Foundations of
Boolean Stream Runtime Verification
(Extended Version)

*

Laura Bozzelli! and César Sédnchez??

! Technical University of Madrid (UPM), Madrid, Spain.
2IMDEA Software Institute, Madrid, Spain
3Institute for Information Security, CSIC, Spain.

Abstract. Stream runtime verification (SRV), pioneered by the tool
LOLA, is a declarative approach to specify synchronous monitors.

In SRV, monitors are described by specifying dependencies between out-
put streams of values and input streams of values. The declarative nature
of SRV enables a separation between (1) the evaluation algorithms, and
(2) the monitor storage and its individual updates. This separation allows
SRV to be lifted from conventional failure monitors into richer domains
to collect statistics of traces. Moreover, SRV allows to easily identify
specifications that can be efficiently monitored online, and to generate
efficient schedules for offline monitors.

In spite of these attractive features, many important theoretical problems
about SRV are still open. In this paper, we address complexity, expres-
siveness, succinctness, and closure issues for the subclass of Boolean SRV
(BSRV) specifications. Additionally, we show that for this subclass, of-
fline monitoring can be performed with only two passes (one forward and
one backward) over the input trace in spite of the alternation of past and
future references in the BSRV specification.

1 Introduction

Runtime verification (RV) has emerged in the last decades as an applied formal
technique for software reliability. In RV, a specification, expressing correctness
requirements, is automatically translated into a monitor. Such a monitor is then
used to check either the current execution of a running system, or a finite set of
recorded executions with respect to the given specification. The former scenario
is called online monitoring, while the latter one is called offline monitoring.
Online monitoring is used to detect and possibly handle (e.g., by the execution
of additional repair code) violations of the specification when the system is in
operation. On the other hand, offline monitoring is used in post-mortem analysis
and it is convenient for testing large systems before deployment. Unlike static
verification (such as model-checking) which formally checks that all the (infinite)

* This work was funded in part by Spanish MINECO Project “TIN2012-39391-C04-01
STRONGSOFT” and by Spanish MINECO Project “TIN2012-38137-C02 VIVAC”.

executions or traces of a system satisfy the specification, RV only considers a
single finite trace. Thus, this methodology sacrifices completeness guarantees to
obtain an immediately applicable and formal extension of testing. See [18,15]
for modern surveys on runtime verification.

Stream runtime verification. The first specification formalisms proposed for
runtime verification were based on specification languages for static verifica-
tion, typically LTL [19] or past LTL adapted for finite paths [16,9,5]. Other
formalisms for expressing monitors include regular expressions [24], rule based
specifications as proposed in the logic Eagle [1], or rewriting [23]. Stream runtime
verification (SRV), first proposed in the tool LOLA [8], is an alternative to de-
fine monitors for synchronous systems. In SRV, specifications declare explicitly
the dependencies between input streams of values (representing the observable
behavior of the system) and output streams of values (describing error reports
and diagnosis information). These dependencies can relate the current value of
an output stream with the values of the same or other streams in the present
moment, in past instants (like in past temporal formulas) or in future instants. A
similar approach to describe temporal relations as streams was later introduced
as temporal testers [22].

Stream runtime verification offers two advantages to the description of mon-
itors. First, SRV separates the algorithmic aspects of the runtime evaluation (by
explicitly declaring the data dependencies) from the specific individual opera-
tions performed at each step (which depend on the type of data being observed,
manipulated and stored). In this manner, well-known evaluation algorithms for
monitoring Boolean observations — for example those from temporal logics — can
be generalized to richer data domains, producing monitors that collect statistics
about traces. Similarly to the Boolean case, the first approaches for collect-
ing statistics from running traces were based on extensions of LTL [10]. SRV
can be viewed as a generalization of these approaches to streams. Other mod-
ern approaches to the runtime verification for statistic collection extend first-
order LTL [4,2,3]. Moreover, the declarative nature of SRV allows to identify
specifications that are amenable for efficient online monitoring, essentially those
specifications whose values can be resolved by past and present observations.
Additionally, the analysis of dependencies also allows to generate efficient offline
monitors by scheduling passes over the dumped traces, where the number of
passes (back and forth) depends on the number of alternations between past
and future references in the specification.

SRV can be seen as a variation of synchronous languages [7] — like Esterel [6],
Lustre [13] or Signal [11] — specifically designed for observing traces of systems,
removing the causality assumption. In synchronous languages, stream values
can only depend on past or present values, while in SRV a dependency on future
values is additionally allowed to describe future temporal observations. In recent
years, SRV has also been extended to real-time systems [21, 12].

When used for synthesizing monitors, SRV specifications need to be well-
defined: for every input there is a unique corresponding output stream. How-
ever, as with many synchronous languages, the declarative style of SRV allows

specifications that are not well-defined: for some observations, either there is
no possible output (over-definedness) or there is more than one output (under-
definedness). This anomaly is caused by circular dependencies, and in [8], a
syntactical constraint called well-formedness is introduced in order to ensure
the absence of circular dependencies, and guarantee well-definedness.

Our contribution. In spite of its applicability, several foundational theoretical
problems of SRV have not been studied so far. In this paper, we address complex-
ity, expressiveness, succinctness, and closure properties for Boolean SRV (BSRV).
Our results can be summarized as follows:

— we establish the complexity of checking whether a specification is under-
defined, over-defined or well-defined. Apart from the theoretical significance
of these results, many important practical properties of specifications (like
semantic equivalence, implication and redundancy) can be reduced to the
decision problems above.

— BSRV specifications can be naturally interpreted as language recognizers,
where one selects the inputs for which the specification admits some output.
We prove that in this setting, BSRV captures precisely the class of regular
languages. We also show efficient closure constructions for many language
operations. Additionally, BSRV specifications can be exponentially more suc-
cinct than nondeterministic finite-state automata (NFA).

— Finally, based on the construction of the NFA associated with a well-defined
BSRV specification, we show how to schedule an offline algorithm with only
two passes, one forward and one backward. This gives a partial answer (for
the Boolean case) to the open problem of reducing the number of passes in
offline monitoring for well-formed SRV specifications [8].

The rest of the paper is structured as follows. Section 2 revisits SRV. In
Section 3 we establish expressiveness, succinctness, and closure results for BSRV
specifications when interpreted as language recognizers. In Section 4, we describe
the two-pass offline monitoring algorithm. Section 5 is devoted to the decision
problems for BSRV specifications. Finally, Section 6 concludes. Due to lack of
space, some proofs are omitted and are included in the appendix.

2 Stream Runtime Verification (SRV)

In this Section, we recall the SRV framework [8]. We focus on SRV specifications
over stream variables of the same type (with emphasis on the Boolean type).

A type T is a tuple T = (D, F) consisting of a countable value domain D
and a finite collection F' of interpreted function symbols f, where f denotes a
computable function from D* to D and k > 0 is the specific arity of f. Note
that O-ary function symbols (constants) are associated with individual values.
In particular, we consider the Boolean type, where D = {0,1} and F consists of
the Boolean operators A and V and —. A stream of type T is a non-empty finite
word w over the domain D of T. Given such a stream w, |w| is the length of w
and for all 1 < ¢ < |w|, w(i) is the ith letter of w (the value of the stream at
time step 7). The stream w is uniform if there is d € D such that w is in d*.

For a finite set Z of (stream) variables, a stream valuation of type T over Z is
a mapping o assigning to each variable z € Z, a stream o(z) of type T such that
the streams associated with the different variables in Z have the same length NV
for some N > 1. We also say that N is the length of o, which is denoted by |o].

Remark 1. Note that for the Boolean type, a stream valuation ¢ over Z can
be identified with the non-empty word over 2% of length |o| whose ith symbol,
written o (i), is the set of variables z € Z such that o(2)(7) = 1.

Stream Expressions. Given a finite set Z of variables, the set of stream ex-
pressions E of type T over Z is inductively defined by the following syntax:

E:=71 | 7[¢)] | f(Eq,... Ey)

where 7 is either a constant of type T or a variable in Z, ¢ is a non-null integer,
c is a constant of type T, and f € F'is a function of type T and arity k£ > 0.
Informally, 7[¢|c] refers to the value of 7 offset ¢ positions from the current
position, and the constant c is the default value of type T assigned to positions
from which the offset is after the end or before the beginning of the stream.
Stream expressions E of type T over Z are interpreted over stream valuations
o of type T over Z. The valuation of E with respect to o, written [E, o], is the
stream of type T and length |o| inductively defined as follows for all 1 < ¢ < |o|:

= [e,0l(@) = c and [2,0](i) = o(2)(7) for all z € Z
- el = {ET I z)ftfllefwziszg =l

= [f(Ex,.. . i), 0](i) = f([E1, 0] (0), ..., [Ex, 0] ()

For the Boolean type, we use some shortcuts: E; — E, stands for —E; V Ej,
E; <> E, stands for (E; — E») A (Ex — Ei), and if E then E; else E stands for
(E AEp) V (-E A Ep). Additionally, we use first and last for the Boolean stream
expressions 0[—1|1] and 0[+1|1], respectively. Note that for a Boolean stream,
first is 1 precisely at the first position, and last is 1 precisely at the last position.

Ezample 1. Consider the following Boolean stream expression E over Z = {z}:
E :=if = then x else z[1]0]

For every Boolean stream valuation o over Z such that o(Z) € (01)", the valu-
ation of E with respect to o is the uniform Boolean stream 1171,

Stream Runtime Verification specification language (SRV). Given a
finite set X of input variables and a set Y = {yi1,...,yn} of output variables
with X NY =0, an SRV ¢ of type T over X and Y is a set of equations

w::{ylelv"wyn:En}

where Ej, ..., E, are stream expressions of type T over X UY. Note that there
is exactly one equation for each output variable. A stream valuation of ¢ is a

stream valuation of type T over X UY, while an input (resp., output) of ¢ is a
stream valuation of type T over X (resp., Y). Given an input ox of ¢ and an
output oy of ¢ such that ox and oy have the same length, ox U oy denotes
the stream valuation of ¢ defined in the obvious way. The SRV ¢ describes a
relation, written [¢], between inputs ox of ¢ and outputs oy of ¢, defined as
follows: (ox,0v) € [¢] iff |ox| = |oy| and for each equation y; = E; of ¢,

lyi, ol = [E;, o] where 0 = ox Uoy

If (ox,0v) € [¢], we say that the stream valuation ox Uoy is a valuation model
of ¢ (associated with the input ox). Note that in general, for a given input ox,
there may be zero, one, or multiple valuation models associated with ox. This
leads to the following notions for an SRV ¢:

— Under-definedness: for some input ox, there are at least two distinct valua-
tion models of ¢ associated with ox.

