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Abstract
Regular Expressions (RE) are an algebraic formalism for expressing regular languages, widely
used in string search and as a specification language in verification. In this paper we introduce
and investigate Visibly Rational Expressions (VRE), an extension of RE for the well-known class
of Visibly Pushdown Languages (VPL). We show that VRE capture the class of VPL. Moreover,
we identify an equally expressive fragment of VRE which admits a quadratic time compositional
translation into the automata acceptors of VPL. We also prove that, for this fragment, universal-
ity, inclusion and language equivalence are EXPTIME-complete. Finally, we provide an extension
of VRE for VPL over infinite words.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Visibly Pushdown Languages, Context-free specifications, Regular ex-
pressions, Algebraic characterization

1 Introduction

Visibly Pushdown Languages (VPL), introduced by Alur et al. [4, 5], represent a robust and
widely investigated subclass of context-free languages which includes strictly the class of reg-
ular languages. A VPL consists of nested words, that is words over an alphabet (pushdown
alphabet) which is partitioned into three disjoint sets of calls, returns, and internal symbols.
This partition induces a nested hierarchical structure in a given word obtained by associating
to each call the corresponding matching return (if any) in a well-nested manner. VPL are
accepted by Visibly Pushdown Automata (VPA), a subclass of pushdown automata which
push onto the stack only when a call is read, pops the stack only at returns, and do not use
the stack on reading internal symbols. Hence, the input controls the kind of operations per-
missible on the stack, and thus the stack depth at every position [4]. This restriction makes
the class of VPL very similar in tractability and robustness to that of regular languages. In
particular, VPL are closed under intersection, union, complementation, renaming, concat-
enation and Kleene closure [4]. Moreover, VPA (over finite words) are determinizable, and
decision problems like universality, equivalence and inclusion – which are undecidable for
context-free languages – become EXPTIME-complete for VPL. Furthermore, various altern-
ative and constructive characterizations of VPL have been given in terms of operational and
descriptive formalisms: logical characterizations by standard MSO over nested words exten-
ded with a binary matching-predicate (MSOµ) [4] or by fixpoint logics [10], a context-free
grammar based characterization [4], alternating automata based characterizations [6, 10],
and a congruence-based characterization [3].

The theory of VPL has relevant applications in the formal verification and synthesis of
sequential recursive programs with finite data types modeled by pushdown systems [7, 5,
2, 18]. Runs in these programs can be seen as nested words capturing the nested calling
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structure, where the call to and return from procedures capture the nesting. Additionally,
VPL have applications in the streaming processing of semi-structured data, such as XML
documents, where each open-tag is matched with a closing-tag in a well-nested manner
[20, 16, 19, 1, 21]. Examples include type-checking (validation) and dynamic typing of XML
documents against schema specifications [16], and evaluation of MSOµ queries on streaming
XML documents [19].
Contribution. Regular Expressions [15, 14] (RE) are an algebraic formalism for describing
regular languages. RE are widely adopted as a descriptive specification language, for ex-
ample in string search [22], and for extensions of temporal logics for hardware model check-
ing [13, 17]. In this paper, we introduce and investigate a similar algebraic formalism for the
class of VPL, that we call Visibly Regular Expressions (VRE). VRE extend RE by adding two
novel non-regular operators which are parameterized by an internal action: (1) the binary
Minimally Well-Matched Substitution operator (M -substitution for short), which allows to
substitute occurrences of the designated internal action by minimally well-matched (MWM )
words;1 (2) and the unary Strict Mimimally Well-Matched Closure operator (S-closure for
short), which corresponds to the (unbounded) iteration of the M -substitution operation.
We also consider a third operator which can be expressed in terms of M -substitution and
S-closure. The class of pure VRE is obtained by disallowing the explicit use of this op-
erator. Intuitively, M -substitution and S-closure, when applied to languages L of MWM
words, correspond to classical tree language concatenation and Kleene closure applied to the
tree language encoding of the (nested) word languages L (in accordance with the standard
encoding of MWM words by ordered unranked finite trees [1]).

Our results are as follows. First, we establish that VRE capture exactly the class of VPL.
Like the classical Kleene theorem [15], the translation from automata (VPA) to expressions
(VRE) involves a singly exponential blow-up. For the converse direction (from VRE to VPA),
the proposed construction requires again single exponential time (it is an open question if
this exponential blow-up can be avoided). On the other hand, we show that pure VRE (which
are equivalent to unrestricted VRE) can be compositionally converted in quadratic time into
equivalent VPA. The key of this translation is given by a novel subclass of VPA. Next, we
prove that universality, inclusion, and language equivalence for pure VRE are EXPTIME-
complete. Finally, we also provide an algebraic characterization of VPL over infinite words.

A potential application of our algebraic formalism is as a schema specification language
for semi-structured data such as XML documents. In fact, usually, XML schema specifications
are context-free grammars and their derivation trees give the tree representation of the
associated sets of XML documents. So, these specifications are typically compiled into tree
automata. However, it has been shown [16, 19, 1, 21] that VPA are often more natural (and
sometime exponentially more succinct) than tree automata, and moreover preferable in the
streaming processing of XML documents.
Related Work. Another algebraic characterization of VPL has been given in [8], where
regular expressions are extended with an infinite family of operators, which are implicit
least fix-points. In fact, these operators encode in a linear way a subclass of context-free
grammars. In comparison, we introduce just two operators which make our formalism
really more lightweight and intuitive to use. In [12] a characterization of VPL is given
by morphisms to suitable algebraic structures. Moreover, [12] introduces an extension of
the Kleene-closure free fragment of regular expressions obtained by adding a variant of

1 MWM words are words whose first symbol is a call and whose last symbol is the matching return.
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our substitution operator, and shows that this extension captures exactly the first-order
fragment of MSOµ over well-matched words.

