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Abstract Regular Expressions (RE) are an algebraic formalism for expressing
regular languages, widely used in string search and as a specification language
in verification. In this paper, we introduce and investigate Visibly Rational
Expressions (VRE), an extension of RE for the class of Visibly Pushdown Lan-
guages (VPL). We show that VRE capture precisely the class of VPL. Moreover,
we identify an equally expressive fragment of VRE which admits a quadratic
time compositional translation into the automata acceptors of VPL. We also
prove that, for this fragment, universality, inclusion and language equivalence
are EXPTIME-complete. Finally, we provide an extension of VRE for VPL over
infinite words.

Keywords Visibly Pushdown Languages · Context-free specifications ·
Regular expressions · Algebraic characterization

1 Introduction

Visibly Pushdown Languages (VPL), introduced by Alur et al. [4,5], represent
a robust and widely investigated subclass of context-free languages which in-
cludes strictly the class of regular languages. A VPL consists of nested words,
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that is, words over an alphabet (pushdown alphabet) which is partitioned
into three disjoint sets of calls, returns, and internal symbols. This partition
induces a nested hierarchical structure in a given word obtained by associat-
ing to each call the corresponding matching return (if any) in a well-nested
manner. VPL are accepted by Visibly Pushdown Automata (VPA), a subclass
of pushdown automata which push onto the stack only when a call is read,
pops the stack only at returns, and do not use the stack on reading internal
symbols. Hence, the input controls the kind of operations permissible on the
stack, and thus the stack depth at every position [4]. This restriction makes
the class of VPL very similar in tractability and robustness to that of regular
languages. In particular, VPL are closed under intersection, union, comple-
mentation, renaming, concatenation and Kleene closure [4]. Moreover, VPA
(over finite words) are determinizable, and decision problems like universality,
equivalence and inclusion – which are undecidable for context-free languages
– become EXPTIME-complete for VPL. The theory of VPL is connected to the
theory of regular tree-languages since nested words can be encoded by labeled
binary trees satisfying some regular constraints, and there are polynomial-time
translations from VPL into regular tree languages over tree-encodings of nested
words, and vice versa. Furthermore, various alternative and constructive char-
acterizations of VPL have been given in terms of operational and descriptive
formalisms: logical characterizations by standard MSO over nested words ex-
tended with a binary matching-predicate (MSOµ) [4] or by fixpoint logics [10],
a context-free grammar based characterization [4], alternating automata based
characterizations [6,10], and a congruence-based characterization [3].

The theory of VPL has relevant applications in the formal verification and
synthesis of sequential recursive programs with finite data types modeled by
pushdown systems [7,5,2,19]. Runs in these programs can be seen as nested
words capturing the nested calling structure, where the call to and return
from procedures capture the nesting. Additionally, VPL have applications in
the streaming processing of semi-structured data, such as XML documents,
where each open-tag is matched with a closing-tag in a well-nested manner
[16,21,17,20,1,22]. Examples include type-checking (validation) and dynamic
typing of XML documents against schema specifications [17], and evaluation
of MSOµ queries on streaming XML documents [20].

Contribution. Regular Expressions [15,14] (RE) are an algebraic formalism for
describing regular languages. RE are widely adopted as a descriptive specifica-
tion language, for example in string search [23], and for extensions of temporal
logics for hardware model checking [13,18]. In this paper, we introduce and in-
vestigate a similar algebraic formalism for the class of VPL, that we call Visibly
Regular Expressions (VRE). VRE extend RE by adding two novel non-regular
operators which are parameterized by an internal action: (1) the binary Min-
imally Well-Matched Substitution operator (M -substitution for short), which
allows to substitute occurrences of the designated internal action by min-
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imally well-matched (MWM ) words;1 (2) and the unary Strict Mimimally
Well-Matched Closure operator (S-closure for short), which corresponds to
the (unbounded) iteration of the M -substitution operation. We also consider
a third operator which can be expressed in terms of M -substitution and S-
closure. The class of pure VRE is obtained by disallowing the explicit use of
this operator. Intuitively, M -substitution and S-closure, when applied to lan-
guages L of MWM words, correspond to classical tree language concatenation
and Kleene closure applied to the tree language encoding of the (nested) word
languages L (in accordance with the standard encoding of MWM words by
ordered unranked finite trees [1]).

Our results are as follows. First, we establish that VRE capture exactly
the class of VPL. Like the classical Kleene theorem [15], the translation from
automata (VPA) to expressions (VRE) involves a singly exponential blow-up.
For the converse direction (from VRE to VPA), the proposed construction
requires again single exponential time (it is an open question if this exponential
blow-up can be avoided). On the other hand, we show that pure VRE – whose
expressive power is equivalent to unrestricted VRE – can be compositionally
converted in quadratic time into equivalent VPA. The key of this translation is
given by a novel subclass of VPA. Next, we prove that universality, inclusion,
and language equivalence for pure VRE are EXPTIME-complete. Finally, we
also provide an algebraic characterization of VPL over infinite words.

A potential application of our algebraic formalism is as a schema speci-
fication language for semi-structured data such as XML documents. In fact,
usually, XML schema specifications are context-free grammars and their deriva-
tion trees give the tree representation of the associated sets of XML documents.
So, these specifications are typically compiled into tree automata. However, it
has been shown [17,20,1,22] that VPA are often more natural (and sometime
exponentially more succinct) than tree automata, and moreover preferable in
the streaming processing of XML documents.

Related Work. Another algebraic characterization of VPL has been given in [8],
where regular expressions are extended with an infinite family of operators,
which are implicit least fix-points. In fact, these operators encode in a linear
way a subclass of context-free grammars. In comparison, we introduce just
two operators which make our formalism really more lightweight and intuitive
to use. In [12], a characterization of VPL is given by morphisms to suitable
algebraic structures. Moreover, [12] introduces an extension of the Kleene-
closure free fragment of regular expressions obtained by adding a variant of
our substitution operator, and shows that this extension captures exactly the
first-order fragment of MSOµ over well-matched words.

The rest of the paper is structured as follows. In Section 2, we recall the
framework of visibly pushdown automata and visibly pushdown languages.
Next, in Section 3, we introduce and investigate the class of Visibly Rational

1 MWM words are words whose first symbol is a call and whose last symbol is the matching
return.
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Expressions. Then, in Section 4, we describe a compositional quadratic-time
translation from pure VRE to VPA, and in Section 5, we provide an algebraic
characterization of ω-VPL in terms of ω-VRE. Finally, in Section 6, we give
some concluding remarks.

2 Visibly pushdown languages

In this section, we recall the class of visibly pushdown automata and visibly
pushdown languages [4].

Pushdown Alphabet. A pushdown alphabet is a tuple Σ̃ = 〈Σcall , Σret , Σint〉
consisting of three disjoint finite alphabets: Σcall is a finite set of calls, Σret

is a finite set of returns, and Σint is a finite set of internal actions. For any
such Σ̃, the support of Σ̃ is Σ = Σcall ∪Σret ∪Σint . Therefore, Σ∗ is the set
of finite words over support alphabet. We will use c, c1, ci, . . . for elements of
Σcall , r, r1, ri, . . . for elements of Σret , �,�1,�i, . . . for elements of Σint , and
σ, σ1, σi, . . . for arbitrary elements of Σ.

Visibly Pushdown Automata and Visibly Pushdown Languages. A
Nondeterministic Visibly Pushdown Automaton on finite words (NVPA) [4]

over Σ̃ = 〈Σcall , Σret , Σint〉 is a tuple P = 〈Q, qin, Γ,∆, F 〉, where Q is a finite
set of (control) states, qin ∈ Q is the initial state, Γ is a finite stack alphabet,
∆ ⊆ (Q×Σcall×Q×Γ )∪(Q×Σret×(Γ∪{⊥})×Q)∪(Q×Σint×Q) is a transition
relation (where ⊥ /∈ Γ is the special stack bottom symbol), and F ⊆ Q is a set
of accepting states. A transition of the form (q, c, q′, γ) ∈ Q × Σcall × Q × Γ
is a push transition, where on reading the call c, the symbol γ 6= ⊥ is pushed
onto the stack and the control changes from q to q′. A transition of the form
(q, r, γ, q′) ∈ Q×Σret × (Γ ∪ {⊥})×Q is a pop transition, where on reading
the return r, γ is read from the top of the stack and popped, and the control
changes from q to q′ (if the top of the stack is⊥, then it is read but not popped).
Finally, on reading an internal action �, P can choose only transitions of the
form (q,�, q′) which do not use the stack.

A configuration of P is a pair (q, β), where q ∈ Q and β ∈ Γ ∗ · {⊥} is
a stack content. A run π of P over a finite word σ1 . . . σn−1 ∈ Σ∗ is a finite

sequence of the form π = (q1, β1)
σ1−→ (q2, β2) . . .

σn−1−→(qn, βn) such that (qi, βi)
is a configuration for all 1 ≤ i ≤ n, and the following holds for all 1 ≤ i ≤ n−1:

Push If σi is a call, then for some γ ∈ Γ , (qi, σi, qi+1, γ) ∈ ∆ and βi+1 = γ ·βi.
Pop If σi is a return, then for some γ ∈ Γ ∪ {⊥}, (qi, σi, γ, qi+1) ∈ ∆, and

either γ 6= ⊥ and βi = γ · βi+1, or γ = ⊥ and βi = βi+1 = ⊥.
Internal If σi is an internal action, then (qi, σi, qi+1) ∈ ∆ and βi+1 = βi.

For all 1 ≤ i ≤ j ≤ n, the subsequence of π given by πij = (qi, βi)
σi−→ . . .

σj−1−→
(qj , βj) is called subrun of π (note that πij is a run of P over σi . . . σj−1). The
run π is initialized if q1 = qin and β1 = ⊥. Moreover, the run π is accepting if
the last state is accepting, that is, if qn ∈ F . For two configurations (q, β) and

(q′, β′) and w ∈ Σ∗, we write (q, β)
w−→ (q′, β′) to mean that there is a run of
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P over w starting at (q, β) and leading to (q′, β′). The language L(P) of P is
the set of finite words w ∈ Σ∗ such that there is an initialized accepting run
of P on w. A language of finite words L ⊆ Σ∗ is a visibly pushdown language
(VPL) with respect to Σ̃ if there is an NVPA P over Σ̃ such that L = L(P).

We also consider Visibly Pushdown Automata on infinite words (ω-NVPA).

Formally (see [4]), a Büchi ω-NVPA over Σ̃ is a tuple P = 〈Q, qin, Γ,∆, F 〉,
where Q, qin, Γ,∆, and F are defined as for NVPA over Σ̃. A run π over an
infinite word σ1σ2 . . . ∈ Σω is an infinite sequence π = (q1, β1)

σ1−→ (q2, β2) . . .
that is defined using the natural extension of the definition of runs on finite
words. The run is accepting if for infinitely many i ≥ 1, qi ∈ F . The notions
of initialized run and (finite) subrun are defined as for NVPA. The ω-language
L(P) of P is the set of infinite words w ∈ Σω such that there is an initialized
accepting run of P on w. An ω-language L ⊆ Σω is an ω-visibly pushdown
language (ω-VPL) with respect to Σ̃ if there is a Büchi ω-NVPA P over Σ̃ such
that L = L(P ).