— QOver-definedness: for some input ox, there is no valuation model of ¢ asso-
ciated with ox.

— Well-definedness: for each input ox, there is exactly one valuation model of
@ associated with ox.

Note that an SRV ¢ may be both under-defined and over-defined, and ¢ is
well-defined iff it is neither under-defined nor over-defined. For runtime verifi-
cation, SRV serves as a query language on program behaviors (input streams)
from which one computes a unique answer (the output streams). In this con-
text, a specification is useful only if it is well-defined. However, in practice, it is
convenient to distinguish intermediate output variables from observable output
variables separating output streams that are of interest to the user from those
that are used only to facilitate the computation of other streams. This leads
to a more general notion of well-definedness. Given a subset Z C Y of output
variables, an SRV ¢ is well-defined with respect to Z if for each input ox, there
is exactly one stream valuation oz over Z having the same length as ox such
that ox Uoyz can be extended to some valuation model of ¢ (uniqueness of the
output streams over Z).

Analogously, we consider a notion of semantic equivalence between SRV of
the same type and having the same input variables, which is parameterized by
a set of output variables. Formally, given an SRV ¢ of type T over X and Y,
an SRV ¢’ of type T over X and Y’, and Z C Y NY’, we say that ¢ and
¢’ are equivalent with respect to Z if for each valuation model o of ¢, there
is a valuation model ¢’ of ¢’ such that ¢ and ¢’ coincide on X U Z, and vice
versa. Moreover, if Y’ D Y, then we say that ¢’ is p-equivalent if © and ¢’ are
equivalent with respect to Y.

Remark 2. In the rest of the paper, we focus on Boolean SRV (BSRV for short).
Thus, in the following, we omit the reference to the type T in the various def-
initions. We assume that the offsets ¢ in the subexpressions 7[¢|c] of a BSRV
are encoded in unary. For a Boolean stream expression E, we denote by ||E|| the

offset ¢ if E is a stream expression of the form 7[¢|c]; otherwise, ||E|| is 1. The
size || of a BSRV ¢ is defined as [¢| := > g gp, IIEll, where SE(¢p) is the set
of stream subexpressions of .

Ezample 2. Consider the following BSRV over X = {z} and Y = {y}:

v1:={y=zAy} 2 :={y=aAr-y} ¢3:={y="1if x thenx[2|0] else x[—2|0]}

The specification ¢ is under-defined since (1V,0%) and (1V,1%) are two valu-
ation models for each N > 1. On the other hand, the specification ¢, is over-
defined since for each IV > 1, there is no valuation model associated with the
input 1VV. Finally, the specification 3 is well-defined.

3 BSRV as Language Recognizers

BSRV can be interpreted as a simple declarative formalism to specify languages
of non-empty finite words. Formally, we associate to a BSRV ¢ over X and Y,
the language L£(p) of non-empty finite words over 2% (or, equivalently, input
stream valuations) for which the specification ¢ admits a valuation model, i.e.,

L(p) :={ox | (cx,0v) € [¢] for some oy}
Ezample 3. Let X = {z}, Y = {y}, and ¢ = {y = if E theny else -y}, where
E:= (first &> (x Ay)) A (y = —y[+1]0]) A (my — (z[+1]1] Ay[+1][1]))

A pair (ox,0y) is a valuation model of ¢ iff the valuation of the stream expres-
sion E w.r.t. ox Uoy isin 17 iff ox (2)(7) = 1 for all odd positions i. Hence, L(¢)
is the set of Boolean streams which assume the value 1 at the odd positions.

In the following, we show that BSRV, as language recognizers, are effectively
equivalent to nondeterministic finite automata (NFA) on finite words. While the
translation from NFA to BSRV can be done in polynomial time, the converse
translation involves an unavoidable singly exponential blowup. Moreover, BSRV
turn out to be effectively and efficiently closed under many language operations.

In order to present our results, we shortly recall the class of NFA on finite
words. An NFA A over a finite input alphabet I is a tuple A = (Q,qo,9, F),
where Q is a finite set of states, go € @ is the initial state, ¢ : Q x I — 29 is
the transition function, and F' C @ is a set of accepting states. Given an input
word w € I, a run 7 of A over w is a sequence of states T = q1, ..., qju|+1 sSuch
that ¢ is the initial state and for all 1 < ¢ < |w|, ¢;+1 € §(¢;, w(7)). The run
7 is accepting if it leads to an accepting state (i.e, q+1 € F). The language
L(A) accepted by A is the set of non-empty finite words w over I such that
there is an accepting run of A over w. A is universal if L(A) = IT. A language
over non-empty finite words is regular if it is accepted by some NFA. An NFA is
unambiguous if for each input word w, there is at most one accepting run on w.

Fix a BSRV ¢ on X and Y. In order to build an NFA accepting L(p), we
define an encoding of the valuation models of . For this, we associate to ¢ two
parameters, theback reference distance b(y) and theforward reference distance

flp):

b(¢) := maz(0,{€ | £ > 0 and ¢ contains a subexpression of the form z[—¢, c]})
flp) := max(0,{€ | £ > 0 and ¢ contains a subexpression of the form z[¢, c|})

For a stream valuation ¢ of ¢ and an expression E of ¢, the value of E w.r.t. o
at a time step 7 is completely specified by the values of o at time steps j such
that ¢ — b(v) < j < i+ fl). We define the following alphabets:

A = 9XUY A =AU{Ll) P, = (Al)b(w) % A x (AJ_)f(w)

where L is a special symbol. Note that a stream valuation of ¢ corresponds to
a non-empty finite word over the alphabet A, and the cardinality of P, is singly
exponential in the size of . For an element p = (a_y(y), - - -,a-1,00,a1, ..., af(g,))
of P,, the component ag, called the main value of p, intuitively represents the
value of some stream valuation o at some time step ¢, while a_y(),...,a-1
(resp., a1, ..., agy)) represent the values of o at the previous b(p) (resp., next
flp)) time steps, if any (the symbol L is used to denote the absence of a previous
or next time step). Let 7 be either a Boolean constant or a variable in X UY,
and a € A. Then, the Boolean value of 7 in a is 7 if 7 is a constant, otherwise
the value is 1 iff 7 € a. For a Boolean stream expression E over X UY and an
element p = (a_p(p);---,a-1,00,01,- -, a5y)) of Py, the value [E,p] of E with
respect to p is the computable Boolean value inductively defined as follows:

— [¢,p] = ¢ and [z, p] = the value of z in ag

the value of 7 in ay if — b(p) < £ < and a, £ L
- Irtflel#l = {C k ' ‘ othervs(/ii)e =1 o7

— [f(E1,...,Ex),p] = f([E1,p],-- -, [Ex,p])

We denote by @), the subset of P, consisting of the elements p of P, such
that for each equation y = E of ¢, the value of y with respect to p coincides
with the value of E with respect to p. Let # be an additional special symbol
(which will be used as initial state of the NFA associated with ¢). An ezpanded
valuation model of ¢ is a word of the form # - w such that w is a non-empty
finite word w over the alphabet @), satisfying the following:

— w(1) is of the form (L,..., L, ap,a1,...,agxy);

— w(|wl) is of the form (a_y(y),...,a—1,a0,L,...,1);
— if 1 < < |w| and w(i) = (@a—p(p)s - -+, a-1,00,01,- - -, af), then there is d €
A such that w(i + 1) is of the form (a_p)41,.-.,0-1,00,0a1,...,a5,),d).

For an expanded valuation model # - w of ¢, the associated stream wvaluation
o(w) is the stream valuation of ¢ of length |w| whose ith element is the main
value of the ith element of w. By construction, we easily obtain that o(w) is a
valuation model of ¢ and, more precisely, the following lemma holds.

Lemma 1. The mapping assigning to each expanded valuation model # -w of
the associated stream valuation o(w) is a bijection between the set of expanded
valuation models of ¢ and the set of valuation models of .

By the above characterization of the set of valuations models of a BSRV ¢, we
easily obtain the following result.

Theorem 1 (From BSRV to NFA). Given a BSRV ¢ over X and Y, one can
construct in singly exponential time an NFA A, over the alphabet 2% accepting
L(p) whose set of states is Q, U {#}. Moreover, for each input ox, the set
of accepting runs of A, over ox is the set of expanded valuation models of ¢
encoding the valuation models of ¢ associated with the input ox.

Proof. The NFA A, is defined as A, = (Q, U {#},#, 0y, F,,), where F,, is the
set of elements of @, of the form (a_y,...,a-1,a0,L,..., 1), and 6(p,¢) is
defined as follows for all states p and input symbol ¢ € 2¥:

— if p = #, then d,(p, ¢) is the set of states of the form (L,..., L, ag,a1,...,a5,))
such that ag N X = ¢;

—if p = (a—p(p),---,0-1,00,01,...,a5,)) € Qyp, then 6,(p,¢) is the set of
states of the form (a_p(p)41,---,0-1,00,01, ..., a5y),d) for some d € A}
whose main value a satisfies aN X = ¢.

By construction, for each input ox, the set of accepting runs of .Ag, over ox
coincides with the set of expanded valuation models # - w of ¢ such that the
stream valuation o(w) is associated with the input ox. Thus, by Lemma 1, the
result follows. a

For the converse translation from NFA to BSRV, we show the following.

