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Abstract

Stream runtime verification (SRV), pioneered by the tool LOLA, is a declarative for-
malism to specify synchronous monitors. In SRV, monitors are described by specifying
dependencies between output streams of values and input streams of values. The declar-
ative nature of SRV enables a separation between the evaluation algorithms, and the
monitor storage and its individual updates. This separation allows SRV to be lifted
from conventional failure monitors into richer domains to collect statistics of traces.
Moreover, SRV allows to easily identify specifications that can be efficiently monitored
online, and to generate efficient schedules for offline monitors.

In spite of these attractive features, many important theoretical problems about
SRV are still open. In this paper, we address complexity, expressiveness, succinctness,
and closure issues for the subclass of Boolean SRV (BSRV) specifications. Additionally,
we show that for this subclass, offline monitoring can be performed with only two passes
(one forward and one backward) over the input trace in spite of the alternation of past
and future references in the BSRV specification.

Keywords: Complexity and expressiveness, Succinctness, Efficiency in closure
operations, Offline monitoring

1. Introduction

Runtime verification (RV) has emerged in the last decades as an applied formal
technique for software reliability. In RV, a specification expresses correctness require-
ments and is automatically translated into a monitor. Such a monitor is then used
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to check either the current execution of a running system, or a finite set of recorded
executions with respect to the given specification. The former scenario is called on-
line monitoring, while the latter one is called offline monitoring. Online monitoring
is used to detect and possibly handle violations of the specification when the system
is in operation, for example, by the execution of additional repair code. On the other
hand, offline monitoring is used in post-mortem analysis and it is convenient for testing
large systems before deployment, or to inspect system logs. Unlike static verification
techniques like model-checking, which formally checks that all the infinite executions
or traces of a system satisfy the specification, RV only considers a single finite trace.
Thus, this methodology sacrifices completeness guarantees to obtain an immediately
applicable and formal extension of testing. See [1, 2] for modern surveys on runtime
verification.

Stream runtime verification and related work. The first specification formalisms
proposed for runtime verification were based on specification languages for static veri-
fication, typically LTL [3] or past LTL adapted for finite paths [4, 5, 6].

Other formalisms for expressing monitors include regular expressions [7], rule based
specifications as proposed in the system Eagle [8], or rewriting [9]. Stream runtime
verification (SRV), first proposed in the tool LOLA [10], is an alternative to define
monitors for synchronous systems.

In SRV, specifications declare explicitly the dependencies between input streams of
values (representing the observable behavior of the system) and output streams of values
(describing error reports and diagnosis information). These dependencies can relate the
current value of an output stream with the values of the same or other streams in the
present moment, in past instants (like in past temporal formulas) or in future instants.
A similar approach to describe temporal relations as streams was later introduced
as temporal testers [11]. More modernly, the semantics of some temporal logics for
continuous signals, like STL (see e.g. [12]) are defined in terms of the relation between
the signals defined for an STL formula and the signals assumed for the subexpressions,
in a similar manner as for SRV.

Stream runtime verification offers two advantages for the description of monitors.
First, SRV separates the algorithmic aspects of the runtime evaluation—by explicitly
declaring the data dependencies—from the specific individual operations performed at
each step in these evaluation algorithms—which depend on the type of data being ob-
served, manipulated and stored. In this manner, well-known evaluation algorithms for
monitoring Boolean observations—for example those adapted from temporal logics—
can be generalized to richer data domains, producing monitors that collect statistics
about traces. Similarly to the Boolean case, the first approaches for collecting statistics
from running traces were based on extensions of LTL or automata [13]. SRV can be
viewed as a generalization of these approaches to streams. Other modern approaches to
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the runtime verification for statistic collection extend first-order LTL [14, 15, 16]. More-
over, the declarative nature of SRV allows to identify specifications that are amenable
for efficient online monitoring, essentially those specifications whose values can be re-
solved by past and present observations. Additionally, the analysis of dependencies also
allows to generate offline monitors by scheduling passes over the dumped traces, where
the number of passes (back and forth) depends on the number of alternations between
past and future references in the specification.

SRV can be seen as a variation of synchronous languages [17]—like Esterel [18],
Lustre [19] or Signal [20]—but specifically designed for observing traces of systems,
by removing the causality assumption. In synchronous languages, stream values can
only depend on past or present values, while in SRV a dependency on future values
is additionally allowed to describe future temporal observations. In recent years, SRV
has also been extended to real-time systems [21, 22] in the system Copilot, developed
by Galois and NASA.

When used for synthesizing monitors, SRV specifications need to be well-defined :
for every input there must be a unique corresponding output stream. However, as
with many synchronous languages, the declarative style of SRV permits to write syn-
tactically correct specifications that are not well-defined: for some observations, either
there is no possible output (over-definedness) or there is more than one output (under-
definedness). This anomaly is caused by circular dependencies. In [10], a syntactical
constraint called well-formedness was introduced in order to ensure the absence of cir-
cular dependencies, and guarantee well-definedness. Natural specifications, written by
engineers or translated from specifications in temporal logic and similar formalisms, are
usually well-formed and hence well-defined. However, many practical questions that
specification engineers ask—like whether a specification is consistent, universal or sat-
isfiable, or whether two specifications are equivalent—can be reduced to the decision
problems that we study in this paper, including checking well-definedness.

Symbolic transducers [23, 24] have been recently introduced as an extension to finite
state automata and transducers that annotate transitions with logical formulae on the
input values, to model sets of concrete transitions. Like SRV, symbolic transducers
allow to model complex data in the input and to produce complex data as output.
The main difference is that symbolic transducers do not allow to relate or compare
inputs produced at different instants, as the only information that the transducer is
allowed to store is its finite state. On the other hand, SRV allows to manipulate
and store intermediate streams and relate stream values at different instants. The
price to pay is, of course, undecidability when manipulating complex data. Extending
symbolic transducers with the ability to relate inputs at different positions leads to
undecidable decision problems [24]. Similarly, decision problems for general SRV are
also undecidable when one allows rich enough data to be manipulated and stored in
the streams. In this paper, we limit the data to Boolean values, but (unlike symbolic

3



transducers) we allow to relate streams at different instants, and study the complexity
of the corresponding problems.

Another related line of work introduced recently is regular string transformations [25]
and the language DReX, which allows to define in a controlled manner a subset of string
transformations. SRV (on characters as input data) can also be used to define string
transformations, but the synchronous model of computation of SRV restricts the output
to have the same length as the input. However, general SRV is not restricted to charac-
ters and allows to define richer (synchronous) specifications. Moreover, the evaluation
algorithms of DReX require space depending on the size of the input string, while for
SRV it is known how to schedule the offline evaluation of a given specification using an
amount of memory that is independent on the size of the input, and is only constant
on the size of the spec. More generally, extending stream runtime verification to define
string transformations, and in particular non-synchronous string transformations, is an
unexplored area of research.

Our contribution. In spite of its applicability, several foundational theoretical prob-
lems of SRV have not been studied so far. In this paper, we address complexity,
expressiveness, succinctness, and closure properties for Boolean SRV. Our results can
be summarized as follows.

• We establish the complexity of checking whether a specification is under-defined,
over-defined or well-defined. Apart from the theoretical significance of these re-
sults, many important practical properties of specifications can be reduced to the
decision problems above. For example, our results provide algorithms to check
whether two specifications are equivalent, or whether a part of a specification is
redundant because it is subsumed by another part of the specification.

• BSRV specifications can be naturally interpreted as language recognizers, where
one defines a language by selecting the inputs for which the specification admits
some output. We prove that in this setting, BSRV captures precisely the class of
regular languages. We also show efficient closure constructions for many language
operations. Additionally, BSRV specifications can be exponentially more succinct
than nondeterministic finite-state automata (NFA).

• Finally, based on the construction of the NFA associated with a well-defined BSRV
specification, we show how to schedule an offline algorithm with only two passes,
one forward and one backward. This gives a partial answer (for the Boolean case)
to the open problem of reducing the number of passes in offline monitoring for
well-formed SRV specifications [10].

The rest of the paper is structured as follows. Section 2 revisits SRV. In Section 3
we establish expressiveness, succinctness, and closure results for BSRV specifications
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when interpreted as language recognizers. In Section 4, we describe the two-pass offline
monitoring algorithm for well-defined BSRV specifications. Section 5 is devoted to the
decision problems for BSRV specifications. Finally, Section 6 concludes.

2. Stream Runtime Verification (SRV)

In this Section, we recall the SRV framework [10]. We focus on SRV specifications
over stream variables of the same type (with emphasis on the Boolean type).

Informally, an SRV specification describes a relation between input and output
streams, where a stream is a finite sequence of values from a given type T (the ith value
in the sequence represents the value of the stream at time step i). In the specification,
each stream is referred by a variable (denoting the value of the stream at the current
time step), and the relation between input and output streams is described by making
use of stream expressions, whose building blocks are:

• variables and constants;

• function application;

• offset expressions for referring to the value of a stream at a future/past time with
a specified offset from the current time.

Now, we proceed with the formal definition of the SRV specification language.
For all natural numbers i and j with i ≤ j, we denote by [i, j] the set of natural

numbers h such that i ≤ h ≤ j.
A type T is a tuple T = 〈D,F〉 consisting of a countable value domain D and a

finite collection F of interpreted function symbols f , where f denotes a computable
function from Dk to D and k ≥ 0 is the specific arity of f . Note that 0-ary function
symbols (constants) are associated with individual values. In particular, we consider
the Boolean type, where D = {0, 1} and F consists of the Boolean operators ∧, ∨ and
¬. A stream of type T is a non-empty finite word w over the domain D of T. Given
such a stream w, |w| is the length of w. For all positions 1 ≤ i ≤ |w|, w(i) is the ith

letter of w (the value of the stream at time step i). The stream w is uniform if there
is d ∈ D such that w is in d∗.

For a finite set Z of (stream) variables, a stream valuation of type T over Z is a
mapping σ assigning to each variable z ∈ Z, a stream σ(z) of type T such that the
streams associated with the different variables in Z have the same length N for some
N ≥ 1. We also say that N is the length of σ, which is denoted by |σ|.

Remark 1. Note that for the Boolean type, a stream valuation σ over Z can be
identified with the non-empty word over 2Z of length |σ| whose ith symbol, written
σ(i), is the set of variables z ∈ Z such that σ(z)(i) = 1.
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Stream Expressions. Given a finite set Z of variables, the set of stream expressions
E of type T over Z is inductively defined by the following syntax:

E := τ
∣∣ τ [`|c]

∣∣ f(E1, . . . ,Ek)

where τ is either a constant of type T or a variable in Z, ` is a non-null integer, c is
a constant of type T, and f ∈ F is a function of type T and arity k > 0. Informally,
τ [`|c] is an offset expression which refers to the value of τ offset ` positions from the
current position, and the constant c is the default value of type T, which is assigned to
positions from which the offset falls after the end or before the beginning of the stream.
Stream expressions E of type T over Z are interpreted over stream valuations σ of type
T over Z. The valuation of E with respect to σ, written [[E, σ]], is the stream of type T
and length |σ| inductively defined as follows for all 1 ≤ i ≤ |σ|:

• Constants: [[c, σ]](i) = c

• Variables: [[z, σ]](i) = σ(z)(i) for all z ∈ Z

• Offsets: [[τ [`|c], σ]](i) =

{
[[τ, σ]](i+ `) if 1 ≤ i+ ` ≤ |σ|
c otherwise

• Expressions: [[f(E1, . . . ,Ek), σ]](i) = f([[E1, σ]](i), . . . , [[Ek, σ]](i))

For the Boolean type, we use some shortcuts: E1 → E2 stands for ¬E1∨E2, E1 ↔ E2

stands for (E1 → E2)∧(E2 → E1), and if E then E1 else E2 stands for (E∧E1)∨(¬E∧E2).
Additionally, we use first for the Boolean stream expressions 0[−1|1] and we use last for
0[+1|1]. Note that for a Boolean stream, first is 1 precisely at the first position (and 0
elsewhere), and last is 1 precisely at the last position (and 0 elsewhere).