Matched calls and returns. Fix a pushdown alphabet Σ̃ = 〈Σcall , Σret , Σint〉.
For a finite or infinite word w over Σ, |w| is the length of w (we set |w| = ω
if w is infinite). For all 1 ≤ i ≤ |w|, w(i) is the ith symbol of w. A position
1 ≤ i ≤ |w| of w is a call (resp., return, internal) position if w(i) ∈ Σcall (resp.,
w(i) ∈ Σret , w(i) ∈ Σint). The empty word is denoted by ε.

The set WM (Σ̃) of well-matched words is the subset of Σ∗ inductively defined

as follows: (i) ε ∈WM (Σ̃) (ii) � ·w ∈WM (Σ̃) if � ∈ Σint and w ∈WM (Σ̃),

and (iii) c · w · r · w′ ∈WM (Σ̃) if c ∈ Σcall , r ∈ Σret , and w,w′ ∈WM (Σ̃).

Let i be a call position of a word w. If there is j > i such that j is a
return position of w and w(i + 1) . . . w(j − 1) is a well-matched word (note
that j is uniquely determined if it exists), we say that j is the matching return

of i along w, and i is the matching call of j along w. The set MWM (Σ̃) of
minimally well-matched words is the set of well-matched words of the form
c ·w · r such that c is a call, r is a return, and w is well-matched (note that r
corresponds to the matching return of c). For a language L ⊆ Σ∗, we define

MWM (L)
def
= L∩MWM (Σ̃), that is the set of words in L which are minimally

well-matched.

Example 1 Let Σcall = {c}, Σret = {r}, and Σint = {�}. Consider the word
w below. The word w is not well-matched, in particular, the call at position 1
has no matching return in w. Moreover, note that the subword w[2] . . . w[10]
is minimally well-matched.

1 2 3 4 5 6 7 8 9 10

c c � c � r c r � rw =
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3 Visibly Rational Expressions (VRE)

In this section, we introduce and investigate the class of Visibly Rational Ex-
pressions (VRE), an extension of regular expressions obtained by adding two
novel non-regular operators: the binary M -substitution operator and the unary
S-closure operator. First, we define the corresponding operations on languages
of finite words and show that VPL are effectively closed under these operations.
Then, in Subsection 3.1, we introduce VRE and establish their effective lan-
guage equivalence to the class of NVPA.

Let us fix a pushdown alphabet Σ̃ = 〈Σcall , Σret , Σint〉. For two languages
L,L′ ⊆ Σ∗ of finite words on Σ, we use L ·L′ to denote the standard concate-
nation of L and L′, and L∗ to denote the standard Kleene closure of L.

Definition 1 (M-substitution) Let w ∈ Σ∗, � ∈ Σint , and L ⊆ Σ∗. The
M -substitution of � by L in w, denoted by w x� L, is the language of finite
words over Σ obtained by replacing occurrences of � in w by minimally well-
matched words in L. Formally, w x� L is inductively defined as follows:

– εx� L
def
= {ε};

– (� · w′) x� L
def
=
(
MWM (L) · (w′ x� L)

)
∪
(
({�} ∩ L) · (w′ x� L)

)
– (σ · w′) x� L

def
= {σ} · (w′ x� L) for each σ ∈ Σ \ {�}.

For two languages L,L′ ⊆ Σ∗ and � ∈ Σint , the M -substitution of � by
L′ in L, written Lx� L′, is defined as follows:

Lx� L′
def
=

⋃
w∈L

w x� L′

Note that x� is associative. Moreover, if {�} ∩ L = ∅, then {�} x� L =
MWM (L).

Example 2 Let Σcall = {c1, c2}, Σret = {r}, and Σint = {�}. Let us consider
the languages L = {cn1 �� rn | n ≥ 1} and L′ = {c2}∗ · {r}∗. Then L x� L′
is given by {cn1 cm2 rm ck2 r

k rn | n,m, k ≥ 1}.

Definition 2 (M-closure and S-closure) Given L ⊆ Σ∗ and � ∈ Σint , the
M -closure of L through �, denoted by Lx� , is defined as follows:

Lx�
def
=
⋃
n≥0

Lx� (L ∪ {�}) x� . . .x� (L ∪ {�})︸ ︷︷ ︸
n occurrences of x�

.

The S-closure of L through �, denoted by L	� , is defined as follows:

L	�
def
= (MWM (L))x�

Note that L	� is contained in MWM (Σ̃). The M -closure operator is a derived
operator since it can be expressed in terms of S-closure and M -substitution
as follows:

Lx� = Lx� (L	� ∪ {�})
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Example 3 Let Σcall = {c1, c2}, Σret = {r1, r2}, and Σint = {�}. Let us
consider the languages L = {�, c1 � r1, c2 � r2} and L′ = {c1 r1, c2 r2}. Then,
Lx� x� L′ = {ci1 ci2 . . . cin rin . . . ri2 ri1 | n ≥ 1, i1, . . . , in ∈ {1, 2}}. It is
interesting to observe the following, where Lvis is a shortcut for Lx� x� L′.

Claim: there is no regular language Lreg such that MWM (Lreg) = Lvis.
Proof of the claim: By contradiction, assume there is a finite-state automaton
A = 〈Q, q0, ∆, F 〉 over Σ such that Lvis = MWM (L(A)). Let K ≥ 1 be such
that 2K > |Q| and LK be given by

LK = {ci1 ci2 . . . ciK riK . . . ri2 ri1 | i1, . . . , iK ∈ {1, 2}}

Note that LK consists of 2K words of length 2K. Fix an ordering w1, . . . , w2K

of such words, and for each 1 ≤ i ≤ 2K , let w′i (resp., w′′i ) be the prefix (resp.,
suffix) of wi of length K. Note that wi = w′i ·w′′i and for each j 6= i, w′i ·w′′j ∈
MWM (Σ̃) \ Lvis. Since LK ⊆ Lvis and 2K > |Q|, by hypothesis, there must
be two distinct words wi and wj , q ∈ Q, and two accepting runs πi and πj of

A over wi and wj of the forms πi = q0
w′i−→q w′′i−→qacc and πj = q0

w′j−→q
w′′j−→q′acc.

Hence, we deduce that w′i · w′′j ∈ L(A). Since w′i · w′′j ∈ MWM (Σ̃) \ Lvis, we
obtain a contradiction, and we are done. ut

Now we show that VPL are closed under M -substitution, M -closure and
S-closure. First, we need the following preliminary result.

Lemma 1 Given an NVPA P = 〈Q, qin, Γ,∆, F 〉, one can build in linear time

an NVPA P ′ accepting MWM (L(P)) of the form P ′ = 〈Q′, q′in, Γ ∪ Γ̂ ,∆′, F ′〉,
where Γ̂ is a fresh copy of Γ , |Q′| = |Q|+ 2 and Q′ ⊇ Q. Moreover, the push

transitions from q′in push symbols in Γ̂ , and each internal transition in ∆′ is
also in ∆.

Proof Q′ = Q ∪ {q′in, q′acc}, where q′in and q′acc are two distinct fresh states,
F ′ = {q′acc}, and ∆′ is obtained from ∆ by adding the following transitions,

where for each γ ∈ Γ , γ̂ denotes the copy of γ in Γ̂ :

– for every push transition (qin, c, q, γ) ∈ ∆ from the initial state of P, we
add the push transition (q′in, c, q, γ̂);

– for every pop transition (q, r, γ, qacc) ∈ ∆ leading to an accepting state
qacc ∈ F and popping γ 6= ⊥, we add the pop transition (q, r, γ̂, q′acc).

Note that there are no transitions of P ′ leading to the initial state q′in and
there are no transitions of P ′ outgoing from the unique accepting state q′acc.
It remains to show that L(P ′) = MWM (L(P)). We consider the inclusion
L(P ′) ⊆ MWM (L(P)) (the converse inclusion is trivial). Let w ∈ L(P ′).
We need to show that w ∈ MWM (L(P)). By construction, there are only
push transitions (resp., pop transitions) from the initial state (resp., leading
to the unique accepting state) in P ′. Hence, w is of the form w = c · w′ ·
r and there is an initialized accepting run of P ′ over w of the form π =
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(q′in,⊥)
c−→(q, γ̂ · ⊥)

w′−→(p, γ̂ ′ · α)
r−→(q′acc, α) such that (qin, c, q, γ) ∈ ∆ and

(p, r, γ′, qacc) ∈ ∆ for some qacc ∈ F . Let us consider the subrun π′ of π

corresponding to (q, γ̂ ·⊥)
w′−→(p, γ̂ ′ ·α). By construction, symbols in Γ̂ cannot

be neither popped nor pushed along π′, and π′ uses only transitions of P. It
follows that γ′ = γ, α = ⊥, w′ ∈ WM (Σ̃), and there is also a run of P over

w′ of the form (q, γ · ⊥)
w′−→(p, γ · ⊥). Hence, w ∈ MWM (Σ̃) and there is an

initialized accepting run of P over w. This means that w ∈ MWM (L(P)),
which concludes the proof of the lemma. ut

Theorem 1 (S-closure) Let � ∈ Σint and P = 〈Q, qin, Γ,∆, F 〉 be an

NVPA over Σ̃. Then, one can construct in polynomial time an NVPA accepting
(L(P))	� with |Q|+ 2 states and |Γ | · (|Q|+ 2) stack symbols.

Proof Let P = 〈Q, qin, Γ,∆, F 〉 be a NVPA over Σ̃ and P ′ = 〈Q′, q′in, Γ ∪
Γ̂ ,∆′, F ′〉 be the NVPA accepting MWM (L(P )) given by Lemma 1, where
Q′ ⊇ Q and |Q′| = |Q|+2. The result follows from the construction of an NVPA

P ′′ accepting (L(P ′))	� with |Q′| states and stack alphabet Γ ∪ Γ̂ ∪ Q × Γ̂ .
First, we informally describe the construction of P ′′. Essentially, P ′′ simulates
P ′ step by step, but when P ′ performs an internal transition of the form
(q,�, p), then from the current state q, P ′′ can choose to either process � as
P ′, or recursively process instead some guessed word w ∈ L(P ′)	� as follows.
P ′′ guesses a call c that is the initial symbol of w, and chooses a push transition
(q′in, c, q

′, γ) ∈ ∆′ from the initial state of P ′ (the construction of P ′ ensures

that γ ∈ Γ̂ ). In the same step, P ′′ pushes onto the stack both γ and the target
state p ∈ Q of the internal transition (q,�, p) of P ′, and moves to state q′.
This compound step allows P ′′ to guarantee that when the stack is popped
on reading the matching return of c (corresponding to the last symbol of the
guessed word w), P ′′ can restart the simulation of P ′ from the desired control
state p. Moreover, when the matching return of c is read, P ′′ guarantees that
the pair (p, γ) is popped from the stack if and only if from the current state of
P ′′, there is some pop transition of P ′ which pops γ and leads to an accepting
state q′acc from F ′. Note that since P ′ accepts only minimally well-matched
words, the pair (p, γ) pushed onto the stack is eventually popped. Formally,

the NVPA P ′′ is given by P ′′ = 〈Q′, q′in, Γ ∪ Γ̂ ∪ (Q× Γ̂ ), ∆′′, F ′〉, where ∆′′ is
obtained from ∆′ by adding the following transitions:

– New Push transitions: for each internal transition (q,�, p) ∈ ∆′ – note
that p ∈ Q – and for each push transition from the initial state of the form
(q′in, c, q

′, γ) ∈ ∆′ – note that γ ∈ Γ̂ –, we add the new push transition
(q, c, q′, (p, γ)).