2 Visibly pushdown languages

In this section, we recall the class of visibly pushdown automata and visibly pushdown
languages [4].

Pushdown Alphabet. A pushdown alphabet is a tuple Σ̃ = 〈Σcall ,Σret ,Σint〉 consisting
of three disjoint finite alphabets: Σcall is a finite set of calls, Σret is a finite set of returns,
and Σint is a finite set of internal actions. For any such Σ̃, the support of Σ̃ is Σ =
Σcall ∪ Σret ∪ Σint . We will use c, c1, ci, . . . for elements of Σcall , r, r1, ri, . . . for elements of
Σret , 2,21,2j , . . . for elements of Σint , and σ, σ1, σi, . . . for arbitrary elements of Σ.

Visibly Pushdown Automata and Visibly Pushdown Languages. A Nondetermin-
istic Visibly Pushdown Automaton on finite words (NVPA) [4] over Σ̃ = 〈Σcall ,Σret ,Σint〉 is
a tuple P = 〈Q, qin,Γ,∆, F 〉, where Q is a finite set of (control) states, qin ∈ Q is the initial
state, Γ is a finite stack alphabet, ∆ ⊆ (Q×Σcall×Q×Γ)∪(Q×Σret×(Γ∪{⊥})×Q)∪(Q×
Σint×Q) is a transition relation (where ⊥ /∈ Γ is the special stack bottom symbol), and F ⊆ Q
is a set of accepting states. A transition of the form (q, c, q′, γ) ∈ Q×Σcall×Q×Γ is a push
transition, where on reading the call c, the symbol γ 6= ⊥ is pushed onto the stack and the
control changes from q to q′. A transition of the form (q, r, γ, q′) ∈ Q×Σret × (Γ∪{⊥})×Q
is a pop transition, where on reading the return r, γ is read from the top of the stack and
popped, and the control changes from q to q′ (if the top of the stack is ⊥, then it is read
but not popped). Finally, on reading an internal action 2, P can choose only transitions of
the form (q,2, q′) which do not use the stack.

A configuration of P is a pair (q, β), where q ∈ Q and β ∈ Γ∗ · {⊥} is a stack content.
A run π of P over a finite word σ1 . . . σn−1 ∈ Σ∗ is a finite sequence of the form π =
(q1, β1) σ1−→ (q2, β2) . . . σn−1−→(qn, βn) such that (qi, βi) is a configuration for all 1 ≤ i ≤ n,
and the following holds for all 1 ≤ i ≤ n− 1:
Push If σi is a call, then for some γ ∈ Γ, (qi, σi, qi+1, γ) ∈ ∆ and βi+1 = γ · βi.
Pop If σi is a return, then for some γ ∈ Γ∪{⊥}, (qi, σi, γ, qi+1) ∈ ∆, and either γ 6= ⊥ and

βi = γ · βi+1, or γ = ⊥ and βi = βi+1 = ⊥.
Internal If σi is an internal action, then (qi, σi, qi+1) ∈ ∆ and βi+1 = βi.
For all 1 ≤ i ≤ j ≤ n, the subsequence of π given by πij = (qi, βi)

σi−→ . . .
σj−1−→ (qj , βj)

is called subrun of π (note that πij is a run over σi . . . σj−1). The run π is initialized if
q1 = qin and β1 = ⊥. Moreover, the run π is accepting if the last state is accepting, that
is, if qn ∈ F . For two configurations (q, β) and (q′, β′) and a finite word w ∈ Σ∗, we write
(q, β) w−→ (q′, β′) to mean that there is a run of P over w starting at (q, β) and leading to
(q′, β′). The language of P, L(P), is the set of finite words w ∈ Σ∗ such that there is an
initialized accepting run of P on w. A language of finite words L ⊆ Σ∗ is a visibly pushdown
language (VPL) with respect to Σ̃ if there is a NVPA P over Σ̃ such that L = L(P).

We also consider Visibly Pushdown Automata on infinite words (ω-NVPA). Formally, a
Büchi ω-NVPA over Σ̃ [4] is a tuple P = 〈Q, qin,Γ,∆, F 〉, where Q, qin,Γ,∆, and F are
defined as for NVPA over Σ̃. A run π over an infinite word σ1σ2 . . . ∈ Σω is an infinite
sequence π = (q1, β1) σ1−→ (q2, β2) . . . that is defined using the natural extension of the defin-
ition of runs on finite words. The run is accepting if for infinitely many i ≥ 1, qi ∈ F . The
notions of initialized run and (finite) subrun are defined as for NVPA. The ω-language of P,
L(P), is the set of infinite words w ∈ Σω such that there is an initialized accepting run of
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P on w. An ω-language L ⊆ Σω is an ω-visibly pushdown language (ω-VPL) with respect to
Σ̃ if there is a Büchi ω-NVPA P over Σ̃ such that L = L(P ).