Theorem 2 (From NFA to BSRV). Given an NFA A over the input alphabet
2% one can construct in polynomial time a BSRV @ 4 with set of input variables
X such that L(pa) = L(A).

Proof. Let A = (Q,qo,, F). We construct a BSRV ¢4 over the set of input
variables X as follows. First, for each input symbol ¢, we use a Boolean expression
E, over X, encoding the input symbol ¢, defined as E, := (A ¢, 2) A(A e x\, 72)-
The set Y of output variables of ¢ 4 is defined as follows:

Y = U {a} U {control}

q€Q

Thus, we associate to each state ¢ € @), an output variable q, whose associated
equation is the trivial one given by q = q. The equation for the output variable
control is given by

control = if Ee, then control else —control

where the boolean stream expression E., describes accepting runs of the NFA A
and is defined as follows:

E., = Van A -p A (first — qq) A
[—
q€Q peQ\{q} a run of A starts at the initial state

at each step, A is exactly in one state

/\ /\((q/\ E) — \/ p[+1[1]) A (last — \/ (aAE))

9€Q el PEI(q,t) (g,0)€{(g,0)|6(g,)NF#D)}

the evolution of A is -consistent the run of A is accepting

By construction, it easily follows that given an input stream valuation o, there
is a valuation model of ¢ 4 associated with the input ox if and only if there is a
stream valuation o associated with the input ox such that the valuation of Eg,
with respect to o is a uniform stream in 1% if and only if there is an accepting
run of A over the input ox. Hence, the result follows. a

As a corollary of Theorems 1 and 2, we obtain the following result.

Corollary 1. BSRV, when interpreted as language recognizers, capture the class
of regular languages over non-empty finite words.

Succinctness issues. It turns out that the singly exponential blow-up in The-
orem 1 cannot be avoided. To prove this we first show a linear time translation
from standard linear temporal logic LTL with past over finite words (which cap-
tures a subclass of regular languages) into BSRV. Recall that formulas ¢ of LTL
with past over a finite set AP of atomic propositions are defined as follows:

Yi=p |~ | vVvy | OV | Ov | vUY | vSY

where p € AP and O, ©, U, and S are the ‘next’, ‘previous’, ‘until’, and ‘since’
temporal modalities. For a finite word w over 24 and a position 1 < i < |w|,
the satisfaction relation (w,i) = v is defined as follows (we omit the rules for
the boolean connectives and the atomic propositions, which are standard):

J)E OY e i4 1< |w|and (w,i+1) =1

i) oY & i>1land (w,i—1)EY

) FE i U & Fi<j < (wl, (w,)) E e and Vi < h <, (w, h) = ¢
)

ai ': 11[}1 31/12@ ngjgla (wm])':wQ andV]<h§z, (w7h)':wl

The language L£(¢)) of a LTL formula ¢ is the set of non-empty finite words w
over 247 such that (w, 1) = 1.

Proposition 1. LTL with past can be translated in linear time into BSRV.

Proof. Let 1 be a formula of LTL with past over a finite set AP of atomic
propositions. We construct in linear time a BSRV specification ¢ over the set

of input variables X = AP such that L(p) = L(v). Let SF(¢) be the set of
subformulas of ¥. Then, the set of output variables Y of ¢ is defined as follows.

v=U f{w}uinic

0€SF(v)

Thus, we associate to each subformula 6 of ¥, an output variable yg. The intended
meaning is that for an input valuation ox (corresponding to a non-empty finite
word over 247) and a valuation model o associated with ox, at each time step
1, the value of variable yg is 1 iff # holds at position ¢ along ox. The equations
for the output variables are defined as follows, where p € AP = X.

init = first — (yy V —init) Yp =D
Y-0 = Yo Yo.vo, = Yo, \ Yo,
Yoo = Yo [+1]0] Yoo = yo[—1/0]

Yo,u6, = Yo, V (_'l_aSt AN Yo, N Yo,u0, [+1|1])
Yo,56, = Yo, V (—first A ye, A ye,s6,[—1[1])

We need to show that L(p) = L(¢)). We prove the two set inclusions sepa-
rately:

— For the inclusion £(¢) C L(3), let ox € L(p). Hence, there is a valuation
model o of ¢ associated with the input ox. We need to show that (ox,1) =
1. By construction and structural induction, for all § € SF(+) and positions
1 along ox, (0x,1) E 0 if and only if o(ys)[i] = 1. Moreover, the equation
for the output variable init ensures that o(yy)[1] = 1. Hence, (ox,1) = 9,
and we are done.

— For the converse inclusion L£(v) C L(y), let ox € L(¢), hence, (ox,1) E ¥.
We define a stream valuation o associated with the input ox as follows:
o(init) = 11l and for all § € SF(x)) and positions 4 along oy, o(yg)[i] = 1 if
(0x,i) E 6, and o(yg)[i] = 0 otherwise.

Since (ox,1) | v, by construction, it easily follows that o is a valuation
model of ¢ associated with the input ox. Hence, ox € L(y).

This concludes the proof. a

It is well-known that there is a singly exponential succinctness gap between
LTL with past and NFA [17]. Consequently, we obtain the following result.

Theorem 3. BSRV are singly exponentially more succinct than NFA, that is,
there is a finite set X of input variables and a family (¢n)n>1 of BSRV such
that for all m > 1, @, has input variables in X and size polynomial in n, and
every NFA accepting L(,) has at least 2% states.

Effective closure under language operations. An interesting feature of
the class of BSRV is that, when interpreted as language recognizers, BSRV are
effectively and efficiently closed under many language operations. For two lan-
guages £ and £’ of finite words, £ denotes the reversal of £, £- L' denotes the
concatenation of £ and £’, and L1 denotes the positive Kleene closure of L.

10

e={p=E,....ue=E} ¢ ={1i=E,... yn=E}
Intersection: p N’ = {y1 = E1,...,yx = Ex,y1 = E1,...,y, = E,}
where {y1,...,yx} N {yl, ..., yn} = 0.

Union: ¢ Uy' = {y1 = y1,...,y, = Y, check = Echeck, main = Emain}

Echeck = 3f —last — (check <+ check[+1|1]) then check else —check
i=k i=h

Emain = if ((check — /\yi < Ei) A (—check — /\y; “~ E'i)) then main else =main
i=1 i=1

Reversal: ¢ = {y1 = Ef ...y = EF}
EZ is obtained from E; by converting each offset k in its opposite —k.

Fig. 1. Constructions for intersection, union, and reversal.

For a BSRV ¢, we say that an output variable y of ¢ is uniform if for each
valuation model of ¢, the stream for y is uniform.

Theorem 4. BSRV are effectively closed under the following language opera-
tions: intersection, union, reversal, positive Kleene closure, and concatenation.
Additionally, the constructions for these operations can be done in linear time.

Proof. We illustrate the constructions for the considered language operations.
Details on their correctness of these constructions can be found in Ap-
pendix A.1.

Intersection, Union, and Reversal. The constructions are illustrated in Fig. 1.
For the intersection, assuming w.l.o.g. that the BSRV ¢ and ¢’ have no output
variable in common, the BSRV recognizing £(p)NL(¢") is simply the joint set of
the equations of ¢ and ¢’. For the union, we use two new output variables check
and main. Intuitively, check is a uniform output variable used to guess whether
the input has to be considered an input for ¢ or for ¢’. The equation for check
ensures that the streams for check range over all the uniform Boolean streams.
Depending on the uniform value of check (if it is in 0% or 17), the equation
for the output variable main ensures that the input is recognized iff either the
equations of ¢ are fulfilled or the equations of ¢’ are fulfilled. For the reversal,
the BSRV recognizing £()# is obtained from ¢ by replacing each subexpression
T[k|d] (resp., T[—k|d]) with k& > 0 with the subexpression 7[—k|d] (resp., T[k|d]).
Positive Kleene closure. The construction is given in Fig. 2.

The BSRV recognizing [L£(p)]T uses two new output variables: wbegin and
wend. Intuitively, wbegin and wend are used for guessing a decomposition in the
given input ox of the foorm ox =o0x1 ... -0x N for some N > 1 in such a way
that each component ox ; is in L(p). In particular, the output variable wbegin
(resp., wend) is used to mark the first (resp., the last) positions of the components
ox,;- Moreover, the equations for the output variables of ¢ are modified to allow
checking for an offset k of ¢ and a position j inside a component ox ; in the

11

Positive Kleene closure for ¢ = {y1 = E1,...,yx = Ex}
90+ ={y1 = EIL, e Yk = E:,Wbegin = Ewbegin, wend = Ewend }

Ewbegin = if (first — wbegin) A (wbegin — wend[—1|1]) then wbegin else ~wbegin
Ewend = if (last — wend) A (wend — wbegin[+1]1]) then wend else —wend

and E; is obtained from E; by replacing each stream subexpression 7[k|d] with E, x 4

i=k
if \/Wbegin[j|1] thend elseTlk|d] if k>0
Erpa= =t
T,k,d = j=—k
if \/ wend[—7|1] then d else T[k|d] if k <0
j=1

Fig. 2. Construction for positive Kleene closure

e={y1=Ei,...,ys =Ex} ¢ ={yi =Ei,...,yn = E,}
Concatenation: {y1,...,yx} N {yl,...,yp} =0

- = {y1 = if wmark then E; else Yi,- -, Yk = if wmark then Ex else Yk

y1 = if —wmark then Ell elseyt,...,yp = if ~wmark then E;l else yp, wmark = Ewmark }

Ewmark = if (first — wmark) A (last — —wmark) A (wmark — wmark[—1|1])A
(—wmark — —wmark[+1|0]) then wmark else ~wmark

E; is obtained from E; by replacing each stream subexpression T[k|d] s.t. k > 0 with:
if J_/k—\wmark[j\O} then d else T[k|d]
=1
Ei is obtained from E} by r;placing each stream subexpression 7[k|d] s.t. k < 0 with:
if J_\]kwmark[—ﬂl] then d else T[k|d]