Example 1. Consider the following Boolean stream expression E over Z = {x}:

E := if x then x else x[1|0]

Consider a Boolean stream valuation σ over {x} such that σ(x) ∈ (01)+. The valuation
of E with respect to σ is the uniform Boolean stream 1|σ|. 2

Stream Runtime Verification specification language (SRV). Given a finite set
X of input variables and a set Y = {y1, . . . , yn} of output variables with X ∩Y = ∅, an
SRV specification ϕ of type T over X and Y is a set of defining equations

ϕ : {y1 := E1, . . . , yn := En}

where E1, . . . ,En are stream expressions of type T over X∪Y . Note that there is exactly
one equation for each output variable, and that each defining equation can use both
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input and output variables. The intended meaning of a defining equation is to provide
the value of the corresponding output stream at every given position. Before formally
defining the semantics of SRV, we give some examples as motivation.

Example 2. Consider the specification “every request must be eventually followed by a
grant before the trace ends.” This specification can be expressed by the following SRV
specification with Boolean input streams request and grant, output streams reqgrant
and evgrant, and the following defining equations:

reqgrant := if request then evgrant else 0
evgrant := grant ∨ evgrant[+1|0]

Essentially, the stream reqgrant holds at a given position whenever either there is not
a request, or there is a grant in a future position, as stated by the stream evgrant.
This specification corresponds to the LTL expression (request → grant). For a
given input trace, the stream reqgrant is true exactly at those positions where the LTL
formula holds. 2

Example 3. The specification in the previous example contains a single positive offset.
It is possible, as shown in [10], to write an equivalent specification that only uses
negative offsets:

waitgrant := ¬grant ∧
(
request ∨ waitgrant[−1|0]

)
ok := last→ ¬waitgrant

The output stream waitgrant captures whether no grant has been produced since the
last request. By evaluating waitgrant at the end of the trace, one can obtain whether
there is a pending request. 2

Example 4. Let us revisit the specification from the previous examples. One criticism
is that a single grant suffices to match several previous requests. A refined version of
the intended specification states that “every request has a response, and every response
happens to satisfy a request”. One way to express this specification is by using integers
as a type for intermediate streams countreq and countgrant, with defining equations:

countreq := countreq[−1|0] +
(
if request then 1 else 0

)
countgrant := countgrant[−1|0] +

(
if grant then 1 else 0

)
ok := (countgrant ≤ countreq) ∧ (last→ (countreq− countgrant) = 0)

Essentially, the stream countreq with type integer counts the number of requests that
have been seen in the past, and similarly countgrant counts the number of grants. The
Boolean stream ok states that at any point, the number of grants cannot be higher than
the number of requests and at the end of the trace requests and grants must match. 2

7



Example 5. The previous specification can be refined to store the pending requests,
that are removed when responses with the same identifier are received. Let reqid and
grantid be input streams of identifiers for actual requests and grants. We define an
output stream pending whose type is the range of finite sets of identifiers, and a Boolean
output stream ok with the following defining equations:

pending := pending[−1|∅] ∪
(
if request then {reqid} else ∅

)
\
(
if grant then {grantid} else ∅

)
ok := last→ (pending = ∅)

Essentially, the stream pending stores at each position those requests that have not
been granted yet. Hence, one requires that, at the end of the trace, the set of pending
requests is empty. In this manner, this specification computes the set of pending
requests. Additionally, one can ask that grants only arrive on pending requests using
the following output stream goodgrant:

goodgrant := (¬grant) ∨

 grantid = reqid
∧

grantid /∈ pending

 ∨
 grantid 6= reqid

∧
grantid ∈ pending


ok2 := ok ∧ goodgrant

The stream goodgrant guarantees that every grant satisfies a unique request, by checking
that the grant satisfies either an immediate request or a past request (but not both).
2

Example 6. (From [26]) We consider a simple latch, as described in [27] with a single
Boolean input and a single Boolean output. Whenever the input is true the output
is reversed with respect to the previous state. This can be accomplished with the
following specification with input x, output y:

y := if x then ¬y[−1|0] else y[−1|0]

2

Example 7. (Resettable counter, From [26]) Consider a resettable counter with two
Boolean inputs, inc and reset. The input inc increments the counter and the input reset
resets the counter. The counter is modeled by a stream cnt of type integer that is
initially set to zero. The defining equation for cnt is:

cnt := if reset then 0 else
(
cnt[−1|0] + if inc then 1 else 0

)
2

8



Semantics of SRV. A stream valuation of a specification ϕ : {y1 = E1, . . . , yn = En}
is a stream valuation of type T over X ∪ Y , while an input of ϕ is a stream valuation
of type T over X and an output of ϕ is a stream valuation of type T over Y . Given an
input σX of ϕ and an output σY of ϕ such that σX and σY have the same length, σX∪σY
denotes the stream valuation of ϕ defined in the obvious way. The SRV specification ϕ
describes a relation, written [[ϕ]], between inputs σX of ϕ and outputs σY of ϕ, defined
as follows: (σX , σY ) ∈ [[ϕ]] iff |σX | = |σY | and for each equation yj = Ej of ϕ,

[[yj , σ]] = [[Ej, σ]] where σ = σX ∪ σY

If (σX , σY ) ∈ [[ϕ]], we say that the stream valuation σX ∪ σY is a valuation model of
ϕ (associated with the input σX). Note that in general, for a given input σX , there
may be zero, one, or multiple valuation models associated with σX . This leads to the
following notions for an SRV specification ϕ:

• Under-definedness: for some input σX , there are at least two distinct valuation
models of ϕ associated with σX . In this case we also say that ϕ is under-defined
for σX .

• Over-definedness: for some input σX , there is no valuation model of ϕ associated
with σX . In this case we also say that ϕ is over-defined for σX .

• Well-definedness: for each input σX , there is exactly one valuation model of ϕ
associated with σX .

Note that an SRV specification ϕ may be both under-defined and over-defined (for
different inputs), and ϕ is well-defined iff it is neither under-defined nor over-defined.
For runtime verification, SRV serves as a query language on program behaviors (in-
put streams) from which one computes a unique answer (the output streams). In this
context, a specification is useful only if it is well-defined. However, in practice, it is con-
venient to distinguish intermediate output variables from observable output variables
separating output streams that are of interest to the user from those that are used only
to facilitate the computation of other streams. This leads to a more general notion
of well-definedness. Given a subset Z ⊆ Y of output variables, an SRV specification
ϕ is well-defined with respect to Z if for each input σX , there is exactly one stream
valuation σZ over Z of the same length as σX such that σX ∪ σZ can be extended to
some valuation model of ϕ (uniqueness of the output streams over Z).

Analogously, we consider a notion of semantic equivalence between SRV specifica-
tions of the same type and having the same input variables, which is parameterized by
a set of output variables. Formally, given an SRV ϕ of type T over X and Y , an SRV
specification ϕ′ of type T over X and Y ′, and Z ⊆ Y ∩ Y ′, we say that ϕ and ϕ′ are
equivalent with respect to Z if for each valuation model σ of ϕ, there is a valuation
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model σ′ of ϕ′ such that σ and σ′ coincide on X ∪ Z, and vice-versa. Moreover, if
Y ′ ⊇ Y , then we say that ϕ′ is ϕ-equivalent if ϕ and ϕ′ are equivalent with respect to
Y .

Remark 2. In the rest of the paper, we focus on Boolean SRV (BSRV for short). Thus,
in the following, we omit the reference to the type T in the various definitions. For the
complexity analysis, we assume that the offsets ` in the subexpressions τ [`|c] of a BSRV
are encoded in unary. For a Boolean stream expression E, we denote by ‖E‖ the absolute
value of offset ` if E is a stream expression of the form τ [`|c], and we let ‖E‖ be defined
as 1 otherwise. The size |ϕ| of a BSRV ϕ is defined as |ϕ| :=

∑
E∈SE(ϕ) ‖E‖, where

SE(ϕ) is the set of stream subexpressions of ϕ. Essentially the size of an expression ϕ
is the size of its encoding when offsets are written in unary.

Example 8. Consider the following BSRV specifications over X = {x} and Y = {y}:

ϕ1 : {y := x ∧ y} ϕ2 : {y := x ∧ ¬y} ϕ3 : {y := if x then x[2|0] else x[−2|0]}

The specification ϕ1 is under-defined since (1N , 0N ) and (1N , 1N ) are two valuation
models for each N ≥ 1. On the other hand, the specification ϕ2 is over-defined since
for each N ≥ 1, there is no valuation model associated with the input 1N . Finally, the
specification ϕ3 is well-defined. 2

Example 9. Consider a scenario where we have two input variables start and end
and an observable output variable y. We intend that for every input σX , where X =
{start, end}, the output Boolean stream σy for y gets the value 1 exactly at those
positions i such that i belongs to a session of the input, that is an interval of positions
I = [h, k] satisfying the following:

• within I, the Boolean stream for start gets the value 1 exactly at position h. That
is, σX(start)(h) = 1 and σX(start)(`) = 0 for all h < ` ≤ k;

• within I, the Boolean stream for end gets the value 1 exactly at position k. That
is, σX(end)(k) = 1 and σX(end)(`) = 0 for all h ≤ ` < k.

The above requirement is accomplished by a BSRV specification ϕ which uses two addi-
tional intermediate output variables havestarted and willend, whose associated equations
are:

havestarted := (¬start ∧ ¬end) ∧
(

havestarted[−1|0] ∨(start[−1|0] ∧ ¬end[−1|1])
)

willend := (¬start ∧ ¬end) ∧
(

willend[+1|0] ∨(end[+1|0] ∧ ¬start[+1|1])
)

The Boolean stream for the output variable havestarted assumes the value 1 exactly at
the inner positions i (i.e., positions which are neither start nor end positions) such that
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the greatest start position j which precedes i exists, and j is also a non-end position.
Analogously, the Boolean stream for the output variable willend assumes the value 1
exactly at the inner positions i such that the smallest end position j which follows i
exists, and j is also a non-start position. Finally, the equation for the output variable
y (capturing the positions inside the sessions of the input) is defined as follows:

y := (start∧end)∨(start∧willend[+1|0])∨(end∧havestarted[−1|0])∨(willend∧havestarted)

2

3. BSRV as Language Recognizers

BSRV can be interpreted as a simple declarative formalism to specify languages
of non-empty finite words. We associate to a BSRV specification ϕ over X and Y ,
the language L(ϕ) of non-empty finite words over 2X (or, equivalently, input stream
valuations) for which the specification ϕ admits a valuation model. Formally,

L(ϕ) = {σX | (σX , σY ) ∈ [[ϕ]] for some σY }

Example 10. Let X = {x}, Y = {y}, and ϕ : {y := if E then y else ¬y}, where

E :=
(
first→ (x ∧ y)

)
∧
(
y→ ¬y[+1|0]

)
∧
(
¬y→ (x[+1|1] ∧ y[+1|1])

)
A pair (σX , σY ) is a valuation model of ϕ precisely whenever the valuation of the stream
expression E w.r.t. σX ∪ σY is in 1+. This happens when σX(x)(i) = 1 for all odd
positions i. Hence, L(ϕ) is the set of Boolean streams which assume the value 1 at the
odd positions. Note that this is the finite version of the language that Wolper used to
exhibit the limitation in expressive power of LTL [28]. 2

In the following, we show that BSRV, as language recognizers, are effectively equiv-
alent to nondeterministic finite automata (NFA) on finite words. While the translation
from NFA to BSRV can be done in polynomial time, the converse translation involves
an unavoidable singly exponential blowup. Moreover, BSRV turn out to be effectively
and efficiently closed under many language operations.