Matched calls and returns. Fix a pushdown alphabet Σ̃ = 〈Σcall ,Σret ,Σint〉. For a finite
or infinite word w over Σ, |w| is the length of w (we set |w| = ω if w is infinite). For all
1 ≤ i ≤ |w|, w(i) is the ith symbol of w. A position 1 ≤ i ≤ |w| of w is a call (resp., return,
internal) position if w(i) ∈ Σcall (resp., w(i) ∈ Σret , w(i) ∈ Σint).

The set WM (Σ̃) of well-matched words is the subset of Σ∗ inductively defined as follows:
(i) ε ∈ WM (Σ̃), where ε denotes the empty string, (ii) 2 · w ∈ WM (Σ̃) if 2 ∈ Σint and
w ∈WM (Σ̃), and (iii) c · w · r · w′ ∈WM (Σ̃) if c ∈ Σcall , r ∈ Σret , and w,w′ ∈WM (Σ̃).

Let i be a call position of a word w. If there is j > i such that j is a return position
of w and w(i + 1) . . . w(j − 1) is a well-matched word (note that j is uniquely determined
if it exists), we say that j is the matching return of i along w, and i is the matching call of
j along w. The set MWM (Σ̃) of minimally well-matched words is the set of well-matched
words of the form c · w · r such that c is a call, r is a return, and w is well-matched
(note that r corresponds to the matching return of c). For a language L ⊆ Σ∗, we define
MWM (L) def= L∩MWM (Σ̃), that is the set of words in L which are minimally well-matched.

I Example 1. Let Σcall = {c}, Σret = {r}, and Σint = {2}. Consider the word w below.
The word w is not well-matched, in particular, the call at position 1 has no matching return
in w. Moreover, note that the subword w[2] . . . w[10] is minimally well-matched.

1 2 3 4 5 6 7 8 9 10

c c � c � r c r � rw =

3 Visibly Rational Expressions (VRE)

In this section, we introduce and investigate the class of Visibly Rational Expressions (VRE),
an extension of regular expressions obtained by adding two novel non-regular operators: the
binary M -substitution operator and the unary S-closure operator. First, we define the
corresponding operations on languages of finite words and show that VPL are effectively
closed under these operations. Then, in Subsection 3.1, we introduce VRE and establish
their effective language equivalence to the class of NVPA.

Let us fix a pushdown alphabet Σ̃ = 〈Σcall ,Σret ,Σint〉. For two languages L,L′ ⊆ Σ∗ of
finite words on Σ, we use L · L′ to denote the standard concatenation of L and L′, and L∗
to denote the standard Kleene closure of L.

I Definition 2 (M -substitution). Let w ∈ Σ∗, 2 ∈ Σint, and L ⊆ Σ∗. The M -substitution
of 2 by L in w, denoted by w x2 L, is the language of finite words over Σ obtained by
replacing occurrences of 2 in w by minimally well-matched words in L. Formally, w x2 L
is inductively defined as follows:

εx2 L
def= {ε};

(2 · w′) x2 L
def=
(
MWM (L) · (w′ x2 L)

)
∪
(
({2} ∩ L) · (w′ x2 L)

)
(σ · w′) x2 L

def= {σ} · (w′ x2 L) for each σ ∈ Σ \ {2}.

For two languages L,L′ ⊆ Σ∗ and 2 ∈ Σint , the M -substitution of 2 by L′ in L, written
Lx2 L′, is defined as

Lx2 L′
def=

⋃
w∈L

w x2 L′
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Note that x2 is associative. Moreover, if {2} ∩ L = ∅, then {2}x2 L = MWM (L).

I Example 3. Let Σcall = {c1, c2}, Σret = {r}, and Σint = {2}. Let us consider the
languages L = {cn1 22 rn | n ≥ 1} and L′ = {c2}∗ · {r}∗. Then L x2 L′ is given by
{cn1 cm2 rm ck2 r

k rn | n,m, k ≥ 1}.

I Definition 4 (M -closure and S-closure). Given L ⊆ Σ∗ and 2 ∈ Σint , the M -closure of L
through 2, denoted by Lx2 , is defined as:

Lx2
def=

⋃
n≥0
Lx2 (L ∪ {2}) x2 . . .x2 (L ∪ {2})︸ ︷︷ ︸

n occurrences of x2

.

The S-closure of L through 2, denoted by L	2 , is defined as (MWM (L))x2 . Note that
L	2 is contained in MWM (Σ̃). The M -closure operator is a derived operator, since it can
be expressed in terms of S-closure and M -substitution as follows:

Lx2 = Lx2 (L	2 ∪ {2})

I Example 5. Let Σcall = {c1, c2}, Σret = {r1, r2}, and Σint = {2}. Let us consider
the languages L = {2, c1 2 r1, c2 2 r2} and L′ = {c1 r1, c2 r2}. Then, Lx2 x2 L′ =
{ci1 ci2 . . . cin rin . . . ri2 ri1 | n ≥ 1, i1, . . . , in ∈ {1, 2}}. One can easily show that there is no
regular language Lreg such that MWM (Lreg) = Lx2 x2 L′.

Now we show that VPL are closed under M -substitution, M -closure and S-closure.

