However, if it also has indirect branch prediction, it may
violate MEM-COND because the memory accesses
executed after mispredicted indirect branches can leak
unexpected information w.r.t. this contract.

Contract compliance is defined through the con-
cept of traces. A contract trace is a sequence of
observations that the attacker can make according
to the contract when a CPU executes a program p
with an input i . Here we abstractly represent it as a
function Contract that takes p and i and returns a
contract trace CTrace:

CTrace = Contract(p, i)

A hardware trace is the microarchitectural
changes that an attacker actually observes when the
program p is executed with an input i on the CPU
in a given microarchitectural context µ. Accordingly,
the process of observing microarchitectural effects can
be described as a function Measure that returns a
hardware trace HTrace:

HTrace = Measure(p, i ,µ)

A CPU complies with a contract if hardware traces
expose the same (or less) information than exposed
by contract traces: Formally, contract compliance is
defined as a relational property: whenever any two
executions of any program have the same contract
trace (implying the difference between inputs is not
exposed), the respective hardware traces should also
match.

Definition 1. A CPU complies with a Contract if,
for all programs p, all input pairs (i , i ′), and all initial
microarchitectural states µ:

Contract(p, i)=Contract(p, i ′)

=⇒ Measure(p, i ,µ)=Measure(p, i ′,µ)

In the terminology of information flow properties [8],
Definition 1 requires that any program that is non-
interferent with respect to a contract must also be non-
interferent on the CPU.

Crucially, Definition 1 does not compare hardware
and contract traces directly, only contract traces to con-
tract traces, and hardware traces to hardware traces.
This sidesteps the need to establish a detailed model
of the microarchitecture and enables testing of black-
box CPUs.

Conversely to Definition 1, a CPU violates a con-
tract if there exists a program p, a microarchitectural
state µ, and two inputs i , i ′ that produce the same
contract trace but different hardware traces. We call the
tuple (p,µ, i , i ′) a contract counterexample. A coun-
terexample indicates a potential microarchitectural vul-
nerability that was not accounted for by the contract.

REVIZOR
Our proposed tool, Revizor, searches for contract
counterexamples by generating random test cases,
collecting their contract and hardware traces, and
checking if any of them violate the contract accord-
ing to Definition 1. Revizor’s architecture is presented
in Figure 2.

Overview
The testing process begins from generation of a test
case: a program p and a sequence of inputs i0, i1, ... , in.
The program is essentially a random sequence of
assembly instructions. Each input is a file with random
binary contents, used to initialize the program’s mem-
ory and registers.

Program generator creates the program p by form-
ing a random control-flow graph and then populating it
with instructions randomly selected from a predefined

Month 2023 IEEE Micro 3



TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

Program 
Generator

Input Generator

ExecutorModel

Analyser

Test Case

HTraceCTrace

Contract

Instruction Set Specification

Report

FIGURE 2. Architecture of Revizor.

pool of instructions. The generator can be configured
to constrain the shape of the control-flow graph, con-
trol the pool of tested instructions, and configure the
frequency of certain instructions.

Input generator populates input files with random
values. In the initial version of Revizor the genera-
tion was completely random, but in our more recent
work [5] we implemented an algorithm that uses the
contract to improve input generation thus increasing
the chance of surfacing contract violations.

Model collects contract traces for the test case.
The model is an executable version of the contract
implemented with an ISA emulator (Unicorn [6]). The
emulator is modified to record observations according
to the contract observation clause, and to implement
speculation according to its execution clause. The
model collects traces by executing the program p with
each of the inputs i on this emulator. The resulting
contract trace is a list of all recorded observations.

Executor collects hardware traces for the test case
by executing the program p with each of the inputs
i on the target CPU. The microarchitectural state µ

is set indirectly, as it is not directly accessible on
black-box CPUs: Each program execution inherently
modifies the microarchitectural state, which sets µ for
the following executions. Hardware traces are collected
by monitoring the microarchitectural changes caused
by each execution; specifically, Revizor collects traces
by monitoring L1D cache via performance counters,
mimicking a powerful attack via a cache timing side-
channel.

