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Abstract. We introduce a robust and tractable temporal logic, we call
Visibly Linear Temporal Logic (VLTL), which captures the full class of
Visibly Pushdown Languages. The novel logic avoids fix points and pro-
vides instead natural temporal operators with simple and intuitive se-
mantics. We prove that the complexities of the satisfiability and visibly
pushdown model checking problems are the same as for other well known
logics, like CaRet and the nested word temporal logic NWTL, which in
contrast are strictly more limited in expressive power than VLTL. More-
over, formulas of CaRet and NWTL can be easily and inductively trans-
lated in linear-time into VLTL.

1 Introduction

Visibly Pushdown Languages (VPL), introduced by Alur et al. [5, 6], are a sub-
class of context-free languages that is similar in tractability and robustness to
the less expressive class of regular languages. A VPL consists of nested words,
that is words over an alphabet (pushdown alphabet) which is partitioned into
three disjoint sets of calls, returns, and internal symbols. This partition induces
a nested hierarchical structure in a given word obtained by associating to each
call the corresponding matching return (if any) in a well-nested manner. VPL
are accepted by Nondeterministic Visibly Pushdown Automata (NVPA) [5, 6],
a subclass of pushdown automata where the input symbol controls the kind of
operations permissible on the stack. Alternative characterizations of VPL have
been given in terms of operational and declarative formalisms. Here, we recall
alternating automata-based characterizations [7, 11], like the class of parity al-
ternating visibly pushdown automata and the more tractable class of parity
two-way alternating finite-state jump automata (AJA) [11], which extend stan-
dard alternating finite-state automata (AFA) with non local moves for navigating
the nested structure of words in VPL.

VPL have applications in the formal verification of recursive programs with fi-
nite data modeled by pushdown systems [9, 6, 4]. VPL turn out to be useful also in
the streaming processing of semi-structured data, such as XML documents, where
each open-tag is matched with a closing-tag in a well-nested manner (see e.g.
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[18, 2]). The theory of VPL is connected to the theory of regular tree-languages
since nested words can be encoded by labeled binary trees satisfying some regu-
lar constraints, and there are translations from VPL into regular tree languages
over tree-encodings of nested words, and vice versa. However, as shown in [18, 2],
NVPA are often more natural (and sometimes exponentially more succinct) than
tree automata, and preferable in the streaming processing of XML documents.

Linear Temporal logics for VPL-properties. Well-known and tractable lin-
ear temporal logics for VPL are the logic CaRet [4] and its extension NWTL+ [3],
which in turn are context-free extensions of standard linear temporal logic LTL.
Like LTL, which does not allow to specify all the linear-time ω-regular prop-
erties, the logics CaRet and NWTL+ can only express a strict subclass of VPL.
Known logical frameworks which capture the full class of VPL are an extension of
standard MSO over nested words with a binary matching-predicate (MSOµ) [5]
and a fixpoint calculus [11], where for the latter, satisfiability and visibly push-
down model checking are EXPTIME-complete [11]. One drawback is that MSOµ
is not elementarily decidable. Additionally, fixpoint logics are considered in some
sense low-level logics, making them “unfriendly” as specification languages. In
the setting of regular languages, some tractable formalisms allow to avoid fix-
point binders and still obtain full expressivity, like ETL [23] and fragments of the
industrial-strength logic PSL [1], like the regular linear temporal logic RLTL [16,
20], which fuses regular expressions and LTL modalities. Merging regular expres-
sions and temporal operators in the linear-time setting has been motivated by the
need of human readable specification languages, as witnessed by the widespread
adoption of ForSpec, PSL, SVA in industry (see e.g. [8]). Our work follows this di-
rection for visibly-pushdown languages. We recently introduced [12] an algebraic
characterization of VPL over finite nested words in terms of visibly rational ex-
pressions (VRE). VRE extend regular expressions with two novel operators which
capture in a natural way the nested relation between calls and matching returns
in nested words. These two operators, when applied to languages L of well-
matched words (i.e., nested words without pending calls and pending returns),
correspond to classical tree substitution and Kleene closure applied to the tree
language encoding of L (in accordance with the encoding of well-matched words
by ordered unranked finite trees [2]). However, as observed in [2] when compar-
ing well-matched words with ordered unranked trees, “word operations such as
prefixes, suffixes, and concatenation [...] do not have analogous tree operations.”
This is explicitly witnessed by VRE having both word-like concatenation and
tree-like substitution (and their Kleene closures), so allowing to describe both
the linear structure and the hierarchical structure of nested words.

Our contribution. We investigate a new linear temporal logic for VPL specifi-
cations, which merges in a convenient way VRE and LTL modalities. The task of
combining language operators (such as concatenation and Kleene closure) and
logical modalities is in general not easy, since allowing unrestricted complemen-
tation (corresponding to logical negation) in regular expressions already leads to
a non-elementary decidable declarative formalism [22]. Thus, we propose a gen-



eralization of RLTL with past that we call Visibly Linear Temporal Logic (VLTL),
which is obtained by replacing regular expressions for VRE expressions as build-
ing blocks for the temporal modalities. Our natural choice leads to a unifying
and convenient logical framework for specifying VPL-properties because:
– VLTL is closed under Boolean combinations including negation and captures

the full class of VPL. Moreover, VLTL avoids fix points and only offers tem-
poral operators with simple and intuitive semantics.

– VLTL is elementarily decidable. In particular, satisfiability and visibly push-
down model checking have the same complexity as for the strictly less ex-
pressive logics CaRet and NWTL+: i.e. are EXPTIME-complete.