I Theorem 6. Let P = 〈Q, qin,Γ,∆, F 〉 and P ′ = 〈Q′, q′in,Γ′,∆′, F ′〉 be two NVPA over Σ̃,
and 2 ∈ Σint. Then, one can construct in polynomial time:
1. an NVPA accepting (L(P))	2 with |Q|+ 2 states and |Γ| · (|Q|+ 2) stack symbols.
2. an NVPA accepting L(P)x2L(P ′) with |Q| + |Q′| states and |Γ| + |Γ′| · (|Q| + 1) stack

symbols.
3. an NVPA accepting (L(P))x2 with 2|Q|+ 2 states and 2|Γ| · (|Q|+ 1) stack symbols.

Proof. Here, we sketch the construction of the NVPA for Condition 1. Fix an NVPA P =
〈Q, qin,Γ,∆, F 〉. The construction consists of two steps. In the first step, we construct an
NVPA P ′ = 〈Q′, q′in,Γ ∪ Γ̂,∆′, F ′〉 accepting MWM (L(P)), where Q′ ⊇ Q, |Q′| = |Q| + 2,
and Γ̂ is a fresh copy of Γ; moreover, each push transition from q′in pushes onto the stack a
symbol in Γ̂ and each internal transition is in ∆. In the second step, we construct an NVPA
P ′′ accepting (L(P ′))	2 with |Q′| states and stack alphabet Γ∪ Γ̂∪Q× Γ̂. Hence, the result
follows. Here, we informally describe the construction of P ′′. Essentially, P ′′ simulates P ′
step by step, but when P ′ performs an internal transition of the form (q,2, q′), then from the
current state q, P ′′ can choose to either process 2 as P ′, or recursively process instead some
guessed word w ∈ L(P ′)	2 as follows. P ′′ guesses a call c that is the initial symbol of w,
and chooses a push transition (q′in, c, p, γ) ∈ ∆′ from the initial state of P ′ (the construction
of P ′ ensures that γ ∈ Γ̂). In the same step, P ′′ pushes onto the stack both γ and the target
state q′ ∈ Q of the internal transition (q,2, q′) of P ′, and moves to state p. This compound
step allows P ′′ to guarantee that when the stack is popped on reading the matching return
of c (corresponding to the last symbol of the guessed word w), P ′′ can restart the simulation
of P ′ from the desired control state q′. Moreover, when the matching return of c is read, P ′′
guarantee that the pair (q′, γ) is popped from the stack if and only if from the current state
of P ′′, there is some pop transition of P ′ which pops γ and leads to some accepting state in
F ′. Note that since P ′ accepts only minimally well-matched words, the pair (q′, γ) pushed
onto the stack is eventually popped. J
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3.1 VRE and Equivalence Between VRE and NVPA
I Definition 7 (VRE). The syntax of VRE E over the pushdown alphabet Σ̃ is defined as:

E := ∅
∣∣ ε ∣∣ σ ∣∣ (E ∪ E)

∣∣ (E · E)
∣∣ E∗ ∣∣ (E x2 E)

∣∣ E	2
∣∣ Ex2

where σ ∈ Σ and 2 ∈ Σint . A pure VRE is a VRE which does not contain occurrences of the
M -closure operator x2 . A VRE E denotes a language of finite words over Σ, written L(E),
which is defined in the obvious way as follows:

L(∅) = ∅, L(ε) = {ε}, and L(σ) = {σ} for each σ ∈ Σ;
L(E1 ∪ E2) = L(E1) ∪ L(E2), L(E1 · E2) = L(E1) · L(E2), and L(E∗) = [L(E)]∗;
L(E1 x2 E2) = L(E1) x2 L(E2), L(E	2) = [L(E)]	2 , and L(Ex2) = [L(E)]x2 .

As usual, the size |E| of a VRE E is the length of the string describing E.

I Remark. By Definition 4, the M -closure operator is a derived operator. Hence, pure VRE
and unrestricted VRE capture the same class of languages.

It is known [1] that for the class of regular languages (over a pushdown alphabet), NVPA
can be exponentially more succinct than nondeterministic finite-state automata (NFA). We
establish an analogous result for VRE and regular expressions.

I Theorem 8. There are a pushdown alphabet Σ̃ and a family {Ln}n≥1 of regular languages
over Σ̃ such that for each n ≥ 1, Ln can be denoted by a VRE of size O(n) and every regular
expression denoting Ln has size at least 2Ω(n).

Proof. Let Σ̃ = 〈Σcall ,Σret , {2}〉 with Σcall = {c1, c2} and Σret = {r1, r2}. For n ≥ 1,
let Ln be the finite (hence, regular) language {ci1ci2 . . . cinrin . . . ri2ri1 | i1, . . . , in ∈ {1, 2}}.
Evidently, Ln can be expressed by the VRE of size O(n) given by E x2 E x2 . . .x2 E︸ ︷︷ ︸

n−1 times

x2

(c1 · r1 ∪ c2 · r2), where E = (c1 · 2 · r1 ∪ c2 · 2 · r2). However, as shown in [1], any NFA
accepting Ln requires at least 2n states. Thus, since regular expressions can be converted
in linear time into equivalent NFA, the result follows. J

In the following, we show that VRE and NVPA are effectively language equivalent. First,
we recall the following known result [4].