– New Pop transitions: for each pop transition (q, r, γ, qacc) ∈ ∆′ which pops

γ ∈ Γ̂ and leads to an accepting state qacc ∈ F ′, we add for each p ∈ Q,
the new pop transition (q, r, (p, γ), p).

It remains to show that the construction is correct, i.e., L(P ′′) = (L(P ′))	� .
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Inclusion L(P ′′) ⊆ [L(P ′)]	� : let w ∈ L(P ′′). Hence, there is an initialized
accepting run π of P ′′ over w. Let N(π) be the number of steps along π
obtained by executing a new push transition. We prove by induction on N(π)
that w ∈ [L(P ′)]	� , hence, the result follows.

Base case: N(π) = 0. Since L(P ′) ⊆ [L(P ′)]	� , it suffices to show that π is
also an initialized accepting run of P ′ over w. This holds since the initial stack
content in π is empty and the new push (resp., pop) transitions push (resp.,

pop) symbols which are not in the stack alphabet Γ ∪ Γ̂ of P ′.
Induction step: N(π) > 0. By construction, π can be written in the form

π = (q′in,⊥)
w′−→(q, α)

c−→(q′, (p, γ) · α)
w′′−→(qacc, β) with w = w′ · c · w′′ (1)

such that qacc ∈ F ′, (q, c, q′, (p, γ)) is a new push transition, and the suffix π′′ of
π over w′′ does not use new push transitions. We claim that the top (p, γ) of the
initial stack content (p, γ) · α of π′′ is popped along π′′, i.e., the first position
in the word c · w′′ is a matched call position. We assume the contrary and
derive a contradiction. It follows from this assumption that c ·w′′ /∈ MWM (Σ̃)
and by construction, π′′ cannot use new transitions. Hence, we deduce that

there is also a run of P ′ over w′′ of the form (q′, γ · ⊥)
w′′−→(qacc, β

′) for some
stack content β′. Since (q, c, q′, (p, γ)) is a new push transition, by construction
(q′in, c, q

′, γ) ∈ ∆′. Hence, we obtain that c·w′′ ∈ L(P ′). This is a contradiction

since L(P ′) ⊆ MWM (Σ̃) and c · w′′ /∈ MWM (Σ̃). Thus, the claim holds, i.e.
the initial stack content (p, γ) · α of π′′ is popped along π′′. Therefore, π′′ can
be written in the form

π′′ = (q′, (p, γ) · α)
u−→(q′′, (p, γ) · α)

r−→(p, α)
v−→(qacc, β), w′′ = u · r · v (2)

such that the prefix of π′′ over u does not use new transitions, u ∈ WM (Σ̃),
and (q′′, r, (p, γ), p) is a new pop transition. By construction, (q′′, r, γ, q′acc) ∈
∆′ for some q′acc ∈ F ′. Since u ∈WM (Σ̃), we deduce that there is also a run

of P ′ over u of the form (q′, γ · ⊥)
u−→(q′′, γ · ⊥). Thus, since (q′in, c, q

′, γ) ∈ ∆′
(by construction and the fact that (q, c, q′, (p, γ)) is a new push transition),
it follows that c · u · r ∈ L(P ′). Moreover, since (q,�, p) ∈ ∆′ ⊆ ∆′′ (by
construction and the fact that (q, c, q′, (p, γ)) is a new push transition), by (1)
and (2), there is an initialized accepting run π′ of P ′′ over w′ ·� · v such that
N(π′) < N(π). By the induction hypothesis, w′ · � · v ∈ [L(P ′)]	� . Thus,

since c · u · r ∈ L(P ′) ⊆ MWM (Σ̃) and w = w′ · c · u · r · v, we obtain that
w ∈ [L(P ′)]	� as we wanted to show.

Converse inclusion [L(P ′)]	� ⊆ L(P ′′): let w ∈ [L(P ′)]	� . We show by
induction on |w| that w ∈ L(P ′′) (note that |w| ≥ 2), hence the result follows.

If w ∈ L(P ′) ⊆ MWM (Σ̃), the result is obvious, since ∆′ ⊆ ∆′′ (note that
this case includes the base case |w| = 2). Now, assume that w /∈ L(P ′). Then,

there is u ∈ L(P ′) ⊆ MWM (Σ̃) such that w is of the form w = w′ · u · w′′
and w′ ·� ·w′′ ∈ [L(P ′)]	� . By the induction hypothesis, w′ ·� ·w′′ ∈ L(P ′′).
Hence, there is an initialized accepting run of P ′′ over w′ ·� · w′′ of the form
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(q′in,⊥)
w′−→(q, α)

�−→(p, α)
w′′−→(qacc, β) such that (q,�, p) ∈ ∆′. Thus, it is

sufficient to show that there is a run of P ′′ over u of the form (q,⊥)
u−→(p,⊥).

Since u ∈ L(P ′) ⊆ MWM (Σ̃), and (q,�, p) ∈ ∆′, by construction, the result
follows. This concludes the proof of the theorem. ut
Theorem 2 (M-substitution and M-closure) Let P = 〈Q, qin, Γ,∆, F 〉
and P ′ = 〈Q′, q′in, Γ ′, ∆′, F ′〉 be two NVPA over Σ̃, and � ∈ Σint . Then, one
can construct in polynomial time:
1. an NVPA accepting L(P)x�L(P ′) with |Q|+ |Q′| states and at most |Γ ∪

Γ ′|+ |Γ ′| · |Q| stack symbols.
2. an NVPA accepting (L(P))x� with 2|Q|+2 states and 2|Γ | · (|Q|+1) stack

symbols.

Proof Proof of Condition 1: let � ∈ Σint and P = 〈Q, qin, Γ,∆, F 〉 and
P ′ = 〈Q′, q′in, Γ ′, ∆′, F ′〉 as in the statement of the theorem. Without loss
of generality we assume that Q and Q′ are disjoint, and we denote by Γ ′0
the set of symbols pushed by the push transitions of P ′ from the initial state.
Assume that � /∈ L(P ′) (the other case being similar). Note that this condition
can be trivially checked. Let ∆0 obtained from ∆ by removing every internal
transition of the form (q,�, p). We construct an NVPA P ′′ over Σ̃ accepting
L(P)x�L(P ′) as follows: P ′′ = 〈Q∪Q′, qin, Γ ∪ Γ ′ ∪ (Q× Γ ′0), ∆′′, F 〉, where
∆′′ is obtained from ∆0 ∪∆′ by adding the following transitions.

– New Push transitions: for each internal transition of P of the form (q,�, p) ∈
∆ and for each push transition of P ′ from the initial state of the form
(q′in, c, q

′, γ′) ∈ ∆′ – note that γ′ ∈ Γ ′0 –, we add the new push transition
(q, c, q′, (p, γ′)).

– New Pop transitions: for each pop transition (q′, r, γ′, q′acc) ∈ ∆′ of P ′
which pops γ′ ∈ Γ ′0 and leads to an accepting state q′acc ∈ F ′, we add for
each p ∈ Q, the new pop transition (q′, r, (p, γ′), p).

The proof of correctness is a simplified version of that given in Theorem 1, so
we omit it.

Proof of Condition 2: let � ∈ Σint and P = 〈Q, qin, Γ,∆, F 〉 be an NVPA.
By the proof of Theorem 1, one can construct an NVPA P ′ accepting L(P)	�

with |Q| + 2 states and stack alphabet Γ ∪ Γ̂ ∪ (Q × Γ̂ ), where Γ̂ is a fresh
copy of Γ . Moreover, each push transition of P ′ from the initial state pushes a
symbol in Γ̂ . Thus, by the proof given for Condition 1, it follows that one can
construct a NVPA P ′′ with 2|Q| + 2 states and 2|Γ | · (|Q| + 1) stack symbols
accepting L(P) x� ([L(P)]	� ∪ {�}) = [L(P)]x� . This concludes the proof
of the theorem. ut

3.1 VRE and Equivalence Between VRE and NVPA

Definition 3 The syntax of Visibly Rational Expressions (VRE) E over the

pushdown alphabet Σ̃ is inductively defined as follows:

E := ∅
∣∣ ε ∣∣ σ ∣∣ (E ∪ E)

∣∣ (E · E)
∣∣ E∗ ∣∣ (E x� E)

∣∣ E	�
∣∣ Ex�
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where σ ∈ Σ and � ∈ Σint . A pure VRE is a VRE which does not contain
occurrences of the M -closure operator x� . A VRE E denotes a language L(E)
of finite words over Σ, defined as follows:

– L(∅) = ∅,
– L(ε) = {ε},
– L(σ) = {σ} for each σ ∈ Σ,
– L(E1 ∪ E2) = L(E1) ∪ L(E2),
– L(E1 · E2) = L(E1) · L(E2),
– L(E∗) = [L(E)]∗,
– L(E1 x� E2) = L(E1) x� L(E2),
– L(E	�) = [L(E)]	� , and
– L(Ex�) = [L(E)]x� .

As usual, the size |E| of a VRE E is the length of the string describing E.

Remark 1 By Definition 2, theM -closure operator is a derived operator. Hence,
pure VRE and unrestricted VRE capture the same class of languages.

It is known [1] that for the class of regular languages (over a pushdown alpha-
bet), NVPA can be exponentially more succinct than nondeterministic finite-
state automata (NFA). We establish an analogous result for VRE and regular
expressions.

Theorem 3 There are a pushdown alphabet Σ̃ and a family {Ln}n≥1 of reg-

ular languages over Σ̃ such that for each n ≥ 1, Ln can be denoted by a VRE
of size O(n) and every regular expression denoting Ln has size at least 2Ω(n).

Proof Let Σ̃ = 〈Σcall , Σret , {�}〉 with Σcall = {c1, c2} and Σret = {r1, r2}. For
n ≥ 1, let Ln be the finite (hence, regular) language {ci1ci2 . . . cinrin . . . ri2ri1 |
i1, . . . , in ∈ {1, 2}}. Evidently, Ln can be expressed by the VRE of size O(n)
given by E x� E x� . . .x� E︸ ︷︷ ︸

n−1 times

x� (c1 · r1 ∪ c2 · r2), where E = (c1 ·� · r1 ∪

c2 · � · r2). However, as shown in [1], any NFA accepting Ln requires at least
2n states. Thus, since regular expressions can be converted in linear time into
equivalent NFA, the result follows. ut

In the following, we show that VRE and NVPA are effectively language
equivalent. First, we recall the following known result [4].