Another advantage of VLTL is that CaRet and NWTL+ can be inductively trans-
lated in linear-time into VLTL. In particular, the temporal modalities of CaRet
and NWTL+ can be viewed as derived operators of VLTL, and, in principle,
one can introduce additional “user-friendly” temporal modalities as VLTL de-
rived operators. Thus, VLTL can be also used as a common unifying setting for
obtaining efficient decision procedures for other “simple-to-use” logics for VPL.

In order to tackle the decision problems for VLTL, we propose an elegant
and unifying framework which extends in a non-trivial and sophisticated way
the efficient alternating automata-theoretic approach recently proposed for fu-
ture RLTL [21]. The technique for future RLTL makes use of a translation of the
logic into parity AFA, which is crucially based on the well-known linear-time
translation of regular expressions into nondeterministic finite-state automata. A
direct generalization of this construction based on the use of parity alternating
visibly pushdown automata would lead to doubly exponential time decision pro-
cedures. Instead, our approach exploits as an intermediate step a compositional
polynomial-time translation of VLTL formulas into a subclass of parity two-
way alternating AJA with index 2, that we call stratified AJA with main states
(SAJA). Moreover, we identify a subclass of VRE such that the corresponding
fragment of VLTL has the same expressiveness as full VLTL and admits a linear-
time translation into SAJA. Hence, we obtain a translation for this fragment of
VLTL into equivalent Büchi NVPA of size 2O(|ϕ| logm), where m is the size of the
largest VRE used in ϕ. Full proofs are omitted due to space limitations.

Related work. Combining modal logic and regular expressions is also the main
feature of the branching temporal logic PDL. In [17], an extension of PDL for re-
cursive programs, has been investigated, where low-level operational aspects are
allowed in the form of path expressions given by NVPA. This logic is incompara-
ble with VLTL and the related satisfiability and visibly pushdown model-checking
problems are 2-EXPTIME-complete. In [10], a linear temporal framework for VPL
has been introduced which allows PDL-like path regular expressions extended
with the binary matching-predicate µ of MSOµ. The setting is parameterized
by a finite set of MSO-definable temporal modalities, which leads to an infinite
family of linear temporal logics having the same complexity as VLTL and sub-
suming the logics CaRet and NWTL+. However, it seems clear (even if this issue
is not discussed in [10]) that each of these logics does not capture the full class of
VPL. Moreover, the complexity analysis in [10], based on the use of two-way al-



ternating tree automata, is not fine-grained and it just allows to obtain a generic
polynomial in the exponent of the complexity upper bound.

2 Preliminaries

We recall Visibly Pushdown Automata [5] and Visibly Rational Expressions [12].
In the rest of the paper, we fix a pushdown alphabet Σ = Σcall ∪Σret ∪Σint ,

that is a finite alphabet Σ which is partitioned into a set Σcall of calls, a set
Σret of returns, and a set Σint of internal actions.

Visibly Pushdown Automata [5]. Nondeterministic Visibly Pushdown Au-
tomata (NVPA) are standard Pushdown Automata operating on finite words
over a pushdown alphabet Σ satisfying the following “visibly” restriction: (i) on
reading a call, one symbol is pushed onto the stack, (ii) on reading a return,
one symbol is popped from the stack (if the stack is empty, the stack content
remains unchanged), and (iii) on reading an internal action, no stack opera-
tion is performed. The languages of finite words accepted by NVPA are called
visibly pushdown languages (VPL). We also consider Büchi ω-NVPA [5], which
are standard Büchi Pushdown Automata on infinite words over Σ satisfying the
above “visibly” restriction. The ω-languages accepted by Büchi NVPA are called
ω-visibly pushdown languages (ω-VPL). For details on the syntax and semantics
of NVPA and Büchi ω-NVPA, see [5].

Matched calls and returns. For a word w on Σ, |w| is the length of w (we
set |w| = ω if w is infinite). For all 1 ≤ i ≤ j ≤ |w|, w(i) is the ith symbol of w,
and w[i, j] is the word w(i)w(i + 1) . . . w(j). The empty word is denoted by ε.
The set WM (Σ) of well-matched words is the subset of Σ∗ inductively defined
as follows: (i) ε ∈ WM (Σ) (ii) 2 · w ∈ WM (Σ) if 2 ∈ Σint and w ∈ WM (Σ),
and (iii) c · w · r · w′ ∈WM (Σ) if c ∈ Σcall , r ∈ Σret , and w,w′ ∈WM (Σ). Let
i be a call position of a word w. If there is j > i such that j is a return position
of w and w(i + 1) . . . w(j − 1) is a well-matched word (note that j is uniquely
determined if it exists), we say that j is the matching return of i along w. The
set MWM (Σ) of minimally well-matched words is the set of well-matched words
of the form c · w · r such that c is a call, r is a return, and w is well-matched.

For a language L ⊆ Σ∗, we define MWM (L)
def
= L ∩MWM (Σ), that is the set

of words in L which are minimally well-matched.

Visibly Rational Expressions (VRE) [12]. We recall the classes of pure VRE
and pure ω-VRE [12], here called simply VRE and ω-VRE. VRE extend regular
expressions (RE) with two non-regular operators: the binary M -substitution op-
erator and the unary S-closure operator.1 Given L ⊆ Σ∗ and a language L′ of
finite or infinite words on Σ, we use L ·L′ for the concatenation of L and L′, L∗
for the Kleene closure of L, and Lω for the ω-Kleene closure of L.

1 The origin of the name M -substitution is minimally well-matched substitution, while
S-closure stands for Strict Mimimally Well-Matched Closure, see [12].