I Theorem 9 (From [4]). Let P = 〈Q, qin,Γ,∆, F 〉 and P ′ = 〈Q′, q′in,Γ′,∆′, F ′〉 be two
NVPA over Σ̃. Then, one can construct in linear time:
1. an NVPA accepting L(P)∪L(P ′) (resp. L(P) ·L(P ′)) with |Q|+ |Q′| states and |Γ|+ |Γ′|

stack symbols.
2. an NVPA accepting [L(P)]∗ with 2|Q| states and 2|Γ| stack symbols.

By Theorems 6 and 9, a given VRE can be effectively and compositionally translated
into an equivalent NVPA. However, due to Condition 3 in Theorem 6 (concerning the M -
closure operator) and Condition 2 in Theorem 9 (concerning the Kleene closure operator),
the translation can involve a singly exponential blow-up. In the next section, we show that
this exponential blow-up is due essentially to the presence of the M -closure operator (in
particular, we propose a quadratic time translation of pure VRE into equivalent NVPA).

I Corollary 10. Given a VRE E, one can construct in singly exponential time an NVPA
accepting L(E).
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Now, we show that any NVPA can be converted into an equivalent VRE. First, we need
some additional notation. Let P = 〈Q, qin,Γ,∆, F 〉 be an NVPA over a pushdown alphabet
Σ̃. Given p, p′ ∈ Q, a summary of P from p to p′ is a run π of P over some word w ∈
MWM (Σ̃) from a configuration of the form (p, β) to a configuration of the form (p′, β′) for
some stack contents β and β′. Observe that if π is such a run over w ∈ MWM (Σ̃) from
(p, β) to (p′, β′), then β′ = β and the portion of the stack corresponding to β is never read
in π. In particular, there is also a run of P from (p,⊥) to (p′,⊥) over w which uses the same
transitions used by π. Given a run π of P over some word w and S ⊆ Q ×Q, we say that
the run π uses only sub-summaries from S whenever for all q, q′ ∈ Q, if there is subrun of π
which is a summary from q to q′, then (q, q′) ∈ S. Given a finite alphabet Λ disjoint from
Σ, we denote by Σ̃Λ the pushdown alphabet 〈Σcall ,Σret ,Σint ∪ Λ〉 obtained by interpreting
the elements in Λ as internal actions.

I Theorem 11. Given an NVPA P, one can construct in single exponential time a VRE E

such that L(E) = L(P).

Proof. Let P = 〈Q, qin,Γ,∆, F 〉. We construct a finite alphabet Λ disjoint from Σ and a
VRE E over Σ̃Λ denoting L(P); the additional symbols in Λ are used only as parameters
for intermediate substitutions. The alphabet Λ is given by {2pp′ | p, p′ ∈ Q}. Moreover,
we define PΛ = 〈Q, qin,Γ,∆Λ, F 〉 as the NVPA over Σ̃Λ obtained from P by adding for
each (p, p′) ∈ Q × Q, the internal transition (p,2pp′ , p′). Given q, q′ ∈ Q, S ⊆ Q × Q,
and Λ′ ⊆ Λ, we define R(q, q′,S,Λ′) as the language of finite words w over ΣΛ′ (ΣΛ′ is the
support of Σ̃Λ′) such that there is a run of PΛ over w from (q,⊥) to some configuration of
the form (q′, β) which uses only sub-summaries from S.2 By construction, L(P) is the union
of the sets R(q, q′, Q×Q, ∅) such that q = qin and q′ ∈ F . Thus, the theorem follows from
the fact that for all q, q′ ∈ Q, S ⊆ Q × Q, and Λ′ ⊆ Λ, the languages R(q, q′,S,Λ′) and
WM (R(q, q′,S,Λ′)) can be effectively denoted by VRE of sizes singly exponential in the size
of P, where WM (R(q, q′,S,Λ′)) def= R(q, q′,S,Λ′)∩WM (Σ̃). The proof of this fact proceeds
by induction on the cardinality of the finite set S.

Base case: S = ∅. The proof of the base case is simple. In particular, the languages
R(q, q′, ∅,Λ′) and WM (R(q, q′, ∅,Λ′)) are regular.
Induction step: S = S ′ ∪ {(p, p′)} with (p, p′) /∈ S ′. Let Pp→p′ be the set:

{(s, c, r, s′) ∈ Q× Σcall × Σret ×Q | there is γ ∈ Γ.(p, c, s, γ), (s′, r, γ, p′) ∈ ∆}

So, Pp→p′ is the set of tuples (s, c, r, s′) such that there is a push transition from p to s
reading the call c and a matching pop transition from s′ to p′ reading r. Moreover, let
S(p, p′,S ′ ∪ {(p, p′)},Λ′) be the language over ΣΛ′ defined as follows:

S(p, p′,S ′ ∪ {(p, p′)},Λ′) :=([ ⋃
(s,c,r,s′)∈Pp→p′

{c} ·WM (R(s, s′,S ′,Λ′ ∪ {2pp′})) · {r}
]x2

pp′
)
x2pp′

[ ⋃
(s,c,r,s′)∈Pp→p′

{c} ·WM (R(s, s′,S ′,Λ′)) · {r}
]

Note that S(p, p′,S ′ ∪ {(p, p′)},Λ′) represents the set of words w ∈ MWM (Σ̃Λ′) such
that there is a summary of PΛ over w from p to p′ which uses only sub-summaries from