Theorem 4 (From [4]) Let P = 〈Q, qin, Γ,∆, F 〉 and P ′ = 〈Q′, q′in, Γ ′, ∆′, F ′〉
be two NVPA over Σ̃. Then, one can construct in linear time:
1. an NVPA accepting L(P)∪L(P ′) (resp. L(P) ·L(P ′)) with |Q|+ |Q′| states

and |Γ |+ |Γ ′| stack symbols.
2. an NVPA accepting [L(P)]∗ with 2|Q| states and 2|Γ | stack symbols.

By Theorems 1, 2, and 4, a given VRE can be effectively and composi-
tionally translated into an equivalent NVPA. However, due to Condition 2 in
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Theorem 2 (concerning the M -closure operator) and Condition 2 in Theorem 4
(concerning the Kleene closure operator), the translation can involve a singly
exponential blow-up. In the next section, we show that this exponential blow-
up is due essentially to the presence of the M -closure operator (in particular,
we propose a quadratic time translation of pure VRE into equivalent NVPA).

Corollary 1 Given a VRE E, one can construct in singly exponential time
an NVPA accepting L(E).

Now, we show that any NVPA can be converted into an equivalent VRE.
First, we need some additional notation. Let P = 〈Q, qin, Γ,∆, F 〉 be an NVPA

over a pushdown alphabet Σ̃. Given p, p′ ∈ Q, a summary of P from p to p′

is a run π of P over some word w ∈ MWM (Σ̃) from a configuration of the
form (p, β) to a configuration of the form (p′, β′) for some stack contents β

and β′. Observe that if π is such a run over w ∈ MWM (Σ̃) from (p, β) to
(p′, β′), then β′ = β and the portion of the stack corresponding to β is never
read in π. In particular, there is also a run of P from (p,⊥) to (p′,⊥) over
w which uses the same transitions used by π. Given a run π of P over some
word w and S ⊆ Q×Q, we say that the run π uses only sub-summaries from
S whenever for all q, q′ ∈ Q, if there is subrun of π which is a summary from
q to q′, then (q, q′) ∈ S. Given a finite alphabet Λ disjoint from Σ, we denote

by Σ̃Λ the pushdown alphabet 〈Σcall , Σret , Σint ∪Λ〉 obtained by interpreting
the elements in Λ as internal actions.

Theorem 5 Given an NVPA P, one can construct in single exponential time
a VRE E such that L(E) = L(P).

Proof Let P = 〈Q, qin, Γ,∆, F 〉. We construct a finite alphabet Λ disjoint from

Σ and a VRE E over Σ̃Λ denoting L(P); the additional symbols in Λ are used
only as parameters for intermediate substitutions. The alphabet Λ is given by
{�pp′ | p, p′ ∈ Q}. Moreover, we define PΛ = 〈Q, qin, Γ,∆Λ, F 〉 as the NVPA

over Σ̃Λ obtained from P by adding for each (p, p′) ∈ Q × Q, the internal
transition (p,�pp′ , p′). Given q, q′ ∈ Q, S ⊆ Q × Q, and Λ′ ⊆ Λ, we define
R(q, q′,S, Λ′) as the language of finite words w over ΣΛ′ (ΣΛ′ is the support of

Σ̃Λ′) such that there is a run of PΛ over w from (q,⊥) to some configuration
of the form (q′, β) which uses only sub-summaries from S.2 By construction,
L(P) is the union of the sets R(q, q′, Q×Q, ∅) such that q = qin and q′ ∈ F .
Thus, Theorem 5 is a consequence of the following fact: for all q, q′ ∈ Q,
S ⊆ Q×Q, and Λ′ ⊆ Λ, the languages R(q, q′,S, Λ′) and WM (R(q, q′,S, Λ′))
can be effectively denoted by VRE of sizes singly exponential in the size of P,

where WM (R(q, q′,S, Λ′)) def
= R(q, q′,S, Λ′)∩WM (Σ̃). The proof of this fact

proceeds by induction on the cardinality of the finite set S.

Base case: S = ∅. We show that the languages WM (R(q, q′, ∅, Λ′)) and
R(q, q′, ∅, Λ′) can be effectively denoted by regular expressions over ΣΛ′ of

2 note that if w ∈ WM (Σ̃Λ′ ), then β = ⊥.
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sizes singly exponential in the size of P. The result follows because a regular
expression is also a VRE. For each i = 0, 1, 2, let Ai = 〈Q, qin, ∆i, F 〉 be the
nondeterministic finite-state automaton (NFA) over ΣΛ′ , where ∆i is defined
as follows:

– ∆0 is obtained from the transition relation of PΛ by removing all the
push and pop transitions, and the internal transitions (p,�pp′ , p′) with
�pp′ /∈ Λ′;

– ∆1 is obtained from ∆0 by adding for each pop transition of P of the form
(q, r,⊥, q′), the transition (q, r, q′);

– ∆2 is obtained from ∆0 by adding for each push transition (q, c, q′, γ) of
P, the transition (q, c, q′).

First, consider WM (R(q, q′, ∅, Λ′)). Note that no word in WM (R(q, q′, ∅, Λ′))
contains occurrences of calls or occurrences of returns. Hence, WM (R(q, q′, ∅, Λ′))
is the set of words w such that there is a run of A0 over w from q to
q′. Kleene’s theorem [15] for regular expressions over words guarantees that
WM (R(q, q′, ∅, Λ′)) can be effectively denoted by a regular expression over ΣΛ′

of size singly exponential in the size of P. Hence, the result for WM (R(q, q′, ∅, Λ′))
follows. Now, let us consider the language R(q, q′, ∅, Λ′). Note that each word
w ∈ R(q, q′, ∅, Λ′) is of the form w = w′ · w′′ such that w′ does not contain
occurrences of calls and w′′ does not contain occurrences of returns. Hence,
R(q, q′, ∅, Λ′) =

⋃
p∈Q L1,q,p · L2,p,q′ , where L1,q,p (resp., L2,p,q′) is the set of

words w such that there is a run of the NFA A1 (resp., NFA A2) over w from
q to p (resp., p to q′). Thus, from the Kleene theorem for regular expressions
over words, the result for R(q, q′, ∅, Λ′) holds as well.

Induction step: S = S ′ ∪ {(p, p′)} with (p, p′) /∈ S ′. Let Pp→p′ be the set:

{(s, c, r, s′) ∈ Q×Σcall×Σret×Q | there is γ ∈ Γ. (p, c, s, γ), (s′, r, γ, p′) ∈ ∆}

So, Pp→p′ is the set of tuples (s, c, r, s′) such that there is a push transition
from p to s reading the call c and a matching pop transition from s′ to p′

reading r. Moreover, let S(p, p′,S ′ ∪ {(p, p′)}, Λ′) be the language over ΣΛ′

defined as follows:

S(p, p′,S ′ ∪ {(p, p′)}, Λ′) def
=([ ⋃

(s,c,r,s′)∈Pp→p′

{c} ·WM (R(s, s′,S ′, Λ′ ∪ {�pp′})) · {r}
]x�

pp′
)
x�pp′

[ ⋃
(s,c,r,s′)∈Pp→p′

{c} ·WM (R(s, s′,S ′, Λ′)) · {r}
]

Note that S(p, p′,S ′∪{(p, p′)}, Λ′) represents the set of words w ∈ MWM (Σ̃Λ′)
such that there is a summary of PΛ over w from p to p′ which uses only sub-
summaries from S ′∪{(p, p′)}. Moreover, by the induction hypothesis, the sets
WM (R(s, s′,S ′, Λ′ ∪ {�pp′})) and WM (R(s, s′,S ′, Λ′)) used in the definition
of S(p, p′,S ′ ∪ {(p, p′)}, Λ′) can be effectively denoted by VRE. Thus, one can
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construct a VRE over Σ̃Λ denoting the language S(p, p′,S ′∪{(p, p′)}, Λ′). Now,
we observe that:

WM (R(q, q′,S ′ ∪ {(p, p′)}, Λ′)) = WM (R(q, q′,S ′, Λ′))∪
WM (R(q, q′,S ′, Λ′ ∪ {�pp′})) x�pp′

S(p, p′,S ′ ∪ {(p, p′)}, Λ′)
R(q, q′,S ′ ∪ {(p, p′)}, Λ′) = R(q, q′,S ′, Λ′)∪

R(q, q′,S ′, Λ′ ∪ {�pp′}) x�pp′
S(p, p′,S ′ ∪ {(p, p′)}, Λ′)

Thus, by the induction hypothesis, the languages WM (R(q, q′,S ′∪{(p, p′)}, Λ′))
and R(q, q′,S ′ ∪{(p, p′)}, Λ′) can be effectively denoted by VRE. Moreover, by
expanding recursively the above equalities until the base case (the number of
iterations is at most |Q|2), we deduce that each of the constructed VRE has
size singly exponential in the size of the NVPA P. This concludes the proof of
the theorem. ut

Corollary 1 and Theorem 5 precisely identify the expressive power of VRE.

Corollary 2 (Pure) Visibly Rational Expressions capture the class of VPL.

4 Pure VRE

In this section we study pure VRE expressions.

First, we show that pure VRE can be compositionally translated in quadratic
time into equivalent NVPA. The key of the proposed efficient and elegant trans-
lation is represented by a subclass of NVPA, that we call strong NVPA. Then,
in Subsection 4.1, we establish the exact complexity of some language decision
problems for pure VRE. In the reminder of this section, we fix a pushdown
alphabet Σ̃ and we use an additional special stack symbol ⊥̂.

Definition 4 A strong NVPA over Σ̃ is an NVPA P = 〈Q, qin, Γ,∆, F 〉 over

Σ̃ such that ⊥̂ ∈ Γ and the following holds:

– Initial State Requirement : qin /∈ F and there are no transitions leading to
qin.

– Final State Requirement : there are no transitions from accepting states.
– Push Requirement : every push transition from the initial state qin pushes

onto the stack the special symbol ⊥̂.
– Pop Requirement : for all q, p ∈ Q and r ∈ Σret , (q, r,⊥, p) ∈ ∆ if and only

if (q, r, ⊥̂, p) ∈ ∆.
– Well-formed (semantic) Requirement : for all w ∈ L(P), every initialized

accepting run of P over w leads to a configuration whose stack content is
in {⊥̂}∗ · ⊥.

Note that the initial state requirement implies that ε /∈ L(P).
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The push requirement is used in particular to implement in an efficient way
M -substitution and S-closure. The pop requirement ensures that pop opera-
tions which pop the special stack symbol ⊥̂ have the same effect as popping
the empty stack (i.e., the stack containing just the special bottom symbol ⊥).
This requirement and the well-formed requirement are used in particular to
implement in an efficient way concatenation and Kleene closure. We first show
efficient constructions for strong NVPA for the operations of union, concate-
nation, and Kleene closure.

Theorem 6 Let P = 〈Q, qin, Γ,∆, F 〉 and P ′ = 〈Q′, q′in, Γ ′, ∆′, F ′〉 be two

strong NVPA over Σ̃. Then, one can construct in linear time
1. a strong NVPA accepting [L(P)]∗ \ {ε} with |Q| + 1 states and |Γ | stack

symbols, and
2. a strong NVPA accepting L(P)∪L(P ′) (resp., L(P)·L(P ′)) with |Q|+|Q′|+1

(resp., |Q|+ |Q′|) states and |Γ |+ |Γ ′| − 1 stack symbols.