Definition 1 (M-substitution [12]). Let w ∈ Σ∗, 2 ∈ Σint , and L ⊆ Σ∗.
The M -substitution of 2 by L in w, denoted by w x2 L, is the language of
finite words over Σ obtained by replacing occurrences of 2 in w by minimally
well-matched words in L. Formally, w x2 L is inductively defined as follows:

– εx2 L
def
= {ε};

– (2 · w′) x2 L
def
=
(
MWM (L) · (w′ x2 L)

)
∪
(
({2} ∩ L) · (w′ x2 L)

)
– (σ · w′) x2 L

def
= {σ} · (w′ x2 L) for each σ ∈ Σ \ {2}.

For two languages L,L′ ⊆ Σ∗ and 2 ∈ Σint , the M -substitution of 2 by L′ in

L, written L x2 L′, is defined as L x2 L′
def
=
⋃
w∈L w x2 L′. Note that x2

is associative, and {2}x2 L = MWM (L) if {2} ∩ L = ∅.

Definition 2 (S-closure [12]). Given L ⊆ Σ∗ and 2 ∈ Σint , the S-closure of
L through 2, denoted by L	2 , is defined as follows:

L	2
def
=
⋃
n≥0

MWM (L)x2 (L ∪ {2}) x2 . . .x2 (L ∪ {2})︸ ︷︷ ︸
n occurrences of x2

.

Example 1. Let Σcall = {c1, c2}, Σret = {r1, r2}, and Σint = {2}. Let us
consider the languages L = {c1 2 r1, c2 2 r2} and L′ = {c1 r1, c2 r2}. Then,
L	2 x2 L′ = {ci1 ci2 . . . cin rin . . . ri2 ri1 | n ≥ 2, i1, . . . , in ∈ {1, 2}}.

Definition 3. The syntax of VRE α and ω-VRE β over Σ is defined as follows:

α := ε
∣∣ int

∣∣ call
∣∣ ret

∣∣ σ ∣∣ c r ∣∣ c2r ∣∣ α ∪ α ∣∣ α · α ∣∣ α∗ ∣∣ αx2 α
∣∣ α	2

β := αω
∣∣ β ∪ β ∣∣ α · β

where σ ∈ Σ, c ∈ Σcall , r ∈ Σret , and 2 ∈ Σint . The basic expressions int, call ,
ret are used to denote in a succinct way the languages Σint , Σcall , and Σret ,
while the redundant basic expressions c r and c2r in the syntax of VRE are used
for defining subclasses of VRE. A VRE α (resp., ω-VRE β) denotes a language
of finite words (resp., infinite words) over Σ, written L(α) (resp., L(β)), which
is inductively defined in the obvious way.

Note that ω-VRE are defined in terms of VRE in the same way as ω-regular
expressions are defined in terms of regular expressions. A VRE is well-matched
if it does not contain basic subexpressions in Σcall ∪ Σret ∪ {call , ret}. A VRE
α is well-formed if each subexpression of α of the form (α1 x2 α2) or α	2

1 is
well-matched, and an ω-VRE β is well-formed if each VRE occurring in β is well-
formed. As usual, the size |α| of a VRE α is the length of the string describing α.

Theorem 1 (from [12]). (Well-formed) VRE and (well-formed) ω-VRE cap-
ture the classes of VPL and ω-VPL, respectively.

Proof. The results for VRE and ω-VRE were established in [12]. Moreover, a
straightforward adaptation of the translations from NVPA to VRE and from
Büchi ω-NVPA to ω-VRE in [12] show that well-formed VRE and well-formed
ω-VRE are sufficient to capture the classes of VPL and ω-VPL, respectively. ut



3 Visibly Linear Temporal Logic (VLTL)

In this section, we introduce the Visibly Linear Temporal Logic (VLTL), an exten-
sion of Regular Linear Temporal Logic (RLTL) with past (see [16, 20]) obtained
by replacing regular expressions in the temporal modalities of RLTL with VRE.

The syntax of VLTL formulas ϕ over the pushdown alphabet Σ is as follows:

ϕ := true
∣∣ ϕ ∨ ϕ ∣∣ ¬ϕ ∣∣ α;ϕ

∣∣ ϕ;α
∣∣ ϕ|α⟫ϕ ∣∣ ϕ|α〉ϕ ∣∣ ϕ⟪α|ϕ ∣∣ ϕ〈α|ϕ

where α is a VRE over Σ, the symbol ; is the sequencing operator, | ⟫ and ⟪ |
are the (future) power operator and the past power operator, and | 〉 and 〈 |
are the (future) weak power operator and the past weak power operator. The
power formulas ϕ1|α⟫ϕ2, ϕ1⟪α|ϕ2, ϕ1|α〉ϕ2, and ϕ1〈α|ϕ2 are built from three
elements: ϕ2 (the attempt), ϕ1 (the obligation), and α (the delay). Informally,
for ϕ1|α⟫ϕ2 (resp., ϕ1⟪α|ϕ2) to hold, either the attempt holds, or the obligation
is met and the whole formula evaluates successful after (resp., before) the delay;
additionally, the attempt must be eventually met. The weak formulas ϕ1|α〉ϕ2

and ϕ1〈α|ϕ2 do not require the attempt to be eventually met. For a VLTL formula
ϕ, ϕ is well-formed if every VRE occurring in ϕ is well-formed. Let ‖ϕ‖ be the
integer 1 if either ϕ = true or ϕ has a Boolean connective at its root; otherwise,
‖ϕ‖ is the size of the VRE associated with the root operator of ϕ. The size |ϕ|
of ϕ is defined as

∑
ψ∈SF(ϕ) ‖ψ‖, where SF(ϕ) is the set of subformulas of ϕ.