Analyzer checks if any of the collected traces vio-

1 ADD ax, 0 // add 0 to ax
2 CMP rax, 10 // compare rax with 10
3 JE .l1 // jump if equal
4 SUB eax, 4253
5 MOV rax, [rbx] // load from address in rbx
6 CMOVNBE ebx, eax
7 JMP .l2 // unconditional jump
8 .l1:
9 MOV rax, [rax] // load from address in rax

10 .l2: // end of the program

FIGURE 3. A program that surfaces a violation of MEM-SEQ.

late Definition 1. For this, it groups the inputs that pro-
duce the same contract trace into equivalence classes,
and checks if all hardware traces in the same class
match. If there is at least one pair of different traces,
these constitute a counterexample to the contract, and
Revizor reports the unexpected leakage to the user.

Example 3. Consider a round of a testing campaign
where an x86 CPU with branch prediction is tested
against MEM-SEQ. The round begins by generating
a random program1 shown in Figure 3, as follows:
Revizor creates a random control-flow graph with three
nodes; connects the nodes by placing jumps (lines 3,
7); and adds random instructions from a pool of x86
instructions (lines 1–2, 4–6, 9). Revizor complements
the program with a sequence of random inputs:

i1={rax=40,rbx=5 }, i2={rax=2,rbx=20}
i3={rax=10,rbx=70}, i4={rax=10,rbx=40}
Revizor executes the test case on the MEM-SEQ

model, which collects the load addresses, producing
the following traces:

ctrace1={load *5 }, ctrace2={load *20}

ctrace3={load *10}, ctrace4={load *10}

Note that ctrace1 and ctrace2 contain addresses of
the load at line 5, while ctrace3 and ctrace4 record
line 9 because the jump at line 3 takes a different
branch when rax==10.

Next, Revizor executes the test case on the target
CPU while monitoring cache evictions with a side-
channel attack, resulting in the following traces (ECL
stands for “evicted cache line”):

htrace1={ECL *5},
htrace2={ECL *20}

htrace3={ECL *70, ECL *10},
htrace4={ECL *40, ECL *10}

In the first two traces, the branch at line 3 is not
taken, and the loads from addresses 5 and 20 evict

1The test case is simplified for clarity. In practice, the
program contains more instructions, and the inputs assign
values to multiple registers and to several pages of memory.

4 IEEE Micro Month 2023



TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

the corresponding cache lines. In addition, the first
two executions train the branch predictor, so the next
two executions experience mispredictions. For input i3,
the CPU executes a speculative load from address 70
(line 5) and a non-speculative load from address 10

(line 9). For i4, the CPU speculatively loads from
address 40 (line 5) and non-speculatively loads from
address 10 (line 9). If the cache line size is 64 bytes,
i3 and i4 evict different cache lines, which results in
different hardware traces.

Accordingly, the last two inputs form a counterex-
ample: ctrace3 =ctrace4 and htrace3 ̸=htrace4.
Revizor detects it and reports to the user.

We next describe how we solve some of the chal-
lenges that appear when testing black-box CPUs.

Sandbox for Collecting Traces
Our model-based testing approach requires that test
cases are executed in an identical way by the model
and the executor. Namely, the test cases have to fol-
low the same (architectural) control-flow path on both
the model and the target, and their (non-speculative)
memory accesses have to use the same addresses.
Otherwise, the discrepancies between the model and
the executor could cause violations of Definition 1,
leading to false positives.

We avoid such false positives by creating identical
sandboxes in the model and the executor:

• The generator forms a directed acyclic graph
(DAG) as a basis for creating programs, which
ensures that the program executes a predictable
sequence of instructions (e.g., it does not jump to
uninitialized memory), and that the model and the
executor follow the same control path.
• The generator instruments all loads and stores to

confine them within a predefined memory region.
• Instructions that could fault (e.g., divisions) are

instrumented to prevent the faults.
• The program p is loaded into the memory regions

that have identical addresses within the executor
and the model.

Handling Microarchitectural States
Our approach requires pseudorandomization of the
microarchitectural state µ: on one hand, it has to be
deterministic to check traces according to Definition 1;
on the other hand, it has to be diverse to trigger differ-
ent speculative leaks. As black-box CPUs normally do
not provide mechanisms for direct manipulation of the
microarchitectural state, we have to do it indirectly.

We strive to make the microarchitectural state de-
terministic by creating an isolated measurement en-
vironment: The executor runs as a kernel module,
on a single core, with hyperthreading, prefetching,
and interrupts disabled. The executor also monitors
System Management Interrupts to discard those mea-
surements corrupted by an interrupt. Before executing
an input, the executor flushes caches, invalidates TLB,
flushes microarchitectural buffers with VERW, and exe-
cutes a sequence of memory fences to reset the CPU
pipeline.

