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Privacy By DEsIGN — LET'S HAVE IT!

INFORMATION AND PRIVACY COMMISSIONER OF ONTARIO

Privacy by Design principles

Proactive not Reactive; Preventative not Remedial
2 Privacy as the Default Setting
3. Privacy Embedded into Design
4. Full Functionality: Positive-Sum, not Zero-Sum
5 End-to-End Security — Full Lifecycle Protection
5. Visibility and Transparency — Keep it Open
Respect for User Privacy — Keep it User-Centric

Privacy by Design

Cavoukian et al. (2010)

https://www.ipc.on.ca/images/resources/7foundationalprinciples.pdf
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CFRTTTINR: PRIVACY

VWHY?? NOT ONLY MOTIVATION....

Is PRIVACY ENGINEERING A CRAFT?




ENGINEERING PRIvVAacY BY DEsieN 1.0

Two case studies:

> anonymous e-petitions: no identity attached to petitions

> privacy-preserving road tolling: no fine grained data sent to server

Seda Gurses, Carmela Troncoso, Claudia Diaz. Engineering Privacy by Design.Computers, Privacy & Data Protection. 2011



ENGINEERING PRIvVAacY BY DEsieN 1.0

Two case studies:

> anonymous e-petitions: no identity attached to petitions
> privacy-preserving road tolling: no fine grained data sent to server

THE KEY 1S “DATA MINIMIZATION”

Seda Gurses, Carmela Troncoso, Claudia Diaz. Engineering Privacy by Design.Computers, Privacy & Data Protection. 2011



ENGINEERING PRIvVAacY BY DEsieN 1.0

Two case studies:

> anonymous e-petitions: no identity attached to petitions

> privacy-preserving road tolling: no fine grained data sent to server

THE KEY 1S “DATA MINIMIZATION”

BUT, it's not “data” that is minimized (in the system as a whole)

> keptin user devices

> sent encrypted to a server (only client has the key)

> distributed over multiple servers: only the user, or colluding servers, can recover the data

Seda Gurses, Carmela Troncoso, Claudia Diaz. Engineering Privacy by Design.Computers, Privacy & Data Protection. 2011



ENGINEERING PRIvVAacY BY DEsieN 1.0

Two case studies:

> anonymous e-petitions: no identity attached to petitions

» privacy-preserving road tolling: no fine grained data sent to server

THE KEY 1S “DATA MINIMIZATION”

BUT, it's not “data” that is minimized (in the system as a whole)

> keptin user devices

> sent encrypted to a server (only client has the key)

> distributed over multiple servers: only the user, or colluding servers, can recover the data

“DATA MINIMIZATION™ 1S A BAD METAPHORIII
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UNPACKING “DATA MINIMIZATION”:
Privacy BY DESIGN STRATEGIES

MINIMIZING PRIVACY RISKS AND
TRUST ASSUMPTIONS PLACED ON OTHER ENTITIES
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UNPACKING “DATA MINIMIZATION”:
Privacy BY DESIGN STRATEGIES

OVERARCHING

STRATEGIES

We make explicit the activities and reasoning in PRIVACY ENGINEERING DESIGN process

GOAL

MINIMIZING PRIVACY RISKS AND
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GREAT! BUT... HOW DO WE USE THESE STRATEGIES?

Seda Gurses, Carmela Troncoso, Claudia Diaz. Engineering Privacy by Design Reloaded. Amsterdam Privacy Conference. 2015




CASE STUDY: ELECTRONIC ToLL PRICING

MoTivaTiON: EUROPEAN ELECTRONIC ToLL SERVICE (EETS)
Toll collection on European Roads trough On Board Equipment
Two approaches: Satellite Technology / DSRC

Commission Decision of 6 October 2009 on the definition of the European Electronic Toll Service and its technical elements
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A3200900750
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WELL ESTABLISHED DESIGN AND EVALUATION METHODS

- Private searches

- Private billing

- Private comparison

- Private sharing

- Private statistics computation
- Private electronic cash

- Private genomic computations
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UNLINKABILITY: hiding link between actions

UNossERVABILITY: hiding the very existence of actions
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“OBFUSCATION™ not possible to recover a real item from a noisy item

V/HY 1S IT SO DIFFICULT TO QUANTIFY THEM?



| ET'S TAKE ONE EXAMPLE: ANONYMITY

Art. 29 WP’s opinion on anonymization techniques:

3 criteria to decide a dataset is non-anonymous (pseudonymous):
1) is it still possible to single out an individual
2) is it still possible to link two records within a dataset (or between two datasets)