VLTL formulas ϕ are interpreted over infinite pointed words (w, i) over Σ,
where w ∈ Σω and i ≥ 1 is a position along w. The satisfaction relation (w, i) |=
ϕ is defined by induction as follows (we omit the rules for Boolean connectives):

(w, i) |= α;ϕ ⇔ for some j > i, (w, j) |= ϕ and w[i, j] ∈ L(α)
(w, i) |= ϕ;α ⇔ for some j < i, (w, j) |= ϕ and w[j, i] ∈ L(α)
(w, i) |= ϕ1|α⟫ϕ2 ⇔ for some sequence i = j1 < . . . < jn, (w, jn) |= ϕ2

and for all 1 ≤ k < n, w[jk, jk+1] ∈ L(α) and (w, jk) |= ϕ1

(w, i) |= ϕ1⟪α|ϕ2 ⇔ for some sequence j1 < . . . < jn = i, (w, j1) |= ϕ2

and for all 1 < k ≤ n, w[jk−1, jk] ∈ L(α) and (w, jk) |= ϕ1

(w, i) |= ϕ1|α〉ϕ2 ⇔ (w, i) |= ϕ1|α⟫ϕ2,
or for some infinite sequence i = j1 < j2 < . . . ,
w[jk, jk+1] ∈ L(α) and (w, jk) |= ϕ1 for all k ≥ 1

(w, i) |= ϕ1〈α|ϕ2 ⇔ (w, i) |= ϕ1⟪α|ϕ2,
or for some sequence 1 = j1 < . . . < jn = i, (w, jn) |= ϕ1

and w[jk, jk+1] ∈ L(α) and (w, jk) |= ϕ1 for all 1 ≤ k < n

The ω-pointed language Lp(ϕ) of ϕ is the set of infinite pointed words (w, i) over
Σ satisfying ϕ (i.e. (w, i) |= ϕ). The ω-language L(ϕ) of ϕ is the set of infinite
words w over Σ such that (w, 1) ∈ Lp(ϕ). Two formulas ϕ1 and ϕ2 are globally
equivalent if Lp(ϕ1) = Lp(ϕ2). The satisfiability problem for VLTL is checking
for a VLTL formula ϕ, whether L(ϕ) 6= ∅. The visibly pushdown model checking
problem for VLTL is checking for a VLTL formula ϕ over Σ and a pushdown
system P (defined as a Büchi NVPA P over the same pushdown alphabet Σ and
with all states accepting), whether L(P) ⊆ L(ϕ).



Note that the VLTL operators generalize both the operators of standard LTL
with past (in particular, the next, previous, until, and since modalities) and the
operators of ω-visibly rational expressions. For example, the until formula ϕ1Uϕ2

requires that either ϕ2 holds (attempt) or otherwise ϕ1 holds (obligation) and
the formula is reevaluated after a delay of a single step. Similarly, the ω-visibly
rational expression αω has no possible escape, a trivially fulfilled obligation, with
a delay indicated by α.

In the rest of this section, we use some VRE of constant size (where 2 ∈ Σint):
– αONE := int ∪ ret ∪ call , αMWM := 2 x2 (call · (αONE )∗ · ret),
αWM := (int∗ · (αMWM )∗)∗

Note that L(αONE ) = Σ, L(αMWM ) = MWM (Σ), and L(αWM ) = WM (Σ).
Moreover, we use some shortcuts in VLTL. The formula (σ · αONE ); true is sat-
isfied by words that begin with letter σ ∈ Σ. We abbreviate this formula by σ.
Additionally, we use Gϕ to stand for ϕ |αONE · αONE 〉 ¬true (the LTL always
operator), and ϕ to stand for ϕ; (αONE · αONE ) (the LTL previous operator).

Expressiveness of VLTL. First, we observe that (well-formed) ω-VRE can be
translated in linear-time into language-equivalent (well-formed) VLTL formulas
by the mapping f from ω-VRE to VLTL inductively defined as follows.
– f(αω) := true|α · αONE 〉¬true
– f(β ∪ β′) := f(β) ∨ f(β′) and f(α · β) := (α · αONE ); f(β).

Thus, by Theorem 1, (well-formed) VLTL formulas can express every ω-VPL
(note that past temporal modalities are not required to capture ω-VPL). The
converse direction holds as well (see Section 5). Hence, we obtain the following.

Theorem 2. (Well-formed) VLTL formulas capture the class of ω-VPL.

Comparison with known context-free extensions of LTL. We compare
now VLTL with some known context-free extensions of LTL: CaRet [4], NWTL [3],
and NWTL+ [3]. NWTL and NWTL+ are expressively complete for the first-order
fragment FOµ of MSOµ [3], while it is an open question whether the same holds
for CaRet [3], the latter being subsumed by NWTL+. In the analysis of recursive
programs, CaRet and NWTL+ allow to express in a natural way LTL properties
over non-regular patterns such as (*) the stack content at a given position, and
(**) the local computations of procedures which skip over nested procedure
invocations. Theorem 3 below shows that these logics can be easily translated in
linear time into VLTL. Additionally, VLTL can specify more expressive regular
properties over the patterns (*) and (**) such as the following requirement for
a given N ≥ 1, “whenever the procedure A is invoked, the depth of the stack
content is a multiple of N”, which can be expressed by the following VLTL
formula (where the call cA denotes the invocation of procedure A),

G(cA −→ (¬true);αN ) αN := [(αWM · call · . . . · αWM · call︸ ︷︷ ︸
N times

·αWM )]∗

Theorem 3. For a CaRet, NWTL or NWTL+ formula ϕ, one can build in linear-
time a VLTL formula with constant-size VRE which is globally equivalent to ϕ.