We make the state diverse through the execution
of the test case itself: The executor runs each of
the inputs in a sequence, without interruptions, which
means that the executions of [i0...in−1] indirectly set µn

for in. For example, every time a test case executes a
branch, it trains the branch predictor for the next inputs.

Naturally, these techniques are imperfect and they
do not provide us with full control of the microarchi-
tectural state. However, they have proven themselves
sufficient for detecting speculative information leaks
with little to no false positives.

TESTING CAMPAIGN

Experimental Setup
We test two CPUs with several x86-64 ISA subsets.
The experiments are summarized in Table 3.

Rows 1 and 2 are the CPUs under test. We test
Intel Core i7-6700 (Skylake) and Intel Core i7-9700
(Coffee Lake). For Skylake, we run experiments with
Spectre V4 [2] microcode patch enabled and disabled.

Row 3 is the pool of instructions used to generate
test cases: AR is in-register arithmetic and logic oper-
ations; MEM is loads/stores and in-memory variants of
AR; VAR is variable-latency operations (divisions). CB
is conditional branches.

We also create a setup for testing information leak-
age upon microcode assists.2 To this end, we modify
the executor’s sandbox to clear the “Accessed” page
table bit in one of the sandbox pages such that the
first store to/load from this page triggers an assist. This
mode is enabled for Targets 7 and 8.

We test each of the targets against the following
contracts: MEM-SEQ exposes leakage only during se-
quential execution (see Example 1); MEM-COND addi-
tionally exposes leakage after mispredicted branches
(see Example 2); MEM-BPAS exposes leakage during

2A microcode assist is a hardware exception that is trans-
parently handled by an internal microcode routine to execute
a complex operation, such as setting a page table bit.

Month 2023 IEEE Micro 5



TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 7 Target 8

CPU Skylake Skylake CoffeeLake
V4 patch off on on
Instruction Set AR AR+MEM AR+MEM+VAR AR+MEM+VAR AR+MEM+CB AR+MEM+CB+VAR AR+MEM
Microcode Assists Disabled Enabled

TABLE 3. Description of the experimental setups.

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Target 7 Target 8

MEM-SEQ ✓ ×(V4) ×(V4) ✓ ×(V1) ×(V1) ×(MDS) ×(LVI-Null)
MEM-COND ✓ ×(V4) ×(V4) ✓ ✓ ×(V1-var) ×(MDS) ×(LVI-Null)
MEM-BPAS ✓ ✓ ×(V4-var) ✓ ×(V1) ×(V1) ×(MDS) ×(LVI-Null)
MEM-COND-BPAS ✓ ✓ ×(V4-var) ✓ ✓ ×(V1-var) ×(MDS) ×(LVI-Null)

TABLE 4. Summary of the testing results. Here, ×- Revizor detected a violation; ✓- Revizor detected no violations within 24h
of testing; ✓- the target is compliant through a weaker contract. In parenthesis are Spectre-type vulnerabilities revealed by the
detected violations.

sequential execution and due to speculative store by-
pass (i.e., Spectre V4); and MEM-COND-BPAS com-
bines all three contracts together.

Results
We test each of the target-contract combinations for 24
hours or until a violation is found. Upon a violation, we
manually investigate the counterexample to determine
its cause. The results are summarized in Table 4.

Target 1: As a baseline, we test the most narrow in-
struction set AR containing only arithmetic operations).
We expect the target to comply with the most restric-
tive contract (MEM-SEQ). The experiments confirm it:
Revizor detects no violations within 24 hours of testing.
Since other contracts expose strictly more information,
the target inherently complies with them too. This
experiment shows that Revizor successfully mitigates
measurement noise, producing no false violations.

Target 2: We next repeat the experiment with a
broader set of instructions, AR+MEM. This time, Revi-
zor detects violations of MEM-SEQ and MEM-COND
within about two hours of testing. Upon inspection,
we identify those violations as representative of Spec-
tre V4. Revizor does not detect violations of MEM-
BPAS and MEM-COND-BPAS, which is expected as
they encode (and thus permit) leakage caused by V4.