Jj=1

Fig. 3. Construction for concatenation

guessed decomposition of the input ox, whether k + j is still a position inside
0X,i-

Concatenation. The construction is given in Fig. 3. We assume w.l.o.g. that
the BSRV ¢ and ¢’ have no output variables in common. The BSRV recognizing
L(p)-L(p") uses a new output variable: wmark. This variable is used for guessing
a decomposition in the given input of the form ox - o’ in such a way that
ox € L(p) and o’y € L(¢'). In particular, the output variable wmark assumes
the value 1 along all and only the positions of o x (the equation for wmark ensures
that a Boolean stream for wmark is always in 170%"). Moreover, the equations for
the output variables of ¢ are modified in order to allow to check for a positive
offset k > 0 of ¢ and a position j inside ox in the guessed decomposition ox - o'y
of the input, whether k+j is still a position inside o x. Analogously, the equations

12

Monitoring(y, ox) /** ¢ is a well-defined BSRV and A, = (Q, qo, 9, F) **/

A+ {qo}
for i =1 upto |ox| do
update A < {¢g € Q| q € I(p,ox(i)) for some p € A}
store A at position ¢ on the tape
for i = |ox| downto 1 do
let A be the set of states stored at position ¢ on the tape
if ¢ = |ox| then p < the unique accepting state in A
else let g be the unique state in A such that p € §(¢,0x (i + 1)); update p + ¢
output at position ¢ the main value of p

Fig. 4. Offline monitoring algorithm for well-defined BSRV

for the output variables of ¢’ are modified to allow checking for a negative offset
k <0 of ¢ and a position j inside ¢’y in the guessed decomposition ox - o’y of
the input, whether k + j is still a position inside o’ . O

4 Offline Monitoring for Well-defined BSRV

In this section, we propose an offline monitoring algorithm for well-defined BSRV
based on Theorem 1. The algorithm runs in time linear in the length of the input
trace (input streams) and singly exponential in the size of the specification.
Additionally, we partially solve a question left open in [8] for the case of BSRV.

Let ¢ be a BSRV over X and Y, and A, = (Q, qo, 6, F') be the NFA over 2%
accepting L() of Theorem 1. Recall that @ \ {go} is contained in (A)"®) x
A x (A1) where A =2XYY and A; := AU{L}, and an expanded valuation
model of ¢ is of the form © = qo, q1,. .., qx, where ¢; € Q\{qo} for all 1 < i < k.
Moreover, the valuation model of ¢ encoded by m is the sequence of the main
values of the states ¢; visited by 7. By Theorem 1, the set of accepting runs of
A, over an input ox is the set of expanded valuation models of ¢ encoding the
valuation models of ¢ associated with the input ox. Hence, the following holds.

Proposition 2. A BSRV ¢ is well-defined if and only if the NFA A, is universal
and unambiguous.

The offline monitoring algorithm for well-defined BSRV is given in Fig. 4,
where we assume that the input trace ox is available on a tape. The algorithm
operates in two phases. In the first phase, a forward traversing of the input trace
is performed, and the algorithm simulates the unique run over the input ox
of the deterministic finite state automaton (DFA) that would result from A,
by the classical powerset construction. Let {qo}, A(1),...,A(|lox|) be the run
of this DFA over ox. Then, at each step 7, the state A(i) of the run resulting
from reading the input symbol ox (i) is stored in the ith position of the tape.
In the second phase, a backward traversing of the input trace is performed, and
the algorithm outputs a stream valuation of (. Since ¢ is well-defined, by using

13

Proposition 2, we easily deduce that the uniqueness conditions in the second
phase of the algorithm are satisfied. Moreover, the sequence of states computed
by the algorithm in the second phase is the unique accepting run 7 of A, over
ox. Therefore, the algorithm outputs the valuation model of ¢ encoded by ,
which is the unique valuation model of ¢ associated with the input ox. Thus,
since the size of the NFA A, is singly exponential in the size of ¢, we obtain the
following result. (for a detailed proof of Theorem 5, see Appendix B.1).

Theorem 5. One can construct an offline monitoring algorithm for well-defined
BSRV running in time linear in the length of the input trace and singly expo-
nential in the size of the specification. Additionally, the algorithm processes a
position of the input trace exactly twice.

In [8], a syntactical condition for general SRV, called well-formedness, is in-
troduced, which can be checked in polynomial time and implies well-definedness.
Well-formedness ensures the absence of circular definitions by requiring that a
dependency graph of the output variables have not zero-weight cycles. As illus-
trated in [8], for the restricted class of well-formed SRV, it is possible to construct
an offline monitoring algorithm which runs in time linear in the length of the
input trace and the size of the specification. Moreover, one can associate to a
well-formed SRV ¢ a parameter ad(y), called alternation depth [8], such that the
monitoring algorithm processes each position of the input trace exactly ad(¢)+1
times. An important question left open in [8] is whether for a well-formed SRV
p, it is possible to construct a ¢-equivalent SRV whose alternation depth is
minimal. Here, we settle partially this question for the class of BSRV. By using
the same ideas for constructing the algorithm of Fig. 4, we show that for the
class of BSRV, the semantic notion of well-definedness coincides with the syntac-
tical notion of well-formedness (modulo BSRV-equivalence), and the hierarchy
of well-formed BSRV induced by the alternation depth collapses to the level 1.
In particular, we establish the following result (the full proof can be found in
Appendix B.2.

Theorem 6. Given a well-defined BSRV @, one can build in doubly exponential
time a p-equivalent BSRV which is well-formed and has alternation depth 1.

5 Decision Problems

We investigate complexity issues for some relevant decision problems on BSRV.
In particular, we establish that while checking well-definedness is in EXPTIME,
checking for a given BSRV ¢ and a given subset Z of output variables, whether ¢
is well-defined with respect to Z (generalized well-definedness problem) is instead
EXPSPACE-complete. Our results can be summarized as follows.

Theorem 7. For BSRV:

1. The under-definedness problem is PSPACE-complete, the well-definedness
problem is in EXPTIME and at least PSPACE-hard, while the over-definedness
problem and the generalized well-definedness problem are both EXPSPACE-
complete.

14

o

Checking semantic equivalence is EXPSPACE-complete.

3. When interpreted as language recognizers, language emptiness is PSPACE-
complete, while language universality, language inclusion, and language equiv-
alence are EXPSPACE-complete.

Here, we illustrate the upper bounds of Theorem 7(1). Detailed proofs of all
results can be found in Appendix 5. We need a preliminary result (Proposition 3).
For an NFA A = (Q, qo, 9, F), a state projection of A is a mapping 7 : Q — P
for some finite set P such that for all ¢ € @, 7(q) is computable in logarithmic
space (in the size of @)). The mapping 7" can be extended to sequences of states
in the obvious way. We say that the NFA A is unambiguous with respect to T
if for all w € L£(A) and accepting runs m and 7’ of A over w, their projections
Y(m) and 7(7’) coincide.

Proposition 3. Given an NFA A and a state projection T of A, checking whether
A is not unambiguous with respect to T can be done in NLOGSPACE.

Upper Bounds of Theorem 7(1). Let ¢ be a BSRV over X and Y, and A,
be the NFA of Theorem 1 accepting £(¢) and whose size is singly ezponential in
the size of .

Under-definedness: by Theorem 1 and Lemma 1, ¢ is under-defined iff A, is
not unambiguous. Thus, since A, can be constructed on the fly and PSPACE =
NPSPACE, by Proposition 3 (with 7" being the identity map), it follows that the
under-definedness problem is in PSPACE.

Over-definedness: since A, accepts L(p), ¢ is over-defined iff A, is not universal.
Thus, since checking universality for NFA is a well-known PSPACE-complete
problem [20], membership in EXPSPACE for checking over-definedness follows.
Well-definedness: it is well-known that checking universality of unambiguous
NFA can be done in polynomial time [25]. By Proposition 2, ¢ is well-defined iff
A, is universal and unambiguous. Thus, since checking that 4, is unambiguous
can be done in PSPACE (in the size of ¢), membership in EXPTIME for checking
well-definedness follows.

Generalized Well-definedness: let Z C Y. Recall that the set of non-initial states
of A, is contained in (A)%%) x A x (A,)¥) where A = 2XYY and A, := AU
{1}. Let Tz be the state projection of A, assigning to the initial state g of A,

qo itself, and assigning to each non-initial state (a_y(y),...,a—1, 00,01, ..,a5,))
of A, the tuple (d_y),...,d_1,do,d1,...,dgy)), where for all b(p) < i < flp),
di = a; if a; = L1, and d; = a; N Z otherwise. Now, let ¢ and ¢’ be two

valuation models of ¢ associated with an input o x, and m and 7’ be the expanded
valuation models encoding o and ¢’ respectively. By construction, it follows that
Yz(m) = Tz(x') iff the restrictions of o and ¢’ to Z coincide. By Theorem 1,
we obtain that ¢ is well-defined with respect to Z iff A, is unambiguous with
respect to Tz and A, is universal. Thus, since checking universality for NFA
is PSPACE-complete, by Proposition 3, membership in EXPSPACE for checking
generalized well-definedness follows.

15

6 Conclusion

In this paper, we have studied some theoretical problems for the class of Boolean
SRV. We have also presented an offline monitoring algorithm for well-defined
BSRV that only requires two passes over the dumped trace. An open question
is the exact complexity of checking well-definedness for BSRV: it lies somewhere
between PSPACE and EXPTIME. Future work includes the theoretical investi-
gation and the development of monitoring algorithms for SRV over richer data
types, such as counters and stacks. In particular, the emerging field of symbolic
automata and transducers [26]—that extend the classical notions from discrete
alphabets to theories handled by solvers—seems very promising to study in the
context of SRV, which in turn can extend automata from states and transitions
to stream dependencies. The combination of these two extensions has the po-
tential to provide a rich but tractable foundation for the runtime verification of
values from rich types. Additionally, we are studying the extension to the mon-
itoring of visibly pushdown systems, where SRV is extended to deal with traces
containing calls and returns.