In order to present our results, we shortly recall the class of NFA on finite words.
An NFA A over a finite input alphabet I is a tuple A = 〈Q, q0, δ, F 〉, where Q is a finite
set of states, q0 ∈ Q is the initial state, δ : Q× I → 2Q is the transition function, and
F ⊆ Q is a set of accepting states. The NFA A is deterministic if for all (q, ι) ∈ Q× I,
δ(q, ι) is either empty or a singleton. Given an input word w ∈ I∗, a run π of A over
w is a sequence of states π = q1, . . . , q|w|+1 such that q1 is the initial state and for all
1 ≤ i ≤ |w|, qi+1 ∈ δ(qi, w(i)). The run π is accepting if it leads to an accepting state
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(i.e, q|w|+1 ∈ F ). The language L(A) accepted by A is the set of non-empty finite words
w over I such that there is an accepting run of A over w. A is universal if L(A) = I+.
A language over non-empty finite words is regular if it is accepted by some NFA. An
NFA is unambiguous if for each input word w, there is at most one accepting run on w.

Let us fix a BSRV specification ϕ on X and Y . In order to build an NFA accepting
L(ϕ), we define an encoding of the valuation models of ϕ. For this, we associate to
ϕ two parameters, the back reference distance b(ϕ) and the forward reference distance
f(ϕ), which are defined as follows:

b(ϕ) = max(0, {` | ` > 0 and ϕ contains a subexpression of the form z[−`, c]})
f(ϕ) = max(0, {` | ` > 0 and ϕ contains a subexpression of the form z[`, c]})

The meaning of b(ϕ) and f(ϕ) is to capture for a stream valuation σ of ϕ and an
expression E of ϕ, the value of E w.r.t. σ at a time step i is completely specified by
the values of σ at time steps j within i− b(ϕ) ≤ j ≤ i+ f(ϕ). We define the following
alphabets:

A = 2X∪Y A⊥ = A ∪ {⊥} Pϕ = (A⊥)b(ϕ) ×A× (A⊥)f(ϕ)

where ⊥ is a special symbol such that ⊥ /∈ A. Note that a stream valuation of ϕ cor-
responds to a non-empty finite word over the alphabet A, and the cardinality of Pϕ is
singly exponential in the size of ϕ. Given an element p = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ))
of Pϕ, the component a0, called the main value of p, which intuitively represents the
value of some stream valuation σ at some time step. The prefix a−b(ϕ), . . . , a−1 repre-
sent the values of σ at the previous b(ϕ) time steps. The suffix a1, . . . , af(ϕ) denotes the
values of σ in the following f(ϕ) steps. The symbol ⊥ is used to denote the absence of a
previous or future time step. Let τ be either a Boolean constant or a variable in X ∪Y ,
and a ∈ A. Then, the Boolean value of τ in a is τ if τ is a constant, otherwise the value
is 1 precisely when τ ∈ a (that is, when the variable τ is present in a). For a Boolean
stream expression E over X∪Y and an element p = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)) of
Pϕ, the value [[E, p]] of E with respect to p is the computable Boolean value inductively
defined as follows:

• Constants: [[c, p]] = c

• Variables: [[z, p]] = the value of z in a0

• Offsets: [[τ [`|c], p]] =


the value of τ in a` if − b(ϕ) ≤ ` ≤ f(ϕ) and

a` 6= ⊥
c otherwise

• Expressions: [[f(E1, . . . ,Ek), p]] = f([[E1, p]], . . . , [[Ek, p]])

12



We denote by Qϕ the subset of Pϕ consisting of the elements p of Pϕ such that for
each equation y = E of ϕ, the value of y with respect to p coincides with the value of E
with respect to p. Let # be an additional special symbol (which will be used as initial
state of the NFA associated with ϕ). An expanded valuation model of ϕ is a word of the
form # · w such that w is a non-empty finite word w over the alphabet Qϕ satisfying
the following:

• w(1) is of the form (⊥, . . . ,⊥, a0, a1, . . . , af(ϕ));

• w(|w|) is of the form (a−b(ϕ), . . . , a−1, a0,⊥, . . . ,⊥);

• if 1 ≤ i < |w| and w(i) = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)), then there is d ∈ A⊥
such that w(i+ 1) is of the form (a−b(ϕ)+1, . . . , a−1, a0, a1, . . . , af(ϕ), d).

For an expanded valuation model # · w of ϕ, the associated stream valuation σ(w) is
the stream valuation of ϕ of length |w| whose i-th element is the main value of the i-th
element of w.

Example 11. Consider the BSRV ϕ over X = {x} and Y = {y} of Example 10. We
have that b(ϕ) = 0 and f(ϕ) = 1. The following word

#,

(
x : 1
y : 1

,
x : 0
y : 0

)
,

(
x : 0
y : 0

,
x : 1
y : 1

)
,

(
x : 1
y : 1

,
x : 1
y : 0

)
,

(
x : 1
y : 0

,⊥
)

(where at each position the boxed element represents the central value) is an expanded
valuation model of ϕ, whose associated stream valuation is given by(

x : 1
y : 1

)
,

(
x : 0
y : 0

)
,

(
x : 1
y : 1

)
,

(
x : 1
y : 0

)
2

By construction, we easily obtain that for an expanded valuation model # ·w of ϕ,
σ(w) is a valuation model of ϕ. More precisely, the following lemma holds.

Lemma 1. The map that assigns to each expanded valuation model # · w of ϕ the
associated stream valuation σ(w) is a bijection between the set of expanded valuation
models of ϕ and the set of valuation models of ϕ.

By the above characterization of the set of valuations models of a BSRV ϕ, we easily
obtain the following result.
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Theorem 1 (From BSRV to NFA). Given a BSRV ϕ over X and Y , one can con-
struct in singly exponential time an NFA Aϕ over the alphabet 2X accepting L(ϕ) whose
set of states is Qϕ ∪{#}. Moreover, for each input σX , the set of accepting runs of Aϕ
over σX is the set of expanded valuation models of ϕ encoding the valuation models of
ϕ associated with the input σX .

Proof. Recall that Qϕ is the subset Pϕ consisting of consistent valuations (all output
valuations receive the same value as their defining equations), which constrain the set
of values of future and past elements of the tuples.

The NFAAϕ is defined asAϕ = 〈Qϕ∪{#},#, δϕ, Fϕ〉, where Fϕ is the set of elements
of Qϕ of the form (a−b(ϕ), . . . , a−1, a0,⊥, . . . ,⊥), and δ(p, ι) is defined as follows for all

states p and input symbol ι ∈ 2X :

• if p = #, then δϕ(p, ι) is the set of states of the form (⊥, . . . ,⊥, a0, a1, . . . , af(ϕ))
such that a0 ∩X = ι;

• if p = (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)) ∈ Qϕ, then δϕ(p, ι) is the set of states
of the form (a−b(ϕ)+1, . . . , a−1, a0, a1, . . . , af(ϕ), d) for some d ∈ A⊥ whose main
value a1 satisfies a1 ∩X = ι.

By construction, for each input σX , the set of accepting runs of Aϕ over σX coincides
with the set of expanded valuation models # · w of ϕ such that the stream valuation
σ(w) is associated with the input σX . Thus, by Lemma 1, the result follows. 2

For the converse translation from NFA to BSRV, we show the following.

Theorem 2 (From NFA to BSRV). Given an NFA A over the input alphabet 2X ,
one can construct in polynomial time a BSRV ϕA with set of input variables X such
that L(ϕA) = L(A).

Proof. Let A = 〈Q, q0, δ, F 〉. We construct a BSRV specification ϕA over the set of
input variables X as follows. First, for each input symbol ι, we introduce a Boolean ex-
pression Eι over X, encoding the input symbol ι, defined as Eι := (

∧
x∈ι x)∧(

∧
x∈X\ι ¬x).

The set Y of output variables of ϕA is defined as follows:

Y =
⋃
q∈Q
{q} ∪ {control}

We associate to each state q ∈ Q, an output variable q, whose defining equation is the
trivial one given by q = q. The equation for the output variable control is given by

control := if Eev then control else ¬control
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where the Boolean stream expression Eev captures precisely the accepting runs of the
NFA A and is defined as follows:

Eev =
∨
q∈Q

(q ∧
∧

p∈Q\{q}

¬p)

︸ ︷︷ ︸
at each step, A is exactly in one state

∧ (first −→ q0)︸ ︷︷ ︸
a run of A starts at the initial state

∧

∧
q∈Q

∧
ι∈I

(
(q ∧ Eι) −→

∨
p∈δ(q,ι)

p[+1|1]
)

︸ ︷︷ ︸
the evolution of A is δ-consistent

∧
(
last −→

∨
(q,ι)∈{(q,ι)|δ(q,ι)∩F 6=∅)}

(q ∧ Eι)
)

︸ ︷︷ ︸
the run of A is accepting

By construction, given an input stream valuation σX , there is a valuation model of ϕA
associated with the input σX if and only if there is a stream valuation σ associated
with the input σX such that the valuation of Eev with respect to σ is a uniform stream
in 1+. In turn, the valuation of Eev with respect to σ is a uniform stream in 1+ if and
only if there is an accepting run of A over the input σX . Hence, the result follows. 2

As a corollary of Theorems 1 and 2, we obtain the following result.

Corollary 1. BSRV, when interpreted as language recognizers, capture the class of
regular languages over non-empty finite words.

Succinctness. It turns out that the singly exponential blow-up in Theorem 1 cannot
be avoided. To prove this succinctness result we first show a linear time translation
from linear temporal logic LTL with past over finite words—which captures a subclass
of regular languages—into BSRV. Recall that formulas ψ of LTL with past over a finite
set AP of atomic propositions are defined as follows:

ψ ::= p
∣∣ ¬ψ ∣∣ ψ ∨ ψ ∣∣ ψ

∣∣ ψ
∣∣ ψ U ψ ∣∣ ψ S ψ

where p ∈ AP and,, U , and S are the ‘next’, ‘previous’, ‘until’, and ‘since’ temporal
modalities. For a finite word w over 2AP and a position 1 ≤ i ≤ |w|, the satisfaction
relation (w, i) |= ψ is defined as follows:

(w, i) |= p ⇔ p ∈ w[i]
(w, i) |= ¬ψ ⇔ (w, i) 6|= ψ
(w, i) |= ψ1 ∨ ψ2 ⇔ (w, i) |= ψ1 or (w, i) |= ψ2

(w, i) |= ψ ⇔ i+ 1 ≤ |w| and (w, i+ 1) |= ψ
(w, i) |= ψ ⇔ i > 1 and (w, i− 1) |= ψ
(w, i) |= ψ1 U ψ2 ⇔ for some j with i ≤ j ≤ |w|, (w, j) |= ψ2 and

for all h with i ≤ h < j, (w, h) |= ψ1

(w, i) |= ψ1 S ψ2 ⇔ for some j with 1 ≤ j ≤ i, (w, j) |= ψ2 and
for all h with j < h ≤ i, (w, h) |= ψ1
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The language L(ψ) of an LTL formula ψ is the set of non-empty finite words w over
2AP such that (w, 1) |= ψ.