Proof Proof of Condition 1. Let P = 〈Q, qin, Γ,∆, F 〉 be a strong NVPA

over Σ̃ an q′in be a fresh control state. Define P ′ = 〈Q ∪ {q′in}, q′in, Γ,∆′, F 〉,
where ∆′ is obtained from ∆ by adding new transitions as follows. First, for
each transition t ∈ ∆ leading to an accepting state, we add the transition
obtained from t by replacing the target state of t with the previous initial
state qin. Let ∆0 be the resulting set of transitions. Then, ∆′ is obtained from
∆0 by adding the following transitions: for each transition t ∈ ∆0 from the
previous initial state qin, we add the transition obtained from t by replacing
the source state of t with the new initial state q′in. Note that the construction is
identical to the classical construction for regular languages. We need to prove
that P ′ is a strong NVPA accepting [L(P)]∗ \ {ε}. Since P is a strong NVPA,
by construction, P ′ satisfies the initial and final state requirements and the
push and pop requirements of Definition 4. Thus, it only remains to be shown
that L(P ′) = [L(P)]∗ \ {ε} and P ′ satisfies the well-formed requirement.

First, we show that L(P ′) ⊆ [L(P)]∗ \ {ε} and P ′ satisfies the well-formed
requirement. Let w ∈ L(P ′) (note that w 6= ε since P ′ satisfies the initial state
requirement) and π be an initialized accepting run of P ′ over w of the form

(q′in,⊥)
w−→(qacc, β) for some stack content β and qacc ∈ F . We need to show

that w ∈ [L(P)]∗ \ {ε} and β ∈ {⊥̂}∗ · ⊥. By construction, w is of the form
w = w1 · . . . ·wn for some n ≥ 1, such that w1, . . . , wn are non-empty and there
are runs π1,. . ., πn of P over w1, . . ., wn, respectively, of the form

π1 = (qin,⊥)
w1−→ (p1, β1), π2 = (qin, β1)

w2−→ (p2, β2), . . . ,

πn = (qin, βn−1)
wn−→ (pn, βn)

where pi ∈ F for each 1 ≤ i ≤ n, and β = βn. We show by induction on i
that wi ∈ L(P) and βi ∈ {⊥̂}∗ · ⊥ for all 1 ≤ i ≤ n. Since π1 is an initialized
accepting run of P over w1 and P satisfies the well-formed requirement, the
result for the base case holds. For the induction step, let us consider the run
πi = (qin, βi−1)

wi−→ (pi, βi) with i > 1. By the induction hypothesis, βi−1 ∈
{⊥̂}∗ · ⊥. Moreover, βi is of the form βi = β′i · {⊥̂}m · ⊥ for some m ≥ 0,
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where β′i consists of the symbols pushed on the stack along πi on reading the
unmatched call positions of wi. Since P satisfies the pop requirement, we easily
deduce that there is also an initialized accepting run of P over wi of the form
πi = (qin,⊥)

wi−→ (pi, β
′
i · ⊥). Since P satisfies the well-formed requirement,

β′i ∈ {⊥̂}∗. Hence, βi ∈ {⊥̂}∗ · ⊥, and we are done.

It remains to show that [L(P)]∗ \ {ε} ⊆ L(P ′). Let w ∈ [L(P)]∗ \ {ε}. We
need to prove that w ∈ L(P ′). Since P satisfies the well-formed requirement,
by construction, w can be written in the form w = w1 · . . . ·wn for some n ≥ 1,
such that there are runs π1,. . ., πn of P ′ over w1, . . ., wn, respectively, of the
form

π1 = (qin,⊥)
w1−→(qin, β1 · ⊥), π2 = (qin,⊥)

w2−→(qin, β2 · ⊥), . . . ,

πn = (qin,⊥)
wn−→(qacc, βn · ⊥)

where qacc ∈ F , and βi ∈ {⊥̂}∗ for each 1 ≤ i ≤ n. Since P ′ satisfies the pop

requirement, we easily deduce that for all 1 < i ≤ n and β ∈ {⊥̂}∗ · ⊥, there

are β′ ∈ {⊥̂}∗ · ⊥ and a run of P ′ over wi of the form (qin, β)
wi−→(p, βi · β′)

where p = qin if i < n, and p = qacc otherwise. Hence, the existence of an
initialized accepting run of P ′ over w = w1 · . . . · wn follows, which concludes
the proof of Condition 1 of Theorem 6.

Proof of Condition 2. Let P = 〈Q, qin, Γ,∆, F 〉 and P ′ = 〈Q′, q′in, Γ ′, ∆′, F ′〉
be two strong NVPA over Σ̃. Without loss of generality, we assume that Q and
Q′ are disjoint. Let q′′in be a fresh control state. The strong NVPA accepting
L(P)∪L(P ′) is given by P ′ = 〈Q∪Q′∪{q′′in}, q′′in, Γ ∪Γ ′, ∆′′, F ∪F ′〉, where ∆′′

is obtained from ∆∪∆′ by adding the following transitions: for each transition
t ∈ ∆ (resp., t ∈ ∆′) from the initial state qin (resp., q′in), we add the tran-
sition obtained from t by replacing the source state of t with the new initial
state q′′in. Correctness of the construction follows. Finally, the strong NVPA
accepting L(P) ·L(P ′) is given by P ′ = 〈Q∪Q′, qin, Γ ∪Γ ′, ∆′′, F ′〉, where ∆′′

is obtained from ∆∪∆′ by adding the following transitions: for each transition
t ∈ ∆ leading to an accepting state of P, we add the transition obtained from
t by replacing the target state of t with the initial state q′in of P ′. The proof
of correctness is a simplified version of that given for Condition 1. Note that
the given constructions are identical to the classical constructions for regular
languages. This concludes the proof of Theorem 6. ut

Next we show that strong NVPA are “efficiently” closed under M -substitution
and S-closure. For this, we need the following preliminary result.

Lemma 2 Let P = 〈Q, qin, Γ,∆, F 〉 be a strong NVPA over Σ̃. Then, one can

construct in linear time a strong NVPA over Σ̃ accepting MWM (L(P)) with
|Q| states and |Γ |+ 1 stack symbols.

Proof Fix a strong NVPA P = 〈Q, qin, Γ,∆, F 〉 over Σ̃. We first remove those
transitions from the initial state to some accepting state, and all pop and
internal transitions outgoing from the initial state. These transitions can never
be used along runs over words from MWM (L(P)). Let γ0 be a fresh stack
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symbol. We construct a strong NVPA P ′ over Σ̃ as follows: P ′ = 〈Q, qin, Γ ∪
{γ0}, ∆′, F 〉, where ∆′ is obtained from ∆ as follows:

1. For every transition t ∈ ∆ whose target state is accepting, we remove t,
unless t is a pop transition which pops either ⊥ or ⊥̂.

2. For every pop transition t ∈ ∆ which pops ⊥ and whose target is not
accepting we remove t from ∆′.

3. For every pop transition t ∈ ∆ which pops ⊥̂ and whose target state is not
accepting we replace t with the transition obtained from t by replacing the
popped symbol ⊥̂ with γ0.

4. For every push transition t ∈ ∆ which pushes ⊥̂ and such that the source
state is not qin and the target state is not accepting, we replace t with the
transition obtained from t by replacing the pushed symbol ⊥̂ with γ0.

Since P is a strong NVPA, by construction P ′ satisfies the initial and final
state requirements and the push and the pop requirements of Definition 4.
It suffices to show that L(P ′) = MWM (L(P)), because the well-formed re-
quirement of P ′ follows from this equality. We first consider the inclusion
L(P ′) ⊆ MWM (L(P)). Let w ∈ L(P ′). Since there are no P ′-transitions from
the initial state to an accepting state and qin /∈ F , it follows that |w| > 1.
Since P ′ satisfies the push requirement and there are only push transitions
in P ′ from the initial state, by Condition 1 in the construction, there is an
initialized accepting run of P ′ over w of the form

π = (qin,⊥)
c−→(q, ⊥̂ · ⊥)

w′−→(p, α)
r−→(qacc, α

′) with w = c · w′ · r

such that (qin, c, q, ⊥̂) ∈ ∆ and the last step (p, α)
r−→(qacc, α

′) of π is ob-

tained by popping either ⊥ or ⊥̂. Since P ′ satisfies the initial and final state

requirements, the subrun π′ of π corresponding to (q, ⊥̂ ·⊥)
w′−→(p, α) does not

visit neither the initial state nor any accepting states. Hence, in particular,
by Conditions 2 – 4 in the construction, the stack symbol ⊥̂ is not popped or
pushed along π′. Thus, we deduce that w ∈ MWM (Σ̃), α = ⊥̂ ·⊥, α′ = ⊥, and

(p, r, ⊥̂, qacc) ∈ ∆. Moreover, by Conditions 2 – 4 in the construction, there

is also a run of P over w′ from (q, ⊥̂ · ⊥) to (p, ⊥̂ · ⊥). Thus, we obtain that
w ∈ MWM (L(P)), and L(P ′) ⊆ MWM (L(P)), as desired.

For the converse inclusion MWM (L(P)) ⊆ L(P ′), let w ∈ MWM (L(P)).
Then, w is of the form w = c · w′ · r, where c ∈ Σcall , r ∈ Σret , and w′ is a
well-matched word. Moreover, P is a strong NVPA (in particular, P satisfies
the push requirement), and consequently there is an initialized accepting run

of P over w of the form π = (qin,⊥)
c−→(q, ⊥̂·⊥)

w′−→(p, ⊥̂·⊥)
r−→(qacc,⊥) such

that the subrun π′ corresponding to (q, ⊥̂ · ⊥)
w′−→(p, ⊥̂ · ⊥) does not visit the

initial state or any accepting states. By construction, (qin, c, q, ⊥̂) ∈ ∆′ and

(p, r, ⊥̂, qacc) ∈ ∆′. Moreover, w′ does not contain unmatched returns, so the
subrun π′ of P does not use transitions which pop ⊥. Thus, by Conditions 2
– 4 in the construction, there is also a run of P ′ over w′ from (q, ⊥̂ · ⊥) to
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(p, ⊥̂ · ⊥). Hence, we obtain that w ∈ L(P ′), which concludes the proof of
Lemma 2. ut

Theorem 7 (S-closure) Let P = 〈Q, qin, Γ,∆, F 〉 be a strong NVPA over

Σ̃ and � ∈ Σint . One can construct in linear time a strong NVPA over Σ̃
accepting (L(P))

	� with |Q| states and |Q|+ |Γ |+ 1 stack symbols.