Finally, we plan to study the monitorability of well-definedness of specifica-
tions. If one cannot determine well-definedness statically, a plausible alternative
would be to use a monitor that assumes well-definednees in tandem with a mon-
itor that detects non-well-definedness (and hence, the incorrectness of the first
monitor).

References

1. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In Proc. of VMCAI’04, LNCS 2937, pages 44-57. Springer, 2004.

2. D. Basin, M. Harvan, F. Klaedtke, and E. Zalinescu. MONPOLY: Monitoring
usage-control policies. In Proc. of RV’12, LNCS 7687. Springer, 2012.

3. D. Basin, F. Klaedtke, and S. Miiller. Policy monitoring in first-order temporal
logic. In Proc. of CAV’10, LNCS 6174, pages 1-18. Springer, 2010.

4. A. Bauer, R. Gore, and A. Tiu. A first-order policy language for history-based
transaction monitoring. In Proc. of ICTAC’09, LNCS 5684, pages 96-111. Springer,
2009.

5. A. Bauer, M. Leucker, and C. Schallhart. Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology, 20(4):14, 2011.

6. G. Berry. Proof, language, and interaction: essays in honour of Robin Milner,
chapter The foundations of Esterel, pages 425-454. MIT Press, 2000.

7. P. Caspi and M. Pouzet. Synchronous Kahn Networks. In Proc. of ICFP’96, pages
226-238. ACM Press, 1996.

8. B. D’Angelo, S. Sankaranarayanan, C. Sdnchez, W. Robinson, B. Finkbeiner, H. B.
Sipma, S. Mehrotra, and Z. Manna. LOLA: Runtime monitoring of synchronous
systems. In Proc. of TIME’05, pages 166—-174. IEEE CS Press, 2005.

9. C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. Mclsaac, and D. V. Campenhout.
Reasoning with temporal logic on truncated paths. In Proc. of CAV’03, volume
2725 of LNCS 2725, pages 27-39. Springer, 2003.

10. B. Finkbeiner, S. Sankaranarayanan, and H. B. Sipma. Collecting statistics over
runtime executions. ENTCS, 70(4):36-54, 2002.

16

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

T. Gautier, P. Le Guernic, and L. Besnard. SIGNAL: A declarative language for
synchronous programming of real-time systems. In Proc. of FPCA’87, LNCS 274,
pages 257-277. Springer, 1987.

A. E. Goodloe and L. Pike. Monitoring distributed real-time systems: A survey
and future directions. Technical report, NASA Langley Research Center, 2010.
N. Halbwachs, P. Caspi, D. Pilaud, and J. Plaice. Lustre: a declarative language
for programming synchronous systems. In Proc. of POPL’87, pages 178-188. ACM
Press, 1987.

D. Harel. The spirit of Computing. Addison-Wesley, 2nd edition, 1992.

K. Havelund and A. Goldberg. Verify your runs. In Proc. of VSTTE’05, LNCS
4171, pages 374-383. Springer, 2005.

K. Havelund and G. Rosu. Synthesizing monitors for safety properties. In Proc.
of TACAS’02, LNCS 2280, pages 342-356. Springer, 2002.

F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable
past. In Proc. of LICS’02, pages 383-392. IEEE CS Press, 2002.

M. Leucker and C. Schallhart. A brief account of runtime verification. The Journal
of Logic and Algebraic Programming, 78(5):293-303, 2009.

Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer, New York, 1995.

A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In Proc. of FOCS 72, pages 125-129.
IEEE CS Press, 1972.

L. Pike, A. Goodloe, R. Morisset, and S. Niller. Copilot: A hard real-time runtime
monitor. In Proc. of RV’10, LNCS 6418. Springer, 2010.

A. Pnueli and A. Zaks. PSL model checking and run-time verification via testers.
In Proc. of FM’06, LNCS 4085, pages 573-586. Springer, 2006.

G. Rosu and K. Havelund. Rewriting-based techniques for runtime verification.
Autom. Softw. Eng., 12(2):151-197, 2005.

K. Sen and G. Rosu. Generating optimal monitors for extended regular expressions.
ENTCS, 89(2):226-245, 2003.

R. E. Stearns and H. B. Hunt. On the equivalence and containment problems for
unambiguous regular expressions, regular grammars and finite automata. SIAM
J. Comput., 14(3):598-611, 1985.

M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjrner. Symbolic finite
state transducers: algorithms and applications. In Proc. of POPL’12, pages 137—
150. ACM, 2012.

17

Appendix

A Proofs from Section 3

A.1 Full proof of Theorem 4

Theorem 4. BSRV are effectively closed under the following language opera-
tions: intersection, union, reversal, positive Kleene closure, and concatenation.
Additionally, the constructions for these operations can be done in linear time.

Proof. Intersection. Let ¢ be a BSRV over X and Y and ¢ be a BSRV over X
and Y’. Without loss of generality, we assume that Y NY’ = (. Then, the BSRV
" recognizing L(p) N L(¢') is simply the joint set of the equations of ¢ and ¢'.
Correctness of the construction immediately follows.

Union. Let ¢ = {y1 = E1,...,yx = Ex} beaBSRVover X and Y = {y1,...,yr},
and ¢ ={y; =E},...,y;, = E,} be a BSRV over X and Y' = {y1,...,y,}. We
construct in linear time a BSRV ¢” with set of input variables X and recognizing
L(p) U L(¢") as follows. The set of output variables of ¢” is given by Y UY’ U
{check, main}, where check and main are two new output variables. Intuitively,
check is a uniform output variable used to guess whether the input ox has to
be considered an input for ¢ or ¢’. The equation for check is given by

check = if —last — (check > check[+1|1]) then check else —check

Note that the boolean streams for check satisfying the above equation range over
all uniform boolean streams. For each y € YUY, the equation of " associated
to y is simply y = y. Finally, the equation for the new output variable main is
defined as follows

i=k i=h
main = if ((check — Ay ¢+ Ei) A (~check = Ayl ¢ E’i)) then main

i=1 i=1 else =main

Now, we show that the construction is correct, i.e. L(¢") = L(p) U L(¢'). For
the inclusion L£(¢") C L(@)UL(¢'), let ox € L(¢"). Hence, there is a valuation
model o of ¢ associated with the input ox. By construction, o’ (check) €
0T U 17", Assume that o”/(check) € 1T (the other case being similar). Then, by
definition of the equation for main, it holds that for each 1 < i < k, [y;,0"'] =
[E:, 0”']. Thus, the restriction of ¢’ to X UY is a valuation model of ¢. Hence,
ox € L(p) and the result follows. For the converse inclusion £(¢) U L(p') C
L(©"), let ox € L(p) U L(¢'). Assume that ox € L(¢’") (the other case being
similar). Hence, there is a valuation model ¢’ of ¢’ associated with the input
ox. Let ¢” be the stream valuation of ¢ associated with the input ox defined
as follows: for all variables z of ¢, 0" (2) = 0'(z) if 2 € X UY’, and ¢”(2) € 0T

18

otherwise. By construction, it easily follows that ¢ is a valuation model of ¢".
Hence, membership of ox in £(¢") directly follows.

Language Reversal. First, we need additional notation. For a finite word w and
a position 1 < i < |w|, we denote by w'* the reverse of w, and by R(i) the
position of w given by |w| — i + 1. Note that the suffix of w’ from position
R(i) is the reverse of the prefix of w leading to position i. Moreover, for a
stream expression E, we denote by EF the stream expression obtained from
E by replacing each subexpression 7[k|d] (resp. 7[—k|d]) with k& > 0 with the
subexpression 7[—k|d] (resp., 7[k|d]). By structural induction, one can easily
show that for a stream valuation o over the variables of E and for all 1 <i < |o],
it holds that [E,o](i) = [E®, of](R(7)). Now, let ¢ be a BSRV over X and Y.
The BSRV ¢® accepting the reversal of £(i) is obtained from ¢ by converting
each equation iy = E of ¢ in the equation y = E”. Let ¢ be a stream valuation
over X UY. Since [E,o](i) = [ER,o%](R(7)) for all stream expressions E over
X UY and position i of o, by construction, it follows that ¢ is a valuation
model of ¢ if and only if o is a valuation model of . Hence, the equality
L(o®) = [L(p)]F directly follows.

Positive Kleene closure. Let ¢ be a BSRV over X and Y. We construct in linear
time a BSRV ¢” with set of input variables X and recognizing [L(p)]T as follows.
The set Y of output variables of ¢ is obtained from Y by adding two new
output variables, wbegin and wend. Intuitively, these new output variables are
used for guessing a decomposition in the input ox of the form ox =ox1-...-
ox,n for some N > 1 in such a way that each component ox; is in L(p). In
particular, the output variable wbegin (resp., wend) is used to mark the first
(resp., the last) positions of the components ox ;. Formally, the equations for
the output variables wbegin and wend are defined as follows.

wbegin = if (first — wbegin) A (wbegin — wend[—1|1]) then wbegin else —wbegin
wend = if (last — wend) A (wend — wbegin[+1]|1]) then wend else —wend

Note that for a stream valuation o satisfying the above two equations, o can be
decomposed in the form o = o1 - ... oy for some N > 1 such that o;(wbegin) €
10* and o;(wend) € 0*1 for all 1 < ¢ < N. Finally, for each output variable
y € Y, the equation for y of the specification ¢” is obtained from the equation
y = E of ¢ by replacing each stream subexpression 7[k|d] occurring in E, with
the stream expression E. j 4 defined as follows:

j=k
if \/ wbegin[j[1] then d else T[k|d] if k >0
Er g = =1
T,k,d — j=—k
if \/ wend[—j|1] thend else T[k|d] if k <0
j=1

Now, we show that the construction is correct, i.e. L(¢"”) = [L(p)]T. For the
inclusion L(¢”) C [L(p)]T, let ox € L(¢"). Hence, there is a valuation model o