Proof. We sketch only the translation of CaRet into VLTL. CaRet extends LTL
with non-regular versions of the temporal modalities: the abstract next and until
modalities and their past counterparts, and the caller modalities. Here, we focus
on the abstract modalitiesa and Ua which correspond to the standard next and
until modalities interpreted on abstract paths. Formally, for an infinite pointed
word (w, i) on Σ, the abstract path of w from i is a maximal (possibly infinite)
sequence of positions i = j1 < j2 < . . . < jn < . . . such that for all pairs of
adjacent positions jk and jk+1: either jk is a call with matching return jk+1, or
jk is not a call, jk+1 is not a return, and jk+1 = jk + 1. To translate a and Ua

into VLTL, we use the following constant-size VRE: αa := αMWM ∪ ((int ∪ ret) ·
(int ∪ call)). Then, the VLTL formula αa;ϕ1 is globally equivalent to aϕ1, and
ϕ1 |αa⟫ϕ2 is globally equivalent to ϕ1 Ua ϕ2. ut

4 Subclasses of Alternating Jump Automata

Alternating Jump Automata (AJA) over finite and infinite words [11] are an al-
ternative automata-theoretic characterization of VPL and ω-VPL. In this section,
in order to capture compositionally and efficiently VLTL formulas, we introduce
a subclass of two-way parity AJA with index 2, called two-way stratified AJA with
main states (SAJA). Then, we show how to translate (well-formed) VRE into a
subclass of AJA over finite words; this result is used in Section 5 to handle the
temporal operators in the translation of VLTL formulas into SAJA. Note that
a naive approach based on the use of unrestricted two-way parity AJA would
lead to decision procedures for VLTL that are computationally more expensive.
More concretely, following [13], two-way parity AJA with n states and index k

can be translated into equivalent Büchi NVPA with 2O((nk)2) states and stack
symbols. We show that SAJA with n states can be more efficiently translated
into equivalent Büchi NVPA with 2O(n logm) states and stack symbols, where m
is the size of the largest non-trivial coBüchi stratum. Another technical issue
is the efficient handling of logical negation. Like for RLTL, VLTL does not have
a positive normal form. Hence, a construction for the negation operator must
be given explicitly. Like for standard parity AFA, complementation of parity
two-way AJA is easy: one only has to dualize the transition function and to com-
plement the acceptance condition. However, the classical complementation for
the parity condition increases in one unit the color assigned to every state, so
that the total number of colors could grow linearly in the size of the formula (by
alternating the constructions for complementation with those related to other
modalities that reintroduce the lowest color). Instead, we show that SAJA (which
only use three colors) are closed under complementation.

AJA operate on words over a pushdown alphabet and extend standard alter-
nating finite-state automata by also allowing non-local moves: when the current
input position is a matched call, a copy of the automaton can move (jump) in a
single step to the matched-return position. We also allow ε-moves and local and
non-local backward moves. We first give the notion of Alternating Jump Tran-
sition Tables (AJT), which represent AJA without acceptance conditions. Let



DIR = {ε,→,←,y,x}. Intuitively, the symbols → and ← are used to denote
forward and backward local moves and y and x are for non-local moves which
lead from a matched call to the matching return, and vice-versa. For a set X,
B+(X) denotes the set of positive Boolean formulas over X built from elements
in X using ∨ and ∧ (we also allow the formulas true and false). For a formula
θ ∈ B+(X), a model Y of θ is a subset Y of X which satisfies θ. The model Y

of θ is minimal if no strict subset of Y satisfies θ. The dual formula θ̃ of θ is
obtained from θ by switching ∨ and ∧, and switching true and false.

Two-way AJT. A two-way AJT T over Σ is a tuple T = 〈Q, q0, δ〉, where Q is a
finite set of states, q0 ∈ Q is the initial state, and δ : Q×Σ → B+(DIR×Q×Q)
is a transition function. Now, we give the notion of run. We restrict ourselves to
memoryless runs, in which the behavior of the automaton depends only on the
current input position and current state. Since later we will deal only with parity
acceptance conditions, memoryless runs are sufficient (see e.g. [24]). Formally,
given a finite or infinite pointed word (w, i) on Σ and a state p ∈ Q, a (i, p)-run of
T over w is a directed graph 〈V,E, v0〉 with set of vertices V ⊆ {0, . . . , |w|+1}×Q
and initial vertex v0 = (i, p). Intuitively, a vertex (j, q) describes a copy of the
automaton which is in state q and reads the jth input position. Additionally,
we require that the set of edges E is consistent with the transition function δ.
Formally, for every vertex (j, q) ∈ V such that 1 ≤ j ≤ |w|, there is a minimal
model X = {(dir1, q1, q

′
1), . . . , (dirn, qn, q

′
n)} of δ(q, w(j)) such that the set of

successors of (j, q) is {v1, . . . , vn} and for all 1 ≤ k ≤ n, the following holds:

– dirk = ε: vk = (j, qk).
– dirk =→: vk = (j + 1, qk) if j + 1 ≤ |w|, and vk = (j + 1, q′k) otherwise.
– dirk =←: vk = (j − 1, qk) if j − 1 > 0, and vk = (j − 1, q′k) otherwise.
– dirk =y: vk = (jr, qk) if j is a call with matching return jr; otherwise
vk = (j + 1, q′k).

– dirk =x: vk = (jc, qk) if j is a return with matching call jc; otherwise
vk = (j − 1, q′k).

An infinite path π of a run is eventually strictly-forward whenever π has a suffix
of the form (i1, q1), (i2, q2), . . . such that: (i) ij ≤ ij+1 for all j ≥ 1 and (ii) for
infinitely many j, ij < ij+1.

A two-way AJT T = 〈Q, q0, δ〉 is an AJT with main states if:
– the set of states is partitioned into a set M of main states and into a set S

of secondary states such that q0 ∈ M.
– there are no moves from secondary states to main states. Hence, every path

starting from a secondary state visits only secondary states.