Proposition 1. LTL with past can be translated in linear time into BSRV.

Proof. Let ψ be a formula of LTL with past over a finite set AP of atomic propositions.
We construct in linear time a BSRV specification ϕ over the set of input variables
X = AP such that L(ϕ) = L(ψ). Let SF(ψ) be the set of subformulas of ψ. We
introduce the following set of output variables Y in ϕ:

Y =
⋃

θ∈SF(ψ)

{yθ} ∪ {init}

Essentially, we associate to each subformula θ of ψ, an output variable yθ. The intended
meaning of these variables is that for an input σX , corresponding to a non-empty finite
word over 2AP, and a valuation model σ associated with σX , and for each time step
i, the value of variable yθ is 1 precisely when θ holds at position i along σX . The
equations for the output variables are defined as follows, where p ∈ AP = X:

init := first → (yψ ∨ ¬init)
yp := p

y¬θ := ¬ yθ
yθ1∨θ2 := yθ1 ∨ yθ2

yθ := yθ[+1|0]
yθ := yθ[−1|0]

yθ1Uθ2 := yθ2 ∨ (¬last ∧ yθ1 ∧ yθ1Uθ2 [+1|1])
yθ1Sθ2 := yθ2 ∨ (¬first ∧ yθ1 ∧ yθ1Sθ2 [−1|1])

We show now that the construction is correct by showing L(ϕ) = L(ψ). For the
inclusion L(ϕ) ⊆ L(ψ), let σX ∈ L(ϕ). Hence, there is a valuation model σ of ϕ
associated with the input σX . We need to show that (σX , 1) |= ψ. One can easily
show by construction and structural induction that for all θ ∈ SF(ψ) and positions
i along σX , (σX , i) |= θ if and only if σ(yθ)(i) = 1. Moreover, the equation for the
output variable init ensures that σ(yψ)(1) = 1. Hence, (σX , 1) |= ψ. Consequently,
L(ϕ) ⊆ L(ψ).

For the converse inclusion L(ψ) ⊆ L(ϕ), let σX ∈ L(ψ) and consequently (σX , 1) |=
ψ. We define a stream valuation σ associated with the input σX as follows: σ(init) = 1|σ|

and for all θ ∈ SF(ψ) and positions i along σX , σ(yθ)(i) = 1 if (σX , i) |= θ, and
σ(yθ)(i) = 0 otherwise. Since (σX , 1) |= ψ, by construction, it easily follows that σ is a
valuation model of ϕ associated with the input σX . Hence, σX ∈ L(ϕ) and consequently
L(ψ) ⊆ L(ϕ). 2
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It is well-known [29] that there is a singly exponential succinctness gap between LTL
with past and NFA. Consequently, by Proposition 1, we obtain the following result.

Theorem 3. BSRV specification are singly exponentially more succinct than NFA. In
particular, there is a finite set X of input variables and a family (ϕn)n≥1 of BSRV
specifications with input variables X such that for all n ≥ 1, ϕn has size polynomial in
n, and every NFA accepting L(ϕn) has at least 2Ω(n) states.

Effective closure under language operations. An interesting feature of the class
of BSRV is that, when interpreted as language recognizers, BSRV are effectively and
efficiently closed under many language operations. For two languages L and L′ of finite
words, LR denotes the reversal of L, L · L′ denotes the concatenation of L and L′, and
L+ denotes the positive Kleene closure of L.

For a BSRV ϕ, we say that an output variable y of ϕ is uniform if for each valuation
model of ϕ, the stream for y is uniform.

Theorem 4. BSRV are effectively closed under the following language operations: in-
tersection, union, reversal, positive Kleene closure, and concatenation. Additionally,
the constructions for these operations can be performed in linear time.

Proof. Let ϕ : {y1 := E1, . . . , yk := Ek} and ϕ′ : {y′1 := E′1, . . . , y
′
h := E′h} be two BSRV

specifications over the same set X of input variables. Let Y = {y1, . . . , yk} be the set
of output variables of ϕ and Y ′ = {y′1, . . . , y′h} the set of output variables of ϕ′. We
assume without loss of generality that the BSRV specifications ϕ and ϕ′ have no output
variable in common (i.e. Y ∩ Y ′ = ∅). We describe each construction individually.

Intersection. The construction for intersection is illustrated in Fig. 1. The BSRV
specification recognizing L(ϕ) ∩ L(ϕ′) is simply the joint set of the equations of ϕ and
ϕ′. Correctness of the construction immediately follows.

Union. The construction of the BSRV ϕ∪ϕ′ recognizing L(ϕ)∪L(ϕ′) is given in Fig. 1.
Note that we use two new additional output variables: switch and main. These variables
use a common gadget, built by assigning to an output variable y an equation of the
form:

y := if α then y else ¬y

This gadget forces the sub-expression α to be true at all positions in every valuation
model. In the case of the construction for union, switch is forced by the sub-expression
to be a uniform output variable, which is then used to guess whether the input has to
be considered an input for ϕ or for ϕ′. Depending on the uniform value of switch (if
it is in 0+ or 1+), the equation for the output variable main ensures that the input is
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recognized precisely when either the equations of ϕ are fulfilled or the equations of ϕ′

are fulfilled.
Now, we show that the construction is correct by showing that L(ϕ∪ ϕ′) = L(ϕ)∪

L(ϕ′). For the inclusion L(ϕ ∪ ϕ′) ⊆ L(ϕ) ∪ L(ϕ′), let σX ∈ L(ϕ ∪ ϕ′). Hence, there
is a valuation model σ′′ of ϕ ∪ ϕ′ associated with the input σX . By construction,
σ′′(switch) ∈ 0+ ∪ 1+. Assume that σ′′(switch) ∈ 1+ (the other case is analogous). By
definition of the equation for main, for every 1 ≤ i ≤ k, [[yi, σ

′′]] = [[Ei, σ
′′]]. Thus, the

restriction of σ′′ to X ∪ Y is a valuation model of ϕ. Hence, σX ∈ L(ϕ) and the result
follows. For the converse inclusion L(ϕ) ∪ L(ϕ′) ⊆ L(ϕ ∪ ϕ′), let σX ∈ L(ϕ) ∪ L(ϕ′).
Assume that σX ∈ L(ϕ′) (the other case being similar). Hence, there is a valuation
model σ′ of ϕ′ associated with the input σX . Let σ′′ be the stream valuation of ϕ ∪ ϕ′
associated with the input σX defined as follows: for all variables z of ϕ∪ϕ′, σ′′(z) = σ′(z)
if z ∈ X∪Y ′, and σ′′(z) ∈ 0+ otherwise. By construction, it follows that σ′′ is a valuation
model of ϕ ∪ ϕ′. Hence σX ∈ L(ϕ ∪ ϕ′).

Reversal. The construction for reversal is very simple and appears in Fig. 1. The BSRV
ϕR recognizing L(ϕ)R is obtained from ϕ by replacing each equation y = E with the
equation y = ER, where ER denotes the stream expression obtained from E by replacing
each sub-expression τ [k|d] with k > 0 for τ [−k|d], and replacing each sub-expression
τ [−k|d] with k > 0 for τ [k|d].

We prove now that the construction is correct. For a finite word w and a position
1 ≤ i ≤ |w|, we denote by wR the reverse of w, and by R(i) the position of w given by
|w|− i+1. Note that the suffix of wR from position R(i) is the reverse of the prefix of w

ϕ : {y1 := E1, . . . , yk = Ek} ϕ′ : {y′1 := E′1, . . . , y
′
h := E′h}

Intersection: ϕ ∩ ϕ′ : {y1 := E1, . . . , yk := Ek, y
′
1 := E′1, . . . , y

′
h := E′h}

where {y1, . . . , yk} ∩ {y′1, . . . , y′h} = ∅.

Union: ϕ ∪ ϕ′ : {y1 := y1, . . . , y
′
h := y′h, switch := Eswitch,main := Emain}

Eswitch = if ¬last→ (switch↔ switch[+1|1]) then switch else ¬switch

Emain = if ((switch→
i=k∧
i=1

yi ↔ Ei) ∧ (¬switch→
i=h∧
i=1

y′i ↔ E′i)) then main else ¬main

Reversal: ϕR : {y1 := ER
1 , . . . , yk := ER

k }
ER
i is obtained from Ei by converting each offset k in its opposite −k.

Figure 1: Constructions for intersection, union, and reversal.
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leading to position i. It follows by structural induction that for all stream expressions
E, stream valuations σ over the variables of E, and 1 ≤ i ≤ |σ|:

[[E, σ]](i) = [[ER, σR]](R(i))

Then for all stream valuations σ over X ∪ Y , σ is a valuation model of ϕ if and only if
σR is a valuation model of ϕR. Hence, L(ϕR) = [L(ϕ)]R.

Positive Kleene closure for ϕ : {y1 := E1, . . . , yk := Ek}

ϕ+ : {y1 := E+
1 , . . . , yk := E+

k ,wbegin := Ewbegin,wend := Ewend}

Ewbegin = if (first→ wbegin) ∧ (wbegin→ wend[−1|1]) then wbegin else ¬wbegin
Ewend = if (last→ wend) ∧ (wend→ wbegin[+1|1]) then wend else ¬wend

E+
i is obtained from Ei by replacing each stream subexpression τ [k|d] with Eτ,k,d:

Eτ,k,d =


if

j=k∨
j=1

wbegin[j|1] then d else τ [k|d] if k > 0

if

j=−k∨
j=1

wend[−j|1] then d else τ [k|d] if k < 0

Figure 2: Construction for positive Kleene closure

Positive Kleene closure. The construction is given in Fig. 2. The BSRV specification
ϕ+ that recognizes [L(ϕ)]+ uses two new additional output variables: wbegin and wend,
again defined using the gadget described above. Intuitively, wbegin and wend are used
for guessing a decomposition in the given input σX of the form σX = σX,1 · . . . · σX,N
for some N ≥ 1 in such a way that each component σX,i is in L(ϕ). In particular, the
output variable wbegin is used to mark the first positions of the components σX,i, and
wend is used to mark the last position. The equations for the output variables of ϕ are
modified to allow checking for an offset k of ϕ and a position j inside a component σX,i
in the guessed decomposition of the input σX , whether k + j is still a position inside
σX,i.

Now, we show that the construction is correct by proving that L(ϕ+) = [L(ϕ)]+.
For the inclusion L(ϕ+) ⊆ [L(ϕ)]+, let σX ∈ L(ϕ+). Hence, there is a valuation model
σ of ϕ+ associated with the input σX . By the equations for the output variables wbegin
and wend, there is N ≥ 1 such that σ can be written in the form σ = σ1 · . . . · σN and
for all 1 ≤ ` ≤ N , the Boolean stream σ`(wbegin) is in 10∗ and the Boolean stream
σ`(wend) is in 0∗1. Fix 1 ≤ ` ≤ N . We show that the restriction (σ`)X∪Y of σ` to
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the set of variables X ∪ Y is a valuation model of ϕ. Hence, membership of σX in
[L(ϕ)]+ follows. For all positions 1 ≤ i ≤ |σ`| along the stream valuation σ`, we denote
by p(i) the corresponding position along σ. In order to prove that σ` is a valuation
model of ϕ, by hypothesis, it suffices to show that for each equation y = E of ϕ and
for each position 1 ≤ i ≤ |σ`|, the following holds, where y = E+ is the equation of ϕ+

associated to the output variable y:

[[E, (σ`)X∪Y ]](i) = [[E+, σ]](p(i))

We just need to prove that for each subexpression τ [k|d] of ϕ, [[τ [k|d], (σ`)X∪Y ]](i) =
[[Eτ,k,d, σ]](p(i)), where the stream expression Eτ,k,d is as in Fig. 2. There are two cases:

• k > 0: first, assume that i+k ≤ |σ`|. Since σ`(wbegin) is in 10∗, we obtain that for
all 1 ≤ j ≤ k, σ(wbegin)(p(i)+j) = 0. Hence, by definition of Eτ,k,d, it follows that
[[Eτ,k,d, σ]](p(i)) = [[τ [k|d], σ]](p(i)) = [[τ [k|d], (σ`)X∪Y ]](i), and the result follows in
this case. Now, assume that i+ k > |σ`|. Hence, [[τ [k|d], (σ`)X∪Y ]](i) = d. Then,
either p(i) + k > |σ|, or there is 1 ≤ j ≤ k such that σ(wbegin)(p(i) + j) = 1. By
definition of Eτ,k,d, it follows that [[Eτ,k,d, σ]](p(i)) = d, and the result follows in
this case as well.