19

of ¢ associated with the input ox. By construction, there is N > 1 such that
o can be written in the form 0 =07 -... oy and for all 1 < ¢ < N, the boolean
stream oy(wbegin) is in 10* and the boolean stream oy(wend) is in 0*1. We show
that the restriction (oy)xyuy of o to the set of variables X UY is a valuation
model of . Hence, membership of ox in [£(p)]T follows. Fix 1 < ¢ < N. For
all positions 1 < i < |oy| along the stream valuation oy, we denote by p(i) the
corresponding position along . In order to prove that oy is a valuation model
of ¢, by hypothesis, it suffices to show that for each equation y = E of ¢ and
for each position 1 < i < |oy|, the following holds, where y = E” is the equation
of ¢ associated to the variable y: [E, (o¢)xuy](?) = [E”,o](p(7)). Evidently,
by construction, we just need to prove that for each subexpression 7[k|d] of ¢,
[7[k|d], (o) xuy (i) = [Erk,d, 0] (p(7)). There are two cases:

— k > 0: first, assume that i + k < |o¢|. Since o/(wbegin) is in 10*, we obtain
that for all 1 < j < k, o(wbegin)(p(i) +j) = 0. Hence, by definition of E; j 4,
it follows that [E;q,0](p(?)) = [rlkld],c](p()) = [r[kl|d], (oe)xuy](3),
and the result follows in this case. Now, assume that ¢ + k > |oy|. Hence,
[r1k|d], (0¢) xuy] (i) = d. Then, either p(i) + k > |o], or there is 1 < j < k
such that o(wbegin)(p(i) + j) = 1. By definition of E; 4, it follows that
[E+ k.a;0](p(i)) = d, and the result follows in this case as well.

— k < 0: first, assume that i—k > 1. Since o¢(wend) is in 0*1, we obtain that for
all 1 < j < —k, o(wend)(p(i)—7) = 0. Hence, by definition of E; j 4, it follows
that [E; ka4, 0] (p(i)) = [7[kld], o] (p(¥)) = [r[k|d], (0¢) xuy] (i), and the result
follows in this case. Now, assume that i—k < 1. Hence, [7[k|d], (0¢) xuy](i) =
d. Then, either p(i) —k < 1, or there is 1 < j < —k such that o(wend)(p(i) —
j) = 1. By definition of E, j 4, it follows that [E; x.4,0](p(i)) = d, and the
result follows in this case as well.

For the converse inclusion [L(p)]T C L(¢"), let ox € [L(p)]t. Hence, there
is a stream valuation o of ¢ associated with the input ox such that o is of

the form ¢ = o1 - -+ - oy for some N > 1, and oy, is a valuation model of ¢
forall 1 < ¢ < N. Let 0" = o ----- o} be the extension of o over X UY",

where the boolean streams o’ (wbegin) and o’ (wend) are defined as follows: for
all 1 < ¢ < N, gj/(wbegin) is in 10* and the boolean stream o} (wend) is in
0*1. We show that ¢” is a valuation model of ¢, hence, membership of ox in
L(¢") follows. By construction, the equations for the output variables wbegin
and wend are satisfied with respect to the stream valuation ¢”’. Now, let u s
consider an equation y = E” of ¢ associated with an output variable y € Y.
By construction and the hypothesis, in order to show that [y,o”] = [E, o”], it
suffices to prove that for all 1 < ¢ < N, 1 <4 < |oy|, and subsexpression 7|[k|d]
of ¢, [7[kld],ce](i) = [Erka,o"](p(i)), where for 1 < i < |og|, p(i) denotes
the corresponding position along o. This can be shown as for the proof of the
inclusion L(p") C [L(¢)]T, and we omit the details here.

Concatenation. Let ¢ be a BSRV over X and Y and ¢ be a BSRV over X and Y.
Without loss of generality, we assume that Y N'Y’ = (). We construct in linear
time a BSRV ¢ with set of input variables X and recognizing L(p) U L(¢') as

20

follows. The set Y of output variables of ¢ is given by Y = YUY’ U{wmark},
where wmark is a new output variable. Intuitively, wmark is used for guessing a
decomposition in the input o% of the form o% = ox - o’ in such a way that
ox € L(p) and o’ € L(¢'). In particular, the output variable wmark assume
the value 1 along all and only the positions of ox. Formally, the equation for
the output variable wmark is defined as follows.

wmark = if (first — wmark) A (last — —wmark) A (wmark — wmark[—1|1])A
(—wmark — —wmark[+1]0]) then wmark else =wmark

Note that a boolean stream for wmark is always in 1707, The equations of ¢’ for
the remaining output variables are defined as follows. For each stream expression
7[k,d], let E; k.4 be the stream expression defined as follows:

j=k
if \/ﬁwmark[j|0] then d else T[k|d] if k>0

_ Jj=1
E'r,k,d - j=—k

if \/ wmark[—j|1] then d else T[k|d] if k <0

j=1

First, we consider the output variables y € Y. Let y = E be the equation of ¢
associated with y. Then, the equation for y of the specification ¢” is given by
y = if wmark then E” else y, where E” is obtained from E by replacing each
stream subexpression 7[k|d] occurring in E such that & > 0 with the stream
expression E; 4. Now, we consider the output variables y € Y’. Let y = E be
the equation of ¢ associated with y. Then, the equation for y of the specification
" is given by y = if —wmark then E” else y, where E” is obtained from E by
replacing each stream subexpression 7[k|d] occurring in E such that k£ < 0 with
the stream expression E; i 4.

Now, we show that the construction is correct, i.e. L(¢"”) = L(p) - L(¢"). For
the inclusion L£(¢"”) C L(p) - L(¢'), let ox € L(¢"). Hence, there is a valuation
model o of ¢ associated with the input ox. By construction, ¢” can be written
in the form ¢” = o - ¢’ such that o(wmark) is in 17 and ¢/(wmark) is in 07. We
show that the restriction (o) xuy of o to the set of variables X UY is a valuation
model of ¢, and the restriction (o)xyuy: of ¢’ to the set of variables X UY’
is a valuation model of ¢’. Hence, membership of ox in L(p) - L(¢") follows.
We consider the stream valuation (¢)xyuy (the proof for (o)xyy s is similar).
In order to prove that (¢)xyuy is a valuation model of ¢, by hypothesis and
construction, it suffices to show that for each equation y = E of ¢ and for each
position 1 < i < |o], the following holds, where y = if wmark then E” else y
is the equation of ¢” associated to the variable y: [E, (o) xuy](?) = [E”, o”](%).
Evidently, by construction, we just need to prove that for each subexpression
T[k|d] of ¢ such that k > 0, [7[k|d], (¢)xuy]() = [Erka,0](¢). This can be
done similarly to the proof for the positive Kleene closure, and we omit the
details here.

For the converse inclusion £(p)-L(¢") C L(¢"), let o € L(v)-L(¢"). Hence,
o' = ox -0’y and there are a valuation model oy, of ¢ associated with the input

21

ox and a valuation model o/, of ¢’ associated with the input o’y. Let ¢’ be the
stream valuation over X UY UY’U{wmark} associated with the input o’ defined
as follows: 0" = o - ¢’ with |o| = |ox/|, where (i) 0(2) = op(2) if z € X UY,
and o(z) = 1 otherwise, and (ii) o/(z) = o},(2) if z € X UY’, and ¢'(2) = 0
otherwise. By construction, one can easily show that ¢ is a valuation model of
¢". Hence, membership of 0% in L(p") follows. O

B Proofs from Section 4

B.1 Proof of Theorem 5

Theorem 5. One can construct an offline monitoring algorithm for well-defined
BSRV running in time linear in the length of the input trace and singly exrpo-
nential in the size of the specification. Additionally, the algorithm processes a
position of the input trace exactly twice.

Proof. The offline monitoring algorithm for well-defined BSRV is given in Fig-
ure 4, where we assume that the input trace ox is available on a tape. The
algorithm operates in two phases. In the first phase, a forward traversing of the
input trace is performed, and the algorithm simulates the unique run over the
input ox of the deterministic finite state automaton (DFA) resulting from A,
by the classical powerset construction. Let {go}, A(1),..., A(|ox|) be the run
of this DFA over ox. Then, at each step 4, the state A(i) of the run resulting
from reading the input symbol ox (i) is stored in the ith position of the tape.
In the second phase, a backward traversing of the input trace is performed, and
the algorithm outputs a stream valuation of ¢. We claim that the uniqueness
conditions in the second phase of the algorithm are satisfied, and the output
is the unique valuation model of the well-defined BSRV ¢ associated with the
input ox. By Proposition 2, A, is universal. Thus, by the classical construction
of the DFA associated with A, it holds that for all 1 <14 < |ox]|,

(*) A(i) # 0 and for each state ¢ of Ay, g € A() if and only if there is a run of
A, over ox(1),...,0x(4) leading to state g.

Assume that the uniqueness conditions are not satisfied, and derive a contradic-
tion. Let ¢ be the greatest position along ox such that the uniqueness condition
at step 7 is not satisfied. Assume that ¢ < |ox| (the other case being simpler). For
each g € @, let A% be the NFA obtained from A, by replacing the initial state
go with ¢. Then, by construction of the algorithm, there are a state p € A(i +1)
and a run of A over ox (i +2),...,0x(|ox|) leading to an accepting state gqce-
By Condition (*) above, A(i) # (). Hence, by hypothesis, there are two distinct
states ¢,q' € A(4) such that p € §(q,0x(i + 1)) and p € §(¢',0x(i +1)). By
Condition (*) above, we deduce that there are two distinct accepting runs of A,
over ox. This is a contradiction because by Proposition 2, A, is unambiguous.
Hence, the uniqueness conditions in the algorithm are satisfied. Moreover, by
construction, it follows that the sequence of states computed by the algorithm
in the second phase is the unique accepting run 7 of A, over ox. Therefore, the

22

algorithm outputs the valuation model of ¢ encoded by 7, which is the unique
valuation model of ¢ associated with the input ox. Thus, since the size of the
NFA A, is singly exponential in the size of ¢, Theorem 5 follows. O

B.2 Proof of Theorem 6

First, we recall the notion of well-formedness [8]. Given a general SRV ¢ over
X and Y, the dependency graph G, of ¢ is the finite weighted directed graph
whose set of vertices is Y and whose set of weighted edges is defined as follows:

y £y 2is an edge of the graph iff for the equation y = E of ¢ associated
with y, either £ = 0 and z occurs in E, or k£ # 0 and z[k|d] occurs in E for
some d. The weight of a finite path of G, is the sum of the weights of its edges.
An SRV ¢ is well-formed if its dependency graph G, has no cycle with weight
zero. As shown in [8], well-formedness can be checked in polynomial time and
strictly implies well-definedness. Moreover, for a well-formed SRV ¢, a strongly
connected component (SCC) of G, can be classified as positive or negative,
where an SCC is positive (resp., negative) if each cycle in the SCC has weight
strictly positive (resp., strictly negative). The alternation depth ad(p) of a well-
formed SRV is then defined as the maximum over the number of alternations
of positive and negative vertices along a path of G, where a vertex is positive
(resp., negative) if it belongs to a positive (resp., negative) SCC.