Two-way stratified AJA with main states (SAJA). We introduce now the
class of SAJA as a two-way and non-regular extension of one-way hesitant AFA
over infinite words introduced in [14]. Intuitively, the ability to combine both
forward and backward moves is syntactically restricted in such a way to en-
sure that every infinite path in a run is eventually strictly-forward. Moreover,



for efficiency issues, we distinguish between main states and secondary states.
Intuitively, in the translation of VLTL formulas into SAJA, main states are as-
sociated with the regular part of the formula, while secondary states (whose
number can be quartic in the number of main states) are associated with the
non-regular part (the M -substitution and S-closure operators in the VRE of the
formula). Formally, a SAJA A is a tuple A = 〈Q, q0, δ,F〉 with Q = M∪S, where
〈Q, q0, δ〉 is a two-way AJT with main states and F is a strata family of the form
F = {〈ρ1, Q1, F1〉, . . . , 〈ρk, Qk, Fk〉}, where Q1, . . . , Qk is a partition of the set of
states Q, and for all 1 ≤ i ≤ k, ρi ∈ {−, t,B,C} and Fi ⊆ Qi, such that Fi = ∅
whenever ρi = t. A stratum 〈ρi, Qi, Fi〉 is called a negative stratum if ρi = −, a
transient stratum if ρi = t, a Büchi stratum (with Büchi acceptance condition
Fi) if ρi = B, and a coBüchi stratum (with coBüchi acceptance condition Fi) if
ρi = C. Additionally, there is a partial order ≤ on the sets Q1, . . . , Qk such that:

R1. Moves from states in Qi lead to states in components Qj such that Qj ≤ Qi;
additionally, if Qi belongs to a transient stratum, there are no moves from
Qi leading to Qi.

R2. For all q ∈ Qi and atoms (dir, q, q′) or (dir, q′, q) occurring in δ, the following
holds: (i) dir ∈ {←,x, ε} if the stratum of Qi is negative, and dir ∈ {→,y
, ε} otherwise, and (ii) if dir = ε, then there are no ε-moves from q.

R3. For every Büchi or coBüchi stratum 〈ρi, Qi, Fi〉, Fi ∩ S = ∅.

R1 is the stratum order requirement and it ensures that every infinite path π
of a run gets trapped in the component Qi of some non-transient stratum. R2 is
the eventually syntactical requirement and it ensures that Qi belongs to a Büchi
or coBüchi stratum and that π is eventually strictly-forward. Moreover, note
that R2 also ensures that for all runs and vertices of the form (0, q) reachable
from the initial vertex, q belongs to a negative stratum.

Now we define when a run is accepting. Let π be an infinite path of a run,
〈ρi, Qi, Fi〉 be the Büchi or coBüchi stratum in which π gets trapped, and Inf(π)
be the states from Q that occur infinitely many times in π. The path π is
accepting whenever Inf(π) ∩ Fi 6= ∅ if ρi = B and Inf(π) ∩ Fi = ∅ otherwise (i.e.
π satisfies the corresponding Büchi or coBüchi requirement). Note that R3 in the
definition of SAJA ensures that whenever π starts at a vertex associated with a
secondary state (hence, π visits only secondary states), then π is accepting if the
stratum 〈ρi, Qi, Fi〉 is a coBüchi stratum, and it is rejecting otherwise. A run is
accepting if: (i) all its infinite paths are accepting and (ii) for each vertex (0, q)
reachable from the initial vertex such that q is in the stratum S = 〈ρi, Qi, Fi〉
(recall that S is ensured to be a negative stratum), it holds that q ∈ Fi. Note that
this last condition is necessary to allow complementation of SAJA by dualization.
The ω-pointed language Lp(A) of A is the set of infinite pointed words (w, i) over
Σ such that there is an accepting (i, q0)-run of A on w. The ω-language L(A)
of A is the set of infinite words w over Σ such that (w, 1) ∈ Lp(A).

The dual automaton Ã of the SAJA A is defined as Ã = 〈M ∪ S, q0, δ̃, F̃〉,
where δ̃(q, σ) is the dual formula of δ(q, σ), and F̃ is obtained from F by convert-
ing a Büchi stratum 〈B, Qi, Fi〉 into the coBüchi stratum 〈C, Qi, Fi〉, a coBüchi



stratum 〈C, Qi, Fi〉 into the Büchi stratum 〈B, Qi, Fi〉, and a negative stratum
〈−, Qi, Fi〉 into the negative stratum 〈−, Qi, Qi \ Fi〉. Following standard argu-
ments (see e.g. [24]) we obtain the following lemma, which is crucial for handling,
compositionally and efficiently, negation in VLTL formulas.

Lemma 1. The dual automaton Ã of a SAJA A is a SAJA whose ω-pointed
language Lp(Ã) is the complement of Lp(A).

From SAJA to Büchi NVPA. The size of a SAJA stratum 〈ρi, Qi, Fi〉 is the
number of main states in Qi (we do not take into account the number of sec-
ondary states in Qi). A coBüchi stratum 〈ρi, Qi, Fi〉 is trivial whenever Fi = ∅.

Theorem 4. For a SAJA A = 〈M∪S, q0, δ,F〉, one can build in singly exponen-
tial time a Büchi NVPA P accepting L(A) with 2O(|S|+|M|·log(k)) states and stack
symbols, where k is the size of the largest non-trivial coBüchi stratum of A.