2 note that if w ∈ WM (Σ̃Λ′), then β = ⊥.
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S ′ ∪ {(p, p′)}. By the induction hypothesis, the sets WM (R(s, s′,S ′,Λ′ ∪ {2pp′})) and
WM (R(s, s′,S ′,Λ′)) used in the definition of S(p, p′,S ′ ∪ {(p, p′)},Λ′) can be effectively de-
noted by VRE. Thus, one can construct a VRE over Σ̃Λ denoting the language S(p, p′,S ′ ∪
{(p, p′)},Λ′). Now, we observe that:

WM (R(q, q′,S ′ ∪ {(p, p′)},Λ′)) = WM (R(q, q′,S ′,Λ′))∪
WM (R(q, q′,S ′,Λ′ ∪ {2pp′})) x2pp′ S(p, p′,S ′ ∪ {(p, p′)},Λ′)

R(q, q′,S ′ ∪ {(p, p′)},Λ′) = R(q, q′,S ′,Λ′)∪
R(q, q′,S ′,Λ′ ∪ {2pp′}) x2pp′ S(p, p′,S ′ ∪ {(p, p′)},Λ′)

Thus, by the induction hypothesis, it holds that the languages WM (R(q, q′,S ′∪{(p, p′)},Λ′))
and R(q, q′,S ′ ∪ {(p, p′)},Λ′) can be effectively denoted by VRE. Moreover, by expanding
recursively the above equalities until the base case (the number of iterations is at most |Q|2),
we deduce that each of the constructed VRE has size singly exponential in the size of the
NVPA P. This concludes the proof of the theorem. J

By Corollary 10 and Theorem 11, we obtain the following result.

I Corollary 12. (Pure) Visibly Rational Expressions capture the class of VPL.

4 Pure VRE

In this section, first, we show that pure VRE can be compositionally translated in quadratic
time into equivalent NVPA. The key of the proposed efficient and elegant translation is
represented by a subclass of NVPA, we call strong NVPA. Then, in Subsection 4.1, we
establish the exact complexity of some language decision problems for pure VRE. Fix a
pushdown alphabet Σ̃. In the following, we use an additional special stack symbol ⊥̂.

I Definition 13. A strong NVPA over Σ̃ is an NVPA P = 〈Q, qin,Γ,∆, F 〉 over Σ̃ such that
⊥̂ ∈ Γ and the following holds:
Initial State Requirement: qin /∈ F and there are no transitions leading to qin.
Final State Requirement: there are no transitions from accepting states.
Push Requirement: every push transition from the initial state qin pushes onto the stack the

special symbol ⊥̂.
Pop Requirement: for all q, p ∈ Q and r ∈ Σret, (q, r,⊥, p) ∈ ∆ iff (q, r, ⊥̂, p) ∈ ∆.
Well-formed (semantic) Requirement: for all w ∈ L(P), every initialized accepting run of
P over w leads to a configuration whose stack content is in {⊥̂}∗ · ⊥.

Note that the initial state requirement implies that ε /∈ L(P).

The push requirement is used in particular to implement in an efficient way M -substitution
and S-closure. Moreover, the pop requirement ensures that pop operations which pop
the special stack symbol ⊥̂ have the same effect as popping the empty stack (i.e., the
stack containing just the special bottom symbol ⊥). This requirement and the well-formed
requirement are used in particular to implement in an efficient way concatenation and Kleene
closure. In the following, we first show that strong NVPA are “efficiently" closed under union,
concatenation, and Kleene closure.

I Theorem 14. Let P = 〈Q, qin,Γ,∆, F 〉 and P ′ = 〈Q′, q′in,Γ′,∆′, F ′〉 be two strong NVPA
over Σ̃. Then, one can construct in linear time
1. a strong NVPA accepting L(P) ∪ L(P ′) (resp., L(P) · L(P ′)) with |Q| + |Q′| + 1 states

and |Γ|+ |Γ′| − 1 stack symbols, and
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2. a strong NVPA accepting [L(P)]∗ \ {ε} with |Q|+ 1 states and |Γ| stack symbols.

Proof. We prove Condition 2 (Condition 1 is simpler). Let P = 〈Q, qin,Γ,∆, F 〉 be a
strong NVPA over Σ̃ an q′in be a fresh control state. Define P ′ = 〈Q ∪ {q′in}, q′in,Γ,∆′, F 〉,
where ∆′ is obtained from ∆ by adding new transitions as follows. First, for each transition
t ∈ ∆ leading to an accepting state, we add the transition obtained from t by replacing the
target state of t with the initial state qin. Let ∆0 be the resulting set of transitions. Then,
∆′ is obtained from ∆0 by adding the following transitions: for each transition t ∈ ∆0
from the initial state qin, we add the transition obtained from t by replacing the source
state of t with the new initial state q′in. Note that the construction is identical to the
classical one used for regular languages. Now, we prove that P ′ is a strong NVPA accepting
[L(P)]∗\{ε}. Hence, the result follows. Since P is a strong NVPA, by construction, it follows
that P ′ satisfies the initial and final state requirements and the push and pop requirements
of Definition 13. Thus, it remains to show that L(P ′) = [L(P)]∗ \ {ε} and P ′ satisfies the
well-formed requirement.