Theorem 6. Given a well-defined BSRV @, one can build in doubly exponential
time a p-equivalent BSRV which is well-formed and has alternation depth 1.

Proof. Let ¢ be a well-defined BSRV over X and Y, and A, = (Q,qo,9, F)
be the NFA over 2% accepting £() of Theorem 1. We denote by D, the DFA
accepting L(¢p) resulting from A, by the classical power set construction. Recall
that D, = (29,{q},6p, Fp), where Fp = {P € 22 | PN F # (} and for
all P € 29 and ¢« € 2%, dp(P,1) = {¢ € Q | ¢ € 6(p,¢) for some p € P}.
For each output variable y € Y, we denote by Q(y) the set of A -states ¢ =
(@—p(p)s--+50-1,00,01,...,05,)) € Q\ {qgo} such that y is in the main value ag
of ¢. In the following, we construct a BSRV ¢’ over X and Y’ D Y satisfying the
theorem, where the set of output variables Y’ is defined as follows

v'=yu |J {atu [J{P}

7€Q\{qo0} Pe2?

Thus, we associate to each non-initial A,-state ¢, an output variable q, and
to each D,-state P € 2@ an output variable P. For each + € 2%, let E, be
the boolean expression over X encoding the input symbol ¢ given by E, :=
(Aze.®) N (Azexy, ~@). Additionally, for all ¢ € @ and P € 29, let Acc, and
Init(P, ¢) be the boolean constants defined as follows: (i) Acc, :=11if ¢ € F', and
Accy := 0 otherwise, and (ii) Init(P,¢) = 1if P = 6p({go},¢), and Init(P,¢) =0
otherwise. Then, for all P € 29, ¢ € Q \ {qo}, and y € Y, the equations of the

23

BSRV ¢’ for the output variables P, q, and y are defined as follows.

P = if first then \ (E, — Init(P, 1)) else \V E, A P'[—1]0]
ve2X (P",0)e{(P",1)|P=6p(P’,1)}
q=1if \/ P then Eq else 0
Pe{Pec2R|qeP}
where E, := if last then Acc, else \/ \/ (E.[+1]0] A q'[+1]0])

1€2X q'€d(q,e)
y=\ «q
q€Q(y)

By construction, it easily follows that the BSRV ¢’ is well-formed (hence, well-
defined too) and the alternation depth of ¢’ is exactly 1. It remains to show
that ¢’ is p-equivalent. Let ox be an input stream valuation, and o and o’
be the unique valuation models of ¢ and ¢’, respectively, associated with the
input oy. We need to prove that the restrictions of o and ¢’ to Y coincide.
Since ¢ is well-defined, by Proposition 2, A, is universal and unambiguous. Let
T =qo,q1,---,q|ox| be the unique accepting run of A, over ox (which encodes
o). Then, by the equations of ¢’ associated with the output variables y € Y, it
suffices to prove the following condition (*): for each 1 < i < |ox|, there is exactly
one state p € @\ {qo} such that p € /(%) (i.e., such that the boolean value of p at
position ¢ with respect to o’ is 1); moreover, p = ¢;. Let 7p = {qo}, P1, ..., Poy|
be the run of D, over ox. First, we observe that the equations for the output
variables P ensure that for each 1 < ¢ < |ox]|, there is exactly one D,-state
P € 29 such that P € ¢/(i); moreover, P = P;. By using this observation and
the fact that A, is universal and unambiguous, and proceeding as in the proof
of correctness of the algorithm of Figure 4, Condition (*) easily follows, which
concludes. O

C Proofs from Section 5

C.1 Proof of Proposition 3
The main result of Section 5 is Theorem 7.

Theorem 7. For BSRV:

1. The under-definedness problem is PSPACE-complete, the well-definedness
problem is in EXPTIME and at least PSPACE-hard, while the over-definedness
problem and the generalized well-definedness problem are both EXPSPACE-
complete.

2. Checking semantic equivalence is EXPSPACE-complete.

3. When interpreted as language recognizers, language emptiness is PSPACE-
complete, while language universality, language inclusion, and language equiv-

alence are EXPSPACE-complete.

24

The upper-bounds of Theorem 7(1) where shown in Section 5. The lower-
bounds are proved in Theorems 8 and 9 below. Theorem 10 corresponds to
Theorem 7(3), and Theorem 11 corresponds to Theorem 7(2).

First, we include the full proof of the auxiliary result, Proposition 3.

Proposition 3. Given an NFA A and a state projection T of A, checking whether
A is not unambiguous with respect to T can be done in NLOGSPACE.

Proof. The nondeterministic algorithm solving the considered problem, given
the input (A,7), proceeds as follows: at each step, the algorithm guesses two
runs m and 7’ of A over the same input. The algorithm keeps in memory only
the pair of states (q,q’), where ¢ (resp. ¢') is the last state of 7 (resp., '), and
a flag f which is 1 iff the projections 7'(7) and 7' (7’) of the two runs 7 and
7' guessed so far are distinct (initially, ¢ and ¢’ coincide with the initial state,
and f = 0). If f = 1 and ¢ and ¢ are both accepting (hence, m and 7’ are
two accepting runs over the same input and 7'(7) and 7'(7’) are distinct), then
the algorithm terminates with success. Otherwise, the algorithm guesses two
transitions of A from ¢ and ¢’ reading the same input symbol, leading to states
p and p’, respectively, re-writes the memory by replacing the pair (g,q’) with
the new pair (p,p’), and the flag f with the new flag f’, where f’ is 1 iff either
f=1or T(p) and Y'(p') are distinct, and the whole procedure is repeated. O

Theorem 8. The over-definedness and generalized well-definedness problems
for BSRV are both EXPSPACE-hard.

Proof. First, we observe that the complement of the over-definedness problem
can be reduced in linear time to the generalized well-definedness problem. Indeed,
let ¢ be a BSRV and ¢’ be the BSRV obtained from ¢ by adding the equation
2z = 0, where z is a fresh output variable. Evidently, ¢ is not over-defined iff ¢’ is
well-defined with respect to {z}. Hence, it suffices to prove EXPSPACE-hardness
for the over-definedness problem. The result is obtained by a polynomial-time
reduction from a domino-tiling problem for grids with rows of singly exponential
length [14]. An instance Z of this problem is a tuple Z = (C, A, m, dinit, dfinai) s
where C' is a finite set of colors, A C C* is a set of tuples (Cdown, Clefts Cup, Cright) Of
four colors, called domino-types, m > 0 is a natural number (written in unary),
and dinit, dfina € A are two domino-types. For n > 0, a tiling of Z for the
n x 2™-grid is a mapping f : [0,n —1] x [0,2™ — 1] — A satisfying the following:

— two adjacent cells in a row have the same color on the shared edge: for all
(4,5) € [0,n — 1] x [0,2™ — 1] with j < 2™ — 1, [£(4,)] right = [f (4,5 + 1)]ieps;
— two adjacent cells in a column have the same color on the shared edge: for
all (i,7) € [0,n—1] x[0,2™ = 1] with ¢ <n—1, [f(4,)]up = [[(E +1,5)] down;
- f(0,0) = dim’t and f(’fl — 1, 2m — 1) = dﬁnal~

A tiling of 7 is a tiling of Z for the n x 2™-grid for some n > 0. It is well-known
that checking the existence of a tiling for Z is EXPSPACE-complete [14]. In the

25

following, we construct in polynomial-time a BSRV ¢ such that there exists a
tiling for Z iff ¢ is over-defined. The set X of input variables of ¢ is given by

X:={d|deAYu{bf,....bl bl,....b.}

Thus, we associate to each domino-type d € A an input variable d. Moreover,
the additional input variables bf, ceey b} bi,..., b, are used to encode the value
of a m-bits counter numbering the cells of one row of the grid (by is 1 iff the
ith bit is 1, and b; is 1 iff the ith bit is 0). Thus, a cell is encoded as a sequence
of length m + 1, the first m positions giving the binary encoding of the column
number and the last position giving the associated domino-type.! Moreover, a
tiling is encoded as a sequence of rows, starting from the first row, and a row
lists the (encodings of) cells from left to right.

In the following, for a stream variable y and an integer k, we use y[k] for the
stream expression y[k|1] if k # 0, and for the stream expression y otherwise.

Now, we illustrate the construction of ¢ ensuring that the unique inputs for
which there is no output stream valuation are those encoding tilings of Z. We
use a uniform output variable PTU in order to check that the input encodes a
pseudo tiling, i.e. a tiling of Z, where the requirement that two adjacent cells in
a column have the same color on the shared edge is relaxed. For this, we use
an additional output variable PT which assumes the value 1 everywhere iff the
input streams encode a pseudo tiling. The equation for variable PT is as follows.