• k < 0: first, assume that i−k ≥ 1. Since σ`(wend) is in 0∗1, we obtain that for all
1 ≤ j ≤ −k, σ(wend)(p(i)− j) = 0. Hence, by definition of Eτ,k,d, it follows that
[[Eτ,k,d, σ]](p(i)) = [[τ [k|d], σ]](p(i)) = [[τ [k|d], (σ`)X∪Y ]](i), and the result follows
in this case. Now, assume that i− k < 1. Hence, [[τ [k|d], (σ`)X∪Y ]](i) = d. Then,
either p(i) − k < 1, or there is 1 ≤ j ≤ −k such that σ(wend)(p(i) − j) = 1. By
definition of Eτ,k,d, it follows that [[Eτ,k,d, σ]](p(i)) = d, and the result follows in
this case as well.

For the converse inclusion [L(ϕ)]+ ⊆ L(ϕ+), let σX ∈ [L(ϕ)]+. Hence, there is
a stream valuation σ of ϕ associated with the input σX such that σ is of the form
σ = σ1 · · · · · σN for some N ≥ 1, and σ` is a valuation model of ϕ for all 1 ≤ ` ≤ N .
Let σ′′ = σ′′1 · · · · · σ′′N be the extension of σ over X ∪ Y ∪ {wbegin,wend}, where the
Boolean streams σ′′(wbegin) and σ′′(wend) are defined as follows: for all 1 ≤ ` ≤ N ,
σ′′` (wbegin) is in 10∗ and the Boolean stream σ′′` (wend) is in 0∗1. We show that σ′′ is
a valuation model of ϕ+, hence, membership of σX in L(ϕ+) follows. By construction,
the equations for the output variables wbegin and wend are satisfied with respect to
the stream valuation σ′′. Now, let us consider an equation y = E of ϕ+ associated with
an output variable y ∈ Y . By construction, in order to show that [[y, σ′′]] = [[E, σ′′]], it
suffices to prove that for all 1 ≤ ` ≤ N , 1 ≤ i ≤ |σ`|, and subexpression τ [k|d] of ϕ,
[[τ [k|d], σ`]](i) = [[Eτ,k,d, σ

′′]](p(i)), where for 1 ≤ i ≤ |σ`|, p(i) denotes the corresponding
position along σ. This can be shown as for the proof of the inclusion L(ϕ+) ⊆ [L(ϕ)]+.
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ϕ : {y1 := E1, . . . , yk := Ek} ϕ′ = {y′1 := E′1, . . . , y
′
h := E′h}

Concatenation: {y1, . . . , yk} ∩ {y′1, . . . , y′h} = ∅

ϕ · ϕ′ : {y1 := if wmark then Ẽ1 else y1,
. . . ,

yk := if wmark then Ẽk else yk,

y′1 := if ¬wmark then Ẽ
′
1 else y′1,

. . . ,

y′h := if ¬wmark then Ẽ
′
h else y′h,

wmark := Ewmark}

Ewmark = if (first→ wmark) ∧ (last→ ¬wmark) ∧ (wmark→ wmark[−1|1])∧
(¬wmark→ ¬wmark[+1|0]) then wmark else ¬wmark

Ẽi is obtained from Ei by replacing each stream subexpression τ [k|d] s.t. k > 0 with:

if

j=k∨
j=1

¬wmark[j|0] then d else τ [k|d]

Ẽ
′
i is obtained from E′i by replacing each stream subexpression τ [k|d] s.t. k < 0 with:

if

j=−k∨
j=1

wmark[−j|1] then d else τ [k|d]

Figure 3: Construction for concatenation

Concatenation. The construction is given in Fig. 3. The BSRV specification ϕ · ϕ′
recognizing L(ϕ) · L(ϕ′) uses a new additional output variable, wmark, once again
based on the same gadget. This variable is used for guessing a decomposition in the
given input of the form σX · σ′X in such a way that σX ∈ L(ϕ) and σ′X ∈ L(ϕ′). In
particular, the stream for the output variable wmark assumes the value 1 along all and
only the positions of σX (the equation for wmark ensures that a Boolean stream for
wmark is always in 1+0+). Moreover, the equations for the output variables of ϕ are
modified in order to allow to check for a positive offset k > 0 of ϕ and a position j inside
σX in the guessed decomposition σX · σ′X of the input, whether k+ j is still a position
inside σX . Analogously, the equations for the output variables of ϕ′ are modified to
allow checking for a negative offset k < 0 of ϕ′ and a position j inside σ′X in the guessed
decomposition σX · σ′X of the input, whether k + j is still a position inside σ′X .

Now, we show that the construction is correct: L(ϕ · ϕ′) = L(ϕ) · L(ϕ′). For the
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inclusion L(ϕ ·ϕ′) ⊆ L(ϕ) · L(ϕ′), let σX ∈ L(ϕ ·ϕ′). Hence, there is a valuation model
σ′′ of ϕ · ϕ′ associated with the input σX . By the equation for the output variable
wmark, σ′′ can be written in the form σ′′ = σ · σ′ such that σ(wmark) is in 1+ and
σ′(wmark) is in 0+. We show that the restriction (σ)X∪Y of σ to the set of variables
X∪Y is a valuation model of ϕ, and the restriction (σ′)X∪Y ′ of σ′ to the set of variables
X ∪ Y ′ is a valuation model of ϕ′. Hence, membership of σX in L(ϕ) · L(ϕ′) follows.
We consider the stream valuation (σ)X∪Y (the proof for (σ′)X∪Y ′ is similar). In order
to prove that (σ)X∪Y is a valuation model of ϕ, by hypothesis and construction, it
suffices to show that for each equation y = E of ϕ and for each position 1 ≤ i ≤ |σ|, the
following holds, where y = if wmark then E′′ else y is the equation of ϕ · ϕ′ associated
to the variable y:

[[E, (σ)X∪Y ]](i) = [[E′′, σ′′]](i)

By construction, we just need to prove that for each subexpression τ [k|d] of ϕ such
that k > 0, [[τ [k|d], (σ)X∪Y ]](i) = [[Eτ,k,d, σ

′′]](i), where the stream expression Eτ,k,d is
as in Fig. 3. This is analogous to to the proof for the positive Kleene closure.

For the converse inclusion L(ϕ) · L(ϕ′) ⊆ L(ϕ · ϕ′), let σ′′X ∈ L(ϕ) · L(ϕ′). Hence,
σ′′X = σX · σ′X and there are a valuation model σm of ϕ associated with the input σX
and a valuation model σ′m of ϕ′ associated with the input σ′X . Let σ′′ be the stream
valuation over X ∪ Y ∪ Y ′ ∪ {wmark} associated with the input σ′′X defined as follows:
σ′′ = σ ·σ′ with |σ| = |σX |, where (i) σ(z) = σm(z) if z ∈ X∪Y , and σ(z) = 1 otherwise,
and (ii) σ′(z) = σ′m(z) if z ∈ X ∪ Y ′, and σ′(z) = 0 otherwise. By construction σ′′ is a
valuation model of ϕ · ϕ′. Hence, membership of σ′′X in L(ϕ · ϕ′) follows.

This concludes the proof of Theorem 4. 2

4. Offline Monitoring for Well-defined BSRV

In this section, we propose an offline monitoring algorithm for well-defined BSRV
based on Theorem 1. The algorithm runs in time linear in the length of the input trace
(input streams) and singly exponential in the size of the specification.

Our algorithm also solves the following question which is left open in [10]. In offline
monitoring, one can afford to traverse the input stream several times, in the backward
and in the forward directions. However, efficient algorithms must perform each traver-
sal using only a bounded amount of memory that does not depend on the length of
the trace. The algorithm in [10] for offline monitoring starts by analyzing the specifi-
cation, calculating the offset dependencies between output streams by looking at their
defining equations. Then, the algorithm performs a forward traversal to resolve (in a
memory-less manner) the values of an output stream variable based on the values of
other output variables that have been already resolved and which appear with past
offsets. Similarly, backward traversals are performed to resolve expressions with future
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Monitoring(ϕ, σX) /** ϕ is a well-defined BSRV and Aϕ = 〈Q, q0, δ, F 〉 **/

Λ← {q0}
for i = 1 upto |σX | do
update Λ← {q ∈ Q | q ∈ δ(p, σX(i)) for some p ∈ Λ}
store Λ at position i on the tape

for i = |σX | downto 1 do

let Λ be the set of states stored at position i on the tape
if i = |σX | then p ← the unique accepting state in Λ
else let q be the unique state in Λ such that p ∈ δ(q, σX(i+ 1));

update p← q
output at position i the main value of p

Figure 4: Offline monitoring algorithm for well-defined BSRV

offsets. In summary, the algorithm in [10] performs a number of passes proportional to
the number of backward and forward references in the defining equations. Intuitively
speaking, this number of passes corresponds to the number of alternations between fu-
ture and past operators in a temporal logic specification. The open question is whether
a specification can be modified into an equivalent specification that only requires a
constant number of forward and backward passes, each of which uses an amount of
memory that does not depend on the length of the trace. We show here that only two
passes (one forward and one backward) are required for BSRV.

Let ϕ be a BSRV over X and Y , andAϕ = 〈Q, q0, δ, F 〉 be the NFA over 2X accepting
L(ϕ) of Theorem 1. Recall that Q\{q0} is contained in (A⊥)b(ϕ)×A× (A⊥)f(ϕ), where
A = 2X∪Y and A⊥ := A ∪ {⊥}, and an expanded valuation model of ϕ is of the form
π = q0, q1, . . . , qk, where qi ∈ Q \ {q0} for all 1 ≤ i ≤ k. The valuation model of
ϕ encoded by π is the sequence of the main values of the states qi visited by π. By
Theorem 1, for every input σX , the set of accepting runs of Aϕ over σX is the set of
expanded valuation models of ϕ encoding the valuation models of ϕ associated with
the input σX . Hence, we obtain the following.

Proposition 2. A BSRV ϕ is well-defined if and only if the NFA Aϕ is universal and
unambiguous.