Proof By Lemma 2, it suffices to show that given a strong NVPA P = 〈Q, qin, Γ,
∆, F 〉 over Σ̃ such that L(P) ⊆ MWM (Σ̃), one can construct a strong NVPA
accepting (L(P))

	� with |Q| states and |Q| + |Γ | stack symbols. Fix such a

strong NVPA P = 〈Q, qin, Γ,∆, F 〉, where L(P) ⊆ MWM (Σ̃). Without loss of
generality we assume that Q and Γ are disjoint and all the transitions from
the initial state are push transitions. We construct an NVPA P ′ over Σ̃ as
follows: P ′ = 〈Q, qin, Γ ∪ Q,∆′, F 〉, where ∆′ is obtained from ∆ by adding
the following transitions.

– New Push transitions: for each internal transition (q,�, p) ∈ ∆ – note that
q 6= qin and p 6= qin – and for each push transition from the initial state
(qin, c, q

′, ⊥̂) ∈ ∆, we add the new push transition (q, c, q′, p).

– New Pop transitions: for each pop transition (q, r, ⊥̂, qacc) ∈ ∆ which pops

the special stack symbol ⊥̂ and leads to an accepting state qacc ∈ F , we
add for each p ∈ Q \ {qin}, the new pop transition (q, r, p, p).

It remains to be shown that P ′ is a strong NVPA over Σ̃ accepting (L(P))
	� .

Since P is a strong NVPA, by construction, it easily follows that P ′ satisfies
the initial and final state requirements, and the push and pop requirements of
Definition 4. Thus, it remains to show that P ′ satisfies the well-formed require-
ment and L(P ′) = (L(P))

	� . Since (L(P))
	� ⊆ MWM (Σ̃), the well-formed

requirement for P ′ directly follows from the equality L(P ′) = (L(P))
	� . The

proof of L(P ′) = (L(P))
	� is analogous to the proof of Theorem 1. ut

Theorem 8 (M-substitution) Let � ∈ Σint and P = 〈Q, qin, Γ,∆, F 〉 and

P ′ = 〈Q′, q′in, Γ ′, ∆′, F ′〉 be two strong NVPA over Σ̃. Then, one can construct

in linear time a strong NVPA over Σ̃ accepting L(P)x�L(P ′) with |Q|+ |Q′|
states and |Γ |+ |Γ ′|+ |Q| stack symbols.

Proof Note that one can trivially check whether � is in the language of an
NVPA. Thus, by Lemma 2, it suffices to show that given two strong NVPA
P = 〈Q, qin, Γ,∆, F 〉 and P ′ = 〈Q′, q′in, Γ ′, ∆′, F ′〉 over Σ̃ such that L(P ′) ⊆
MWM (Σ̃), one can construct two strong NVPA accepting L(P)x�L(P ′) and
L(P)x�(L(P ′) ∪ {�}), respectively, and both having |Q| + |Q′| states and
|Γ |+ |Γ ′|+ |Q|−1 stack symbols. We illustrate the construction for the strong
NVPA accepting L(P)x�L(P ′) (the other case being similar). Without loss of

generality, we assume that the sets Q, Q′, Γ \ {⊥̂}, and Γ ′ \ {⊥̂} are pairwise
disjoint. Let ∆0 be obtained from ∆ by removing every internal transition
of the form (q,�, p). We construct an NVPA P ′′ over Σ̃ as follows: P ′′ =
〈Q∪Q′, qin, Γ ∪Γ ′ ∪Q,∆′′, F 〉, where ∆′′ is obtained from ∆0 ∪∆′ by adding
the following transitions.
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– New Push transitions: for each internal transition of P of the form (q,�, p) ∈
∆ – note that p 6= qin – and for each push transition of P ′ from the ini-
tial state of the form (q′in, c, q

′, ⊥̂) ∈ ∆′, we add the new push transition

(q, c, q′, p) if q 6= qin and the new push transition (qin, c, q
′, ⊥̂) otherwise.

– New Pop transitions: for each pop transition of P ′ of the form (q′, r, ⊥̂, q′acc) ∈
∆′ which pops the special stack symbol ⊥̂ and leads to an accepting state
q′acc ∈ F ′, we add the following pop transitions: (i) for each p ∈ Q \ {qin},
the new pop transition (q′, r, p, p), and (ii) for each internal transition

(qin,�, p) ∈ ∆, the new pop transitions (q′, r, ⊥̂, p) and (q′, r,⊥, p) (this
last transition is used just to ensure that the pop requirement is satisfied).

In order to conclude the proof of Theorem 8, we need to show the following.

Claim: P ′′ is a strong NVPA over Σ̃ accepting L(P)x�L(P ′).
Proof of the claim: since P and P ′ are strong NVPA, by construction, it follows
that P ′′ satisfies the initial and final state requirements, and the push and
pop requirements in Definition 4. It remains to show that P ′′ satisfies the
well-formed requirement and L(P ′′) = L(P)x�L(P ′). First, let us consider
the inclusion L(P)x�L(P ′) ⊆ L(P ′′). Every transition of P which is not
labeled by the internal action � is also a transition of P ′′. Moreover, L(P ′) ⊆
MWM (Σ̃). Hence, it is sufficient to show that for all (q,�, p) ∈ ∆ and w ∈
L(P ′), there is a run of P ′′ over w from (q,⊥) to (p,⊥), which follows directly
by construction.

It remains to show that L(P ′′) ⊆ L(P)x�L(P ′) and P ′′ satisfies the well-
formed requirement. In fact, we prove a stronger result. Let w ∈ Σ∗ and π be
an initialized run of P ′′ having the form π = (qin,⊥)

w−→(s, β) for some stack
content β and s ∈ Q. Let N(π) be the number of steps along π obtained by
executing a new push transition. We prove by induction on N(π) that there

exists an initialized run of P having the form (qin,⊥)
H(w)−→ (s, β) over a word

H(w) such that w ∈ H(w)x�L(P ′). Hence, since P satisfies the well-formed
requirement, the result follows.

Base case: N(π) = 0. Since the new pop transitions start at states which are
not in Q, we deduce that π is an initialized run of P over w which does not
use internal transitions of the form (q,�, p) ∈ ∆. Hence, w does not contain
occurrences of �. Thus, by setting H(w) = w, the result holds in this case.

Induction step: N(π) > 0. Let (q, c, q′, p) be the last new push transition used

by π, where p ∈ Q ∪ {⊥̂}. Then, π can be written in the form

π = (qin,⊥)
w′−→ (q, α)

c−→ (q′, p · α)
w′′−→ (s, β) with w = w′ · c · w′′

where the suffix π′′ of π over w′′ does not use new push transitions. Since
q ∈ Q, by the induction hypothesis, there is an initialized run of P hav-

ing the form (qin,⊥)
H(w′)−→ (q, α) over a word H(w′) ∈ Σ∗ such that w′ ∈

H(w′)x�L(P ′). Thus, it suffices to show that there is a run of P having

the form (q, α)
H(c·w′′)−→ (s, β) over a word H(c · w′′) ∈ Σ∗ such that c · w′′ ∈
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H(c · w′′)x�L(P ′). Since q′ ∈ Q′ and s ∈ Q, by construction it follows that
there is exactly one step of π′′ which uses a new pop transition. Moreover,
such a step pops p from the initial stack content p ·α of π′′ (otherwise, by con-
struction, it easily follows that the initial stack content of π′′ is not popped
along π′′ and there is a prefix u · r of w′′ such that c · u · r ∈ L(P ′) and

c · u · r /∈ MWM (Σ̃), which is a contradiction). Thus, there is a new pop tran-
sition (q′′, r, p, p′) matching the new push transition (q, c, q′, p), and π′′ can be
written in the form

π′′ = (q′, p · α)
u−→ (q′′, p · α)

r−→ (p′, α)
v−→ (s, β) with w′′ = u · r · v

where u ∈WM (Σ̃). Moreover, there is also a run of P ′ over the well-matched

word u of the form (q′, ⊥̂ · ⊥)
u−→(q′′, ⊥̂ · ⊥), and the suffix of π′′ over v cor-

responds to a run of P which does not use internal transitions labeled by �.
Hence, v does not contain occurrences of �. By construction (q′in, c, q

′, ⊥̂) ∈ ∆′,
(q′′, r, ⊥̂, q′acc) ∈ ∆′ for some q′acc ∈ F ′, and either p = ⊥̂, q = qin, and
(qin,�, p′) ∈ ∆, or p = p′ ∈ Q and (q,�, p) ∈ ∆. Hence, (q,�, p′) ∈ ∆.
It follows that c · u · r ∈ L(P ′), there is a run of P over � · v of the form

(q, α)
�·v−→(s, β), and c ·w′′ = c ·u · r · v ∈ � · vx�L(P ′), and we are done. This

concludes the proof of the claim, and hence of Theorem 8. ut

Now, we can prove the main result of this section.

Theorem 9 Let E be a pure VRE. Then, one can construct in quadratic time
an NVPA P accepting L(E) with at most |E|+1 states and |E|2 stack symbols.

Proof Since one can trivially check in linear time whether ε ∈ L(E), it suffices
to show that one can construct in quadratic time a strong NVPA accepting
L(E) \ {ε} with at most |E| + 1 states and |E|2 stack symbols. The proof
is by induction on |E|. The base case holds immediately. For the induction
step, the result follows from the induction hypothesis and Theorems 6, 7 and
8. As an example, we illustrate the case E = E1x�E2. By the induction
hypothesis, one can construct two strong NVPA P1 = 〈Q1, q

1
in, Γ1, ∆1, F1〉

and P2 = 〈Q2, q
2
in, Γ2, ∆2, F2〉 accepting L(E1) \ {ε} and L(E2) \ {ε}, re-

spectively. Moreover, |Q1| ≤ |E1| + 1, |Q2| ≤ |E2| + 1, |Γ1| ≤ |E1|2, and
|Γ2| ≤ |E2|2. By Theorem 8, one can construct in linear time a strong NVPA
P = 〈Q, qin, Γ,∆, F 〉 accepting (L(E1) \ {ε})x�(L(E2) \ {ε}) = L(E) \ {ε}.
Moreover, |Q| = |Q1|+ |Q2| and |Γ | = |Γ1|+ |Γ2|+ |Q1|. Hence, |Γ | ≤ |E1|2 +
|E2|2 + |E1|+1 ≤ (|E1|+ |E2|+1)2 = |E|2 and |Q| ≤ |E1|+ |E2|+2 = |E|+1,
and the result follows.

For concatenation E = E1 · E2 one starts with the two NVPA P1 and
P2 accepting L(E1) and L(E2) and modifies slightly the construction in the
proof of Theorem 6 if either E1 or E2 accept ε. In the first case (if ε ∈
L(E1)) one adds extra transitions from the fresh new state qin to mimic the
inital transitions of P2. In the second case (if ε ∈ L(E2)), one replicates those
transitions of P1 that reach final states modified to reach final states of P2

(and hence, final states of the resulting strong NVPA as well). It is routinary
to check that the resulting automatong accepts L(E1 · E2) \ {ε}. ut
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4.1 Decision Problems for pure VRE

In this subsection, we show the following result.

Theorem 10 The universality, inclusion, and language equivalence problems
for pure VRE are EXPTIME-complete.