PT = Ven A -2) A

zeX z'eX\{z}

exactly one input variable has value 1

/\ (bt vb7) — (Slast A (bifiy [+1] V b1 [+1]))) A (b V byy) = (last A \/ d[+1])) A
i=1 deA

the input is a list of numbered cells
m

(first — (/\ bi[i = 1] Adinae[+m])) A (last — (A bf[i —m — 1] Adfinar)) A

i=1 i=1

the input starts with a d;,;;-cell numbered 0 the input ends with a dgpa-cell numbered 2™ — 1

{(ﬂlast/\ \/d) — ((bf[—i—l]\/b{[—&—l])/\
deA

(b} [=m] ¢ by[+1]) /\ Sl i) e b+ 1) 6 (6 [-m i =] AbTD) | A

the cells are listed in increasing order modulo 2™
i=m

/\d—> Iast\//\b \/ d'[m +1])

deA d’eA:(d’)kﬁ,:(d)ngm

two adjacent cells in a row have the same color on the shared edge

! We assume that the first bit is the least significant one.

26

The equation for the uniform output variable PTU is as follows. We also use an
extra variable test; in order to avoid situations where PT is everywhere 1 and
the uniform value of PTU is 0.

PTU = if (—first — (PTU[—1] <» PTU)) A (=PT — —=PTU) then PTU else -PTU
test; = of {((first APT A =PTU) — —testy) A (last — test;) A
((—first A —test;[—1] APT A =PTU) — —testy)} then test; else —testy

Thus, the uniform value of PTU is 1 iff the input encodes a pseudo tiling. Now,
we describe the crucial step of the construction of . Assume that the input
encodes a pseudo tiling, i.e. the uniform value of PTU is 1. Then, the input is
not a tiling of Z iff there are two adjacent cells (i,7) and (¢ + 1,7) in some
column which have different color on the shared edge. In order to check this last
condition, we use O(m+ |A]) additional output variables. In particular, for each
h = 1,2, we use the output variable Bl,, for marking a cell of the pseudo tiling: if
the uniform value of PTU is 1, then the stream for Bly, is in 0* 17 and the suffix
in 1 starts with a cell (“the cell marked by Bl,”).

Bly = if PTU — {(last — Bly) A ((Bly A =Bly[—1]) = (b V b7)) A
(=Bl = —Bly[—1]0]) A (Bly — Bly[+1])} then Bly else —Bl,

Moreover, we use the output variables my, my, and test, in order to ensure that
the cells marked by Bl; and Bly belongs to two adjacent rows (with the Bly’s
row following the Bli’s row). The stream for mj is in 0*17 and the suffix in
1T starts with the first cell numbered 0 following the cell marked by Bl; (Bly
included), while the stream for mj is in 170" and the prefix in 17 ends with the
first bit of the last cell numbered 0 which precedes the cell marked by Bl, (Bl
excluded). Finally, the variable test, is used to check that the first 1-value bit of
m; corresponds to the last 1-value bit of ms.

my; = if PTU — {(Iast — m1) AN (—|m1 — —\ml[—1|0]) AN

((my A =my[=1]0]) = (Bly A A\ bi[i —1]))} then my else =my
my = if PTU — {(last — —my) A (firslt:1—> m2) A (mz — ma[—1]) A
(=mz = —ma[+1[0]) A (-Bl2 A A\ bT[i = 1]) = m2) A
((ma A =ma[+1]) = (-Bla A A\ b [i — 1))} then my else =my
testy = if PTU — {(ma A =my[+1]) <—>Z(:r7111 A —=mq[—1]0])}
then test, else —tests

Finally, we use the output variables oby,...,oby, tests, and od for each d € A,
for ensuring that the cells marked by Bl; and Bl, have the same number (i.e.,
belong to the same column) and have different color on the shared edge. The

27

equation for ob; ensures that there is a uniform stream for ob; iff the ith bits of
the cells marked by Bly and Bl, have the same value. Moreover, for each d € A,
the equation for od ensures that there is a uniform stream for od iff either the
domino-type of the cell marked by Bl; is not d, or the cells marked by Bl; and
Bl, have different color on the shared edge. Thus, the equation for variable tests

requires that the output streams for oby, ..., oby,0d (d € A) are uniform.
2
ob; = if PTU — A {(Bly A =BIy[-1]0]) —
h=1

((b;[i — 1] — ob;[i — 1]) A (bj [i — 1] — —ob;[i — 1]))} then ob; else —ob;

od = if PTU — {((d[m] A Bly A =Bl1[—1]0]) — od[m]) A
((\V d'[m] A Bly A =Bly[—1]) = —od[m])} then od else —od
d'€ A:(d") down=(d)up

tests = if PTU — —first — (/\ (obi[~1] <> obi) A /\ (od[~1] <+ od))
=1 deA
then tests else —tests

Hence, the unique inputs for which the constructed BSRV ¢ has no output stream
valuation are those encoding tilings of Z. Thus, ¢ is over-defined iff there is a
tiling of Z. Note that the size of ¢ is quadratic in the size of Z. This concludes
the proof of Theorem 8. |

Theorem 9. The under-definedness and well-definedness problems for BSRV
are both PSPACE-hard.

Proof. By a polynomial-time reduction from a domino-tiling problem for grids
with rows of polynomial length [14]. An instance Z = (C, A, m, dinit, dfinai) of
this problem is defined as in the proof of Theorem 8. However, here, a tiling of
Z is a tiling of Z for the n x m-grid for some n > 0 (i.e., the length of any row
is m). It is well-known that checking the existence of a tiling for Z is PSPACE-
complete [14]. We construct in polynomial time a BSRV ¢ such that the following
holds:

— there exists a tiling of Z iff ¢ is under-defined;

— is not under-defined iff ¢ is well-defined.
Hence, the result follows. Now, we illustrate the construction of ¢. The set X of
input variables of the specification ¢ is given by

X :={d|de A} U {mk}

Thus, we associate to each domino-type d € A an input variable d. Moreover, the
additional input variable mk is used as a separator between two adjacent rows.
Thus, a tiling is encoded as a sequence of rows separated by the special marker,
starting from the first row. Additionally, the first row is preceded by the special
marker, and the last row is followed by the special marker. The specification
¢ has two output variables: PT and PTU. The output variable PT is used to
check that the input encodes a tiling of Z: in particular, PT assumes the value

28

1 everywhere iff the input streams encode a tiling. Formally, the equation for
variable PT is as follows.

PT = \/ (x A /\ ') A

reX z’eX\{z}

exactly one input variable has value 1

(first = (mk A dinae[+1]0])) A (last — (mk A djgipa[—1/0])) A

the input starts with a d;;-cell the input ends with a dgpa-cell

((mk/\ —last) — (mk[m + 1]0] A 7\ﬁmk[z’|1])) A

adjacent rows are separated by the marker

A (d — (mk[-+1]0] v \/ d’[+1|0])> A

deA d'€A:(d") 1esr=(a) right

two adjacent cells in a row have the same color on the shared edge

A (d% \/ d'[m+1|1])

deA A€ A:(d") down=(d) up

two adjacent cells in a column have the same color on the shared edge

Finally, the equation for the uniform output variable PTU is as follows.
PTU = if (—first = (PTU[-1|1] +» PTU)) A (=PT — =PTU) then PTU else -PTU

Note that if the input does not encode a tiling (i.e., for some position, PT assumes
the value 0), then the uniform value of PTU is 0. Otherwise, the uniform value
of PTU may be 0 or 1. Since for each input, the stream valuation for the other
output variable PT is uniquely determined, it follows that there is a tiling for
T iff ¢ is under-defined. Moreover, since for each input, there is some output
stream valuation, it follows that ¢ is not under-defined iff ¢ is well-defined.
Note that the size of ¢ is quadratic in the size of Z. Hence, the result follows,
which concludes the proof of Theorem 9. O

Theorem 10. For BSRV, viewed as language recognizers, language emptiness is
PSPACE-complete, while language universality, language inclusion, and language
equivalence are EXPSPACE-complete.

Proof. Recall that for NFA, emptiness is NLOGSPACE-complete, while universal-
ity, inclusion, and equivalence are PSPACE-complete. Hence, the upper bounds
of the theorem directly follows from Theorem 1. The matching lower bounds
for universality, inclusion, and equivalence directly follows from Theorem 8 and
the facts that language universality for BSRV is the complement of the over-
definedness problem, and language inclusion and language equivalence can be
reduced in linear time to language universality. It remains to show that language
emptiness for BSRV is PSPACE-hard. We modify the polynomial-time reduction

29

given in the proof of Theorem 9 as follows: the equation for the output variable
PTU of the BSRV ¢ is updated as follows:

PTU = if (1 > PTU) A (=PT = —PTU) then PTU else -PTU

Hence, PTU is a uniform output variable whose uniform value is always 1. More-
over, the output stream for PTU is defined iff the output stream for PT is in 17.
Additionally, the construction in the proof of Theorem 9 ensures that for each
input, the output stream for the output variable PT is uniquely determined,
and PT assumes the value 1 everywhere iff the input streams encode a tiling.
Hence, the updated construction is a polynomial-time reduction from a PSPACE-
complete problem to language emptiness for BSRV, and we are done. O

Theorem 11. Checking semantic equivalence for BSRV is EXPSPACE-complete.

Proof. Let ¢ be a BSRV over X and Y, ¢’ be a BSRV over X and Y’ and
Z CYNY'. Note that if Z = (), then ¢ and ¢’ are equivalent with respect to Z
iff L(¢) = L(¢"). Hence, the lower bound directly follows from Theorem 10. Now,
let us consider the upper bound. By a straightforward adaptation of Theorem 1,
one can construct in singly exponential time an NFA A, (resp., A,/) over 2XuZz
such that L£(A,) (resp., £L(Ay)) is the set of stream valuations over X U Z
which can be extended to valuation models of ¢ (resp., ¢’). It follows that ¢ and
¢ are equivalent with respect to Z iff £L(A,) = L(A,). Thus, since language
equivalence for NFA is PSPACE-complete, membership in EXPSPACE for the
considered problem follows. a

30