Sketched proof. Our approach is a refinement of a non-trivial variation of the
method used in [13] to convert parity two-way AJA into equivalent Büchi NVPA.
First, we give a characterization of the fulfillment of the acceptance condition
for a non-trivial coBüchi stratum along a run in terms of the existence of an
odd ranking function; the latter generalizes the notion of odd ranking function
for standard coBüchi alternating finite-state automata [15] which intuitively,
allows to convert a coBüchi acceptance condition into a Büchi-like acceptance
condition. Then, by exploiting the above result and a non-trivial generalization
of the Miyano-Hayashi construction [19], we give a characterization of the words
in L(A) in terms of infinite sequences of finite sets (called regions) satisfying
determined requirements which can be easily checked by a Büchi NVPA, where
the control states and stack symbols range over the set of regions. The number
of regions is at most 2O(|S|+|M|·log(k)), where k is the size of the largest non-trivial
coBüchi stratum of the given SAJA A. ut

Translation of VRE in subclasses of AJA on finite words. In the transla-
tion of VLTL formulas into SAJA, we use two subclasses of AJA over finite words
(for which we give different acceptance notions) in order to handle the VRE as-
sociated with the future and past temporal operators. Note that the proposed
approach substantially differs from the alternating automata-theoretic approach
for RLTL, the latter being crucially based on the use of nondeterministic au-
tomata for handling the regular expressions of the temporal modalities.2

Definition 4. A forward (resp., backward) AJA with main states is an AJT
with main states A = 〈M ∪ S, q0, δ,Acc〉 augmented with a set Acc of accepting
states and such that no moves (dir, q, q′) with dir ∈ {ε,←,x} (resp., dir ∈
{ε,→,y}) are allowed, and δ(q, σ) = false for all accepting main states q and
σ ∈ Σ. If A is forward (resp., backward), then a run of A over a finite word w
is accepting if for all vertices of the form (|w| + 1, q) (resp., (0, q)), q ∈ Acc.
Moreover, the language L(A) of A is the set of finite words w on Σ such that
there is an accepting (1, q0)-run (resp., accepting (|w|, q0)-run) on w.

2 AJA are strictly more expressive than their nondeterministic counterpart [11].



In order to correctly handle the VRE expressions in the translation of VLTL
formulas into SAJA, we need to impose additional restrictions on the above two
classes of AJA (which intuitively allow to simulate the behavior of nondeter-
ministic automata), ensuring at the same time that these restrictions still allow
to (efficiently) capture VRE. These restrictions in their semantic form are the
following ones, where a pseudo run is defined as a run but for all accepting main
states q and σ ∈ Σ, we replace the value false of δ(q, σ) with true.

J1. In each (pseudo) run starting from a main state, there is exactly one maximal
path (the main path) from the initial vertex which visits only main states.
Moreover, each vertex of the run which is not visited by the main path is
associated with a secondary state.

J2. In a pseudo run over an infinite word, the main path cannot end at a vertex
(j, q) such that j > 0 and q is not accepting.

J3. Let the given AJA A be forward (resp., backward). Then, for all infinite
words w on Σ and 1 ≤ i ≤ j, w[i, j] ∈ L(A) iff there is a pseudo (i, q0)-run
(resp., pseudo (j, q0)-run) of A over the infinite word w whose main path
visits position j+ 1 (resp., i−1) in an accepting main state, the latter being
obtained by a local move.

Intuitively, the main path simulates the unique path of a run in a nondeterminis-
tic automaton. The notion of pseudo run is used just to ensure that runs of AJA
with main states over infinite words whose main path visits an accepting main
state exist. Moreover, the semantic requirements J2 and J3 crucially allow to
deal with the sequencing and power operators in the translation of VLTL formu-
las into SAJA. Interestingly, we can show that the semantic requirements J1–J3
can be syntactically captured. These syntactical constraints also ensure that in
a (pseudo) run, the secondary vertices are associated with positions inside min-
imally well-matched subwords of the input word. The forward (resp., backward)
AJA with main states satisfying these syntactical requirements (ensuring J1–J3)
are called forward (resp., backward) AJA with main paths (MAJA). It is worth
noting that MAJA with no secondary states correspond to standard finite-state
nondeterministic automata. For the class of MAJA, we show the following result.

Theorem 5 (From VRE to MAJA). Given a VRE α, one can build in poly-
nomial time a forward (resp., backward) MAJA A with O(|α|) main states and
O(|α|4) secondary states such that L(A) = L(α) \ {ε}. Moreover, if α is well-
formed, then A can be compositionally constructed in linear time.

Sketched proof. The result for the general case of unrestricted VRE is an
adaptation of two known results: VRE can be translated in quadratic time into
equivalent NVPA [12], and NVPA can be translated in quadratic time into equiva-
lent AJA over finite words [11]. The proof of the surprising result that well-formed
VRE can be compositionally translated in linear time into forward and backward
MAJA is instead non-trivial. This proof exploits an additional syntactical sub-
class of MAJA that captures more efficiently the restricted class of well-matched
VRE (the additional syntactical constraints are used to implement in an efficient



way M -substitution and S-closure in well-matched VRE). Note that thanks to
the fulfillment of the semantic requirements J1–J3, the concatenation and the
Kleene closure operators can be handled in a way analogous to the standard
translation of regular expressions in nondeterministic automata. ut