Here, we show that L(P ′) ⊆ [L(P)]∗ \ {ε} and P ′ satisfies the well formed requirement.
Let w ∈ L(P ′) (note that w 6= ε since P ′ satisfies the initial state requirement) and π be an
initialized accepting run of P ′ over w of the form (q′in,⊥) w−→(qacc, β) for some stack content
β and qacc ∈ F . We need to show that w ∈ [L(P)]∗ \{ε} and β ∈ {⊥̂}∗ ·⊥. By construction,
w is of the form w = w1 · . . . · wn for some n ≥ 1, such that w1, . . . , wn are non-empty and
there are runs π1,. . ., πn of P over w1, . . ., wn, respectively, of the form

π1 = (qin,⊥) w1−→ (p1, β1), π2 = (qin, β1) w2−→ (p2, β2), . . . ,
πn = (qin, βn−1) wn−→ (pn, βn)

where pi ∈ F for each 1 ≤ i ≤ n, and β = βn. We show by induction on i that wi ∈ L(P) and
βi ∈ {⊥̂}∗ · ⊥ for all 1 ≤ i ≤ n, hence the result follows. Since π1 is an initialized accepting
run of P over w1 and P satisfies the well-formed requirement, the result for the base case
holds. For the induction step, let us consider the run πi = (qin, βi−1) wi−→ (pi, βi) with i > 1.
By the induction hypothesis, βi−1 ∈ {⊥̂}∗ ·⊥. Moreover, βi is of the form βi = β′i · {⊥̂}m ·⊥
for somem ≥ 0, where β′i consists of the symbols pushed on the stack along πi on reading the
unmatched call positions of wi. Since P satisfies the pop requirement, we easily deduce that
there is also an initialized accepting run of P over wi of the form πi = (qin,⊥) wi−→ (pi, β′i ·⊥).
Since P satisfies the well-formed requirement, β′i ∈ {⊥̂}∗. Hence, βi ∈ {⊥̂}∗ · ⊥, and we are
done. This concludes the proof of the theorem. J

Next we show that strong NVPA are “efficiently" closed under M -substitution and S-
closure. For this, we need the following preliminary result.

I Lemma 15. Let P = 〈Q, qin,Γ,∆, F 〉 be a strong NVPA over Σ̃. Then, one can construct
in linear time a strong NVPA over Σ̃ accepting MWM (L(P)) with |Q| states and |Γ| + 1
stack symbols.

I Theorem 16. Let P = 〈Q, qin,Γ,∆, F 〉 and P ′ = 〈Q′, q′in,Γ′,∆′, F ′〉 be two strong NVPA
over Σ̃, and 2 ∈ Σint. Then, one can construct in linear time: (1) a strong NVPA accepting
(L(P))	2 with |Q| states and |Q|+ |Γ|+ 1 stack symbols, and (2) a strong NVPA accepting
L(P)x2L(P ′) with |Q|+ |Q′| states and |Γ|+ |Γ′|+ |Q| stack symbols.

Proof. Here, we focus on Condition (1). Given a strong NVPA P = 〈Q, qin,Γ,∆, F 〉 over
Σ̃ such that L(P) ⊆ MWM (Σ̃), we construct a strong NVPA P ′ accepting (L(P))	2 with
|Q| states and |Q|+ |Γ| stack symbols. Hence, by Lemma 15, Condition (1) in the theorem
follows. W.l.o.g. we assume that Q and Γ are disjoint and all the transitions from the initial
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state are push transitions. The NVPA P ′ is given by P ′ = 〈Q, qin,Γ ∪ Q,∆′, F 〉, where ∆′
is obtained from ∆ by adding the following transitions:

New Push transitions: for each internal transition (q,2, p) ∈ ∆ – note that q 6= qin –
and for each push transition from the initial state of the form (qin, c, q′, ⊥̂) ∈ ∆, we add
the new push transition (q, c, q′, p).
New Pop transitions: for each pop transition (q, r, ⊥̂, qacc) ∈ ∆ which pops the special
stack symbol ⊥̂ and leads to an accepting state qacc ∈ F , we add for each p ∈ Q \ {qin},
the new pop transition (q, r, p, p).

Correctness of the construction directly follows from the following claim.
Claim: P ′ is a strong NVPA over Σ̃ accepting [L(P)]	2 . J

Now, we can prove the main result of this section.

I Theorem 17. Let E be a pure VRE. Then, one can construct in quadratic time an NVPA
P accepting L(E) with at most |E|+ 1 states and |E|2 stack symbols.

Proof. Since one can trivially check in linear time whether ε ∈ L(E), it suffices to show
that one can construct in quadratic time a strong NVPA accepting L(E) \ {ε} with at most
|E| + 1 states and |E|2 stack symbols. The proof is by induction on |E|. The base case
is trivial. For the induction step, the result easily follows from the induction hypothesis
and Theorems 14 and 16. As example, we illustrate the case where E = E1x2E2. By the
induction hypothesis, one can construct two strong NVPA P1 = 〈Q1, q

1
in,Γ1,∆1, F1〉 and

P2 = 〈Q2, q
2
in,Γ2,∆2, F2〉 accepting L(E1) \ {ε} and L(E2) \ {ε}, respectively. Moreover,

|Q1| ≤ |E1|+1, |Q2| ≤ |E2|+1, |Γ1| ≤ |E1|2, and |Γ2| ≤ |E2|2. By Theorem 16, one can con-
struct in linear time a strong NVPA P = 〈Q, qin,Γ,∆, F 〉 accepting (L(E1)\{ε})x2(L(E2)\
{ε}) = L(E) \ {ε}. Moreover, |Q| = |Q1| + |Q2| and |Γ| = |Γ1| + |Γ2| + |Q1|. Hence,
|Γ| ≤ |E1|2 + |E2|2 + |E1|+ 1 ≤ (|E1|+ |E2|+ 1)2 = |E|2 and |Q| ≤ |E1|+ |E2|+ 2 = |E|+ 1,
and the result follows. J

4.1 Decision Problems for pure VRE
In this section, we show the following result.

I Theorem 18. The universality, inclusion, and language equivalence problems for pure
VRE are EXPTIME-complete.