Target 3: We further augment the instruction set
with divisions (the only variable-latency instructions in
the base x86) to AR+MEM+VAR, and Revizor finds viola-
tions of MEM-BPAS and MEM-COND-BPAS, although
this time it takes over 20 hours to detect them. Upon
inspection, the counterexamples reveal a novel variant
of Spectre V4 that leaks the timing of division (not
permitted to be exposed according to the contract).
We describe this variant in detail in our original AS-
PLOS’22 paper [10].

Target 4: We change the experiment described in

Target 3 by enabling a V4 patch on Skylake. Our ex-
periments do not surface contract violations, showing
that the V4 patch is effective, also against the novel
V4 variant.

Target 5: When augmenting AR+MEM with condi-
tional branches to AR+MEM+CB, Revizor detects vio-
lations of MEM-SEQ and MEM-BPAS within several
minutes of testing. Upon inspection, these are rep-
resentative of Spectre V1. Revizor detects no viola-
tions of MEM-COND and MEM-COND-BPAS, which is
expected as the contracts permit leakage caused by
branch misprediction.

Target 6: When further augmenting the in-
struction set with variable-latency instructions to
AR+MEM+CB+VAR, Revizor detects violations of MEM-
COND and MEM-COND-BPAS. Similar to Target 3, the
violations represent novel variants of Spectre V1.

Target 7: We next perform experiments with mi-
crocode assists enabled in the executor. To test the
assists in isolation, we test AR+MEM, and we enable
V4 patch to avoid violations caused by V4. Revizor
now detects violations of all contracts within about
10 minutes. We identify them as representative of
MDS [1].

Target 8: We repeat the experiment in Target 7,
but now on Coffee Lake, which has a hardware MDS
patch. Revizor detects violations on it as well, also
within 10 minutes. We identify them as caused by
LVI-Null [9].

In summary, Revizor could automatically generate
gadgets that represent all three of the known types
of speculative leakage: speculation of control flow, ad-
dress prediction, and speculation on hardware excep-
tions. The analysis is robust and did not produce false
positives, demonstrating the practicality of testing com-
plex real-world CPUs against speculation contracts.

6 IEEE Micro Month 2023



TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

LOOKING AHEAD
The discovery of Spectre, Meltdown, Foreshadow, and
similar microarchitectural vulnerabilities has made it
painfully clear that aggressive optimizations for runtime
and power consumption in today’s CPUs may have
unforeseen security implications. One of the reasons
why these vulnerabilities slipped between the cracks
despite rigorous quality control, is that unlike routine
measurements of performance and correctness prop-
erties, there has been no generic way to express and
test the microarchitectural security properties of CPUs,
until now.

With Revizor, we change this situation: we pro-
vide the first method and tool that can test modern
fabricated black-box CPUs against precise specifica-
tions of their microarchitectural security, aka specu-
lation contracts, via automated, comprehensive and
objective assessment of their compliance. The version
of Revizor described in the paper demonstrates the
feasibility of this approach, by automatically identifying
an important class of known transient vulnerabilities,
as well as previously unknown variants, without the
previously-unavoidable laborious educated guesswork.

Crucially, while information leakage is a non-
functional property, contracts allow us to specify it
in functional terms via speculation and observation
clauses. This makes the approach accessible to hard-
ware architects without background in formal methods,
and thus increases the chances of its adoption by the
industry. We hope that Revizor and its derivatives will
eventually become a part of routine correctness tests
throughout the CPU design and development process.

Today, we build contracts ourselves. We start with
a contract that encodes our understanding of the offi-
cial and unofficial public documentation (often partial
or inaccurate), and we gradually refine the contract
by testing it with Revizor and modifying the contract
according to the counterexamples that Revizor finds.

In the future, we envision that CPU vendors them-
selves will augment ISA specifications with speculation
contracts, much like the way memory consistency mod-
els have become an inherent part of the CPU spec.
Alternatively, if a vendor will not provide a contract for
a CPU (e.g., for older CPU models), the community of
the CPU users could build the contract on their own,
following our refinement-based approach.

Tools such as Revizor will then enable customers
and certification bodies to independently validate that
CPUs comply with their stated leakage properties.
This presents an opportunity for hardware vendors
to give evidence of the security properties of their
microarchitecture—without having to disclose the low-

level details of their IP—and provides an incentive to
architect systems with microarchitectural security as a
first-class citizen.