The decision problems of universality, inclusion, and equivalence for NVPA
are EXPTIME-complete (see [4]). Consequently, the construction in Theo-
rem 9 directly implies the upper bounds stated in Theorem 10. For the match-
ing lower bounds, it is sufficient to show EXPTIME-hardness for the univer-
sality problem because universality can be reduced in linear time to equiva-
lence and language inclusion. The hardness result for universality is proved
by a polynomial time reduction from the word problem for polynomial space
bounded alternating Turing Machines (TM) with a binary branching degree,
which is a well-known EXPTIME-complete problem [11]. Fix such a machine
M = 〈A,Q,Q∀, Q∃, q0, δ, F 〉, where A is the input alphabet, Q = Q∀ ∪ Q∃ is
the finite set of states, which is partitioned into a set Q∃ of existential states
and a set Q∀ of universal states, q0 ∈ Q is the initial state, F ⊆ Q is the set of
accepting states, and δ : Q×A→ (Q×A×{←,→})×(Q×A×{←,→}) is the
transition function. In each step, M overwrites the tape cell being scanned,
and the tape head moves one position to the left (←) or to the right (→).
Configurations of M are words in A∗ · (Q × A) · A∗. A TM configuration
C = α · (q, a) · α′ denotes that the tape content is α · a · α′, the current state
is q, and the reading head is at position |α|+ 1. For the TM configuration C,
the left (resp., right) successor of C is the successor of C obtained by choos-
ing the left (resp., the right) triple in δ(q, a). Since M is polynomial space
bounded, there is an integer constant k ≥ 1 such that for each α ∈ A∗, the
space needed by M on the input α is bounded by |α|k. Fix an input α and
let n = |α|. Without loss of generality we can assume that k = 1, n > 1,
and each (reachable) TM configuration (from the fixed input α) has length
exactly n. The initial TM configuration Cα is given by (q0, a1), . . . , an, where
α = a1, . . . , an. Now, we recall the notion of acceptance. A pseudo computa-
tion tree (over the fixed input α) is a finite binary tree T where each node
is labeled by a TM configuration (of length n); T is initialized if the root is
labeled by the initial TM configuration Cα, and T is accepting if each leaf
is labeled by an accepting TM configuration (i.e., the associated state is in
F ). A computation tree (over α) is a pseudo computation tree satisfying the
following additional requirements: each internal node labeled by an universal
TM configuration (i.e., the associated state is in Q∀) has two children, labeled
by the left and right successors of C, respectively, while each internal node
labeled by an existential TM configuration (i.e., the associated state is in Q∃)
has a unique child, labeled by some successor of C.M accepts α if there is an
initialized accepting computation tree of M over α.

In the following, we construct in polynomial time in the size of n and the
size ofM a pushdown alphabet Σ̃ and a pure VRE E over Σ̃ such that L(E) =
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Σ∗ iff M does not accept α. Hence, EXPTIME-hardness of the universality
problem for pure VRE follows. The pushdown alphabet Σ̃ is given by

Σ̃ = 〈{call}×B, {ret}×B, {�}〉 where B = A∪Q×A∪{∃L,∃R,∀L,∀R, end}

Intuitively, the symbols ∃L and ∃R (resp., ∀L and ∀R) are used to tag the left
and right successors of an existential (resp., universal) configuration, while the
extra symbol end is used to tag TM configurations associated with leaf nodes
of (pseudo) computation trees. For a word w over B, we denote by (call, w)
(resp., (ret, w)) the word over Σ obtained from w by replacing each letter
b ∈ B occurring in w with (call, b) (resp., (ret, b)). For two words w and w′, w′

is a subword of w if w is of the form w = u · w′ · v for some words u and v.

Encoding of (pseudo) computation trees. We use a standard encoding of

(pseudo) computation trees by minimally well-matched words (over Σ̃) [9,4].
This encoding corresponds to a slight variant of the well-known nested word
encoding of finite binary labeled trees, where the given tree is processed in
depth-first order as follows: for each node x, we first visit the subtree associated
with the left child (if any), and successively, the subtree associated with the
right child (if any). Note that each internal node x is visited exactly twice:
the first time is when we enter the node x coming from its parent node (in
case x is the root, then x is the first node to be examined), and the second
time is when we reach x from its right child if it exists, and from its left child
otherwise. Moreover, we assume that each leaf is visited twice as well. Thus,
the encoding wT ∈ MWM (Σ̃) of a pseudo computation tree T is obtained as
follows. When a node x with TM configuration C is visited for the first time,
we write the subword (call, d · C · d′) (consisting of calls), where

– d = ∃L if x is the root, and d is defined as follows otherwise, where C ′ is the
configuration of the parent node y of x: d ∈ {∃L,∃R} if C ′ is existential,
and d = ∀L (resp., d = ∀R) if C ′ is universal and x is the left (resp., right)
child of y;

– d′ = end if x is a leaf-node, and d′ is empty otherwise.

Finally, when we visit the node x for the last time, then we write the sub-
word (ret, (d · C · d′)rev) (consisting of returns),3 which matches the subword
associated with the first visit of x. This encoding ensures the following crucial
property: for all nodes x and y of T labeled by TM configurations Cx and Cy
such that y is the child of x, there is a subword of wT encoding Cx · Cy or its
reverse. More precisely, any subword (call, wC) of wT , which encodes the first
visit of an internal node xC with TM configuration C, is followed by a sub-
word (call, wL) corresponding to the left child of xC in T if C is an universal
configuration, and to the unique child of xC in T otherwise. Moreover, if C is
an universal configuration, then the subword (ret, (wR)rev) of w corresponding
to the last visit of the right child xR of xC in T is followed by the subword
(ret, (wC)rev) corresponding to the last visit of xC .

3 for a word w, wrev denotes the reverse of w.
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Let Codes(α) be the set of words w ∈ Σ∗ encoding initialized accepting
computation trees (over α). We construct in time polynomial in n and the size

of M a pure VRE over Σ̃ which denotes the language Σ∗ \ Codes(α).

Construction of a pure VRE over Σ̃ denoting Σ∗ \Codes(α). First, we
define some languages of finite words over Σ as follows:

– Lin: the set of words w ∈ Σ∗ of the form w = (call,∃L · Cα) · w′ for some
w′ (initialization requirement).

– Lacc: the set of words w ∈ Σ∗ such that for each subword w′ · (call, end)
of w with w′ ∈ Σn, w′ contains some symbol of the form (call, (q, a)) with
q ∈ F (acceptance requirement).

– Lpseudo: the set of words w ∈ Σ∗ which encode pseudo computation trees.
In particular, Lpseudo is the intersection of the following languages:

– Lpseudo,1: the set of words w ∈ MWM (Σ̃) whose first symbol is (call,∃L)
and such that w does not contain occurrences of � and for each call sym-
bol of the form (call, b) occurring in w, the matching return is (ret, b).

– Lpseudo,2: the set of words w ∈ Σ∗ such that each occurrence of a call
(call,Q), where Q ∈ {∃L,∃R,∀L,∀R}, is followed by a subword of the
form (call, C·b), where C is a TM configuration and b ∈ {∃L,∃R,∀L, end}.
Moreover, if b 6= end, then b ∈ {∃L,∃R} if C is existential, and b = ∀L
otherwise.

– Lpseudo,3: the set of words w ∈ Σ∗ such that each occurrence of (call, end)
is followed by (ret, end), and each occurrence of a return symbol (ret, b)
with b /∈ {∃L,∃R,∀L,∀R} is not followed by a call symbol.

– Lpseudo,4: the set of words w ∈ Σ∗ such that if a return (ret,Q) occurs in
a non-terminal position, where Q ∈ {∃L,∃R,∀R}, then this occurrence
is followed by a return of the form (ret, b) with b ∈ A ∪ (Q×A).

– Lpseudo,5: the set of words w ∈ Σ∗ such that each occurrence of the
return (ret,∀L) is followed by the call (call,∀R).

Note that in the encoding of pseudo computation trees T , the language
Lpseudo,1 corresponds to the requirement that the subword associated with
the second visit of a node x of T is the reverse of the subword associated
with the first visit of x. The language Lpseudo,2 ensures that the first visit
of an internal node x of T must be followed by the first visit of node y,
where either y is the unique child of x, or x has two children and y is
the left child of x. Moreover, Lpseudo,2 ensures that if x is labeled by an
existential (resp., universal) configuration, then the subword encoding the
first visit of y is tagged by a symbol in {∃L,∃R} (resp., ∀L). The language
Lpseudo,4 corresponds to the requirement that if a non-root node x is either
the right child of the parent node y (if y has two children) or the unique
child of y, then the last visit of x must be followed by the last visit of the
parent node. Finally, the la nguage Lpseudo,5 ensures that the last visit of
a node x, which is the left child of a node having two children, is followed
by the first visit of the right child of the parent node.

– Lfaithful: it is the intersection of the following two languages
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– Lfaithful,1: the set of words w ∈ Σ∗ such that for each subword (call, C1)·
(call,Q) · (call, C2) of w for which Q ∈ {∃L,∀L,∃R} and C1 and C2 are
two TM configurations, the following holds:
• if Q ∈ {∃L,∀L} then C2 is the left successor of C1 in M.
• if Q = ∃R then C2 is the right successor of C1 in M.

– Lfaithful,2: the set of words w ∈ Σ∗ s.t. for each subword (ret, (C1)rev) ·
(ret,Q) · (ret, (C2)rev) of w for which Q ∈ {∃L,∃R,∀R} and C1 and C2

are two TM configurations, the following holds:
• if Q = ∃L then C1 is the left successor of C2 in M.
• if Q = {∃R,∀R} then C1 is the right successor of C2 in M.

Note that the proposed encoding ensures that for each word w ∈ Lpseudo

(i.e., w encodes a pseudo computation tree), w ∈ Lfaithful if and only if w
encodes a computation tree.

Thus,

Codes(α) = Lin ∩ Lacc ∩
i=5⋂
i=1

Lpseudo,i ∩ Lfaithful,1 ∩ Lfaithful,2

and then

Σ∗\Codes(α) = Σ∗\Lin ∪Σ∗\Lacc ∪
i=5⋃
i=1

Σ∗\Lpseudo,i ∪Σ∗\Lfaithful,1 ∪Σ∗\Lfaithful,2

Hence, it suffices to show that for all L ∈ {Lin,Lacc,Lpseudo,1, . . . ,Lpseudo,5,
Lfaithful,1, Lfaithful,2}, it is possible to build in polynomial time a pure VRE

over Σ̃ denoting the language Σ∗ \ L. The constructions for the languages
Σ∗ \L with L ∈ {Lin,Lacc,Lpseudo,3,Lpseudo,4,Lpseudo,5} are straightforward.
Moreover, the constructions for Σ∗ \ Lfaithful,1 and Σ∗ \ Lfaithful,2 are very
similar. Thus, here, we focus on the languages Σ∗ \ Lpseudo,1, Σ∗ \ Lpseudo,2,
and Σ∗ \ Lfaithful,1. We use some simplifying notation: for A,B ⊆ Σ, we write

A to denote the VRE
⋃
σ∈A

σ, and A \B to denote the VRE
⋃

σ∈A\B

σ.