Proof. The specification ϕ is well-defined iff for every input σX , ϕ admits one and
only one (expanded) valuation model iff for every input σX , there is one and only one
accepting run of Aϕ over σX iff Aϕ is universal and unambiguous. 2

The offline monitoring algorithm for well-defined BSRV is given in Fig. 4, where we
assume that the input trace σX is available on an input tape. The algorithm operates
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in two phases. In the first phase, a forward traversing of the input trace is performed,
and the algorithm simulates the unique run over the input σX of the deterministic
finite state automaton (DFA) that would result from Aϕ by the classical powerset
construction. Let {q0},Λ(1), . . . ,Λ(|σX |) be the run of this DFA over σX . At each step
i, the state Λ(i) of the run resulting from reading the input symbol σX(i) is stored in
the ith position of the tape. In the second phase, a backward traversal of the input
trace is performed, and the algorithm outputs a stream valuation of ϕ.

We claim that the uniqueness conditions in the second phase of the algorithm are
satisfied, and the output is the unique valuation model of the well-defined BSRV specifi-
cation ϕ associated with the input σX . By Proposition 2, Aϕ is universal. Thus, by the
classical construction of the DFA associated with Aϕ, it holds that for all 1 ≤ i ≤ |σX |,

Λ(i) 6= ∅ and for each state q of Aϕ,
q ∈ Λ(i) if and only if
there is a run of Aϕ over σX(1), . . . , σX(i) leading to state q.

(1)

We assume that the uniqueness conditions are not satisfied, and derive a contradiction.
Let i be the greatest position along σX such that the uniqueness condition at step i is not
satisfied. Assume that i < |σX | (the other case being simpler). For each q ∈ Q, let Aqϕ
be the NFA obtained from Aϕ by replacing the initial state q0 with q. By Condition (1)
above, Λ(i) 6= ∅. Hence, by hypothesis, there are a state p ∈ Λ(i+ 1) and two distinct
states q, q′ ∈ Λ(i) such that p ∈ δ(q, σX(i+ 1)) and p ∈ δ(q′, σX(i+ 1)). Moreover, by
construction of the algorithm, there is a run of Apϕ over σX(i+2), . . . , σX(|σX |) leading
to an accepting state qacc. By Condition (1) above, we deduce that there are two distinct
accepting runs of Aϕ over σX . This is a contradiction because by Proposition 2, Aϕ is
unambiguous. Hence, the uniqueness conditions in the second phase of the algorithm
are satisfied. Moreover, by construction, it follows that the sequence of states computed
by the algorithm in the second phase is the unique accepting run π of Aϕ over σX .
Therefore, the algorithm outputs the valuation model of ϕ encoded by π, which is the
unique valuation model of ϕ associated with the input σX . Thus, since the size of the
NFA Aϕ is singly exponential in the size of ϕ, we obtain the following result.

Theorem 5. One can construct an offline monitoring algorithm for a well-defined
BSRV specification, that runs in time linear in the length of the input trace and singly
exponential in the size of the specification. Additionally, the algorithm processes a
position of the input trace exactly twice.

In [10], a syntactical condition for general SRV, called well-formedness, is intro-
duced, which can be checked in polynomial time and guarantees that the semantic
condition given by well-definedness is met. Well-formedness ensures the absence of cir-
cular definitions by requiring that a dependency graph of the output variables have not
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zero-weight cycles. As illustrated in [10], for the restricted class of well-formed SRV, it
is possible to construct an offline monitoring algorithm which runs in time linear in the
length of the input trace and the size of the specification. Moreover, one can associate
to a well-formed SRV ϕ a parameter ad(ϕ), called alternation depth [10], such that the
monitoring algorithm processes each position of the input trace exactly ad(ϕ)+1 times.
An important question left open in [10] is whether for a well-formed SRV specification
ϕ, it is possible to construct a ϕ-equivalent SRV specification whose alternation depth
is minimal. Here, we settle partially this question for the class of BSRV. By using
the same ideas for constructing the algorithm of Fig. 4, we show that for the class of
BSRV, the semantic notion of well-definedness coincides with the syntactical notion of
well-formedness (modulo BSRV-equivalence), and the hierarchy of well-formed BSRV
induced by the alternation depth collapses to 1.

We give now the formal details. First, we revisit the notion of well-formedness [10].
Given a general SRV specification ϕ over X and Y , the dependency graph Gϕ of ϕ is the
finite weighted directed graph whose set of vertices is Y and whose set of weighted edges

is defined as follows. There is an edge y
k−→ z in the graph whenever the equation

y = E of ϕ associated with y, either k = 0 and z occurs in E, or k 6= 0 and z[k|d] occurs
in E for some d. The weight of a finite path of Gϕ is the sum of the weights of its
edges. An SRV specification ϕ is well-formed if its dependency graph Gϕ has no cycle
with weight zero. As shown in [10], for a well-formed SRV specification ϕ, a strongly
connected component (SCC) of Gϕ can be classified as positive or negative, where an
SCC is positive if every cycle in the SCC has weight strictly positive, or negative if
every cycle is strictly negative. Clearly, every SCC is positive or negative because
otherwise one can build a zero weight path by traversing a negative and a positive
cycle a sufficient number of times to cancel each other. The alternation depth ad(ϕ)
of a well-formed SRV is then defined as the maximum over the number of alternations
between positive and negative vertices along a path of Gϕ, where a vertex is positive if
it belongs to a positive SCC and negative if it belongs to a negative SCC.

We establish the following result for the class of BSRV.

Theorem 6. Given a well-defined BSRV specification ϕ, one can build in doubly expo-
nential time a ϕ-equivalent BSRV specification which is well-formed and has alternation
depth 1.

Proof. Let ϕ be a well-defined BSRV specification overX and Y , andAϕ = 〈Q, q0, δ, F 〉
be the NFA over 2X accepting L(ϕ) built in the proof of Theorem 1. We denote by
Dϕ the DFA accepting L(ϕ) resulting by determinizing Aϕ using the classical power set
construction. Recall that Dϕ = 〈2Q, {q0}, δD, FD〉, where FD = {P ∈ 2Q | P ∩ F 6= ∅}
and for all P ∈ 2Q and ι ∈ 2X , δD(P, ι) = {q ∈ Q | q ∈ δ(p, ι) for some p ∈
P}. For each output variable y ∈ Y , we denote by Q(y) the set of Aϕ-states q =
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(a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ)) ∈ Q \ {q0} such that y is in the main value a0 of q. In
the following, we construct a BSRV specification ϕ′ over X and Y ′ ⊇ Y satisfying the
statement of the theorem, where the set of output variables Y ′ is defined as follows

Y ′ = Y ∪
⋃

q∈Q\{q0}

{q} ∪
⋃
P∈2Q

{P}

Thus, we associate to each non-initial Aϕ-state q, an output variable q, and to each
Dϕ-state P ∈ 2Q, an output variable P.

For each ι ∈ 2X , let Eι be the Boolean expression over X encoding precisely the
input symbol ι given by Eι := (

∧
x∈ι x) ∧ (

∧
x∈X\ι ¬x). Additionally, for all q ∈ Q and

P ∈ 2Q, let Accq and Init(P, ι) be the Boolean constants defined as follows:

Accq =

{
1 if q ∈ F
0 otherwise

Init(P, ι) =

{
1 if P = δD({q0}, ι)
0 otherwise

Then, for all P ∈ 2Q, q ∈ Q \ {q0}, and y ∈ Y , the equations of the BSRV ϕ′ for the
output variables P, q, and y are defined as follows.

P := if first then
∧
ι∈2X

(Eι → Init(P, ι)) else
∨

(P ′,ι)∈{(P ′,ι)|P=δD(P ′,ι)}

Eι ∧ P′[−1|0]

q := if
∨

P∈{P∈2Q|q∈P}

P then Eq else 0

where Eq := if last then Accq else
∨
ι∈2X

∨
q′∈δ(q,ι)

(Eι[+1|0] ∧ q′[+1|0])

y :=
∨

q∈Q(y)

q

By construction, the specification BSRV ϕ′ is well-formed—and consequently well-
defined—and the alternation depth of ϕ′ is exactly 1. We still need to show that
ϕ′ is ϕ-equivalent. Let σX be an input stream valuation, and σ and σ′ be the unique
valuation models of ϕ and ϕ′, respectively, associated with the input σX . We need
to prove that the restrictions of σ and σ′ to Y coincide. Since ϕ is well-defined, by
Proposition 2, Aϕ is universal and unambiguous. Let π = q0, q1, . . . , q|σX | be the unique
accepting run of Aϕ over σX (which encodes σ). Then, by the equations of ϕ′ associated
with the output variables y ∈ Y , it suffices to prove the following condition:

for each 1 ≤ i ≤ |σX |, there is exactly one state p ∈ Q \ {q0} such that
p ∈ σ′(i) and p = qi

(2)

Let πD = {q0}, P1, . . . , P|σX | be the run of Dϕ over σX . First, we observe that the
equations for the output variables P ensure that for each 1 ≤ i ≤ |σX |, there is exactly
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one Dϕ-state P ∈ 2Q such that P ∈ σ′(i), and P = Pi. By using this observation
and the fact that Aϕ is universal and unambiguous, and proceeding as in the proof of
correctness of the algorithm of Figure 4, Condition (2) easily follows, which concludes
the proof. 2

5. Decision Problems

In this section, we show complexity results for some relevant decision problems
related to BSRV specifications. In particular, we establish that while checking well-
definedness is in EXPTIME, checking for a given BSRV ϕ and a given subset Z of output
variables, whether ϕ is well-defined with respect to Z (generalized well-definedness
problem) is instead EXPSPACE-complete. Our results can be summarized as follows.

Theorem 7. For the class of BSRV, the following hold:
1. The under-definedness problem is PSPACE-complete, the well-definedness prob-

lem is in EXPTIME and at least PSPACE-hard, while the over-definedness problem
and the generalized well-definedness problem are both EXPSPACE-complete.

2. When BSRV are interpreted as language recognizers, language emptiness is PSPACE-
complete, while language universality, language inclusion, and language equiva-
lence are EXPSPACE-complete.

3. Checking semantic equivalence is EXPSPACE-complete.

In the following Subsections 5.1 and 5.2, we establish the upper bounds and the
lower bounds of Theorem 7.

5.1. Upper bounds of Theorem 7

We first need a preliminary result (Proposition 3 below). For an NFAA = 〈Q, q0, δ, F 〉,
a state projection of A is a mapping Υ : Q → P for some finite set P such that for
all q ∈ Q, Υ(q) is computable in logarithmic space (in the size of Q). The mapping Υ
can be extended to sequences of states in the obvious way. We say that the NFA A is
unambiguous with respect to Υ if for all w ∈ L(A) and accepting runs π and π′ of A
over w, their projections Υ(π) and Υ(π′) coincide.

Proposition 3. Given an NFA A and a state projection Υ of A, checking whether A
is not unambiguous with respect to Υ can be done in NLOGSPACE.

Proof. The following non-deterministic algorithm solves the problem, given the input
(A,Υ): at each step, the algorithm guesses two runs π and π′ of A over the same input.
The algorithm keeps in memory only the pair of states (q, q′), where q is the last state
of π and q′ is the last state of π′, and a flag f which is 1 whenever the projections

27



Υ(π) and Υ(π′) of the two runs π and π′ guessed so far are distinct. Initially, q and q′

coincide with the initial state, and f = 0. If f = 1, and q and q′ are both accepting
(and then π and π′ are two accepting runs over the same input and Υ(π) and Υ(π′)
are distinct), the algorithm terminates with success. Otherwise, the algorithm guesses
two transitions of A from q and q′ reading the same input symbol, leading to states
p and p′, respectively, re-writes the memory by replacing the pair (q, q′) with the new
pair (p, p′), and the flag f with the new flag f ′, where f ′ is 1 precisely whenever either
f = 1 or Υ(p) and Υ(p′) are distinct, and the whole procedure is repeated. 2

Now, we provide the upper bounds of Theorem 7. Fix a BSRV ϕ over X and Y , and
let Aϕ be the NFA of Theorem 1 accepting L(ϕ) and whose size is singly exponential
in the size of ϕ.