REFERENCES
1. C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp,

M. Minkin, D. Moghimi, F. Piessens, M. Schwarz, B.
Sunar, J. Van Bulck, and Y. Yarom. “Fallout: Leaking
data on Meltdown-resistant CPUs,” in Proc. of the
2019 Conf. on Computer and Communications Secu-
rity, 2019, pp. 769-784.

2. Google Project Zero. Speculative Execution,
Variant 4: Speculative Store Bypass. [Online].
Available: https://bugs.chromium.org/p/project-
zero/issues/detail?id=1528

3. M. Guarnieri, B. Köpf, J. Reineke, and P. Vila.
“Hardware-software contracts for secure speculation,”
in Proc. 2021 IEEE Symp. on Security and Privacy,
2021, pp. 1868-1883.

4. P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W.
Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher,
M. Schwarz, and Y. Yarom. “Spectre Attacks: Exploit-
ing Speculative Execution,” in Proc. 2019 IEEE Symp.
on Security and Privacy, 2019, pp. 1-19.

5. O. Oleksenko, M. Guarnieri, B. Köpf, M. Silberstein.
“Hide and Seek with Spectres: Efficient discovery of
speculative information leaks with random testing,”
in Proc. 44th IEEE Symp. on Security and Privacy,
submitted for publication.

6. Unicorn Engine. [Online]. Available:
https://github.com/unicorn-engine/unicorn

7. J. R. S. Vicarte, P. Shome, N. Nayak, C. Trippel, A.
Morrison, D. Kohlbrenner, and C. W. Fletcher. “Open-
ing pandora’s box: A systematic study of new ways
microarchitecture can leak private data,” in Proc. 48th
Ann. Int. Symp. on Computer Architecture, 2021, pp.
347-360.

8. A. Sabelfeld and A. C. Myers. “Language-based
information-flow security,” IEEE Journal on selected
areas in communications., vol. 21, no. 1, pp. 5–19,
2003.

9. J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M.
Minkin, D. Genkin, Y. Yarom, B. Sunar, D. Gruss, F.
Piessens, and K. Leuven. “LVI: Hijacking Transient
Execution through Microarchitectural Load Value In-
jection,”, in Proc. 2020 IEEE Symp. on Security and
Privacy, 2020.

10. O. Oleksenko, C. Fetzer, B. Köpf, M. Silberstein.
“Revizor: Testing Black-Box CPUs against Specula-
tion Contracts,” in Proc. 27th ACM Int. Conf. Archit.
Support Program. Lang. Oper. Syst., 2022.

Month 2023 IEEE Micro 7



TOP PICKS FROM THE 2022 COMPUTER ARCHITECTURE CONFERENCES

Oleksii Oleksenko is a Researcher at Microsoft,
Cambridge, UK. His current research interest is con-
fidential computing, with a focus on microarchitectural
leaks. He received his Ph.D. degree from the Technical
University of Dresden (TU Dresden). Contact him at
t-oleksenkoo@microsoft.com.

Christof Fetzer is head of the Systems Engineer-
ing Chair in the Computer Science Department at
the Technische Universität Dresden, Germany. His
research focuses on simplifying confidential comput-
ing while providing strong protection of data, code,
and secrets. He holds a Ph.D. degree from the
University of California, San Diego. Contact him at
christof.fetzer@tu-dresden.de.

Boris Köpf is a Principal Researcher at Microsoft,
Cambridge, UK. His research focuses on techniques for
tracking information flow in microarchitecture and ma-
chine learning systems. Boris holds a Ph.D. from ETH
Zurich. Contact him at boris.koepf@microsoft.com.

Mark Silberstein is an Associate Professor at
the Electrical and Computer Engineering Department,
Technion – Israel Institute of Technology. His research
interests are computer systems at large, with the em-
phasize on accelerator architectures, Operating Sys-
tems, Computer Networks and systems security. He
holds a Ph.D. in Computer Science from the Technion.
Contact him at mark@ee.technion.ac.il.

8 IEEE Micro Month 2023


	SPECULATION CONTRACTS
	Overview
	Contract Compliance

	REVIZOR
	Overview
	Sandbox for Collecting Traces
	Handling Microarchitectural States

	TESTING CAMPAIGN
	Experimental Setup
	Results

	LOOKING AHEAD
	REFERENCES
	REFERENCES
	Biographies
	Oleksii Oleksenko
	Christof Fetzer
	Boris Köpf
	Mark Silberstein