Pure VRE for Σ∗ \ Lpseudo,1: first, we construct a pure VRE E denoting the

language Σ∗ \MWM (Σ̃) as follows

E
def
= (Σ \Σcall) ·Σ∗ ∪ Σcall · [(� x� Σ∗)∗ · (Σcall ∪�)∗]∗⋃⋃

c∈Σcall , r∈Σret

[� x� (c ·Σ∗ · r)] · Σ+

Then, the pure VRE denoting the language Σ∗ \ Lpseudo,1 is given by
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(Σ \ {(call,∃L)}) ·Σ∗ ∪ Σ∗ ·� ·Σ∗ ∪ E⋃
Σ∗ ·

⋃
(call,b)∈Σcall , (ret,b′)∈Σret , b′ 6=b

[� x� ((call, b) ·Σ∗ · (ret, b′))] · Σ∗

Pure VRE for Σ∗ \ Lpseudo,2:

Σ∗ · ({call} × {∃L,∃R,∀L,∀R}) ·
[

Σn · (Σ \ {call} × {∃L,∃R,∀L, end})⋃
i=n⋃
i=1

[Σi−1 · (Σ \ {call} × (A ∪Q×A)) ·Σn−i+1]⋃
i=n⋃
i=1

[Σi−1 · {call} × (Q∃ ×A) ·Σn−i · (Σ \ {call} × {∃L,∃R, end})]⋃
i=n⋃
i=1

[Σi−1 · {call} × (Q∀ ×A) ·Σn−i · (Σ \ {call} × {∀L, end})]⋃(
Σ \ ({call} × (Q×A))

)n⋃
i=n⋃
i=1

j=n⋃
j=i

Σi−1 · ({call} × (Q×A)) ·Σj−i+1 · ({call} × (Q×A)) ·Σn−j+1
]
·Σ∗

The last two lines correspond to C not being a valid configuration (no state
or more than one state, resp.)

Pure VRE for Σ∗ \ Lfaithful,1: let C = u1 . . . un be a TM configuration.
For each 1 ≤ i ≤ n, the value u′i of the ith cell of the left (resp., right)
successor of C is completely determined by the values ui−1, ui and ui+1 (taking
ui+1 for i = n and ui−1 for i = 1 to be some special symbol). We denote
by NL(ui−1, ui, ui+1) (resp., NR(ui−1, ui, ui+1)) our expectation for u′i (these
functions can be trivially obtained from the transition function δ of M). The
pure VRE for Σ∗ \ Lfaithful,1 is defined as follows:

i=n⋃
i=1

⋃
u1,u2,u3∈Λ

⋃
dir∈{L,R}

Σ∗ · Ei,u1,u2,u3 · {call}×{∃dir,∀dir} · [{call}×Λ]i−1·

· (Σ \ {(call, Ndir(u1, u2, u3))}) · [{call} × Λ]n−i · Σ∗

where Λ = A ∪ Q × A and Ei,u1,u2,u3
is defined as follows. We assume that

1 < i < n (the other cases being similar)

Ei,u1,u2,u3

def
= [{call}×Λ]i−2 · (call, u1) · (call, u2) · (call, u3) · [{call}×Λ]n−i−1
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5 ω-Visibly Rational Expressions

In this section, we introduce the class of ω-Visibly Rational Expressions (ω-
VRE) and provide a Büchi-like theorem for ω-VPL in terms of ω-VRE. Fix a

pushdown alphabet Σ̃. For a language L of finite words over Σ, we denote by
Lω the standard ω-Kleene closure of L.

Definition 5 The syntax of ω-VRE I over Σ̃ is inductively defined as follows:

I := (E)ω
∣∣ (I ∪ I)

∣∣ (E · I)

where E is a VRE over Σ̃. Note that ω-VRE are defined similarly to ω-regular
expressions. An ω-VRE I is pure if every VRE subexpression is pure. An ω-VRE
I denotes a language of infinite words over Σ, written L(I), defined as follows:
L(Eω) = [L(E)]ω, L(I ∪ I ′) = L(I) ∪ L(I ′), and L(E · I) = L(E) · L(I).

We show that ω-VRE capture the class of ω-VPL. For this, we need the
following preliminary result establishing that ω-VPL can be expressed in terms
of VPL in the same way as ω-regular languages can be expressed in terms of
regular languages.

Theorem 11 Let L be an ω-VPL with respect to Σ̃. Then, there are n ≥ 1
and VPL L1,L′1, . . . ,Ln,L′n with respect to Σ̃ such that L =

⋃i=n
i=1 Li · (L′i)ω.

Moreover, the characterization is constructive.

Proof Fix a Büchi NVPA P = 〈Q, qin, Γ,∆, F 〉 accepting L. Let MR(Σ̃) be the
set of all finite words where every return position has a matching call position,
and MC (Σ̃) be the set of all finite words where every call position has a

matching return position. Note that MR(Σ̃) and MC (Σ̃) are effectively NVPA
representable. Now, for all states q ∈ Q, we define the following languages of
finite words over Σ as follows:
– Lin,q is the set of finite words w such that there is a run of P over w of

the form (qin,⊥)
w−→ (q, β) for some stack content β;

– Lq is the set of finite words w 6= ε such that there is a run of P over w of

the form (q,⊥)
w−→ (q, β) which visits some state in F ;

– MC (Lin,q)
def
= Lin,q ∩MC (Σ̃) and MC (Lq)

def
= Lq ∩MC (Σ̃);

– MR(Lq)
def
= Lq ∩MR(Σ̃).

It is easy to show that Lq is effectively NVPA representable. Thus, since

Lin,q, MR(Σ̃), and MC (Σ̃) are effectively NVPA representable, and NVPA are
effectively closed under conjunction [4], we have that all the languages defined
above are effectively NVPA representable. Therefore, the theorem directly fol-
lows from the following claim.

Claim: L = L∪ where L∪
def
=
⋃
q∈Q
Lin,q·[MR(Lq)]ω∪

⋃
q∈Q

MC (Lin,q)·[MC (Lq)]ω.

Proof of the claim:

Inclusion L ⊆ L∪: let w ∈ L. We show that w ∈ L∪ by distinguishing two
cases:
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– There are infinitely many unmatched return positions in w. Hence, ev-
ery call position has a matching return in w and w ∈ (MC (Σ̃))ω. Since

P accepts w and MC (Σ̃) is closed under concatenation, it follows that
there are q ∈ Q and an initialized accepting run of P over w of the form
(qin,⊥)

w0−→ (q, β1)
w1−→ (q, β2)

w2−→ (q, β3) . . . such that: w0 ∈ MC (Σ̃), and

for all i ≥ 1, wi ∈ MC (Σ̃) \ {ε} and the subrun (q, βi)
wi−→ (q, βi+1) of

P over wi visits some state in F . Since wi ∈ MC (Σ̃) for all i ≥ 0, we
deduce that βi = ⊥. It follows that w0 ∈ MC (Lin,q) and wi ∈ MC (Lq)
for all i ≥ 1. Thus, since w = w0 · w1 · w2 · . . ., we obtain that w ∈
MC (Lin,q) · [MC (Lq)]ω ⊆ L∪, and the result holds in this case.

– There are finitely many unmatched return positions in w. Hence, w ∈ Σ∗ ·
(MR(Σ̃))ω. Since P accepts w and MR(Σ̃) is closed under concatenation,
it follows that there are q ∈ Q and an initialized accepting run of P over
w of the form (qin,⊥)

w0−→ (q, β1)
w1−→ (q, β2)

w2−→ (q, β3) . . . such that for

all i ≥ 1, wi ∈ MR(Σ̃) \ {ε} and the subrun (q, βi)
wi−→ (q, βi+1) of P over

wi visits some state in F . Since wi ∈ MR(Σ̃) for i ≥ 1, the portion of the

stack corresponding to βi is never read in the subrun (q, βi)
wi−→ (q, βi+1).

Hence, there is also a run of P over wi from (q,⊥) to a configuration of the
form (q, β) which visits some state in F . Hence, wi ∈ MR(Lq) for all i ≥ 1.
Since w = w0 · w1 · w2 · . . ., we obtain that w ∈ Lin,q · [MR(Lq)]ω ⊆ L∪,
and the result holds in this case as well.

Converse inclusion L∪ ⊆ L: let w ∈ L∪. We show that w ∈ L. By definition
of L∪, there are two cases:

– w ∈ MC (Lin,q) · [MC (Lq)]ω for some q ∈ Q. Hence, w can be written in

the form w0 ·w1 ·w2 . . . such that w0 ∈ MC (Σ̃), there is a run of P over w0

of the form (qin,⊥)
w0−→ (q, β0), and for all i ≥ 1, wi ∈ MC (Σ̃) \ {ε} and

there is a run of P over wi of the form (q,⊥)
wi−→ (q, βi) which visits some

state in F . Since wi ∈ MC (Σ̃) for all i ≥ 0, it follows that βi = ⊥. Hence,
there is an initialized accepting run of P over w, i.e. w ∈ L.

– w ∈ Lin,q · [MR(Lq)]ω for some q ∈ Q. Hence, w can be written in the
form w0 · w1 · w2 . . . such that there is a run of P over w0 of the form
(qin,⊥)

w0−→ (q, β0 ·⊥) and for all i ≥ 1, wi ∈ MR(Σ̃)\{ε} and there is a run

of P over wi of the form (q,⊥)
wi−→ (q, βi · ⊥) which visits some state in F .

Since wi ∈ MR(Σ̃) for all i ≥ 1, it follows that for all β ∈ Γ ∗, there is also a

run of P over wi of the form (q, β·⊥)
wi−→ (q, βi·β·⊥) which visits some state

in F . Thus, we deduce that there is an initialized accepting run of P over w
of the form (qin,⊥)

w0−→ (q, β0 ·⊥)
w1−→ (q, β1 ·β0 ·⊥)

w2−→ (q, β2 ·β1 ·β0 ·⊥) . . ..
Hence, w ∈ L.

This concludes the proof of Theorem 11. ut

Since ω-VPL are effectively closed under ω-Kleene closure and under (left)
concatenation with VPL (and the constructions can be done in linear time) [4],
by Corollary 1, it follows that ω-VRE can be converted into equivalent ω-NVPA
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in single exponential time. Moreover, by using strong NVPA and constructions
very similar to those used in the proof of Theorem 6, one can show that pure
ω-VRE can be converted into equivalent Büchi ω-NVPA in quadratic time.
Thus, by Theorem 11 we obtain the following result.

Theorem 12 (Pure) ω-VRE capture the class of ω-VPL. Moreover, pure ω-
VRE can be converted in quadratic time into equivalent Büchi ω-NVPA.

6 Conclusion

In this paper, we have provided a Kleene theorem for VPL and a Büchi theorem
for ω-VPL. From a theoretical point of view, there are some interesting open
questions. For example, while is well-known that NFA are exponentially more
succinct than regular expressions, it remains an open problem to capture the
precise succinctness gap between VRE and NVPA. From a practical viewpoint,
it remains to be empirically evaluated whether VRE are useful as a specification
language for nested word search and for XML schemas. Another line of future
work is the combination of VRE with temporal logics for nested words (like
CaRet [2]), as done for word regular languages [13,18].
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