Drac: An architecture for Anonymous Low-Volume Communications

G. Danezis (Microsoft Research Cambridge), C. Diaz, **C. Troncoso (KU Leuven/COSIC)**, B. Laurie (Google Inc)
Introduction

- Traffic data of real time communications leaks information
 - Timing (military actions), volume (strength of relationships), participants (medical status),

- Few systems provide anonymity against global passive adversary for real time communications
 - Conceal patterns entails high cost (e.g., bandwidth peaks in web traffic)

- What if the application requires limited bandwidth or regular traffic (VoIP, IM)?
 - Padding to destroy traffic patterns becomes viable
Drac: architecture and goals

- Friend-of-a-friend architecture
 - Better scalability
 - Sybil prevention
 - Build incentives
 - Stable anonymity sets

- **UNOBSERVABILITY** of communication between friends
 - The adversary cannot tell whether they speak at all

- **ANONYMITY** of other relationships
 - The adversary cannot find further contacts
Relationships in Drac

- **Friends**
 - Trusted
 - Visible to the attacker
 - Unobservable communications

- **Contacts**
 - Not trusted
 - Not known to the adversary
 - Relationship confidentiality

- **Private Presence Server**
 - “Rendez-vous” to find contacts
Heartbeat connections

- Between each pair of friends
- Signaling
 - presence to friends
 - establish communications
 - communicate with Presence Server
- Continuous traffic
 - very low bandwidth
 - bidirectional
- No additional info to the adversary, “public” information
Small remarks

REM 1
In the rest of the talk I will ignore cryptographic aspects of the protocols as well as key management. Details in the paper

REM 2
In the rest of the talk I assume that all connections are padded, i.e., they carry constant traffic to counter traffic analysis.
Entry points

- Direct communications reveals the identity of participants
- **ENTRY POINT**: proxy D hops away from user
 - **Every** user has an entry point
 - ...even if they don’t want to start a conversation! (for other users to find them and to provide unobservability)

D=2

```
C, would you be my first relay?
```

```
G, would you be my second relay?
```

```
G is the Entry Point of A
```
Finding contacts

- If Alice wants to speak with her friends she knows where they are
 - Choose them as first hop in the circuit to entry point

- What about contacts?
 - Use the Presence Server to find their entry points

 1. Construct circuit to PS over heartbeat channels
 2. Send entry point to PS under a pseudonym
 - PS does not learn who and where is A
 3. Ask for entry point of conversation partner
 - Presence server cannot learn who issued the request!
 - nor who is the conversation partner

How can I contact Pseud_F?

Pseud_A has G as entry point

Her entry point is B
Establishing communications with contacts

- From the example before...
 - A’s entry point is G, and F’s entry point is B

- Establish a **bridge** between entry points

Could you connect with B?

Communication channel between A and F: A-C-G-B-F
Epochs in Drac

- Creating and tearing down circuits reveals information
 - Synchronous start and end of communications: EPOCHS
 - Epoch prepared in previous epoch

- Circuits:
 - A-C-G
 - B-C-B
 - C-G-E
 - G-E-F
 - E-B-C
 - F-E-B

- Conversations
 A speaks to G (connect G and F)
 F speaks to B (no bridge!)
Contact communication anonymity

- Assume all bridges and circuits per link are observable... what can the adversary do?

- Could have been...
 - A-C-G, B-C-B, C-G-E, G-E-F, E-B-C, F-E-B
 - A-C-G, B-C-G, C-B-C, G-E-F, E-B-E, F-E-G

- No certainty that A is communicating...
 - Usual anonymity metrics are not straightforward to compute
 - We evaluate anonymity of each half of circuit separately, starting from bridge (no end-to-end anonymity)
 - by checking all paths that lead to each of the initiators

- In the paper we also analyse anonymity towards the presence server
Results: topology

- Three topologies: small-world, scale-free, random

Parameters: 10 friends, $D = 3$
Results: circuit depth

Parameters: SW net, N = 500, 10 friends
Unobservability

- Communications with friends: fully unobservable
- Communications with contacts: bridges observable
 - \(X \): total nr of contact communications (assume known by adversary)

Evaluation:

1. Adversary constructs set \(S \) with top \(2X \) users (highest probability of having created a bridge)
2. Random adversary: constructs set \(R \) with \(2X \) random users
3. Select user \(u_A \) who is communicating with a contact
 - Test adversaries success (\(u_A \) in \(S \)? and \(u_A \) in \(R \)?)
4. Select user \(u_Z \) who is not communicating with a contact
 - Test adversaries success (\(u_Z \) in \(S \)? and \(u_Z \) in \(R \)?)
Results

Parameters: SW net, $N = 500$, 10 friends, $C = 25$
Conclusions

- Low bandwidth applications allow for connections padding to prevent traffic analysis

- Hiding friends is hopeless, leverage to achieve anonymity of further relationships
 - And provide unobservability of communications with friends

- Friend of friend architecture
 - Scalability, incentives, avoid sybil attacks, stable anonymity sets

- Depth of circuit is a security parameter
 - but anonymity also depends on the mixing properties of the social graph
Open questions

- The design seems promising...
 - We only analyzed one epoch
 - Intersection attacks
 - Optimal duration security vs usability
 - We did not compute end to end anonymity
 - MCMC for proper computation of probability distributions
 - Unobservability metrics,
 - Deniability?
 - Resistance to corrupted nodes
 - Social network dynamics
 -
Questions?

1. What the *%&##” is Drac?
Onion encryption

\[u_X \rightarrow u_Y \rightarrow u_Z \Rightarrow u_U \rightarrow u_V \rightarrow u_W \]

\[u_X \rightarrow u_Y : E_{k_{XY}} (E_{k_{XZ}} (E_{k_{XW}} (M))) \]

\[u_Z \Rightarrow u_U : E_{k_{XW}} (M) \]

\[u_V \rightarrow u_W : E_{k_{YW}} (E_{k_{UW}} (E_{k_{XW}} (M))) \]
Private presence server

- Private Presence server: Honest but curious
- There could be several of them
- User u_A has long-term identifier ID_A (user may have several, one per circle of contacts, so they cannot find out they know the same user)
- Contacts A and B share a key K_{AB}
unlinkability between time periods (epochs), avoid long-term pseudonymous profiling: “id du jour” IDJ

T published by Presence server

$$IDJ_A = H(T, ID_A)$$

B sends this message to the PS:

$$E_{PK_{ps}} (IDJ_A, E_{K_{AB}} (E_B, g^{r_B}))$$

If A wants to talk to B, she sends $$g^{r_A}$$ to $$E_B$$ (next epoch)

session key: $$k_{AB} = g^{r_A r_B}$$

update long term key: $$K'_{AB} = H(k_{AB}, K_{AB})$$
Experimental setup

- Simulator implemented in python
- Topologies: small world, scale free, random
 - \(f \) friends on average (selected according to topology)
 - \(f \) randomly selected contacts
- Single epoch per experiment (no multiple epoch analysis)
 - heartbeat connections: between friends, and between end of presence circuit and presence server
 - communication circuits and bridges; adversary can see nr of circuits per link and distinguish bridges
 - 10% of users communicating with contacts (randomly selected)
- One sample per experiment:
 - contact communication anonymity
 - presence anonymity
 - contact communication unobservability
Anonymity towards the presence server

- start from connection to Presence Server (end of circuit)
- check all paths that lead to each of the initiators

\[\Pr_i[E_{PA}] = \frac{P_i}{\sum P_j}, 1 \leq i \leq N \]

\[H_A = -\sum_{i=1}^{N} [E_{PA}] \log_2 \Pr_i[E_{PA}] \]
Example

true paths:
• A-C-B
• B-C-A
• C-A-B
• D-B-A
• E-C-D

possible paths:
• C-B-A (x4)
• D-B-A (x2)
• A-B-A (x2)
• D-C-A (x3)
• A-C-A (x6)
• B-C-A (x6)
• E-C-A (x3)

Prob (caller, exit A):
• Pr(A) = 8/26 = 0,3
• Pr(B) = 6/26 = 0,23
• Pr(C) = 4/26 = 0,15
• Pr(D) = 5/26 = 0,19
• Pr(E) = 3/26 = 0,12
Results: Topology

Parameters: 10 friends, $D_p = 3$
Results: number of friends

Parameters: SW net, $N = 500$, $D_p = 3$
Results: circuit depth

Parameters: SW net, N = 500, 10 friends