5 Decision Procedures for the Logic VLTL

In this section, we study the satisfiability and visibly pushdown model checking
problems for VLTL. Based on Lemma 1 and Theorem 5, we derive a polynomial-
time compositional translation of VLTL formulas into SAJA, which provides an
automata-theoretic approach to these decision problems. The translation is de-
scribed by induction on the structure of the given VLTL formula ϕ. The base
case ϕ = true is immediate. For the induction step, given two VLTL formulas
ϕ1 and ϕ2, assume that A1 = 〈M1 ∪ S1, q01 , δ1,F1〉 and A2 = 〈M2 ∪ S2, q02 , δ2,F2〉
are the SAJA associated with the VLTL formulas ϕ1 and ϕ2, accepting the ω-
pointed languages Lp(ϕ1) and Lp(ϕ2), respectively. We illustrate now how to
build the SAJA A = 〈M ∪ S, q0, δ,F〉 accepting Lp(ϕ) for formulas ϕ built us-
ing a single VLTL operator applied to ϕ1 and ϕ2. For ϕ = ¬ϕ1, A is the dual
automaton of A1, and the correctness directly follows from Lemma 1. For the
other operators, here, we focus on the future power operator and the future
weak power operator. Thus, let ϕ =ϕ1|α⟫ϕ2 or ϕ =ϕ1|α〉ϕ2. Moreover, let
Aα = 〈Mα ∪Sα, qα, δα,Accα〉 be the forward MAJA of Theorem 5 for the VRE α
and such that (Mα ∪ Sα)∩ (M1 ∪ S1) = ∅ and (Mα ∪ Sα)∩ (M2 ∪ S2) = ∅. Then,
the initial state q0 of A is a fresh state and:

M = M1 ∪M2 ∪Mα ∪ {q0} and S = S1 ∪ S2 ∪ Sα

δ(q, σ) =


δ2(q02 , σ) ∨ (δ1(q01 , σ) ∧ δα(qα, σ)) if q = q0

δ1(q, σ) if q ∈ M1 ∪ S1
δ2(q, σ) if q ∈ M2 ∪ S2
δα(q, σ) if q ∈ Sα or q 6→σ Accα
δα(q, σ) ∨ (ε, q0, q0) if q →σ Accα

F =

{
F1 ∪ F2 ∪ {〈B,Mα ∪ Sα ∪ {q0}, ∅〉} if ϕ =ψ1|α⟫ψ2

F1 ∪ F2 ∪ {〈B,Mα ∪ Sα ∪ {q0}, {q0}〉} if ϕ =ψ1|α〉ψ2

where the notation q →σ Accα (resp., q 6→σ Accα) means that q ∈ Mα and there
is a (resp., there is no) local move in Aα from q on reading σ which leads to
an accepting main state. Note that the construction adds a new Büchi stratum
above all strata from previous stages, so paths that move to the automaton of a
subformula do not visit the newly added stratum. Moreover, the number of main
states (resp., secondary states) of the new stratum is at most |Mα| + 1 (resp.,
|Sα|). Also, the SAJA for formulas ϕ1 and ϕ2 share the strata belonging to the
SAJA of common subformulas of ϕ1 and ϕ2.3 Thus, since a MAJA satisfies the

3 In fact, for a given subformula, we need to distinguish between the occurrences which
are in the scope of an even number of negations from those which are in the scope
of an odd number of negations.



semantic requirements J1–J3 at the end of Section 4, by Theorem 5, we obtain
the following theorem and its immediate corollary (combined with Theorem 4).

Theorem 6. For a VLTL formula ϕ, one can build in polynomial time a SAJA
A such that: Lp(A) = Lp(ϕ), A has O(|ϕ|) main states and O(|ϕ|4) secondary
states in the general case, and just O(|ϕ|) states if ϕ is well-formed or has
constant-size VRE. Also, the size of the largest non-trivial coBüchi stratum of
A is linear in the size of the largest VRE associated with a weak future power
operator in ϕ which is in the scope of an odd number of negations.

Corollary 1. For a well-formed VLTL formula ϕ, one can build a Büchi NVPA
P accepting L(ϕ) with 2O(|ϕ|·log(k)) states and stack symbols, k being the size of
the largest VRE associated with a weak future power operator in ϕ which is in
the scope of an odd number of negations.

Checking whether L(P) ⊆ L(ϕ) for a pushdown system P and a VLTL for-
mula ϕ, reduces to check emptiness of L(P)∩L(¬ϕ). Thus, since checking empti-
ness for the intersection of ω-VPL by Büchi NVPA is in PTIME [5], and satisfi-
ability and visibly pushdown model checking for CaRet are EXPTIME-complete
[4], by Theorems 3, 4, and 6, we obtain the following.

Corollary 2. Satisfiability and visibly pushdown model checking for VLTL are
EXPTIME-complete.

6 Concluding Remarks

Our automata-theoretic approach, based on the use of SAJA as an intermediate
step, can be conveniently used also for less expressive logical frameworks. In
particular, by Theorems 3, 4, and 6, CaRet and NWTL+ formulas ϕ can be
translated into equivalent Büchi NVPA of size 2O(|ϕ|), which matches the upper
bounds for the known direct translations [4, 3]. Analogously, our approach can
also be used to convert formulas ϕ of RLTL with past into equivalent Büchi
nondeterministic finite-state automata of size 2O(|ϕ|·log(k)), where k is the size of
the largest regular expression associated with a weak future power operator in ϕ
(which follows from Theorem 4 and the fact that the SAJA obtained from ϕ has
only local moves and no secondary states). The recent upper bounds for RLTL
[21] tackled only future operators leaving RLTL with past as an open problem.

Future work includes to adapt our automata-based constructions to alphabets
based on atomic propositions, and to explore whether alternative formalisms like
ETL [23] – adapted to VPL– can be efficiently integrated in the VLTL framework.
Other interesting problems are to explore the relative expressive power of frag-
ments of VLTL and to capture minimal expressively complete VLTL fragments.

References

1. IEEE Standard for Property Specification Language (PSL). IEEE Standard 1850–
2010, Apr. 2010.



2. R. Alur. Marrying words and trees. In Proc. 26th PODS, pages 233–242. ACM,
2007.
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