3) can information be inferred concerning an individual?

http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp216_en.pdf
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On the Anonymity of Home/Work

Location Pairs

“if the location of an individual is specified
hourly, and with a spatial resolution equal
to that given by the carrier’'s antennas,
four spatio-temporal points are enough
to uniquely identify 95% of the
individuals.”  [15 montsh, 1.5M people]
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83.6% had completely unique fingerprints
(entropy: 18.1 bits, or more)

94.2% of “typical desktop browsers” were unique
(entropy: 18.8 bits, or more)

web browser
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Electronic Frontier
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ANONYMITY

INDIVIDUAL

Simple Demegraphics Often Identify People Uniquely

“It was found that 87% (216 million of 248
million) of the population in the United
States had reported characteristics that
likely made them unique based only on
{S-digit ZIP, gender, date of birth}”
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De-anonymizing Social Networks
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“ANTI—SURVEILLANCE PETS” TECHNICAL GOALS
PRIVACY PROPERTIES: ANONYMITY

3) INFER INFORMATION ABOUT AN INDIVIDUAL

Inference Attacks on Location Tracks

“Based on GPS tracks from, we identify

John Krumm the latitude and longitude of their homes.
Sroent Rescabiy From these locations, we used a free Web
One Microsoft Way service to do a reverse “white pages”

j.:}frfﬁl%tﬁ:égf?om lookup, which takes a latitude and

longitude coordinate as input and gives
an address and name. [172 individuals]”

Abstract. Although the privacy threats and countermeasures associated with
location data are well known. there has not been a thorough experiment to
assess the effectiveness of either. We examine location data gathered from
volunteer subjects to quantify how well four different algorithms can identify
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Inference Attacks on Location Tracks

John Krumm

Microsoft Research
One Microsoft Way
Redmond. WA, USA
jekrumm(@microsoft.com

Abstract. Although the privacy threats and countermeasures associated with
location data are well known. there has not been a thorough experiment to
assess the effectiveness of either. We examine location data gathered from
volunteer subjects to quantify how well four different algorithms can identify

“We investigate the subtle cues to user
identity that may be exploited in attacks
on the privacy of users in web search
query logs. We study the application of
simple classifiers o map a sequence of
queries into the gender, age, and location
of the user issuing the queries.”

“l Know What You Did Last Summer” — Query Logs and
User Privacy

Rosie Jones Ravi Kumar

Bo Pang Andrew Tomkins

. Yahoo! Research, 701 First Ave, Sunnyvale, CA 94089,
{jonesr ravikumar bopang.atomkins}@yahoo-inc.com

ABSTRACT

We investigate the subtle cues to user identity that may be exploited
in attacks on the privacy of users in web search query logs. We
study the application of simple classifiers to map a sequence of
queries into the gender. age. and location of the user issuing the
queries, We then show how these classifiers may be carefully com-
bined ar multiple granularities to map a sequence of queries into a

bilities; this is the goal of this paper. We initiate the study of subtle
cles to user identity that exist as vilnerabilities in web search query
logs, which may be exploited in attacks on the privacy of users,

Privacy attack models. We begin with a characterization of two
key forms of anack against which a query log privacy scheme must
be resilient. The first is a frace atfack. in which an attacker studies
a privacy-enl d version of a seq of hes (frace) made
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RISK OF DE—ANONYMIZATION? PROBABILISTIC ANALYSIS

Prlidentity — action | observation ]
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5) MEASURE... MEAN ERROR, ENTROPY (ANY FLAVOUR), DIFF. PRivacy
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PRIVACY BY DESIGN ROCKS! BUT REALIZING IT 1S NON—TRIVIAL

PART L PART 1L
REASONING ABOUT PRIVACY WHEN EvaLuaTING PRIVACY IN PRIVACY—

DESIGNING SYSTEMS PRESERVING SYSTEMS

Il

Explicit privacy engineering activities

Systematic reasoning for
privacy evaluation

Fully fledged methodology? Strong assumption's dependency
Requirements? Evaluation? What does the adversary know?
Accessible PETS Ad-hoc mechanisms (training!)

Understanding? Implementation? Lack of standard metrics
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ANY QUESTIONS?

More about privacy:
https://www.petsymposium.org/
http://www.degruyter.com/view/j/popets

carmela.troncoso@imdea.org
https://software.imdea.org/~carmela.troncoso/
(these slides will be there soon??)

Template: http://www.brainybetty.com/
Figures: SlidesCarnival
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