Membership in PSPACE for under-definedness of BSRV. By Theorem 1 and
Lemma 1, for every input σX , there is a bijection between the set of accepting runs
of Aϕ over σX and the set of valuation models of ϕ associated with σX . Hence, ϕ is
under-defined if and only if Aϕ is not unambiguous. Since Aϕ can be constructed on
the fly and PSPACE = NPSPACE, by Proposition 3 (with Υ as the identity map), it
follows that the under-definedness problem is in PSPACE.

Membership in EXPTIME for well-definedness of BSRV. Checking universality
of unambiguous NFA can be done in polynomial time [30]. By Proposition 2, ϕ is well-
defined if and only if Aϕ is universal and unambiguous. By Proposition 3, checking
that Aϕ is unambiguous can be done in PSPACE (in the size of ϕ). Thus, since the size
of Aϕ is singly exponential in the size of ϕ, we obtain that checking well-definedness
for BSRV is in EXPTIME.

Membership in EXPSPACE for over-definedness and generalized well-defined-
ness of BSRV. Since Aϕ accepts L(ϕ), ϕ is over-defined iff Aϕ is not universal.
Thus, since checking universality for NFA is PSPACE-complete [31], membership in EX-
PSPACE for checking over-definedness follows. Now, let us consider the generalized well-
definedness problem. Let Z ⊆ Y be a subset of the output variables. Recall that the set
of non-initial states of Aϕ is contained in (A⊥)b(ϕ)×A×(A⊥)f(ϕ), where A = 2X∪Y and
A⊥ := A ∪ {⊥}. Let ΥZ be the state projection of Aϕ assigning to the initial state q0

of Aϕ q0 itself, and assigning to each non-initial state (a−b(ϕ), . . . , a−1, a0, a1, . . . , af(ϕ))
of Aϕ the tuple (d−b(ϕ), . . . , d−1, d0, d1, . . . , df(ϕ)), where for all b(ϕ) ≤ i ≤ f(ϕ), di = ai
if ai = ⊥, and di = ai ∩ Z otherwise. By Theorem 1, given an input σX , the accepting
runs of Aϕ over σX are the expanded valuation models of ϕ encoding the valuation
models of ϕ associated with the input σX . Now, let σ and σ′ be two valuation models
of ϕ associated with an input σX , and π and π′ be the expanded valuation models
encoding σ and σ′, respectively. By construction, it follows that ΥZ(π) = ΥZ(π′) if

28



and only if the restrictions of σ and σ′ to Z coincide. By Theorem 1, we obtain that ϕ
is well-defined with respect to Z if and only if Aϕ is unambiguous with respect to ΥZ

and Aϕ is universal. Thus, since checking universality for NFA is PSPACE-complete,
by Proposition 3, membership in EXPSPACE for checking generalized well-definedness
follows.

Membership in PSPACE for language emptiness. Since checking language empti-
ness for NFA is NLOGSPACE-complete, by Theorem 1, the result follows.

Membership in EXPSPACE for language universality, language inclusion, and
language equivalence of BSRV. Recall that for NFA, universality, inclusion, and
equivalence are PSPACE-complete [31]. Hence, by Theorem 1, the result follows.

Membership in EXPSPACE for semantic equivalence of BSRV. Let ϕ be a BSRV
over X and Y , ϕ′ be a BSRV over X and Y ′, and Z ⊆ Y ∩ Y ′. By a straightforward
adaptation of Theorem 1, one can construct in singly exponential time two NFA Aϕ,Z
and Aϕ′,Z over 2X∪Z such that L(Aϕ,Z) is the set of stream valuations over X∪Z which
can be extended to valuation models of ϕ, and L(Aϕ′,Z) is the set of stream valuations
over X ∪ Z which can be extended to valuation models of ϕ′. It follows that ϕ and
ϕ′ are equivalent with respect to Z if and only if L(Aϕ,Z) = L(Aϕ′,Z). Thus, since
language equivalence for NFA is PSPACE-complete, membership in EXPSPACE for the
considered problem follows.

5.2. Lower bounds of Theorem 7

First, we consider the EXPSPACE-hardness results of Theorem 7.

EXPSPACE-hardness for over-definedness of BSRV. The result is obtained by a
polynomial-time reduction from a domino-tiling problem for grids with rows of singly
exponential length [32]. An instance I of this problem is a tuple I = 〈C,∆,m, dinit, dfinal〉,
where C is a finite set of colors, ∆ ⊆ C4 is a set of tuples 〈cdown, cleft, cup, cright〉 of
four colors, called domino-types, m > 0 is a natural number (written in unary), and
dinit, dfinal ∈ ∆ are two domino-types. For n > 0, a tiling of I for the n× 2m-grid is a
mapping f : [0, n− 1]× [0, 2m − 1]→ ∆ satisfying the following:

• row requirement: two adjacent cells in a row have the same color on the shared
edge: for all (i, j) ∈ [0, n − 1] × [0, 2m − 1] with j < 2m − 1, [f(i, j)]right =
[f(i, j + 1)]left;

• column requirement: two adjacent cells in a column have the same color on the
shared edge: for all (i, j) ∈ [0, n − 1] × [0, 2m − 1] with i < n − 1, [f(i, j)]up =
[f(i+ 1, j)]down;
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• f(0, 0) = dinit and f(n− 1, 2m − 1) = dfinal.

A tiling of I is a tiling of I for the n× 2m-grid for some n > 0.
Checking the existence of a tiling for I is EXPSPACE-complete [32]. We also use

the notion of pseudo-tiling for I, which is similar to the notion of tiling but the column
requirement is relaxed. Note that the column requirement is the crucial feature which
makes the considered domino tiling problem EXPSPACE-hard.1 In the following, we
construct in polynomial-time a BSRV specification ϕ such that there exists a tiling for
I if and only if ϕ is over-defined. The set X of input variables of ϕ is given by

X = {d | d ∈ ∆} ∪ {b+
1 , . . . , b

+
m, b

–
1, . . . , b

–
m}

We associate to each domino-type d ∈ ∆ an input variable d. The additional input
variables b+

1 , . . . , b
+
m, b

–
1, . . . , b

–
m are used to encode the value of an m-bit counter num-

bering the cells of one row of the grid (b+
1 is 1 whenever the i-th bit is 1, and b–

i is 1
whenever the i-th bit is 0). Thus, a cell is encoded as a finite word over 2X of length
m+ 1, the first m positions giving the binary encoding of the column number and the
last position giving the associated domino-type.2 More precisely, a cell with content
d ∈ ∆ and column number j ∈ [0, 2m − 1] is encoded by the word {d}{b1} . . . {bm},
where bk ∈ {b+

k , b
–
k} for all k ∈ [1,m], and bk = b+

k iff the kth bit in the binary encoding
of the column number j is 1. A tiling is then encoded as a sequence of rows, starting
from the first row, where a row lists the encodings of cells from left to right.

In the following, for a stream variable y and an integer k, we use y[k] for the stream
expression y[k|1] if k 6= 0, and for the stream expression y if k = 0.

We illustrate now the construction of ϕ that ensures that the unique inputs for
which there is no output stream valuation are those encoding tilings of I.

The preliminary step in the construction of ϕ is to enforce a designated output
variable PTU to be uniform with the uniform value 1 characterizing the inputs encoding
pseudo-tilings. For this, we need two additional output variables PT and test1.

The equation for the output variable PT ensures that PT assumes the value 1

1One can easily show that checking the existence of a pseudo-tiling is just PSPACE-complete.
2We assume that the first bit is the least significant one.
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everywhere iff the input streams encode a pseudo-tiling:

PT :=
∨
x∈X

(x ∧
∧

x′∈X\{x}

¬x′)

︸ ︷︷ ︸
exactly one input variable has value 1

∧

m−1∧
i=1

(
(b+

i ∨ b–
i )→ (¬last ∧ (b+

i+1[+1] ∨ b–
i+1[+1]))

)
∧
(
(b+

m ∨ b–
m)→ (¬last ∧

∨
d∈∆

d[+1])
)

︸ ︷︷ ︸
the input is a list of numbered cells

∧

(
first→ (

m∧
i=1

b–
i [i− 1] ∧ dinit[+m])

)
︸ ︷︷ ︸
the input starts with a dinit-cell numbered 0

∧
(
last→ (

m∧
i=1

b+
i [i−m− 1] ∧ dfinal)

)
︸ ︷︷ ︸

the input ends with a dfinal-cell numbered 2m − 1

∧

{
(¬last ∧

∨
d∈∆

d) −→
(

(b+
1 [+1] ∨ b–

1[+1])∧

(b+
1 [−m]↔ b–

1[+1]) ∧
m−1∧
i=1

(b+
i+1[−m+ i]↔ b–

i+1[i+ 1])↔ (b+
i [−m+ i− 1] ∧ b–

i [i])
)}

︸ ︷︷ ︸
the cells are listed in increasing order modulo 2m

∧

∧
d∈∆

d→ (last ∨
i=m∧
i=1

b–
i [i] ∨

∨
d′∈∆:(d′)left=(d)right

d′[m+ 1])

︸ ︷︷ ︸
two adjacent cells in a row have the same color on the shared edge

The equation for the output variable PTU is given by

PTU := if (¬first→ (PTU[−1]↔ PTU)) ∧ (¬PT→ ¬PTU) then PTU else ¬PTU

Hence, PTU is a uniform output variable, and the uniform value of PTU is 0 whenever
PT assumes the value 0 at some position. We exploit the additional variable test1 in
order to avoid situations where PT is everywhere 1 and the uniform value of PTU is 0.
The equation for test1 is as follows:

test1 := if {((first ∧ PT ∧ ¬PTU)→ ¬test1) ∧ (last→ test1) ∧
((¬first ∧ ¬test1[−1] ∧ PT ∧ ¬PTU)→ ¬test1)} then test1 else ¬test1

Thus, the uniform value of PTU is 1 iff the input encodes a pseudo-tiling (note that
there is an output valuation of PT, PTU, and test1 for each input).

Now, we describe the crucial step of the construction of ϕ. Assume that the input
encodes a pseudo-tiling, i.e. the uniform value of PTU is 1. Then, the input is not a
tiling of I if and only if the followign condition holds:

there are two adjacent cells (i, j) and (i+ 1, j) in some column
which have different color on the shared edge.

(3)
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In order to check Condition (3), we use O(m + |∆|) additional output variables: the
equations for these variables ensure that for each input σX , there is a valuation model
over σX if and only if whenever σX encodes a pseudo-tiling, the above Condition (3)
is satisfied. Hence, the unique inputs for which there is no stream valuation are those
encoding tilings of I.

The fulfillment of Condition (3) for an input which is a pseudo-tiling is ensured in
three steps.
• First step: we use two output variables, Bl1 and Bl2, for ‘marking’ two cells c1

and c2 of the pseudo-tiling.
• Second step: we use three additional output variables, namely, m1, m2, and test2

in order to check that the two cells c1 and c2 marked by Bl1 and Bl2, respectively,
belong to two adjacent rows (with the c2’s row following the c1’s row).

• Third step: finally, we use the output variables ob1, . . . , obm, test3, and od for
each d ∈ ∆ to guarantee that the cells marked by Bl1 and Bl2 have the same
column number but different color on the shared edge.

Now, we proceed with the formal definition of the equations for the output variables
of Steps 1–3.