Sketched proof. The upper bounds directly follow from Theorem 17 and EXPTIME-comple-
teness of universality, inclusion, and equivalence for NVPA [4]. For the lower bounds, it
is sufficient to show EXPTIME-hardness for the universality problem. This is proved by a
polynomial time reduction from the word problem for polynomial space bounded alternating
Turing Machines (TM) with a binary branching degree, which is a well-known EXPTIME-
complete problem [11]. Fix such a machineM with input alphabet A and set of states Q.
SinceM is polynomial space bounded, there is an integer constant k ≥ 1 such that for each
α ∈ A∗, the space needed byM on the input α is bounded by |α|k. Fix an input α and let
n = |α|. W.l.o.g. we can assume that k = 1, n > 1, and each (reachable) TM configuration
(from the fixed input α) can be described by a word in A∗ · (Q × A) · A∗ of length exactly
n. Let Tfull be the configuration-labeled binary tree corresponding to the unwinding ofM
from the initial configuration associated with the input α. A computation tree T of M
(over α) is a finite tree obtained from Tfull by pruning subtrees rooted at children of nodes
labeled by existential configurations; T is accepting if each leaf is labeled by an accepting
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TM configuration. M accepts α if there is an accepting computation tree (over α). We use
a standard encoding of computation trees T by minimally well-matched words wT over a
suitable pushdown alphabet Σ̃ [9, 4], where the given tree T is processed in depth-first order.
This encoding ensures the following crucial property: for all nodes x and y of T labeled by
TM configurations Cx and Cy such that y is the child of x, there is a subword of wT encoding
Cx · Cy or its reverse. Let Codes(α) be the set of words w ∈ MWM (Σ̃) encoding accepting
computation trees (over α). Then, we show that it is possible to construct in time polynomial
in n and the size ofM a pure VRE over Σ̃ which denotes the language Σ∗ \Codes(α). Hence,
the result follows. J

5 ω-Visibly Rational Expressions (ω-VRE)

In this section, we introduce the class of ω-Visibly Rational Expressions (ω-VRE) and provide
a Büchi-like theorem for ω-VPL in terms of ω-VRE. Fix a pushdown alphabet Σ̃. For a
language L of finite words over Σ, we denote by Lω the standard ω-Kleene closure of L.

I Definition 19. The syntax of ω-VRE I over Σ̃ is inductively defined as follows:

I := (E)ω
∣∣ (I ∪ I)

∣∣ (E · I)

where E is a VRE over Σ̃. Note that ω-VRE are defined similarly to ω-regular expressions.
An ω-VRE I is pure if every VRE subexpression is pure. An ω-VRE I denotes a language
of infinite words over Σ, written L(I), defined in the obvious way: L(Eω) = [L(E)]ω,
L(I ∪ I ′) = L(I) ∪ L(I ′), and L(E · I) = L(E) · L(I).

We show that ω-VRE capture the class of ω-VPL. For this, we need the following prelim-
inary result establishing that ω-VPL can be expressed in terms of VPL in the same way as
ω-regular languages can be expressed in terms of regular languages.

I Theorem 20. Let L be a ω-VPL with respect to Σ̃. Then, there are n ≥ 1 and VPL
L1,L′1, . . . ,Ln,L′n with respect to Σ̃ such that L =

⋃i=n
i=1 Li · (L′i)ω. Moreover, the charac-

terization is constructive.

Since ω-VPL are effectively closed under ω-Kleene closure and under (left) concatenation
with VPL (and the constructions can be done in linear time) [4], by Corollary 10, it follows
that ω-VRE can be converted into equivalent ω-NVPA in single exponential time. Moreover,
by using strong NVPA and constructions very similar to those used in the proof of The-
orem 14, we can show that pure ω-VRE can be converted into equivalent Büchi ω-NVPA in
quadratic time. Thus, by Theorem 20 we obtain the following result.

I Theorem 21. (Pure) ω-VRE capture the class of ω-VPL. Moreover, pure ω-VRE can be
converted in quadratic time into equivalent Büchi ω-NVPA.

6 Conclusion

In this paper we have provided a Kleene/Büchi theorem for VPL. From a theoretical point of
view, there are some interesting open questions. For example, the succinctness gap between
VRE and NVPA (it is well-known that NFA are exponentially more succinct than regular
expressions). From a practical point of view, it remains to be seen whether VRE are useful
as a specification language for nested word search and for XML schemas. Another line of
future work is the combination of VRE with temporal logics for nested words (like CaRet [2]),
as done for word regular languages [13, 17].
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