Equations for Step 1. For each h = 1, 2, the equation for the output variable Blh
requires that whenever the uniform value of PTU is 1, then the stream for Blh is in
0∗1+ and the suffix in 1+ starts with a cell (“the cell marked by Blh”).

Blh := if PTU→ {(last→ Blh) ∧ ((Blh ∧ ¬Blh[−1|0])→ (b+
1 ∨ b–

1)) ∧
(¬Blh → ¬Blh[−1|0]) ∧ (Blh → Blh[+1])} then Blh else ¬Blh

Equations for Step 2. The output variable m1 is used to mark the first cell of the row
following the one containing the cell marked by Bl1. Formally, the equation for m1

ensures that whenever the input is a pseudo-tiling, then the stream for m1 is in 0+1+

and the suffix in 1+ starts with a cell (“the cell marked by m1”) which is the first cell
numbered 0 following the cell marked by Bl1.

m1 := if PTU→ {(last→ m1) ∧ (first→ ¬m1) ∧ (¬m1 → ¬m1[−1|0]) ∧

(m1 → m1[+1]) ∧ ((Bl1 ∧
m∧
i=1

b–
i [i])→ m1[1]) ∧

((¬m1 ∧m1[1])→ (Bl1 ∧
m∧
i=1

b–
i [i]))} then m1 else ¬m1

The output variable m2 is used to mark the first cell of the row containing the cell
marked by Bl2. Formally, the equation for m2 ensures that whenever the input is a
pseudo-tiling, then the stream for m2 is in 0+1+ and the prefix in 0+ ends with the
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first bit of a cell (“the cell marked by m2”) which is the last cell numbered 0 preceding
the cell marked by Bl2 (Bl2 included).

m2 := if PTU→ {(last→ m2) ∧ (first→ ¬m2) ∧ (¬m2 → ¬m2[−1|0]) ∧

(m2 → m2[+1]) ∧ ((¬Bl2 ∧
m∧
i=1

b–
i [i])→ ¬m2[+1|0]) ∧

((¬m2[+1|1] ∧m2[+2|0])→ (¬Bl2 ∧
m∧
i=1

b–
i [i]))} then m2 else ¬m2

Thus, the cells marked by Bl1 and Bl2 belong to two adjacent rows (with the Bl2’s row
following the Bl1’s row) if and only if m1 and m2 mark the same cell if and only if the
first 1-value position of m1 corresponds to the last 0-value position of m2. The equation
for the output variable test2 ensures this last condition.

test2 := if PTU→ {(¬m2 ∧m2[+1])↔ (m1 ∧ ¬m1[−1|0])}
then test2 else ¬test2

Equations for Step 3. Finally, we define the equations for the output variables ob1, . . . , obm,
test3, and od (d ∈ ∆) ensuring that the cells marked by Bl1 and Bl2 have the same col-
umn number but different color on the shared edge. The equation for obi guarantees
that there is a uniform stream for obi if and only if the i-th bits of the cells marked by
Bl1 and Bl2 have the same value.

obi := if PTU→
2∧

h=1

{(Blh ∧ ¬Blh[−1|0]) −→(
(b+

i [i− 1]→ obi[i− 1]) ∧ (b–
i [i− 1]→ ¬obi[i− 1])

)
} then obi else ¬obi

For each d ∈ ∆, the equation for od ensures that there is a uniform stream for od if and
only if whenever the domino-type of the cell marked by Bl1 is d, then the cells marked
by Bl1 and Bl2 have different color on the shared edge.

od := if PTU→ {((d[m] ∧ Bl1 ∧ ¬Bl1[−1|0])→ od[m]) ∧
((

∨
d′∈∆:(d′)down=(d)up

d′[m] ∧ Bl2 ∧ ¬Bl2[−1])→ ¬od[m])} then od else ¬od

Thus, the equation for variable test3 enforces the output streams for ob1, . . . , obm, od
(d ∈ ∆) to be uniform.

test3 := if PTU→ ¬first→
( m∧
i=1

(obi[−1]↔ obi) ∧
∧
d∈∆

(od[−1]↔ od)
)

then test3 else ¬test3
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Hence, the unique inputs for which the constructed BSRV ϕ has no output stream
valuation are those encoding tilings of I. In other words, ϕ is over-defined precisely
when there is a tiling of I. Note that the size of ϕ is quadratic in the size of I. This
concludes the proof of EXPSPACE-hardness of checking over-definedness for BSRV.

EXPSPACE-hardness for generalized well-definedness of BSRV. First, we ob-
serve that the complement of the over-definedness problem can be reduced in linear time
to the generalized well-definedness problem. Indeed, let ϕ be a BSRV specification and
ϕ′ be the BSRV specification obtained from ϕ by adding the equation z = 0, where z
is a fresh output variable. Clearly, ϕ is not over-defined if and only if ϕ′ is well-defined
with respect to {z}. Hence, by the obtained EXPSPACE-completeness result for over-
definedness of BSRV, EXPSPACE-hardness of checking generalized well-definedness of
BSRV follows.

EXPSPACE-hardness for language universality, language inclusion, and lan-
guage equivalence of BSRV. The results directly follow from EXPSPACE-completeness
of checking over-definedness for BSRV and the facts that language universality for BSRV
is the complement of the over-definedness problem, and language inclusion and language
equivalence can be reduced in linear time to language universality.

EXPSPACE-hardness for semantic equivalence of BSRV. Let ϕ be a BSRV spec-
ification over X and Y , ϕ′ be a BSRV specification over X and Y ′, and Z ⊆ Y ∩ Y ′.
Note that if Z = ∅, then ϕ and ϕ′ are equivalent with respect to Z if and only if
L(ϕ) = L(ϕ′). Hence, by EXPSPACE-completeness of checking language equivalence
for BSRV, the result follows.

The only missing parts to complete the proof of Theorem 7 are the PSPACE-hardness
of checking under-definedness, well-definedness, and language emptiness for BSRV.

PSPACE-hardness for under-definedness and well-definedness of BSRV. We
proceed by a polynomial-time reduction from a domino-tiling problem for grids with
rows of polynomial length [32]. An instance I = 〈C,∆,m, dinit, dfinal〉 of this problem is
defined as in the proof of EXPSPACE-hardness for over-definedness of BSRV. However,
in this case a tiling of I is a tiling of I for the n×m-grid for some n > 0 (i.e., the length
of any row is m). The existence of a tiling for I is an PSPACE-complete problem [32].
We construct in polynomial time a BSRV ϕ such that the following holds:

• there exists a tiling of I if and only if ϕ is under-defined;

• ϕ is not under-defined if and only if ϕ is well-defined.
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Hence, the result follows. Now, we illustrate the construction of ϕ. The set X of input
variables of the specification ϕ is given by

X = {d | d ∈ ∆} ∪ {mk}
We associate to each domino-type d ∈ ∆ an input variable d. The additional input
variable mk is used as a separator between two adjacent rows. Thus, a tiling is encoded
as a sequence of rows separated by the special marker, starting from the first row.
Additionally, the first row is preceded by the special marker, and the last row is followed
by the special marker. The specification ϕ has two output variables: PT and PTU. The
output variable PT is used to check that the input encodes a tiling of I: in particular,
PT assumes the value 1 everywhere if and only if the input streams encode a tiling.
Formally, the equation for variable PT is as follows.

PT :=
∨
x∈X

(x ∧
∧

x′∈X\{x}

¬x′)

︸ ︷︷ ︸
exactly one input variable has value 1

∧

(
first→ (mk ∧ dinit[+1|0])

)︸ ︷︷ ︸
the input starts with a dinit-cell

∧
(
last→ (mk ∧ dfinal[−1|0])

)︸ ︷︷ ︸
the input ends with a dfinal-cell

∧

(
(mk ∧ ¬last) −→ (mk[m+ 1|0] ∧

m∧
i=1

¬mk[i|1])
)

︸ ︷︷ ︸
adjacent rows are separated by the marker

∧

∧
d∈∆

(
d→ (mk[+1|0] ∨

∨
d′∈∆:(d′)left=(d)right

d′[+1|0])
)
∧

︸ ︷︷ ︸
two adjacent cells in a row have the same color on the shared edge∧

d∈∆

(
d→

∨
d′∈∆:(d′)down=(d)up

d′[m+ 1|1]
)

︸ ︷︷ ︸
two adjacent cells in a column have the same color on the shared edge

Finally, the equation for the uniform output variable PTU is as follows.

PTU := if (¬first→ (PTU[−1|1]↔ PTU)) ∧ (¬PT→ ¬PTU) then PTU else ¬PTU

Note that if the input does not encode a tiling (i.e., for some position, PT assumes the
value 0), then the uniform value of PTU is 0. Otherwise, the uniform value of PTU
may be 0 or 1. Since for each input, the stream valuation for the other output variable
PT is uniquely determined, it follows that there is a tiling for I iff ϕ is under-defined.
Moreover, since for each input, there is some output stream valuation, it follows that ϕ
is not under-defined if and only if ϕ is well-defined. Note that the size of ϕ is quadratic
in the size of I. Hence, the result follows.
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PSPACE-hardness for language emptiness of BSRV. We modify the polynomial-
time reduction given in the proof of PSPACE-hardness of checking under-definedness for
BSRV as follows: the equation for the output variable PTU of the BSRV ϕ is updated
as follows:

PTU := if (1↔ PTU) ∧ (¬PT→ ¬PTU) then PTU else ¬PTU

Hence, PTU is a uniform output variable whose uniform value is always 1. Moreover, the
output stream for PTU is defined iff the output stream for PT is in 1+. Additionally, the
construction in the proof of PSPACE-hardness of checking under-definedness for BSRV
ensures that for each input, the output stream for the output variable PT is uniquely
determined, and PT assumes the value 1 everywhere if and only if the input streams
encode a tiling. Hence, the updated construction is a polynomial-time reduction from
a PSPACE-complete problem to language emptiness for BSRV.

6. Conclusion

In this paper, we have studied some fundamental theoretical problems for the class of
Boolean SRV. We have also presented an offline monitoring algorithm for well-defined
BSRV that only requires two passes over the dumped trace. An open question is
the exact complexity of checking well-definedness for BSRV. We only show here that
this problems lies somewhere between PSPACE and EXPTIME. Future work includes
the theoretical investigation and the development of monitoring algorithms for SRV
over richer data types, such as counters and stacks. In particular, the emerging field
of symbolic automata and transducers [23]—that extend the classical notions from
discrete alphabets to theories handled by solvers—seems very promising to study in
the context of SRV, which in turn can extend automata from states and transitions
to stream dependencies. The combination of these two extensions has the potential
to provide a rich but tractable foundation for the runtime verification of values from
rich types. Additionally, we are studying the extension to the monitoring of visibly
pushdown systems, where SRV is extended to deal with traces containing calls and
returns.

Finally, we plan to study the monitorability of well-definedness of specifications. If
one cannot determine well-definedness statically, a plausible alternative would be to
use a monitor that assumes well-definedness in tandem with a monitor that detects
non-well-definedness (and hence, the incorrectness of the first monitor).
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[4] K. Havelund, G. Roşu, Synthesizing monitors for safety properties, in: Proc. of
TACAS’02, LNCS 2280, Springer, 2002, pp. 342–356.

[5] C. Eisner, D. Fisman, J. Havlicek, Y. Lustig, A. McIsaac, D. V. Campenhout,
Reasoning with temporal logic on truncated paths, in: Proc. of CAV’03, Vol. 2725
of LNCS 2725, Springer, 2003, pp. 27–39.

[6] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and TLTL,
ACM Transactions on Software Engineering and Methodology 20 (4) (2011) 14.
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